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ABSTRACT

APPLICATIONS OF GRAPH THEORY TO ERROR CORRECTING
CODES

Graph Theory has applications in many different fields, especially in combinatorics.

In this study, we investigate the methods developed for obtaining error-correcting codes

using graphs.

First, the codes obtained from cycle and cut-set spaces of a graph are considered.
After constructing the codes and giving the decoding schemes, methods for increasing the
dimensions of these codes are examined. Then decoding schemes for these new codes are

given.

Next, a method for obtaining self-dual codes using cubic planar bipartite graphs is

examined.

The last method covered is to obtain perfect one error-correcting codes using some

graphs that are constructed from the Tower of Hanoi Puzzle.



OZET

GRAF TEORISININ HATA DUZELTEN KODLARA
UYGULANMASI

Graf teorisinin bagta kombinatorik olmak tizere birgok degisik alanda uygulamalan
bulunmaktadir. Bu ¢aligmada, graflar yardimi ile hata diizelten kodlar elde etmek igin

gelistirilen baz1 metodlar arastirtyoruz.

[k olarak bir grafin dongii ve kesen kiime uzaylarindan elde edilen kodlar iizerinde
duruluyor. Kodlar kurulduktan ve hata diizeltme algoritmalari verildikten sonra, bu
kodlarin boyutlarinin arttirilmasa ile ilgili metodlar inceleniyor. Son olarak bu yeni elde

edilen kodlarin hata diizeltme algoritmalar: veriliyor.

Incelenen ikinci method kiibik diizlemsel iki parcali graflardan kendi duali olan

kodlar elde edilmesidir.

Son olarak mitkemmel tek hata diizelten kodlar elde etmek igin gelistirilmis bir
metod inceleniyor. Bunun igin Hanoi Kulesi probleminden yola ¢ikarak olusturulmug bazi

graflar kullamlmistir.
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1. INTRODUCTION

Certain amount of work has been done about the relationship between codes and
graphs and some methods have been developed for constructing codes using graphs. Three
of these methods are covered here, where the codes obtained from the cut-set and cycle

spaces of a graph are of main interest.

These codes are referred as the graphical codes and they were mainly examined by
Hakimi and Frank in [1], Hakimi and Bredson in [2], [3] and [4], Bobrow in [5], and
Bobrow and Hakimi in [6] in 1960°s. They found methods for increasing the dimensions of
the codes, and also considered decoding the resulting codes. Then they expanded their
studies to obtain ternary and in general, g-ary codes, and applied the results of the binary

case to these codes.

In late nineties, Jungnickel and Vanstone (in [7], [8] and [9]) reconsidered graphical
codes. They generalized the methods of Hakimi and Bredson and had a new approach; the
augmented codes would still be graphical, i.e., the codewords would still be spanning
subgraphs of the graph used. They also gave decoding algorithms with higher efficiencies
than the ones of Hakimi and Bredson. They also worked on some problems related to
graphical codes in [10], [11] and in [12] with De Besimini.

Other methods for obtaining codes from graphs include the study of Haluk Oral,
where he obtained self-dual codes in [13], and Cull and Nelson in [14] used the Tower of

Hanoi puzzle to obtain perfect one error-correcting codes via constructing a family of

graphs.



2. CODES OBTAINED FROM CYCLE AND CUT-SET SPACES OF A
GRAPH

2.1. Constructing Binary Codes

Let G be a connected graph with # edges and m vertices. Consider the subgraphs of
G as binary n-tuples in the following manner: Assume the edges have an arbitrary but fixed

labeling. The i* coordinate is one if edge ¢; is contained in the subgraph, and zero

otherwise.

If we fix a spanning tree T of G, then adding any edge e to T will result in a cycle
consisting of the path in 7 between the endpoints of e and e itself. Label the edges of G in
such a way that the first n-m + I edges are from G-T and the rest are the m-1 edges of T.

Definition 2.1 The n-m + I cycles that are formed by each edge that is not in 7 and its
unique tree path are called as the fundamental cycles with respect to 7. Similarly, the
fundamental system of cut-sets with respect to T is the m-I cut-sets, where every cut-set
includes exactly one edge of 7. We can find such a cut-set, since every cut-set must contain

at least one edge from every tree of G.

Definition 2.2 The fundamental cycle matrix, denoted by B ,, is defined to be the matrix

having edges of G as columns and the fundamental cycles with respect to T as rows. Since
each cycle is obtained by adjoining one edge to T, we can arrange the rows in such a way
that the first n-m + 1 = N(G) (nullity of G) columns will give the identity matrix of order
N(G). So the rank of this matrix is N(G) and B, = [I;.¢, B, | is a (M(G), ) matrix. For

the same tree T and the same labeling of the edges, the fundamental cut-set matrix, denoted

by Q ;, is defined in a similar manner. The columns are again the edges of G and the rows

of the matrix consist of the m-1 = R(G) (rank of G) fundamental cut-sets obtained from T.
This time we can arrange the rows to give the identity matrix of order R(G) on the last

m—1 columns. So the rank is R(G) and O, =[Qf1 IR(G)] is a (R(G), m) matrix. For

1
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details on fundamental cycle and cut-set matrices, the reader is referred to Seshu and Reed
[15].

Example 2.1 Consider the graph G, shown in Figure 2.1. Let the edge set of G be

E(G)={e, e, e;e,e5,65,}

Figure 2.1. The graph used to demonstrate the construction of fundamental cut-set and

cycle matrices.

Let T ={e,,es,e;z, e, }. Then the fundamental cycle matrix with respect to T is:

S O M~
_~ O O
S~~~
~N o~ O

And the fundamental cut-set matrix with respect to 7 is:

1001000
0010100
%=1 10001 0
0110001

Definition 2.3 A spanning subgraph of G in which every vertex has even degree is called
as an even subgraph of G. It can be shown that an even subgraph is either a cycle or union

of disjoint cycles. A seg is defined to be a cut-set or union of edge disjoint cut-sets.



Let Cz(G) be the set of all even subgraphs of G. It can be shown that C(G) is a
vector space of dimension N(G) under the symmetric difference of subgraphs. The
symmetric difference of subgraphs corresponds to mod 2 sum of the binary n-tuples
representing these graphs. For example, the symmetric difference of two subgraphs g; and
g,, denoted by g, © g,, result in a subgraph consisting of the edges in either g,or g,
but not in both. C(G) is generally called the cycle space of G. Similarly, the set of all
segs, denoted by B(G), is a vector space of dimension R(G) under the symmetric difference

of subgraphs. This vector space is called as the cut-set space of G.

The cycle space and the cut-set space, which clearly are subspaces of the vector
space of binary n-tuples under mod 2 addition, form binary codes having the parameters (#,
N(G), d) and (n, R(G), d) respectively. Here, d is the minimum number of edges in a cycle
(or a cut-set) of G. The fundamental cycle and cut-set matrices B, and Q, serve as the

generating matrices of these codes.
Proposition 2.1 Any cut-set has an even number of edges in common with any cycle.

Proof. Let C be a cycle and S be a cut-set of a connected graph G. Assume they have edges
in common (if not the statement follows). Let X and Y be the components of G-S. Then C
contains vertices from both X and Y. Starting with a vertex in X, we get to a vertex in ¥
using a common edge of C and S. To go back to X, we need another common edge. Since

C is a cycle, we need to go back to X. Thus we must have even number of common edges.

From this, we can conclude that the cycle space is the nullspace of the cut-set space

and vice versa. So these codes are dual codes of each other.

Example 2.2 Consider the graph G in Example 2.1. Then the cycle code C(G) is a code

with parameters (7, 3, 3) and generating matrix B . The cut-set code B(G) has parameters
(7, 4, 3) and generating matrix Q.. It can easily be checked that the rows of B, are

orthogonal to the rows of Q.



2.2. Decoding Cut-set and Cycle Codes

Hakimi and Bredson show in [2] that the codes obtained from cycle and cut-set
matrices are majority decodable. Majority decoding is the method of decoding a received

vector to the closest code vector.

Lemma 2.1 If G is a connected graph with # edges in which every cut-set contains at least

d edges and e, is any edge of G, then there exist at least d-I cut-sets (or segs)
Ci(k),Cy(k),---,Cy (k) such that Ci(k)NC;(k)={e } for all i=j where
1<i,j<d-1. Considering C,(k)C,(k),,Cy ;(k)as n-coordinate vectors

corresponding to these cut-sets, the following is shown:

Theorem 2.1 If g,is the vector transmitted and g, is received, assuming no more than

[d; IJ errors have occurred, the k" component of g, is correctly received if and only if

d-I _
X ;< L%J (the summation is over the real field) where 6, =C;(k)-g, (mod 2
=1

inner product of two vectors)

For the cut-set code, the same theorem can be applied by giving a lemma similar to

above:

Lemma 2.2 If G is a connected graph with n edges in which every cut-set contains at least

d edges and e, is any edge of G, then there exist at least d-/ even subgraphs
Ci(k),Cy(k),++,Cy_j(k)such that C;(k)NC;(k)={e,} for all i=#j where
1<i,j<d-1.

Definition 2.4 An odd degree pattern of a subgraph of G is defined to be a binary vector of

length m in such a way that, for a fixed labeling of the vertices of G, the i * coordinate

position is / if and only if v, has odd degree in that subgraph.



It is shown by Jungnickel and Vanstone in [7] that the odd degree patterns of
subgraphs of G form the subspace V,(m,2)of V(m,2)consisting of all even vectors of
V(m,2), where V(m,2) is the vector space of m-tuples with entries from GF(2). Using

the odd degree patterns, they develop an algorithm for decoding cycle codes.

Algorithm 2.1 For decoding a f-error correcting graphical code C=C,(G) with
parameters (n, N(G), d) let X =C+S be the received word, where C € C and § is an
unknown subgraph consisting of at most ¢ edges. Here, it is assumed that at most ¢ errors
have occurred during transmission. Then the odd degree pattern W of S, which obviously is

also the odd degree pattern of X, has weight w < 2¢. The algorithm is given as follows:

(=

. Find # by computing the degrees of all vertices of X, write [W|=2w.

2. Compute the distance d(x, y) between x and y in G for every pair {x, y} of vertices
of W.

3. Form the complete graph K on W.

4. Find a minimum weight perfect matching M ={x,y, :i=1,2,---,w}of K with
respect to the distance function d computed in step two.

5. Determine a path P of length d(x;,y;) between x; and y, in G, for

i=12,w.
6. Let S be the symmetric difference of the paths P, P, ,---,P,, .
7. Output X=C + S.

Here, it is required finding a spanning tree of G with least weight, which has the
same vertices of odd degree as X. The problem of finding such a tree is solved by an
application of Chinese Postman Problem. This is the problem of finding the least weighted
closed walk covering all the edges in an edge-weighted graph. [16]

2.3. Augmenting Cut-set Codes

Hakimi and Frank consider in [1] constructing graphs with » edges and maximum

ranks in which every cut-set contains at least d edges, to obtain optimum cut-set codes.



For this purpose, the graphs shown below in Figure 2.2. have been constructed. Here,

the ranks of the graphs are m—1= [Zd_n} -1 where m is the number of the vertices of the

graph, and »'is the minimum number of edges required for keeping d fixed. For n>n',

remaining »n —n' edges can be added arbitrarily.

Figure 2.2. Graphs with » edges and maximum ranks, having at least d edges in each cut-

set.

.. YOXSEXOCRETIM KURULY
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Given n and d, these graphs have maximum ranks: Since every cut-set is assumed to
have at least d edges and deleting all edges incident to a vertex makes the graph

disconnected, d(v)>d must hold for every vertex v of the graph G. So we have

m-d de(v)=2n, and hence msga,’l. Maximum value of m is achieved when
[2nJ
m=|—|.
d

Even though these graphs lead to optimal cut-set codes with length #» and minimum

distance d, the dimension of the resulting code is low when compared with the Plotkin

bound [17]. To overcome this situation, it is shown that if d < [%J , then the rank & of the

cut-set space (k = m—I)can be increased tok + [%J -1.

Example 2.3 Consider the graph below constructed by the method mentioned with n =18
and d =6.Then k=35.

Figure 2.3. Graphs that are used for increasing the dimension of the cut-set code.

Pick atree T ={e,,e,,e;,e,,e;5 } . The cut-set matrix corresponding to T'is



1 00 001000O0O0TI100°0©O0T111
010000100001 00©0111
A=10 0 1 0 0 0 0 1 0 0 0 01 00111
0 001 0000100001011 1
o 0 0 010000100001 11 I]

Then G-T has two disjoint cycles that contain every vertex of G, namely
h; ={es,e;ez,e9,€.€,5} and h, ={e; ,e;,,e53,€,4.€5,€;7 . (Such cycles are called as
Hamiltonian cycles.) These cycles cannot be cut-sets or union of disjoint cut-sets, because
they do not contain any edge of T. So they are linearly independent with the rows of 4.

Adding these cycles (considered as vectors) to the rows of A4,, a new matrix A: is

obtained. This matrix is shown to be the generating matrix of a code C” with parameters
(18,7,6) by proving that the linear combinations of the rows of this new matrix have

minimum weight 6.
2.4, First Method for Augmenting the Cycle Codes

To obtain higher efficiency, Hakimi and Bredson develop some methods for
increasing the dimensions of the cycle codes in [3]. They were more interested in the cycle
codes rather than the cut-set codes, because they say that for every » and d, there exists a

cycle code, which is at least as efficient as any cut-set code.
The main idea is to find a set of p independent vectors of length #, written as rows of
B
a matrix A, such that the matrix [Af ] is a generating matrix of a (n, N (G)+p, d) code.
2.4.1. Augmenting without Partitioning the Vertex Set of the Graph
Hakimi and Bredson mention a method in [3] developed by Hakimi [18]. Given

integers n and d, this is a procedure for constructing a graph G with n edges such that every

cycle, and hence every even subgraph, has at least d edges. The resulting graph turns out to

T YOKSEXGERETIM KURULU
DOKTMANTASY ON MERXIZI
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be bipartite for even values of n, since by construction, every cycle in the graph has even

length. Such graphs are referred as (n, d) graphs.

Let G be a connected (, d) graph with m vertices. Fix a vertex v" of G and define a
set of paths P={p(v',v;) Iv,- eV(G)={p(V'.v; ), p(v'v,)}. Here p(v',v") is
assumed to be an empty subgraph of G. Clearly, |P|=m. Assume m > 2d and let g, be

the symmetric difference of 2d or more paths in P. Let the subgraphs g,and g, be given
and let d;(g;)denote the degree of v; in g;, j=1,2. Then it can be shown that if

di(g,) and d;(g,) have the same parity, then d;(g;®g,) is even, otherwise

d;(g; ® g, ) is odd. Then the following is proved:
Lemma 2.3 If E is an even subgraph in G, then |g » & El >d.

Using the above information, the first method of augmentation is given as follows:

Construct a graph G, with m edges, in which every cycle (if there is any) contains at least
2d edges. Let P* be the matrix whose rows are all paths in P, and B,(G,;) be the
fundamental cycle matrix of G;. Define B*(G,)=Bf(G,)-P*, which is a (N (G ;)xn)

matrix. Then the matrix

Bf(G):l

AJ(G)=[ \
B(G,)

is a basis for an (n, N (G)+N (G,), d) binary linear code. If G, contains at least 4d

vertices, this procedure can be carried out again to obtain a higher dimension.
2.4.2. Augmenting with Partitioning the Vertex Set of the Graph

Case 1. If d is even, then G is bipartite because it is assumed to be an (», d) graph. So, we

can partition the vertex set ¥ of G into two disjoint sets ¥, and ¥, . Fix the vertices v; ¥,
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and v;eV,. Define the following sets of paths: P, ={p(v;,v; )|v,- €V,} and
P, ={p(v;,v,.)|v,- eV, }. So |P|=|V,| and |P,|=|V,|. Assume |V;|>d, for i=1,2 and

let g, be the symmetric difference of an even number 7, (= d)of paths in P, i=1,2.

Lemma 2.4 If E is an even subgraph of G, then [gpl @Elzd, |gp2 @Elzd, and

g, ©g, OE>d.

The augmentation is done as follows: Construct two graphs G; and G,, using
Hakimi’s procedure, with [V;|and |V,| edges respectively, such that every cycle contains at
least d edges. Since d is even, every cycle in these graphs will have even number of edges.

Let B,(G;)be the fundamental cycle matrix of G,. Construct P}, whose rows are all the
paths in P, . Let B*(G,.)=Bf(G,.)-P,-", i=12. Observe that these are (N(G;)xn)

matrices, for i = 1,2 . Then the matrix

B/(G)
AI(G)= B‘(GI)
B'(G,)

is a basis for a (n, N(G) + N(G, )+ N(G, ),d ) binary linear code.

Case 2. If d is odd, we cannot apply the above procedure directly because G would not be
bipartite. So a generalization is made to include this case. For this purpose, assume that

there are p nonempty disjoint independent sets of vertices V,,V,,---,V, such that

P
\J¥; =7 . Without loss of generality, assume |V,|<[Vj] for j=12,-p-1.Letv; €V,
=1

be fixed. Define the set of paths P;,P,,---,P, as P; ={p(v:,,v,-)|v,- eV,andv, #v, },
j=12,-,p.Define g p, 10 be the symmetric difference of d or more paths in P;. If for

some k |P,|<d, then assume g, to be empty. Then any mod 2 linear combination of
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vectors g .8, 8, is a vector g,, which differs in at least d components from a

vector of any even subgraph of G, except when g, is the zero vector.

First construct a graph G;, for all 1 <i< p, with |P| edges in which every cycle
contains at least d edges. Let B,(G; )be the fundamental cycle matrix of G;, which is a
(N(G;)x|P|) matrix, and P" be the (|P,|xn) matrix whose rows are all paths in P, .
Define B*(G,)=B;(G,)-F'. Observe that these are (N(G;)xn) matrices, for i =1.2.

Then the matrix

B,(G) ]

46)=| 7OV

|B°(G,))]

p
is a basis for a (n, N(G)+ Y_N(G; ),d ) binary linear code.

i=l

For recursive augmentation, given a (, d) graph G, construct graphs G,,G,,---G, as

suggested above and define for every (s, d) graph G the matrix

B,(G) ]

axy=| (%

\_B‘(GP )_

where B*(G,;)=B;(G; )P}, j=12,p.

Then recursively define for every integer i > 1,
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(B,(G)

A(G)= Ai:I(GI)

_A;—I(Gp)_
where 4, [(G;)=4,,(G;) P}, j=12,,p.

The recursion terminates when for some integer £ the number of rows in 4,(G)is
the same as the number of rows in 4,_,(G). For i 21, 4;(G) forms a basis for a binary

code of length » with minimum distance d. Same argument may be applied to the

augmentation without partitioning the vertices.

Next, the efficiency (k/n, where £ is the dimension and # is the length of the code) of
these augmented codes are discussed. Dimensions of augmented cycle codes are compared
with the Varsharmov-Gilbert bound [19]. For many values of #» and d, especially when
n<100 and d<20, efficiency of graph theoretic codes remain above the bound. The
conclusion is that one generally obtains higher efficiencies using recursive augmentation
with partitioning the vertices than without partitioning the vertices and the second method

seems to give better results for even values of d than odd values of d.
2.5. Second Method for Augmenting Cycle Codes

In [7], Jungnickel and Vanstone show that a graphical code C =C;(G) with
parameters (n, N(G), d) can be extended to a (n, N(G)+1, d) code C’, provided that
n22d. C' is obtained by adjoining any subgraph S with odd degree pattern of weight
w2 2d as arow of B. Here, one must have a bond on the weight of an arbitrary vector C
+ Sof C', where CeC. Let W be the odd degree pattern of S with weight w. Then the
odd degree pattern of C + S is also W. The smallest possible weight of C + § is obtained
when C + S consists of w/2 independent edges. To guarantee that C' still has minimum

weight G, we must have w2 2d .
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In general, to increase the dimension by & > 2, according to the argument above, £

linearly independent subgraphs, S;,S,,--,S; are needed as additional rows of B,. Each

of these subgraphs must have odd degree patterns of weight bigger than or equal to 2d.
Also, the symmetric difference of any of these subgraphs must have odd degree patterns of
weight at least 2d. Hence the odd degree patterns related with these subgraphs should
themselves form an even binary code O (i.e., every code has even weight) with minimum

distance at least 2d. This is stated as a theorem:

Theorem 2.2 The dimension can be increased by k =2, to get a code C*, provided that

there exists an even binary (, k, 2d) code 0. C* is obtained by adjoining k linearly
independent subgraphs, §,;,S,,::-,S;, to C with odd degree patterns forming a basis for O

as additional rows of B r-

Jungnickel and Vanstone also show in [7] that Hakimi and Bredson’s method
without partitioning the vertex set is a special case of the method given above. In the same

manner, the method with partitioning the vertex set is generalized as follows:

Theorem 2.3 Consider a graphical code C = C;(G) with parameters (n, N(G), d) based

on the connected graph G, and assume V,,V,,--,V, is a partition of the vertex set V into
independent sets with cardinalities p;, p,,--*, p, respectively. Then C may be extended to
a graphical code C* with parameters (n, N(G) + (k, +k, +---+k_), d) provided there
exists even binary ( p;,k;,d) codes O;, for i=1,2,---, p. Such a code can be obtained by
adjoining C arbitrary sets of %, linearly independent subgraphs of G with odd degree

patterns contained in¥; and forming a basis for 0; as additional rows of B .

2.6. Decoding Augmented Cut-Set Codes

L.S. Bobrow, in [5], suggested a method for decoding augmented cut-set codes that

Hakimi and Bredson have obtained, which were mentioned in Section 2.3.
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The original cut-set code is a subspace of the augmented code, so the dual of the
augmented code is a subspace of the dual of the original code. The dual of the augmented
code consists of all the even subgraphs that have even number of edges in common with

the Hamiltonian cycles that are added.

The decoding process is explained with an example. Consider the graph in Figure
2.3.(a). According to the augmentation scheme mentioned in section 2.3., the dimension of

the corresponding code can be increased by two by adding the vector representations of the
Hamiltonian cycles %, ={e;,e,,e5,eq,€;5.€;6 } and hy, ={e;;,e;5,€;5,€14,€;5,€;, } to the
generating matrix of the code. Consider the even subgraphs c; ={e;,e;,e;,e,,e5,€55 },
c;={e;.e;.€5.€9.€19.€15}, C3={e€1.€5.€53.€4.€5.€17 }, ¢q={e.€;, 5,6, } ¢5s={e,
e, e;;.e;, . These cycles are in the dual of the augmented code, and orthogonal on b, +b,,
where b,,b,, --,b;s are the coordinate positions of the codeword. By the structure of the

graph, it can be seen that there are five vectors in the nullspace that are orthogonal on

b, + b;. The parity checks corresponding to these five vectors will give us an estimate on
b, +b;. Similarly, estimates on b, +bg, b, +b;;, b, +bs; can be obtained. These
quantities are then combined with the original parity checks corresponding to ¢;,c;,c; and
¢, respectively. Including the parity check corresponding to c;, we get a set of five parity

checks orthogonal on b,. From here b, can be estimated. Similarly, estimates for the other

coordinate positions are obtained.

2.7. First Method for Decoding Augmented Cycle Codes

The augmented binary codes are majority decodable and decoding schemes for both

methods are given in [3].

For the first method, (without partitioning the vertices) let the edges of G, be

e;.e,,--e, and assume e; corresponds to the vertex v; of G. Then a one-to-one

m

correspondence is established between e, and a path p(v*,v; ) € P. If g, is the transmitted

vector then we can write g, = E + g,, where E is an even subgraph of Gand g, isa
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linear combination of the rows of the matrix B*(G, ). g p can also be considered as the

symmetric difference of a subset of paths in P corresponding to the edges of an even

subgraph E, in G;. For every subgraph g, of G, a subgraph g, of G, is defined as:
g, ={eli=12,-,m andd,(g,)isodd }.

Given these definitions, it is proved that if g, =E+g, is transmitted and
8 =8 +8. is received and the subgraphs g, andE, are defined as above, then

|Ep1 @gm| < Z[d_;{J . Here, it is assumed that w(g, ) < [dz—]J.

Let g, be received. Then g, of G, can be determined. g, differs from £, in at most
d-1 . . .
2 > edges by the above statement. Since every cycle in G, contains at least 2d

edges, E, can be determined from g, by majority decoding of G,. From E, , g, canbe
found. Since g, +g, = E +g,, by majority decoding on G, E can be found. Finally,

g, = E + g, is obtained.

The decoding scheme for the second method (with partitioning the vertices) is a

generalization of the argument just mentioned.

2.8. Second Method for Decoding Augmented Cycle Codes

Algorithm 2.2 For decoding the augmented (1, N(G)+k, d) code C*, which is obtained by
using the even binary (m, &, 2d) code O, where d > 2t + 1, let R be the word received and
assume that at most ¢ errors have occurred. Then R = C + § + E for some C e C, some
unknown subgraph S with odd degree pattern W # 0 in O, and some graph E consisting of

at most ¢ edges. The decoding algorithm is given as follows:

1. Find the odd degree pattern R’ of R by computing the degrees of all vertices in R,
2. Using 0, decode R’ into the correct odd degree pattern W = R'+E'€ 0.
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3. Find a subgraph S of G corresponding to the odd degree pattern W.
4. Put X'=R+S and decode X' into a subgraph C € C using Algorithm 2.2.
5. Output X=C + S.

Here, it is stated that this algorithm’s efficiency depends on the efficiency of
decoding the code O.

For decoding augmented codes obtained by the method given by Theorem 2.3, the

following algorithm is given:

Algorithm 2.3 Consider the (n, N(G)+(k, +k, +---+k_), d) codeC*, which is obtained
by using the binary (m, k;, d) codes O;(i=12,---,p). Let R be the word received and
assume that at most ¢ errors have occurred. Then R = C+ §; +§, +---+§, + E for some
C e C, some subgraphs S;with odd degree patterns W, #0 in O;, and some graph E

consisting of at most ¢ edges.

1. Find the odd degree patterns R/ of R restricted to ¥; by computing the degrees

of all vertices in R.

2. Using 0,, decode R; into the correct odd degree pattern W, = R/ +E; € 0.

3. Forall i=1,2,-,p with E; # 0, let S; be some subgraph of G corresponding to
the odd degree pattern ;.

4. Put X'=R+S,+8,+---+S, and decode X' into a subgraph CeC.

5. X=C+8;+8§,+-+5,

2.9. Some Problems Related to Graphical Codes
2.9.1. A Problem in Graphical Enumeration

Jungnickel and Vanstone present an alternative proof of a result due to Read (1962)

which gives the generating function for the number of labeled Eulerian graphs with m

T.C. YOXKSEKOCR ETIM KURULY
DOKTMANTASYON
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vertices in [10]. Appliying the same method they prove a similar theorem concerning

bipartite Eulerian graphs.

Definition 2.5 The (homogenous) weight enumerator of a binary code C of length » is
defined as the polynomial

n
A(x,y)=D 4x""y,
j=1

where 4, denotes the number of vectors with weight i in C. Observe that this polynomial is
homogenous of degree n, since the powers of x and y add up to n in each term. If Cis a

linear code of dimension k the weight enumerator of the dual code C*of C'is given by
1
Au(xy)= Z—kAc(x +3,x=y),

see MacWilliams and Sloane [20] for details.

Theorem 2.4 The polynomial w,(x) which has as the coefficient of x" the number of

labeled Eulerian graphs with m vertices and n edges is given by

1 ) &, (m\( 1= )"
Wa(3) = (1+3) Z(. ](—) .

o\ N\ +x

Proof. Since the Eulerian graphs with m vertices are exactly the even subgraphs of the

complete graph K,, w,(x) can be considered as the (non-homogeneous) weight
enumerator of the even graphical code C = C(K,, ). Here, the weight enumerator of the

dual code is calculated first, which is easier to achieve. Note that the dual code is the cut-
set space B(G) of K,(of dimension m-I). Any i-subset of the vertex set V of

K, determines a unique partition (X, ¥\X) of ¥ which corresponds to the cut-set consisting
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of the i(m —i)edges joining a vertex in X to a vertex in VX. Considering that we count

each edge in these cut-sets twice this way, the homogeneous weight enumerator of B(G) is

Zy(%,y) = ii (’?)x(’;}i('nﬁ)y”’"'“ :

233

From this we get the homogeneous weight enumerator of C:
1
W, (x,y)— Zn(X+y,%=Y).

To obtain w,,(x) we just need to substitute and set y = 1.

Using the same approach, the generating function for the number of labeled bipartite
Eulerian graphs with parts of p and g vertices is obtained.

Theorem 2.5 The polynomial w), (x) which has as the coefficient of x" the number of

labeled bipartite Eulerian graphs with p+q vertices (with the two parts having p and ¢

vertices respectively) and » edges is given by

1 k(q=h)+h(p-k)
Yoa(*) = J (s x)pqzz( )( )(Hi) '

k=0h=0

Proof. Since the Eulerian graphs with p+g vertices are exactly the even subgraphs
of the complete bipartite graph K,,, w, (x) can be considered as the (non-
homogeneous) weight enumerator of the even graphical code C=C(K,,). Again, the

weight enumerator of the dual code is calculated first. Note that the dual code is the cut-set

space B of K, (of dimension p+g-I). Let the vertex set V/ be partitioned into sets U and

U’ respectively. Any pair (X;¥) consisting of a k-subset X of U and A-subset ¥ of
U’ determines a unique partition (XU Y, (UX) U (U'\Y)) of ¥ which corresponds to the
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cut consisting of the k(q—h)+h( p—k)edges either joining a vertex in X to a vertex in

U'\Y or joining a vertex in Y to a vertex in U\X. Hence, the homogeneous weight

enumerator of B is

J
_ P\ 4 pg-k(q-h)-h( pk) _k(q-h)+h( p-k)
zZ X, = X .

=0 h=0

From this we get the homogeneous weight enumerator of C:

1
Wp,q(x’y)zz— Zpg (x+y’x—y)'

p+q-1
To obtain w,(x) we just need to substitute and set y = /.

2.9.2. An Application of Difference Sets to a Problem Concerning Graphical Codes

Jungnickel and Vanstone, in [11], used difference sets to solve the problem of

finding out when the binary code generated by the complete graph K, is contained in

some binary Hamming code.

Example 2.4 Consider the binary (15, 10, 3) code C = C(K, ). The Hamming code H of

the same length has parameters (15, 11, 3) . Indeed, C is included in H: If we adjoin all
subgraphs of K, to C, we get a code with parameters (15, 11, 3) [8]. But the only linear

code with these parameters is H [20].

Next comes the general problem when the binary code generated by X, is contained

in some Hamming code of length 2™ — 1, for some m. We obviously have the condition
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Definition 2.6 A k-subset D of a group G of order va (v, k, 4) is called as a difference set if
the list of differences d —d’ (d,d'e D, d #d')contains each element of G exactly A

times.

Lemma 2.5 The binary code C generated by K, is contained in the Hamming code H of

length 2™~ if and only if there exists an elementary abelian difference set with

parameters (2™, n, 2).

Proof. Let G=K,,. First assume that there exists such a difference set D in the additive

group of GF(2™). Label the n vertices of G with elements of D. Here, GF(2™) is

considered as the m-dimensional vector space over GF(2). Let x be a nonzero element in
GF(2™). Since A= 2, there exists a unique edge e=dd' with d,d' € D. Let M be the
parity-check matrix of H. Identify e with column x of M. It can be seen that any cycle of G

gives rise to a set of columns of M adding up to zero. Since C is generated by the cycles of

G, it is contained in H.

Now assume that C is contained in H. Let M and M' be the parity check matrices of
H and C respectively. By hyphothesis, M’ can be obtained by adding further rows to M.

Corresponding each edge of G with a column of M', we can induce a labelling ¢ of the

edges of G with the nonzero elements of GF(2™ ). Now, ¢ is used to label the » vertices of
G: Choose a fixed vertex v, and label it with the vector d, = 0. Label the rest of the

vertices with d, =¢(vw,). D={d,:veG} is the difference set with the desired

parameters. Indeed, let x be a nonzero element of GF(2™ ). If x is one of the vertex labels

as defined above, then x=d,+d,. Otherwise, x has a unique represntation
x = ¢(vw)with v,w=v,. The vertices v, w and v, form a cycle of length 3 in G, which

gives the condition

P(vw)+o(wvy )+ p(vev) =0,

and hence
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X = (0(WV0)+ ¢(v0v) = dw +dv *

Theorem 2.6 The binary code generated by K, is contained in the Hamming code of

length 2™ — ] if and only if  is one of the numbers 2,3 and 6.

Proof. The numbers n for which there exists an elementary abelian difference set with
parameters (2™, n, 2) must be determined. A nontrivial difference set in a 2-group always

has parameters of the form (22%+2, 2%#*! + 2%, 27 +2°) [21].

2.9.3. Codes Based On Complete Graphs

The problem of embedding the binary code C,, generated by the complete graph
K, , into a shortening of the Hamming code H, of length 2™ —/ for some m is considered

in [12]. Let A(n) be the smallest value of m for which C, can be embedded into H,,.

Such an embedding will be called optimal. One trivial bound on A(n) is

n(n-1)< 2+ _ 2,

since the length of C,, can be at most 2™ — /.

To characterize all embeddings of C, into shortened Hamming code, the lemma

given by Jungnickel and Vanstone in [17] is generalized.

Definition 2.7 A k-subset D of a group G of order v is called as an incomplete (v, k, 1)
difference set if the list of differences d —d' (d,d"'e D, d #d’) contains each element of

G either not at all or exactly A times.
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Lemma 2.6 The code C, is contained in a shortening of the Hamming code H,, of length

2™ —1 if and only if there exists an incomplete elementary Abelian difference set with

parameters (2™, n, 2).

Proof. Let G =K, . First assume that there exists such an incomplete difference set D in

the additive group of GF(2™). Label the n vertices of G with elements of D. Here,
GF(2™) is considered as the m-dimensional vector space over GF(2). Let x be a nonzero

element in GF(2™ ) and assume that x can be represented as a difference from D. Then

x=d+d', d,d' eD. Since A=2, there exists a unique edge e=dd’'. Let M be the
parity-check matrix of H ,, . We can identify the edges of G with certain columns of M. Let
H be the shortening of H,, obtained by keeping only the columns of M corresponding to

the edges of G. It can be seen that any cycle of G gives rise to a set of columns of the
parity check matrix of H adding up to zero. Since C is generated by the cycles of G, it is

contained in H,

Now assume that C,, is contained in a code H obtained from H,, by shortening. Let

M' be the parity check matrix of C,, which can be obtained by choosing n(n—1)/2
columns from M. Since it is assumed that C, is contained H, M’ can be obtained by
adding further rows to the parity check matrix M " of H. This induces an injective mapping
¢ from the edges of G into the set of nonzero elements of GF(2™ ). Now, ¢ is used to label
the n vertices of G: Choose a fixed vertex v, and label it with the vector d, = 0. Label the

rest of the vertices with d, =¢(vv,). D={d,:ve G} is the difference set with the

desired parameters. Indeed, let x be a nonzero element of GF(2" ). If x is one of the vertex

labels as defined above, then x=d,+d,. If x has a representation x = ¢(vw)with
v,w#V,, then the vertices v, w and v, form a cycle of length 3 in G, which gives the

condition

p(vw)+o(wvy )+ 9(vev) =0,
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and hence x=g(wv,)+¢(vyv)=d,+d,. Since ¢ is an injection, D is an incomplete

difference set.

Lemma 2.7 The code C,, (n 26 ) is contained in a shortening of the Hamming code H ,, if

and only if there exists a binary (n-1, k, 5) code which admits a parity check matrix with m

Trows.

Proof. The existence of an incomplete difference set with parameters (2™, n, 2) is
required. It may be assumed that D contains 0, so let D* = D\{0}. An arbitrarily given n-1
subset D" of GF(2™ )" gives rise to an incomplete difference set D in G if and only if no
four elements of D" are linearly dependent in GF(2™ ): Consider any linear dependence

of the form
This gives rise to four difference representations

x=d1+d2=d3+d4

from D. Then D is an incomplete difference set if and only if the n-I elements of D* form
the columns of a parity check matrix H (with m rows) of a code C of length n-/ and

minimum distance 3.

Observe that the code C mentioned in the above lemma has dimension

k=n—-1-rankH 2n—-1-m. In order to make m as small as possible, we must have

m=n-1-k.

Theorem 2.7 Let k = k(n)denote the largest dimension for which a binary (n-1, &, 5)

code exists. For n =6,
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hn)=n-1-k.
Theorem 2.8 h(2*+1)=2k for all k and2k<h(n)<2k+2 for all n with
2% + 1< n < 2% Moreover, one can always obtain an optimal embedding of C,, which is

a graphical code based on X ,, .

Proof. Let n be given. k is defined by 2 +1<n < 2*". From Lemma 2.6, it can be seen
that A(n) 2 2k . Now let n=2* + . Then there exists a double error correcting BCH code
C' with parameters (2% + 1, 2% — 2k, 6 ) [21]. Puncturing this code gives a binary code C
with parameters ( 2%, 2% _ 2k, 5). From Theorem 2.7, one has h(2* +1)< 2k, hence

h(2* +1) = 2k . Thus the inequality in the theorem is obtained.

Let n be a number satisfying the above equation. The code C, with & = 2B, g
may be embedded into a shortening of the Hamming code H ,,,,. This means that C, can

be embedded into this Hamming code forall n< 4.

Now assume that C, can be embedded into a code H that is a shortening of the

Hamming code H,. By the previous theorem, there exists an optimal binary

m*

(n—1,n—1-m,5) code C. Then the parity-check extension of is a code C' with

parameters (n,n— I —m,6). According to Theorem 2.3., by using C’ (corresponding to the

code O in the theorem),C, can be augmented by n-I-m dimensions to obtain a code C *

with parameters

(n(nz—l), n(nz—l)_m, 3)

hence, it has a parity check matrix M with m rows. By adding suitable columns, M can be
augmented to a parity check matrix of H,,. So C *, which is based on K, is an optimal

embedding of C, into a shortening of H,,.
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3. OBTAINING CODES FROM CUBIC BIPARTITE PLANAR
GRAPHS

Another method for construction of codes from graphs was given by Haluk Oral in
[13]. He considered obtaining self-dual codes by use of cubic planar bipartite graphs.

Definition 3.1 Through this discussion, let G be a connected cubic planar bipartite graph

with m vertices. The face-vertex incidence matrix D = [di j] is defined to be the matrix

whose columns are indexed by the vertices and rows by the faces of G such that

J < I, if j is incident with f;,
710,  otherwise.

For a face f, the corresponding row of D is also denoted by f. So subsets of the faces
of G are identified with the corresponding subsets of rows of D. Since a cubic bipartite
graph cannot have edge-connectivity one, any edge of G must be incident with two faces.
It can be shown that a cubic planar graph is 3-face colorable if and only if it is bipartite. So

we can color the faces of G with three colors.

Lemma 3.1 The only minimal dependent subsets of the faces of G are pairwise union of

two color classes.

Proof. To show this, the followings are proven: Given a minimal dependent set of faces M,
every vertex of the graph is incident with exactly two elements of M and if M contains a
face colored by a certain color then it must contain all the faces colored by that color.

These two statements imply that M is a union of two color classes.

Theorem 3.1 Let f; and f, be any two faces of G of different colors in a three coloring of
G. If we delete the rows of D corresponding to these faces, the resulting matrix S is a
generator matrix for a self-dual code of length m. Moreover, this code is independent of the
choices of f,and f,.
YORSTXOLRETIM KURULU
T:-mm.von ViLRKRZL
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Proof. First it is shown that there are two minimal dependent subsets M, and M, such

that

i) fieM, [, eM,,
ii) feM,.f,eM,.

Indeed, M, can be taken as the union of two color classes not containing the color of
Jf, and M, can be taken as the union of two color classes not containing the color of f.
So the rowspace of S is equal to the rowspace of D. Next, it is needed to show that the rows
of § are orthogonal and the resulting code has dimension m / 2. Since G is bipartite, every
row of S has even weight. Since G is cubic, two faces cannot have an odd number of edges
in common and they cannot share two adjacent edges. Hence any two faces have even
number of vertices in common. This implies that any two rows of S are orthogonal. By

Euler’s formula
m-" L |F|=2.
2
Hence,
IF|=2+2,
2

where |F | is the number of faces of G So S has m /2 rows. It is concluded that S is the

generator matrix for a self-dual code of length m, and this code is independent of the faces
deleted.

Next, some relations between the graph and the code obtained form that graph are
mentioned. It is shown that the code obtained must have minimum distance two or four. It
is stated that if d = 2, then G is at most 2-connected and if the graph has connectivity two,
then it yields a decomposable code. So if the code is indecomposable, it has connectivity

three. The converse is proven by showing that if U c V(G is a nonempty proper subset
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of the support of a face f (i.e., vertices contained in f), then U cannot be the support of a
codeword. This implies that the vertices of a face must be in the same component of the
code C and since G is connected, all vertices of G belong to the same component of C.

Hence, C is indecomposable.

The rank of the face-incidence matrix D is greater than or equal to m / 2: To see this,

the following is proven:

Lemma 3.2 Let G be a planar 2-edge connected graph on m vertices such that G has
maximum valency three and has some vertex u of degree two. Let F(G) be the set of faces
of G. If fis a face incident with u then F(G)-f'is an independent subset of /GF(2)]™ . Then
it is concluded that the rank of the matrix D is at least m / 2.

Finally, it is stated that, given any cubic planar graph (not necessarily bipartite), self-
orthogonal codes can be constructed. Let G be a graph with ¢ faces of odd degree and D be
its face-vertex incidence matrix with the faces of odd degree as its first # rows. A new

matrix is defined as:

Then the rowspace of this matrix is a self-orthogonal code, since it can be seen that any

two rows of D" are orthogonal.
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4. OBTAINING CODES FROM THE TOWERS OF HANOI
GRAPHS

Using the Towers of Hanoi puzzle, Cull and Nelson [14] defined an infinite family of

graphs and from these graphs they obtained perfect one error correcting codes.

Definition 4.1 A perfect one error correcting code on a graph G=(V,E) is a set of

codewords C <V such that no two codewords are adjacent and every non-codeword is

adjacent to exactly one codeword.
4.1. The Tower of Hanoi Puzzle

There are three towers in the puzzle, called 0,/ and 2, and # disks 1,2,---,n where /

is the smallest and » is the largest disk. The aim is to move the » disks from one tower to
another, with the help of a third tower. Only the smallest disk on a tower can be moved and

it can be placed on an empty tower or on top of a larger disk. A configuration of the puzzle
is specified by an array D, whered, is the tower (0,/ or 2) that contains the i disk. Note

that knowing which disks are on one tower also allows us to know the order of the discs,
because of the rules of the puzzle. The Towers of Hanoi will be denoted by T of H

throughout the discussion.
4. 2. Constructing the Graphs

The graph is defined in the following manner: The vertices are the configurations and
two vertices are adjacent if and only if the corresponding configurations can be reached

from one another by one legal move. If a vertex corresponds to d,,d,, -,d, then it is
adjacent to d, +1,d,, -,d, and d, +2,d,,---,d, where addition is mod 3. (Since the first
disk is the smallest, it can be moved to any of the two remaining towers.) If there is a j

such that d,=d,=-=d,  #d, then this vertex is also adjacent to d,.d,, -,

d j_,,ﬁ j,---,d,,where d ; is not equal to either d;or d;. For example, assume the first
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j—1 disks are on the first tower and the j* disk is on the second. Then we can move the
j™ disk to the third tower. If d, =d, =---=d, then such a vertex is adjacent to only two

other vertices. These vertices are called corner vertices.

The graph is drawn in levels. The vertex 00---0 is at level 0 and the two vertices
adjacent to it are at level one. Recursively, H,, the T of H graph for n disks, is constructed

by the diagram:

Here, three copies of H,_, is connected as follows: add an edge to connect the left
corner vertex of the bottom row of the top H,_, to the top vertex of lower left H, , and
add an edge to connect the right corner vertex of the bottom row of the top H,_, to the top
vertex of lower right H,_,. Also connect the bottom right corner of the lower left H,_, and
bottom left corner of the lower right H,_,with an edge. If H,_,has levels 0 through /, then

H, will have 2/ +1 levels.
To display the labeling, let L, be the labeled graph. Then

RL,0

n

/ \

L, = TRLI— {RL?2

n+1

Where RL, means the labeled graph which is the mirror image of L,. In L,, the
lower left vertex is labeled /1---1 and the lower right vertex is labeled 22---2.In RL, itis

vice versa. RL, 0 is RL, with each vertex has a 0 appended to its label. T RL 1 is RL,
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rotated 120 degrees clockwise and has a I appended to each label. Similarly ¥ RL 2 is

RL, rotated 120 degrees counterclockwise and has a 2 appended to each label.

4.3. Constructing the Codes

To construct the codes, a graph G, that has the same topology as L, is introduced.

This graph has no labels, but instead there is a circle around each codeword so that when it

is placed on top of L, one can read off the codewords. To construct G, , another sequence
of graphs, U, are used. U, is like G,, has the same topology as L, and the codewords are

circled. But they are only used in the construction, they do not correspond to a code.

Gn—l
w4
G, = G, ,— 16, n even
Gn-l
/ \
G, =U,_, — U, n odd
Un-l
/ 0\
u, = G_,— G, n even
Un-l
/ 0\
v, = lu,_,— tu,, n odd

Where G, =0 (a codeword) and U, = X (not a codeword). As in the construction

of L,, the arrows show that graphs are rotated.
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Theorem 4.1 For every n 20, G, defines a perfect one error correcting code.

To prove this theorem, the following lemma is given:

Lemma 4.1 Foreach n> 2,

i) each uncircled vertex is adjacent to exactly one circled vertex, no circled

vertices are adjacentin G, ,

ii) each noncorner uncircled vertex is adjacent to exactly one circled vertex, no

circled vertices are adjacentin U,
iii) if » is odd, all three corner vertices are not adjacent to circled vertices in U,

iv) if n is even, the apex vertex is not adjacent to a circled vertex and the other two

corner vertices are adjacent to exactly one circled vertex in U, .

This lemma implies that each vertex is either a codeword or adjacent to exactly one

codeword and no two codewords are adjacent, hence the theorem follows.
4.4. Characterizing the Codewords

First the number of the codewords are calculated. Let g, and », denote the number

of codewords in G, andU, respectively. Then

381 if niseven,
8= \g., +2u,, ifnisodd.

u:

n

2g,,+u,, ifniseven,
3u,, if nisodd.

g, =1 u,=0.
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These equations come directly from the construction of the graph G, . Observing that
g,~u,=g,,—u,,=1 for all n gives the recursive equation g, =3g,,-I1+(-1)"

whose solution is

3"+2+(-1)" |(3"+3)/4 neven,
4 (3"+1)/4 nodd.

Which gives the number of codewords in the T of H code.

Theorem 4.2 The codewords of the T of H code are those n element strings over 0, 1, 2,
which satisfy

1) ifnis even, then #,=# =#,=0 (mod 2),
ii) if n is odd, then # ;=1 (mod 2) and #,=#,=0 (mod 2).

Where #,, is the number of zeros in the string and #, and #, are defined similarly.

This theorem is proved in three parts. First, it is shown that the strings satisfying the
given conditions, referred as the satisfying strings, obey the rules given in the definition of
a perfect one error correcting code. Next, the number of these satisfying strings is
calculated and it turns out that this number is equal to the number of codewords in the T
and H code. Finally, it is shown that the T of H graph has a unique perfect one error
correcting code, which has a codeword as the top vertex. The proof of this last comment

requires some lemmas.
Definition 4.2 The predecessor of a vertex is the unique adjacent vertex in the previous
level. The successors of a vertex are the adjacent vertices in the next level. A consistent 3

labeling for a T of H graph is an assignment of a label from {C, B, R} to each vertex so that

i) each triangle in the graph are labeled in one of the following four ways:
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R/——\R B/——\ B R/—> C C/i\ R

ii) the labeling of a successor of a vertex satisfies succ(C) = R, succ(R) = B,
succ(B) € {R, C},

iii) no two vertices labeled C are adjacent,

iv) vertices labeled B in the bottom corners are not adjacent to a C, but every other B is
adjacent to a C,

v) if the top vertex is labeled R then it is not adjacent to a C, but all other Rs are

adjacent to exactly one C.

Lemma 4.2 A perfect one error correcting code of H, induces a consistent 3 labeling of

H

ne

Lemma 4.3 Any consistent 3 labeling of H, gives a consistent 3 labeling for each of the

H,_;s used in the construction of H,,.

Lemma 4.4 For each n> I, there are exactly four possible consistent 3 labelings of H, and

they have the following forms: for odd » the corner vertices have one of the following four

patterns:

R/———\R B/——-\ B R/——\ C C/——\\ R

For even n the corner vertices one of the following four patterns:

/\ /\ /\ /\

R —R R—B B—R
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To prove this, Lemma 4.3 is used.

Finally, we are ready to show the uniqueness. For n=0, H, is a single vertex and

the code in which it is a codeword is a perfect one error correcting code. For n > 1, if there
is a perfect one error correcting code, then there must be a consistent 3 labeling. There are
four such labelings for each n. If n is even then ther is only one possible such code, since
three of the labelings contain a top R or a bottom B. (Here it is considered that the
codewords are the vertices with label C, and the others are noncodewords.) So the pattern

is

And it is symmetric with respect to rotation. If # is odd, one of the labelings contain a
bottom B, hence cannot be a perfect one error correcting code. There is only one labeling

with a codeword with a top C so it is unique.

4.5, Generation of the Codes

To generate the T of H codes, the integers from 0 to 3" — 1, represented in base 3,
are used. From the characterization theorem, it is known that a string over {0, 1, 2} is a

codeword exactly when both the number of /s and the number of 2s are even.

Algorithm 4.1

FORI=0TO 3" -1
IF#,(1)=%#,(1)=0 (mod2)
THEN output / in base 3 as a codeword

Another way to generate these codes is to use a recursive algorithm, which is based

on the structure of the generating graphs. Here, G, will denote not only the graph with
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codewords circled but the set of strings that correspond to these codewords. In terms of

strings, the generation of G, is represented as:

For n even,

Gn =Gn—] ° OUT(Gn—l) ol UTZ(Gn—l) o2

where o means concatenation (for example G,_; 0 means we append 0 to each string in

G,_;), U is set union and T is the transformation which replaces each character in the

string by another character according to the permutation 0 — 1 — 2 — 0. T? means we

apply T twice, which will correspond to the permutation 0 -2 — 71— 0.

For n odd,
U,=U, ;o 00T(U,_;)o 1 UT*(U, ;)0 2,
Gn = Gﬂ—] o OU FI(G?I—I) o4 ] U FZ(GII—I) o 2,

where I'; changes each character by permutation 2—»>0— 2 and I', changes each

character by permutation / — 0 — 1.

For »n even,
Un =Un—1 ° ourl(Gn-I) ol U FZ(Gn—I) ° 2

4.6. Decoding

It is easy to detect an error because we know that there is no error exactly when both

the number of /s and number of 2s are even in the string.

If we know #,, #,; and #,, we have to find the first digit i with #, = I and correct it
to the next digitj with # =1, ,j=0,1,2.
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The following algorithm gives the decoding scheme:
Algorithm 4.2

INPUT: STRING D=d,d, --d,
#o=n(mod 2); #,;=#,=0
FOR i=1TOn
#y =#y +1(mod2)
ENDFOR
IF #,=1and #,=1
THEN scan until first / or 2 is found and change it to 2 or /
IF#,=1and #,=0
THEN scan until first 0 or / is found and change itto / or 0
IF#,=0and #,=1
THEN scan until first 0 or 2 is found and change it to 2 or 0

Finally, it is shown that the general problem of deciding if a graph has a perfect one

error correcting code is NP-complete. For information on NP- completeness, sce West

[16].
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APPENDIX A. SOME BASIC CONCEPTS OF GRAPH THEORY

Definition A.1. A graph G is an ordered triple (V(G), E(G), ¥ ) consisting of a

nonempty set ¥(G) of vertices, a set E(G) of edges, disjoint from V(G), an incidence

function ¥ that associates with each edge of G an unordered pair (not necessarily

distinct) vertices of G. If e E(G) and u,v e V(G )then ¥ (e)=uvmeans e joins u to v.

Two vertices are called adjacent if they are joined by an edge. The degree of a vertex v,

denoted by d(v), is the number of edges that are incident at v.

Definition A.2. A subgraph H of G is a graph with V(H) < V(G) , E(H) cE(G) and ¥,
is the restriction of ¥ to E(H). A spanning subgraph of a graph is a subgraph that
contains all the vertices of that graph. A complete graph is a graph in which any two

vertices are adjacent. A graph, in which the vertex set ¥ can be partitioned into two subsets

X and Y, such that each edge has one end in X and one end in ¥, is called a bipartite graph.

Definition A.3. A path between two vertices # and v, denoted by p(u,v), is an alternating
sequence of distinct vertices and edges such that each edge is incident at the vertex
preceding it and the vertex following it. A graph is said to be connected if any pair of
vertices can be connected by a path. A cycle is a path in which the initial and the final
vertices are the same. A cycle that contains all the vertices of the graph is called a
Hamiltonian cycle. The length of each cycle or path is the number of edges in that cycle or
path. The girth of a graph is the length of the shortest cycle in that graph. The distance
d(u, v) between vertices u and v is the length of the shortest path between them.

Definition A.4. A spanning subgraph in which every vertex have even degree is called an
even subgraph. It can be shown that an even subgraph is a cycle or union of edge-disjoint
cycles. A tree T of a graph G is a connected spanning subraph of a connected graph that

contains no cycles. The edges of T are called branches and the edges of G-T are called

chords.
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A cut-set is a minimal set of edges of a connected graph such that the removal of

these edges makes the graph disconnected. A seg is a cut-set or a union of disjoint cut-sets.

Definition A.5. The edge connectivity of a graph G, denoted by«x'(G), is the minimum
number of edges whose deletion disconnects G. A graph is said to be k-edge connected if it

has edge connectivity at least .

Definition A.6. A graph is said to be planar if it has a drawing such that the edges do not
cross except common endpoints. The faces of a planar graph are the maximal regions of

the plane that are disjoint from the drawing. Two faces are said to be adjacent if they share

an edge.

Definition A.7. A k-coloring of the faces of a graph is a partition of the face set into k&
independent sets. (an independent set of faces consists of faces that are pairwise non-

adjacent). A color class is a set of faces receiving the same color.
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APPENDIX B. SOME BASIC CONCEPTS OF CODING THEORY

Definition B.1. A linear code C of length » and dimension & is a subspace of V(n, g), the
vector space of n-tuples with entries from GF(q). C is called the g-ary (n, k) code, (if

q =2, then it is called a binary code) and the elements of C are called the codewords. The

k x n matrix that has a basis of C as its rows is called a generating matrix of the code. The
dual of C, is defined as C* ={ue V(N,q)| u-v=0 (dot product mod g), for all veC }.
It can be shown that C* is an (s, n-k) code. A generating matrix of C* is called a parity
check matrix of C. Let C, and C, be two codes having generating matrices A; and 4,

respectively. If there is a code C having a generating matrix of the form
A4, 0
A=|""7
0 4,

then C is said to be the direct sum of C; and C,.If a code can be written as a direct sum

of two codes, then it is called decomposable, otherwise it is called indecomposable.

Definition B.2. The distance d(u, v) between two codewords u# and v is the number of
coordinate positions they differ. The weight of a codeword u, denoted by w(u), is the
number of its nonzero coordinate positions. It can easily be seen that
w(u-v)=d(u-v,0)=d(uyv). Hence the minimum distance between any two distinct
codewords is the same as the minimum weight of the nonzero vectors. If an (n, k) code has

minimum weight d, we say that it’s an (#, k, d) code. The sphere of radius r is defined to

betheset S,(u)={veV|d(uv)sr}.

A self-orthogonal code is a code that is contained in its dual code. If C = C*, then C

is said to be a self-dual code. In this case » must be even and C is an (n, n/2) code.

When a vector v is received (through a transmission channel etc.) it may be distorted,

and we may have to decide which codeword was originally sent. This deciding process is
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called decoding. The method of decoding a received vector to the closest codeword is

called maximum likelihood or majority decoding.

Theorem B.1. If d is the minimum weight of a code C, then C can correct ¢ =[d; 1] or

fewer errors and conversely.

As seen from this theorem, to correct more errors, we need large minimum weights.
In coding theory, given length #, it’s important to construct codes with higher dimensions

and higher minimum weights. In an (n, k, d) code the inequality n—% >d —/ must hold,

which is called the Singleton bound. The inequality k(k—1)d <(n k?)/2 is obtained by

calculating the average distance between two distinct codewords for a binary code. This is
called as the Plotkin bound. The Varshamov-Gilbert bound assures the existence of a code

of length #, minimum distance d or more, and dimension & = n —m whenever

A code of minimum weight d is called a perfect code if all the vectors are contained

d-1

> jl about the codewords. The general Hamming codes

in the spheres of radius t=[

q

r —
! =n, n—r, 3 ) and they are single error correcting
q —

over GF(g) have the parameters (

codes.

Definition B.3. If C is an (n, k, d) code, a shortened code C'of C is the set of all
codewords of C that are 0 in a fixed position with that position deleted. The process of

removing a column of a generator matrix of an (n, k) code C for even n is called

puncturing C.
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