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ABSTRACT 
  

 
 

A COMPUTATIONAL ANALYSIS OF A  

LANGUAGE STRUCTURE IN NATURAL LANGUAGE  

TEXT PROCESSING 

 

 

EŞ, SİNAN 

M.Sc., Department of Computer Engineering 

Supervisor: Asst. Prof. Dr. Ali Rıza Aşkun 

September 2005, 61 pages  

 

 

Text categorization or classification is a general task of classifying un-

organized natural language texts according to specific subject matter or category. 

Electronic mail (e-mail) filtering is a binary text classification problem which the 

user emails can be classified as legitimate (non-spam) or un-wanted mail (spam). 

 

In this study, we tried to find a filtering solution that is able to 

automatically classify emails into spam and legitimate categories. In order to 

automatically and efficiently classify emails as spam or legitimate we took 

advantage of some Machine Learning methods and some novel ideas from 

Information Retrieval. 

 

Keywords: Text Categorization, Email Filtering, Machine Learning. 
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ÖZ 
 

 
 

DOĞAL DİL METİN İŞLEMEDE DİL YAPISININ  

 SAYISAL ANALİZİ 

 

 

EŞ, SİNAN 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ali Rıza Aşkun 

Eylül 2005, 61 sayfa 

 

  

Metin sınıflandırma, belli konu başlığına veya kategorilerine göre 

düzenlenmiş doğal dil metinlerini sınıflandırmanın genel adıdır. Elektronik posta 

filtreleme, kullanıcı elektronik postalarının yasal veya istenmeyen olarak 

sınıflandırılabildiği ikili bir metin sınıflandırma problemidir. 

 

Bu çalışmada, elektronik postaları otomatik olarak yasal veya istenmeyen 

kategorilerine ayırabilen bir filtreleme çözümü bulmaya çalışılmıştır. Elektronik 

postaları otomatik olarak yasal veya istenmeyen şeklinde sınıflandırmak için bazı 

Makine Öğrenim metotları ve Bilgi Elde Etme’nin bazı fikirlerinden faydalanarak, 

elektronik posta filtreleme işinde etkin sonuçlar elde edilmeye çalışılmıştır. 

 

Anahtar Kelimeler: Metin Sınıflandırma, E-Posta Filtreleme, Makine Ögrenimi.
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CHAPTER 1 

 
 

INTRODUCTION 
 

 

1.1 Background 
 

Language is one of the fundamental aspects of human behavior and it is 

very important component of our lives. In written form it serves as long-term 

record of knowledge from one generation to the next. The written forms of natural 

language are called “texts”. 

 

The goal of Natural Language Processing (NLP) is to create computational 

models of language in detail that we could write computer programs for some 

tasks involving natural language.  

 

In this study we analyzed one of the text-based Natural Language research 

problems by means of Text Categorization (TC) or Text Classification.  The goal 

in text categorization is to classify the topic or theme of a document. 

 

As the growth of internet e-mail become a communication medium that 

enables fast, inexpensive and easy access communication among people all over 

the world. Thus, there has been an industry that uses e-mail messages as 

advertisement tool. Exactly most people don’t want to receive these types of e-

mails which are called unsolicited (bulk) mail or spam mail. So, it is necessary that 

the un-wanted mails should be filtered out by using some text-based methods. 
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Email spam filtering is a text categorization problem that classifies the user mails 

into binary categories as spam or non-spam. 

 

1.2 Thesis Objective 
 

In this thesis we seek to filter out spam messages from user’s email by 

implementing an automated email spam filter that classifies mails as spam or   

non-spam (ham). 

 

Our primary goal of this research was to survey existing methods and 

determine a method or a combination of methods that would work well for our 

Email spam filter. The secondary goal of this research was to create a tool to 

accurately and quickly categorize email messages as spam or non-spam at the local 

user level.   

 
 

1.3 Outline of the Thesis 
 

Chapter 2 of this thesis describes the Natural Language Processing 

problem, Text Categorization, overview some of TC applications and tasks, text 

categorization process and two main types of approaches (KE and ML) to TC 

problem.  

 

Chapter 3 gives a brief description of the Email spam filtering as a binary 

text categorization problem; some background related to email filtering is also 

given. In addition to these, some methods from Machine Learning applied to 

Email spam filtering is described and given here. 
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Chapter 4 provides the description of the structure and components of the 

program. Architecture of our Email spam filter is also given in this part. 

Methodology is given here. The code structure of Email spam filter program is 

also given. A detailed description of the data (training and test) and corpus is also 

given.   

 

Chapter 5 discusses the Email Filter System performance and the accuracy 

of its results. In this chapter the designed Email spam filter program’s 

achievements and future work is reviewed. 
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CHAPTER 2 

 
 

LITERATURE SURVEY 
 

 
This chapter presents a survey of text categorization, including descriptions 

of some techniques etc. 

 

2.1 Definition of Text Categorization 
 

Text Categorization (TC) refers to the automatic labeling of documents, 

based on natural language text contained in or associated with each document, into 

one or more pre-defined categories.  

 

Formal definition of text categorization can be given as follows: 

Let },...,,{ 21 ndddD =  a set of documents and },...,,{ 21 mcccC =  be a set 

of categories. The task of the text categorization consists in assigning to each pair 

),( ij cd of D x C (with 1 ≤ i ≤ m and 1 ≤ j ≤ n) a Boolean value of 0 or 1, i.e. the 

value 0, if the document jd  doesn't belong to ic . 

 

2.2 Text Categorization Tasks 
 

Some text categorization tasks assume the categories are independent, in 

which case each document can be assigned to no categories, one category, or 

multiple categories. In such cases, the categories are said to be binary categories, 

and a separate YES/NO decision is required for each category/document pair.  
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More formally, let D be the set of all documents and C be the set of all binary 

categories; a text categorization system then has to assign a Boolean value to each 

(d, c) pair, where d∈D and c∈C. 

 

Other text categorization tasks assume that the categories are mutually 

exclusive and exhaustive, in which case each document is assigned to exactly one 

category. Then the inclusion of a document in one category excludes the inclusion 

of the document in all other categories. In this case, the classifier must map each 

document d∈D to the category c∈C that is the best fit. 

 

Certain tasks can be viewed as fitting into either of the two paradigms 

described in the previous two paragraphs. Text categorization tasks with exactly 

two mutually exclusive categories can be viewed as a binary categorization task 

involving either one of the categories, such that any document that doesn't belong 

to this category is automatically placed in the other category. 

 

On the other hand, if the task is to categorize web sites as pornography or 

not pornography, the not pornography category is vague, consisting of all other 

types of websites, and it seems more natural to view this as a binary decision as to 

whether or not the website is pornographic. 

 

Then there are cases that fall somewhere in between; for example, 

categorizing movie reviews as positive or negative can easily be thought of fitting 

into either paradigm. In any case, either type of text categorization system (i.e. 

those designed to work with mutually exclusive categories or those designed to 

work with binary categories) can be applied to these tasks. 

 

Another special case of text categorization tasks occurs when mutually 

exclusive categories form a hierarchy, also known as taxonomy. One commonly 
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known taxonomy is the Yahoo directory [1] of web pages set up for easy 

browsing.  

 

Some systems take such hierarchical structures into account by using a 

ladder approach. Instead of considering the bottom nodes of the hierarchical tree 

directly, a decision is first made at the top node of the tree as to which of its 

immediate children is appropriate, then at the second level, etc., until a terminal 

node is reached. The idea behind this is that each decision being made is simpler 

than an immediate decision involving all possible categories, especially when the 

taxonomy is large. Some researchers have found noteworthy improvement using 

this approach [2], [3], [4].  

 

2.3 Applications of Text Categorization 
 

Some of the current applications of text categorization include: the 

classification of e-mail as spam or not spam for filtering purposes [5], [6]; the 

classification of news articles into topical sections (e.g. Politics, Sports, 

Entertainment, etc.) for browsing [7], [8], [9]; classification of websites as 

pornography or not pornography for filtering purposes [10]; hierarchical 

classification of websites into a large variety of topics for browsing [11], [12]; 

extraction of certain types of metadata from text documents or websites to improve 

search capabilities [12]; the classification of reviews (e.g. reviews of movies or 

travel destinations) as positive or negative to summarize statistics [13], [14]. 

 

Many other common classification tasks could potentially be viewed as 

text categorization tasks. For example, word sense disambiguation refers to the 

automatic classification of words in a document with their correct, current sense. 

This can be viewed as a text categorization task where the categories would be the 

possible senses, which would be different for each possible word, and the text used 
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for the categorization would be the word's context (i.e. the text surrounding the 

word) [15]. Information retrieval [16] refers to the automatic discovery of 

documents in a corpus that match a user's query. This can be thought of as a text 

categorization task where the categories are relevant and not relevant (but the 

meanings of these categories would change with each new query). Topic detection 

and tracking (TDT) [17] refers to the detection of new stories that are similar to a 

set of example stories. This can be viewed as a text categorization task where the 

categories are similar and not similar (in this case, the meanings of these 

categories change for each set of stories). 

 

2.4 Document Representations with Bag of Words Approach 
 

Text categorization refers to the automatic labeling of documents based on 

text. In order to label documents, systems must first be given access to each 

document, and the document must be represented by the system in some way. 

Almost all modern text categorization systems represent documents using what is 

known as “bag of words” approaches. This means that each document is 

represented as a vector of weighted words, although exactly what constitutes a 

word can vary to some degree. Weights are generally computed by combining 

statistical features of words in some manner. 

 

Let d be a document that needs representation, and T be the set of terms 

used by the representation. If a bag of words approach is being used, each term is a 

single word, and T is the set of all possible words. Let tλ be the weight of a single 

term t ∈  T. Then d can be represented as d = [
1t

λ ,
2t

λ ,…, 
Ttλ ]. Bag of words 

approaches do not rely on syntax or semantics; in other words, the ordering of 

terms in a document does not matter, and the relationship between any two distinct 

terms is not considered. There are many possible weighting schemes, some of 
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which are discussed in Section 2.4.2, one thing that most have in common is that 

words that do not appear in a document are assigned a weight of zero. This turns 

out to be helpful, since most documents likely do not contain most of the possible 

words, and it is then only necessary to keep track of weights for words that do 

occur in each document. 

 

2.4.1 Words Represented as Terms 
 

The most of text categorization systems that is well known use single 

words as terms when representing documents. It is generally accepted in the 

information retrieval and text categorization literature that more complex 

representations do not lead to improved performance and are often less efficient 

[18], [19]. It might seem that using phrases such as bigrams (instances of two 

consecutive words) or trigrams (instances of three consecutive words) instead of, 

or in addition to, single words might be useful, since some context would be 

accounted for; however, for most bigrams and trigrams, there is scarce evidence, 

since the number of existing instances of bigrams and trigrams in a corpus is 

miniscule compared to the possible number of bigrams and trigrams in a language 

(the square and cube of the number of words in the language, respectively). 

 

Although many approaches described here so far, use single words as 

terms, there are still several decisions to be made as to what exactly constitutes a 

word, and how to distinguish words automatically. Most systems do not have a 

complete dictionary of allowable words, and so they must use general rules to 

distinguish words from non-words. 

 

Even after the general rule for determining word boundaries is decided, 

there are still many options that systems have in determining which, if any, 
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transformations must apply to each word. For example, case sensitivity determines 

whether or not two words that differ only in terms of capitalization should be 

treated as equal. In other words, if two words are the same except that one has one 

or more letters capitalized whereas the other has the same letters in lower case, 

should they be considered two instances of the same word or two separate words? 

At times, capitalization can mean the difference between a common word and a 

proper noun, but at other times, it can be the result of placement at the beginning 

of a sentence. 

 

Another issue is stemming, a simple rule-based technique that converts 

different forms of a word to the same root token, or stem. For example, different 

tenses of a verb such as “help", “helps", “helped", or “helping" are all converted to 

the same stem \help", whereas different forms of a noun such as “house" or 

“houses" are all converted to the same stem “house". However, common stemming 

algorithms (e.g. Porter stemming (Porter, 1980)) do not handle irregular verbs or 

unusual nouns correctly. At times, different forms of the same root fail to be 

converted to the same token (e.g. “child" stays as “child" and “children" stays as 

“children"), while, at times, forms of different words do get converted to the same 

token (e.g. “tire" and “tired" both get converted to “tire"). More accurate than 

stemming is to use a lexical database such as WordNet [20] to convert every word 

to its morphological base-word. However, this is also much more time consuming 

than stemming, and it is still not guaranteed to improve performance, as for certain 

text categorization tasks, the specific tense or form of a verb or noun may give a 

clue as to the appropriate category (for example explored in [21]), in which 

distinctions between singular and plural nouns or passive versus active tenses for 

verbs made a significant difference for her categorization task). 

 

Another issue is whether to use all words for text categorization or to filter 

some out. Many current systems use a stop-word list, a hard coded list of common 
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words such as articles and prepositions that are ignored when they occur. Although 

these words would be given very low weights by machine learning methods (some 

are described later in this chapter), there tend to be many of them in a document, 

and so the noise introduced by these words can add up and make results less 

accurate. Another possibility is to automatically determine which words to filter 

out based on weights; for example, the next subsection of this chapter describes 

the inverse document frequency (IDF) weighting scheme, and this can be used to 

exclude all words with IDF values under some specific constant ( this is explored 

in [22] ). However, one must be careful when deciding whether or not to filter out 

such words, as they can be helpful for certain text categorization tasks. An 

excellent example is the breakthrough work of Mosteller and Wallace [23], the 

application, in which the authors determine that filler words such as “an", “of", 

and “upon" are very important for an authorship attribution task, whereas more 

meaningful content words are not. 

 

Even when two instances of two words are spelled the same way with the 

same case sensitivity, they may not really represent the same word with the same 

meaning. For example, “can" is sometimes a noun (as in “I ate a can of beans.") 

and sometimes a modal verb (as in “You can do it!"); “wind" is sometimes a noun 

(as in “There's a strong wind out today.") and sometimes a verb (as in “I need to 

wind my watch."). Such pairs of distinct words that are spelled the same are 

known as homographs, and ideally, a system should probably distinguish one 

sense from another, although few text categorization systems even try. One way 

that systems could differentiate homographs of each other when the two words 

represent different parts is to use a part-of-speech tagger (POS); the part-of-speech 

tag assigned to each word by the tagger can be included as part of the token (this is 

explored in [22] ). 
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2.4.2 Common Methods for Weighting of Words  
 

Using the techniques described in the previous sub-section a system can 

process a text document and determine which words are present. At that point, 

there are many possible weighting schemes that can be used to set up the vector 

representing the document. The simplest possible measure is a binary value for 

each word; 1 if word is present and 0 otherwise.  

 

More typically, systems use more complex weights. One approach that is 

still somewhat simple is to weight each word in a document with the word's term 

frequency (TF) [24], [25]; which is the number of times that the word appears in 

the document. All other things being equal, it is expected that words that appear 

more often in a document are more important as to the overall meaning of the 

document. Consider, for example, a document that mentions Turkey once, 

compared to a document of equal length that mentions Turkey ten times; you 

would probably expect the second document to have more of a focus on that topic. 

 

Of course, words such as “the" will likely appear many times in a 

document without being considered important for most text categorization tasks. 

Usually, a system combines term frequency with some other measure to take this 

into account. The most common measure that is often combined with term 

frequency is inverse document frequency (IDF) [24], [25]; which can be thought 

of as a measure of a word's rarity in a corpus (or a language, but this needs to be 

estimated based on a corpus). It is believed that words that are rare tend to be more 

specific, and may therefore contribute more to content. Let DF(w) be a word's 

document frequency (DF), which is the number, documents out of a set of N total 

documents that contain one or more instances of the word. Then the IDF of the 

word can be computed as follows (Formula 2.1): 
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)(wIDF = 
N

wDF )(
log2− = 

)(
log2

wDF

N
    (2.1)  

 

Therefore, very common words that appear in almost all documents have 

an IDF close to zero, whereas rare words have larger IDFs, with a maximum 

possible value of log2 N for a word that only occurs in one document. (Words that 

are never seen in the N documents have an undefined IDF and, thus, are generally 

ignored; this makes sense if the N documents are those of the training set, since 

there is then no evidence indicating one category versus another for these words.) 

The specific logarithmic base being used is actually not important so long as it is 

consistent. 

 

The most common method of combining a word's term frequency with its 

inverse document frequency is to simply multiply the two weights together: 

 

 )(),()(* wIDFdwTFwIDFTF ×=     (2.2) 

 

This TF*IDF representation effectively combines a word's importance to a 

document with its specificity over a corpus. At times, you might see more complex 

combinations of the same measures or similar measures, but ever since the very 

influential work of Salton and Buckley in the late 1980's [24], [25]; TF*IDF has 

dominated weighting schemes in the text categorization and information retrieval 

literature. 

 

 

 

 

 



 13 

2.5 Text Categorization Process 
 

Definition of the “text categorizer” can be given as follows: 

Given a set of categories =C {
C

cc ,...,1 } and a set of previously unseen 

documents ,...},{ 21 ddD = , a categorizer is a function K that maps from D to the 

set of all subsets of C.  

The standard modern approach to creating new categorizer functions is to 

build them using Machine Learning techniques (it is reviewed in the next section) 

from a set of training documents. This is a set of user-provided, pre-labeled 

documents that follows a category distribution similar to the distribution of D, and 

whose contents provide information about what sorts of documents should be 

mapped to what sorts of categories. Algorithms can then be developed that make 

generalizations about the relationship between document content and document 

category, encoding these generalizations in the learned function K. (see Figure 1.) 

 

 

Figure 2.1. Action of a categorizer on a set of documents 
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In order to train a categorizer in the above manner, the user must begin 

with a “training corpus” or “training set”. This is a set of documents which are pre-

labeled with categories that are considered to be fully correct - typically, they have 

been manually assigned by a domain expert, i.e. a person who is familiar with the 

type of material contained in the documents and who knows how to assign a set of 

categories to each document based on the documents’ content. 

 

The basic outline for creating Text Categorization (TC) applications are 

relatively simple: the documents in “training set” are presented to the TC system, 

the system processes the documents’ content, and a specific categorization 

function K is produced that may be used to categorize future documents from the 

set D. In an application, however, many details of this process need to be managed 

in specific and often varying ways. 

 

In addition to the above process, the designer of a TC system may wish to 

evaluate the trained system on a set of data previously unseen by the system, for 

which the desired results of categorization are known. Such a data set is commonly 

called a “test set”. 

 

2.6 Approaches for Text Categorization 
 

2.6.1 Knowledge Engineering Approach 
 

In the 1980s, the most popular approach for the creation of automatic 

document classifiers consisted in manually building, by means of Knowledge 

Engineering (KE) techniques, an expert system capable of taking Text 

Categorization decisions. Such an expert system typically consists of a set of 

manually defined logical rules, one per category.  
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The most famous example of such a rule based approach is the Construe 

System [26]; assigns zero or more categories to stories for a Reuters news 

database. It was developed by the Carnegie Group and went into production in 

1989, applying 674 distinct categories to a newswire feed, as well as recognizing 

over 17000 company names. A sample rule for the category AUSTRALIAN 

DOLLAR that is used in Construe project is shown in Figure 2.2.  

 

 
 

Figure 2.2. Sample hand-crafted categorization rule  
 

The drawback of this approach is the knowledge acquisition bottleneck 

well-known from the expert systems literature. That is, the rules must be manually 

defined by a knowledge engineer with the aid of a domain expert (in this case, an 

expert in the membership of documents in the chosen set of categories): if the set 

of categories is updated, then these two professionals must intervene again, and if 

the classifier is ported to a completely different domain (i.e. set of categories) a 

different domain expert needs to intervene and the work has to be repeated from 

scratch. 

On the other hand, it was originally suggested that this approach can give 

very good effectiveness results: Hayes et al. [26], reported a .90 “breakeven” result 

on a subset of the Reuters test collection, a figure that outperforms even the best 

classifiers built in the late 1990s by state-of-the-art ML techniques. However, no 

other classifier has been tested on the same dataset as Construe, and it is not clear 

whether this was a randomly chosen or a favorable subset of the entire Reuters 

 
(if 
test: 

(or [australian-dollar-concept] 
and [dollar-concept] 
[australia-concept] 
(not [us-dollar-concept]) 
(not [singapore-dollar-concept]))) 

action: (assign australian-dollar-category)) 
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collection. As argued in Yang (1999), [27]; the results above do not allow us to 

state that these effectiveness results may be obtained in general. 

 

It can readily be appreciated that the handcrafting of such rule sets is a non-

trivial undertaking for any significant number of categories. The Construe project 

ran for about 2 years, with 2.5 person-years going into rule development for the 

674 categories. The total effort on the project prior to delivery to Reuters was 

about 6.5 person-years. 

 

Thus there is a powerful incentive to investigate automatic methods for text 

categorization. These are arising from fully automatic statistical methods that 

function as “black boxes” and require no human intervention, to programs that 

generate legible rules automatically, for subsequent editorial review. The next sub-

section provides an overview of these methods. 

 

2.6.2 Machine Learning Approach 
 

In the early 1990s, the Machine Learning (ML) approach to Text 

Categorization has gained popularity and has eventually become the dominant one, 

at least in the research community [28]. In this approach, a general inductive 

process (also called the learner) automatically builds a classifier for a category ic  

by observing the characteristics of a set of documents manually classified under ic  

or ic  by a domain expert; from these characteristics, the inductive process gleans 

the characteristics that a new unseen document should have in order to be 

classified under ic . In ML terminology, the classification problem is an activity of 

supervised learning, since the learning process is “supervised” by the knowledge 

of the categories and of the training instances that belong to them [19].  
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The advantages of the ML approach over the KE approach are evident. The 

engineering effort goes toward the construction not of a classifier, but of an 

automatic builder of classifiers (the learner). This means that if a learner is (as it 

often is) available off-the-shelf, all that is needed is the inductive, automatic 

construction of a classifier from a set of manually classified documents. The same 

happens if a classifier already exists and the original set of categories is updated, 

or if the classifier is ported to a completely different domain. In the ML approach, 

the pre-classified documents are then the key resource. 

 

In the most favorable case, they are already available; this typically 

happens for organizations which have previously carried out the same 

categorization activity manually and decide to automate the process. The less 

favorable case is when no manually classified documents are available; this 

typically happens for organizations that start a categorization activity and opt for 

an automated modality straightaway. The ML approach is more convenient than 

the KE approach also in this latter case. In fact, it is easier to manually classify a 

set of documents than to build and tune a set of rules, since it is easier to 

characterize a concept extensionally (i.e., to select instances of it) than 

intensionally (i.e., to describe the concept in words, or to describe a procedure for 

recognizing its instances). Classifiers built by means of ML techniques nowadays 

achieve impressive levels of effectiveness, making automatic classification a 

qualitatively (and not only economically) viable alternative to manual 

classification.  

 

Over the years, many machine learning approaches have been developed 

for automatic text categorization. In this section we will describe and focus on 

some of more common machine learning methods which have been used for 

building text classifiers: 
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2.6.2.1 Naïve Bayes Classifiers 

 

Suppose that you have a feed of incoming documents. You have been 

manually assigning each such document to a single category for some time. Thus, 

for each category, you have a reasonable number of past documents already 

assigned. 

 

Bayes’ Rule 

 

One approach to automating (or semi-automating) this process is to build 

statistical models of the categories you are assigning to, leveraging the 

assignments that you have already made. This approach assumes that you can 

compute, or estimate, the distribution of terms (words, bigrams, phrases, etc.) 

within the documents assigned to these categories. The idea is to use this term 

distribution to predict the class of unseen documents, but this only works under 

certain conditions, which we shall present, in a somewhat simplified form. Firstly, 

you need to be able to transform the probability of a term occurrence given a 

category (which you can estimate directly from your data) into the probability of a 

category given a term occurrence. Secondly, you need a method to combine the 

evidence derived from each of the terms associated with a document or category.  

 

In other words, you know )|( iCtP , for each term t and category iC ,  

but you are really interested in )|( tCP i  or better yet )|( Di TCP ,   

where DT  is the set of terms occurring in document D .  In the following, we make 

no more distinction between document D  and its representation as a set of terms, 

DT . 
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The term ‘Naïve Bayes’ refers to a statistical approach to language 

modeling that uses Bayes’ Rule but assumes conditional independence between 

features (term occurrences). We thus compute the probability that document D  

belongs to a given class iC  by:  

)(

)()|(
)|(

DP

CPCDP
DCP ii

i =     (Bayes’ Theorem)   (2.3)  

 

In the most common form of Naïve Bayes, we assume that the probability 

that a document belongs to a given class is a function of the observed frequency 

with which terms occurring in that document also occur in other documents known 

to be members of that class. 

In other words, ‘old’ documents known to be in the class suggest both: 

1. Terms to look for, and 

2. The term frequencies one would expect to see in ‘new’ documents. 

The ‘old’ documents function as training or conditioning data, providing 

probability estimates upon which a statistical argument for classification of unseen 

data can be built. 

 

Ignoring conditional dependencies between terms, we can use the 

multiplication rule to combine such probabilities. More formally, given a 

document, D , represented by a term vector consisting of n components or terms,  

),...,( 1 nttD = , and a class, iC , from the range of target classes, the formula 

)|()|(
1

ij

nj

j

i CtPCDP Π
=

=

=  (Naïve Bayes Assumption)   (2.4) 

 

captures the assumption  that the probability of a term vector being generated by a 

document of a given class can be decomposed into a simple combination of the 

distribution of the terms within that class. 
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Before we can apply Bayes’ Rule, we also need to estimate the prior 

probability of a particular class being any document’s destination. Suppose we had 

no information regarding the terms in a document, and had to make a blind guess 

as to where it should be classified. Clearly, we would maximize our chances of 

success if we assigned it to the most popular class, according to our training data. 

The most direct way to estimate the prior for a given category is simply to count 

the number of training documents occurring in that category and divide by the 

total number of categories.  

 

Given a value for )|( DCP i , how do we decide whether the document 

belongs in the class or not? Given M classes, one approach is to compute 

)|( DCP i  for all i such that 1 ≤ i ≤ M, and then assign the document to the class 

that scores best. We can express this tersely by the formula below 

 

[ ])|(maxarg* DCPC iCi
=       (2.5) 

 

where C* is the favored class, and [ ])(maxarg yfy  selects the value of subscript 

argument, y, that maximizes the function of y that follows in brackets. Thus we 

look for a category, iC , that maximizes the value of )|( DCP i . By Bayes’ Rule,  

 

[ ])|(maxarg DCP iCi
 = [ ])()|(maxarg iiC CPCDP

i
⋅  ,  (2.6) 

 

enabling us to plug in the probability estimates discussed above. We can omit 

)(DP from the right hand side of this equation, since it is an invariant across 

classes, and will therefore have no effect upon which category is selected. 
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Naïve Bayes algorithms for learning and classifying text [28], are shown in 

Figure 2.3. 

 

 
 
 Figure 2.3. Naïve Bayes algorithms for learning and classifying text 
 
 
 
 
2.6.2.2 Decision Trees 
 

Naïve Bayes approach, model documents using a relatively large, fixed set 

of features, typically represented as vectors. Naïve Bayes looks at the distribution 

of terms, either with respect to their frequency or with respect to their presence or 

absence.  



 22 

A quite different approach is to construct a tree that incorporates just those 

feature tests needed to discriminate between objects of different classes. The 

unique root can be thought of as representing the universe of all objects to be 

categorized. A non-terminal node of the tree is a decision point that tests a feature 

and chooses a branch that corresponds to the value of the result. A classification 

decision is then a sequence of such tests terminating in the assignment of a 

category corresponding to a leaf node of the tree. Leaf nodes represent the 

categories non-uniquely, i.e., there may be more than one leaf node with the same 

category label, with the path from the root to that leaf representing a distinct 

sequence of tests. It turns out that such trees can be formed by an inductive 

learning technique, based on a training set of pre classified documents and their 

features. 

 

Decision trees classify instances by sorting them down the tree from the 

root to some leaf node, which provides the classification of the instance. Each 

node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this 

attribute. An instance is classified by starting at the root node of the tree, testing 

the attribute specified by this node, then moving down the tree branch 

corresponding to the value of the attribute in the given example. This process is 

then repeated for the subtree rooted at the new node. 

 

The decision tree method characterizes a data object, such as a document, 

in terms of a logical combination of features, which is simply a statement about 

that object’s attributes, and does not involve any numeric computation. In text 

categorization applications, these features are most likely to be stemmed words. 

This is quite different from representing a document as a vector of weighted 

features, and then performing a numeric computation to see if some combination 

of feature weights meets a threshold. Consequently, decision tree classifiers do not 
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have to learn such thresholds, or other parameter values. What they learn is 

essentially a set of rules defined over a space of keywords. 

 

A typical training algorithm for constructing decision trees (CDT) can be 

sketched as the following recursive function at Figure 2.4. 

 
Figure 2.4. A training algorithm for constructing decision trees 

 
 

The main issue in the implementation of such an algorithm is how the 

program chooses the feature test that partitions the cases. Different systems have 

used different criteria, e.g., the ID3 decision tree program uses a measure of 

information gain, selecting the most ‘informative’ test [29]. The test that gains the 

most information is simply the test that most reduces the classification uncertainty 

associated with the current set of cases. Uncertainty is maximal when classes are 

evenly represented across the current set of cases and minimal when the cases are 

all of the same class. 

 

There are a number of standard packages for Decision Tree (DT) learning, 

and most DT approaches to TC have made use of one such package. Among the 

most popular ones are ID3 used by [30]; C4.5 used by [31], [32] and [33]. 

 

 
CDT(Node, Cases) 
if Node contains no Cases, then halt, 
else if the Cases at Node are all of the same class, then the decision tree for 
Node is a leaf identifying that class, 

else if Node contains Cases belonging to a mixture of classes, 
then choose a test and partition Cases into subsets based on the  outcome, 

creating as many Subnodes below Node as there are subsets, 
and call CDT on each Subnode and its subset of Cases, 

else halt. 
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One basic algorithm, ID3 learns decision trees by constructing them top 

down, beginning with the question "which attribute should be tested at the root of 

the tree?” To answer this question, each instance attribute is evaluated using a 

statistical test to determine how well it alone classifies the training examples. The 

best attribute is selected and used as the test at the root node of the tree.  

 

A descendant of the root node is then created for each possible value of this 

attribute, and the training examples are sorted to the appropriate descendant node 

(i.e., down the branch corresponding to the example's value for this attribute). The 

entire process is then repeated using the training examples associated with each 

descendant node to select the best attribute to test at that point in the tree.  

 

 
2.6.2.3 Nearest Neighbor Algorithms 
 

Naïve Bayes classifiers learn through induction: they build an explicit 

model of the class by examining training data. The same can be said of decision 

tree methods such as C4.5. However, there is another kind of classifier that does 

not learn in this way. 

 

‘Nearest Neighbor’ classifiers rely on rote learning. At training time, a 

Nearest Neighbor classifier ‘memorizes’ all the documents in the training set and 

their associated features. Later, when classifying a new document, D, the classifier 

first selects the k documents in the training set that are closest to D, then picks one 

or more categories to assign to D, based on the categories assigned to the selected 

k documents.  

 

The K-Nearest Neighbor (kNN) approach towards text categorization is an 

example of an instance-based learning method (also known as an example-based 

method, a memory-based method, and even a lazy learning method) [19], [28]. 
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The training for such methods basically just consists of recording which training 

examples fall in each possible category. Of course, reading in the training 

documents also requires a system to convert them to the appropriate bag of words 

representation, assuming the system does not require this representation as input in 

the first place. When future documents arrive (or a test set is evaluated), the new 

documents are compared to those in the training set. 
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CHAPTER 3 

 
 

A BINARY TEXT CATEGORIZATION PROBLEM:  
EMAIL SPAM FILTERING 

 
 

3.1. Introduction 
 

Today, email is one of the most popular communication mediums because 

of its low cost and speed of transmission. People use email daily for personal 

needs and for business. These factors give an opportunity for marketers to 

advertise their wares to people via email what is referred as ‘spam’ or ‘junk-mail’ 

like as ‘win a holiday trip’, ‘you won prize’, or even ‘adult’ content.  

 

Why Spam or unsolicited mail is undesirable? 

• Such emails annoy web users and Internet Service Providers since it 

requires a lot of time to deal with such types of emails. 

• It takes a lot of space in the recipient’s inbox. 

• Spam mails lead to the wastage of Internet bandwidth. 

 
So there is a need for effective tools to aid users to identify spam messages. 

These are known as Anti - Spam Filters, whose functionality can be in the simplest 

form as detecting spams based on email message headers, and more complex 

techniques such as content-based filters which use keywords.  

 

Text filtering is a specific case of binary text categorization in which the 

categories are relevant versus not relevant (or useful versus not useful). Unlike in 

information retrieval the meanings of these categories do not change based on 
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queries or user profiles, so text filtering, the way which we talk here is clearly a 

subset of binary text categorization. 

 

The task of spam (or junk mail) filtering is to rule out unsolicited junk e-

mail (spam) automatically from a user's mail stream.  

 

3.2. Background of the Study 
 

Today most Content-Based filters search for some keyword patterns within 

the message. These patterns, however, need to be built and tuned to achieve better 

results, require skills that many users may not have. Yan [34]; proposed a simple 

content-based filtering system that used an Internet browser to filter News articles. 

However, the user queries had to be built manually and updated by the user. 

Keyword-based rules, very similar to the former, are used in current systems such 

as ProcMail and are interested with the body of the email. The principle of this 

technique is that given a rule set, if all the keywords in a rule are found, the 

conclusion is drawn. However, this technique requires experts which can allow for 

easy mistakes to be made leading to awful consequences. Still, a user may change 

their criterion over time, so there is a need for more rewriting. Therefore, 

automation is required.  

Automated and semi-automated filtering solutions are widely used by 

individuals, email administrators and Internet Service Providers. Much research 

has been conducted in this area with extensive use of techniques from the Machine 

Learning paradigm. Cranor and LaMacchia [35]; define automated filters as tools 

that find and delete all suspected spam, while semi-automated versions simply 

relocate spam for a human to examine at a later date. Microsoft Outlook enables 

filtering on the message headers in addition to providing the use of stoplists and 

the recognition of commonly used phrases.  
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Clearswift MAIL sweeper analyses incoming and outgoing email at the 

Internet Gateway stage, allowing its users to block inappropriate emails, complies 

with legal requirements, and increase user productivity. Its pattern matcher uses a 

characteristic data sequence to determine the type of information contained.  

 

It is believed that learning – based classification approaches enable filters 

to be more automated, effective and user-friendly. For this reason, most research 

into the area has concentrated on this method of classification. In fact, some Text 

Categorization approaches have shown their prospects in the field of email 

filtering. ‘Automatic Text Categorization is a supervised learning task, defined as 

assigning category labels (pre-defined) to new documents based on the likelihood 

suggested by a training set of labeled documents’ [36]. Automatic Text 

categorization is now being applied in many contexts including document 

indexing, document filtering, personalized information delivery, word sense 

disambiguation, web page categorization, genre detection, or even authorship 

detection. ‘Until the late 1980s, the dominant approach involved Knowledge 

Engineering automatic categorizers - manually defining a set of rules encoding 

expert knowledge on how to classify documents under the given categories’ [19]. 

In the 1990s, Machine Learning replaced the previous approach and the success of 

these techniques in Text Categorization has recently led to alternative solutions. 

This is due to the fact that email filtering can be viewed as an instance of the Text 

Categorization problem, with only two classes existing, spam and legitimate.  

 

Current research in the field of email filtering has concentrated on more 

complicated approaches from the Text Categorization and Machine Learning 

paradigms. Because of the complexity of these approaches, a different path to 

follow is that of more novel solutions to the problem. These include researching 

more simplistic techniques like the keyword-based method already discussed, but 
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the main effort is to define new ways of executing the same task, attempting to 

find a better or more effective solution. The novel solution proposed is to use the 

methodology of Information Retrieval systems presently used by Internet Search 

Engines. This technique is widely used by the general public, gives reasonably 

reliable results and is applicable to the same data, textual information, as emails.  

 

3.3. Machine Learning Applied to Spam Filtering 
 

When Machine Learning techniques applied to E-mail Spam Filtering is 

concerned, the following methods are generally used: 

 
1. Bayesian Learning: Bayesian Spam Classifiers compute the probability of 

an email being spam or not by building a database of tokens (words or 

content of mails in the learning set of both spam and non-spam mails) and 

their respective probabilities of having been seen in spam and non-spam 

mails. When testing on a specific mail, we calculate the probability of that 

mail being spam or not given the known probabilities of the tokens found 

in the mail for spam and non-spam cases. 

 

2. Neural Networks: Spam Filters utilizing artificial neural networks may 

classify incoming mails as spam or non-spam using pre-defined attributes, 

such as frequency of specific words like "money", number of capital letters 

in a row, presence of advertising tags in the email subject and others. The 

input size would thus be one greater than the number of pre-defined 

attributes (counting bias), the number of hidden layer neurons can be fixed 

using trial-and-error and a single output neuron (that outputs true to 

indicate spam and false to indicate non-spam mails). 
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3. NLP – based Filters: Such filters use Natural Language Processing to 

understand the meaning and semantics (relationships among words) of the 

natural language used in the mails. This would lead to more informed 

classification decisions because we work at a higher level of abstraction 

than the Bayesian case where we just count the frequency of tokens 

(words) occurring in the mails, independent of their context. However, this 

technique is difficult to implement practically. 

 

4. Hybrid Approach: A hybrid approach to spam filtering employs more 

than one technique. We could have a layer at which we use white lists and 

blacklists to immediately classify incoming mail as one sort or the other. 

The mail itself can be parsed separately for the headers and the body and 

different tests applied in each case. There should also be scope for the end-

user to resend specific mails to the classifier which was erroneously 

classified (especially in the case of False Positives) so as to retrain the 

database.  
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CHAPTER 4 

 
 

SYSTEM DESIGN AND IMPLEMENTATION 
 

 

4.1. Description of the Problem Statement 
 

The aim of this thesis is to design and implement an E-mail Spam Filtering 

Tool, which takes a set of e-mails as input and categorizes each one as spam or 

non-spam mail. At the same time, it is important that filter should not erroneously 

classify valid mail as spam because this would cause much more serious problems 

for end-user than having to handle some spam mail by himself.  
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4.2. E-mail Spam Filter Tool Design 
 
 

 
      

Figure 4.1. Architecture of the Email spam filter 
 

 

The diagram above (Figure 4.1) shows the architecture of our Email Spam 

Filter. As we explained below we used a hybrid approach of pure Bayesian 

classification and we also use many heuristic tests and features such as whitelist 

and blacklist to classify emails. 
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The classification of emails is done as follows: 

 
• Incoming mails are first pre-processed to separate the header and the body 

part of the email. 

• The header is separately parsed to extract fields such as “From”, “To”, 

“Subject” and calculated mail size. 

• The sender that is known "From" field is checked against the whitelist and 

blacklist configured by the user. This would directly classify the mail as 

spam or non-spam. 

• Heuristic tests (detailed in Chapter 4.3) are applied on the "To", "Subject" 

and “mail size” attributes that assign certain probabilities to the mail of it 

being a spam instance. 

• A Bayesian classification is separately run on the "Subject" field to 

investigate if it contains any words that are common to spam mails. We 

finally end up with a probability of the mail being spam based on only 

header analysis. 

• Words or tokens are extracted from the body and used to compute the 

probability of the mail being a spam using the database previously learnt 

during training phase using the Bayesian technique. 

• The two probabilities are combined and used to finally classify the mail is 

either spam or non-spam. 

 

4.3. Methodology 
 

There are various ways which spam filter may be applied to an e-mail 

network. One type is Server Side Filtering in which the spam filter may be 

integrated with SMTP servers which would eliminate spam on the Internet itself 

and save the wastage of bandwidth. Meanwhile, the problem with this approach is 
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that it would require the classifier to be general enough to process the mails of all 

users. The other one that we will use in our project is User Side Filtering Model, 

which would be placed between POP server and user’s inbox. This may seem to 

cause wastage of Internet bandwidth, because spam is filtered out only at its 

destination. However, User Side model involves more Machine Learning 

techniques and would give a better accuracy. Thus our spam filter architecture 

assumes that filter is placed at as in the User Side Filtering. 

 

In this project, we will use the Hybrid Approach (described in Chapter 3.3) 

for filtering spam mails. The designed filter implements a Bayesian Classifier to 

analyze the body of the mails and also parses the headers separately and applies 

various heuristic tests on the subject. Heuristic tests can be such as checking if it is 

a reply, checking if the subject is all capitals or contains certain words that would 

indicate that the mail is spam, by applying a Bayesian classifier on the subject.  

 
The filter we designed uses the Bayesian approach to classify spam and 

non-spam mails. We use also some novel ideas as follows: 

 

1. On the “header” part of emails heuristic tests are used that assign a separate 

spam probability to the mail.  

 

The heuristic tests we have applied on the header are as follows  

• Mail size: A mail of size greater than 10 KB is likely to be spam. 

• "Subject" field: If found to be empty, the mail is most probably 

legitimate (non-spam). 

• "Subject" field: If starts with "Re:" the mail is likely to be legitimate. 

• "Subject" field: If found to be all upper case, the mail is likely to be 

spam. 
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(4.1) 

• "Subject" field: A Bayesian classification is run on the subject's words 

to find out if it contains words frequently occuring in spam mail 

subjects (such as advertising tags). 

• "From" field: The sender of the email is matched against the configured 

whitelist and blacklist.  

 

It must be noted that many more such tests can easily be added to our 

implementation, we have kept only those that were found to be particularly 

useful for our test corpus 

 

2. On the “subject” field of emails Bayesian classifier is applied separately. 

 

 

We used a corpus consisting of about thousands of legitimate and spam 

mails each to train the Bayesian classifier and create the “database of tokens” 

along with the number of times they occur in legitimate and spam mails. During 

testing, the probabilities for the most frequently occurring words in the given mail 

of occurring in legitimate and spam mails are computed and used to calculate the 

overall probability of the mail being spam or not. Specifically, we are getting some 

ideas from the approach described by Paul Graham [37]. 

 
The probability of occurrence of a word given that the mail is spam is 

calculated using following formula (4.1):  

 

Required Probability = ((a/totalWordsInSpam) / ((a/totalWordsInSpam) + (b/totalWordsInLegitimate)))  
 

 
where,  

a = count of occurrence of the given word in spam mails used to learn the database  

and 
b = count of occurrence of the given word in legitimate mails used to learn the database  
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For example, if the word “mortgage” occurs in 400 of 3000 spam mails and in 5 

out of 300 legitimate emails, then its spam probability would be equal to: 

((400/3000) / ((5/300)+(400/3000))) = 0.8889 

 

The probability that a given mail is spam from its 'n' most frequent tokens 

is calculated using following formula (4.2):  

 

Overall Probability = ((t1 * t2 *...* tn) / ((t1 * t2 * ... * tn) + ((1 - t1) * (1 - t2) *...* (1 - tn)))   (4.2) 
 
 

where, 

't1', 't2' ... 'tn' are probabilities of the ‘n’ most frequent tokens in the mail occurring 

in spam calculated from the previous formula (4.1).  

 
 
How the actual spam filtering is done? 

 
Once the spam and ham (legitimate) databases have been created, the word 

probabilities can be calculated (by using Formula 4.1) and the filter is ready to use. 

 

When a new mail arrives, it is broken down into words and the most 

frequent words are singled out. From these words, the Bayesian filter calculates 

the probability of the new message being spam or not (by using Formula 4.2).      

If the overall probability is greater than a threshold, say 0.9, then the message is 

classified as spam. 
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4.4. E-mail Spam Filter Tool Implementation 
 

The Email spam filtering tool codes are written in Java using JDK 1.5.0 

release. 

We can define the code structure of our Email Spam Filtering program 

with Classes and their Methods as following:  

 

 

Class SpamFilter 
{ 
        Classifier classifier; 
 
        public static void main() 
        { 
                // Main function 
        } 
} 
 
Class Classifier 
{ 
        MailReader train; // Object to perform training 
        MailReader test; // Object to perform testing 
 
        public void Create() 
        { 
                // Creates training database and loads in train(MailReader) 
        } 
 
        public void Save() 
        { 
                // Saves training database in disk file 
        } 
 
        public void Load() 
        { 
                // Loads training database from disk file 
        } 
 
        public void Test(string filePath) 
        { 
                // Tests corpus of test mails against the training the training database (It 
uses function spam) 
        } 
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        public boolean Spam() 
        { 
                // Checks whether the given mail is spam or non-spam(ham) (It uses 
function Parseheader and Parsebody 
        } 
 
        public float Parseheader() 
        { 
                // Parses the header 
        } 
 
        public float Parsebody() 
        { 
                // Parses the body 
        } 
 
        public float subjectAnalysis(String subject) 
        {     
                // (Used by Parseheader) It analyses mail subject and returns a 
probability according to various checks 
 
        } 
 
        public float spamCharacteristics() 
        { 
                // (Used by Parseheader) Other heuristics are used here 
        } 
} 
 
Class MailReader 
{ 
        MailHeader mailHeader; 
        Hashtable probTable; 
 
         
        Public void Hash(String filePath1, String filePath2) 
        { 
                // Creates DataBase of a corpus of emails and saves in a hashtable 
        }         
        private String LexAnalyzer(String msg) 
        { 
                // This function helps in parsing of mails and defines the rules  

according to which the tokens are extracted from mails. 
        } 
 
        private boolean isSeperator(char tempChar) 
        { 
                // defines all characters to be used as token seperator 
                // eg. '.', ';', ',', ':', '\'', '\"', '/', '\\', '&', '#', '@', '<', '>', '%', '=', '-', '_', '$',  
        } 
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        private boolean isSpecial(char tempChar) 
        { 
                // defines all character to be neglected 
                // eg. '(', ')', '?', '!', '*', ']', '[' 
        } 
 
        public void CalcProb() 
        { 
                //Calculates the probability for each token in the database table 
        } 
 
        public void LoadList (String whiteListf, String blackListf) 
        {  
                // Loads whiteList and blackList 
        } 
} 
 
Class MailHeader 
{ 
        // Various header items 
} 

 
 
 

4.5. Training and Test Sets 
 

After designing and implementing our system, it is important that we must 

use some data sets to train and test our system. We used several corpuses of 

legitimate and spam mails obtained from a variety of sources - the Internet, 

personal emails and public websites that have many spam mail databases such as 

the Spam Assassin corpus [38] and most commonly Ling-Spam corpus [39].   

The training sets are taken from these corpuses which include both ham 

and spam mails to train the classifier. 

 

For the user to gain confidence the system must work and hence testing is 

also a necessity. Without these constraints, no thorough evaluation would be 

possible. The results of the system with respect to given test data, are discussed on 

the Chapter 5 of this thesis. 
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CHAPTER 5 

 
 

RESULTS AND CONCLUSIONS 
 

 

5.1. Overview of Evaluating Text Classifiers 
 

In order to evaluate the performance of our system with some test data, we 

used some metrics applied to the evaluation of text classifiers.  

 
The performance of classification systems is frequently evaluated in terms 

of effectiveness. Effectiveness metrics for a binary classifier rely on a 2x2 

contingency table shown on Table1. TPi denotes ‘true positives’, FPi denotes 

‘false positives’, FNi denotes ‘false negatives’, and TNi denotes ‘true negatives’ 

[40]. 

 
Table 5.1 Contingency Table for evaluating a binary classifier 

 
Category ci Expert assigns YES Expert assigns NO Total 
Classifier assigns YES TPi FPi mi 

Classifier assigns NO FNi TNi N - mi 

Total ni N - ni N 

 
 

Recall and precision have been adapted to text classification. Precision is 

the proportion of documents for which the classifier correctly assigned category ci 

and is given by:  

i

i

i
m

TP
P =        (5.1) 
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Recall is the proportion of target document correctly classified and it is 

given by: 

i

i

i
n

TP
R =         (5.2) 

 
Since text classifiers can be constructed using machine learning techniques, 

machine learning criteria such as the accuracy of the classifier, have also been 

used to measure effectiveness. Accuracy is the proportion of correctly classified 

objects, which is given by: 

 

 
N

TNTP
Acc ii

i

+
=        (5.3) 

 
where N is the total and equal to TPi + TNi + FPi + FNi . 
 
 
 

5.2. Email Filtering System Evaluation 
 

For a through evaluation of Email filtering system, a Machine Learning 

style evaluation were used which is described in Chapter 5.1.  

 

An ideal email filter would offer higher Accuracy and Spam Precision. 

Spam Precision is of greatest concern to mail users as they would not want their 

legitimate mail discarded as junk (Sahami et al) [5]. It is also believed that 

Legitimate Recall is so important that the higher the value, the less legitimate 

messages are misclassified; this is what users require.  

 

Let’s define the metrics we will use for evaluating our System: 

According to contingency table (Table 5.1) we can define following equations of 

the effectiveness measures: 
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ii

i

i
FPTP

TP
ecisionSpam

+
=Pr   (5.4), 

ii

i

i
FNTP

TP
callSpam

+
=Re       (5.5) 

 

ii

i

i
FNTN

TN
ecisionLegitimate

+
=Pr    (5.6),  

ii

i

i
FPTN

TN
callLegitimate

+
=Re  (5.7) 

 

iiii

ii

i
FNTNFPTP

TNTP
uracyOverallAcc

+++

+
=  (5.8) 

 
 

5.3. Experimental Results 
 

The purpose is to present and analyze the experimental results produced by 

our Email filter in an attempt to evaluate the system performance when the system 

is trained and tested with two commonly used corpuses known as Spam Assassin 

[38], and Ling-Spam [39] corpus. 

 

While evaluating the text classification systems it is important that system 

should be trained and tested with different data in order to check system’s validity.  

 

Firstly, the system is trained and tested by using Spam Assassin public 

corpus that includes total amount of about 9300 emails, where each email is 

categorized as ham and spam: 

   

We tabulated the results obtained by varying the training ham and spam set 

size from 50 to 2000 and testing against the corpus of 2500 ham and 2400 spam 

mails. The results are shown in Table 5.2.  
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Table 5.2. Experimental results obtained using Spam Assassin corpus 
 

Training Set 
Size  
(Ham and Spam) 

False Positives 
(among 2500 
ham test email) 

False Negatives 
(among 2400 
spam test email) 

Overall 
Accuracy    
( % ) 

50 167 (%6.67) 910 (%38.1) 77.6 

100 142 (%5.68) 822 (%34.29) 80.0 

200 185 (%7.39) 645 (%26.90) 82.9 

300 287 (%11.47) 548 (%22.86) 82.8 

400 214 (%8.56) 554 (%23.11) 84.2 

500 287 (%11.47) 467 (%19.48) 84.5 

1000 273 (%10.91) 489 (%20.40) 84.3 

1500 285 (%11.39) 398 (%16.58) 86.0 

2000 288 (%11.51) 343 (%14.29) 87.1 

 
 
A plot of the above results is as shown below:  
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Figure 5.1. System accuracy versus training data using Spam Assassin corpus 
 
 

We can see from the Figure 5.1 that as the False Negatives decrease, False 

Positives increase and it can be also seen that as the training data increases the 

system gives more accurate results. 
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An expanded table below (Table 5.3) shows the system performance on 

Spam Assassin corpus in terms of effectiveness measures previously defined:  

 

 Table 5.3. System effectiveness measured on Spam Assassin corpus 
 

Training 
Set Size 
(Ham and 
Spam) 

True 
Positives 
% 

False 
Positives 
% 

True 
Negatives 
% 

False 
Negatives 
% 

Spam 
Precision 
% 

Spam 
Recall 
% 

Ham 
Precision  
% 

Ham 
Recall     
% 

Overall 
Accuracy 
% 

50 93,33 6,67 61,90 38,10 93,33 71,01 61,90 90,27 77,6 

100 94,32 5,68 65,71 34,29 94,32 73,34 65,71 92,04 80,0 

200 92,61 7,39 73,10 26,90 92,61 77,49 73,10 90,82 82,9 

300 88,53 11,47 77,14 22,86 88,53 79,48 77,14 87,06 82,8 

400 91,44 8,56 76,89 23,11 91,44 79,83 76,89 89,98 84,2 

500 88,53 11,47 80,52 19,48 88,53 81,96 80,52 87,53 84,5 

1000 89,09 10,91 79,60 20,40 89,09 81,37 79,60 87,95 84,3 

1500 88,61 11,39 83,42 16,58 88,61 84,24 83,42 87,99 86,0 

2000 88,49 11,51 85,71 14,29 88,49 86,10 85,71 88,16 87,1 

 
 

We know that an email filter would offer higher Accuracy. The experiment 

results we got as in Table 5.3 shows that our filter gives final Overall Accuracy of 

%87.1 with enough training and test data using Spam Assassin public corpus.  

 
 

In order to make comparison and test whether the system is viable to 

different data sets, we decided to use another corpus known as Ling-Spam corpus. 

Ling-Spam corpus provides total amount of about 3000 emails, where each email 

is categorized as ham and spam already for evaluating email filtering systems: 

 

The email filtering system is tested with 230 ham and 230 spam emails, 

different from the trained data both taken from the Ling-Spam corpus. The 

experimental results are shown below in Table 5.4. 
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   Table 5.4. Experimental results obtained using Ling-Spam corpus 
 

Training Set Size 
(Ham - Spam) 

 
Training 

Corpus Size  
False Positives  False Negatives  

Overall 
Accuracy 

% 

50 - 50 100 111 (%48.26) 50 (%21.73) 65 

100 - 100 200 97 (%42.24) 45 (%19.56) 69.1 

150 - 150 300 78 (%33.91) 43 (%18.69) 73.7 

200 - 200 400 64 (%27.82) 39 (%16.95) 77.6 

250 - 250 500 43 (%18.69) 39 (%16.95) 82.2 

300 - 250 550 35 (%15.21) 39 (%16.95) 83.9 

400 - 250 650 20 (%8.69) 40 (%17.39) 87.0 

500 - 250 750 12 (%5.21) 42 (%18.26) 88.3 

 
 
A plot of the above results is as shown below: 
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Figure 5.2. System accuracy versus training data using Ling-Spam corpus 
 

 

It can be seen from the Figure 5.2 that as the training set increase the 

system decreases the error rate by means of decreasing False Positives and False 

Negatives, so Overall Accuracy increases. Finally, we got overall accuracy of 

%88.3 using Ling-Spam corpus.  



 46 

 

An expanded table below (Table 5.5) shows the system performance on 

Ling-Spam corpus in terms of effectiveness measures previously defined:  

 

Table 5.5. System effectiveness measured on Ling-Spam corpus 
 

Training 
Sets Size 
(Ham - 
Spam) 

True 
Positives 
% 

False 
Positives 
% 

True 
Negatives 
% 

False 
Negatives 
% 

Spam 
Precision 
% 

Spam 
Recall 
% 

Ham 
Precision  
% 

Ham 
Recall     
% 

Overall 
Accuracy 
% 

50 - 50 51,74 48,26 78,27 21,73 51,74 70,42 78,27 61,86 65,0 

100 - 100 57,76 42,24 80,44 19,56 57,76 74,70 80,44 65,57 69,1 

150 - 150 66,09 33,91 81,31 18,69 66,09 77,95 81,31 70,57 73,7 

200 - 200 72,18 27,82 83,05 16,95 72,18 80,98 83,05 74,91 77,6 

250 - 250 81,31 18,69 83,05 16,95 81,31 82,75 83,05 81,63 82,2 

300 - 250 84,79 15,21 83,05 16,95 84,79 83,34 83,05 84,52 83,9 

400 - 250 91,31 8,69 82,61 17,39 91,31 84,00 82,61 90,48 87,0 

500 - 250 94,79 5,21 81,74 18,26 94,79 83,85 81,74 94,01 88,3 
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5.4. Conclusions 
 
 

The transmission of spam through Internet is increasingly growing day by 

day. Many times, even the email filter is used; spam mails are still able to reach 

the user’s inbox. Thus, an email filtering is researched as a binary text 

classification problem, and email filtering system is designed and implemented for 

classifying incoming mails as spam or ham.  

 

It is known that the offered system should give high overall accuracy. At 

the same time the system should give higher spam precision values, so that false 

positives should be less, since user doesn’t want their legitimate (ham) mails 

classified as spam.  

 

We have seen from the experiments that the corpus used for training and 

testing plays a big role in system success. Our system had overall accuracy %87.1, 

spam precision %88.5, and spam recall %86.1 when the Spam Assassin corpus is 

involved (see Table 5.4). However, the system had overall accuracy %88.3, spam 

precision value %94.8, and spam recall of %83.8 when the Ling-Spam corpus is 

used (see Table 5.5). As we know that higher the Spam Precision is, the less ham 

(valid) emails would be misclassified as spam. Our system provides enough spam 

precision values and we can say that using Ling-Spam corpus got more efficient 

results even though the corpus size is smaller than the Spam Assassin corpus. 

 

Ling-Spam corpus was chosen so that we should be able to make some 

comparison with other systems. In the previous work done by Androutsopoulos (et 

al) [41], Outlook was involved with the Ling-Spam corpus and it is seen that spam 

precision value %87.9, spam recall value %53.0. Naïve Bayes classifier resulted 

with spam precision of 96.8, and spam recall %81.1.  
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It can be concluded that when compared with other classifiers using 

effectiveness measures, our email filter system shows better performance than 

Outlook, and gives promising results when compared with its machine learning 

familiar known as Naïve Bayes classifier. 

 

 

5.5. Future Work 
 

In addition to filtering emails as spam or ham, an (improved) email 

classifier can be implemented so that the system should be able to categorize the 

incoming emails as Corporate, Money, Holiday, Academic, Personal etc…  

 

Another point can be worked that Natural Language Processing techniques 

on email filtering such as the semantics of the emails may be used for resolving 

ambiguity on spam and ham mails for filtering purposes. 
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