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ABSTRACT 

EVALUATION OF TERRAIN RENDERING ALGORITHMS 

İnam, Emin 

Master of Science Thesis 

Department of Computer Engineering 

Supervisor: Asst. Prof. Dr. Reza Hassanpour 

September 2005, 67 pages 

 

Terrain rendering plays an important role in outdoor virtual reality applications, 

games, Geographic Information System (GIS), military mission planning’s and 

flight simulations, etc. Many of these applications require real-time dynamic 

interaction from end users and thus are required to rapidly process terrain data to 

adapt to user input. Typical height fields consist of a large number of polygons, so 

that even most high performance graphics computers have great difficulties to 

display even moderately sized height fields at interactive frame rates. The common 

solution is to reduce the complexity of the scene while maintaining a high image 

quality. This thesis is an evaluation of three real-time continuous terrain levels of 

detail algorithms described in the papers ROAMing Terrain: Real-time Optimally 

Adapting Meshes by Duchaineau, Real-Time Generation of Continuous Levels of 

Detail for Height Fields by Röttger and Fast Terrain Rendering Using Geometrical 

MipMapping by Willem H. de Boer. The evaluation and comparison of the 

algorithms is based on the trade-off of polygon count to terrain accuracy over 

separate test data sets. The main aim of this thesis is research on terrain rendering 

algorithms that is generate high quality image in real-time with using height data.  

 

Keywords: Terrain Rendering, Continuous Level of Detail (CLOD) 
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ÖZ 

 

ARAZİ ÇİZME ALGORİTMALARININ DEĞERLENDİRİLMESİ  

İnam , Emin 

Yüksek Lisans, Bilgisayar Mühendisliği 

Tez Yöneticisi: Yrd. Doç. Dr. Reza Hassanpour 

Eylül 2005, 67 sayfa 

 

Arazi çizimleri, sanal gerçeklik uygulamalarında, üç boyutlu bilgisayar oyunlarında, 

Coğrafi Bilgi Sistemlerinde (CBS), askeri görev planı oluşturmada ve uçuş 

simülasyonlarında önemli bir rol oynamaktadır. Bu uygulamaların çoğu, son 

kullanıcı ile gerçek zamanlı dinamik etkileşim gerektirmektedir. Arazi verisi hızlı bir 

şekilde işlenerek kullanıcı girdisine göre uyarlanır. Standart yükseklik alanları çok 

sayıda polygon içerir. Bu yüzden, yüksek performansa sahip bilgisayarlarda bile 

bellli bir kalitede yükseklik verilerini görüntülemek zor olabilir. Bu sorunun ortak 

çözümü, görüntü kalitesini koruyarak verinin karmaşıklığını azaltmaktır. Bu tezde  

Duchaineau, Röttger ve Willem H. de Boer tarafından yazılan makalelerde ortaya 

konulan algoritmalar karşılaştırılacaktır. Algoritmaların değerlendirilmesi sırasında 

farklı veri kümeleri uygulanacak, poligon sayısı ve arazi doğruluğu esas alınacaktır. 

Bu tezin amacı, yükseklik verilerini kullanarak, gerçek zamanda, yüksek kalitede 

arazi görüntüsü elde edilmesini sağlayan, arazi çizme algoritmalarını incelemektir. 

 

Anahtar Kelimeler: Arazi Çizme, Sürekli Detay Düzeyi (CLOD) 
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CHAPTER 1 

INTRODUCTION 

In the last decade, a fast growing domain in computer graphics is the so called 

Geographic Information Systems (GIS). GIS are a body of software, hardware and 

personal necessary for storage, modeling, analysis and reporting of positional data. 

The difference of GIS from other information systems is its positional analysis 

functions. These functions achieve the solution of real world problems by the usage 

of positional and non-positional data contained within the database. By this property 

GIS offers a powerful toolkit to decision makers for the analysis and interpretation 

of positional data. They allow exploring large geographic data sets interactively on 

screen, which involves displaying height fields in real-time.  

 

Terrain rendering is specialized area of GIS. Terrain rendering is a statistical 

representation of the continuous surface of the ground by a large number of select 

points with known x, y and z coordinates in an arbitrary coordinate field. In the last 

several years, there has been a tremendous growth in the application of terrain 

rendering, not only in the traditional fields of geography, surveying and mapping, 

and earth and environmental sciences, but also in landscape design, environmental 

impact analysis, site selection for telecommunication facilities( radio, T.V ,and 

mobile telephone transmission towers ), realistic flight simulators or terrain-based 

computer games, as well as to geographic information systems  and military mission 

planning applications. This is partially due to the increasing availability of digital 

terrain data from government agencies, academic and research institutions, as same 

time, advancing computer technology has helped popularize the use of terrain 

rendering [1]. 
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Like most subjects in computer science, the study of terrain rendering is subdivided 

into many problems and particular techniques. One such aspect that is very common 

in the above mentioned applications is the ability to efficiently render a 3D terrain in 

real-time.  This thesis is an evaluation of three real-time continuous terrain levels of 

detail algorithms described in the papers ROAMing Terrain: Real-time Optimally 

Adapting Meshes by Duchaineau [2], Real-Time Generation of Continuous Levels 

of Detail for Height Fields by Röttger [3] and Fast Terrain Rendering Using 

Geometrical MipMapping by Willem H. de Boer [4]. The evaluation and 

comparison of the algorithms is based on the trade-off of polygon count to terrain 

accuracy over separate test data sets. 

 

1.1 3D Terrain Overview 

A 3D terrain is also called a height field because it is comprised of an N x N field of 

height values that make up the terrain. Height fields are usually stored as N x N 

grayscale Bitmap images where the color of each pixel represents the height value 

(0-255) for the corresponding location in the terrain. In most cases the length of one 

side of the height field, N, is 2M + 1 for some value of M. These height fields can be 

generated automatically or they can come in the form of Digital Elevation Model 

(DEM) maps that describe actual regions of the earth’s surface. This thesis uses 

terrain height fields in the chapter 3.  Rendering a 3D terrain may seem simple at 

first, since a height field can be triangulated into many little triangles that are easy to 

draw on the screen. The problem, however, lies in the fact that triangulating a terrain 

of size 2M + 1 x 2M + 1 results in 22M+1 triangles, which become virtually impossible 

to render in real-time for increasingly large terrains. For this reason, most terrain 

rendering algorithms are real-time continuous level of detail algorithms [5]. 
 
1.2 Real-Time Continuous Level of Detail 

Level of detail (LOD) rendering for any mesh (not just terrains) can be described as 

the process of generating a finite number of representations of the same mesh, each 
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at a different level of detail. Representations that have more detail would use more 

polygons, and the lowest detailed mesh would use the fewest polygons. At any given 

time an algorithm would determine which of the pre-computed mesh representations 

should be used based on the desired level of detail. Switching between 

representations usually produces a visual popping effect since more detail will 

suddenly appear or disappear all at once. Continuous level of detail (CLOD) is a 

LOD approach that can determine exactly how many polygons to use for any desired 

level of detail between the range of the maximum and minimum level of detail 

possible. CLOD algorithms eliminate the popping effect when changing the desired 

level of detail since the changes in polygon usage are gradual. Real-time continuous 

level of detail is any CLOD algorithm that renders a mesh while allowing a user to 

dynamically modify the desired level of detail each frame at run time. For example, 

a real-time continuous level of detail algorithm for height fields is one that allows a 

user to navigate around a terrain while continually rendering the area close to the 

user with a high level of detail. Regions of the terrain further and further from the 

user would be rendered with less and less detail, and this would be updated each 

frame as the user moves around dynamically[5][6].  

 

1.3 Challenge of Terrain Rendering Algorithms 

Terrain visualization is a difficult problem for applications requiring accurate 

images of large datasets at high frame rates, such as flight simulation and ground-

based aircraft testing using synthetic sensor stimulation. Height fields play an 

important role in the GIS. For exploring different kinds of geographic-based data 

sets on screen it is necessary to display height fields at interactive frame rates. 

Because of the inherent geometric complexity, this goal is often unachievable even 

with new generations of powerful graphics computers, unless the original height 

field data is approximated in order to reduce the number of geometric primitives that 

need to be rendered without compromising visual quality. 
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Traditional triangle-reduction methods use a small set of discrete levels of detail that 

each represents the same object at different number of triangles. Simple 

visualization systems compute the distance from the observer to an object and 

choose a level of detail for the entire object based on that distance. Other 

visualization systems base the level of detail on the screen-space error of the object. 

If the distance or error changes beyond a certain limit, the whole object is rendered 

with another level of detail. There are two problems with triangle-reduction methods 

based on discrete levels of detail. First, large objects that may have some regions 

close to the observer and others more distant should be rendered at different levels 

of detail for the different regions. Terrain is an example of such an object. The 

horizon does not need to be rendered with as high detail as nearby parts. Second, 

changing from one level of detail to another leads to temporal aliasing artifacts 

known as popping [6] [7].  

1.3.1 Tears, Cracks, and T-Junctions 

A common problem when dealing with terrain LOD (particularly when dealing with 

quadtree- or block-based approaches) occurs when adjacent triangles exist at 

different levels of detail. In this situation, it is possible to introduce cracks along the 

edge, where the higher LOD introduces an extra vertex that does not lie on the lower 

LOD edge. When rendered, these cracks can cause holes in the terrain, allowing the 

background to peak through. Another undesirable artifact is the T-junction. This is 

caused when the vertex from a higher LOD triangle does not share a vertex in the 

adjacent lower LOD triangle. This can result in bleeding tears in the terrain due to 

small floating-point rounding differences, and visible lighting and interpolation 

differences across such edges. Figure 1.1 illustrates both of these cases.  

 

There are a number of ways of dealing with cracks. Some of the more common 

solutions are described in the following. The triangles around the crack are 

recursively split to produce a continuous surface. This will often introduce 
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additional triangles into the mesh but produces a pleasing and continuous result. 

This approach is often used in bin tree-based systems. For example, the ROAM 

algorithm adopts this solution, along with other systems.   

 

 

Figure 1.1 a. Cracks and b. T-junctions 

Figure 1.2 gives an example of this technique. The extra vertex in the higher LOD 

mesh has its height modified so that it lies on the edge of the adjacent lower LOD 

mesh. This does not affect the number of triangles or vertices in the model, but it 

introduces a potentially visible error into the terrain surface unless care is taken that 

the vertex shift occurs below the accuracy threshold. This method essentially implies 

introducing a T-junction into the model, which is generally considered harmful to 

the continuity of the mesh, although some systems have used this approach due to its 

simplicity and compactness. 

 

 

Figure 1.2 Eliminating cracks and T-junctions via recursive splitting. 

 

 A similar solution that avoids the T-junction is to simply skip the center vertex on 

the higher LOD mesh. An equivalent operation to the previous case is to add an 
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extra vertex to the edge of the lower LOD mesh and assign it the same location as 

the extra vertex in the higher LOD mesh. This produces a more faithful terrain 

surface, but at the cost of introducing an extra vertex. A further refinement of this 

approach is to shift both of the boundary vertices to the average of their two 

elevations. A common tool for managing extremely large terrain data sets is to 

segment them into a number of blocks, or tiles, so that these might be paged into 

main memory as needed. A simple solution to avoid tears between blocks is to 

prevent simplification of vertices that lie on the boundary of a block. A new triangle 

is inserted between the two meshes to plug up the gap. Although this results in a 

continuous mesh, the fill polygons lie in a plane perpendicular to the surface and 

hence can introduce unnatural-looking short cliffs. This solution also has the 

disadvantage of using extra polygons to represent the mesh [6].  

 

1.4 Motivation 

Terrain rendering is an exciting and challenging area of computer graphics. The 

prime problem of terrain rendering is simply size of data. Although, graphics 

hardware continues to evolve at an astounding rate and have the ability to draw a 

huge amount of polygons in real-time, clever algorithms for reducing the geometry 

to be rendered and for sending it to the hardware as quickly as possible will always 

be necessary. These terrain rendering algorithms are trying to decrease the amount 

of data. Performing CLOD on a mesh is generally done to reduce the number of 

polygons needed to render a scene. However, this reduction comes at a cost. When 

dealing with 3D terrains, refining the terrain to save on polygon usage results in a 

loss in terrain accuracy. The purpose of this thesis is to examine the trade-off 

between terrain accuracy and polygon count for the three algorithms being studied.  

Although the focus of this project is from a GIS point of view, other applications 

involving 3D terrain may consider this study a benefit. Finally, each algorithm will 

be discussed in terms of reach to terrain accuracy with using minimum polygon 
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count and usability for the different types of terrain data and we also try to find the 

best suitable algorithm for terrain rendering. 

 

The main contribution of this thesis is evaluating algorithms with GIS point of view.  

We try to find the best algorithm for terrain rendering with using real world data. 

We already mention about the main problem of terrain rendering; very large data. 

The modern graphics cards will be able to display more and more polygons per 

second, but on the other hand the resolution of elevation data is also increasing day 

by day. For example, a 3 arc second (approx. 90m resolution) DEM data used in this 

thesis. But, a 1 arc second (less than 16m resolution) data product was also 

produced, but it is not available for public usage. In this case, the vertex count 

naturally increases for terrain rendering. Therefore, rendering terrain with minimum 

polygon is important criteria for GIS application. In according to our experimental 

results, the ROAM algorithm easily copes with this problem (See Chapter 3). 

 
1.5  Outline of Thesis 

In Chapter 2 discusses the requirements of terrain-rendering algorithms and surveys 

existing algorithms.  We define test data sets and test cases at the Chapter 3. Also we 

discuss our test results in this chapter. Chapter 4 concludes this position thesis. 
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CHAPTER 2 

BACKGROUND ON TERRAIN RENDERING ALGORITHMS 

In this chapter, we described many of the fundamental concepts of terrain LOD. 

After that we explain the terrain rendering algorithms that are using in our thesis. 

 

2.1 Multiresolution Techniques for Terrain 

We begin this chapter by taking a look at some of the principal variables a developer 

faces when implementing a terrain LOD algorithm. 

2.1.1 Top Down and Bottom Up 

One of the major differentiators of terrain LOD algorithms, as with more general 

LOD techniques, is whether they are top-down or bottom-up in their approach to the 

simplification problem. In a top-down algorithm, we normally begin with two or 

four triangles for the entire region and then progressively add new triangles until the 

desired resolution is achieved. These techniques are also referred to as subdivision 

or refinement methods. In contrast, a bottom-up algorithm begins with the highest-

resolution mesh and iteratively removes vertices from the triangulation until the 

desired level of simplification is gained. These techniques can also be referred to as 

decimation or simplification methods. Figure 2.1 illustrates these two approaches to 

terrain simplification. Bottom-up approaches tend to be able to find the minimal 

number of triangles required for a given accuracy. However, they necessitate the 

entire model being available at the first step and therefore have higher memory and 

computational demands. 
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Figure 2.1 Top down or bottom up approaches 

It is worth making an explicit distinction between the preparation-time and runtime 

sense of bottom-up versus top-down. Bottom-up approaches are almost always used 

during the initial offline hierarchy construction. However, at run-time, a top down 

approach might be favored because, for example, it offers support for view culling. 

Most interactive bottom-up solutions are usually hybrid in practice, often combined 

with a top-down quadtree block framework. Furthermore, a few systems perform 

incremental coarsening or refining of the terrain at each frame to take advantage of 

frame-to-frame coherency. As such, these systems cannot strictly be classified as 

exclusively top-down or bottom-up.   

2.1.2 Regular Grids and TINs 

Another important distinction between terrain LOD algorithms is the structure used 

to represent the terrain. Two major approaches in this regard are the use of regular 

gridded height fields and Triangulated Irregular Networks (TINs). Regular (or 

uniform) grids use an array of height values at regularly spaced x and y coordinates, 

whereas TINs allow variable spacing between vertices. Figure 2.2 illustrates these 

two approaches, showing a regular grid of 65× 65 (equals 4,225) height values and a 

512- vertex TIN representation with the same accuracy. TINs can generally 
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approximate a surface to a required accuracy with fewer polygons than other 

schemes. For example, they allow large flat regions to be represented with a coarse 

sampling, while reserving higher sampling for more bumpy regions. Regular grids, 

in comparison, tend to be far less optimal than TINs because the same resolution is 

used across the entire terrain, at flat places as well as high-curvature regions. TINs 

also offer great flexibility in the range and accuracy of features that can be modeled, 

such as maxima, minima, saddle points, ridges, valleys, coastlines, overhangs, and 

caves. However, regular grids offer the advantages that they are simple to store and 

manipulate. For example, finding the elevation at any point is a simple matter of 

bilinearly interpolating the four nearest neighbor points. They are easily integrated 

with raster databases and file formats, such as the DEM, DTED,   and GeoTIFF file 

formats. In addition, they require less storage for the same number of points because 

only an array of z values needs to be stored rather than full (x, y, z) coordinates. 

 

 

Figure 2.2 (a) A regular grid terrain representation (b) TIN representation. 

Furthermore, TINs make implementing related functions (such as view culling, 

terrain following, collision detection, and dynamic deformations) more complex 
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because of the lack of a simple overarching spatial organization. Also, the 

applicability of TINs to run-time view-dependent LOD is less efficient than regular 

gridded systems. For these reasons, many contemporary terrain LOD systems favor 

regular grids over TINs. It is worth noting that a number of hybrid schemes have 

been proposed that try to gain the best of both worlds—most notably by using a 

hierarchical triangulation based on a regular grid.  

2.1.3 Quadtrees and Bintrees 

To implement view-dependent LOD for a regular grid structure, we must be able to 

represent different parts of the grid at different resolutions. This implies a 

hierarchical representation in which we can gradually refine further detail to 

different parts of the grid. There are a number of options available for achieving this 

multiresolution representation. The most common two are the quadtree and the 

binary triangle tree. A quadtree structure is where a rectangular region is divided 

uniformly into four quadrants. Each of these quadrants can then be successively 

divided into four smaller regions, and so on (See Figure 2.3 (a–d)). Quadtrees have 

been used for a number of terrain LOD systems.  

 
 (a)    (b)   (c)   (d) 

 
 (e)   (f)   (g)   (h) 

Figure 2.3 (a–d) Quadtree structure (e–h) binary triangle trees. 
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Note that you can still employ a quadtree structure and use triangles as your 

primitives. You would simply decompose each rectangle into two or more triangles. 

In fact, a number of different triangulation schemes could be implemented 

independent of the use of quadtrees or bintrees. A binary triangle tree structure 

(bintritree, BTT, or simply bintrees) works the same way as a quadtree, but instead 

of segmenting a rectangle into four it segments a triangle into two halves.  The root 

triangle is normally defined to be a right-isosceles triangle (i.e., two of the three 

sides are equal and they join at a 90-degree angle), and the subdivision is performed 

by splitting this along the edge formed between its apex vertex and the midpoint of 

its base edge (See Figure 2.3 (e–h)). Note that another, more general; term that can 

be used to describe a bintree is a kd-tree. A kd-tree is a binary tree that recursively 

subdivides a space such that a k-dimensional kd-tree divides a k-dimensional space 

with a (k − 1)-dimensional plane. Systems that have implemented binary triangle 

tree techniques include Lindstrom [8] et al. and Duchaineau [2] et al. One of the big 

advantages of bintrees is that they make it easy to avoid cracks and T-junctions. 

Bintrees also exhibit the useful feature that triangles are never more than one 

resolution level away from their neighbors (this is not true for quadtrees, which 

often require extra care to preserve this condition). Seumas Mc-Nally wrote an 

excellent piece on bintrees for GameDev.net [9]. In that article he presents psuedo 

code for splitting a triangle in a binary triangle tree while avoiding cracks and T-

junctions. The psuedo code follows, including some minor optimizations that have 

been reported recently. In this code, the left and right neighbors point to the triangles 

on the left and right with the hypotenuse down, and the bottom neighbor is the 

triangle that meets the hypotenuse. Figure 2.4 illustrates the split progression. 
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Figure 2.4. Seumas McNally’s bintree tessellation code 

2.2 Terrain Rendering Algorithms 

We describe main features of the each algorithms briefly in this section. 
 

2.2.1 The ROAM Algorithm 

 

In 1997, Duchaineau published the ROAM algorithm [2]. This has proved to be an 

extremely popular algorithm, particularly among game developers; it has been 

implemented for the Tread Marks, Genesis3D, and Crystal Space engines, among 

others. ROAM (Real-time Optimally Adapting Meshes) uses an incremental 

priority-based approach with a binary triangle tree structure. A continuous mesh is 

produced using this structure by applying a series of split and merge operations on 

triangle pairs that share their hypotenuses, referred to as diamonds (See Figure 2.5). 

 

The ROAM algorithm uses two priority queues to drive split and merge operations. 

One queue maintains a priority-ordered list of triangle splits so that refining the 

terrain simply means repeatedly splitting the highest-priority triangle on the queue. 

The second queue maintains a priority-ordered list of triangle merge operations to 

simplify the terrain. This allows ROAM to take advantage of frame coherence (i.e., 

to pick up from the previous frames triangulation and incrementally add or remove 
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triangles). Duchaineau et al. also note that splits and merges can be performed 

smoothly by geomorphing the vertex positions during the changes. 

 

Figure 2.5. The split and merge operations on a binary triangle tree. 

The priority of splits and merges in the two queues was determined using a number 

of error metrics. The principal metric was a screen-based geometric error that 

provides a guaranteed bound on the error. This was done using a hierarchy of 

bounding volumes, called wedgies, around each triangle (similar to the notion of 

simplification envelopes). A wedgie covers the (x, y) extent of a triangle and extends 

over a height range z − eT through z + eT, where z is the height of the triangle at each 

point and eT is the wedgie thickness, all in world-space coordinates. A preprocessing 

step is performed to calculate appropriate wedgies that are tightly nested throughout 

the triangle hierarchy, thus providing a guaranteed error bound (See Figure 2.6). 

 

At run-time, each triangle’s wedgie is projected into screen space and the bound is 

defined as the maximum length of the projected thickness segments for all points in 

the triangle (note that under the perspective projection, the maximum projected 

thickness may not necessarily occur at one of the triangle vertices). This bound is 

used to form queue priorities, and could potentially incorporate a number of other 

metrics, such as back face detail reduction, silhouette preservation, and specular 

highlight preservation.  
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The ROAM algorithm includes a number of other interesting features and 

optimizations, including an incremental mechanism to build triangle strips. Modern 

graphics processing units often provide significant performance gains when triangles 

are organized into strips. In the original ROAM algorithm, strip lengths of four to 

five triangles were favored. These strips were incrementally adjusted as triangles 

were split or merged. The authors report a significant frame time improvement of 72 

ms per frame by using triangle strips. Another intriguing feature that was supported 

was line-of-site (LOS) based refinement. In this case the triangulation is made more 

accurate along a specified line of sight so that correct visibility and occlusion 

determinations can be made. This is particularly useful for military mission planners 

and ground-based aircraft testing using synthetic sensor stimulation. Another 

optimization defers the computation of triangle priorities until they potentially affect 

a split or merge decision. The authors report that this priority recomputation deferral 

saved them 38 ms per frame. Finally, the ROAM algorithm can also work toward an 

exact specified triangle count, as well as support fixed frame rate constraints. 

 

Duchaineau [2] et al. tested their implementation with a United States Geological 

Survey (USGS) 1-degree DEM for Northern New Mexico (about 1,200 × 1,200 

postings at 3-arc-second, or roughly 90-m, resolution). They report that on a R10000 

Indigo2 workstation they achieved 3,000 triangles within a rate time of 30 ms (5 ms 

for view-frustum culling, 5 ms for priority queue calculation, 5 ms for split/merge 

operations, and 15 ms to output the triangle strips). In terms of frame coherence, the 

authors found that on average less than 3% of triangles changed between frames. 

Figure 2.7 shows an example of a ROAM-simplified mesh. 

 

The original ROAM algorithm has been improved or modified by a number of 

researchers and game developers [10] [11] [12] [13] [14]. For example, one 

simplification sometimes used by game developers is to discard the frame coherence 
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Figure 2.6 Illustrating nested ROAM wedgies for the 1D case 

 

feature, resulting in a “split-only ROAM” implementation (such as that described by 

Bryan Turner in his Gamasutra. com article “Real-Time Dynamic Level of Detail 

Terrain Rendering with ROAM” [15]).  

 

One noteworthy improvement of the original algorithm was provided by Jonathan 

Blow at the GDC 2000 conference [16]. Blow found that the original ROAM 

algorithm does not perform well for densely sampled data, and attributed this to the 

large number of premature recalculations of wedgie priorities that can occur in a 

well-tessellated high-detail terrain. Blow noted that both Lindstrom and Duchaineau 

used screen-space error metrics that compressed the 3D geometric error down to a 
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1D scalar value. Instead, Blow advocated using the full three dimensions of the 

source data to perform LOD computations and building a hierarchy of 3D 

isosurfaces to contain all vertices within a certain error bound. (It should be noted 

that this is simply another way to look at the error function and that Lindstrom et al. 

also illustrated their error function as a 3D isosurface.) For simplicity, Blow chose 

spheres as the isosurface primitive, such that each wedgie was represented by a 

sphere in 3D space. When the viewpoint intersects with the sphere, the wedgie is 

split, and when the viewpoint leaves a sphere, the wedge is merged. To optimize this 

process, a hierarchy of nested spheres was used and the algorithm only descends into 

nodes when the viewpoint intersects a sphere. In addition, spheres could be clustered  

at any level by introducing extra bounding volumes to provide further resilience to 

large terrain models (See Figure 2.8). Blow noted that this new error metric 

produced extremely efficient split and merge determinations for high-detail terrain 

in cases for which the original ROAM algorithm would stutter visibly. For example, 

at 640× 480 resolution with a 3-pixel error threshold, Blow’s approach produced a 

tessellation with 65% less triangles than their ROAM implementation. 

2.2.2 Real-Time Generation of Continuous LOD 

In 1998, Röttger [2] et al. extended the earlier continuous LOD work of Lindstrom 

[8] et al. Instead of adopting a bottom-up approach, they chose a top-down strategy, 

noting that this meant their algorithm needed to visit only a fraction of the entire 

data set at each frame, but that this also made the addition of features such as 

silhouette testing problematic because these would require analysis of the entire data 

set. 

 

They used a quadtree data structure rather than a binary triangle tree, and dealt with 

tears between adjacent levels of the quadtree by skipping the center vertex of the 

higher-resolution edge. To simplify this solution, Röttger et al. implemented             

a bottom-up process from the smallest existing block to guarantee that the level 
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         (a) 

 

 
 

     (b) 

Figure 2.7 a. ROAM-simplified terrain (b) a bird’s-eye view of the terrain, 
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(a) (b) 

Figure 2.8 (a) The hierarchy of nested isosurfaces (b) Clustering of isosurfaces 

 

difference between adjacent blocks did not exceed 1. They also introduced a new 

error metric that took into consideration the distance from the viewer and the 

roughness of the terrain in world space. Their metric can be written as follows (See 

Equation 2.1). 

 

( )1,2.max.. dcCd
lf =      (2.1) 

 

Here, l is the distance to the viewpoint (Manhattan distance was used for efficiency), 

d is the edge length of a quadtree block, C is a configurable quality parameter that 

determines the minimum global resolution (a value of 8 was found to provide good 

visual results), and c specifies the desired global resolution that can be adjusted per 

  



 33

frame to maintain a fixed frame rate. The quantity d2 incorporates the surface 

roughness criteria by representing the largest error delta value at six points in the 

quadtree: the four edge midpoints and the two diagonal midpoints. An upper bound 

on this component was computed by taking the maximum of these six absolute delta 

values. An important feature of Röttger et al.’s system is its direct support for 

geomorphing of vertices to smooth the transition between levels of detail. This was 

implemented by introducing a blending function, b = 2(1− f), clamped to the range 

[0, 1] to morph vertices linearly between two levels of detail. Extra care was taken to 

avoid cracks that could occur during geomorphing due to adjacent blocks having 

different blending functions. This was done by using the minimum blending value 

for edges that were shared between quadtree blocks. The authors state that they were 

able to associate a single blending value and d2-value with each vertex using only 

one extra byte of storage. Their implementation was evaluated on an SGI Maximum 

Impact using a terrain model of a region in Yukon Territory, Canada. The c value 

was dynamically chosen to maintain a frame rate of 25 Hz, which produced roughly 

1,600 triangle fans and 15,000 vertices per frame (See Figure 2.9) [17] [18]. 

 

 

Figure 2.9 (a) Textured and (b) wire frame images of Röttger CLOD 
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2.2.3 Fast Terrain Rendering Using Geometrical MipMapping 

The Geometrical MipMapping algorithm that is highly optimized for modern 

graphics cards was recently introduced by Willem H. de Boer [4]. This method 

divides the height-map into smaller tiles and creates a number of detail levels for 

each tile. Based on an approximated screen-space error, a switch between the 

different detail levels is made. When switching between detail levels a sudden 

change in the height-map (vertex popping) will occur, this will be noticeable to the 

viewer [19].  

 
If you are familiar with the texturing concept of mipmapping, then geomipmapping 

should seem like familiar ground to you. The concepts are the same, except that 

instead of dealing with textures, we’re dealing with vertices of a patch of terrain. 

The driving concept of geomipmapping is that you have a set patch of terrain. For 

this explanation, I’ll say it’s a patch with a size of 5 vertices (a 5 × 5 patch). That 5 × 

5 patch is going to have several levels of detail, with level 0 being the most detailed 

and, in this case, level 2 being the least detailed. Look at Figure 2.10 if you need a 

visual explanation of what each patch looks like at its various levels. In the figure, 

black vertices are not sent to the rendering API, but the white ones are.  

 

 
 

Figure 2.10. Triangle arrangement for a patch of terrain 
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The geomipmapping is similar to texture mipmapping except that we’re using land 

patches instead of texture patches. What we need to do, starting from the user’s 

point in 3D space (the camera’s eye position), is make all of the patches around the 

viewer be the most detailed because those patches are what the user sees the most of. 

At a certain distance away, we’ll switch to a lower level of patch detail. And, at 

another distance away, we’ll switch to an even lower level of detail. Figure 2.11 

explains this visually. As you can see in the figure, the patches in the immediate area 

of the viewer’s position have a Level of Detail (LOD) of 0, which means that those 

patches are of the highest level of detail. As the patches become farther away, they 

change to a level of 1, which is the second highest level of detail. And even farther 

away from the viewer, the patches have a level of 2, which is the lowest level of 

detail presented in the image.  

 
Often when you’re dealing with CLOD terrain algorithms, you must deal with the 

subject of cracking. Cracking occurs, in the case of geomipmapping, when a highly 

detailed patch resides next to a lower detailed patch (See Figure 2.12). As you can 

see from the figure, the patch on the left is of a higher level of detail than the patch 

on the right. Our problem lies at points A and B. The problem is that there is a 

higher  

 
Figure 2.11.  Patch of terrain for Geomipmapping algorithm 



 36

level of detail on the left side of point A than there is on point B. This means that the 

left patch is rendering the exact height at point A, but the right patch is just getting 

the average of the height above it and the height below it. This whole “cracking” 

thing might not seem like such a big deal, but check out Figure 2.13, which shows a 

screenshot of geomipmapping implementation without non cracking measures taken.  

 

Crack-proofing your geomipmapping engine is a lot easier than it might sound. You 

have the added benefit of having someone explain this concept to you, which makes 

the whole process as easy as well, something easy. We have two possible ways of 

fixing the cracking problem. One way is to add vertices to the patch with the lower 

amount of detail so that the vertices in question will be of the same height as the 

higher detailed patch’s corresponding vertices. This solution could be ugly, though, 

and it means that we’d have to do some rearranging of the patch (add another 

triangle fan). The other way of solving this problem is to omit vertices from the 

more detailed patch. This solves the cracking problem seamlessly and effortlessly. 

Check out Figure 2.14 to see how easy it is to simply omit a vertex and fix the crack. 

Figure 2.13 a screenshot from a geomipmapping implementation, which does not 

implement anti-cracking measures [20].  

 

 

Figure 2.12 Two patches, side by side, with different levels of detail. 



 37

 
Figure 2.13 a screenshot from a geomipmapping implementation 

 

 
 

Figure 2.14. Crack elimination by omitting rendering the vertex at points A and B. 
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CHAPTER 3 

EVALUATING ALGORITHMS 

This chapter describes the methods and outcomes of evaluating the three algorithms 

for terrain level of detail that were studied in this thesis. Testing method is inspired 

from Derek Bradley [5] excellent work. The first two sections describe the testing 

environment and the height fields that were used for test data. The third section 

outlines the criteria for which the algorithms were evaluated, and finally the last 

section shows the actual test cases and results. 

 
3.1 Testing Environment 

The algorithms that were implemented and studied in this project were evaluated on 

a single machine with the specifications listed in Table 3.1. 

Table 3.1 Test Machine Specifications 

Processor: Intel Pentium 4 CPU 2.40 GHz 
Memory: 768 Mb DDR RAM 
Video Card: NVIDIA GeForce2 FX 5200 
OS: Windows XP Professional 

 
Although machine specifications usually play a large role in the results of most 3D 

graphics tests, the evaluation of the algorithms in this project focuses on two areas 

that yield the same results independent of the processing power, hardware 

manufacturers or amount of memory in the test machine. These evaluation 

parameters are the polygon count and the terrain accuracy. Of course, the frame rate 

of the rendered scenes will vary significantly based on the machine that the software 

is running on, but frame rate comparisons were not part of the algorithm evaluation 

in this project. 
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Despite the fact that the hardware of the machine has no effect on the outcome of the 

algorithm evaluation (provided that any 3D accelerated graphics card does exist in 

the machine), there are two software restrictions in order to execute the 

accompanying software that contains the implementations for this project. These 

restrictions are that the machine must be running a sufficiently recent version of 

Microsoft Windows (the software was tested on versions 2000 and XP), and the 

machine must have OpenGL libraries available (which generally come by default on 

such versions of Microsoft Windows).  

 
3.2 Test Data 

To perform the evaluation of the algorithms in this thesis, twelve test data sets were 

used. Each data set represents a separate terrain with unique features in order to 

represent a broad range of different height fields. Of the twelve height fields used, 

five were generated in a shareware terrain generating application called TerraGen 

(version 0.9.19 by Planetside Software). The other seven terrains are real Shuttle 

Radar Topography Mission (SRTM) data of the Turkey. These real SRTM data’s are 

converting to appropriate format (8 bit grayscale raw data) with using 3DEM 

(version 18.7 by Visualization Software) and TerraGen. 

 

The twelve test terrains will now be described in Table 3.2 through Table 3.13. 

Terrain descriptions include the terrain title, size in pixels, topographic features, and 

the grayscale bitmap representation of the height field and a color bitmap of the 

texture used when rendering the terrain. 

3.2.1 TerraGen Test Dataset 

TerraGen is the very useful program for random terrain data generation. We use this 

program for obtain different kind of terrain data. TerraGen has four methods that are 

provide different featured terrain data. 
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Table 3.2 TerraGen - Subdivide & Displace Method terrain data. 

 
Source TerraGen - Subdivide & Displace Method 
Size in pixels 257 x 257 
Features This method generates the data that is 

similar to real world. 

 
Height Map  Texture Map 

 
Table 3.3 TerraGen - Perlin Noise  Method terrain data 

Source TerraGen - Perlin Noise  Method 
Size in pixels 513 x 513 
Features This method creates data that is contains 

more flat terrain than the mountains.  

 
Height Map Texture Map 
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Table 3.4 TerraGen – Multi Perlin Method terrain data 

Source TerraGen – Multi Perlin Method 
Size in pixels 513 x 513 
Features This method is similar to Perlin Noise 

method but mountains close to each other.  

  
Height Map  Texture Map 

 
Table 3.5 TerraGen – Ridged  Perlin Method terrain data 

Source TerraGen – Ridged  Perlin Method 
Size in pixels 513 x 513 
Features This method is opposites of Perlin Noise 

methods. It is increase the mountains 
percentage and decreases the flat terrain 
percentage. 

  
Height Map  Texture Map 
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Table 3.6 TerraGen – Ridged  Multi Perlin Method terrain data 

Source TerraGen – Ridged Multi  Perlin Method 
Size in pixels 513 x 513 
Features This method is similar to Ridged Perlin 

method but mountains close to each other 

 
Height Map  Texture Map 

 

3.2.2 Shuttle Radar Topography Mission (SRTM) Test Dataset 

The Shuttle Radar Topography Mission (SRTM) is a joint project between the 

National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and 

Space Administration (NASA). The NASA has provided Digital Elevation Model 

(DEM) data for over 80% of the globe. This data is currently distributed free of 

charge by USGS and is available for download from the National Map Seamless 

Data Distribution System web site (http://seamless.usgs.gov/) or the USGS ftp site 

(ftp://e0mss21u.ecs.nasa.gov/srtm/Eurasia/). The SRTM data is available as 3 arc 

second (approx. 90m resolution) DEM. A 1 arc second data product was also 

produced, but is not available for all countries. The vertical error of the DEM's is 

reported to be less than 16m. We have selected the seven SRTM dataset from 

Turkey map. The selected zones are mark by red frames at Figure 3.1. 
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Figure 3.1 Turkey SRTM zone map 

Table 3.7 N37E029 zone SRTM data 

Source N37E029 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large flat terrain and some 

hills. (around the Denizli territory) 

 
Height Map  Texture Map 
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Table 3.8 N37E034  zone SRTM data 

Source N37E034  zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large terrain with high 

mountains. (around the Niğde territory) 

 
Height Map  Texture Map 

 
Table 3.9 N38E027  zone SRTM data 

Source N38E027 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large terrain with many jagged hills 

and rough areas; in other words, lots of 
elevation changes.  (between  the İzmir and 
Manisa territory) 

 
 

Height Map  Texture Map 
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Table 3.10 N38E032  zone SRTM data 

Source N38E032 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large flat terrain with small height 

changes.  (around the Konya teritory) 

  
Height Map  Texture Map 

 

Table 3.11 N39E041 zone SRTM data 

Source N39E041 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large terrain with many jagged 

and high mountains. (around the 
Erzurum territory) 

  
Height Map  Texture Map 
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Table 3.12 N39E044  zone SRTM data 

Source N39E044 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large flat terrain with very 

high mountain. (around the Ağrı 
territory) 

  
Height Map  Texture Map 

 
Table 3.13 N41E026  zone SRTM data 

Source N41E026 zone SRTM data 
Size in pixels 1025 x 1025 
Features This is a large flat terrain with no big 

elevation changes.(around the Edirne 
territory) 

  
Height Map  Texture Map 
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3.3  Evaluation Criteria  

In order to determine the usefulness of a terrain level of detail algorithm there are 

many factors that could be taken into account. For instance, from a 3D game point 

of view the algorithms may be evaluated based on speed and memory footprint, but 

from a GIS point of view the evaluation might be based on the accuracy of the 

approximated terrain and the number of polygons required to draw the terrain. This 

project takes on more of a GIS perspective and will evaluate the terrain accuracy and 

polygon count. It is for this reason that seven of the test data sets are actual SRTM. 

3.3.1 Terrain Accuracy  

Terrain accuracy is a measure of how close the approximated terrain resembles the 

original height field. This measure is calculated using the vertical distance between 

corresponding points in the rendered terrain and the height field. Now obviously the 

rendered terrain has far fewer data points than the height field, so geometric 

computations are performed to determine the corresponding point on the rendered 

surface for each point in the height field. Fig. 3.2 demonstrates the vertical distance 

calculation for two regions of terrain. The diagram on the left is a small region that 

covers a 5 x 5 area of the height field (i.e. a region close to the camera) and the one 

on the right covers a larger 17 x 17 area (i.e. a region farther away from the camera). 

For clarity, a blue line has been drawn from the height field point to the surface of 

the approximated terrain when the approximation is above the original and a red line 

has been drawn when the approximated point is below the original.  

 
Figure 3.2 Calculating Terrain Accuracy 
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Once the vertical elevation difference has been computed for each point in the height 

field, the actual accuracy as a percent is calculated as follows: 

Accuracy = 100 * ((totalHeight – totalDelta) / totalHeight)                               (3.1) 

In Equation. (3.1) the totalHeight is the sum of the heights of all the points in the 

height field and the totalDelta is the sum of the vertical differences of the points. 

This equation gives a global terrain accuracy measure that dynamically changes as 

the terrain changes and generally increases as the terrain is further and further 

refined since the totalHeight of a terrain is constant and the totalDelta decreases as 

more points are added to the approximated mesh. We use plane equation (Equation 

3.2 and   3.3) while calculating totalDelta.  

Ax + By + Cz + D = 0                                                 (3.2) 
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Figure 3.3. The normal to the plane is the vector (A, B, C). 
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3.3.2 Polygon Count  

Determining the number of polygons in any given scene is a simple task that 

involves counting the numbers of triangles that are drawn each frame. To do this for 

the algorithms studied in this thesis there are three cases to consider. 

 

The first case is demonstrated in the ROAM algorithm by Duchaineau [2] where 

each triangle is drawn one at a time. Here, the polygon count simply increases by 

one each time a triangle is drawn. The second case is demonstrated in the algorithm 

presented by Röttger [3] where triangles are sent to the hardware in the form of 

triangle fans. Here, when we create a triangle fan, the polygon count increases 

according to this triangle fans. The last case is demonstrated in the algorithm 

presented by Willem H. de Boer [4] where the triangles are sent to the hardware in 

one big triangle strip. Here when we create a triangle fan, the polygon count 

increases according to this triangle fans. 

 
3.4 Test Cases and Results 

This section describes the test cases that used to evaluate the implemented 

algorithms in this project and gives the results of these test cases. Testing will 

consist of two static viewpoint test cases; one to achieve a maximum terrain 

accuracy and another to achieve a desired number of polygons. 

3.4.1 Terrain Accuracy Viewpoint Results 

Our aim is reach to maximum terrain accuracy with minumum polygon count in this 

test case. There is no constraint for algorithm parameters. We try to run each 

algorithms at maximum limits. The parameters are set to maximum values for each 

algorithms.( See Table 3.14 ) Thus, each algorithm can be use the desired number of 

polygon. There is no constraints for polygon counts in this test case. 
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Table 3.14. Algorithm input parameters 

Algorithm ROAM QuadTree GeoMipmap 
Max Detail Level 30 45 N/A 
Min Resolution N/A 10 N/A 
Patch Size N/A N/A 33x33 

 

We fixed camera position one point that is provide see entire terrain and apply the 

test cases to twelve data sets. The results can be shown at Table 3.15- 3.26.  

 
Table 3.15. TerraGen - Subdivide & Displace Method results 

Data Set Source : TerraGen - Subdivide & Displace Method  
Data Set Size: 257 x 257 
Algorithm : ROAM Quad Tree  GeoMipmap
FPS : 15 13 25 
Vertices:  58017 48225 27364 
Tris/s:  19939 34621 21860 
Accuracy (%):  98,65 99,36 98,78 
Render Time (ms): 95 109 47 
Initialization Time (ms):  4596 1156 468 

 
Table 3.16. TerraGen – Perlin Noise Method results 

Data Set Source : TerraGen – Perlin Noise Method  
Data Set Size: 513 x 513 
Algorithm : ROAM Quad Tree  GeoMipmap
FPS : 10 5 8 
Vertices:  50205 88880 76136 
Tris/s:  16735 62659 60776 
Accuracy (%):  97,60 98,89 98,79 
Render Time (ms): 78 125 110 
Initialization Time (ms):  4874 1297 406 
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Figure 3.4 ROAM algorithm TerraGen – Perlin Noise data set texture map view 

Table 3.17. TerraGen – Multi Perlin Method results 

Data Set Source : TerraGen – Multi Perlin Method  
Data Set Size: 513 x 513 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 11 5 7 
Vertices:  53607 113166 89964 
Tris/s:  17869 80854 71820 
Accuracy (%):  97,53 99,17 98,93 
Render Time (ms): 78 156 125 
Initialization Time (ms):  4876 1328 531 

 

Table 3.18. TerraGen – Ridged Perlin Method results 

Data Set Source : TerraGen – Ridged Perlin Method  
Data Set Size: 513 x 513 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 10 4 7 
Vertices:  53115 197178 82192 
Tris/s:  17705 143262 65584 
Accuracy (%):  95,94 98,92 98,04 
Render Time (ms): 78 250 125 
Initialization Time (ms):  4731 1360 406 
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Figure 3.5 The Quadtree algorithm TerraGen – Ridged Perlin Method dataset view 

Table 3.19. TerraGen – Ridged Multi Perlin Method results 

Data Set Source : TerraGen – Ridged Multi Perlin Method  
Data Set Size: 513 x 513 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 10 4 7 
Vertices:  54051 156735 95172 
Tris/s:  18017 113499 75972 
Accuracy (%):  96,73 98,97 98,62 
Render Time (ms): 80 235 141 
Initialization Time (ms):  4855 1422 515 
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Table 3.20. SRTM – N37E029 zone results 

Data Set Source : SRTM –  N37E029 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 3 3 
Vertices:  34023 148786 186980 
Tris/s:  11341 105536 149476 
Accuracy (%):  96,15 98,48 98,97 
Render Time (ms): 51 188 281 
Initialization Time (ms):  4939 1922 672 

 
Table 3.21. SRTM – N37E034 zone results 

Data Set Source : SRTM –  N37E034 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 3 3 
Vertices:  34785 148981 213452 
Tris/s:  11595 106884 170700 
Accuracy (%):  95,70 98,80 98,93 
Render Time (ms): 51 172 265 
Initialization Time (ms):  4997 1844 688 

 
Table 3.22. SRTM – N38E027 zone results 

Data Set Source : SRTM –  N38E027 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 3 3 
Vertices:  31581 161448 147844 
Tris/s:  10527 113180 118212 
Accuracy (%):  92,22 96,80 97,62 
Render Time (ms): 50 204 188 
Initialization Time (ms):  5158 2000 672 
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Figure 3.6. The ROAM algorithm SRTM – N38E027 zone results wire-frame view 

 
 
Table 3.23. SRTM – N38E032 zone results 

Data Set Source : SRTM –  N38E032 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 3 2 
Vertices:  33024 100022 178668 
Tris/s:  11008 71193 142892 
Accuracy (%):  93,87 97,57 98,6 
Render Time (ms): 49 142 267 
Initialization Time (ms):  4908 2782 918 

 



 55

Table 3.24. SRTM – N39E041 zone results 

Data Set Source : SRTM –  N39E041 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 3 3 
Vertices:  32508 154005 189364 
Tris/s:  10836 108106 151380 
Accuracy (%):  96,24 98,61 98,92 
Render Time (ms): 48 203 235 
Initialization Time (ms):  4951 2578 734 

 

 
Figure 3.7 The Quadtree algorithm SRTM – N39E041 wire-frame view 
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Table 3.25. SRTM – N39E044 zone results 

Data Set Source : SRTM –  N39E044 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 6 4 3 
Vertices:  31878 98461 179892 
Tris/s:  10626 71313 143860 
Accuracy (%):  95,67 97,85 98,42 
Render Time (ms): 62 125 235 
Initialization Time (ms):  4961 1860 672 

 

 
Figure 3.8 The GeoMipmap algorithm SRTM – N39E044 data set wire frame view 

Table 3.26. SRTM – N41E026 zone results 

Data Set Source : SRTM –  N41E026 zone   
Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  GeoMipmap 
FPS : 7 3 3 
Vertices:  28695 189868 161660 
Tris/s:  9565 135621 129276 
Accuracy (%):  90,10 96,71 97,44 
Render Time (ms): 50 216 219 
Initialization Time (ms):  4987 1891 688 



 57

All of the results can be show at the below graphs.   
 

Polygon Count Graph
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Figure 3.9. Polygon count result graph 

Terrain Accuracy Graph
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Figure 3.10. Terrain accuracy result graph 



 58

3.4.2 Desired Number of Polygons Viewpoint Results 

Our aim is compare to performance of the LOD algorithms according to  desired 

number of polygons . The polygon count  is set to approximately 10000 and try to 

reach maximum terrain accuracy. We can’t use Geomipmap algorithm for this test 

case. Because, minumum polygon count is approximately 40000 for our 

Geomipmap algorithm implementation. 

 

Table 3.27. SRTM – N38E032 zone results 

Data Set Source : 
SRTM –  N38E032 zone  
  

Data Set Size: 1025 x 1025 
Algorithm : ROAM Quad Tree  
FPS : 7 8 
Vertices:  29466 13613 
Tris/s:  9822 9871 
Accuracy (%):  94,29 93,68 
Render Time (ms): 49 36 
Initialization Time (ms):  4781 2127 
Max Detail Level 20 20 
Min Resolution N/A 6 

 
Table 3.28. SRTM – N39E041 zone results 

Data Set Source : 
SRTM –  N39E041 zone  
  

Data Set Size: 1025 x 1025 
Algorithm : ROAM  Quad Tree 
FPS : 7 8 
Vertices:  29565 13804 
Tris/s:  9855 9904 
Accuracy (%):  96,00 95,42 
Render Time (ms): 59 35 
Initialization Time (ms):  4982 2159 
Max Detail Level 13 10 
Min Resolution N/A 6 
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3.5 Discussion of Results 

Our main aim is compare the popular three LOD algorithms and find the best choice 

for terrain rendering according to polygon count and the terrain accuracy criteria. 

Firstly, we make the literature examination. As a result of this examination, we 

decided to study on the three LOD algorithms that are Real-time continuous terrain 

levels of detail algorithms described in the papers ROAMing Terrain: Real-time 

Optimally Adapting Meshes by Duchaineau [2], Real-Time Generation of 

Continuous Levels of Detail for Height Fields by Röttger [3] and Fast Terrain 

Rendering Using Geometrical MipMapping by Willem H. de Boer [4].  Each of the 

algorithms is very popular in the last decade and they use different polygon structure 

to make the polygon mesh. This is the reason why we choose these algorithms. After 

that we made an algorithm selection, implementation phase started. The selected 

algorithms have implemented using the OpenGL API. In order to test, we defined 

two test cases (See section 3.4). We prepared twelve different data sets and applied 

to algorithms. 

 
In the paper by Duchaineau [2] the authors claim that the ROAM algorithm 

produces optimal meshes, and based on the test cases in section 3.4.1 and 3.4.2 this 

proved to be almost always true. According to polygon count viewpoint, this 

algorithm is the best algorithm. The authors claim that other two important feature in 

theirs algorithms; 

Frame rate and triangle count bounding: The system may optimize its 

terrain simplification so that it always produces a set number of triangles in a given 

screen, or so that it optimizes to never take more than a set amount of time to 

optimize for the current screen. These are important factors the consider in most 

systems, since rendering the frame rate is often a bottleneck, from both the hardware 

and software perspective. 
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Guaranteed error bounds: An error-threshold metric is used by the system 

to determine approximation error, that is, the algorithm functions minimizing the 

difference between the rendered and actual landscape. 

 

In Section 3.4.1 and 3.4.2, our implementation results verify the above facts. The 

ROAM algorithm is very successful about optimizing polygon count for twelve 

dataset (See section 3.4.1). The using polygon count always remains some bounds. 

There is no sudden increasing or decreasing at the polygon count (See Figure 3.9). 

Of the three main algorithms, ROAM is the only one that guarantees that the error 

will always fall between set parameters. Although, the ROAM algorithm’s terrain 

accuracy performance is decreasing below the average values for dataset 8, 9 and 12 

(See Figure 3.10); we say that our results again verify this fact. The reason of this 

performance decreasing, the purpose of a triangle bintree is to easily choose the 

local level of detail of the triangulation. If the terrain is flat or distant, only a few 

triangles are necessary to approximate a large area, while if the terrain is rough or 

close, more triangles are required [12]. The datasets 8, 9 and 12 are almost flat 

terrains and there are no abrupt elevation changes. Thus ROAM algorithm is reach 

to optimal mesh with minimum polygon count but this can’t be reach to high terrain 

accuracy with respect to other algorithms. The ROAM algorithm outperformed both 

of the other two algorithms for all test data sets according to reached terrain 

accuracy with using minimum number of polygon. The main focus of the ROAM 

algorithm has been to minimize the total number of polygons displayed and 

guaranteed the error bounds on the screen at any point in time [1] [14]. This shows 

that the ROAM algorithm can be use even large terrain dataset. 

 

The algorithm presented by Röttger [3], describes a continuous level of detail 

terrain-rendering algorithm using a quadtree data structure. This algorithm operates          

top-down which means that only the minimum numbers of computations are 
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performed to render the terrain at the desired resolution. This algorithm can be 

reached desired terrain accuracy values but it uses more polygons than the ROAM 

algorithms (See section 3.4.1- 3.4.2). The difference between the two algorithms 

comes from the using data structures. The bintree structure can generate more 

optimum mesh than the quadtree structure with respect to polygon count. The 

Quadtree algorithm should take into account the roughness of the terrain to ensure 

that flat areas use fewer polygons since less detail is required and bumpier areas use 

more polygons to show more detail [5]. Therefore, this algorithm proved to be the 

best algorithm to use in order to display large, sharp and jagged.  

 

In 2000 Willem H. de Boer published Fast Terrain Rendering Using Geometrical 

MipMapping [4], introducing a new level-of-detail algorithm targeted for modern 

graphics cards. The authors claims that most of the algorithms were invented (long) 

before hardware rendering became the industry’s standard, and therefore may not be 

suitable to be used in conjunction with 3D hardware rendering anymore. Therefore, 

new algorithms must be found that will give the best results when used together with 

3D hardware rendering. Because, 3D hardware is able to process and render a large 

amount of triangles per frame, the algorithm can resort to more conservative culling 

methods, thereby not necessarily delivering the ‘perfect set’ of render-data, but 

pushing as much triangles through the pipeline as hardware can  handle, with the 

least amount of CPU overhead. 

 

The Geomipmap algorithm has two main advantages: it is relatively efficient on 

modern hardware and it is very simple. It is efficient since detail levels are selected 

at block-level rather than triangle level, which mean lesser CPU work per drawn 

triangle [21]. With geomorphs performed in vertex programs even more work is 

offloaded from the CPU onto the graphics hardware. But because of gaps the 

geomipmap needs to be re-triangulated each time the detail levels are changed, 
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which is not optimal. The simplicity of this algorithm is partly because of the 

simplification scheme. While simple, however, it is not the most polygon-efficient 

simplification scheme and this algorithm thus may require a higher polygon count 

than other algorithms to achieve a certain error threshold (See section 3.4.1). It can 

be reached desired terrain accuracy values but it uses too many polygons. This 

algorithm is the worst algorithm according to using the polygon count. Because of 

this, a more serious drawback of geomipmapping is its lack of scalability. As the 

terrain increases the number of geomipmap grows, and with a high count of 

geomipmap even at the lowest detail level, the polygon count may rise to 

unacceptable levels. The minimum number of polygon is approximately 40,000 for 

the Geomipmap algorithm, so that, we can’t use this algorithm for second test case 

(See section 3.4.2).  Although, it uses to five times more polygon than the others in  

 

Table 4.1. Average performance results of the algorithms 

 

some data set, this algorithm’s average terrain accuracy value is the highest value 

(See Table 4.1). In conclusion, this algorithm does allow us to add details at runtime 

in a simple way and the algorithm provide acceptable, but not optimal, performance 

for terrains of limited size. We need to powerful graphic cards for using geomipmap 

algorithm. To make it able to perform well with large terrain sizes some 

modifications needs to be done. There is interesting fact from the results (See Table 

4.1) that the algorithm presented by Röttger [3] and algorithm presented by Willem 

H. de Boer [4] met the highest terrain accuracy but these algorithms use too many 

polygons while the ROAM algorithm  use fewer polygons and still maintain a 

acceptable terrain accuracy value.  

Algorithm Average Terrain Accuracy (%) Average Polygon Count 
ROAM 95,53 13814 
Quadtree 98,34 95560 
GeoMipmap 98,50 108484 
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CHAPTER 4 

CONCLUSIONS 

The results of evaluating the three algorithms studied in this project are very clear. 

The ROAM algorithm is a versatile and scalable system for the determination of 

appropriate triangulation of meshes for the rendering of terrain. It has been shown to 

be appropriate to many levels of detail and speed, and will continue to be used as an 

optimal mesh-generating algorithm.  
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FUTURE WORKS 

While the ROAM algorithm is relatively old in computer graphics terms, it is still in 

use today in terrain rendering. One of the original developers is currently working 

on ROAM version 2[22], which promises even better, more accurate performance 

using a diamond-based triangulation, as well as taking advantage of the recent boom 

in 3D graphics hardware. We have used the classical binary tree structure in the 

ROAM implementation.  If we change this structure with diamond structure, we will 

find better accuracy results.   

 

The data culling techniques may apply to the quadtree and the geomipmap algorithm 

for reducing the polygon count. This data culling techniques will eliminate any 

scene information that will not directly contribute to the terrain accuracy. 
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