

EVALUATION OF

TERRAIN RENDERING ALGORITHMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

 SCIENCES OF

ÇANKAYA UNIVERSITY

BY

EMİN İNAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Çankaya University

Prof. Dr. Yurdahan Güler

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science

Prof .Dr. Mehmet Tolun

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science

Asst. Prof. Dr. Reza Hassanpour

Supervisor

Examining Committee Members

Prof. Dr. Hayri Sever

Asst. Prof. Dr. Reza Hassanpour

Dr. Abdülkadir Görür

 iii

ABSTRACT

EVALUATION OF TERRAIN RENDERING ALGORITHMS

İnam, Emin

Master of Science Thesis

Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Reza Hassanpour

September 2005, 67 pages

Terrain rendering plays an important role in outdoor virtual reality applications,

games, Geographic Information System (GIS), military mission planning’s and

flight simulations, etc. Many of these applications require real-time dynamic

interaction from end users and thus are required to rapidly process terrain data to

adapt to user input. Typical height fields consist of a large number of polygons, so

that even most high performance graphics computers have great difficulties to

display even moderately sized height fields at interactive frame rates. The common

solution is to reduce the complexity of the scene while maintaining a high image

quality. This thesis is an evaluation of three real-time continuous terrain levels of

detail algorithms described in the papers ROAMing Terrain: Real-time Optimally

Adapting Meshes by Duchaineau, Real-Time Generation of Continuous Levels of

Detail for Height Fields by Röttger and Fast Terrain Rendering Using Geometrical

MipMapping by Willem H. de Boer. The evaluation and comparison of the

algorithms is based on the trade-off of polygon count to terrain accuracy over

separate test data sets. The main aim of this thesis is research on terrain rendering

algorithms that is generate high quality image in real-time with using height data.

Keywords: Terrain Rendering, Continuous Level of Detail (CLOD)

 iv

ÖZ

ARAZİ ÇİZME ALGORİTMALARININ DEĞERLENDİRİLMESİ

İnam , Emin

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi: Yrd. Doç. Dr. Reza Hassanpour

Eylül 2005, 67 sayfa

Arazi çizimleri, sanal gerçeklik uygulamalarında, üç boyutlu bilgisayar oyunlarında,

Coğrafi Bilgi Sistemlerinde (CBS), askeri görev planı oluşturmada ve uçuş

simülasyonlarında önemli bir rol oynamaktadır. Bu uygulamaların çoğu, son

kullanıcı ile gerçek zamanlı dinamik etkileşim gerektirmektedir. Arazi verisi hızlı bir

şekilde işlenerek kullanıcı girdisine göre uyarlanır. Standart yükseklik alanları çok

sayıda polygon içerir. Bu yüzden, yüksek performansa sahip bilgisayarlarda bile

bellli bir kalitede yükseklik verilerini görüntülemek zor olabilir. Bu sorunun ortak

çözümü, görüntü kalitesini koruyarak verinin karmaşıklığını azaltmaktır. Bu tezde

Duchaineau, Röttger ve Willem H. de Boer tarafından yazılan makalelerde ortaya

konulan algoritmalar karşılaştırılacaktır. Algoritmaların değerlendirilmesi sırasında

farklı veri kümeleri uygulanacak, poligon sayısı ve arazi doğruluğu esas alınacaktır.

Bu tezin amacı, yükseklik verilerini kullanarak, gerçek zamanda, yüksek kalitede

arazi görüntüsü elde edilmesini sağlayan, arazi çizme algoritmalarını incelemektir.

Anahtar Kelimeler: Arazi Çizme, Sürekli Detay Düzeyi (CLOD)

 v

To my Mom, my Dad,
and SESE.

 vi

ACKNOWLEDGMENTS

I express sincere appreciation to Dr. Reza Hassanpour for his guidance and insight

throughout the research. To my parents, I offer sincere thanks for their unshakable

faith in me and their willingness to endure with me the vicissitudes of my endeavors.

 vii

TABLE OF CONTENTS

ABSTRACT.. iii

ÖZ ... iv

TABLE OF CONTENTS...vii

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF FIGURES .. xi

ABBREVIATIONS ..xiii

CHAPTER 1 .. 14

 INTRODUCTION .. 14

1.1 3D Terrain Overview .. 15
1.2 Real-Time Continuous Level of Detail ... 15
1.3 Challenge of Terrain Rendering Algorithms... 16

1.3.1 Tears, Cracks, and T-Junctions ... 17
1.4 Motivation ... 19
1.5 Outline of Thesis ... 20

CHAPTER 2 .. 21

 BACKGROUND ON TERRAIN RENDERING ALGORITHMS 21

2.1 Multiresolution Techniques for Terrain .. 21
2.1.1 Top Down and Bottom Up.. 21
2.1.2 Regular Grids and TINs .. 22
2.1.3 Quadtrees and Bintrees ... 24

2.2 Terrain Rendering Algorithms .. 26
2.2.1 The ROAM Algorithm.. 26
2.2.2 Real-Time Generation of Continuous LOD...................................... 30
2.2.3 Fast Terrain Rendering Using Geometrical MipMapping 34

CHAPTER 3 .. 38

 EVALUATING ALGORITHMS ... 38

3.1 Testing Environment... 38
3.2 Test Data ... 39

3.2.1 TerraGen Test Dataset... 39
3.2.2 Shuttle Radar Topography Mission (SRTM) Test Dataset 42

3.3 Evaluation Criteria .. 47

 viii

3.3.1 Terrain Accuracy... 47
3.3.2 Polygon Count... 49

3.4 Test Cases and Results .. 49
3.4.1 Terrain Accuracy Viewpoint Results .. 49
3.4.2 Desired Number of Polygons Viewpoint Results 58

3.5 Discussion of Results .. 59
CHAPTER 4 .. 63

 CONCLUSIONS... 63

 FUTURE WORKS.. 64

 REFERENCES.. 65

 ix

LIST OF TABLES

Table 3.1 Test Machine Specifications .. 38

Table 3.2 TerraGen - Subdivide & Displace Method terrain data. 40

Table 3.3 TerraGen - Perlin Noise Method terrain data.. 40

Table 3.4 TerraGen – Multi Perlin Method terrain data .. 41

Table 3.5 TerraGen – Ridged Perlin Method terrain data... 41

Table 3.6 TerraGen – Ridged Multi Perlin Method terrain data............................... 42

Table 3.7 N37E029 zone SRTM data .. 43

Table 3.8 N37E034 zone SRTM data ... 44

Table 3.9 N38E027 zone SRTM data ... 44

Table 3.10 N38E032 zone SRTM data ... 45

Table 3.11 N39E041 zone SRTM data .. 45

Table 3.12 N39E044 zone SRTM data ... 46

Table 3.13 N41E026 zone SRTM data ... 46

Table 3.14. Algorithm input parameters .. 50

Table 3.15. TerraGen - Subdivide & Displace Method results.................................. 50

Table 3.16. TerraGen – Perlin Noise Method results... 50

Table 3.17. TerraGen – Multi Perlin Method results ... 51

Table 3.18. TerraGen – Ridged Perlin Method results .. 51

Table 3.19. TerraGen – Ridged Multi Perlin Method results 52

Table 3.20. SRTM – N37E029 zone results .. 53

 x

Table 3.21. SRTM – N37E034 zone results .. 53

Table 3.22. SRTM – N38E027 zone results .. 53

Table 3.23. SRTM – N38E032 zone results .. 54

Table 3.24. SRTM – N39E041 zone results .. 55

Table 3.25. SRTM – N39E044 zone results .. 56

Table 3.26. SRTM – N41E026 zone results .. 56

Table 3.27. SRTM – N38E032 zone results .. 58

Table 3.28. SRTM – N39E041 zone results .. 58

Table 4.1. Average performance results of the algorithms .. 62

 xi

LIST OF FIGURES

Figure 1.1 a. Cracks and b. T-junctions .. 18

Figure 1.2 Eliminating cracks and T-junctions via recursive splitting. 18

Figure 2.1 Top down or bottom up approaches .. 22

Figure 2.2 (a) A regular grid terrain representation (b) TIN representation. 23

Figure 2.3 (a–d) Quadtree structure (e–h) binary triangle trees.. 24

Figure 2.4. Seumas McNally’s bintree tessellation code .. 26

Figure 2.5. The split and merge operations on a binary triangle tree.................................... 27

Figure 2.6 Illustrating nested ROAM wedgies for the 1D case .. 29

Figure 2.7 a. ROAM-simplified terrain (b) a bird’s-eye view of the terrain,........................ 31

Figure 2.8 (a) The hierarchy of nested isosurfaces (b) Clustering of isosurfaces 32

Figure 2.9 (a) Textured and (b) wire frame images of Röttger CLOD 33

Figure 2.10. Triangle arrangement for a patch of terrain.. 34

Figure 2.11. Patch of terrain for Geomipmapping algorithm... 35

Figure 2.12 Two patches, side by side, with different levels of detail.................................. 36

Figure 2.13 a screenshot from a geomipmapping implementation 37

Figure 2.14. Crack elimination by omitting rendering the vertex at points A and B. 37

Figure 3.1 Turkey SRTM zone map ... 43

 xii

Figure 3.2 Calculating Terrain Accuracy.. 47

Figure 3.3. The normal to the plane is the vector (A, B, C).. 48

Figure 3.4 ROAM algorithm TerraGen – Perlin Noise data set texture map view............... 51

Figure 3.5 The Quadtree algorithm TerraGen – Ridged Perlin Method dataset view 52

Figure 3.6. The ROAM algorithm SRTM – N38E027 zone results wire-frame view.......... 54

Figure 3.7 The Quadtree algorithm SRTM – N39E041 wire-frame view 55

Figure 3.8 The GeoMipmap algorithm SRTM – N39E044 data set wire frame view.......... 56

Figure 3.9. Polygon count result graph ... 57

Figure 3.10. Terrain accuracy result graph ... 57

 xiii

ABBREVIATIONS

BTT Bintritree
CLOD Continuous Level of Detail
CPU Central Processing Unit
DEM Digital Elevation Map
DTED Digital Terrain Elevation Data
GeoTIFF Geographic Tag(ged) Image File Format
GDC Game Development Conference
GIS Geographic Information Systems
GPU Graphical Process Unit
LOD Level of Detail
LOS Line of Site
ROAM Real-time Optimally Adapting Meshes
SRTM Shuttle Radar Topography Mission
TIN Triangulated Irregular Networks
USGS United States Geological Survey

 14

CHAPTER 1

INTRODUCTION

In the last decade, a fast growing domain in computer graphics is the so called

Geographic Information Systems (GIS). GIS are a body of software, hardware and

personal necessary for storage, modeling, analysis and reporting of positional data.

The difference of GIS from other information systems is its positional analysis

functions. These functions achieve the solution of real world problems by the usage

of positional and non-positional data contained within the database. By this property

GIS offers a powerful toolkit to decision makers for the analysis and interpretation

of positional data. They allow exploring large geographic data sets interactively on

screen, which involves displaying height fields in real-time.

Terrain rendering is specialized area of GIS. Terrain rendering is a statistical

representation of the continuous surface of the ground by a large number of select

points with known x, y and z coordinates in an arbitrary coordinate field. In the last

several years, there has been a tremendous growth in the application of terrain

rendering, not only in the traditional fields of geography, surveying and mapping,

and earth and environmental sciences, but also in landscape design, environmental

impact analysis, site selection for telecommunication facilities(radio, T.V ,and

mobile telephone transmission towers), realistic flight simulators or terrain-based

computer games, as well as to geographic information systems and military mission

planning applications. This is partially due to the increasing availability of digital

terrain data from government agencies, academic and research institutions, as same

time, advancing computer technology has helped popularize the use of terrain

rendering [1].

 15

Like most subjects in computer science, the study of terrain rendering is subdivided

into many problems and particular techniques. One such aspect that is very common

in the above mentioned applications is the ability to efficiently render a 3D terrain in

real-time. This thesis is an evaluation of three real-time continuous terrain levels of

detail algorithms described in the papers ROAMing Terrain: Real-time Optimally

Adapting Meshes by Duchaineau [2], Real-Time Generation of Continuous Levels

of Detail for Height Fields by Röttger [3] and Fast Terrain Rendering Using

Geometrical MipMapping by Willem H. de Boer [4]. The evaluation and

comparison of the algorithms is based on the trade-off of polygon count to terrain

accuracy over separate test data sets.

1.1 3D Terrain Overview

A 3D terrain is also called a height field because it is comprised of an N x N field of

height values that make up the terrain. Height fields are usually stored as N x N

grayscale Bitmap images where the color of each pixel represents the height value

(0-255) for the corresponding location in the terrain. In most cases the length of one

side of the height field, N, is 2M + 1 for some value of M. These height fields can be

generated automatically or they can come in the form of Digital Elevation Model

(DEM) maps that describe actual regions of the earth’s surface. This thesis uses

terrain height fields in the chapter 3. Rendering a 3D terrain may seem simple at

first, since a height field can be triangulated into many little triangles that are easy to

draw on the screen. The problem, however, lies in the fact that triangulating a terrain

of size 2M + 1 x 2M + 1 results in 22M+1 triangles, which become virtually impossible

to render in real-time for increasingly large terrains. For this reason, most terrain

rendering algorithms are real-time continuous level of detail algorithms [5].

1.2 Real-Time Continuous Level of Detail

Level of detail (LOD) rendering for any mesh (not just terrains) can be described as

the process of generating a finite number of representations of the same mesh, each

 16

at a different level of detail. Representations that have more detail would use more

polygons, and the lowest detailed mesh would use the fewest polygons. At any given

time an algorithm would determine which of the pre-computed mesh representations

should be used based on the desired level of detail. Switching between

representations usually produces a visual popping effect since more detail will

suddenly appear or disappear all at once. Continuous level of detail (CLOD) is a

LOD approach that can determine exactly how many polygons to use for any desired

level of detail between the range of the maximum and minimum level of detail

possible. CLOD algorithms eliminate the popping effect when changing the desired

level of detail since the changes in polygon usage are gradual. Real-time continuous

level of detail is any CLOD algorithm that renders a mesh while allowing a user to

dynamically modify the desired level of detail each frame at run time. For example,

a real-time continuous level of detail algorithm for height fields is one that allows a

user to navigate around a terrain while continually rendering the area close to the

user with a high level of detail. Regions of the terrain further and further from the

user would be rendered with less and less detail, and this would be updated each

frame as the user moves around dynamically[5][6].

1.3 Challenge of Terrain Rendering Algorithms

Terrain visualization is a difficult problem for applications requiring accurate

images of large datasets at high frame rates, such as flight simulation and ground-

based aircraft testing using synthetic sensor stimulation. Height fields play an

important role in the GIS. For exploring different kinds of geographic-based data

sets on screen it is necessary to display height fields at interactive frame rates.

Because of the inherent geometric complexity, this goal is often unachievable even

with new generations of powerful graphics computers, unless the original height

field data is approximated in order to reduce the number of geometric primitives that

need to be rendered without compromising visual quality.

 17

Traditional triangle-reduction methods use a small set of discrete levels of detail that

each represents the same object at different number of triangles. Simple

visualization systems compute the distance from the observer to an object and

choose a level of detail for the entire object based on that distance. Other

visualization systems base the level of detail on the screen-space error of the object.

If the distance or error changes beyond a certain limit, the whole object is rendered

with another level of detail. There are two problems with triangle-reduction methods

based on discrete levels of detail. First, large objects that may have some regions

close to the observer and others more distant should be rendered at different levels

of detail for the different regions. Terrain is an example of such an object. The

horizon does not need to be rendered with as high detail as nearby parts. Second,

changing from one level of detail to another leads to temporal aliasing artifacts

known as popping [6] [7].

1.3.1 Tears, Cracks, and T-Junctions

A common problem when dealing with terrain LOD (particularly when dealing with

quadtree- or block-based approaches) occurs when adjacent triangles exist at

different levels of detail. In this situation, it is possible to introduce cracks along the

edge, where the higher LOD introduces an extra vertex that does not lie on the lower

LOD edge. When rendered, these cracks can cause holes in the terrain, allowing the

background to peak through. Another undesirable artifact is the T-junction. This is

caused when the vertex from a higher LOD triangle does not share a vertex in the

adjacent lower LOD triangle. This can result in bleeding tears in the terrain due to

small floating-point rounding differences, and visible lighting and interpolation

differences across such edges. Figure 1.1 illustrates both of these cases.

There are a number of ways of dealing with cracks. Some of the more common

solutions are described in the following. The triangles around the crack are

recursively split to produce a continuous surface. This will often introduce

 18

additional triangles into the mesh but produces a pleasing and continuous result.

This approach is often used in bin tree-based systems. For example, the ROAM

algorithm adopts this solution, along with other systems.

Figure 1.1 a. Cracks and b. T-junctions

Figure 1.2 gives an example of this technique. The extra vertex in the higher LOD

mesh has its height modified so that it lies on the edge of the adjacent lower LOD

mesh. This does not affect the number of triangles or vertices in the model, but it

introduces a potentially visible error into the terrain surface unless care is taken that

the vertex shift occurs below the accuracy threshold. This method essentially implies

introducing a T-junction into the model, which is generally considered harmful to

the continuity of the mesh, although some systems have used this approach due to its

simplicity and compactness.

Figure 1.2 Eliminating cracks and T-junctions via recursive splitting.

 A similar solution that avoids the T-junction is to simply skip the center vertex on

the higher LOD mesh. An equivalent operation to the previous case is to add an

 19

extra vertex to the edge of the lower LOD mesh and assign it the same location as

the extra vertex in the higher LOD mesh. This produces a more faithful terrain

surface, but at the cost of introducing an extra vertex. A further refinement of this

approach is to shift both of the boundary vertices to the average of their two

elevations. A common tool for managing extremely large terrain data sets is to

segment them into a number of blocks, or tiles, so that these might be paged into

main memory as needed. A simple solution to avoid tears between blocks is to

prevent simplification of vertices that lie on the boundary of a block. A new triangle

is inserted between the two meshes to plug up the gap. Although this results in a

continuous mesh, the fill polygons lie in a plane perpendicular to the surface and

hence can introduce unnatural-looking short cliffs. This solution also has the

disadvantage of using extra polygons to represent the mesh [6].

1.4 Motivation

Terrain rendering is an exciting and challenging area of computer graphics. The

prime problem of terrain rendering is simply size of data. Although, graphics

hardware continues to evolve at an astounding rate and have the ability to draw a

huge amount of polygons in real-time, clever algorithms for reducing the geometry

to be rendered and for sending it to the hardware as quickly as possible will always

be necessary. These terrain rendering algorithms are trying to decrease the amount

of data. Performing CLOD on a mesh is generally done to reduce the number of

polygons needed to render a scene. However, this reduction comes at a cost. When

dealing with 3D terrains, refining the terrain to save on polygon usage results in a

loss in terrain accuracy. The purpose of this thesis is to examine the trade-off

between terrain accuracy and polygon count for the three algorithms being studied.

Although the focus of this project is from a GIS point of view, other applications

involving 3D terrain may consider this study a benefit. Finally, each algorithm will

be discussed in terms of reach to terrain accuracy with using minimum polygon

 20

count and usability for the different types of terrain data and we also try to find the

best suitable algorithm for terrain rendering.

The main contribution of this thesis is evaluating algorithms with GIS point of view.

We try to find the best algorithm for terrain rendering with using real world data.

We already mention about the main problem of terrain rendering; very large data.

The modern graphics cards will be able to display more and more polygons per

second, but on the other hand the resolution of elevation data is also increasing day

by day. For example, a 3 arc second (approx. 90m resolution) DEM data used in this

thesis. But, a 1 arc second (less than 16m resolution) data product was also

produced, but it is not available for public usage. In this case, the vertex count

naturally increases for terrain rendering. Therefore, rendering terrain with minimum

polygon is important criteria for GIS application. In according to our experimental

results, the ROAM algorithm easily copes with this problem (See Chapter 3).

1.5 Outline of Thesis

In Chapter 2 discusses the requirements of terrain-rendering algorithms and surveys

existing algorithms. We define test data sets and test cases at the Chapter 3. Also we

discuss our test results in this chapter. Chapter 4 concludes this position thesis.

 21

CHAPTER 2

BACKGROUND ON TERRAIN RENDERING ALGORITHMS

In this chapter, we described many of the fundamental concepts of terrain LOD.

After that we explain the terrain rendering algorithms that are using in our thesis.

2.1 Multiresolution Techniques for Terrain

We begin this chapter by taking a look at some of the principal variables a developer

faces when implementing a terrain LOD algorithm.

2.1.1 Top Down and Bottom Up

One of the major differentiators of terrain LOD algorithms, as with more general

LOD techniques, is whether they are top-down or bottom-up in their approach to the

simplification problem. In a top-down algorithm, we normally begin with two or

four triangles for the entire region and then progressively add new triangles until the

desired resolution is achieved. These techniques are also referred to as subdivision

or refinement methods. In contrast, a bottom-up algorithm begins with the highest-

resolution mesh and iteratively removes vertices from the triangulation until the

desired level of simplification is gained. These techniques can also be referred to as

decimation or simplification methods. Figure 2.1 illustrates these two approaches to

terrain simplification. Bottom-up approaches tend to be able to find the minimal

number of triangles required for a given accuracy. However, they necessitate the

entire model being available at the first step and therefore have higher memory and

computational demands.

 22

Figure 2.1 Top down or bottom up approaches

It is worth making an explicit distinction between the preparation-time and runtime

sense of bottom-up versus top-down. Bottom-up approaches are almost always used

during the initial offline hierarchy construction. However, at run-time, a top down

approach might be favored because, for example, it offers support for view culling.

Most interactive bottom-up solutions are usually hybrid in practice, often combined

with a top-down quadtree block framework. Furthermore, a few systems perform

incremental coarsening or refining of the terrain at each frame to take advantage of

frame-to-frame coherency. As such, these systems cannot strictly be classified as

exclusively top-down or bottom-up.

2.1.2 Regular Grids and TINs

Another important distinction between terrain LOD algorithms is the structure used

to represent the terrain. Two major approaches in this regard are the use of regular

gridded height fields and Triangulated Irregular Networks (TINs). Regular (or

uniform) grids use an array of height values at regularly spaced x and y coordinates,

whereas TINs allow variable spacing between vertices. Figure 2.2 illustrates these

two approaches, showing a regular grid of 65× 65 (equals 4,225) height values and a

512- vertex TIN representation with the same accuracy. TINs can generally

 23

approximate a surface to a required accuracy with fewer polygons than other

schemes. For example, they allow large flat regions to be represented with a coarse

sampling, while reserving higher sampling for more bumpy regions. Regular grids,

in comparison, tend to be far less optimal than TINs because the same resolution is

used across the entire terrain, at flat places as well as high-curvature regions. TINs

also offer great flexibility in the range and accuracy of features that can be modeled,

such as maxima, minima, saddle points, ridges, valleys, coastlines, overhangs, and

caves. However, regular grids offer the advantages that they are simple to store and

manipulate. For example, finding the elevation at any point is a simple matter of

bilinearly interpolating the four nearest neighbor points. They are easily integrated

with raster databases and file formats, such as the DEM, DTED, and GeoTIFF file

formats. In addition, they require less storage for the same number of points because

only an array of z values needs to be stored rather than full (x, y, z) coordinates.

Figure 2.2 (a) A regular grid terrain representation (b) TIN representation.

Furthermore, TINs make implementing related functions (such as view culling,

terrain following, collision detection, and dynamic deformations) more complex

 24

because of the lack of a simple overarching spatial organization. Also, the

applicability of TINs to run-time view-dependent LOD is less efficient than regular

gridded systems. For these reasons, many contemporary terrain LOD systems favor

regular grids over TINs. It is worth noting that a number of hybrid schemes have

been proposed that try to gain the best of both worlds—most notably by using a

hierarchical triangulation based on a regular grid.

2.1.3 Quadtrees and Bintrees

To implement view-dependent LOD for a regular grid structure, we must be able to

represent different parts of the grid at different resolutions. This implies a

hierarchical representation in which we can gradually refine further detail to

different parts of the grid. There are a number of options available for achieving this

multiresolution representation. The most common two are the quadtree and the

binary triangle tree. A quadtree structure is where a rectangular region is divided

uniformly into four quadrants. Each of these quadrants can then be successively

divided into four smaller regions, and so on (See Figure 2.3 (a–d)). Quadtrees have

been used for a number of terrain LOD systems.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 2.3 (a–d) Quadtree structure (e–h) binary triangle trees.

 25

Note that you can still employ a quadtree structure and use triangles as your

primitives. You would simply decompose each rectangle into two or more triangles.

In fact, a number of different triangulation schemes could be implemented

independent of the use of quadtrees or bintrees. A binary triangle tree structure

(bintritree, BTT, or simply bintrees) works the same way as a quadtree, but instead

of segmenting a rectangle into four it segments a triangle into two halves. The root

triangle is normally defined to be a right-isosceles triangle (i.e., two of the three

sides are equal and they join at a 90-degree angle), and the subdivision is performed

by splitting this along the edge formed between its apex vertex and the midpoint of

its base edge (See Figure 2.3 (e–h)). Note that another, more general; term that can

be used to describe a bintree is a kd-tree. A kd-tree is a binary tree that recursively

subdivides a space such that a k-dimensional kd-tree divides a k-dimensional space

with a (k − 1)-dimensional plane. Systems that have implemented binary triangle

tree techniques include Lindstrom [8] et al. and Duchaineau [2] et al. One of the big

advantages of bintrees is that they make it easy to avoid cracks and T-junctions.

Bintrees also exhibit the useful feature that triangles are never more than one

resolution level away from their neighbors (this is not true for quadtrees, which

often require extra care to preserve this condition). Seumas Mc-Nally wrote an

excellent piece on bintrees for GameDev.net [9]. In that article he presents psuedo

code for splitting a triangle in a binary triangle tree while avoiding cracks and T-

junctions. The psuedo code follows, including some minor optimizations that have

been reported recently. In this code, the left and right neighbors point to the triangles

on the left and right with the hypotenuse down, and the bottom neighbor is the

triangle that meets the hypotenuse. Figure 2.4 illustrates the split progression.

 26

Figure 2.4. Seumas McNally’s bintree tessellation code

2.2 Terrain Rendering Algorithms

We describe main features of the each algorithms briefly in this section.

2.2.1 The ROAM Algorithm

In 1997, Duchaineau published the ROAM algorithm [2]. This has proved to be an

extremely popular algorithm, particularly among game developers; it has been

implemented for the Tread Marks, Genesis3D, and Crystal Space engines, among

others. ROAM (Real-time Optimally Adapting Meshes) uses an incremental

priority-based approach with a binary triangle tree structure. A continuous mesh is

produced using this structure by applying a series of split and merge operations on

triangle pairs that share their hypotenuses, referred to as diamonds (See Figure 2.5).

The ROAM algorithm uses two priority queues to drive split and merge operations.

One queue maintains a priority-ordered list of triangle splits so that refining the

terrain simply means repeatedly splitting the highest-priority triangle on the queue.

The second queue maintains a priority-ordered list of triangle merge operations to

simplify the terrain. This allows ROAM to take advantage of frame coherence (i.e.,

to pick up from the previous frames triangulation and incrementally add or remove

 27

triangles). Duchaineau et al. also note that splits and merges can be performed

smoothly by geomorphing the vertex positions during the changes.

Figure 2.5. The split and merge operations on a binary triangle tree.

The priority of splits and merges in the two queues was determined using a number

of error metrics. The principal metric was a screen-based geometric error that

provides a guaranteed bound on the error. This was done using a hierarchy of

bounding volumes, called wedgies, around each triangle (similar to the notion of

simplification envelopes). A wedgie covers the (x, y) extent of a triangle and extends

over a height range z − eT through z + eT, where z is the height of the triangle at each

point and eT is the wedgie thickness, all in world-space coordinates. A preprocessing

step is performed to calculate appropriate wedgies that are tightly nested throughout

the triangle hierarchy, thus providing a guaranteed error bound (See Figure 2.6).

At run-time, each triangle’s wedgie is projected into screen space and the bound is

defined as the maximum length of the projected thickness segments for all points in

the triangle (note that under the perspective projection, the maximum projected

thickness may not necessarily occur at one of the triangle vertices). This bound is

used to form queue priorities, and could potentially incorporate a number of other

metrics, such as back face detail reduction, silhouette preservation, and specular

highlight preservation.

 28

The ROAM algorithm includes a number of other interesting features and

optimizations, including an incremental mechanism to build triangle strips. Modern

graphics processing units often provide significant performance gains when triangles

are organized into strips. In the original ROAM algorithm, strip lengths of four to

five triangles were favored. These strips were incrementally adjusted as triangles

were split or merged. The authors report a significant frame time improvement of 72

ms per frame by using triangle strips. Another intriguing feature that was supported

was line-of-site (LOS) based refinement. In this case the triangulation is made more

accurate along a specified line of sight so that correct visibility and occlusion

determinations can be made. This is particularly useful for military mission planners

and ground-based aircraft testing using synthetic sensor stimulation. Another

optimization defers the computation of triangle priorities until they potentially affect

a split or merge decision. The authors report that this priority recomputation deferral

saved them 38 ms per frame. Finally, the ROAM algorithm can also work toward an

exact specified triangle count, as well as support fixed frame rate constraints.

Duchaineau [2] et al. tested their implementation with a United States Geological

Survey (USGS) 1-degree DEM for Northern New Mexico (about 1,200 × 1,200

postings at 3-arc-second, or roughly 90-m, resolution). They report that on a R10000

Indigo2 workstation they achieved 3,000 triangles within a rate time of 30 ms (5 ms

for view-frustum culling, 5 ms for priority queue calculation, 5 ms for split/merge

operations, and 15 ms to output the triangle strips). In terms of frame coherence, the

authors found that on average less than 3% of triangles changed between frames.

Figure 2.7 shows an example of a ROAM-simplified mesh.

The original ROAM algorithm has been improved or modified by a number of

researchers and game developers [10] [11] [12] [13] [14]. For example, one

simplification sometimes used by game developers is to discard the frame coherence

 29

Figure 2.6 Illustrating nested ROAM wedgies for the 1D case

feature, resulting in a “split-only ROAM” implementation (such as that described by

Bryan Turner in his Gamasutra. com article “Real-Time Dynamic Level of Detail

Terrain Rendering with ROAM” [15]).

One noteworthy improvement of the original algorithm was provided by Jonathan

Blow at the GDC 2000 conference [16]. Blow found that the original ROAM

algorithm does not perform well for densely sampled data, and attributed this to the

large number of premature recalculations of wedgie priorities that can occur in a

well-tessellated high-detail terrain. Blow noted that both Lindstrom and Duchaineau

used screen-space error metrics that compressed the 3D geometric error down to a

 30

1D scalar value. Instead, Blow advocated using the full three dimensions of the

source data to perform LOD computations and building a hierarchy of 3D

isosurfaces to contain all vertices within a certain error bound. (It should be noted

that this is simply another way to look at the error function and that Lindstrom et al.

also illustrated their error function as a 3D isosurface.) For simplicity, Blow chose

spheres as the isosurface primitive, such that each wedgie was represented by a

sphere in 3D space. When the viewpoint intersects with the sphere, the wedgie is

split, and when the viewpoint leaves a sphere, the wedge is merged. To optimize this

process, a hierarchy of nested spheres was used and the algorithm only descends into

nodes when the viewpoint intersects a sphere. In addition, spheres could be clustered

at any level by introducing extra bounding volumes to provide further resilience to

large terrain models (See Figure 2.8). Blow noted that this new error metric

produced extremely efficient split and merge determinations for high-detail terrain

in cases for which the original ROAM algorithm would stutter visibly. For example,

at 640× 480 resolution with a 3-pixel error threshold, Blow’s approach produced a

tessellation with 65% less triangles than their ROAM implementation.

2.2.2 Real-Time Generation of Continuous LOD

In 1998, Röttger [2] et al. extended the earlier continuous LOD work of Lindstrom

[8] et al. Instead of adopting a bottom-up approach, they chose a top-down strategy,

noting that this meant their algorithm needed to visit only a fraction of the entire

data set at each frame, but that this also made the addition of features such as

silhouette testing problematic because these would require analysis of the entire data

set.

They used a quadtree data structure rather than a binary triangle tree, and dealt with

tears between adjacent levels of the quadtree by skipping the center vertex of the

higher-resolution edge. To simplify this solution, Röttger et al. implemented

a bottom-up process from the smallest existing block to guarantee that the level

 31

 (a)

 (b)

Figure 2.7 a. ROAM-simplified terrain (b) a bird’s-eye view of the terrain,

 32

(a) (b)

Figure 2.8 (a) The hierarchy of nested isosurfaces (b) Clustering of isosurfaces

difference between adjacent blocks did not exceed 1. They also introduced a new

error metric that took into consideration the distance from the viewer and the

roughness of the terrain in world space. Their metric can be written as follows (See

Equation 2.1).

()1,2.max.. dcCd
lf = (2.1)

Here, l is the distance to the viewpoint (Manhattan distance was used for efficiency),

d is the edge length of a quadtree block, C is a configurable quality parameter that

determines the minimum global resolution (a value of 8 was found to provide good

visual results), and c specifies the desired global resolution that can be adjusted per

 33

frame to maintain a fixed frame rate. The quantity d2 incorporates the surface

roughness criteria by representing the largest error delta value at six points in the

quadtree: the four edge midpoints and the two diagonal midpoints. An upper bound

on this component was computed by taking the maximum of these six absolute delta

values. An important feature of Röttger et al.’s system is its direct support for

geomorphing of vertices to smooth the transition between levels of detail. This was

implemented by introducing a blending function, b = 2(1− f), clamped to the range

[0, 1] to morph vertices linearly between two levels of detail. Extra care was taken to

avoid cracks that could occur during geomorphing due to adjacent blocks having

different blending functions. This was done by using the minimum blending value

for edges that were shared between quadtree blocks. The authors state that they were

able to associate a single blending value and d2-value with each vertex using only

one extra byte of storage. Their implementation was evaluated on an SGI Maximum

Impact using a terrain model of a region in Yukon Territory, Canada. The c value

was dynamically chosen to maintain a frame rate of 25 Hz, which produced roughly

1,600 triangle fans and 15,000 vertices per frame (See Figure 2.9) [17] [18].

Figure 2.9 (a) Textured and (b) wire frame images of Röttger CLOD

 34

2.2.3 Fast Terrain Rendering Using Geometrical MipMapping

The Geometrical MipMapping algorithm that is highly optimized for modern

graphics cards was recently introduced by Willem H. de Boer [4]. This method

divides the height-map into smaller tiles and creates a number of detail levels for

each tile. Based on an approximated screen-space error, a switch between the

different detail levels is made. When switching between detail levels a sudden

change in the height-map (vertex popping) will occur, this will be noticeable to the

viewer [19].

If you are familiar with the texturing concept of mipmapping, then geomipmapping

should seem like familiar ground to you. The concepts are the same, except that

instead of dealing with textures, we’re dealing with vertices of a patch of terrain.

The driving concept of geomipmapping is that you have a set patch of terrain. For

this explanation, I’ll say it’s a patch with a size of 5 vertices (a 5 × 5 patch). That 5 ×

5 patch is going to have several levels of detail, with level 0 being the most detailed

and, in this case, level 2 being the least detailed. Look at Figure 2.10 if you need a

visual explanation of what each patch looks like at its various levels. In the figure,

black vertices are not sent to the rendering API, but the white ones are.

Figure 2.10. Triangle arrangement for a patch of terrain

 35

The geomipmapping is similar to texture mipmapping except that we’re using land

patches instead of texture patches. What we need to do, starting from the user’s

point in 3D space (the camera’s eye position), is make all of the patches around the

viewer be the most detailed because those patches are what the user sees the most of.

At a certain distance away, we’ll switch to a lower level of patch detail. And, at

another distance away, we’ll switch to an even lower level of detail. Figure 2.11

explains this visually. As you can see in the figure, the patches in the immediate area

of the viewer’s position have a Level of Detail (LOD) of 0, which means that those

patches are of the highest level of detail. As the patches become farther away, they

change to a level of 1, which is the second highest level of detail. And even farther

away from the viewer, the patches have a level of 2, which is the lowest level of

detail presented in the image.

Often when you’re dealing with CLOD terrain algorithms, you must deal with the

subject of cracking. Cracking occurs, in the case of geomipmapping, when a highly

detailed patch resides next to a lower detailed patch (See Figure 2.12). As you can

see from the figure, the patch on the left is of a higher level of detail than the patch

on the right. Our problem lies at points A and B. The problem is that there is a

higher

Figure 2.11. Patch of terrain for Geomipmapping algorithm

 36

level of detail on the left side of point A than there is on point B. This means that the

left patch is rendering the exact height at point A, but the right patch is just getting

the average of the height above it and the height below it. This whole “cracking”

thing might not seem like such a big deal, but check out Figure 2.13, which shows a

screenshot of geomipmapping implementation without non cracking measures taken.

Crack-proofing your geomipmapping engine is a lot easier than it might sound. You

have the added benefit of having someone explain this concept to you, which makes

the whole process as easy as well, something easy. We have two possible ways of

fixing the cracking problem. One way is to add vertices to the patch with the lower

amount of detail so that the vertices in question will be of the same height as the

higher detailed patch’s corresponding vertices. This solution could be ugly, though,

and it means that we’d have to do some rearranging of the patch (add another

triangle fan). The other way of solving this problem is to omit vertices from the

more detailed patch. This solves the cracking problem seamlessly and effortlessly.

Check out Figure 2.14 to see how easy it is to simply omit a vertex and fix the crack.

Figure 2.13 a screenshot from a geomipmapping implementation, which does not

implement anti-cracking measures [20].

Figure 2.12 Two patches, side by side, with different levels of detail.

 37

Figure 2.13 a screenshot from a geomipmapping implementation

Figure 2.14. Crack elimination by omitting rendering the vertex at points A and B.

 38

CHAPTER 3

EVALUATING ALGORITHMS

This chapter describes the methods and outcomes of evaluating the three algorithms

for terrain level of detail that were studied in this thesis. Testing method is inspired

from Derek Bradley [5] excellent work. The first two sections describe the testing

environment and the height fields that were used for test data. The third section

outlines the criteria for which the algorithms were evaluated, and finally the last

section shows the actual test cases and results.

3.1 Testing Environment

The algorithms that were implemented and studied in this project were evaluated on

a single machine with the specifications listed in Table 3.1.

Table 3.1 Test Machine Specifications

Processor: Intel Pentium 4 CPU 2.40 GHz
Memory: 768 Mb DDR RAM
Video Card: NVIDIA GeForce2 FX 5200
OS: Windows XP Professional

Although machine specifications usually play a large role in the results of most 3D

graphics tests, the evaluation of the algorithms in this project focuses on two areas

that yield the same results independent of the processing power, hardware

manufacturers or amount of memory in the test machine. These evaluation

parameters are the polygon count and the terrain accuracy. Of course, the frame rate

of the rendered scenes will vary significantly based on the machine that the software

is running on, but frame rate comparisons were not part of the algorithm evaluation

in this project.

 39

Despite the fact that the hardware of the machine has no effect on the outcome of the

algorithm evaluation (provided that any 3D accelerated graphics card does exist in

the machine), there are two software restrictions in order to execute the

accompanying software that contains the implementations for this project. These

restrictions are that the machine must be running a sufficiently recent version of

Microsoft Windows (the software was tested on versions 2000 and XP), and the

machine must have OpenGL libraries available (which generally come by default on

such versions of Microsoft Windows).

3.2 Test Data

To perform the evaluation of the algorithms in this thesis, twelve test data sets were

used. Each data set represents a separate terrain with unique features in order to

represent a broad range of different height fields. Of the twelve height fields used,

five were generated in a shareware terrain generating application called TerraGen

(version 0.9.19 by Planetside Software). The other seven terrains are real Shuttle

Radar Topography Mission (SRTM) data of the Turkey. These real SRTM data’s are

converting to appropriate format (8 bit grayscale raw data) with using 3DEM

(version 18.7 by Visualization Software) and TerraGen.

The twelve test terrains will now be described in Table 3.2 through Table 3.13.

Terrain descriptions include the terrain title, size in pixels, topographic features, and

the grayscale bitmap representation of the height field and a color bitmap of the

texture used when rendering the terrain.

3.2.1 TerraGen Test Dataset

TerraGen is the very useful program for random terrain data generation. We use this

program for obtain different kind of terrain data. TerraGen has four methods that are

provide different featured terrain data.

 40

Table 3.2 TerraGen - Subdivide & Displace Method terrain data.

Source TerraGen - Subdivide & Displace Method
Size in pixels 257 x 257
Features This method generates the data that is

similar to real world.

Height Map Texture Map

Table 3.3 TerraGen - Perlin Noise Method terrain data

Source TerraGen - Perlin Noise Method
Size in pixels 513 x 513
Features This method creates data that is contains

more flat terrain than the mountains.

Height Map Texture Map

 41

Table 3.4 TerraGen – Multi Perlin Method terrain data

Source TerraGen – Multi Perlin Method
Size in pixels 513 x 513
Features This method is similar to Perlin Noise

method but mountains close to each other.

Height Map Texture Map

Table 3.5 TerraGen – Ridged Perlin Method terrain data

Source TerraGen – Ridged Perlin Method
Size in pixels 513 x 513
Features This method is opposites of Perlin Noise

methods. It is increase the mountains
percentage and decreases the flat terrain
percentage.

Height Map Texture Map

 42

Table 3.6 TerraGen – Ridged Multi Perlin Method terrain data

Source TerraGen – Ridged Multi Perlin Method
Size in pixels 513 x 513
Features This method is similar to Ridged Perlin

method but mountains close to each other

Height Map Texture Map

3.2.2 Shuttle Radar Topography Mission (SRTM) Test Dataset

The Shuttle Radar Topography Mission (SRTM) is a joint project between the

National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and

Space Administration (NASA). The NASA has provided Digital Elevation Model

(DEM) data for over 80% of the globe. This data is currently distributed free of

charge by USGS and is available for download from the National Map Seamless

Data Distribution System web site (http://seamless.usgs.gov/) or the USGS ftp site

(ftp://e0mss21u.ecs.nasa.gov/srtm/Eurasia/). The SRTM data is available as 3 arc

second (approx. 90m resolution) DEM. A 1 arc second data product was also

produced, but is not available for all countries. The vertical error of the DEM's is

reported to be less than 16m. We have selected the seven SRTM dataset from

Turkey map. The selected zones are mark by red frames at Figure 3.1.

 43

Figure 3.1 Turkey SRTM zone map

Table 3.7 N37E029 zone SRTM data

Source N37E029 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large flat terrain and some

hills. (around the Denizli territory)

Height Map Texture Map

 44

Table 3.8 N37E034 zone SRTM data

Source N37E034 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large terrain with high

mountains. (around the Niğde territory)

Height Map Texture Map

Table 3.9 N38E027 zone SRTM data

Source N38E027 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large terrain with many jagged hills

and rough areas; in other words, lots of
elevation changes. (between the İzmir and
Manisa territory)

Height Map Texture Map

 45

Table 3.10 N38E032 zone SRTM data

Source N38E032 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large flat terrain with small height

changes. (around the Konya teritory)

Height Map Texture Map

Table 3.11 N39E041 zone SRTM data

Source N39E041 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large terrain with many jagged

and high mountains. (around the
Erzurum territory)

Height Map Texture Map

 46

Table 3.12 N39E044 zone SRTM data

Source N39E044 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large flat terrain with very

high mountain. (around the Ağrı
territory)

Height Map Texture Map

Table 3.13 N41E026 zone SRTM data

Source N41E026 zone SRTM data
Size in pixels 1025 x 1025
Features This is a large flat terrain with no big

elevation changes.(around the Edirne
territory)

Height Map Texture Map

 47

3.3 Evaluation Criteria

In order to determine the usefulness of a terrain level of detail algorithm there are

many factors that could be taken into account. For instance, from a 3D game point

of view the algorithms may be evaluated based on speed and memory footprint, but

from a GIS point of view the evaluation might be based on the accuracy of the

approximated terrain and the number of polygons required to draw the terrain. This

project takes on more of a GIS perspective and will evaluate the terrain accuracy and

polygon count. It is for this reason that seven of the test data sets are actual SRTM.

3.3.1 Terrain Accuracy

Terrain accuracy is a measure of how close the approximated terrain resembles the

original height field. This measure is calculated using the vertical distance between

corresponding points in the rendered terrain and the height field. Now obviously the

rendered terrain has far fewer data points than the height field, so geometric

computations are performed to determine the corresponding point on the rendered

surface for each point in the height field. Fig. 3.2 demonstrates the vertical distance

calculation for two regions of terrain. The diagram on the left is a small region that

covers a 5 x 5 area of the height field (i.e. a region close to the camera) and the one

on the right covers a larger 17 x 17 area (i.e. a region farther away from the camera).

For clarity, a blue line has been drawn from the height field point to the surface of

the approximated terrain when the approximation is above the original and a red line

has been drawn when the approximated point is below the original.

Figure 3.2 Calculating Terrain Accuracy

 48

Once the vertical elevation difference has been computed for each point in the height

field, the actual accuracy as a percent is calculated as follows:

Accuracy = 100 * ((totalHeight – totalDelta) / totalHeight) (3.1)

In Equation. (3.1) the totalHeight is the sum of the heights of all the points in the

height field and the totalDelta is the sum of the vertical differences of the points.

This equation gives a global terrain accuracy measure that dynamically changes as

the terrain changes and generally increases as the terrain is further and further

refined since the totalHeight of a terrain is constant and the totalDelta decreases as

more points are added to the approximated mesh. We use plane equation (Equation

3.2 and 3.3) while calculating totalDelta.

Ax + By + Cz + D = 0 (3.2)

33

22

11

1
1
1

zy
zy
zy

A =

33

22

11

1
1
1

zx
zx
zx

B =
1
1

1

33

22

11

yx
yx
yx

C =

333

222

111

zyx
zyx

zyx
D −= (3.3)

Figure 3.3. The normal to the plane is the vector (A, B, C).

 49

3.3.2 Polygon Count

Determining the number of polygons in any given scene is a simple task that

involves counting the numbers of triangles that are drawn each frame. To do this for

the algorithms studied in this thesis there are three cases to consider.

The first case is demonstrated in the ROAM algorithm by Duchaineau [2] where

each triangle is drawn one at a time. Here, the polygon count simply increases by

one each time a triangle is drawn. The second case is demonstrated in the algorithm

presented by Röttger [3] where triangles are sent to the hardware in the form of

triangle fans. Here, when we create a triangle fan, the polygon count increases

according to this triangle fans. The last case is demonstrated in the algorithm

presented by Willem H. de Boer [4] where the triangles are sent to the hardware in

one big triangle strip. Here when we create a triangle fan, the polygon count

increases according to this triangle fans.

3.4 Test Cases and Results

This section describes the test cases that used to evaluate the implemented

algorithms in this project and gives the results of these test cases. Testing will

consist of two static viewpoint test cases; one to achieve a maximum terrain

accuracy and another to achieve a desired number of polygons.

3.4.1 Terrain Accuracy Viewpoint Results

Our aim is reach to maximum terrain accuracy with minumum polygon count in this

test case. There is no constraint for algorithm parameters. We try to run each

algorithms at maximum limits. The parameters are set to maximum values for each

algorithms.(See Table 3.14) Thus, each algorithm can be use the desired number of

polygon. There is no constraints for polygon counts in this test case.

 50

Table 3.14. Algorithm input parameters

Algorithm ROAM QuadTree GeoMipmap
Max Detail Level 30 45 N/A
Min Resolution N/A 10 N/A
Patch Size N/A N/A 33x33

We fixed camera position one point that is provide see entire terrain and apply the

test cases to twelve data sets. The results can be shown at Table 3.15- 3.26.

Table 3.15. TerraGen - Subdivide & Displace Method results

Data Set Source : TerraGen - Subdivide & Displace Method
Data Set Size: 257 x 257
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 15 13 25
Vertices: 58017 48225 27364
Tris/s: 19939 34621 21860
Accuracy (%): 98,65 99,36 98,78
Render Time (ms): 95 109 47
Initialization Time (ms): 4596 1156 468

Table 3.16. TerraGen – Perlin Noise Method results

Data Set Source : TerraGen – Perlin Noise Method
Data Set Size: 513 x 513
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 10 5 8
Vertices: 50205 88880 76136
Tris/s: 16735 62659 60776
Accuracy (%): 97,60 98,89 98,79
Render Time (ms): 78 125 110
Initialization Time (ms): 4874 1297 406

 51

Figure 3.4 ROAM algorithm TerraGen – Perlin Noise data set texture map view

Table 3.17. TerraGen – Multi Perlin Method results

Data Set Source : TerraGen – Multi Perlin Method
Data Set Size: 513 x 513
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 11 5 7
Vertices: 53607 113166 89964
Tris/s: 17869 80854 71820
Accuracy (%): 97,53 99,17 98,93
Render Time (ms): 78 156 125
Initialization Time (ms): 4876 1328 531

Table 3.18. TerraGen – Ridged Perlin Method results

Data Set Source : TerraGen – Ridged Perlin Method
Data Set Size: 513 x 513
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 10 4 7
Vertices: 53115 197178 82192
Tris/s: 17705 143262 65584
Accuracy (%): 95,94 98,92 98,04
Render Time (ms): 78 250 125
Initialization Time (ms): 4731 1360 406

 52

Figure 3.5 The Quadtree algorithm TerraGen – Ridged Perlin Method dataset view

Table 3.19. TerraGen – Ridged Multi Perlin Method results

Data Set Source : TerraGen – Ridged Multi Perlin Method
Data Set Size: 513 x 513
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 10 4 7
Vertices: 54051 156735 95172
Tris/s: 18017 113499 75972
Accuracy (%): 96,73 98,97 98,62
Render Time (ms): 80 235 141
Initialization Time (ms): 4855 1422 515

 53

Table 3.20. SRTM – N37E029 zone results

Data Set Source : SRTM – N37E029 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 3 3
Vertices: 34023 148786 186980
Tris/s: 11341 105536 149476
Accuracy (%): 96,15 98,48 98,97
Render Time (ms): 51 188 281
Initialization Time (ms): 4939 1922 672

Table 3.21. SRTM – N37E034 zone results

Data Set Source : SRTM – N37E034 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 3 3
Vertices: 34785 148981 213452
Tris/s: 11595 106884 170700
Accuracy (%): 95,70 98,80 98,93
Render Time (ms): 51 172 265
Initialization Time (ms): 4997 1844 688

Table 3.22. SRTM – N38E027 zone results

Data Set Source : SRTM – N38E027 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 3 3
Vertices: 31581 161448 147844
Tris/s: 10527 113180 118212
Accuracy (%): 92,22 96,80 97,62
Render Time (ms): 50 204 188
Initialization Time (ms): 5158 2000 672

 54

Figure 3.6. The ROAM algorithm SRTM – N38E027 zone results wire-frame view

Table 3.23. SRTM – N38E032 zone results

Data Set Source : SRTM – N38E032 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 3 2
Vertices: 33024 100022 178668
Tris/s: 11008 71193 142892
Accuracy (%): 93,87 97,57 98,6
Render Time (ms): 49 142 267
Initialization Time (ms): 4908 2782 918

 55

Table 3.24. SRTM – N39E041 zone results

Data Set Source : SRTM – N39E041 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 3 3
Vertices: 32508 154005 189364
Tris/s: 10836 108106 151380
Accuracy (%): 96,24 98,61 98,92
Render Time (ms): 48 203 235
Initialization Time (ms): 4951 2578 734

Figure 3.7 The Quadtree algorithm SRTM – N39E041 wire-frame view

 56

Table 3.25. SRTM – N39E044 zone results

Data Set Source : SRTM – N39E044 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 6 4 3
Vertices: 31878 98461 179892
Tris/s: 10626 71313 143860
Accuracy (%): 95,67 97,85 98,42
Render Time (ms): 62 125 235
Initialization Time (ms): 4961 1860 672

Figure 3.8 The GeoMipmap algorithm SRTM – N39E044 data set wire frame view

Table 3.26. SRTM – N41E026 zone results

Data Set Source : SRTM – N41E026 zone
Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree GeoMipmap
FPS : 7 3 3
Vertices: 28695 189868 161660
Tris/s: 9565 135621 129276
Accuracy (%): 90,10 96,71 97,44
Render Time (ms): 50 216 219
Initialization Time (ms): 4987 1891 688

 57

All of the results can be show at the below graphs.

Polygon Count Graph

0
20000

40000
60000
80000

100000
120000
140000

160000
180000

1 2 3 4 5 6 7 8 9 10 11 12

Data Set

Po
ly

go
n

C
ou

nt

ROAM
Quadtree
GeoMipmap

Figure 3.9. Polygon count result graph

Terrain Accuracy Graph

84
86

88
90
92

94
96
98

100
102

1 2 3 4 5 6 7 8 9 10 11 12

Data Set

Ac
cu

ra
cy

 (%
)

ROAM
Quadtree
GeoMipmap

Figure 3.10. Terrain accuracy result graph

 58

3.4.2 Desired Number of Polygons Viewpoint Results

Our aim is compare to performance of the LOD algorithms according to desired

number of polygons . The polygon count is set to approximately 10000 and try to

reach maximum terrain accuracy. We can’t use Geomipmap algorithm for this test

case. Because, minumum polygon count is approximately 40000 for our

Geomipmap algorithm implementation.

Table 3.27. SRTM – N38E032 zone results

Data Set Source :
SRTM – N38E032 zone

Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree
FPS : 7 8
Vertices: 29466 13613
Tris/s: 9822 9871
Accuracy (%): 94,29 93,68
Render Time (ms): 49 36
Initialization Time (ms): 4781 2127
Max Detail Level 20 20
Min Resolution N/A 6

Table 3.28. SRTM – N39E041 zone results

Data Set Source :
SRTM – N39E041 zone

Data Set Size: 1025 x 1025
Algorithm : ROAM Quad Tree
FPS : 7 8
Vertices: 29565 13804
Tris/s: 9855 9904
Accuracy (%): 96,00 95,42
Render Time (ms): 59 35
Initialization Time (ms): 4982 2159
Max Detail Level 13 10
Min Resolution N/A 6

 59

3.5 Discussion of Results

Our main aim is compare the popular three LOD algorithms and find the best choice

for terrain rendering according to polygon count and the terrain accuracy criteria.

Firstly, we make the literature examination. As a result of this examination, we

decided to study on the three LOD algorithms that are Real-time continuous terrain

levels of detail algorithms described in the papers ROAMing Terrain: Real-time

Optimally Adapting Meshes by Duchaineau [2], Real-Time Generation of

Continuous Levels of Detail for Height Fields by Röttger [3] and Fast Terrain

Rendering Using Geometrical MipMapping by Willem H. de Boer [4]. Each of the

algorithms is very popular in the last decade and they use different polygon structure

to make the polygon mesh. This is the reason why we choose these algorithms. After

that we made an algorithm selection, implementation phase started. The selected

algorithms have implemented using the OpenGL API. In order to test, we defined

two test cases (See section 3.4). We prepared twelve different data sets and applied

to algorithms.

In the paper by Duchaineau [2] the authors claim that the ROAM algorithm

produces optimal meshes, and based on the test cases in section 3.4.1 and 3.4.2 this

proved to be almost always true. According to polygon count viewpoint, this

algorithm is the best algorithm. The authors claim that other two important feature in

theirs algorithms;

Frame rate and triangle count bounding: The system may optimize its

terrain simplification so that it always produces a set number of triangles in a given

screen, or so that it optimizes to never take more than a set amount of time to

optimize for the current screen. These are important factors the consider in most

systems, since rendering the frame rate is often a bottleneck, from both the hardware

and software perspective.

 60

Guaranteed error bounds: An error-threshold metric is used by the system

to determine approximation error, that is, the algorithm functions minimizing the

difference between the rendered and actual landscape.

In Section 3.4.1 and 3.4.2, our implementation results verify the above facts. The

ROAM algorithm is very successful about optimizing polygon count for twelve

dataset (See section 3.4.1). The using polygon count always remains some bounds.

There is no sudden increasing or decreasing at the polygon count (See Figure 3.9).

Of the three main algorithms, ROAM is the only one that guarantees that the error

will always fall between set parameters. Although, the ROAM algorithm’s terrain

accuracy performance is decreasing below the average values for dataset 8, 9 and 12

(See Figure 3.10); we say that our results again verify this fact. The reason of this

performance decreasing, the purpose of a triangle bintree is to easily choose the

local level of detail of the triangulation. If the terrain is flat or distant, only a few

triangles are necessary to approximate a large area, while if the terrain is rough or

close, more triangles are required [12]. The datasets 8, 9 and 12 are almost flat

terrains and there are no abrupt elevation changes. Thus ROAM algorithm is reach

to optimal mesh with minimum polygon count but this can’t be reach to high terrain

accuracy with respect to other algorithms. The ROAM algorithm outperformed both

of the other two algorithms for all test data sets according to reached terrain

accuracy with using minimum number of polygon. The main focus of the ROAM

algorithm has been to minimize the total number of polygons displayed and

guaranteed the error bounds on the screen at any point in time [1] [14]. This shows

that the ROAM algorithm can be use even large terrain dataset.

The algorithm presented by Röttger [3], describes a continuous level of detail

terrain-rendering algorithm using a quadtree data structure. This algorithm operates

top-down which means that only the minimum numbers of computations are

 61

performed to render the terrain at the desired resolution. This algorithm can be

reached desired terrain accuracy values but it uses more polygons than the ROAM

algorithms (See section 3.4.1- 3.4.2). The difference between the two algorithms

comes from the using data structures. The bintree structure can generate more

optimum mesh than the quadtree structure with respect to polygon count. The

Quadtree algorithm should take into account the roughness of the terrain to ensure

that flat areas use fewer polygons since less detail is required and bumpier areas use

more polygons to show more detail [5]. Therefore, this algorithm proved to be the

best algorithm to use in order to display large, sharp and jagged.

In 2000 Willem H. de Boer published Fast Terrain Rendering Using Geometrical

MipMapping [4], introducing a new level-of-detail algorithm targeted for modern

graphics cards. The authors claims that most of the algorithms were invented (long)

before hardware rendering became the industry’s standard, and therefore may not be

suitable to be used in conjunction with 3D hardware rendering anymore. Therefore,

new algorithms must be found that will give the best results when used together with

3D hardware rendering. Because, 3D hardware is able to process and render a large

amount of triangles per frame, the algorithm can resort to more conservative culling

methods, thereby not necessarily delivering the ‘perfect set’ of render-data, but

pushing as much triangles through the pipeline as hardware can handle, with the

least amount of CPU overhead.

The Geomipmap algorithm has two main advantages: it is relatively efficient on

modern hardware and it is very simple. It is efficient since detail levels are selected

at block-level rather than triangle level, which mean lesser CPU work per drawn

triangle [21]. With geomorphs performed in vertex programs even more work is

offloaded from the CPU onto the graphics hardware. But because of gaps the

geomipmap needs to be re-triangulated each time the detail levels are changed,

 62

which is not optimal. The simplicity of this algorithm is partly because of the

simplification scheme. While simple, however, it is not the most polygon-efficient

simplification scheme and this algorithm thus may require a higher polygon count

than other algorithms to achieve a certain error threshold (See section 3.4.1). It can

be reached desired terrain accuracy values but it uses too many polygons. This

algorithm is the worst algorithm according to using the polygon count. Because of

this, a more serious drawback of geomipmapping is its lack of scalability. As the

terrain increases the number of geomipmap grows, and with a high count of

geomipmap even at the lowest detail level, the polygon count may rise to

unacceptable levels. The minimum number of polygon is approximately 40,000 for

the Geomipmap algorithm, so that, we can’t use this algorithm for second test case

(See section 3.4.2). Although, it uses to five times more polygon than the others in

Table 4.1. Average performance results of the algorithms

some data set, this algorithm’s average terrain accuracy value is the highest value

(See Table 4.1). In conclusion, this algorithm does allow us to add details at runtime

in a simple way and the algorithm provide acceptable, but not optimal, performance

for terrains of limited size. We need to powerful graphic cards for using geomipmap

algorithm. To make it able to perform well with large terrain sizes some

modifications needs to be done. There is interesting fact from the results (See Table

4.1) that the algorithm presented by Röttger [3] and algorithm presented by Willem

H. de Boer [4] met the highest terrain accuracy but these algorithms use too many

polygons while the ROAM algorithm use fewer polygons and still maintain a

acceptable terrain accuracy value.

Algorithm Average Terrain Accuracy (%) Average Polygon Count
ROAM 95,53 13814
Quadtree 98,34 95560
GeoMipmap 98,50 108484

 63

CHAPTER 4

CONCLUSIONS

The results of evaluating the three algorithms studied in this project are very clear.

The ROAM algorithm is a versatile and scalable system for the determination of

appropriate triangulation of meshes for the rendering of terrain. It has been shown to

be appropriate to many levels of detail and speed, and will continue to be used as an

optimal mesh-generating algorithm.

 64

FUTURE WORKS

While the ROAM algorithm is relatively old in computer graphics terms, it is still in

use today in terrain rendering. One of the original developers is currently working

on ROAM version 2[22], which promises even better, more accurate performance

using a diamond-based triangulation, as well as taking advantage of the recent boom

in 3D graphics hardware. We have used the classical binary tree structure in the

ROAM implementation. If we change this structure with diamond structure, we will

find better accuracy results.

The data culling techniques may apply to the quadtree and the geomipmap algorithm

for reducing the polygon count. This data culling techniques will eliminate any

scene information that will not directly contribute to the terrain accuracy.

 65

REFERENCES

[1]. C.P.Lo, A. K.W.Yeung, Concept and Techniques of Geographic Information Systems,

Prentice Hall, 2002.

[2]. M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.

Mineev-Weinstein, “ROAMing terrain: Real-Time Optimally Adapting Meshes”, in

IEEE Visualization, 1997.

[3]. S. Röttger, W. Heidrich, P. Slusallek, H.P. Seidel, “Real-Time Generation of

Continuous Levels of Detail for Height Fields”, Proceedings of the 6th International

Conference in Central Europe on Computer Graphics and Visualization, 1998.

[4]. http://www.flipcode.com/tutorials/tut_geomipmaps.shtml

[5]. D. Bradley, “Evaluation of Real-Time Continuous Terrain Level of Detail Algorithms”,

Master Thesis, 2003.

[6]. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, R. Huebner, Level of

Detail for 3D Graphics, Morgan Kaufmann Publishers, 2003.

[7]. T. A. Möller, E. Haines, Real-time Rendering, AK Peters, Ltd., 2002.

 66

[8]. P. Lindstrom, D. Koller, W. Ribarsky, L F Hodges, N Faust, and G Turner. “Real-Time

 Continuous Level of Detail Rendering of Height Fields”, Proceedings of SIGGRAPH,

1996.

[9]. http://www.longbowdigitalarts.com/seumas/progbintri.html

[10]. D.Hill, “An efficient, hardware-accelerated, level-of-detail rendering technique for

large terrains”, Master Thesis, 2002.

[11]. http://www.magma.ca/~dhlf/downloads/ detail-terrain-rendering.pdf

[12]. A. Ögren, “Continuous Level of Detail in Real-Time Terrain Rendering”, Master

Thesis, 2000.

[13]. B. András, “Real-Time Visualization of Detailed Terrain”, Master Thesis, 2003.

[14]. http://www.cs.sun.ac.za/~henri/terrain.html

[15]. http://www.gamasutra.com/features/20000403/turner_01.htm

[16]. http://number-none.com/blow/papers/terrain_rendering.pdf

 67

[17]. http://www.gamasutra.com/features/20000228/ulrich_01.htm

[18]. K. You, J. Tian, J. Liu, “Real-time Rendering of Large Terrain Using Quadtree Based

Triangulation”, Proceedings of SPIE - Volume 4756, 2003.

[19]. B. D. Larsen, N. J. Christensen, “Real-time Terrain Rendering using Smooth Hardware

Optimized Level of Detail”, Journal of WSCG, 2003.

[20]. T. Polack, Focus on 3d Terrain Programming, Premier Press, 2003.

[21]. http://www.terrain.dk/terrain.pdf

[22]. http://www.cognigraph.com/ROAM_homepage/ROAM2/

