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ABSTRACT

THE APPLICATION OF BDW METHOD TO THE PLANE WAVE DIFFRACTION
PROBLEM

Ali, Aysha
M.S.c., Department of Electronic
& Communication Engineering
Supervisor  : Asst. Prof. Dr. Yusuf Z. Umul

August 2006, 81 pages

Diffraction is a phenomenon by which wavefronts of propagating waves bend in the
neighborhood of obstacles. Diffraction around apertures is described approximately by the
diffraction wave method. Diffraction problems are among the difficult encountered in
optics, and exact rigorous solutions are quite rare.

A new procedure for calculating the scattered fields from a perfectly conducting body is
introduced. The boundary diffraction wave method is used to evaluate the scattered field at
an observation point after a certain obstacle with an aperture. The scattered field is
combination of the diffracted and transmitted fields. The diffracted field is originated from
the boundary of the aperture whereas the transmitted field originates from the aperture
itself.

The boundary diffraction wave method defines a new vector potential which is
associated with any incident scalar wave field, and the integral of this vector potential
expressing the field scattered by a perfect conducting screen with an aperture whose
dimensions are larger than the wavelength. The Helmholtz-Kirchhoff formula is expressed
in terms of the new vector potential to evaluate the disturbance, from certain points Q on a
surface S, at an observation point. The method demands that the location of the point Q

always depends on the location of the observation point.

Key words: Boundary diffraction wave, Scattered field and perfectly conducting body.
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DUZLEMSEL DALGALARIN DAGILMA PROBLEMINE BDW METODUNUN
UYGULANMASI

Ali, Aysha
Yiikseklisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali

Tez Yoneticisi : Yar. Dog. Dr. Yusuf Z. Umul

Agustos 2006, 81 sayfa

Dagilma, yayilan dalgalarin dalga yiizlerinin engellerin mahallinde egildigi bir
fenomendir. Acikliklarin etrafindaki dagilma, dagilma dalga metodu ile yaklasik olarak
betimlenir. Dagilma problemleri optikte karsilagilan zorluklarin arasinda yer alir ve tam
kesin ¢oziimleri oldukca nadirdir.

Miikemmel iletkenlikteki govdeden sacilan alanlarin hesaplanmasina iligkin yeni
bir prosediir ortaya konmaktadir. Bir a¢ikliga sahip belirli bir engelden sonra bir gézlem
noktasinda sagilan alan degerlendirmesi yapmak i¢in smir dagilma dalga metodu
kullanilmaktadir. Sagilan alan dagilan ve iletilen alanlarin bir kombinasyonudur. iletilen
alan acikligin kendisinden kaynaklanmakta iken, sacilan alan agikligin simirindan
kaynaklanmaktadir.

Sinir dagilma dalga metodu herhangi bir tesadiifi sayil dalga alan ile ilgili olan
yeni bir vektor potansiyeli ile bu vektdr potansiyelinin, Olciileri dalga boyundan daha
bliyiik olan bir agikliga sahip miikemmel iletkenlikteki ekran ile sagilan alani ifade eden
entegralini tanimlar. Helmholtz-Kirchoff formiilii bir gozlem noktasindaki S ylizeyi
tizerinde bulunan Q belirli noktalarindan bozuklugu degerlendirmek {izere yeni vektor
potansiyeli acisindan ifade edilmektedir. Metot bir S ylizeyinin iizerinde yer alan Q

noktasinin yerinin her zaman gézlem noktasina bagli olmasini gerektirmektedir.

Anabhtar kelimeler: Sinir dagilma dalgasi, sagilan alan ve mitkemmel iletkenlikteki

govde.
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CHAPTER 1

INTRODUCTION

Any monochromatic scalar wave field has a vector potential associated with it, for any
typical observation point (P), there is disturbance point (Q) effects on it. The vector
potential associated with scalar wave field has the property that the normal component of
its curl, taken with respect to the coordinates of (Q), where the source point (Q) is located
on a closed surface (S) surrounding the observation point(P). The curl of the vector
potential with respect to the coordinates of (Q) always equals to the integrand of the

Helmbholtz-Kirchhoff integral.

The Boundary Diffraction Wave Method considers some points (Q1) on (S) at which the
vector potential has singularities, and by the summation of these contributions, the field at

the observation point (P) can be evaluated.

The method is investigated by studying the field generated from diffraction of the
monochromatic wave by an aperture in an opaque screen. The field which is evaluated at
the observation point is called the scattered field (Kirchhoff's field) and is equal to two

parts, the first one is the contribution from each point in the boundary of the aperture,

since, the method said that there are associated vector potential (W) in each element (dl)
of the boundary, by taking the integral of these disturbance along the boundary (I') of the
aperture, the first contribution can be evaluated. The second part represents the
disturbances propagated from infinite number of points in the aperture, if the incident
wave lights upon the aperture is plane or spherical wave, the last part of the Kirchhoff's

field is changed to be obeyed to the geometrical optics.

According to the principle of Huygens and fresnel, when an incident ray diffracted by

an obstacle, where the wavelength of this incident wave is smaller than the linear



dimensions of the obstacle, and the incident wave considered to be a primary wave.
Huygens and fresnel said in this principle that, each point of the unobstructed part of the
primary wave is considered to be a center of a secondary disturbance, these secondary
disturbance generate a wavelets, the interference of these wavelets make a superpositions
which are considered to be points to generate the transmitted field which is part of the
diffracted field or the Kirchhoff's field that can be measured at some typical observation
points after the obstacle. Another suggestion of the physical model for diffraction, by
young, considered that the diffraction arises from the interference between the
unobstructed light and the light reflected from some points in the boundary of the aperture
of the obstacle, but the suggestion was only formulated in a rough qualitative manner. The
theory by Maggi and Rubinowicz showed that the Kirchhoff diffraction integral can be
decomposed to boundary diffraction wave and geometrical wave, the analysis of Maggi

and Rubinowicz interested the diffraction when the incident wave is plane or spherical.

We mathematically analyze, in the second chapter of our thesis, the generalization
of BDWM which contains the evaluation of the vector potential associated with the
Helmbholtz-Kirchhoff integral, the vector potential associated with the a homogenous
plane wave . The third chapter explains the physical analysis of the generalization of the
BDWM. The fourth chapter discuses the application of the BDWM on a half plane
screen. The fifth chapter in our thesis explains the comparison between our solution and
the solution of Ganci. In addition this chapter illustrates the comparison between our

solution and the exact solution.

Our contribution is the analysis of the generalization of the boundary diffraction
wave method and the application of this method on half plane problem. In addition, we
compared our solution with Ganci solution for the same problem (half plane problem).
Moreover, we compared our solution with the exact solution for the same problem by
plotting graphs illustrating the comparison between the two solutions at chosen incident
angles.

In the Literature review, there is no body solved a diffraction problem by usage of the

BDWM.



CHAPTER 2

THE MATHEMATICAL ANALYSIS OF THE GENERALIZATION OF THE
BOUNDARY DIFFRACTION WAVE METHOD

2.1. Introduction

The first step of the generalization of the Maggi-Rubinowics theory of the boundary
diffraction wave is the defining of a new vector potentialW (Q,P) which is associated

with any monochromatic scalar wavefield U(P). Where P denotes the observation point

and Q denotes the secondary source point.

The normal component of the curl of the monochromatic scalar wavefield U(P) with
respect to the coordinates of Q on the surface S surrounding P is equal to the integrand of

the Helmholtz-Kirchhoff integral.

- 1 o otks ks o
curlo W(Q,P).n ="~ U(Q) -~ (=——)-——=-(U(Q)) 2.1)
Arx on- s s on
Where % denotes the differentiation along the inward unit vector n normal to S, and S is
the distance QP.

According to the Huygens and Fresnel principle which studies the diffraction of the
light by an obstacle whose linear dimensions are large compared to the wavelength of the

incident wave, each point of unobstructed part of the primary wave is assumed to be a



center of a secondary wave. The superpositions of these secondary waves are considered
to be the sources of the diffracted field.

Maggi and Rubinowicz showed that the diffraction by an aperture in an opaque screen
may be decomposed into the sum of two terms. The first term represents the wave
originating in every point of the boundary of the aperture (Boundary Diffracted Wave), the
second one represents a wave propagated through the aperture in accordance with the laws

of geometrical optics (Geometrical Wave). The vector potential W (Q,P)has always

singularities at some points Qi on the surface S and the field at P inside S may be

expressed as the sum of the disturbances propagated from these points.
2.2. The Vector Potential Associated With The Helmholtz-Kirchhoff Integral.
For any monochromatic scalar wave filed V(x, y, z, t) in free space, we can write
V(x,y, z) =U(X,y, z) exp( -iot) (2.2)

where (X, y, z) are the Cartesian rectangular coordinates at any typical point P in the wave
field, o denotes the angular frequency and t denotes the time. U is the space dependent

part satisfies the Helmholtz equation.
(V2 +k2)u=0 (23)

where k = w/c, ¢ denotes the velocity of light. The disturbance at any point P within a

volume v bounded by surface S according to Helmholtz-Kirchhoff integral is expressed as:

U(P)= j j V(Q,P).iidS (2.4)

where s is a closed surface bounding v and containing P, and the vector V (Q,P)can be

written as

iks _iks

°c eT gradoU(Q) (2.5)

, 1
V(Q,P)=E U(Q)grade 5




The vector V (Q,P) equals to a suitable chosen vector potential W (Q,P). By taking the

divergence of V (Q,P) with respect to a chosen point Q on the surface S we will get

ks _iks

i
divoV(Q,P) = UQV3 = -GTVZQU(Q) (2.6)

4r

: _ 2
where dive grade= V,, .

iks
The functions —— and U(Q) satisfy the Helmholtz equation, so from Eq. (2.3) we can
S
iks

. . . . €
write the following expression for the function —
S

eiks iks
Vo—=-k’— (2.7.1)
S S

Also, the wave function U(Q) can be expressed with the same expression, then
VoU(Q) =-k*U(Q) (2.7.2)

where k is constant, by substituting from Egs. (2.7.1) and (2.7.2) into Eq. (2.6), it follows
that

divoV(Q,P) = 0. (2.8)
Here, whatever the nature of U is, V (Q,P) can expressed in terms of vector potential
V(Q,P) = curl,W(Q,P) (2.9)

where, W (Q,P) is a vector potential which has always singularities at some points Qi on

the surface S, the Helmholtz-Kirchhoff formula in Eq. (2.4) becomes



U(P)=”curlQ W (Q,P).iids (2.10)

Let's now consider P is a fixed point, so the above equation will be a function of Q, and
the vector potential W (Q,P) must have singularities on the surface S, if W (Q,P) has no

singularities on S then U(p) = 0.

All the singularities of W (Q,P)on the surface S occur at discrete points Q;, Q,

......... , Qn, which are surrounded by a small circles with radii 6y, 62, ......, 65, and the
boundaries of these circles are I'1, I, ........ ,In
“curzgW(Q,P).nds:ZjW.le 2.11)
s i T

where, 1 is the unit vector along the tangent to I'; and dI is an element of I, let's assume
that each point Qi effects on the typical point P by the disturbance Fi(p), so the total

disturbance at p can be expressed as

U(P)=> Fi(P). (2.12)

The disturbance F;(P) can be expressed as the limit of the integral of the vector potential

W (Q, P) associated with each point Q; along I'; when o; — 0

Fi(P)=lim _, j W .1dl. (2.13)
I

With the help of stokes theorem' the surface integral can be reduced to a set of line

integrals. Since the general formula of Eq. (2.12) is

U(P)=>F,(P)+>.G,(P) (2.14)

'Stokes' theorem in differential geometry is a statement about the integration of differential forms which
generalizes several theorems from vector calculus. Taken from "www.answers.com"



Gi(P) are the contributions from all the singularities of U inside the volume v bounded by

S, and equals to

Gi(P)=lim , _, j j V(Q,P).iidS (2.15)

In the above equation, s is the small sphere with radius p; containing point O;, and the
integration is taken throughout the volume inside the surface S, which excludes these

regular points O;.
2.3. Vector Potential for a Homogenous Plane Wave

The incident homogeneous plane wave propagated in the direction specified by the unit

vector m is expressed as:

U(P) = A elKm-T (2.16)

Here, 7 is the position vector of p and A is a constant.

Since 71 is the position vector of Q the vector \% (Q,P)in Eq. (2.5) can be written as:

- 1 eiks eiks
V(Q,P)=—] U(71)grado -
4 S S

gradoU(71) (2.17)

where, U(71) is the incident homogeneous plane wave propagated in the direction which
is specified by the unit vector m at the typical point Q with position vector 71, this wave

may be written as:

U(Q)=A elkm ! (2.18)

Then, the vector V (Q,P) associated with the plane wave U(Q) can be expressed as:



- 1 ikm F1 elks ks ikm F1
V(Q,P)_—4 Ae Vo ——-——Vo(Ae ) (2.19)
¥4 S S

s denotes the distance between the secondary source point Q and the observation point P,

and Vo represents the partial differential with respect to the position vector 71,

0]

Figure 2.1: Illustrating the position of the points Q and P

Since, as it is shown in Fig. 2.1 the vector sesis a function of 71, and equals to 71—7,

where 7 1s the position vector of the observation point P, so Vo can be also taking with

respect to s, and the vector V (Q,P) will be

V(Q,P)=— &s -

4 ds s s or 2.20)

iks iks
A |:eikrﬁ.f1ie _ e” d ki 7 _}

Let's solve the differential in Eq. (2.20) for the vector V (Q,P), to get

ks
ikmr, €
s

By taking e out of the parenthesis, the vector V (Q,P) will be



o ks
V(Q,P)zielk’””1 e—[ik és- lés-ikn"fzés} (2.22)
47 s s

hence, the second term in the right hand side of Eq. (2.22) is in the direction of §, so the

final expression of vector V(Q,P) is

o o ks
V(Q,P) = %el"””‘ © Kik— l) Es—ikﬁlés} (2.23)

N N

és denotes the unit vector in the direction PQ, and equals

o
Il
w |»n|

(2.24)

Where s is the magnitude of 5. Eq. (2.23) can be expressed by means of the vector
potential [1]
ks 1

s
o 2 M (2.25)

W(Q, P) :A eikr;l.fl e / -
s 4x 1 + es - m

Figure 2.2: Illustrates the first point on the aperture that the incident ray hits it

The cross and dot product in Eq. (2.25) can be written as a function of the angle & Fig.

2.2, it can be expressed as:



es X m sin @ 1 (2.26.1)

where @ is the angle between s and the direction of the incident wave m and Q; is the
first point at which the incident wave intersects the surface S Fig. 2.2, assumed that the
point Q; is surrounded by a small circle I'; with radius o; as shown in Fig. 2.3, that ¢ is the

azimuthal angle of the point Q; so

dl=o, dg (2.26.2)

where dI is an element from the small circle I'i and do is an element from the azimuthal

angle ¢. The integral of the vector potential W (Q ,P) along T} is equal to

. iks (= T
Widl=2 [etkmr £ @ xm).1 2.27)

Since, Fig. 2.1, the position vector 7 is equal to the summation of the vector s and the

position vector 7

Fi =8 +7 (2.28)
Multiply each side in Eq. (2.28) with the unit vector m as a dot product, to get
m.7 =ms + mr (2.29.1)
in the exponent of (e) in Eq. (2.27) substitute by means of Eq. (2.29.1)
eiknﬁ.fl _ eiknﬁj eiknﬁ.? (2.29.2)

by substituting from Egs. (2.26.1), (2.26.2) and (2.29.2) into Eq. (2.27), the integral of the

vector potential W (Q,P) along I'; will be

10



(2.30)

Figure 2.3: Illustrates the small circle I'1 surrounding Q;

since G; <« s and the angle @ between s and the direction of the incident wave m is

equal to T when Q is closed to Q; wecansay 6 = oi/s and tan(8/2)=(6/2) then:

= 0 (2.31.1)

Q Oi
2 28

At the intersection point Q,, the vector s is applied at the direction of the incident wave

and in the opposite direction, so the angle between s and m approximately equals 7.
M.sés + sé = s cos (7)+s=0 (2.31.2)

Where, m is a unit vector, from Egs. (2.31.1) and (2.31.2), Eq. (2.30) can be expressed as:

lkm.72”eo Ol 2A lkmr Id (232)

47[ OSO'/

’_Jc_,

Since, the limit of the integral of the vector potential W (Q,P) when oi goes to zero is

equal to the contribution F;(P)from the point of the intersection (Q;) at the observation

point (P).

11



Fi(P)=lim W .1dl. (2.33)

Ol —00 _[
Ti

Then, the contribution from the point (Q,) at the observation point (P) can be expressed

as:

g - 27 ey = =
Fi(P) = lim [%elkmf [2 d(p} _ A olkm T (2.34)
o—0 0

Thus F1(P) is the value of the field which is generated from point Q;, and measured at the

observation point p. This field can be expressed as:

Fi(P) = U(P). (2.35)

2.4. General Expression for The Vector Potential Associated With Any Given Wave
Field.

Let's consider that the associated vector potential is W(71.7), which is associated with

the wave field U(7;), where 7, and 7 are the position vectors of the disturbance source
point Q and the observation point P, respectively.

The wave field may be considered as an angular spectrum of plane wave and expressed as:

UGE) =Uo* (F)+Uo (7)) + Ui (7)) + Ui~ (7)), (2.36)

The wave field U(7,) also can be expressed as a compact form at the singular point Q

with position vector 7,

()= [[4(p)e™ T dp dp, 2.37)

the singular point Q is located in the plan z = p, in the place where this plane intersects the

surface S which, surrounds the observation point p. From the Eq. (2.25) the vector

potential W (Q,P)is equal to

12



W(F,7) = A et A xm_ (2.38)
s 4r 1 +es-m

Since 7, and 7 are the position vectors of the disturbance source point Q and the

observation point P, respectively, the vector potential may be expressed as:

iks

W)= ¢

esx W(7,és). (2.39)
A s

Comparison with Eq. (2.25), the part W(71.és) of the vector potential in Eq. (2.39) can be

expressed as:

W(F.a) = [[A(ple 2

53 dpxdpy (2.40)

es 1s the unit vector of the vectors . By taking the gradient of Eq. (2.37) with respect to

7., Assume that, grad ' means that the gradient is taken with respect to 7, .

grad'U(F) = ”A(p)gradleikﬁif‘dpxdpy (2.41)
the integral in the right hand side of Eq. (2.41) can be written as:
grad'U(7) = ik [[ A(p)e™™ dp dp. . (2.42)

By comparing Eqs. (2.37) and (2.42) we find that grad’ is equal to the multiplication of

ikm . So we can write m as

1
it = 89 _ (k) grad. (2.43)
ik
The part % in Eq. (2.40) can be expressed as a function of grad', to get
+es.m

13



— .7 \-1 1
L (ik) & fld . (2.44)
1+és.m 1+8és.(ik)" grad'
By substituting the above expression into Eq. (2.40)
T (ik)" grad' ik
W(E, 85 )= [[A(p)e™ " dpsdpy . (2.45)

1+és.(ik)" grad'

From the Eq. (2.37) the integral in the above equation equals U(7,) by substitute the

value of the integral by the wave function U(7), to get

(ik)" grad'
1+&s.(ik)" grad'

W(7,8s)= U(7) (2.46)

In Eq. (2.46) the term és.grad' is equal to the operator represents the differential along P
A, Fig. 2.4 [2]

és.grad' = ai (2.47)

O

Figure 2.4: Illustrating the meaning of the position vectors 7 and 7,
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It's concluded from Fig. 2.4, that, the position vector R of the point A, which is a typical
point in the line PA., this line represents the contribution from the infinity at the

observation point P, can be written as:

R=F+15; (2.48)

Tes represents the vector between P and A, by substituting from Eq. (2.47) into Eq.
(2.46)

W(T,8s) I ) grad"U(T). (2.49)

grad'U(T). (2.50)

the factor (ik)™ can be canceled from numerator and dominator

W(T, 8 )= la grad"U(T)). (2.51)
ik +—
ot
Eq. (2.51) can be written as:
0 = .. _ . .
a—W(rl,es)+sz(r1,es)= grad U(T)). (2.52)
T

to be more general along PA.., Eq. (2.52) is valid also for UR), so it may be applied for

R (the position vector of a typical point A on the line PA.,) instead of 7, (the position
vector of the point Q)

15



aiW(f{,és )+ikW(R,& )= gradU(R). (2.53)
T

to solve Eq. (2.53), let's multiply both sides by ek

aiW(R,és)eikf +ikW(R, &) e? = e*? gradU(R). (2.53.1)
T

It is clear seen that the left side of Eq. (2.53.1) is the differentiation of ai [W(R, €s) ek? ],
T

Eq. (2.53.2) verify this

ai\if(f{,és)ei” :aiv”vai,és)eikf +ikW(R, &) e'k?. (2.53.2)
T T

It's concluded from Eq. (2.53.1) and Eq. (2.53.2), that

ai W(R, &) elX7 |= e*7 gradU(R). (2.54)
T

Let’s taking the integral of Eq. (2.54) from (t = sy to T = s) for both sides, after applying it

again for 7,

T=s d [~ 7 T=s 7
j —[W(?l,és)el T]: j "7 gradU(7)o1. (2.55)
T=Soa7’- T=So

By solving the integral of the left hand side of Eq. (2.55), and substituting 7i1=7+s

since, at T = sy the vector s = so€s and T = s the vector § = sos, the Eq. (2.55) will be

. . =5 . _
W(i+58,8) e - Wi +506,8) e = [T gradU (i + 80)07. (2.56)

T=50

In Eq. (2.56), take the second term of the left hand side to the right hand side, to get

16



L T=s B .
W(i+se, &) el = [e* gradU(r + B)97 + W +5.8,8) e (2.56.1)

T=So

From Eq. (2.39), the vector potential W(7,,7) can be rewritten in terms of T andsés, since
Fi=r+s

iks

W(7,7) = W(E+58,T ) = 4i C  Esx W(T+58+,8:) . (2.56.2)
TS

From Eq. (2.56.2), W(?+ S€s, €s) can be rewritten as

W+ sés,és)zw . (2.56.3)
e .

€s

N

Substitute the value of W(F +s&,&) from Eq. (2.56.3) in to Eq. (2.56.1)

X7/ = A T=s . _ .
AW LT) ks _ [ gradU (i + %)z + W(E +58.,8) 5 . (2.57)
iks o
e . T=So
€s
S

By doing some changes in the above equation the vector potential W(F,T) can be

expressed as:

~ [7=s. .
W(ﬁ,f):f—; [ gradU( + )97+ W(i+58,8.) e | (2.58)
T=So

From Fig. 2.4, the following expressions can be concluded

@s=ji+5 (2.59.1)
(2.59.2)
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Then d7 =du and from Fig. 2.4 at 1 = s, the vector 7= and 7 = § the vector i =0,

the formula of the vector potential W(f,,T), by substituting in Eq. (2.58), can be expressed

as:

— 0 . - — .
W(E,T)= 46“ [ [ okl + S]gradU(fl + L)L+ W(E+ 8686,85) elk&]} (2.60)
¥Ry

%)

Since the second term of the right hand side of Eq. (2.60) represents the vector potential

associated with the infinity, so let's take the limit of this term when ,_,.,.

- &s el 8 g
W(E,T)= [e H oradU(F1 + 1)
A 2.61)

és . 1
+—x1im ikso

W(F'F SOES, €s ) €
47s

§0—>00

In general there is a contribution from infinity, denoted by the term Woo , which is

represented by the second term in Eq. (2.61).

—

Woo =& xlim_ . W(i+ 508,86 ) elK* (2.62)
475

§0—>00

W(E,f) is a vector potential which has the form of a spherical wave and is also apart

from W co. The amplitude of W(T,T) is a right angle to the direction joins the two points
Q(#,) and P(7). This vector amplitude equals to the summation of the contributions from

each point A on the half line AxQ.

, io|H
e in Eq. (2.61) is the effective retardation term and equals to e (4] , wWhere %

represents the time needed for the light disturbance to propagate from A to Q.

It appears difficult to obtain a general closed expression for the residual contribution W oo,

Since the field obeys the sommerfeld radiation condition' in half of the space (assume the

'Sommerfeld (1949) was the first to introduce the terminology *‘radiation boundary condition". Sommerfeld
defined the condition of radiation as *“the sources must be sources, not sinks of energy. The energy which is
radiated from the sources must scatter to infinity; no energy may be radiated from infinity into ... the field."
Taken from "www.answers.com"
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half of the space along the z direction), to determine this contribution, let's consider the
asymptotic behavior of the integral in Eq. (2.40) as the point Q moves to infinity in the
direction specified by a unit vector i . From the principle of stationary phase and from Eq.
(2.40), the approximation of W (Rii, &) is W0+ and Wo_ with amplitudes Ay" and Ay
, respectively, appendix A.

ikR

Because of the value of ™", it is evident from the behavior of Wi+ and W,” that with

increasing R, W." increasing exponentially to o or decreasing exponentially to zero

1

according to u,, and the opposite is the case for each plane wave contributing to W™,

where Wi‘ decreased as (u,>0) and increased as (u,<0 ). Then in the representation in Eq.
(2.36), if Eq. (2.36) is to be valid for z — —eo then U; =0, and if it is to be valid for

z —>+oo then U; =0.

Returning to Eq. (2.62), let's decompose W oo into two parts.

Weo = W2 + W (2.63)

WZ is associated with spectral amplitude 4. and W_ is associated with spectral
amplitude 4., when R — o« where (u,<0) or ( u>0) . It can be found, in Eq. (Al) in
appendix A, W, = 0 when ( u,>0) and W_, = 0 when (u,<0) , because R —> oo

For W;, , when ( u>0) the spectral amplitude 4., = 0, then W;, =0, and for W; when
(u,<0) the spectral amplitude A% =0, then W) =0.

It is concluded from the above that if ( u,>0) or (u,<0) and the incident field obeys the
sommerfeld radiation condition as R — o in the half space ( z > 0 ) or in the half space (

z <0 ) then the residual term Woeo= 0.
2.5. Diverging Spherical Wave

In this section we evaluate the vector potential which is associated with the diverging
spherical wave, let's consider the following diverging spherical wave
olkT
U(f) = , (2.64)
r
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which represents the wave field, where T is the position vector of the observation point P,

r is the distance OP let's take the gradient for the above spherical wave with respect to

R (the position vector of a certain point on the line PAo),

ikR
gradUR) = grad{e R ] . (2.65)

By solving the above gradient with respect to the position vector R , to get

gradU(R ) = %x ik "R — R x% . (2.66)

kR

Take the term ¢} as a common factor of the right hand side of the above equation

(2.67)

Multiply and divide the right hand side of Eq. (2.67) by R, to get the spherical wave at the

end of the equation

. ikR
ik 1je . (2.68)

gradU (R): R(E_F R

It is inferred from Fig. 2.4, that the position vector R can be expressed in terms of

riand ues, where pes is the vector between the source point Q and a certain point A on

the line PA., this vector ues can be also expressed in terms of 7 and s.

R = (F1+ u@s) (2.69.1)
H=7-5 (2.69.2)



Substitute the value of R from Eq. (2.69) into Eq. (2.61) instead of (7 + 1@;)

_ és eikS 0 k N ~
)= ; [e' H oradUR)Ip + W (2.70)
V/AY

oo

From Eq. (2.68) get the value of gradU(R), the Eq. (2.70) will be

- ks o . . ikR
-~ .\ ése iku (k1 e -
W(r,r)=—|e "R ——— ol + We 2.71
(7. ) 4775j (R sz R # @71)

[

Take the value %as a common factoring the integrand and multiply and divide the

integrand by R, to get
= ks o . ikR
W(E, )= jelk“R L -
47y R) R

(o)

oL+ Woo (2.72)

The exponent of e can be written as the summation of the two exponents (ikp and ikR)

~ ekt (] eik(R“l) -

The first case [ﬁ:(71+ués)and ,u:O] = R =7#. Then

- iks 0 ik(R+,u) B
W(r,7)= Zm esX 7 j (z‘k—%jeTa,u+Ww (2.74)

(o)

To evaluate the integral in Eq. (2.74), we have to verify that the integrand of the integral in
Eq. (2.74) is equal to the differential D.

ik\R + u
oU| R+7ri.és+ fi R
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Solve the above differential with respect to p to get

1 M) ik( + ) OR

_ 28 2

R+7F.és+ 1 R du R ou
(2.76)

Get the square value of R from Eq. (2.69), and get the differential of R with respect to p

R=(F+ @)= R* = (7.2 + 27y + p1?) 2.77.1)
R _, 2.77.2)
ou

From Fig. 24 and the Eq. (2.77), the following equation can be proven

Fio plés = 1 + i (2.78.1)
OR _ré+il_R (2.782)
ou R R

By substituting from Eq. (2.78) in to the result of the differential D, the value of the
differential D will be

(2.79)
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is equal one, the value of D

=] =

By entering the term % into the parenthesis, and since
will be
eik(R " ’u) 2ik ik(R + y) eik(R " ’u)

D=—— 4+~ " ¢ %2 2.80
2R? 2R? 4R® (280)

With some changing in Eq. (2.80) the value of D can be expressed as:

p=-%___ " % R (2.81)

D=—-¢ S (2.82)

ik(R + ,u)
By taking the term eT as a common factor from the right hand side in Eq. (2.82),

the solution of the differential in Eq. (2.75) equals

L (2.83)

P 1 eik(R + 1) [ : j eik(R )

u| R+7.é+i R

It's concluded from Eq. (2.83) that the integrand in Eq. (2.74) is equal to the differential D,
by substituting from Eq. (2.83) into Eq. (2.74), the vector potential W(¥,T) can be written

as:

~ iks 0 ik(R+,u) ~
W(E,T)=— ésxflji ! Pu+We. (2.84)
475 JOU| R+F .és+i R
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Now, the differentiation cancels the integration, so the vector potential in the above

equation will be

- iks 1 eik(R+u) -
W(7,T)= EsXF| = + W (2.85)
s R+7ri.es+u R
Concluded from Fig. 2.4 that whenfi=0=R =7, and fi=cc =R =, now let's get

the vector potential W(r,,¥) when 1 =0.

W(E,r)=S x| © + W (2.86)
A7s ritri.es n

We =0 (2.87)
Now substituting L for és
iks - - ik(rl)
W)= x| T C (2.88)
s s - -~ S r
i+ —
S

W(F,7)=— © 15k (2.98)

N
R
=
)
)
v | wi
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—

S : : . .
Remove the term — from the above equation to get the vector potential associated with a
s

diverging spherical wave

ik(}"l) iks -
W)= SXP (2.90)
4T n S Sr+Tr.S
From Eq. (2.90) the singularities are given by the condition
sri+7r.s=0 (2911)
W (7. 7)= oo (2.91.2)

This implies that the angle (0) between 7. and s equals m Fig. 2.5, here we have two

cases

L

Q

Figure 2.5: Illustrating the directions of the incident ray and the vector § between the

points P and Q,

1. The surface S does not enclose the singularity O of the spherical wave, then w
has only one singular point on S, this singular point is Q;.
a. W has only one singularity on S.

b. The field is regular within the volume bounded by S , the disturbance F;(P)
associated with Q; equals to U(p)
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Fi(P)=U(P)= (2.92)

where r is the distance OP

2. The surface S encloses the singularity O of the spherical wave and no point Q1 on

S obeys the condition (2.91). Then W ., has no singularity on the surface, and the
field U has one singularity at O within the volume bounded by S. According to Eq.
(2.15) the disturbance G;(P) associated with O must be equal to U(p).

2.6. Converging Spherical Wave

In this section we evaluate the vector potential which is associated with the converging

spherical wave, let's consider the following converging spherical wave

(
U(F)=¢ (2.93)

1 is the position vector of the observation point P, Eq. (2.93) can be written with respect

to R (the position vector of the point A) Fig. 2.5

= (2.94)

By taking the gradient for the converging spherical wave in Eq. (2.94) with respect to R ,
then the result of the differential will be

gradU(R )= % (ik e R 4 e(‘”‘R)[_—lj (2.95)

R2

Take the term e(_ikR)

Eq. (2.95) by R to get

as a common factor and multiply and divide the right hand side of
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~ —ik 1 e(_ikR)
gradU( ):R(T—Fj F (2.96)

It is inferred from Fig. 2.4, that the position vector R can be expressed in terms of

riand ues, where pes is the vector between the source point Q and a certain point A on

the line PA., this vector ueés can be also expressed in terms of 7 and s. From Egs.

(2.61) and (2.69) the vector potential W(T:,T) can be written as:

- iks o
W(5,7)= es: [ ™ gradU .+ 16 )op + W- (2.97)
m (]

By substituting from Eq. (2.96) into the above equation, since R = (7 + 1és), the above

equation will be

B S ks o -ikR
=5 fobt s 1)

oL+ We (2.98)
47

R2

The exponent of e in the above equation can be written as the summation of the two

exponents (ikp and -ikR)

W(T,7)= ésxfj ~ik = o + Wee (2.99)

[e)

oiks 0 ( . j eik(- R+ u)
47y R2

Similar to the derivation in section (2.5) we can verify that the integrand in Eq. (2.99) is

equal to the differential

P | eik(—R+,u)
u|-R+7.és+i R

(2.100)

Then, by substituting in the integral in Eq. (2.99) where the limits if the integration from
Lo to 0
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A= _ © 2.101
U 7 ( )

when 1=0= R =7, and when fI=/ls = R =Ro

Since flo << RoThen

0 ik(- R+ 1) k7, -ikRo
j(—ik—lje u=— L L (2.102)
10 R R2 —ritri.es r —Ro+ri.es+ o Ro

The next expression can be inferred from Fig. 2.4

1

o= [ROZ —(?xés)z}z —(7..8). (2.103)

Take ROZ as a common factor and out of the square root from the square root in

Eq.(2.103)
1
N 2
ﬁ02R0|:1—(r XRO?)Z} —(71.8s) (2.104)
fio=R, —%(? %f“)z +0($)—(F1 @), (2.105)

Then the second term in the right side of Eq. (2.102) will be

o kR | k(7. @)

ot 7 3ot Tl 7 == 7 (2.106)
—nro+ri.es+ o 0 - - 7Xe 0
e —Ro+71.85+R, —; 2y (7.8
By doing some cut short operations in the right side of the above equation
1 kR 2] 2 ik(F.é)
— - =- e (2.107)
—Ro+7i.es+ Uo Ro (an)

By substituting from Eqgs. (2.102) and (2.107) into Eq. (2.99)
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k7 -
W(E.5)=S ésxF! L e, 2 2e'lk(“e°') FW.  (2.108)
—Fi+Fi.eés T (7 xé&;)

iks

Multiply the value ©

2 esxr by each individual term from the two terms in the
TS

parenthesis

- ~ ~ 1 'ik’_’:l lkS _ ~ 2 1 *l.a N
W(r, )= esx{ © }e Gsx 7 zelk(’" &) . (2.109)

A7 —Fi+F.es B 47 (Fxés)

By doing some changing operations in the second term of the right side of the above

equation, to get

iks Sk, (-ik(7.es)+iks) -~ -
W(EF) = e — & |, (e“xrl +We  (2.110)
4y —ri+ri.es r 2718 (?Xés)
According to the Fig. 2.4
S_fl'ej:a_esara (2111)
—S+ri.es= es.r
the second term of the right side of Eq. (2.110) can be written as:
(ik(Fr.e)+iks) . L P
e (e.x7) 1 (&:x7) [—lk(es-rﬂ
——5 = e (2.112)
275 (es><r ) 27 (es><r )
then the associated vector potential in Eq. (2.110) will be
R iks -ikFl = = —ikles. ¥ R
WEF) =i ¢ ] (eer)z N R I 2.113)
475 —Fi+r.es T 275 (o xF )
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CHAPTER 3

THE PHYSICAL ANALYSIS OF THE GENERALIZATION OF THE
BOUNDARY DIFFRACTION WAVE METHOD

3.1. Introduction

The diffracted field Ui(P) is equal to the summation of U (8 )(P) the disturbance

originated at each point in the boundary of the aperture, and z,-Fi(P) the total effect of

the disturbance propagated from certain specific points in the aperture.
U(P)=U(P)+ Y. F,(P). (3.1)

When the wave incident upon the aperture is plane or spherical wave, the last term in right

side of Eq. (3.1) is found to represent a wave disturbance U'“)(P).

W(Q,P) may be associated with any given monochromatic wave field U(p) . The

Helmholtz  Kirchhoff integral represents the disturbance at a point P inside a volume
bounded by a closed surface S or the sum of line integrals taken along small circles
surrounding certain special points Qi on S, these points depend on the location of P and
represent the singularities of the potential on S.

In this part the analysis will be extended to the case when the Helmholtz Kirchhoff
integral is taken over an open surface, and the this theory treats the diffraction in media
containing material obstacles whose linear dimensions are large compared to the
wavelength, and to be more understandable, let's verify it on considered aperture in an
opaque screen, since when the field incident upon the aperture is plane or spherical Eq.

(3.1) becomes
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UdP)=U"(P)+U'"9(p) (3.2)

Where U (G)(p) represents the geometrical optics field generated by Q;, and obeys the

laws of geometrical optics.
3.2. Transformation of The Basic Integral of Kirchhoff s Diffraction Theory.

To understand and analysis Eq. (3.1), let's begin this section with some assumptions

and considerations

)
e

Figure 3.1: Illustrating the obstacle with an aperture

Consider the wave incidents on an aperture p in plane opaque screen Fig. 3.1, the

—iwt

diffraction of this monochromatic scalar wave V(p,t)=U(P)e™", and the evaluated

diffracted field at an observation point P in the half space z>0. With the help of Green's
theorem and Helmholtz-Kirchhoff integral, the Kirchhoff field can be expressed as:

U, (P)=[[V(Q,P)iids (3.3)
B
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the vector \7(Q, P) can expressed as:

~ 1 clks ks
V(t,1)= o U(fl)gradQT T gradoU(T)) (3.4)

1. is the position vector of the point Q which is a typical point in the aperture f§, s denotes
the distance QP, n is the unit vector normal to the plane of the screen and pointing into the

half space (z >0), and k= w/c, c is the velocity of light.

As illustrated before the scalar wave V(Q,P) equals to the curly of specific vector

potential W(Q, P), so Eq. (3.4) can be written as:
V(Q,P)= V(F,T) = curloW(Q,P) (3.5)
Returning to Eq. (2.61), the vector potential is

és eikS 0 k _
[e H oradU(F + 1é5)dp + We (3.6)

[e]

W(Q,P)= W(1.,T) =

s is the distance PQ, es is the unit vector pointing in the direction from P to Q, 1. is the
position vector of Q Fig. 3.2, and W. is a certain residual contribution from infinity,

since W.. = 0 if the incident field obeys the sommerfeld radiation condition in the half
A

y / X

/ /Q\
71
0)
r
B

space.

el
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Figure 3.2: Illustrating the position of the point P and Q

Let's assume that the field U is regular at each point Q in the aperture plane B, the vector
potential W(Q,P) is a function of Q and has singularities at some points from Qy, .. to Qn,

each point Qi is surrounded by small circle of radius ;. So the Kirchhoff field at a typical

point P can be expressed as:
U, (P)=U,(P)+ U, (P) (3.7)

U, (P) is the contribution field at the observation point P generated from the boundary of
the aperture, and U,,(P) is the contribution field at the observation point P generated

from the aperture.

From Egs. (3.5) and (3.3) the second term of the Kirchhoff field can be written as:

Ukz(p)zjﬂjcuzQ\TV(Q,P).ﬁdS:ZFi (P) (3.8)

Since, the contribution Fj(P) from a certain point Q; on the observation point can be
written as the limit, when the radius, of small circle I'; centered at Q, goes to Zero, of the

integration along I'; of the vector potential.

F(P)=lim,_,, [W.id (3.9)
Ii

then the Kirchhoff field is equal to

U, (P)= j W.1dl+ ;lima_)() [w.ra (3.10)
r Ii

The first term of the right hand side of Eq. (3.10) is considered to be the first part of the

Kirchhoff field and written as the following expression:

Ukl(P)szIdlzuB(P) (3.11)
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I' denotes the boundary of the aperture, I'; denotes the boundary of a small circle around

Q; with radius oj, 1 is the unit vector tangential to boundary curves, and ; is the

summation over all the singularities Q; in the aperture . In addition there are two points to
note

1. In the Kirchhoff formula Eq. (3.3) only values of the incident field and its normal
derivatives at points in the aperture enter as it illustrated in the previous part.

2. The expression in Eq. (3.11) for the boundary wave requires the knowledge of the
potential W(Q,P) at each point Q of the boundary of the aperture.

Returning to Eq. (2.14)

UP)=> F(P)+>.G/(P) (3.12)

14

F; are the contributions from all the singularities of W on any closed convex surface S
surrounding P, and G; are the contributions from all the singularities of U inside the

volume v bounded by S.

G,(P)=1im ,_, j j V(Q,P).i dS (3.13)

where p; denotes the radius of sphere s; surrounding a point Qi inside the volume v
bounded by S, and n is the unit vector inward normal into the sphere. Here the surface S
consisting of the aperture B, apportion C of the screen around the boundary of the aperture,
and a large hemisphere D of radius R centered on some point in the aperture p Fig. 3.3, so

U(P) can be expressed as:

U(P):%Fi(P)+;Fi(P)+ZFi(P)+ZG,.(P) (3.14)
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Figure 3.3: Shows the regions of the surface S

Now assume R — o« and the incident field satisfies sommerfeld radiation condition, the

last two terms in Eq. (3.14) will be absent, so Eq. (3.14) can be written as:

U(P)=) F.(P)+ > F(P) (3.15)
p c

One of the following must arise
L All of the singularities of Win the aperture plane are inside B, so no

singularities of W inthea portion C, and Eq. (3.10) can be expressed as:
U, (P)=U®(P)+U(P) (3.16)

the second term of the right side of Eq. (3.16) U(P) represents the disturbance from

the aperture on the observation point (p)

U(P)= ; F(P) (3.17)

IL. No singularities of W are inside B, so Eq. (3.10) will be written as

U, (P)=U"(P) (3.18)
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II1. Some of the singularities of W of the aperture plane are inside B, so Eq. (3.10)
will be

U(P)=)_F.(P)+ > F.(P) (3.19)
p c

3.3. The Maggi-Rubinowics Representation
3.3.1 The Diffraction of a Plane Wave

Consider the diffraction of plane wave at an aperture in an opaque screen is
U(P) = Aek™T (3.20)
From Eq. 2.25 , the vector potential W(Q,P) can be written as:

W(F, 7) = A et et 1 & xm (3.21)
s 411l +ées-m

71 1is the position vector of Q, s denotes the distance from Q to P, and p is the unit vector
of the incident wave. The vector potential now has only one singularity Q,in the plane of
the aperture at the point given by (1 + és - p), this is the point in which the line through
P in the direction of propagation of the plane wave intersects the plane of the aperture Fig.

3.4.

Figure 3.4: Illustrating the position of Q; on the surface S
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"Q; lies inside the aperture or outside it according to the position of P, as it lies in the

direct beam of light or in the geometrical shadow"

U, (P)=U"(P)+U(P) (3.22)
where U®(P)equals U(P), and Eq. (3.22) is the Maggi-Rubinowicz representation of the
Kirchhoff diffraction integral. According to Maggi-Rubinowicz, the second term of Eq.
(3.22) has two forms depending on the position of the observation point P with respect to

the beam of light direction.

1. When the observation point P lies on the direct beam, then
U°(P)=U(P)= D E(P)+ > FE(P) (3.23)
i c
2. [If the observation point P lies on the geometrical shadow, then
U%(P)=0 (3.24)

According to Egs. (3.11) and (3.21) the boundary wave U(B)(P) is now given by the

integral

71 1is the position vector of Q, I' is the boundary of the aperture where Q is located, and 1
denotes the unit vector tangential to the boundary of the aperture.
Eq. (3.22) expresses the diffracted field as a superposition of the boundary
wave U® (P) with the geometrical wave U (P). Notice that
1. In the direct beam the field is the interference of the unperturbed incident field
U(P) with the boundary field U®(P).
2. In the shadow region the field arises from the boundary wave only if the wave

incidents upon the aperture is a spherical wave (diverging or converging), the

above results also valid, but with the followed changing.
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3.3.2. Diffraction of The Divergent Spherical Wave

Consider the Kirchhoff's diffraction of divergent spherical wave is

eikr
Up)=A .

the vector potential associated with the diverging spherical wave can be written as:

ikm.r1 ks
w.p=A_ ¢ L

Vi S47Z'§771+ES'771

es X Fi

3

©)

\P

Z

Figure 3.5: Showing the position of the intersection point Q; in 3-Dimensions.

(3.26)

(3.27)

Where A is the amplitude, 7 is the position vector of Q, and W(Q,P) has only one

singularity Q, in the plane of the aperture, this point is (Q;), which is the first point that

the incident wave intersect the plane of the aperture Fig. 3.5. So the diffracted field of

divergent spherical wave generated from the boundary of the aperture at the observation

point P can be expressed as:
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3.3.3. Diffraction of a Convergent Spherical Wave
Consider the Kirchhoff's diffraction of a convergent spherical wave is

e-ikr

Up)=A

(3.28)

(3.29)

with it's singularity (r=0) on the same side of the aperture plane where the point of

observation P is located. From Eq. (3.10) the Kirchhoffs field is

U (P)=U"(P)+> F,/(P)
Jii

(3.30)

The vector potential associated with the convergent spherical wave can be written as:

—ikm.F1 eiks 1 Bs X 7

WQ,P)=—A—— —_—
7 s 4T sri + es - ri

(3.31)

71 denotes the position vector OQ, and Q; is the singularity point of the vector potential in

Eq. (3.31), this point represent the point of intersection of the plan of the aperture with the

line OP. The contribution from the point Q; depending on the location of the observation

point P will be as the following: Fig. 2.5

1. If the observation point P lies in region I, then

Where, 7 is the position vector of P.
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From Egs. (3.23), (3.30), (3.32.1), and (3.32.2) the diffracted field from the aperture can

be expressed as a geometrical field according to the position of the observation point P, so

the Kirchhoff's field can be written as:

UK(P)=U(B)(P)+;E(P)+;E (P)

Shadow region
U'9(P)=0

I

III

Shadow region
U9 (P)=0

Figure 3.6: Illustrating the position of point P in C S W case

(3.33)

Depending on the location of P Fig. 3.6, the value of the geometrical wave field U(G)(P)

is variant as the following

1. If the observation point P lies in region I, then
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Vi

Figure 3.7: Illustrating the contribution from the boundary of the aperture

The boundary wave Ut )(P) is given by the integral of the vector potential around the

edge of the aperture Fig. 3.7 as:

Uu®(p)= j Woidi= -2 dl (3.35)
T iy

3.3.4. An Approximate Expression for The Vector Potential
There is a vector potential associated with any field, which is represented by geometrical

optics, In this section we will derive this vector potential according to boundary—

diffraction theory. For unperturbed incident field, let's assume the amplitude A(7\) and the

phase k(1) for this unperturbed incident field, which can be expressed as:

UF) = A(F) ) (3.36)

where @ and A are real.

As it is illustrated in Egs. (2.37) and (2.35), the vector potential is written as:
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ks (z'k)_1 grad !

- .. e -
W(r,1)= es U(ry) (3.37)
ars  1+8&.(ik)" grad" (
Let’s take the unperturbed incident field at Eq. (3.36)
UF) = A(F) ) (3.38)

By taking the gradient for the unperturbed incident field in Eq. (3.36) with respect to T

the position vector of Q

grad'U(7\) = A(fl)em(fl) xikgrad'@ + ekq)(Yl)gradlA(fl) (3.39)

k(1)

In the right hand side of the above equation, take the value A(F)e as a common

factor, to be

A7)

grad'U(F,) = (ikgrad1¢ 4 M]A(a)e“’ﬁ‘) (3.40)

Comparison with Eq. (3.36) the value A(T)) ekﬁ)(?]) in the previous equation is equal to the

unperturbed incident field U(7\), substitute U(F)) instead of A(E)ekqj(fl) in the above

equation to get, and take ik as a common factor

1 grad'A(r)

grad'U(r) = ik(gradlqi to AGE)

jU(fl) (3.41)

Transfer the factor ik to the left hand side

1 grad'A(7))

ik'grad'U(t)) = (grad1¢ to AG)

jU(fl) (3.42)
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Where "the second term on the right hand side of Eq. (3.42) is very much smaller than the
first term"[2].

then Eq. (3.42) can be written as:
ik'grad'U(f.) = grad'¢ U(F)) (3.43.1)
By comparison the both side of Eq. (3.43.1), we can say
ik 'grad' = grad'¢ (3.43.2)

From Eq. (3.43.1) the gradient of the unperturbed incident field grad'U(f.) can be written

as:

grad'U(r) = ik grad'g U(7\) (3.43.3)

Substitute the value of grad'U(r\) from Eq. (3.43.3) into Eq. (3.37), to get a new form for

the vector potential W(f1,T)

iks .7 \-1
W(E,F)="—¢ (i)

s ik grad'¢ U(T, 3.44
4 1+es.(ik)" grad' grad'g U(F) (G.44)

Rearrange the above equation, to get the following form for the vector potential W(f1,T)

iks 1 (=
WP =U[FE) S, ﬁgrafi ?ff') : (3.45)
s 4r  1+&.(ik)" grad

Substitute the valve of (ik 'grad') from Eq. (3.43.2) into the previous equation since @ is

a function of T, so the vector potential W(F,, ) will be

iks Lg, grad'g(7\)

~ €
W‘],‘ :U 1 S
(7.1 =U(F) s 4z 1+é,.grad'¢(t)

(3.46)
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Figure 3.8: Illustrating the direction of grad !¢

The vector potential in Eq. (3.46) is seen to be pointing in the direction at right angles to

the line specified in direction by the unit vectorés, and to the normal of grad'@(r) Fig.

3.8, the vector potential in Eq. (3.46) consists of

1. The incident wave

2. A secondary spherical wave
iks

3. A vectorial inclination factor
Lg grad'g(r))
A 1+é:.grad' ()

Notice that, from the Fig. 3.8, the singularities of the of the vector potential W(f.T) are

given by
1+és. grad'¢(t)) =0 (3.47)

grad'¢ represents the unit vector in the direction of the incident ray. Hence, the

singularities in the aperture of the vector potential W(Q,P) are those points Q;, which lie
on the rays that pass through the point (P), Fig. 3.8, depending on the location of P and the

chosen direction of the incident ray.
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3.3.5. An Approximate Generalization of The Maggi-Rubinowics Representation

The Maggi-Rubinowics representation, which expresses the Kirchhoff's field as:
U, (7)=U®(P)+ U (P) (3.48)
Where U(B)(P) denotes the boundary wave, U(G)(P) is the geometrical wave, and Eq.

(3.48) is corresponding to the plane incident wave or spherical incident wave.

The general representation of Kirchhoff's field is

U, (r)=U®(P)+ ;Fi(P) (3.49)

where Fi(P) represents the contribution from a certain points Qi in the aperture, and if the

incident wave is plane or spherical, then

> Fi(P)=U"(P) (3.50)
P

Let's assume that the field incident upon the aperture represented by the form
UF) = A(F) ) (3.51)
and if we use the approximated vector potential in Eq. (3.46)

elks Lg grad' (7))

W ‘]" = U ﬁl $
(7. 1)=U(F) s 4z 1+é,.grad'¢(x)

(3.52)

As what was illustrated in Fig. 3.8, grad'¢(t1) represents the unit vector in the direction

of the incident ray, so we can say

rad'¢d =m 3.53
g (3.53)
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From Eq. (2.25), the vector potential W(Q,P) equals to

iks - —

~ o @ 1 es X m
W(Q,P)= e — 3.54
( ) s 4rl +és - m ( )

Since, grad'¢ =m, then the wave e in the vector potential W(Q,P) can be

) 1 : ]
expressed as 8?7 and approximately equals elk(/j'(r ) =U(Q), then the above
expression of the vector potential will be
ks 1 eoxom

WQ.P)=U(Q (3.55)

From Eq. (3.28), the contribution from the boundary of the aperture is

dl (3.56)

and like what was illustrated in section 3.2 the disturbance from any point Qi at the
aperture is equal to

F.(P)=lim

1 O1—

o j w.1dl (3.57)
e

Substitute the value of the vector potential W(Q, P) into the Eq. (3.57), so the contribution

Fi(P) from (Qi) will be

iks

. = = 1 .. e
E(P)=1lim__, rj W Idi=—limg; rj U@~ —dl. (3.58)

1
s - m

és X m.
1+ e

The singularities are those points Qi, which lie on the geometrical rays that pass through

P. The contribution Fi(P) from (Qi) can be written as [3]

Fi(P) = U(Qi)e'XS A;. (3.59)

46



Where Fi(P) gives the contribution at P from point Qi at the aperture, s; is the distance

QiP, Fig. 3.9, and

1
rr’ )2
A, =( ?j g (3.60)

N

Figure 3.9: Illustrating the notations relating to the evaluation of A

where, r r’and R, Rare the principal of curvature of the wave front of the incident at Qi

and P, and
+1iftR,R7>0, R, >0
€= -1ifR,R;>0, R, <0 (3.61)
1
-1ifR,R] <0
e ™5 accounts for the change in phase associated with the passage of light from Qi to P,

’ )2
[ L j expresses the corresponding change in the amplitude of the light in accordance

R;R
with the geometrical intensity law, and the factor €iaccounts for the phase changes at foci
(the phase anomaly).
The above explanation obtained the contribution from the aperture, which represents the

second term of Eq. (3.49) when the incident wave is not plane wave or spherical wave.
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To get the contribution of the boundary wave, let's consider Eq. (3.56), which represents
the boundary wave arises from the superposition of contributions from each element (dl)
of the boundary of the aperture, this contribution of (dl) at a point (Q(r))) of I' is
proportional to the field at this point and considered to be propagated in the form of a
spherical wavelet.

The directional behavior of the secondary wavelet is represented by the inclination factor

1 sin(8)

1
- _ 3.62
s-m 4w 1 + cos(80) cos() ( )

% P ray

4 X
y
\
W% The plane
Q containing P
/ and incident
(p\
7]

-

Nnciden
ra

<

7

Figure 3.10: Showing the position of angles #and ¢

d

|

where € is the angle between the direction of the vector s and the direction of the
incident ray through Q, and ¢ is the angle between the tangent to boundary I" at Q and the

normal to the plane containing PQ and the incident ray Fig. 3.10.
"Here there are two terms for the asymptotic expression of the boundary diffraction wave

U®(P) at Eq. (3.56)"[3].

The first term is
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() 1 eiksi
U (P)=—2 U(Q)
k2

3.63
475 ( )

27
9% (s +9¢)
o)

2
The value of @iis changing according to the condition 0% (s + %2 as the following

di=ehif az(”%z >0

» 2 (3.64)
di=e 4 if 8(s+%2 <0

The second term of the asymptotic expression of the boundary diffraction wave U™ (P) at
Eq. (3.56) is

iksi . B et
R N e T Ereane] 3.:65)

ami | |mre ) Jm+ e ). 0]

where n; denotes the unit normal to the aperture at Q; pointing into the half space
containing P, ¢; is the angle between the two tangents at Q;, if superscripts ( +, - ) denote
the limiting values at the two sides of Qi when Q+i and Qj; refer to the positive and

negative sides of Q;, respectively.

From Eq. (3.36), unperturbed incident field is

UF) = A(Q)e™ (™) (3.66)

Where O is the phase angle, and from Eq. (3.3) the Kirchhoff field was expressed as

U, (P)= [[ V(0. P)iids (3.67)
B
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where, B is the aperture of the obstacle. Let's write the Kirchhoff integral of the above

equation as the following expression:

U, (P)= IJ g(Q.P)e" @7y (3.68)

To verify the Eq. (3.68), starting with Egs. (3.36) and (3.3), we have to verify that

V(Q.P) = g(Q.P)e @ (3.68.1)

the function f(Q,P) is equal
f(@Q.P)=s+¢(Q) (3.68.2)

the function g(Q,P) is equal
g(Q.P)= Hik - ij(am) - (ikr?z + ngIAjﬁ}A(Q) (3.68.3)

The vector V(Q, P) associated with the plane wave U(Q) can be expressed as:

- eiks eiks
V(Q,P)=U(Q)grado A gradoU(Q) (3.69)
the plane wave U(Q) is equal
U(Q)=A(Q)e" (3.70)

Then, the vector v(Q,P) associated with the plane wave U(Q) will be

. iks ks
V(Q,P)= AQ) ™" Vgrades— - — grado A(Q) ™ 2| 3.71)
S S
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Solve the above gradient with respect to 7 in the vector V(Q,P), since Q is a secondary
source point with position vector 7., and s is a function of 7 as it illustrated before, to get

a new form of the vector V(Q,P)

. . iks iks
V(Q.P)= A(Q)e“‘“"Q){E e i}% [A(Q)ikg Q)™+ grad, AQ)]  (3.72)

S N

take the summation of the exponents of e, and take the value A(Q)eik(s+¢(Q)) as a common

factor from the above equation

o ik 1Y) 1. .~y gradyA(Q) ik(s+(Q))
_(k 1 i gradyAlQ) _
v -(%- L] S[1¢(Q}F e ]A(Q)e (6.73)

Since, 1 zes md #'(Q)=P. [1]
S

The previous equation will be

V(Q,P)= Hik —%)é ; [ ikﬁl+graiQA Jés.ﬁ}A(Q)eik(Sm(Q)) (3.74)

Compare the value of the vector V(Q,P) in Eq. (3.74) with the assumptions in Egs.
(3.68.2) and (3.68.3) to conclude that

V(Q,P) = g(Q,P)e @7, (3.75)

Substitute the value of V(Q,P) from the previous equation in to Eq. (3.68), to get the
Kirchhoff field as a function of the two functions g(Q,P) and f(Q,P)
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U, (P)= Lj V(Q,P).idS = jﬁ[ #(Q,P)e* P Fds (3.76)

Here we have three cases

1. Points inside the aperture at which the phase f(Q,P) of the integrand is stationary
(Ui (D)
2. Points on the boundary of the aperture I' at which f(Q,P) is stationary with respect

to a small displacement along I" (Uk (1 ))
3. Points where the boundary of the aperture I' has a discontinuously changing
tangent (Uk(III ))
It's concluded from case (1), that the singular points Qi in the aperture of the vector

potential W(7.,T) given by Eq. (3.46) are the critical points of the first case, then

U, (7)= ;Fi(P) (3.77)

The second contribution associated with the second case from the boundary of the aperture

and equals to, Eq. (3.63),
U, ()=U,() (3.78)

The third contribution associated with each points Qi at which the tangential derivative of
the phase will change discontinuously at the corner of the boundary of the aperture and

equals to, Eq. (3.65),

U, ()= U (8) (3.79)
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CHAPTER 4

APPLICATION OF THE BOUNDARY DIFFRACTION WAVE METHOD

4.1 Introduction

The boundary diffraction wave method is used to determine the diffracted field
associated with a certain wave, when this wave hits an obstacle with an aperture. The
diffracted field or Kirchhoffs field is composed of two fields, one of them originated from
the aperture when the incident wave transmitted through the aperture with out diffraction,
these waves, according to Huygens principle, the front wave of this incident wave
generate a secondary wave, the interference of the wavelets associated with this wave
make a disturbance on an observation point after the aperture. The second one is the
contribution from the boundary of the aperture, here the incident wave is diffracted, and
the diffracted field originated by this boundary can be measured at the observation point.

4.2 The Application of The Method on a Half Plane Screen

A Source

Incident
Ray m

aperture

Transmitted
Ray

I 4

Diffracted

R
e Boundary of

aperture

P observation
point

Figure 4.1: An obstacle with a half plane aperture with infinity boundary
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Our study is the application of the boundary diffraction wave Method on a half plane
aperture, the boundary of this aperture is located along z_ direction, and applied on it, so
the dimensions of the aperture are from (- o) to (0) in the x_direction, and from (-) to
(o0) in the z_direction, Fig. 4.1.

The incident ray is diffracted when it hits the boundary of the aperture and transmitted
when passes through the aperture itself. The diffracted field at the observation point (P)
can be evaluated by applying the boundary diffraction wave theory, this diffracted field
(Kirchhoff's field) is the summation of the contribution of the field associated with the

aperture and the field associated with the boundary of the aperture.

4.2.1 The Analysis of The Diffracted Ray

The incident ray hits the boundary of the aperture at point (Q) by an angle (¢,) with

the positive side of x-axis, let's consider the point Q is located at the origin, Fig. 4.2, then
the ray diffracted by the boundary, the diffracted field can be measured by assume that the
diffracted ray is diffracted by an angle (¢ ).

Source

P observation

ncident wave

Diffracted wave

Half -plane

2T~ ¢

Figure 4.2: Illustrating the incident ray and the reflection boundary of the diffracted ray

The point Q can be considered as secondary source with an associated contribution which

can be evaluated as:

U (p)=[W.1dl (4.1)
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1 denotes the unit vector tangential to the boundary (here 1 =&z ), dl is an element from

the boundary I', and from Eq.(2.25), W is the vector potential associated with the plane
wave incident at the point (Q) on the boundary of the aperture:

From Fig. 4.2, we can find ( es X m) and (es - m), since m denotes the unit vector of
the incident wave, and es denotes the unit vector of the vector s between the observation
point P and Q. Since we have two boundary of the diffracted ray, so let's analysis both of
them.

I. The Reflection Boundary of The Diffracted Ray

Analysis the two unit vectors in Fig. 4.2, the first unit vector is the unit vector m

which represents the unit vector of the incident ray and can be analyzed in (X, Y) plane as:
i = —cos(go)ex —sin(go)e, . (4.2)

The second unit vector is the unit vectores which represents the unit vector of diffracted

ray and can be analyzed in x-y plane as:
é:=cos(w —¢)e.—sin(z —g)e,. (4.3)
From the relations of trigonometric functions the unit vector of the diffracted ray es may
be written as:
é; =-cos(p)ex —sin(g)e, . (4.4)
Take the cross product of the two unit vectors es and m
és x p=[-cos(p)ex —sin(@)e,|x [~ cos(go)e. — sin(go)e,]. (4.5)

Solve the above cross product of the two unit vectors es and m , to get

é; x p = (cos@sin go—cos gosin g)ez . (4.6)
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In Eq. (4.6) the cross product of es and m can be rewritten as:
é; x p = (sin gocos @ — cos gosin g)ez . 4.7)

From the relations of trigonometric functions the cross product above of the two unit

vectors es and m may be expressed as:
és x m =sin(go—p)ez . (4.8)

Let's find the dot product of the two unit vectors es and m , Fig. 4.2, after analyze them

in the x-y plane
&s - m=[-cos(g)e.— sin((/ﬁ)éyl[— cos(@0)e. — sin(¢0)éy]. 4.9)
Take the dot product of the unit vectors es and m in the above equation to get
&s - m = cos(@)cos(@o)+ sin(¢)sin(¢o). (4.10)

From the relations of trigonometric functions the dot product above of the two unit vectors

es and m may be expressed as:

és - in=cos(@—g). (4.11)
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II The Shadow Boundary of The Diffracted Ray

A source

‘Adent wave M
o

Q Half -plane

2T — ¢

Diffracted wave

P observation
point

Figure 4.3: Illustrating the incident ray and the shadow boundary of the diffracted ray
The cross product and dot product of the unit vectors es and m in the second boundary
case of the diffracted ray can be determine as the following:

Analysis the two unit vector in Fig. 4.3, the first unit vector is the unit vector m which
represents the unit vector of the incident ray and can be analyzed in x-y plane. This vector

is equal to Eq. (4.2)

The second unit vector is the unit vector es which represents the unit vector of diffracted

ray and can be analyzed in x-y plane as

és = cos(@— 7 )ex +sin(¢ — 7)éy . (4.12)

From the relations of trigonometric functions the unit vector of the diffracted ray es may
be written as

é;=-cos(@)ex —sin(e)ey . (4.13)

Take the cross product of the two unit vectors es and m
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&sx i = [- cos(p)ex — sin(g)ey | x [ cos(go )ex —sin(go)e, ]. (4.14)
Solve the above cross product of the two unit vectors es and m , to get
ésx i = (cos ¢sin go — cos gosin g)e- . (415)
In the previous equation the cross product of es and m can be rewritten as:
&sx i = (sin gocos @ — cos osin g)e- . (4.16)

From the relations of trigonometric functions the cross product above of the two unit

vectors es and m may be expressed as:
&sx = sin(go — g)e- . (4.17)

Let’s find the dot product of the two unit vectors es and m in Fig. 4.3 after analyze them

in the x-y plane
&s - m = [-cos(g)ex —sin (¢)éy].[— cos(¢0)ex — sin(¢0)éy]. (4.18)
Take the dot product of the unit vectors es and m in the above equation to get
és - i = cos(@)cos(go)+ sin(¢)sin(¢o). (4.19)

From the relations of trigonometric functions the dot product above of the two unit vectors

es and m can be expressed as:
és - in=cos(g—g). (4.20)

From the above analysis, it is clear from Eqgs. (4.8) and (4.17) that the cross products
és x m =sin(go— @)éez in both sides of the boundary conditions of the diffracted ray are

the same and from Egs. (4.11) and (4.20) that the dot products of és - m = cos(¢ — @o) in
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both sides of the boundary conditions of the diffracted ray are the same, so we will

consider only one boundary to find the disturbance from the boundary of the aperture.

4.3 The Kirchhoff's Field

As it 1s mentioned before in our case study, the Kirchhoff field composed to two parts,
the contribution from aperture and the contribution from the aperture itself. This section

evaluates the field at the observation point, which is originated by these two contributions.

4.3.1 The Contribution from The Boundary Of The Aperture

To evaluate this part, let's substitute from Eqgs. (2.25), (4.8) and (4.11) into Eq.(4.1) to get

the contribution from the boundary of the aperture as:

L . _A\s iks
U (p)= Aer L sin(g —gJez | € 1d. @.21)
47 1 + cos(@—@o) + s

Because the boundary of the aperture is applied on z-axis, and 1 is the unit vector tangent

to the boundary and dl is an element from the boundary, so we can say (1 =¢; ) and

dl=dz" . Since the secondary source point Q is located at the origin, then r; the position

vector of(Q) is equal to (0), so etk _ 1, and the above equation can be written as:

1 sin(¢go—g)e: 5 el

B (P A _-_
U (P)_AM1 + cosP—go) dz’. (4.22)

Source

P(x1,y1,21)

ncident wave

Diffracted wave

Half -plane
____________________________ >

X

2T~ ¢

Figure 4.4: Illustrating the incident and diffracted angles
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From Fig. 4.4,s = \/ ()cl2 +yl+ (z1 - z')z) the limits of the integral according to z-axis is

from (-o0) to (), and ez.ez =1. By substituting in Eq. (4.22)

) ik[\/[xlz vz - z'jzn

U (py= A sin(go—9) e dz’ 423
(P) 41 + cos(@—go) -, \/(x12+y12+(21—2')2) ’ -

to be more easy to evaluate Eq. (4.23), let's assume that

g iEx-reros @20
at assume that the square root in Eq. (4.23) is equal to R
R=yx2 +y? +(z, - 2)). (4.25.1)
and the first and second terms of the square root R is equal to Ry, so
R =x'+y], (4.25.2)
and the third term of the square root R (z, —z") equals to
z,— 2" = Rsh(a) (4.26.1)
—dz" = Rch(a)da . (4.26.2)
From Egs. (4.25.1), (4.26.1) and (4.26.2) the value of R will be
R=[R?+R2:sh*(@)]” 427)

Take R as a common factor from the previous equation to get
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rR=[rR2(1+sn* @)

From the relations of trigonometric functions the square root R can be written as

R=[R2cn* ()",

The final expression of the square root R will be

R =

R.ch() .

By substituting from Eqgs. (4.24), (4.26.1), (4.26.2) and (4.30) into Eq. (4.23)

u®(p)=C

the phase function

w eik(Rlcha)

<. Rcha

(-R,cha)a=-C Ie

¥(a)=cha

let’s take the two first terms in Taylor series' for ¥(x)

¥(cvo)
1!

ikR.cho
"da

(05_050)4'%\1!2(“0)(05_&0)2 +%‘P3(C¥0)(0{—C¥0)3

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Uifn >0 is an integer and f'is a function which is n times continuously differentiable on the closed interval
[a, x] and n + 1 times differentiable on the open interval (a, x), then we have

@) = fa) + T @ —a) +

taken from (www.answers.com)

Ff3(a)
21

(x—a)+---+
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Then the three first terms of the Taylor series will be

¥(a)= 1+%a2.

Substituting from Eq. (4.32) into Eq. (4.31)
U (p)=— C_]ieilecha dor = — C:[’oeilew(a) o
Now substitute from Eq. (4.34) into the above equation, to get
o ile(H—aZj
U (p)= —C_L e > ia.

Separate the exponents of e in the integrand of the above equation

. ikR, . : : :
since, the value e ! is a constant, so the previous equation can be written as

= ikR1ar?
U P)=-ce™ e 2 da .

—o0

By Hankel function, the above integration can be evaluated

md )

UP(p)=-ce™M Y2~

®

By substitute the value of C from Eq. (4.24) into the above equation
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-
__ A sin(po—g) & 14
227 1 + cos(¢— o) kR '

1

u(p) (4.40)

It is apparent from Eq. (4.40) that the field approaches infinity at the shadow region
forg = 7 + ¢o. A function will be defined to cancel this defect of Eq. (4.40). The related

function must be equal to one out of the shadow boundary. This function can be defined as

[6]

flp,zFp,)=plo,xF 4,)x {1 - exp(— 27KR) COS@H (4.41)
where the phase function p(@, 7 F @,) can be defined as
p(0. 7% 4,) = expli%/, Jexpl-|o - (7% 9, )| (4.42)

A comparison between the exact solution and the solution of BDWM is illustrated in
section 5.4.
4.3.2. The Contribution from The Aperture

Consider the incident wave is a homogenous plane wave, and the incident wave is

propagated in the direction specified by the unit vector i, so it can be written as

U(P) = AT (4.43)

¢ denotes the position vector of the observation point P and A is a constant

By returning to equation (2.5) which is

e1ks e1ks

V(Q.P) = | U(Q)grade

- gradoU(Q) (4.44)
Y4 S S

63



where s is the distance between the observation point P and the point Q at the aperture,
and the vector § is equal to71—7, where 71and 7 are the position vector of the point Q at
the aperture and the observation point P, respectively. From Eq. (2.26), the incident wave

at a specific point Q at the aperture can be written as:

U(Q)=Ae (4.45)

By substituting from Eq. (4.45) into Eq. (4.44), the vector V(Q,P) can be expressed as:

e1ks e1ks

V(Q,P) :4l e* T gradq gradoe™ ™' (4.46)
T

S

since the gradient in the above equation is taking with respect to the point (Q), and the

vector s can be expressed as a function on 7. the position vector of Q, then the gradg can

. 0 d : :
be written as — or —, and the above equation can be written as:
S T

iks iks
o 1| ko 00 e 9 iz
V(Q,P)=—/e™"" — - —e"" . 4.47
Q.F) 475[ Js s s Jn (4.47)
By solving the above differential, we get
| 1ks iks ks
V(Q,P):ﬁ eik'“'“(e ik esz ] - : M ik (4.48)
with some changing in the above equation we get
_iks ks
V(Q.P)= i[eikml : (ik - 1} Sl iknz] (4.49)
4 s s s
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Since, the first term in the above equation is in the direction of the vectors , and by taking

~_iks ~
M1 € out of the parenthesis the vector V(Q,P) will be
s

- 1 s e1ks 1
V(Q,P)=—¢""" Kik - —jés - iknﬁ} (4.50)
4 S S

e denotes the unit vector of the vectors. According to the boundary diffraction wave
theory, and like what is illustrated in Eq. (2.4), the disturbance from the aperture at the

observation point p may be expressed as:

U(P)=”\7(Q,P).ﬁds . (4.51)

In Eq. (4.51), S is any closed surface bounding a volume v containing the observation

point P and n is the unit vector inward normal to S. "Regardless the nature of U, the

vector V(Q, P) can always be expressed in terms of a vector potential W(Q, P)"[2]

V(Q,P)=curlo W (Q,P). (4.52)

Let's now consider P is a fixed point, so the above equation will be a function of Q.
The vector potential W(Q,P) must have singularities on the surface S, if W(Q,P) has no
singularities on S then U(p) = 0.

All the singularities of W(Q,P)on the surface S occur at discrete points Qy, Qo, ......... ,

Qn, which are surrounded by a small circles with radii 6y, 6, ...... , on , and the boundaries
of these circles are I'y, I, ........ , I'n , then from Stokes theorem and from Eq. (2.11) the

Eq. (4.51) can be written as:

U(P) = j j curlo W (Q,P).fids=) j w.1dl (4.53)

s— i
1 is the unit vector along the tangent to Iy, dl is an element of I'; and s_ denotes the region
of S which excludes the small circle. Let's assume that each point Qi effects on the typical

point P by the disturbance Fi(p), so the total disturbance at p can be expressed as:
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UP)=) Fi(P). (4.54)

The contribution from each point Qi at the aperture on the observation point P is equal
to the other disturbance from the other points in the aperture, so we can evaluate the
disturbance from one point Q;, and this disturbance represents the evaluation of the other
disturbance originated at the other points and measured at the a certain observation points.
The disturbance Fi(P) from (Qi) can be expressed as the limit of the integral of the vector

potential W(Q,P) associated with each point Qi along I'; when o; — 0

Fi(P)=lim,_,, [ W.TdL (4.55)
I

Now consider (Q;) is the first point at which, the incident wave with the unit vector
p intersects the plane of the aperture Fig. 4.5 and at the point of intersection (Q;), the
angle between the unit vector of the distance (s) between the observation point P and Q
(&) and the unit vector of the incident wave m approximately equals m, i.e.

The angle betweeneésandm =7 .

Fi

P observation
point

Figure 4.5: Illustrating the directions of & and m at point Q,

The vector potential associated with the plane wave at point (Q) equals
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iks - —

~ oo @ 1 es X m
W(Q,P = A e — . 4.56
( ) s 4l + e -m ( )

By substituting from Eq. (4.56) into Eq. (4.55) the contribution from (Q1) at the

observation point P can be evaluated as:

dl. (4.57)

. - A ¢ g € Eoxmll
Fi(p) = lim W.ldl. = — [ ™"
') H’i 475;[ s 1+6 - m

3

Figure 4.6: The angle 6 between € and m

Since @ is the angle between the unit vector of the distance (s) (between the observation
point P and Q;) (&) and the unit vector of the incident wave (m ), Fig. 4.6, so the

inclination factor in Eq. (4.57) can be expressed as:

esj< mﬁ _ sin@ _ 1 ' (4.58)
l+e -m 1-cos@ [6’}
tan| —

In the small circle I'; centered at Q, Fig. 4.7, the element dl can be written as

dl=0o, d¢ . (4.59)
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Figure 4.7: Illustrating the small circle I'i

The position vector 7: of the point Q, Fig. 4.8, can be expressed as:

hl
Il
=
+
“|

(4.60)

where, 7 denotes the position vector of the observation point P and s 1is the vector

between P and Q.

0]

Figure 4.8: Showing the relation between the position vectors of P and Q.

By substituting from Egs. (4.58),(4.59) and (4.60) into Eq. (4.57), where ¢ is the

azimuthal angle, the disturbance from the point Q, at p will be

- A gy T elmSe »
Fi =1 — L_~d 461
(p) = lim n e (I) tan(%) @ (4.61)
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since m and . are approximately applied to each other, then the angle @ is considered to

be very small, then this expression can be written

wn(®4)=(64). (4.62)

Figure 4.9: Illustrating the relation between o, and s

Hence the circle I'i is very small circle, the distance s is very large with respect to the

radius o1 of ['1, so the angle @ can be written as % , Fig. 4.9 and the tangent of the angle

€ can be expressed as:

n(84)=(04)=2-. (4.63)

By substituting from Eq. (4.63) into Eq. (4.61)

. A o 2 ik(rﬁ.Sés-FgEs) o. ><2S
Fi(p) = lim = elknr € ’
0;—0 47 0 s o,

1

dg. (4.64)

From Fig. 4.9, the angle between the incident wave unit vector m and €s the unit vector of
the distance s is very small and the directions of them are opposite to each other, the
exponent of e in Eq. (4.64) can be written as:

i .sés +sés =scos(r)+s=0. (4.65)

From Eq. (4.65), Eq. (4.64) can be written as:
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Fi(p) =lim
o:—0

1

Y 1
A gty [2d¢ (4.66)
4 0

by solving the integral in Eq. (4.66), the contribution from the aperture at the observation

point (P) will be

Fi(p) = %eik T o2z —0) = Ae™™ (4.67)

The total contribution from the aperture and the boundary of the aperture can be evaluated
by summation the contribution of the boundary Eq. (4.40) and the contribution from the

aperture Eq. (4.67), the summation may be expressed as:

The total contribution at (P) = U® (P)+Fi(p) (4.68)
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CHAPTER 5

OUR SOLUTION VERSUS TO GANCI'S SOLUTION OF TWO SPECIAL CASES
OF INCIDENT WAVE AND THE EXACT SOLUTION

5.1. Introduction

The solution of the half-plane diffraction problem by GANCI is examined in a case of
an oblique incident and a case of a normal incident of a unit amplitude plane
monochromatic wave [4, 5].

In this chapter we compare our solution, by the boundary diffraction wave method, with

these two cases for a half plane problem.

5.2. The Comparison of The Solution of The Boundary Diffraction Wave Method
With The Case of Normal Incidence of GANCI Solution for a Half Plane

Problem

The aim of this section is to compare our solution, by the boundary diffraction wave
method, with the solution of GANCI when the incident ray is normal to the plane of the
aperture for the same problem (a half-plane problem) regard that the two methods consider
that the diffracted wave field U(P) at the observation point (P) can be expressed as the

summation of the incidence wave U (P) that represents the unperturbed wave transmitted
through the aperture and the boundary wave U, (P) which is arising at the points Qi of

the boundary line of the aperture, but the formulas used to find the second part U ,(P) of

the diffracted field are a bit different and it is expressed in GANCI solution as[4]

1 " eikS
U P - IKr
() le s 14 cos(s,m)

cos(ﬁ,§)

sin (i, df )i (5.1)
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where the unit vector 7 is orthogonal to both the unit vector m of the incident wave and

the line element d/ of the boundary line T Fig. 5.1.

Incident
y
Ar Ray
N -
S X
VRS g

\ {

o]
(=)
ﬂﬂ'
o)
A
’/
N

Diffracted
P Ray § A

’/

Figure 5.1: Illustrating the normal incident ray

The solution of Eq. (5.1) according to GANCI [4]

] V4
(¢) l(kS0+4J
®B) (o) | cos\¢ e
(P)= 227 1 - sin()  kso (5:2)

In the solution by the boundary diffraction wave method, the formula used to evaluate the

boundary diffraction is

iks . _
U<B>(P):észe L _sinlgo—glez . (5.3)

. s 4zl + cos(@ — @o)
the solution of Eq. (5.3) according to the boundary diffraction wave method is
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(.-
___A sin(po—¢g) & 14
227 1 + cos(é— o) kR

u®(p) (5.4)

Since in the solution by the boundary diffraction wave method, the incident ray m lies at

the origin and as a special case when the incident angle (go= m/,) Fig. 5.2, and the incident

and the diffracted rays lie on the same plane (x-y), the valve of R, is equal to +/x] + y; .

So=Ru. (5.5)
A
y
m |Incident wave
A 4
0 Half-plane
Q -{ .
es ~ X
27—

P(x,y, z)

Figure 5.2: Illustrates the incidence angle ¢, = %
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Incident wave

S

Po Half-plane
- >
X

P(x,y, 0)

Figure 5.3: Illustrates the relation between 5oand R,

In addition Fig. 5.3 can be drawn, and from it the relation between the diffraction angle ¢

and the angle ¢ between 50 and the negative side of x-axis can be expressed as
O=n+p (5.6)

for ¢o=n/, the following relations can be written

—sin(% —¢j = cos(¢n) (5.7.1)

cos[g/ﬁ-%j = —sin(¢). (5.7.2)

From Eq. (5.4), we can get the contribution from the boundary of the aperture by using the
boundary diffraction wave method By substituting from Egs. (5.5), (5.7.1) and (5.7.2) into
Eq. (5.4) we will get

(ikso—mj
®) (o) A cos(¢1) e 4
Y (P)_zﬂ 1 — sin(¢)  Jhkso

(5.8)

The Eq. (5.8) is equal to Eq. (5.2) which represents the contribution from the boundary of
the aperture at the observation point P by using the GANCI solution.
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5.3. The Comparison of The Solution of The Boundary Diffraction Wave Method
With The Solution of The Oblique Case In GANCI Method for a Half-Plane

Problem.

In this case the direction of the incident unit amplitude plane monochromatic wave lies
on y-z plane; and the half plane lies in the x-z plane on the half plane x>0, 8. is the angle

between the incident ray and the edge of the half-plane, Fig. 5.4.

m s Incident wave

Figure 5.4: Illustrating the positions of the incident ray m and the diffracted ray s

In the oblique incidence case the diffracted field U, (P) from the boundary of the aperture

has the following expression [5]:

iks = =
U, (P):L cos(7,5)

j ikre_
4z s 14 cos(s,m)

sin (7, df )i (5.9)

where the unit vector 7 is orthogonal to both the unit vector m of the incident wave and

the line element dl of the boundary line I'. According to GANCI solution for the oblique

incidence case, the solution of Eq. (5.9) is expressed as [5]:

i(ks sinf), + ’:j
U™ (p) 1 cosg e

B 2+/27 1—sing \/kssiné’,-

(5.10)
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In the solution of the boundary diffraction wave method the formula used to evaluate the

boundary diffraction is

iks : A\
( A e™ 1  sin(go—g)ez 4z’

— (5.11)
. s 4z 1 + cos(¢—@o)

since the solution of Eq. (5.11) according to the boundary diffraction wave method is

(ikR - 1”)
A sin(¢o - ¢) P

U(p)=~ 22z 1+ cos(é— o) kR ©-12)
According to Fig. 5.4 the vector of the diffracted ray § can be expressed as:
§ =—ssinf, cos@Pex-ssinf, sinPey+s cosé?l. cosae: (5.13)
so the magnitude of the vector s is
s = \/(— ssin 6, cos o) +(-s siné, sin o) + (s Ccos 0l. cos a/)z (5.14)

since in the solution by the boundary diffraction wave method the valve of R, is equal to

\x. + 7, so from Eq. (5.14), R, can be written as:

R, = \/(— s sin @, cos ¢)2 +(-ssin 6. sin ¢)2 (5.15)

Eq. (5.15) can be rewritten as:

R =ssinf). (5.16)

Since the incident ray lies on the y-z plane, so if the incident angle ¢@ois measured with

respect to x-axis it will be equal to /5.

76



sin(go— 9)
I + cos(¢—¢o)

From Fig. 5.4 the value in Eq. (5.13) can be written as:

sin(do—¢) _ cosg (5.17)
1 + cos(¢—¢o) 1-—sing |

substitute from Egs. (5.16) and (5.17) into Eq.(5.12) to get

(iks sin@, — w)
A cosg e 4

U (p)=-
®) 2\27 1—sing \/ks sin @,

(5.18)

This Eq. (5.18) is equal to Eq. (5.10) which represents the contribution from the boundary
of the aperture by using the GANCI solution. Inaddition, It can be concluded from Fig.
(5.1) and Fig (5.4) that the limits of the integral in the solution of the boundary diffraction
wave method (from z equals to -o0 to z equals to o) are corresponding to the limits of &
(from -/, to m/;) in GANCI solution.

It's concluded from the above analysis, that the contribution from the boundary of the
aperture by using the GANCI method is equal to the contribution from the boundary of the

aperture by using the boundary diffraction wave method.
5.4. The Comparison Between The Exact Solution And BDWM Solution

This section illustrates a comparison between our solution to evaluate the diffracted
field and the exact solution to evaluate the same field which originated from a perfectly
conducting half plane. The solution for this problem by the Boundary Diffraction Wave
Method is an approximate solution. Both solutions is multiplied by the transition function

to cancel the defect approaching infinity at the transition regions. When multiply the

Jo

The Following graphs illustrate the comparison between our solution and the exact

transition function which is expressed in Eq (4.41) by our solution we will get
(z’kssin&i —lfj
Ub(p)=—_D__COP e '
227 1-sing \/kssmel.

+
2

X p(¢,7z$¢o)x[l—ex —27TKRI

solution, since both of them is multiplied by the transition function:
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Figure 5.5a: Diffracted fields from perfectly conducting half plane
i 5
(BDWM and exact solution, ¢0 = A )
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Figure 5.5b:Diffracted fields from perfectly conducting half plane

(BDWM and exact solution, ¢, = 2% )

78



D5 T T T T T T
: : : : D| wmmmmmEyact
R I - . YT TRT. B Dt
(il ........ ........... ........... .......... .......... .......... _
- [F 35| sianiis ........ -. .......... ........... ........... ........... .......... . ......... .
2 5 ; : : : : :
:5 03 ! B B I ........... P e . LT il
2 ; : : : : 5 :
ED_QE ........... B S e e R o PR ........... et
:HE g . : i :
=
= Eepelar el s e R R i e A R 2
A i . : i
= Oifg s g e ey ........... ........... R .......... .......... B a
O 1k-oooe- s ........... ........... ........... .......... ......... il
0os ......... .......... .......... ........... ........... ......... o
3 : i R e e
] 50 100 150 200 250 300 3580 400

The diffracted angle in degree
Figure 5.5¢: Diffracted fields from perfectly conducting half plane

(BDWM and exact solution, ¢, = 4% )

It is concluded from the comparison between the exact solution and the BDWM
solution and according to the curves plotted in Fig. 5.5 that the curve of the diffracted field
which is plotted according to BDWM goes to zero when the diffracted angle is equal to

the incident angle. In addition, for a certain value of the diffracted angle and when the

incident angle is equal to % the difference between the two diffracted fields which are

originated by the two methods is the biggest compared with the differences between the
two diffracted fields at same diffracted angle in the cases of ¢, = 2% and ¢, = 4%

Moreover, the curve of the diffracted field which is plotted according to the exact solution
has always a lowest value when the diffracted angle is equal to the incident angle.

Furthermore, In the solutions of the two methods, the highest value of the field occur

always at ¢ =7 +¢,, since the angle between the highest and the lowest values of the

diffracted field is equal to 7 .
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CHAPTER 6

CONCLUSIONS

The diffraction is the bending of waves around the edge of an obstacle, when light
strikes an opaque body, for instance, a shadow forms on the side of the body that is
shielded from the light source. Ordinarily, light travels in straight lines through a uniform,
transparent medium. But these light waves that just pass the edges of the opaque body are
bent.

According to Huygens and Fresnel principle each point of unobstructed part of a
primary wave is assumed to be a center of the secondary disturbance and the diffracted
field is considered to arise from the superposition of this secondary disturbance.

In addition, each monochromatic scalar wavefield has a vector potential which is
associated with that scalar wavefield. This vector potential has property that the normal
component of its curl, taken with respect to the coordinates of any point on a closed
surface surrounding an observation point is equal to the integrand of the Helmholtz-
Kirchhoff integral. This property is exploit to evaluate the diffracted field is originated by
the diffraction of the scalar wave by an obstacle whose linear dimensions are large
compared to the wavelength. Moreover, there are singularities for the vector potential at
some points Qi on the surface S, the total field can be evaluated by sum of the

disturbances of these points at a certain observation point.

The generalization of the Maggi-Rubinowics theory of the boundary diffraction wave is
the defining of the new vector potential which is associated with any scalar wavefield.
The first step of our thesis is the expression of the Helmholtz-Kirchhoff formula in terms
of the vector potential to exploit the new formula of Helmholtz- Kirchhoff integral to
evaluate the disturbance from certain points Qi on a surface S at a typical observation
point, the vector potential must have singularities on the surface S otherwise the

disturbance at the observation point will be zero. For any homogeneous plane wave
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incident on an obstacle with an aperture, the value of the field generated from point Q at
the obstacle and measured at an observation point P after the aperture is equal to the origin
homogeneous plane wave field that incident on the aperture, since the incident plane wave
on the aperture is transmitted unpertureped wave and the wave incident along the line
from the main source point to the observation point. Furthermore, there is a general
expression for the vector potential associated with any given wave field, the thesis
evaluated this expression for the vector potential, since the residual contribution of the
vector potential is equal to zero. The general expression for the vector potential associated
with a diverging spherical wave is same as the expression of the vector potential
associated with the plane wave, which is studied in the application of the boundary
diffraction wave method in our thesis as incident wave, also when the incident wave is a
diverging spherical wave the disturbance at the observation point, which is associated with
any point Q which is located at the aperture is equal to the incident wave field it self.
Moreover, the vector potential with the converging spherical wave field is evaluated on

the thesis.

When a monochromatic scalar plane wave incident on a plane opaque screen with an
aperture, the scattered field (Kirchhoff field), which is originated by this plane opaque
screen with aperture and measured at the observation point, is equal to the summation of
the disturbance from the boundary of the aperture and the contribution from the aperture
itself.. The disturbance from the aperture is depending on the location of the observation
point and the vector potential associated with the incident plane wave has only one
singularity point in the plane of the aperture, this singularity point located at the first
intersection point which is located between the incident ray and the plane of the aperture,
at this point the angle between the incident and transmitted rays is equal to =, also the
location of the singularity point is depending on the location of the observation point
whether the observation on the direct beam or in the geometrical shadow. As a result the
value of the of the transmitted field is depending on the location of the observation point,
since if the observation point located in the geometrical shadow, the transmitted field is
equal to zero whereas if the observation point in the direct beam, the transmitted field is

equal to the incident plane wave field.
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APPENDICESY

The Expressions for the Residual Contribution Woo [2]
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