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ABSTRACT

NUMERICAL COMPUTATION OF INTEGRALS IN HIGHER DIMENSIONS

Baydar, Hakan
M.S.c., Department of Mathematics and Computer Science

Supervisor: Assist. Prof. Dr. Emre Sermutlu

August 2006, 35 pages

Quadrature refers to any method for numerically approximating the value of
definite integral f; f(z)dz. The goal is to attain a given level of precision with the
fewest function evaluations.

The factors that control the difficulty of a numerical integration problem are the
dimension of the integral and the smoothness of the integrand f.

Any quadrature method relies on evaluating the integrand f on a finite set of points
(called the abscissas or quadrature points), and after processing these evaluations to
produce an approximation to the integral. Usually this involves taking a weighted
average.

The goal is to determine which points to evaluate and what weight to use so as to

maximize performance over a broad class of integrands.

v



This study reviews Monte Carlo and Newton-Cotes methods of numerical approx-
imation of integrals on both rectangular and nonrectangular regions and contains
new routines that can evaluate integrals up to 7 dimensions over arbitrary regions in
MATLAB.

The work aims to compare the methods and give some approximation results using

our self-written code.

Keywords: Numerical integration, Quadrature, Monte Carlo, Newton-Cotes, MAT-

LAB



Oz

YUKSEK BOYUTLU INTEGRALLERIN NUMERIK HESAPLANMASI

Baydar, Hakan
Yiksek Lisans, Matematik-Bilgisayar Bolimi

Tez Yoneticisi: Yrd. Dog¢. Dr. Emre Sermutlu

Agustos 2006, 35 sayfa

f; f(x)dz seklindeki belirli integralin niimerik olarak yaklagtirilmasi i¢in herhangi
bir method kullanilmasina tiimlev alma denir. Amag en az fonksiyon degerlendirimi
ile verilen duyarlilik seviyesinde sonug elde etmektir.

Niimerik bir integral probleminin zorlugunu kontrol eden faktorler integralin boyutu
ve fonksiyonun puriizsuzlugudiir.

Her tumlev alma methodu, integrali alinan f foksiyonunu sinirh sayida noktada
(absis veya tiimlev alinan nokta) hesaplamaya dayanir, daha sonra bu degerler bir
yaklagtirim elde etmede kullanilir. Genelde bu agirlikli ortalama almayi gerektirir.

Hedef hangi noktalarda fonksiyonun hesaplanacag ve hangi agirhiklarin kullanila-
cagidir, Oyle ki integrali alinan fonsiyonlarda en genig sinifta maksimum performans

elde edilsin.

vi



Bu aragtirmada integrallerin niimerik yaklagtirilmasinda kullanilan Monte Carlo
ve Newton-Cotes metodlar1 gozden gecirilmigtir ve MATLARB ile yazilmig 7. dereceye
kadar integralleri herhangi bir bolgede hesaplayabilen yeni programlar icermektedir.

Bu calismada amac metodlar:1 karsilagtirmak ve kendi yazdigimiz kod ile baz

yaklagtirim sonuglarini vermektedir.

Anahtar Kelimeler: Numerik integral, Tiimlev alma, Monte Carlo, Newton-Cotes,

MATLAB
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CHAPTER 1

Numerical Integration in 1- Dimension

1.1 Newton-Cotes Rules

The basic integration rules use one polynomial to model f(z) in the interval
[a,b] for the estimate of f; f(x)dz. The interval [a, b] is divided into equal parts, the
integrand f(z) is interpolated at the division points, and the resulting polynomial
is integrated to estimate the integral. We set x; = a + 4h, i = 0,1,2,...,n where
h = [b — a]/n. The rules are of two types : the closed formulas use all the points
z;, and the open formulas use all but the end points. Both kinds of formulas are

called Newton-Cotes formulas : They are of the form

/bf(x)dm ~ dhiwif(mi) closed (1.1)
b anfol

/ f(z)dx = dh Zwif(mi) open (1.2)
@ i=1

Practically, the constant d may be multiplied into the w. The table below gives

the values for the formulas for models of degree 0 through 6.



n = Polynomial degree in the model for f(z)
d = coefficient of h in equation
Note that the formulas are symmetric about the middle

CLOSED FORMULAS, i = (b —a)/n

n d wo w1 W9 w3 Wy W wWe
0 1 1

1 1/2 1 1

2 1/3 1 4 1

3 3/8 1 3 3 1

4 2/45 7 32 12 32 7

5 5/288 19 75 50 50 75 19

6 1/140 41 216 27 272 27 216 41

OPEN FORMULAS, h = (b—a)/(n + 2)

n d w1 w9 w3 Wy Wy wWe wry
0 1 1

1 3/2 1 1

2 4/3 2 -1

3 5/24 11 1 1 11

4 6/20 11 -14 26 -14 11

5 7/1440 611 -453 562 562 -453 611

6 8/945 460 -945 2196 -2459 2196 -954 460

Some of the common closed Newton-Cotes formulas with their error term are as
follows

3-point Newton-Cotes Rule (Simpson’s Rule) :

| @ G1s ) + 41 (@) + S ) (1.3

5-point Newton-Cotes Rule (Boole’s Rule) :

/ Pl m 2RT (n0) + 327 () +12f 02) + 32 (a) + T ()] (L)

7-point Newton-Cotes Rule :
/ f(z [41f(3:0)+216f(m1) +27f(z2) + 272f (z3)+ (1.5)

27f(z4) + 216 f (75) + 41f (6)])



For the Simpson’s Rule, each of the rule has the following properties: All of the
weights are positive, and all but one of the weights are equal. [1] Higher order rules
are not useful because they contain negative coefficients which results computation

errors.

1
Example 1.1.1: Let’s evaluate/ z?e %dz.
0

The table below gives the results using different methods.

Table 1.1: Results of NC method

Result Error

Exact | 0,16060279414279 0
NCy | 0,16060429956291 | 1,50542x1076

NCy | 0,16060280536960 | 1,2268x10~%

NCs | 0,16060279421974 | 7,69521x 10~

1.2 Composite Rules

The integral of an interpolating polynomial is rarely good enough to make an accurate
estimation. The standard solution to this accuracy problem is to use composite

rules.

The idea of the composite rules is to use the fact that if a < ¢ < b;



/abf(m)d:n - /acf(m)dm —i—/cbf(m)dm (1.6)

by dividing the interval of integration into a number N, say, of equal subintervals and

applying a low order quadrature rule to each subinterval.[2]

Thus the composite composite trapezoidal rule using N intervals and h =

(b —a)/N becomes

N-1

b
/ F(z)dz zg f@)+ 1) +2 Y fla+ih) (1.7)
a i=1

The composite trapezoidal rule with N intervals uses N + 1 nodes.

The composite Simpson’s rule with N intervals uses 2N + 1 points in all since
the basic rule uses midpoint of the interval as well as end points. The stepsize is

therefore h = (b — a)/2N and the resulting composite formula is

b h N—-1 N-—1
/ fla)ds ~ 5 | f(a) + £(b) +2 Y flatin) + 44> fla+ (2i+1)h)|  (1.8)
a i=1 i=0

One way of finding an accurate result is to begin with a small value of N and then
repeatedly to double the number of intervals until two successive estimates agree to
within a desired tolerance. This allows the efficient use of the previous results by only

computing the new function values.

In the figure below composite trapezoidal rule is applied:



|
[ -
i =1p £ a3 i) g I T'6 r7=h

Figure 1.1: Composite trapezoidal rule sampled on 1-dimension

1.3 Adaptive Quadrature

The composite quadrature rules necessitate the use of equally spaced points. Typ-
ically, a small step size h was used uniformly across the entire interval of integration
to ensure the overall accuracy. This does not take into account that some portions of
the curve may have large functional variations that require more attention than other
portions of the curve. It is useful to introduce a method that adjusts the step size to

be smaller over portions of the curve where a larger functional variation occurs.

Adaptive quadrature involves careful selection of the points where f(z) is sampled.
We want to evaluate the function at as few points as possible while approximating
the integral to within some specified accuracy. A fundamental additive property of a

definite integral is the basis for adaptive quadrature. If ¢ is any point between a and



b, then

/abf(m)dm = /acf(m)dm + /cbf(m)dm (1.9)

The idea is that if we can approximate each of the two integrals on the right to
within a specified tolerance, then the sum gives us the desired result. If not, we can
recursively apply the additive property to each of the intervals [a; ¢] and [c; b]. The
resulting algorithm will adapt to the integrand automatically, partitioning the interval
into subintervals with fine spacing where the integrand is varying rapidly and coarse

spacing where the integrand is varying slowly.

1.4 Gaussian Rules

All the formulas of Newton-Cotes use values of the functions at equally spaced
points. This is convenient when the formulas are combined to form the composite
rules, but this restriction of using equally spaced points can significantly decrease the

accuracy of the approximation.

Gaussian quadrature uses evaluation points, or nodes that are not equally spaced
in the interval. The nodes 1, z9, ... T, in the interval [a, b] and coefficients ¢, ca, ..., ¢,

are chosen to minimize the expected error obtained in the approximation

b n
[ r@iex Y eis@) (1.10)
a i=1

To minimize the expected error, we assume that the best choice of these values is that

which produces the exact results for the largest class of polynomials. [3]



The coefficients ¢q, ¢, ..., ¢, in the approximation formula are arbitrary and the
nodes z1,Z9, ..., T, are restricted only by the fact that they lie in [a, b], in the interval

of integration.

This gives 2n parameters to choose. If the coefficients of a polynomial are con-
sidered parameters, the class of polynomials of degree at most 2n — 1 also contains
2n parameters. This is the largest class of polynomials for which it is reasonable to
expect the formula to be exact. For the proper choice of the values and constants,

exactness on this set can be obtained.[3]

To illustrate the procedure for choosing the appropriate constants, we will show
how to select the coefficients and nodes when n = 2 and the interval of integration is

[~1,1].

Example 1.4.1:

Suppose we want to determine ¢y, co, 1 and zo so that the integration formula

1
/1 f(x)dx = c1 f(x1) + cof (x2) (1.11)

gives the exact result whenever f(z) is a polynomial of degree 2(2) — 1 = 3 or less,
that is when

f(z) = ag + a1z + asz® + azz® (1.12)

for some collection of constant ag, a1, as, and ag. Because

/(ag + a1z + agx? + asx®)dx :ao/ld:v—i-al/:vdm+a2/:v2d:v+a3/m3dm (1.13)

this is equivalent to showing that the formula gives exact results when f(z) is 1, z, 22

and z3. This is the condition we will satisfy. So, we need to find ¢, ¢2, £1 and zo



with

1 1
01.1+62.1:/ ldz =2, c¢1.x1 + co.x9 :/ zdz = 0,
—1 -1

1 ) 1
€1.0% + co.15 = / z2de = 3 €1.75 + ¢o. 15 = / z3dz = 0.

-1 1

Solving this system of equations gives the unique solution

_ V3
R

“|%

c1=1, co=1, =z , and xzo =

This result produces the following integral approximation formula:

/lf(x)dx ~ f (%) +f (?)

which gives the exact result for every polynomial of degree 3 or less[3].

(1.14)

(1.15)

(1.16)

(1.17)

The technique in Example 1.4.1 can be used to determine the nodes and coeflicient

for formulas that gives exact results for higher-degree polynomials, but an alternative

method obtains them more easily[3]. The set that is relevant to our problem is the set

of Legendre polynomials a collection Py(x), Py (x),-- , Py(x),- - - that has the following

properties:
e For each n, P,(z) is a polynomial of degree n.
o f_ll P;(z)Pj(z)dz = 0 whenever i # j

The first few Legendre polynomials are

Py(x) =1, Pi(z)=2, Py(zr)=2z"—=,

(1.18)

(1.19)

The roots of these polynomials are distinct, lie in the interval (—1, 1), have a symmetry

with respect to the origin, and, most importantly, are the nodes to use to solve our

problem.



The nodes z1, x3, . ..,y needed to produce an integral approximation formula
that will give exact results for any polynomial of degree 2n — 1 or less are the roots
of the nth-degree Legendre polynomial. In addition, once the roots are known, the
appropriate coefficient for the function evaluations at these nodes can be found from

the fact that for each i =1,2,...,n we have

o LV @—z)(z—x2) ... (z — 2 1) (@ — zig1) ... (z — ) i
“= /1 (i —x1)(wi —22) ... (T — i 1) (T — ig1) - - (75 — mn)d (1.20)

However, both the roots of the Legendre polynomials and the coefficients are exten-
sively tabulated, so it is not necessary to perform these evaluations. A small sample

is given in Table 1.2 [3].

This completes the solution to the approximation problem for definite integrals of
functions on the interval [—1,1]. But this solution is sufficient for any closed interval
since the simple linear relation

_2m—a—b

t
b—a

(1.21)

transforms the variable z in the interval [a, b] into the variable ¢ in the interval[—1, 1].

Then the Legendre polynomials can be used to approximate

[ o= [ g (B .

Using the roots 7y,1,7.2,...,7n,n and coefficient ¢, 1,¢,2,...,¢yn given in table 1.2,

produces the following approximation formula, which gives the exact result for a

polynomial of degree 2n + 1 or less. The approximation formula is

b —a . - n,J
/Gf(:v)d:vzb2 jzlcn,jf<(b “)réﬁH“) (1.23)




Table 1.2: Table of Abscissa and Weight for Gaussian Integration on [-1, 1]

Roots 7, ;

Coefficients ¢, ;

0.5773502692

-0.5773502692

0.7745966692

0.0000000000

-0.7745966692

0.8611363116

0.3399810436

-0.3399810436

-0.8611363116

0.9061798459

0.5384693101

0.0000000000

-0.5384693101

-0.9061798459

1.0000000000

1.0000000000

0.5555555556

(0.8888888889

0.5555555556

0.3478548451

0.6521451549

0.6521451549

0.3478548451

0.2369268850

0.4786286705

0.5688888889

0.4786286705

0.2369268850

Example 1.4.2:

Consider the problem of finding approximations to f11'5 e*""’de, whose value to
seven decimal places is 0.1093643. Gaussian quadrature applied to this problem

requires that the integral be transformed into one whose interval of integration is

[—1,1]:

15 L 2 (1.5—1 1! >
/ o :/ o [(5-1)t41541)/2] g — _/ o (145)2/16 gy
1 -1 2 4J

10

(1.24)



The values in Table 1.2 give the following Gaussian quadrature approximations

n = 2:

/1'5 e dr ~ %[e—(5+0.5773502692)2/16 + e—(5—0.5773502692)2/16] = 0.1094003, (1.25)
1

n = 3:
L5 2 1 2 2
/ e " d ~[(0.5555555556)c (FHO-TTH00092/I0 + (0.8888888889)e (/10
1
+ (0.5555555556)¢ (5-0-7743966692)2/16) — () 1093642 (1.26)

Using Gaussian quadrature with n = 3 requires three function evaluations and pro-
duces an approximations that is accurate to within 10~7. The same number of
function evaluations is needed if Simpson’s rule is applied to original integral using

h = (1.5 —1)/2 = 0.25. This application of Simpson’s rule gives the approximations
1.5 2 2 1 1.95)24.0(1.5)2
/ e ¥ dr ~ - <e— + 4¢=(1:25) e > =0.1093104 (1.27)
1

a result that is accurate only to within 5 x 107°.

For simple problems, the Composite Simpson’s rule may be acceptable to avoid
the computational complexity of Gaussian quadrature, but for problems requiring ex-
pensive function evaluations, the Gaussian procedure should certainly be considered.
Gaussian quadrature is particularly important for approximating multiple integrals

since the number of function evaluations increases with dimension of integrals.

1.5 Monte Carlo Method

The Monte Carlo method is an alternative way of computing integrals numerically

which is not based on polynomial interpolation. In this method we choose random

11



points between the integral limits. The weight of each point in the calculation is
assumed to be 1, then we evaluate the function value at each random point z, so the

desired solution is the average of these values, that is

b n
/a f(x)dx ~ %;f(:v,), where a<z;<b (1.28)

As guessed, the effectiveness of the method is depending on the number of points
used, that is the more number of points we use, the better result we obtain. The error

in the approximation decrease as ﬁ, where n is the number of points, as proved in

[4].

12



CHAPTER 2

Numerical Integration in Higher

Dimensions-Rectangular Regions

In his paper Ronald Cools classifies the integrals into 3 ranges [5]:

Range I: integrals of dimensions 3 to about 6 or 7
Range II: dimensions 7 or 8 to about 15

Range III: dimensions greater than 15

In Range I, they considered adaptive methods based on rules exact for polyno-
mials are the most important tools. Range II was considered to be borderline range.
Here much depends on the smoothness of the integrand. In this range adaptive Monte
Carlo methods definitely become competitive, but only low accuracy is achievable.
Range IIT was considered ’really high’ dimensional. Monte Carlo is applicable. One

should not hope for more than 2 digits accuracy.

For the approximation of low dimensional integrals a reasonable collection of tech-
niques and software is available. The approximation of multiple integrals is however

a different problem. In this research area, one suffers from so-called curse of dimen-

13



sionality; the computational complexity grows exponentially with the dimension [5].’

2.1 Newton-Cotes Method

The method used in one dimensional integrals can be modified to use in the
approximation of multiple integrals[6]. For the sake of simplicity lets consider the

double integral

/ab/cdf(x,y)dydm - /R/f(x,y)dA: /ab </Cdf(x,y)dy> i (21)

for some constant numbers a, b, ¢, d and in the same manner A is a rectangular regions.

Simpson’s rule is a way to illustrate the approximation, also other rules can be used.

To apply the Composite Simpson’s rule, we divide the region R by partitioning
the intervals [a,b] and [c,d] into even number of subintervals n,m, respectively. So
the step sizes are h = (b — a)/n and k = (d — ¢)/m. The preferred rule is applied

firstly to approximate

d
/ f(z,y)dy (2.2)

We choose Composite Simpson’s rule, let y; =c+ jg,7=1...,m

d k (m/2)—1 m/2
[ f@ndym g | fa) 42 3 ) 43 i) + fom)
¢ j=1 j=1

(2.3)

Evaluating over the second integrand

14



¥
-

Figure 2.1: Simpson rule sampled on 2-dimensions where m=4, n=2

m/2)—1

/ab/cdf(:n,y)dmdy zg[/abf(x,yo)derQ(

m/2

b
+4 f(z,y25-1)dx + [ bf (x, ym)dx]
;/ﬂ 27—1 /a

b
/ f(x,y25)dx (2.4)

y=1

Again using the Composite Simpson’s rule (1.8) by dividing the interval of inte-

gration [a, b], we approximate each integral above.

The same technique can be used for the approximations of higher order integrals.
If we use n function evaluations in one dimension, then we will use n? function eval-

uations in d dimensions.

15



2.2 Gaussian Quadrature

An alternative method to approximate multiple integrals is Gaussian quadrature.

Using a 2-d integral as an example we have

/ab /Cdf(m,y)dydx ~ gwi </Cdf(x1-,y)dy> (2.5)

So

b pd N N
//f(:v,y)dydmzZZwivjf(xi,yj) (2.6)

i=1 j=1
where (w;, z;) and (v;,y;) are the weights and abscissae of the rules used in the re-

spective dimensions.

Higher dimensional integrals can be approximated by the same strategy.

2.3 Monte-Carlo Method

In Monte Carlo integration the method to evaluate [ fR f(x,y)dydx is that; cho-
sen within the rectangular area A, the integral of the function f is estimated as the
area, of A multiplied by the average value of the function evaluations at the points

below the curve. That is;

7 AZ?zl f(ziyi)

g (2.7)

The dimension change does not affect the procedure.

The fundamental disadvantage of Monte Carlo integration is that its accuracy

increases only as the square root of N, the number of sampled points. If your accuracy

16



requirements are modest, or if your computer is good enough in performance, then

the technique is highly recommended.

17



CHAPTER 3

Numerical Integration in Higher

Dimensions-Nonrectangular Regions

In general a multiple integral over a nonrectangular region is of the form

b U1 Unfl
I:/ / flx1, o, ... xy)depdey 1 ... dzy (3.1)
a Ll Ln 1

where L1 = Ll(,’El), U1 = Ul(fEl),...Ln,1 = Ln,1($1,$2,...,$n,1) and Un,1 =

Up—1(x1,29,...,2,-1) and a and b are constant.

Multiple integrals over variable regions are numerically more difficult to evaluate

compared to integrals over rectangular regions.

We have both theoretical and practical problems. The theoretical problem is that
we have formulas that give exact results only for the case where all intermediate
functions in the integral are polynomials up to a certain order. This imposes certain
constraints on integral limits and it is usually impossible to check unless we evaluate
the integral analytically. Finding the area itself an integration problem, so we can

not use the formulas of the type

I=AY" fiw (3.2)

18
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Figure 3.1: A nonrectangular region: f; fg}éﬂ;) f(z,y)dydz

If we use Newton-Cotes methods in 2 or higher dimensions for nonrectangular
regions, the points will not be regularly spaced as seen in Figure 3.2. This causes
many difficulties in implementation. Therefore we have used the simplest rule, that

is the trapezoidal rule in this case.

Let

dr = /b O(z)dz. (3.4)

Z/abF(fB,y)

But numerically, we will start to determine the nodes using limits of the outer

19



Figure 3.2: Newton-Cotes method on a nonrectangular region in 2-dimensions

integral first. The nodes are:

zi=a+Az-i, yi; =g(z) + Ay - j (3.5)

where i =0,1,...,n, Az =(b—a)/n, j=0,1,....k and Ay; = (h(z;) — g(x;))/k.

Another difficulty is representing the limits and choosing appropriate points within

the region.

MATLAB routines, dblquad and triplequad do not evaluate integrals in nonrect-

angular regions. In higher dimensions, there is no routine in MATLAB.

Since there are not many programs and there is a need we decided to write routines

in MATLAB.
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Figure 3.3: Monte Carlo method on a nonrectangular region in 2-dimensions

In nonrectangular regions the Monte Carlo method proceeds as follows; First a
rectangular region is chosen such that it includes the region of integration(Figure 3.3).
Then random points are taken within this rectangle. Then the area is estimated as the
area of this rectangular region times the ratio of the points falling inside the region.
Then to find the result of the integral we multiply this area by the average value of
the function values at the random points that fall in the region of integration. As the
number of dimensions grow Monte Carlo method is said to be more convenient on

nonrectangular regions because the error does not depend on the dimension.
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Our aim in this work is;

e To write routines in MATLAB that can evaluate integrals up to 7 dimensions

on arbitrary regions.

e To compare the effectiveness of Newton-Cotes and Monte Carlo methods as

number of dimensions grow.
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CHAPTER 4

MATLAB Implementation

In MATLAB, quadrature routines dblquad and triplequad are used for high di-
mensions. That means integrals in 4 and higher dimensions can not be evaluated.
Another problem is that it is unable to evaluate integrals in nonrectangular regions.

Because of these reasons we decided to write our own routines.

We wrote 4 programs:

recquad.m: evaluates integrals in rectangular regions using Newton-Cotes closed

7 points rule.

recquadmc.m: evaluates integrals in rectangular regions using Monte Carlo method.

varquad.m: evaluates integrals in any regions using trapezoidal rule.

varquadmc.m: evaluates integrals in any region using Monte Carlo method.

Here are the explanation and methodology for each routine;
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recquad.m

In this routine the user gives the function in terms of variables z1,xo, ..., 24 the
limits(all numbers) and the approximate number of points n to be used. Newton-
Cotes 7 points, closed rule is used. Higher methods are not stable because they
contain negative terms which results in computation errors. The program evaluates

integrals in rectangular regions up to 7 dimensions.

If the given number of points is more than 1.000.000 the subdiv routine divides
the region into 2¢ parts, where d is the dimension. Otherwise the vectors grow too
large for RAM, the computer uses hard disk, and the program slows down. We use 7
point Newton-Cotes rule k+1 times. Therefore the number of points in one dimension
will be (7 + 6k). In d dimensions, if we do not use subdiv, the total number points
will be (7 + 6k)9, if we use once 24(7 4 6k)?. For example, given 1000 points by
the user in 2 dimensions we take (1000'/2 — 1) points (ceiled) in each dimension and
(1000'/2 —1)/6 (ceiled) points in each small rectangular region. Because of the ceiling
the exact total number of points is more than the given one. We practically need to
know the exact number of points used to compare the methods Newton-Cotes and

Monte Carlo.

The main part is the Coreint function, which gives the weight of the points. It
divides the rectangular region into equally spaced points and then these points are
vectorized in 1 dimensional vectors by the help of repeating the matrix (repmat) and
transforms it into a column vector (z = z(:)). This really makes the routine fast to

evaluate the result. Then these vectors are multiplied by Newton-Cotes weights. The
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weight vector is obtained.

Then the weights are multiplied by the function values and this result is divided
by the number of points, which gives the weighted average. Then this is multiplied

by the multi-dimensional volume.

recquadmc.m

This program evaluates integrals in rectangular regions using Monte Carlo method.
It is able to evaluate integrals between 1-7 dimensions. The user gives the function in
terms of the variables =1, z9, ..., ,, the limits and the approximate number of points

1/d where d is

n to be used. The number of points in one dimension is ceiling of (n)
the dimension of the integral. So the exact number of points is [(ceil(n)/4)]4. If

needed subdiv is used like in recquad.m.

In this routine; the main idea is that; we obtain random numbers between 0 and 1
by the random number generator of MATLAB. Then each of these random numbers
are transferred to region of integration, that is, if the random number is r, L is the
lower limit, U is the upper limit, r transferred to L+ (U — L) *r. Then the integrand
is evaluated at these new random points. The average of results are obtained by
dividing the sum of these to the total number of points. The average value is then
multiplied by the length of each dimensions( i.e. in 3-dimensions volume of the region)

varquad.m

This routine is written for evaluating integrals up to 7 dimensions on any region.

The user gives the function, limits and the number of points. First two limits are
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numbers, second two are functions of 1, the second two are functions of x; and z9
etc. Here because of the complications of the integration region we are not subdividing
the area. This results in a practical limit in the number of points the user may enter.
This limit depends on the RAM of the computer, for our system it was around one

million.

We decided to use trapezoidal rule for both its simplicity and adaptability to any

number of points.

In rectangular case our approximation for the infinitesimal area dz,dzs, ..., dz,

has a fixed size but in this case it varies. So we have to take this into account.

The routine first calculates the points in the region, then the volume elements.
Both are transformed into one dimensional arrays for simplicity in calculations. Then
the function is evaluated at each point, multiplied by the volume elements and summed

to obtain the result.

varquadmc.m

This routine is written for integrals up to 7 dimensions with variable limits. It
uses Monte Carlo method. The user gives the function, limits and the number of

points. The exact number of points is the one ceiled to the nearest hundred.

To find a large enough rectangular region that contains the given region of in-
tegration random points are generated by MATLAB and transferred to region of
integration like in recquadmc .m. The random points are evaluated at each upper and

lower limits of the integral. Then the minimum of the lower limits and the maximum
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of upper limits is obtained. A small value is added to maximum and subtracted from

the minimum value to guarantee a rectangular region that contains the curve inside.

After finding a large enough rectangular region, we generate random points in this
region. Now, we have to find the points that fall within the region of integration. We
constructed a matrix of ones. Then we tested whether the points are inside or outside
the region using round and ceil functions. If it is inside, the corresponding matrix
entry is one and zero otherwise. Afterwards the function values matrix is multiplied
by this matrix of zeros and ones. So the values outside the region are omitted. Then
the average value of function is obtained by dividing the sum of function values to the

number of points. Finally this value is multiplied by the multi-dimensional volume.

Although we are evaluating the function at some unnecessary points using this
way, the results are much more faster than using a loop to determine whether the

points fall inside or outside the region.
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CHAPTER 5

Tests and Comparison

In this chapter some tests results and related graphics are given. In every com-
parison of an example the number of points taken in each method are the same. We
have to say that as a natural result of the algorithm of the Monte Carlo method, in
every test different results are obtained, because it uses random points. So we took
the average value of absolute value of errors in 100 runs in every case. One should
say that as the number of points in the tests increases the time for the result also
increases. For the comparison of time for Monte Carlo method and Newton-Cotes
method we can say that if the number of points are same, the elapsed times are ap-
proximately the same. In the graphs the x-axis is the logarithm of the number of
points in base 10; the y-axis is the logarithm of absolute error in base 10. The relative

error is defined as:

Iappromimate - Iemact (5 1)

e =
Iemact

The graphs are drawn in MATLAB. In each page first the results are given and below
the related integrals are given. As we expected the error gets bigger as the dimension

grows, also the results are better in rectangular regions than nonrectangular ones.
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CHAPTER 6

CONCLUSION

In this research we conclude that it is much harder to evaluate integrals in non-
rectangular regions than rectangular ones. Also as number of dimensions increases
the number of points necessary to get a certain error level increases very fast. In
high dimensions it is also more difficult or impossible to use higher order formulas
that give better results. We can say that when it is possible to apply Newton-Cotes
method in dimensions between 1-7, the results are definitely better than Monte Carlo
method. But the necessary number of function evaluations to get a specified tolerance
in Newton Cotes method exceeds the capacity of present computers by the increase
in dimension. This suggests that in dimensions higher than 7-10 Monte Carlo method
may be the only possibility to get a feasible result. In nonrectangular regions more

work needs to be done to implement Monte Carlo method.
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APPENDIX

recquad.m

%This program evaluates numerical integrals over rectangular
%regions up to 7 dimensions.

%Use the format: number of points, function, limits.
%Express the function in terms of x1,x2 etc.

%Example: To evaluate int_0"1 int_0"4 x1*x2 dx2 dx1

%using (approximately) 1000 points, write:
%recquad (1000, ’x1*x2’,0,1,0,4).

JWritten by: Emre Sermutlu and Hakan Baydar in 2006.

function [tot,int]=recquad(n,fl,varargin) dim=(size(varargin,2)/2);
if dim™=1 && dim™=2 && dim"=3 && dim“=4 &&dim~=5 && dim"=6 && dim~=7
error(’Dimension must be between 1 and 77)

end

L(1)=varargin{1};U(1)=varargin{2};
if dim >=2;L(2)=varargin{3}; U(2)=varargin{4}; end
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if dim >=3;L(3)=varargin{5}; U(3)=varargin{6};end
if dim >=4;L(4)=varargin{7}; U(4)=varargin{8}; end
if dim >=5;L(5)=varargin{9}; U(5)=varargin{10};end
if dim >=6;L(6)=varargin{11};U(6)=varargin{12};end

if dim >=7;L(7)=varargin{13};U(7)=varargin{14};end

while n>1000000
[L,U]=subdiv(L,U);
n=ceil(n/2°dim) ;

end

mO=ceil((n~(1/dim)-1)/6); m=6*m0+1;
tot=m"dim*size(L,1) %Total number of points
S=0; for i=1:size(L,1)

S=S+Coreint (m,f1,L(i,:),U(i,:));

end int=S;

function ara=Coreint(m,f1,L,U) dim=size(L,2); V=1; for i=1:dim
y(i,:)=linspace(L(i),U(i),m);
A=repmat (y(i,:),m~(dim-i) ,m~(i-1));A=A(:);
X(:,i)=A;
V=V (U(i)-L(1));

end
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if dim==1;f=vectorize(inline(char(f1),’x1’)) ;F=feval(f,X(:,1));end

if dim==2;f=vectorize(inline(char(f1),’x1’,°x2’));

F=feval(f,X(:,1),X(:,2));end

if dim==3;f=vectorize(inline(char(f1),’x1’,°x2’,°x3’));

F=feval(f,X(:,1),X(:,2),X(:,3));end

if dim==4;f=vectorize(inline(char(f1),’x1’,°x2’,°x3’,°x47));

F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4));end

if dim==5;f=vectorize(inline(char(f1),’x1’,°x2’,°x3’,°x4°,°x5’));

F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5));end

if
dim==6;f=vectorize(inline(char(f1),’x1’,°x2’,°x3?,°x4°,°x5°,7x6°));
F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6));

end

if
dim==7;f=vectorize(inline(char(f1),’x1’,’x2’,°x3?,°x4’,°x5°,°x6°,°x7°));
F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6),X(:,7));

end
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C0=[82 216 27 272 27 216];
CO=repmat (CO,1,(m-1)/6);C0(1)=41;C0(m)=41; C=ones(m"dim,1);
for
i=1:dim
D=repmat (CO, (m) "~ (dim-i), (m) " (i-1));D=D(:) ;C=C.*D;
end

ara=V*sum(F.*C)/(sum(C));

function [alt,ust]l=subdiv(L,U) LLL=[];UUU=[];
n=size(L,2) ;m=size(L,1); M=(L+U)/2;
for j=1:m
for i=1:n
ara=repmat ([L(j,i) M(j,i)],2"(n-1),2"(i-1));LL(:,i)=ara(:);
ara2=repmat ([M(j,i) U(j,i)],2"(n-1i),2"(i-1));UU(:,i)=ara2(:);
end
LLL=[LLL;LL] ;clear LL;
UUU=[UUU;UU] ;clear UU;
end

alt=LLL; ust=UUU;
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recquadmc.m

hthis program evaluates numerical integrals over rectangular
%regions up to 7 dimensions, using Monte Carlo method.

%Use the format: number of points, function, limits.
%Express the function in terms of x1,x2 etc.

%Example: To evaluate int_0"1 int_0"4 x1*x2 dx2 dx1

Jhusing 1000 points, write:

hrecquadmc (1000, *x1*x2’,0,1,0,4) .

JWritten by: Emre Sermutlu and Hakan Baydar in 2006.

function [tot,int]l=recquadmc(n,fl,varargin)

dim=(size(varargin,2)/2);
if dim™=1 && dim™=2 && dim"=3 && dim™=4 &&
dim”=5 && dim™=6 && dim"=7
error (’Dimension must be between 1 and 7°)

end

L(1)=varargin{1};U(1)=varargin{2};
if dim>=2;L(2)=varargin{3};U(2)=varargin{4}; end
if dim>=3;L(3)=varargin{5}; U(3)=varargin{6}; end
if dim>=4;L(4)=varargin{7}; U(4)=varargin{8}; end
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if dim>=5;L(5)=varargin{9}; U(5)=varargin{10};end
if dim>=6;L(6)=varargin{11};U(6)=varargin{12};end

if dim>=7;L(7)=varargin{13};U(7)=varargin{14};end

j=0; while n>1000000
[L,U]l=subdiv(L,U);
n=ceil(n/2"dim) ;
5=j+t
end
m=ceil(n~(1/dim));
tot=m"dim*size(L,1) %Total number of points
S=0;
for i=1:size(L,1)
S=S+Coreint (m,f1,L(i,:),U(i,:));
end

int=S;

function ara=Coreint(m,f1,L,U) dim=size(L,2); V=1;

x1=rand(m,1) ;x1=L(1)+(U(1)-L(1))*x1;;x1=x1(:);V=(U1)-L(1));

if dim>=2;

x2=rand(m,1) ;x2=L(2)+(U(2)-L(2))*x2;x2=x2(:) ; V=V*(U(2)-L(2));

end
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if dim>=3;
x3=rand(m,1) ;x3=L(3)+(U(3)-L(3))*x3;x3=x3(:) ;V=V*(U(3)-L(3));

end

if dim>=4;
x4=rand(m,1) ;x4=L(4)+(U(4)-L(4)) *x4;x4=x4(:);V=V*x(U(4)-L(4));

end

if dim>=5;
x5=rand(m, 1) ;x5=L(5)+(U(5)-L(5))*x5;x5=x5(:) ;V=V*(U(5)-L(5));

end

if dim>=6;
x6=rand(m,1) ;x6=L(6)+(U(6)-L(6))*x6;x6=x6(:) ;V=V*(U(6)-L(6));

end

if dim>=7;
x7=rand(m,1) ;x7=L(7)+(U(7)-L(7))*x7;x7=x7(:) ; V=Ux (U(7)-L(7));

end

if dim==1;
f=vectorize(inline(char(f1),’x1’)) ;F=feval(f,x1);

end
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if dim==2;
f=vectorize(inline(char(f1),’x1’,°x2’)) ;F=feval (f,x1,x2);

end

if dim==3;
f=vectorize(inline(char(f1),’x1’,’x2’,°x3’)) ;F=feval (f,x1,x2,x3);

end

if dim==4;
f=vectorize(inline(char(f1),’x1’,°x2’,’x3?,’x4°)) ;F=feval (f,x1,x2,x3,x4);

end

if dim==5;
f=vectorize(inline(char(f1),’x1’,°x2’,°x3°,°x4°,°x5°));
F=feval(f,x1,x2,x3,x4,x5);

end

if dim==6;
f=vectorize(inline(char(f1),’x1’,°x2’,°x3°,°x4°,°x5°,’x6°));
F=feval(f,x1,x2,x3,x4,x5,x6);

end

if dim==7;
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f=vectorize(inline(char(f1),°x1’,°x2’,’x3’,°x4’,°x5’,°x67,°x7°));
F=feval(f,x1,x2,x3,x4,x5,x6,x7);

end

ara=Vxsum(F) /m;

function [alt,ust]=subdiv(L,U)
LLL=[];UUU=[];
n=size(L,2) ;m=size(L,1); M=(L+U)/2;
for j=1:m
for i=1:n
ara=repmat ([L(j,i) M(j,1i)],2"(n-1),2"(i-1));LL(:,i)=ara(:);
ara2=repmat ([M(j,i) U(j,i)],2"(n-i),2"(i-1));UU(:,i)=ara2(:);
end
LLL=[LLL;LL] ;clear LL;
UUU=[UUU;UU] ;clear UU;

end alt=LLL; ust=UUU;
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varquad.m

%This program evaluates numerical integrals over ANY
hregion up to 7 dimensions.

%Use the format: number of points, function, limits.
%Express the function in terms of x1,x2 etc.

%Example: To evaluate int_0"1 int_x1~(exp(x1)) x1*x2 dx2 dx1
%using (approximately) 1000 points, write:

%varquad (1000, ’x1*x2°,0,1,°x1’,’exp(x1)’).

%Written by: Emre Sermutlu and Hakan Baydar in 2006.

function int=varquad(n,fl,varargin)

dim=(size(varargin,2)/2);
if dim™=1 && dim"=2 && dim"=3 && dim™=4 &&
dim™=5 && dim™=6 && dim"=7
error (’Dimension must be between 1 and 7°)

end

m=ceil((n~(1/dim)));
tot=m"dim %Total number of points

Li=varargin{1}; Ul=varargin{2};

X=zeros(m“dim,dim) ; A=linspace(L1,Ul,m); A=repmat(A,m"(dim-1),1);
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X(:,1)=AC:);

kose=ones(1,m) ;kose(1)=0.5;kose(m)=0.5;
kosel=repmat (kose,m” (dim-1),1) ;kosel=kosel(:);

Delta=repmat ((U1-L1)/(m-1) ,m"dim,1) .xkosel;

if dim>=2
L2=varargin{3};fL2=vectorize(inline(char(L2),’x1’));
U2=varargin{4};fU2=vectorize(inline(char(U2),’x1’));
for i=1:m
k=m" (dim-1)*i;
A=linspace (fL2(X(k,1)),fU2(X(k,1)),m);
A=repmat (A,m" (dim-2),1);
X([k-m~ (dim-1)+1:k],2)=A(:);
end
kose2=repmat (kose,m” (dim-2) ,m) ;kose2=kose2(:);
d=((fU2(X(:,1))-fL2(X(:,1)))/(m-1)) .*kose2; Delta=Delta.x*d;

end

if dim>=3

L3=varargin{5};fL3=vectorize(inline(char(L3),’x1’,’x2’));

U3=varargin{6};fU3=vectorize(inline(char(U3),’x1’,’x2’));
for i=1:m"2

k=m" (dim-2) *i;

All



A=linspace(fL3(X(k,1),X(k,2)),fu3(X(k,1) ,X(k,2)) ,m);
A=repmat (A,m" (dim-3),1);
X([k-m~ (dim-2)+1:k],3)=A(:);
end
kose3=repmat (kose,m”~ (dim-3) ,m"2) ;kose3=kose3(:);
d=((fU3(X(:,1),X(:,2))-fL3(X(:,1),X(:,2)))/(m-1)) .*kose3;
Delta=Delta.*d;

end

if dim>=4
L4=varargin{7};fL4=vectorize(inline(char(L4),’x1’,’x2’,°x3"));
U4=varargin{8};fU4=vectorize(inline(char(U4),’x1’,’x2’,°x3’));
for i=1:m"3
k=m" (dim-3) *i;
A=linspace(fL4(X(k,1),X(k,2),X(k,3)),fu4(X(k,1) ,X(k,2),X(k,3)) ,m);
A=repmat (A,m" (dim-4),1);
X([k-m~ (dim-3)+1:k],4)=A(:);
end
kose4=repmat (kose ,m” (dim-4) ,m"3) ;kosed=kose4(:);
d=((fu4(x(:,1),X(:,2),X(:,3))-fL4(X(:,1),X(:,2),X(:,3)))/(m-1)) .*kose4;
Delta=Delta.*d;

end

if dim>=56
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L5=varargin{9};fL5=vectorize(inline(char(L5),’x1’,’x2’,’x3’,’x4°));
US=varargin{10};fU5=vectorize(inline(char(U5),’x1’,’x2’,’x3’,’x4°));
for i=1:m"4
k=m" (dim-4) *i;
A=linspace(fL5(X(k,1),X(k,2),X(k,3),X(k,4)),fUs(X(k,1),...
X(k,2),X(,3),X(k,4)),m);
A=repmat (A,m" (dim-5),1);
X([k-m~(dim-4)+1:k],5)=A(:);
end
koseb=repmat (kose,m"~ (dim-5) ,m"4) ;koseb5=kose5(:);
d=((fus(X(:,1),X(:,2),X(:,3),X(:,4))-fL5(X(:,1),X(:,2),X(:,3),...

X(:,4)))/(m-1)) .*xkose5; Delta=Delta.*d; end

if dim>=6
Lé=varargin{11};fL6=vectorize(inline(char(L6),’x1’,’x2’,°x3°,°x4°,°x5°));
U6=varargin{12};fU6=vectorize(inline(char(U6),’x1’,’x2’,’x3’,’x4°,’x5"));
for i=1:m"5
k=m" (dim-5)*i;
A=linspace(fL6(X(k,1),X(k,2),X(k,3),X(k,4),X(k,5)),...
fu6(X(k,1),Xk%,2),X%,3),X%,4) ,X(k,5)),m);
A=repmat (A,m" (dim-6),1);
X([k-m~ (dim-5)+1:k] ,6)=A(:);
end

koseb=repmat (kose,m” (dim-6) ,m"5) ; koseb6=kose6(:) ;
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d=((fue(x(:,1),X(:,2),X(:,3),X(:,4),X(:,5))-fL6(X(:,1),X(:,2),...

X(:,3),X(:,4),%X(:,5)))/(m-1)) .¥kose6; Delta=Delta.*d; end

if dim>=7
L7=varargin{13};
fL7=vectorize(inline (char (L7),’x1’,’x2’,°x3?,°x4°,°x57,7x67));
U7=varargin{14};
fU7=vectorize(inline(char(U7),°x1’,°x2’,°x3°,’x4°,’x57,°x67));
for i=1:m"6
k=m" (dim-6) *i;
A=linspace(fL7(X(k,1),X(k,2),X(k,3),X(k,4),X(k,5),X(k,6)),...
fu7 (X(k,1),X(k,2),X(,3),X(k,4) ,X(k,5),X(k,6)),m);
A=repmat (A,m" (dim-7),1);
X([k-m~ (dim-6)+1:k],7)=A(:);
end
kose7=repmat (kose,m” (dim-7) ,m"6) ;kose7=kose7(:);
d=((fU7(X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6))-fL7(X(:,1),...
X(:,2),X(:,3),X(:,4),X(:,5),X(:,6)))/(m-1)) .x¥kose7; Delta=Delta.x*d;

end

if dim==1;
f=vectorize(inline(char(f1),’x1’));
F=feval (f,X(:,1));

end
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if dim==2;
f=vectorize(inline(char(f1),°’x1’,°x2’));
F=feval(f,X(:,1),X(:,2));

end

if dim==3;
f=vectorize(inline(char(f1),°’x1’,°x2’,°x3%));
F=feval(f,X(:,1),X(:,2),X(:,3));

end

if dim==4;
f=vectorize(inline(char(f1),’x1’,°x2°,°x3°,°x4’));
F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4));

end

if dim==5;
f=vectorize(inline(char(f1),°x1’,’x2’,°x3?,°x4°,°x57));
F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5));

end

if dim==6;
f=vectorize(inline(char(f1),°x1’,°x2°,°x3’,°x4’,°x5°,7x6°));

F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6));
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end

if dim==7;

f=vectorize(inline(char(f1),’x1’,°x2’,’x3?,’x4°,°x5’,°x67°,°x7°));

F=feval(f,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6),X(:,7));

end

int=sum(F.*Delta);
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varquadmc.m

%This program evaluates numerical integrals over ANY
%region up to 7 dimensions, using Monte Carlo Method.

%Use the format: number of points, function, limits.
%Express the function in terms of x1,x2 etc.

%Example: To evaluate int_0"1 int_x1~(exp(x1)) x1*x2 dx2 dx1
husing (approximately) 1000 points, write:

hvarquadmc (1000, *x1*x2’,0,1,°x1° ,’exp(x1)’).

JWritten by: Emre Sermutlu and Hakan Baydar in 2006.

function int=varquadmc(n,fl,varargin)

dim=(size(varargin,2)/2);
if dim™=1 && dim™=2 && dim"=3 && dim™=4 &&
dim™=5 && dim™=6 && dim"=7
error (’Dimension must be between 1 and 7°)

end

m=ceil(n/100)+100;

Li=varargin{1};Ul=varargin{2};

x1=rand(n,1) ;x1=L1+(U1-L1)*x1;x1=x1(:) ;V=(U1-L1); Z=ones(n,1);
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if dim>=2
LL2=varargin{3};fL2=vectorize(inline(char(LL2),’x1’));
UU2=varargin{4};fU2=vectorize(inline(char (UU2),’x1’));
ti=rand(m,1) ;t1=L1+(U1-L1)*t1;t1=t1(:);

L2=min (fL2(t1)) ;U2=max (fU2(t1)); D=U2-L2;L2=L2-D/20;U2=U2+D/20;
x2=rand(n,1) ;x2=L2+(U2-L2) *x2; x2=x2(:) ;V=V*x(U2-L2);
Y=x2-f1.2(x1) ;M=max (abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);
Y=fU2(x1)-x2;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);

end

if dim>=3
LL3=varargin{5};fL3=vectorize(inline(char(LL3),’x1’,’x2’));
UU3=varargin{6};fU3=vectorize(inline(char (UU3),’x1’,’x2’));
t2=rand(m,1) ; t2=L2+(U2-L2) *t2;t2=t2(:) ;
L3=min(fL3(t1,t2)) ;U3=max (fU3(t1,t2));
D=U3-L3;L3=L3-D/20;U3=U3+D/20; x3=rand(n,1) ;x3=L3+(U3-L3)*x3;
x3=x3(:);V=V*(U3-L3);

Y=x3-fL3(x1,x2) ;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);
Y=fU3(x1,x2)-x3;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil(Y);

end

if dim>=4

LL4=varargin{7};fL4=vectorize(inline(char(LL4),’x1’,’x2’,’x37));
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UU4=varargin{8};fU4=vectorize(inline(char(UU4),’x1’,°x2’,°x37));
t3=rand(m,1) ; £3=L3+(U3-L3) *t3;t3=t3(:);
L4=min(fL4(t1,t2,t3)) ;U4=max (fU4(t1,t2,t3));
D=U4-14;14=1L4-D/20;U4=U4+D/20; x4=rand(n,1) ;x4=L4+(U4-1L4)*x4;
x4=x4(:) ;V=V*(U4-14);

Y=x4-fL4(x1,x2,x3) ;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);
Y=fU4(x1,x2,x3)-x4;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);

end

if dim>=5
LL5=varargin{9};fL5=vectorize(inline(char(LL5),’x1’,’x2’,°x3’,7x4’));
UUS=varargin{10};fUb=vectorize (inline(char (UU5),’x1’,’x2’,°x3’,’x4’));
t4=rand(m,1) ; t4=L4+(U4-L4) *t4;t4=t4(:);

L5=min (fL5(t1,t2,t3,t4)) ;Us=max (fU5(t1,t2,t3,t4));
D=U5-L5;L5=L5-D/20;U5=U5+D/20; x5=rand(n,1) ;x5=L5+(U5-L5)*x5;
x5=x5(:) ; V=V*(U5-L5) ;
Y=x5-fL5(x1,x2,x3,x4) ;M=max (abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);

Y=fU5(x1,x2,x3,x4)-x5;M=max (abs(Y)) ;Y=Y/M;Z=Z.*ceil(Y); end

if dim>=6 LL6=varargin{11};
fL6=vectorize(inline(char(LL6),’x1’,°x2’,°x3?,°x47,°x5%));
UU6=varargin{12};

fU6=vectorize(inline(char (UU6),’x1’,’x2’,°x3?,°x47,°x5%));

t5=rand(m,1) ;t5=L5+(U5-L5) *t5;t5=t5(:);
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L6=min(fL6(t1,t2,t3,t4,t5)) ;U6=max (fU6(t1,t2,t3,t4,t5));
D=U6-L6;L6=L6-D/20;U6=U6+D/20; x6=rand(n,1) ;x6=L6+(U6-L6) *x6;
x6=x6(:) ;V=Ux(U6-L6) ;
Y=x6-fL6(x1,x2,x3,x4,x5) ;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil(Y);

Y=fU6(x1,x2,x3,x4,x5)-x6;M=max (abs (Y)) ;Y=Y/M;Z=Z.*ceil(Y); end

if dim>=7 LL7=varargin{13};
fL7=vectorize(inline (char (LL7),’x1’,°x2°,°x3?,°x4°,°x57,7x67));
UU7=varargin{14};
fU7=vectorize(inline(char(UU7),’x1°,’x2,°x3?,°x4°,°x5°,°x6°));
t6=rand(m,1) ;t6=L7+(U7-L7)*t6;t6=t6(:);

L7=min (fL7(t1,t2,t3,t4,t5,t6)) ;U7=max (fU7 (t1,t2,t3,t4,t5,t6));
D=U7-L7;L7=L7-D/20;U7=U7+D/20; x7=rand(n,1) ;x7=L7+(U7-L7)*x7;
x7=x7(:) ;V=V*x(U7-L7) ;
Y=x7-fL7(x1,x2,x3,x4,x5,%6) ;M=max(abs(Y)) ;Y=Y/M;Z=Z.*ceil (Y);

Y=fU7(x1,x2,x3,x4,x5,x6)-x7;M=max (abs (Y)) ; Y=Y/M;Z=Z.*ceil(Y); end

if dim==1;f=vectorize(inline(char(f1),’x1’)) ;F=feval(f,x1) ;end

if dim==2;

f=vectorize(inline(char(f1),’x1’,’x2’)) ;F=feval(f,x1,x2);

end

if dim==3;
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f=vectorize(inline(char(f1),°x1’,°x2’,’x3?)) ;F=feval (f,x1,x2,x3);

end

if dim==4;
f=vectorize(inline(char(f1),°x1’,°x2’,°x3?,°x4’)) ;F=feval (f,x1,x2,x3,x4);

end

if dim==5;
f=vectorize(inline(char(f1),’x1’,°x2°,°x3°,’x4°,’x5°));
F=feval(f,x1,x2,x3,x4,x5);

end

if dim==6;
f=vectorize(inline(char(f1),’x1’,°x2°,°x3°,°x4°,°x5°,7x6°));
F=feval(f,x1,x2,x3,x4,x5,x6);

end

if dim==7;

f=vectorize (inline (char (f1),’x1’,’x2’,’x3’, x4’ ,’x5’,7x6°,°x7°));

F=feval(f,x1,x2,x3,x4,x5,x6,x7);

end

int=sum(F.*Z)*V/n;
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