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In this thesis, we have developed a general source beam to combine many types of 

different beams such as Bessel, Bessel Gaussian, Laguerre, Laguerre Gaussian, Ince 

Gaussian, dark hollow, bottle, super Gaussian, Lorentz, flat-topped, Hermite-sinusoidal-

Gaussian, sinusoidal-Gaussian like cos-Gaussian, sine-Gaussian, cosh-Gaussian, sinh-

Gaussian, annular and their higher order modes with their truncated, elegant and elliptical 

versions in a single expression. Also we developed a Matlab code to plot intensity 

distributions at source and receiver. Using this Matlab code and the general source beam 

formulation, all the mentioned beams’ source equations are obtained, compared with their 

existing forms in the literature and intensity patterns of some of them are plotted at 

source plane. Using a part of this formulation and the Matlab simulation, intensity is 

calculated and plotted intensity distributions of Hermite-sinusoidal-Gaussian, sinusoidal-

Gaussian, annular and higher-order annular beams at different propagation distances in 

atmospheric turbulence.   
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GENEL OPTİK IŞIK HÜZMESİ FORMÜLASYONU VE ATMOSFERİK OPTİK 

TELEKOM LİNKLERİNDEKİ YAYILIMLARI 
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Bu tezde, Bessel, Bessel Gauss, Laguerre, Laguerre Gauss, Ince Gauss, dark hollow, 

bottle, super Gauss, Lorentz, düz tepeli, Hermite-sinusoidal-Gauss, sinusoidal-Gauss 

(cos-Gauss, sine-Gauss, cosh-Gauss, sinh-Gauss), halkasal ışık hüzmeleri ve bunların 

yüksek dereceli durumları truncated, elegant ve eliptik versiyonları gibi ışık hüzmelerini 

genel bir kaynak ışık hüzmesi olarak  geliştirdik.  Ayrıca kaynak ve alıcı düzlemindeki 

ışık şiddeti dağılımını çizmek için bir Matlab programı yazdık. Bu Matlab programını ve 

genel kaynak hüzme formülünü kullanarak, tüm bahsedilen ışık hüzmelerinin kaynak 

denklemlerini elde ettik ve literatürdeki formlarıyla karşılaştırdık, bazı ışık hüzmelerinin 

ışık şiddeti dağılımını Matlab programını kullanarak kaynak düzleminde çizdirdik. Bu 

genel hüzme formülünün bir parçasını ve Matlab programını kullanarak Hermite-

sinusoidal-Gauss, sinusoidal-Gauss, halkasal ve yüksek dereceli halkasal ışık 

hüzmelerinin ışık şiddeti dağılımını değişik yayılım uzaklıklarında atmosferik türbülans 

altında çizdirdik.  

 

Anahtar Kelimeler: Serbest Uzay Optik İletişim, Atmosferik Türbülans, Işık Şiddeti. 
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CHAPTER 1 
 

 
 

INTRODUCTION 
 
1.1 Background  
 
With the recent developments in semiconductor technology, free space optical or optical 

wireless communication has become an attractive alternative to optical fiber 

communications or radio frequency (RF) systems. Historically, Free Space Optics (FSO) 

was first demonstrated by Alexander Graham Bell in the late nineteenth century. Bell’s 

FSO experiment converted voice sounds into telephone signals and transmitted them 

between receivers through free air space along a beam of light for a distance of some 

600 feet. Because it did not require wires for transmission, Bell considered this optical 

technology his perfect invention. Although Bell’s invention never became commercially 

real, it demonstrated the basic principle of optical communications [1]. 

 

From late  1950’s to early 1960’s several scientists developed lasers. In the mid-1960's 

NASA initiated experiments to utilize the laser as a means of communication between 

the Goddard Space Flight Center and the Gemini-7 orbiting space capsule. Germany, 

France and Japan made significant advancements in FSO for satellite communications.  

 

FSO communications refer to the transmission of modulated visible or infrared (IR) 

beams through the atmosphere to obtain optical communications. Like fiber, FSO uses 

lasers to transmit data, but instead of enclosing the data stream in a glass fiber, it is 

transmitted through the air. FSO uses laser technology to send optical signals through 

the air using lenses and mirrors to focus and redirect the beams and send data from one 

chip to another. And unlike radio frequencies, FSO technology does not require a 

spectrum     license.   An     FSO     system     offers    much   higher   data   rates     when  
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underground fiber. It offers a flexible networking solution. Only FSO provides the 

essential combination of qualities required to bring the traffic to the optical fiber 

backbone. Since FSO transceivers can transmit and receive through windows, it is 

possible to mount FSO systems inside buildings, reducing the need to compete for roof 

space, simplifying wiring and cabling, and permitting the equipment to operate in a very 

favorable environment. One of the essential points for FSO is the line of sight between 

the two ends of the link. There should be no obstructions such as trees or buildings 

between the transceiver units [2]. 

 

There are certain fundamental effects concerning optical wave propagation. Among 

these are diffraction, atmospheric attenuation, atmospheric absorption, atmospheric 

turbulence and thermal blooming. Except for thermal blooming, which is a nonlinear 

effect, the other effects are considered linear. Atmospheric  conditions affect beams’ 

intensity at the receiver. The purpose of all the studies is to reduce these negative effects. 

Beam types and the intensities of these beams have been investigated when they 

propagate in the absence of turbulence. Durnin calculated the intensity of Bessel and 

Bessel-Gauss beams on-axis. [3]. Kogelnik studied Laguerre-Gaussian beams after the 

invention of laser [4]. Bandres and Vega demonstrated the existence of the Ince-

Gaussian beams that constitute the third complete family of exact and orthogonal 

solutions of the paraxial wave equation [5]. Yin, Zhu, Wang and Yin studied on dark-

hollow beams [6]. Arlt and Padgett studied the optical bottle beams which are obtained 

by the superposition of two Laguerre–Gaussian modes that are phased so that they 

interfere destructively to give a beam focus that is surrounded in all directions by 

regions of higher intensity [7]. Jiang studied on super-Gaussian functions and calculated 

the intensity [8]. Gawhary introduced a new kind of tri-dimensional scalar optical beams 

which are called Lorentz beams because of the form of their transverse pattern in the 

source plane [9]. Gori studied on flat beams [10]. Saghafi and Sheppard  studied the 

elegant Laguerre-Gaussian beams [11]. Lin, Wang, Alda, and Bernabeu studied the 

elliptical Gaussian beam [12]. Also it is calculated off-axis intensity values for  

Gaussian,   cos-Gauss,   cosh-Gauss,   sine-Gauss,   sinh-Gauss,  annular and their higher  
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order modes [13]. A time factor of i te ω  is assumed and supressed throughout the thesis. 

 

 

1.1 Objectives 

 

It is the aim of this work to combine the existing optical beam fields in a single general 

beam formula and plot the intensity distributions at the exit plane of the laser for many 

types of specific beams, such as Bessel-Gaussian, Laguerre-Gaussian, Laguerre, Ince-

Gaussian, annular, bottle, super Gaussian, Lorentz, flat-topped, Hermite-sinusoidal-

Gaussian and their truncated, elegant and elliptical versions. In the second part of the 

thesis, a more limited form of this general beam is used to examine the propagation 

characteristics in a turbulent atmosphere. Within this context, average intensity at the 

receiver plane is calculated and the effect of various beam profiles on the variation of the 

received average intensity profiles are examined in a turbulent atmosphere.   

 

1.2 Organization of the Thesis 

 

This thesis comprises five chapters. Chapter 1 is an introduction to this study which 

contains the objective of this thesis. 

 

In Chapter 2 the effects of the atmosphere in optical wave propagation are introduced.  

 

A novel formula for a general source beam is developed in Chapter 3 and the existing 

intensity profiles of many different types of source intensities are matched analytically 

with this novel formula.  

 

Average received intensity of general beams in atmospheric turbulence is formulated in 

Chapter 4 and the variation of the average received intensities for various beam types are 

presented.  
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The thesis is finalized with the conclusion in chapter 5.  
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CHAPTER 2 

 

 

EFFECTS OF THE ATMOSPHERE IN OPTICAL WAVE PROPAGATION 
 

The atmosphere surrounds and protects the earth in the form of a gaseous blanket 

forming the transition between the solid surface of the earth and the near vacuum of the 

outer solar atmosphere. It acts as a shield against harmful radiation and meteors. The 

dynamics of the atmosphere drive the weather on the surface. It provides for life  as part 

of the earth’s biosphere. Optical propagation in this medium has many important 

characteristics and consequences. These reflect in applications such as  meteorological 

remote sensing, infrared and visible astronomy, remote sensing  and atmospheric optical 

communication systems. The atmosphere is composed of gases and suspended particles 

at various temperatures and pressures that vary as a function of altitude and azimuth. 

The variations in altitude show a marked structure. Six main horizontal layers [14] form 

the stratified structure of the atmosphere:  

 

Troposphere: Contains roughly 75 % of the earth’s atmospheric mass. Maximum air 

temperature occurs near the surface of the earth, but decreases with altitude to 55oC− .  

 

Tropopause: It is an isothermal layer where air temperature remains constant at 55oC− . 

 

Stratosphere: The air temperature in this layer increases with altitude because the 

ozone gas absorbs ultraviolet sunlight, thereby creating heat energy. The ozone layer, 

which protects life from harmful ultraviolet radiation, is concentrated between 10-15 

km. Separating the mesosphere from the stratosphere is the stratopause, another 

isothermal layer. 

   5 
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Mesosphere: Temperature generally decreases at a constant rate down to 90oC− , the 

coldest in the atmosphere.  

Mesopause: It is the third isothermal layer. 

 

Thermosphere: Air temperature increases quite strongly above 90 km. This layer 

includes most of the ionosphere and the exosphere, the last being outermost region of the 

atmosphere [15].  

In the atmosphere, low altitude laser transmissions are range and bit error limited by the 

atmospheric energy losses resulting from scattering during haze, rain, snow, and fog 

conditions in the atmospheric channel. Most atmospheric laser transmission wavelengths 

are generally chosen for their very low absorption losses, so that atomic or molecular 

energy transitions do not absorb free space laser energy [16].  

2.1 Molecular and Aerosol Absorption 

 

There are many types of gases in the atmosphere that can cause absorption. The 

dominant one is usually the water vapor in the wavelength region of interest for a Free 

Space Optics (FSO) system. By staying out of the “water” windows and keeping the 

path lengths short, absorption can largely be ignored. The two types of absorption are: 

Molecular absorption and aerosol absorption. Water vapor, 2 2CO , NO , CO  and ozone 

are the primary radiation absorbers. Both 2CO  and water vapor are radiation absorbers 

at IR wavelengths. 

 

2.2 Molecular and Aerosol Scattering 

 

Scattering is a general physical process whereby some forms of radiation, such as light 

or moving particles, for example, are forced to deviate from a straight trajectory by one 

or more localized non-uniformities in the medium through which it passes. In 

conventional use, this also includes deviation of reflected radiation from the angle 

predicted by the law of reflection. Reflections that undergo                                               
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scattering are often called diffuse reflections and unscattered reflections are called 

specular (mirror-like) reflections. 

 

There are two types of scattering mechanisms: Molecular (Rayleigh)  and aerosol (Mie) 

scattering. Molecular scattering is significant for very long paths. It is caused by air 

molecules that are small in comparison with the wavelength λ  of the radiation. The 

scattering coefficient is proportional to 4λ− , known as the Rayleigh law. For air 

molecules, scattering is negligible at 3 mλ µ> . At 1 mλ µ< , Rayleigh scattering 

produces the blue color of the sky because blue light is scattered much more than red 

light. Scattering by particles, or aerosol scattering, is different. This is especially true as 

the size of the particles approaches the wavelength of the transmitted light. The amount 

of scattering depends on the particle size distribution and the density of the particles. 

Wavelengths near the particle size are scattered very effectively (i.e. thick fogs or clouds 

look white) [17]. Scattering losses decrease rapidly with increasing wavelength, 

eventually approaching the Rayleigh scattering case. Mie scattering is the reason why 

sunsets appear red.  

 

2.3 Free-Space Propagation of Gaussian-Beam Waves 

 

Light propagates in the form of waves. In free space, light waves travel with a constant 

speed 8
0 3 10  m/sc = × . The range of optical wavelengths contains three bands: 

Ultraviolet (10 to 390 nm), visible (390 to 760 nm) and infrared (760 nm to 1 mm) [18]. 

The corresponding range of optical frequencies stretches from 11 163 10  Hz to 3 10  Hz × × , 

as illustrated in Fig. (2-1).  
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Figure 2-1 Electromagnetic Spectrum (www.yorku.ca). 

 

There are several basic geometries commonly used to describe optical/IR wave models. 

These include the infinite plane wave, spherical wave, and Gaussian-beam wave.  

 

An optical wave is described mathematically by a complex function of position 

( ), ,x y z=r r
� �

 and time t , denoted by ( ),u tr  and known as the optical field. It satisfies 

the wave equation, 

 

2
2

2 2

1
0,                                                   (2.1)

u
u

c t

∂
∇ − =

∂
 

where 0  and  is the refractive index,
c

c n
n

=  2∇  is the Laplacian operator defined by  

 

2 2 2
2

2 2 2
.                                                 (2.2)

x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

 

The optical intensity ( ),I tr  which is defined as the optical power per unit area (units of 

2watts/cm ) is, 

( ) ( ) ( ), , * , ,                                                  (2.3)I t u t u t=r r r  

    
      8 



 xxi

where * denotes the complex conjugate.  

 

The Gaussian-beam wave model used most often is the lowest order transverse 

electromagnetic (TEM) wave, denoted by 00TEM . Limiting cases of 00TEM  Gaussian-

beam wave leads to the infinite plane wave and spherical wave models.  

 

The mathematical description of a propagating wave involves the notion of a field. In the 

case of electromagnetic radiation, the field may be a transverse electromagnetic (TEM) 

wave, whereas for acoustic waves the field may represent a pressure wave.  

 

If we assume that time the variations in the field are sinusoidal, then we look for the 

solutions of Eq. (2.1) of the form ( ) ( )0, ,i tu t U e ω−=r r  where ω  is the angular frequency 

and ( )0U r  is the complex amplitude of the wave. The substitution of this solution form 

into Eq. (2.1) leads to the time independent reduced wave equation (or Helmholtz 

equation) 

 

2 2
0 0 0,                                                       (2.4)U k U∇ + =  

 

 

where k  is the optical wave number related to the optical wavelength λ  by 

/ 2 / .k cω π λ= =  

 

Most theoretical treatments of optical wave propagation have concentrated on simple 

models such as an unbounded plane wave or spherical wave, after that often taken as a 

point source. A plane wave is defined as one in which the equiphase surfaces (phase 

fronts) form parallel planes. The mathematical description of a general plane wave in the 

plane of the transmitter at on-axis is  

 

( ) 0
0 0, ,0 ,                                                   (2.5)i

U x y A e
φ=  
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where 0A is a constant that represents the strength or amplitude of the wave field and 0φ  

is the phase. If the plane wave is propagating along the positive z- axis in free space, the 

complex amplitude at distance z from the transmitter takes the approximate form  

 

( ) 0
0 0, , .                                                 (2.6)i ikz

U x y z A e
φ +=  

In the propagation of a lowest order Gaussian-beam wave, also called a 00TEM  wave, 

with transmitting aperture located in the plane perpendicular to the propagation axis, it is 

assumed that the amplitude distribution in this plane is Gaussian with beam size, where  

s2α   denotes the radius at which the field amplitude is 1e−  of that on the beam axis 

shown in Fig. (2-2). It is assumed that the phase distribution is parabolic with radius of 

curvature 0F . The cases 0 0 0,  0,  and 0F F F= ∞ > <  correspond to collimated, 

convergent, and divergent beam forms. 

 

           Figure 2-2 Amplitude profile of a Gaussian beam.  
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2.4 Atmospheric Turbulence and Extended Huygens-Fresnel Integral 

2.4.1 Classical Turbulence and Kolmogorov Theory   

Theoretical models of turbulence in the atmosphere were developed in the middle of the 

20th-century particularly by Tatarski (1961), and were developed from much earlier 

studies of turbulence by Kolmogorov (1941). Their models assume that the turbulent 

power is initially generated on the largest scales and that dissipative forces cause the 

turbulent power to be transferred to smaller scales, eventually being dissipated on scales 

much smaller. These models make a good number of predictions about the characteristic 

length and timescales of the turbulence and in particular about the power spectrum of the 

fluctuations [19]. 

Naturally occurring small variations in temperature ( 1oC<  ) cause random changes in 

wind velocity, which can be viewed as turbulent motion in the atmosphere. The changes 

in temperature give rise to small changes in the atmospheric density and thus, to the 

index of refraction. These changes, on the order of 610− , can accumulate. The 

cumulative effect can cause significant inhomogeneities in the index profile of the 

atmosphere. This atmospheric turbulence can deteriorate the quality of the image formed 

at the receiver, and can cause fluctuations in the intensity and the phase of the received 

signal. Early studies by Kolmogorov suggest that a subclass of all optical turbulences 

has a degree of statistical consistency that permits a meaningful theoretical treatment. 

Optical turbulence is defined as the fluctuations in the index of refraction resulting from 

small temperature fluctuations. Random space-time redistribution of the refractive index 

causes a variety of effects on an optical wave related to its temporal irradiance 

fluctuations (scintillation) and phase fluctuations [20]. The wavefront of a beam will 

change in the course of propagation. This can lead to beam wander, intensity 

fluctuations (scintillations), and beam spreading [21].  

 

These  small  changes  in  the  refraction index act like small lenses in the atmosphere. 

They  focus  and  redirect  waves  and  eventually,  through  interference,  cause intensity  
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variations.  Each of these “lenses” has roughly the size of the turbulence eddy that 

caused it. The thin lens model is a useful approximation, but it is not completely 

accurate because there are no discontinuities in the atmosphere.  

 

The most common effects  of  turbulence  can  be  seen  in the twinkling and quivering 

of stars. Twinkling is the random intensity variation of the light from a star because of 

the random interference between waves from the same star passing through slightly 

different atmospheric paths. The average position of the star also shows a random quiver 

because the average angle-of-arrival of light from the star is affected by the changing 

index of refraction along its path through the atmosphere. A third is the apparent 

spreading of the star image due to turbulence. The aberrations introduced by the optics 

did not account for the large spot image of the star, a point object [22].  

Considering the atmosphere as a viscous fluid, experience has dictated that it has two 

distinct states of motion which are laminar and turbulent. The difference between these 

states lies in the fact that mixing does not occur in laminar flow for which the velocity 

flow characteristics are uniform or change in some regular fashion. In turbulent flow, the 

velocity field loses its uniform characteristics due to dynamic mixing and acquires 

random sub-flows called turbulent eddies.  

In the earliest study of turbulent flow, Reynolds used similarity theory to define a non-

dimensional quantity Re /Vl v= , the Reynolds number, V and l are the characteristic 

velocity and dimension of the flow. The transition from laminar flow to turbulent motion 

takes place at critical Reynolds number, above which the motion is considered turbulent.  

Kolmogorov turbulence theory is the set of hypotheses that a small-scale structure is 

statistically  homogeneous,  isotropic,  and  independent  of  the large-scale structure. 

The  source  of  energy  at large scales is either wind shear or convection. When the 

wind  velocity  is  sufficiently  high  that  the critical Reynolds number is exceeded, 

large  unstable  air  masses  are  created. Turbulent air motion represents a set of 
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vortices, or eddies, of various scale sizes, extending from a large scale size 0L  called the 

outer scale of turbulence to a microscale 0l  called the inner scale of turbulence. The 

outer scale 0L  represents the minimum distance over which the mean flow velocity 

changes by some appreciable amount. In the surface layer up to roughly 100 m the outer 

scale is assumed to grow linearly with the height of the observation point above ground. 

The inner scale is usually on the order of millimeters near the ground, but is generally 

thought to be on the order of centimeters in the upper atmosphere. Under the influence 

of inertial forces, large eddies break up into smaller ones, forming a continuous cascade 

of scale sizes between 0L  and 0l  known as the inertial range. Scale sizes smaller than the 

inner scale belong to the dissipation range. 

 

Figure 2-3 Kolmogorov cascade theory of turbulence, where 0L  denotes the outer scale 

and 0l  is the inner scale. Eddies between scale sizes 0l  and 0L  form the inertial 

subrange. 

Classical turbulence generally refers to velocity fluctuations. However, turbulent 

fluctuations in wind speed result in the mixing of atmospheric quantities such as 

temperature,  water  vapor,  and  the  refraction  index. These quantities are called 
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passive scalars because their dynamics do not affect the turbulence associated with 

velocity fluctuations. The most important of these quantities in optical wave propagation 

are the index of refraction fluctuations which are commonly referred to as optical 

turbulence.  

2.4.2 Laser Beam Propagation and the Extended Huygens-Fresnel Integral  

The fundamental problem of optical wave propagation is the determination of the field at 

an observation point, given a disturbance specified over some finite aperture. In vacuum, 

the solution of this problem is given approximately by the Kirchhoff integral, which is a 

mathematical expression of the Huygens-Fresnel principle. For this reason the Huygens-

Fresnel principle can be extended to a medium that exhibits a variation in the refractive 

index [23].  

In the laser beam propagation, we define ( ) ( ),0 , ,0x yu u s s=s  and 

( ) ( ), , ,x yu L u p p L=p  as the input and output fields of a linear system. In the 

atmosphere, the field changes with the distance L . The field at the receiver can be 

expressed as : 

( ) ( ) ( ), , , ; , ,0 ,                                        (2.7)x y x yu p p L G L u s s= ⊗s p  

where ⊗  is the convolution operator and ( ), ;G Ls p  is the Green’s function [24] defined 

( ) ( )21
, ; exp | | exp .                  (2.8)

4 2

ik
G L ikL

L L
ψ

π

 
= + −     

s p s p s,p  

Here ( )ψ s,p  is the random part of the complex phase of a spherical wave propagating 

in the turbulent medium from the point ( ),0s  to the point ( ),Lp .  
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In this more general formulation the complex amplitude at propagation distance L  from 

the source is represented by the extended Huygens-Fresnel integral as 

( ) ( ) ( ) 2, 2 , ; ,0 d ,                             (2.9)u L ik G L u

∞ ∞

−∞ −∞

= − ∫ ∫p s p s s  

( ) ( ) ( ) ( )2 2, exp ,0 exp | | exp         (2.10)
2 2

ik ik
u L ikL u d

L L
ψ

π

∞ ∞

−∞ −∞

−  
= −     

∫ ∫p s s p s,p s.  
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CHAPTER 3 
 
 
 

 FORMULATION OF GENERAL SOURCE BEAM AND THE LIMITING CASE 
RESULTS 

 
 
In this section the existing optical beam fields such as Bessel, Bessel Gaussian, 

Laguerre, Laguerre Gaussian, Ince Gaussian, dark hollow, bottle, super Gaussian, 

Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian such as cos-

Gaussian, sine-Gaussian, cosh-Gaussian, sinh-Gaussian, annular and their higher order 

modes with their truncated, elegant and elliptical versions are combined in a single 

general source beam formulation.  

 

A general source beam equation can be generated from all the mentioned beams’ source 

equations. In this part, all the mentioned beams’ source equations are investigated and 

huddled together to obtain Eq. (3.1). After collecting these source fields in a general 

formula and writing it in a compact form, a general source beam wave field at the source 

plane ( )0z =  will have an electric field distribution of  

 

( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

3
1 2

1 2

2 2 2 2

2 2 2 2
1

1 2

, ,0

                     cos Y exp

                    ,                                3.

N x y x y

x y r c c

sx x sy y

x x y y

n x x x m y y y

P s s R s s
u s s AT

d s d s

A V j V s V s

H a s b H a s b

γγ γ

α α=

 + + +  =
+ +

 × − − + 

× + +

∑ �

�
� �

� �

� � � � ( )1

 

 

xs   and  ys   are  the  x  and y  components of the source plane vector s , i.e., 

( ),x ys ss = . All  �   subscripted  terms  establish  the specific parameters of the 

individual  beams  comprising  the  general  beam  through  summation. In this manner, 
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N  denotes the number of beams, A
�
 is the complex amplitude of the field at the origin 

of the source plane, θ
�
 is the phase,  ( )n x x xH a s b+

� �
 and ( )m y y yH a s b+

� �
 are Hermite 

polynomials governing the beam variations for xs  and ys  directions, where n  and m  

are the order, xa �  and ya �  characterize the width, xb �  and yb �  are the complex 

displacement parameters, xV � , yV �
 are the complex parameters, used to create physical 

location displacement and phase rotation or a combination of both, named as the 

displacement parameters, sxα
�
 and syα

�
  are the source sizes, k  is the wave number,  

 

( ) ( )
( )

3
2

1 54

1 2 2exp exp , 3.2

F
FF FF

y yx x

f f

sx sysx sy

s ss s
V B C D E G H J jm φ

α αα α

              = − − − − − − −                       
� �� �

 

( ) ( ) ( ) ( )
( )

2 22 2 2 22 2 2 2 2 2 2 2

1 1

2 2

4 4
cosh sin , 3.3

2 2

x y

i i

f f f s f f f s
Y m j m

f f

− −

    
 + ± + − − ± − +   
    = −
    

    
    

s s s s  

 

φ  is the phase factor, f  is the semi focal parameter and other parameters such as ,rT  

,P  ,R  1,γ  2 ,γ  3,γ  1,d  2 ,d  1,c  2 ,c  ,A  ,B  ,C  ,D  ,E  ,M  ,G  ,H  ,J  1,F  2 ,F  3,F  

4 ,  F 5 ,F  6 ,F  1,f  2 ,f   im  are the variable parameters which change with the limiting 

conditions in order to obtain the reduced forms of the beam.  

 

The intensity of the optical wave is the squared magnitude of the field. Thus, at the 

source plane, the intensity is  

 

( ) ( ) ( )2,0 | ,0 | ,                                                     3.4I u=s s  

 

where ( ) ( ),0 , ,0x yu u s s=s . The intensity distribution of the general beam at the exit 

plane of the laser can be calculated by using Eq. (3.4) for all the cases.  
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3.1 Limiting Cases 

 

From the general source beam formulation given by Eq. (3.1), the above mentioned  

beams’ source equations can be obtained in the limiting cases. Also the mentioned 

beams’ intensities can be calculated  by using Eq. (3.1)  and Eq. (3.4). Here Eq. (3.1) is 

checked and  found to reduce to the following limiting cases correctly. 

 

3.1.1 Bessel Beam 

 

Bessel beams are non-diffracting beams, that is as they propagate they do not spread out. 

If we focus a normal laser beam down to a small spot we find that it spreads out very 

quickly, indeed the smaller the spot the more quickly it spreads. There are solutions to 

the (Helmholtz) wave equation which describe beams that do not spread out in this way 

and one family of these beams  is called Bessel beams, as they are mathematically 

described by Bessel functions. Bessel functions of the first kind [25] is defined as 

 

( )
( ) ( )

( )
( )

2

0

1 / 2
                              ,                                     3.5

! !

n

x

n x

s
J s

n

τ τ

τ τ τ

+
∞

=

−
=

+
∑  

 

where  n  is the order of Bessel function. Defining the relevant parameters in Eq. (3.1) as  

 

( )

( )

2
2

0 2

1 3 1 2 3

sin

1,  ,  ,  1,  1,  
! 1

,  0,  1,  0,  0,  2,  0,  0,  

0,  0,  0,  0,                                                                  3.6

r

i

x y

E

N A T P

R c c A F m

n m V V

ζ
π

θ
λ

ξ
ζ ζ

γ ξ γ

 
− 
 = + → ∞ = = =

Γ +

= = = = = = = =

= = = =

�

� �

�

 

 

Bessel beam can be obtained. Substituting the parameter  set in   Eq.  (3.6)  into Eq. 

(3.1),  Eq.  (3.2)  and  Eq.  (3.3),  Bessel  beam  source  equation  is  obtained  [26]. After  
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substitution, the reduced form of the general  source beam equation can be written as  

 

                    

( ) ( )

( )
( )

2 2
0

0

2
2

2

, ,0

sin

                    ,                                                 3.7
! 1

x y x yu s s E s s
ζ

ζ

ζ
π

θ
λ

ζ ζ

∞

=

= +

 
− 
 ×

Γ +

∑

 

 

where 0E  is a constant, λ  being the wavelength and ( )nΓ  is the gamma function, 

where ( ) ( )1 !n nΓ = − .  

 

Substituting Eq. (3.1), Eq. (3.2) and Eq. (3.3) into Eq. (3.4), Bessel intensity at source 

plane  is calculated using the general source beam formulation. Fig. (3-1) shows the 

Bessel beam intensity at the source plane. 
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Figure 3-1 Intensity distribution of Bessel beam the source plane. 
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3.1.2 Bessel Gaussian Beam 

 

Bessel Gaussian beam is found by multiplying Bessel beam equation by the Gaussian 

expression which can be defined as 

 

( ) ( )
22

0 2 2
, ,0 exp ,                                3.8

2 2
yx

x y

sx sy

ss
u s s E

α α

 
= − −  

 
 

 

where 0E  is a constant that represents the amplitude. Multiplying Eq. (3.7) by Eq. (3.8), 

Bessel Gaussian source equation can be obtained. Defining the relevant parameters in 

Eq. (3.1) as 

( )

2
2

2

1

3 1 2 1

2 3

1 2

- sin

1,  ,  ,   1,  1,  ,  
! 1

1
0,  1,  0,  0,  0,  0,  1,  ,  2,  

2
1
,  2,  0,  1,  0,  0,  0,  0,  

2

0,  1,   1,                           

r

i x

y

N A T P

R c c A B C D F

E F G F m n m V

V f f

ζ
π

θ
λ

ζ γ ξ
ζ ζ

γ

 
 
 = + → ∞ = = = =

Γ +

= = = = = = = − = =

= = = = = = = =

= = =

�

�

�

�

( )                                                                3.9

 

 

Bessel Gaussian beam is obtained. Substituting Eq. (3.9) into Eq. (3.1), Eq. (3.2) and Eq. 

(3.3), the general source beam equation reduces to the Bessel Gaussian source equation 

[27] as  

 

( ) ( )
( )

( )

( )

2

2

2

2 2
0

0

22

2 2

sin
, ,0

! 1

                     exp ,                                        3.10
2 2

x y x y

yx

sx sy

u s s E s s

ss

ζ
π

ζ λ

ζ

θ

ζ ζ

α α

∞

=

−
= +

Γ +

 
× − −  

 

∑
 

 

which is a Bessel Gaussian source equation. Eq. (3.10) is the multiplication of Eq. (3.7) 

and Eq. (3.8). Also the intensity can be calculated by using Eq. (3.4).  
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3.1.3 Laguerre Beam 

 

The Laguerre beam modes are approximate solutions to the wave equation in cylindrical 

coordinates, which are valid when the wave propagates in nearly parallel beams. The 

beam-mode superposition representing the transverse electric field E  of an axially-

symmetric beam, in cylindrical polar coordinates ( ), ,r zφ , with the z-axis being 

coincident with the beam axis, where 2 2
x yr s s= + . Laguerre source field equation can 

be defined as [28] 

 

( ) ( ) ( )
2

2
0 0

2 2
, ,0 exp ,                            3.11m

mn n

r r
u r L jm

W W
φ φ

   
= −    

  
 

 

where ( )m

nL x  is the associated Laguerre function which can be described as 

 

                         ( ) ( )
( )

( ) ( )
( )

0

!
1 ,                              3.12

! ! !

n
m

n

n m
L x x

n m

τ τ

τ τ τ τ=

+
= −

− +
∑  

 

and 0W  is the width of the beam waist. Defining the relevant parameters in Eq. (3.1) as  

 

( ) ( )
( )( ) ( )

3

3 3

3

2 2

3
1 3 1 2

2 3

1 !
1,  ,  

! ! !

1,  1,  0,  ,  1,  0,  0,  0,  
2

0,  0,  1,  0,  0,  ,  0,  0,  

V 0,  0,  0,                                          

m m

sx sy

r

i x

y

N m
A

N m

m
T P R c c A

B C G H J m m m V

n m

ζ

ζ ζ
ζ

α α ζ ζ ζ

γ ξ γ

+ +

− +
= + =

+ − +

= = = = + = = = =

= = = − = = = = =

= = =

�

�

�

�

( )                                    3.13

                                                                      

 

 

Laguerre beam is obtained. After substituting Eq. (3.13) into Eq. (3.1), Eq. (3.2) and Eq. 

(3.3), the reduced form of Eq. (3.1) can be written as 
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( )
( ) ( ) ( )

( )( ) ( )

( ) ( )

3
3

3 3 3 3

1
/ 22 2 2

3

2 2
0 3

3

1 !2
, ,0     

! ! !

                      exp ,                                                               3.14

m
m

N
x y

m n m m

sx sy

s s N m
u r

N m

jm

ζζζ

ζ ζ
ζ

φ
α α ζ ζ ζ

φ

− 
++  
 

+ +
=

− + +
=

+ − +

× −

∑  

  

which is a Laguerre source beam equation [28], where 3 and N m  are mode numbers of 

the Laguerre polynomial. 

 

3.1.4 Laguerre Gaussian Beam 

 

Multiplying Eq. (3.11) by the Gaussian expression, Laguerre Gaussian source beam 

equation is obtained. Defining the relevant parameters in Eq. (3.1) as 

 

( ) ( )
( )( ) ( )

3

3 3

3

2 2

3
1 3 1 2

2 3 4 5

3

1 !
1,  ,    

! ! !

1,  1,  0,  ,  1,  0,  0,  0,  0,
2

0,  1,  0.5,  0.5,  ,  0,  2,  2,  

1,  0,  V 0,  0,  0,                   

m m

sx sy

r

i

x y

N m
A

N m

m
T P R c c A B

C G H J m m m F F

F V n m

ζ

ζ ζ
ζ

α α ζ ζ ζ

γ ξ γ

+ +

− +
= + =

+ − +

= = = = + = = = = =

= = − = = = = = =

= = = = =

�

� �

�

( )                                           3.15

                                                                      

 

Laguerre Gaussian beam is obtained. After substituting Eq. (3.15) into Eq. (3.1), Eq 

(3.2) and Eq. (3.3), the general source beam formulation reduces  to  

 

( )
( ) ( ) ( )

( ) ( ) ( )

3

3

3 3 3

/ 22 2
3

2 2
0 3

22

32 2

1 !
, ,0

! ! !

                       exp ,                                    (3.16)
2 2

m
N

x ym

N x y m m

sx sy

yx

sx sy

s s N m
u s s

N m

ss
jm

ζζ

ζ ζ
ζ α α ζ ζ ζ

φ
α α

+

+ +
=

− + +
=

+ − +

 
× − − −  

 

∑
 

 

which is the Laguerre Gaussian source field equation  [28].  
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The Laguerre Gaussian beam (0,1) reduces to the Hermite Gaussian beam (1,0) which 

can be seen in Fig. (3-2). 
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Figure 3-2 Intensity distribution of  Laguerre Gaussian beam at the source plane with 

mode orders (0,1). 

 

3.1.5 Ince Gaussian Beam 

 

Ince  Gaussian  modes  form  a  complete  family of exact and orthogonal solutions of 

the  paraxial  wave equation for elliptical coordinates. The transverse distribution of 

these fields is described by the Ince polynomials and have an inherent elliptical 

symmetry.  These  modes  constitute  a  smooth  transition from Hermite Gaussian 

modes to Laguerre Gaussian modes. Any paraxial field can be obtained by linear 

superposition  of  Ince Gaussian beams with the appropriate weighting and phase 

factors. To obtain solutions of the paraxial wave equation in elliptical coordinates a 
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wave is considered whose complex envelope is a modulated version of the Gaussian 

beam, 

 

( ) ( ) ( ) ( )
22

2 2
, ,0 exp ,                            3.17

2 2
yx

sx sy

ss
u r E Nφ ξ η

α α

 
= − −  

 
 

 

with 

 

( ) ( )
2

2
sinh 2 cosh 2 ,                            3.18

d E dE
p E

d d
ξ µ ξ

ξ ξ
−∈ = − ∈  

( ) ( )
2

2
sin 2 cos 2 ,                            3.19

d N dN
p N

d d
η µ η

η η
+ ∈ = − − ∈  

 

2 2
x yr s s= + ,  and E N  are real functions,  and ξ η  are the complex elliptical radial and 

angular variables,  and  are p η seperation constants, ∈  is the ellipticity parameter of the 

Ince Gaussian eigenmode which is 2 22 /f W∈= . Eq. (3.17) satisfies the paraxial wave 

equation in elliptical coordinates so it can be solved by using Eq. (3.18) and Eq. (3.19).  

 
Defining the relevant parameters in Eq. (3.1) as 

 

( )

3 1 2

1 2 3 1 2

1,  1,  1,  0,  0,  0,  0,  0,  

1 1
1,  ,  0,  ,  0,  V 0,  0,  

2 2
0 2,  2,  1,  ,  1,  1,                                3.20

                                       

r

x y

i

N A T c c A B

C D G E V n

m F F F m m f f

γ= = = = = = = =

= − = = = = = =

= = = = = = =

�

� �

                              

 

 

Ince Gaussian beam is obtained. After substituting Eq. (3.20) into Eq. (3.1), Eq. (3.2) 

and Eq. (3.3), the source field equation of Ince Gaussian beam [29] is obtained. After the 

substitution, the reduced form of Eq. (3.1) can be obtained as 
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( ) ( ) ( )
22

2 2
, ,0 exp cos ,                              3.21

2 2
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sx sy

ss
u r Yφ

α α

 
= − −  
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where  

( ) ( )
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22 22 2 2 2
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22 22 2 2 2
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2
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     sin .                          3.22

2
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f s f s f s
Y m j

f

f s s f f s
m

f

−

−
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+ ± + − 

 =
 
 
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 
− ± − + 

 −
 
 
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Here, 0 im p≤ ≤  for even functions and 1  for odd functions.im p≤ ≤  Eq. (3.21) is the 

reduced form of the Eq. (3.1) after substitution.  

 

3.1.6 Dark Hollow Beam 

 

Optical beams with zero central intensity are called dark hollow beams. A dark hollow 

beam can be expressed as a finite sum of Laguerre Gaussian beams or Gaussian beams 

[30]. Dark hollow beam is a special case of higher-order annular beams which will be 

mentioned later. A higher-order annular beam source is defined as the superposition of 

two different higher-order Hermite Gaussian beams. A special case of such an excitation 

is the annular Gaussian beam in which two beams operate at fundamental modes of 

different Gaussian beam sizes, yielding a doughnut-shaped (annular) beam when the 

second beam is subtracted from the first beam. 

 

The electric field of a dark hollow beam at 0z =  can be expressed as the following finite 

sum of Gaussian beams 
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where 
N

n

 
 
 

 denotes a binomial coefficient, N  is the order of a circular dark hollow 

beam, 0W  determines the beam waist width, and 
2

1
p

ε
=  with 1p < .  

Defining the relevant parameters in Eq. (3.1) as 
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dark hollow beam is obtained. After substituting Eq. (3.24) into Eq. (3.1), Eq. (3.2) and 

Eq. (3.3), the general source beam equation reduces to  
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( )

( )
( )

( )

1

1

2 2 2 2

2 2 2 2 2

1 !
, ,0

! !

               exp exp ,               3.25
2 2

N

x y

x y x y

sx sy sx sy

N
u s s

N N

s s s s

ζ

ζ ζ ζ

ζ ζ

α α ε α α

−

=

−
=

−

    + +
    × − − −

   + +     

∑
 

 

which is dark hollow source beam equation [30]. Eq. (3.25) is the dark hollow beam 

source equation, where 1ε <  and 4N  is the order of a circular dark hollow beam. Using 

Eq. (3.4) the intensity at source plane can be calculated. Fig. (3-3) shows the intensity 

distribution plot of dark hollow beam at the source plane. 
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Figure 3-3 Intensity distribution of dark hollow beam at the source plane. 

 

3.1.7 Bottle Beam  

The optical bottle beam may be considered to be a superposition of two or more coaxial 

and confocal Laguerre Gaussian beams that are adjusted so as to interfere destructively 

at center of the focal plane. At this position, the dissimilar radial dependences of the 

Laguerre Gaussian beams cause exact cancellation to be lost off axis, and different Gouy 

phases play similar role away from the focal plane. This representation was proposed by 

Arlt and Padgett [31], who used a holographic mode converter to form a simple bottle 

beam superposition of ( )0,0L  and ( )2,0L . The electric field of the bottle beam can be 

defined as  

( ) ( ) ( ) ( )00 20, ,0 ,0 ,0 ,                                 3.26E r L r L rφ = −  

 

where 00L  and 20L  are the Laguerre polynomials and  ( )00 0,0L L= , ( )20 2,0L L= . 
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Defining the relevant parameters in Eq. (3.1) as 

 

1 2 14

2 32

1 2 1 2 3

1
1,  1,  1,  0,  0,  ,  2,  

2

2 1
,  1,  1,  0,  0,  1,  ,  

2

1
,  0,  1,  1,  2,  2,  1,  

2

0,  V 0,  0,  0,                                                

r

sx

sy

x y

N A T c c P

R A B C D

E G f f F F F

V n m

γ
α

γ γ
α

−
= = = = = = =

= = = = = = − =

= = = = = = =

= = = =

�

� � ( )     3.27

                                                                      

 

 

bottle beam is obtained. Substituting Eq. (3.27) into Eq. (3.1), Eq. (3.2) and Eq. (3.3), 

reduced form of the general source beam equation is  

 

( ) ( ) ( )

( ) ( )
( )

00 20

22

2 2

22 2 2 2

4 2

,0 , ,               

1
             exp

2

2
                ,                            3.28

2

yx

sx sy

x y x y

sx sy

E r L r z L r z

ss

s s s s

α α

α α

= −

  
= − +    

  

 − + + 
× + 
  

 

 

which satisfies bottle beam source equation [32]. With general source beam formulation, 

the intensity can be calculated by using Eq. (3.4). Fig. (3-4) shows the intensity 

distribution at the source plane.  
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Figure 3-4 Bottle beam intensity at the source plane. 

 

3.1.8 Flat-topped Beam 

 

To avoid diffraction effects in regions of sharp changes in the intensity after beam 

shaping, several analytic functions with a uniform central region and a continuous 

variation from the uniform region to the almost null region have been studied and 

reported in the literature. In past years, several models have been proposed to describe 

light beams with flat-topped profiles [33]. The super Gaussian beam is one of the models 

that matches such requirements. Flattened Gaussian beam can be expressed as a sum of 

finite Laguerre Gaussian modes or Hermite Gaussian modes.  

 

Flat-topped beam source equation can be defined as  

 

( ) ( ) ( )2 2 2 2, ,0 1 1 exp / / ,                   3.29
fN

s x y x sx y syu s s s sα α = − − − − 
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where fN  is the order parameter for flatness, such that 1fN = . When 1fN ≠ , on the 

other hand, the beam sizes will depart from Gaussian source sizes along  and x ys s  

directions. 

Defining the relevant parameters in Eq. (3.1) as 

 

( )
1 2 3 1 2

1,  1,  1,  1,  1,  1,  1,  

1,  2,  2,  ,  1,  1,  

0,  0,  0,  V 0,  0,  0,                                     3.30

r

f

i x y

N A T A B C D

E F F F N f f

G m V n m

= = = = = = =

= = = = = =

= = = = = =

�

� �

 

 

flat-topped beam is obtained. Substituting Eq. (3.30) into Eq. (3.1), Eq. (3.2) and Eq. 

(3.3),  the general source beam formulation reduces to a flat-topped beam source 

equation [33]. The intensity can be calculated using Eq. (3.4). Fig. (3-5) is the intensity 

plot for flat-topped beam at the source plane when 10fN = . 
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Figure 3-5 Flat-topped intensity at the source plane with 10fN = . 
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3.1.9 Super Gaussian Beam 

One of the most popular models for describing flat-topped profiles is the super Gaussian 

function [34], 

 

( ) ( ), ,0 exp ,                         3.31
2 2

ss
NN

yx
x y

sx sy

ss
u s s

α α

   
 = − −           

 

 

where sN  is the super Gaussian power. Usually, sN  is an even integer and            Eq. 

(3.31) reduces to the Gaussian case when 2sN = . 

 

 

 

Defining the relevant parameters in Eq. (3.1) as 

 

( ) ( )
( )

3 1 2

1 2 3

1 2

1,  1,  1,  0,  0,  0,  0,  0,  1,  

1 1
,  ,  0,  ,  ,  1,  0,

2 2

0,  V 0,  0,  0,  1,  1,                                          3.32

s s

r

s sN N

x y

N T A c c A B C

D E G F N F N F mi

V n m f f

γ= = = = = = = = = −

= = = = = = =

= = = = = =

�

� �

  

 

super Gaussian beam is obtained. After substituting Eq. (3.32) into Eq. (3.1), Eq. (3.2) 

and Eq. (3.3), the general source beam formulation reduces to a super Gaussian beam 

source equation [34]. Fig. (3-6) shows the intensity plot for 8sN =  at the source plane.
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Figure 3-6 Super Gaussian beam intensity at the source plane for 8sN = . 

 

3.1.10 Lorentz Beam 

 

These beams are called Lorentz beams because the form of their transverse pattern in the 

source plane is the product of two independent Lorentz functions [35]. Lorentz beam 

source equation can be defined as  

 

( )
( ) ( )

( )0

2 2

1 1
, ,0 ,                    3.33

1 / 1 /
x y

x y x x y y

E
u s s

WW s W s W
=

   + +    

 

 

where 0E  is a constant value and  and  x yW W  are parameters related to the beam width, 

2  and  2x sx y syW Wα α= = , with A ,   and    
x ys sW W ∈ ℜ  . Defining the relevant 

parameters in Eq. (3.1) as   
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( )
0 3 1 2 1 2

3

1,  2 ,  1,  0,  1,  1,  2,  2,  

2,  0,  0,  0,  0,                                           3.34

sx sy r

i x y

N A E T c c d d

A F m V V

α α γ= = = = = = = =

= = = = =

�

� �

 

 

Lorentz beam is obtained. After substitution of Eq. (3.34) into Eq. (3.1), Eq. (3.2) and 

Eq. (3.3), the general beam source equation reduces to  

 

( )
( ) ( )

( )0 2 2 2 2

1
, ,0 2 ,                     3.35

2 2
x y sx sy

sx x sy y

u s s E
s s

α α
α α

=
+ +

 

 

which is the Lorentz beam source equation [35]. The intensity is calculated from Eq. 

(3.4) and Fig. (3-7) is the intensity distribution of Lorentz beam at the source plane. 
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Figure 3-7 Lorentz beam intensity at the source plane. 
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3.1.11 Hermite-sinusoidal-Gaussian Beams  

 

Hermite-sinusoidal-Gaussian beams are the general form of the beams whose special 

cases cover a big range of beam types such as Hermite-cosh-Gaussian, Hermite-sinh-

Gaussian, Hermite-cos-Gaussian, Hermite-sine-Gaussian, cosh-Gaussian, sinh-Gaussian, 

cos-Gaussian and sine-Gaussian.  

 

The field at the source plane for the off-axis Hermite-sinusoidal-Gaussian beam is 

written as  

( ) ( ) ( )

( )

( )

2

1

22

2 2

, ,0

1
                    exp exp

2

                    exp ,                                                     

x y n x x x m y y y

yx
x x y y

sx sy

u s s A H a s b H a s b

ss
j V s V s

j

α α

θ

=

= + +

  
 × − + − +        

× −

∑
� �� � � � �

�

� �

� ( )      3.36

 

 

where 

 
( )

1 0 2 0

1 0 2 0 1 0 2 0

,  ,  ,  ,  ,  

,  ,  ,  ,  ,  .                  3.37

sx sy

x x y y

A A j A A j

n n m m V V V V V V V V

θ θ α α α α= = − = = =

= = = = − = = −

�

� �

 

 

Defining the relevant parameters in Eq. (3.1) as 

( )

1 0 2 0 3 1

2 4

5 3 2

1 0 2 0 1 0 2 0

2,  ,  ,  1,  0,  0,  

1
0,  0,  0,  0,  1,  ,  2,  

2
1
,  2,  1,  1,  = ,  ,  ,  

2
,  ,  ,  , ,  ,                    3.38

r

sx sy

x x y y

N A A j A A j T c

c A B C G H F

J F F m

n n m m V V V V V V V V

γ

φ θ α α α α

= = = − = = =

= = = = = − = =

= = = = = =

= = = = − = = −
� �

 

 

Hermite-sinusoidal-Gaussian  beam  source  equation  is obtained. Substituting Eq. 

(3.38) into  Eq. (3.1),  the reduced form of general beam source equation yields  

Hermite- sinusoidal-Gausian beam.  Eq. (3.36)  represented  by  the  superposition of 

two  fields   (with different complex displacement parameters)  for  the  off-axis  
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Hermite Gaussian beams. This superposition yields a field at the source plane for the 

geeralized Hermite- sinusoidal-Gaussian beam. Other beams such as Hermite-sine-

Gaussian, Hermite-sinh-Gaussian, Hermite-cos-Gaussian and Hermite-cosh-Gaussian 

can be derived from this source equation. Table 3-1 is the parameter table that shows 

which parameter is used for the different beams. 

 

Table 3-1 Parameters for Hermite Gaussian Beams 

Parameters  Hermite-sine-

Gaussian Beam 

Hermite-sinh-

Gaussian Beam 

Hermite-cos-

Gaussian Beam 

Hermite-cosh-

Gaussian Beam 

( )1 2,x xV V  ( )0 0,V V−  ( )0 0,V j V j−  ( )0 0,V V−  ( )0 0,V j V j−  

( )1 2,y yV V  ( )0 0,V V−  ( )0 0,V j V j−  ( )0 0,V V−  ( )0 0,V j V j−  

( )1 2,A A  ( )0 0,A j A j−  ( )0 0,A A−  ( )0 0,A A  ( )0 0,A A  

( )1 2,n n  ( ),n n  ( ),n n  ( ),n n  ( ),n n  

( )1 2,m m  ( ),m m  ( ),m m  ( ),m m  ( ),m m  

( )
1 2
,

x xs sα α  ( )s s,α α  ( )s s,α α  ( )s s,α α  ( )s s,α α  

 

 

It can be seen from Table (3-1) that for all beams, there exists x y−  symmetry. In this 

context, ,  n m  are positive integers, 0 and s Vα  are positive numeric values conforming 

to the equalities for Hermite-sine-Gaussian, Hermite-cos-Gaussian, Hermite-sinh-

Gaussian and Hermite-cosh-Gaussian beams 1 2 ,n n n= =  1 2 ,m m m= =  

( ) ( )
1 2 2 1 2s s, ,
x x x y ys s s s sα α α α α α α= > = = =  0 1 2 1 2V .x x y yV V V V= = = =  Also other 

fundamental modes such as cos-Gaussian, sine-Gaussian, cosh-Gaussian, sinh-Gaussian 

and higher order annular beams can be derived from this source formulation with 

Hermite orders 0,  0n m= = . After substitution of Eq. (3.38) into Eq. (3.1), Hermite-

sinusoidal-Gaussian beam source equation can be obtained [36]. The intensity can be 

calculated by using Eq. (3.4). The intensity distribution of Hermite- sinusoidal -Gaussian 

beam for different parameters such as  
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22 10  m,  120,  1,  0,  0,  0.5V n m Aα θ−= × = = = = =
� �

 

can be seen in Fig. (3-8). 
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Figure 3-8 Intensity distribution of Hermite-sine-Gaussian beam with 1,  0n m= =  at 

the source plane. 

 

3.1.11.1 Hermite-cosh-Gaussian Beam 

 

Hermite-cosh-Gaussian beams can be derived from the Hermite-sinusoidal-Gaussian 

beams as it is specified above.  The source equation can be written as Eq. (3.36). Using 

Table 3.1 the following parameters can be defined as  

 

( )
1 0 2 0

1 0 2 0 1 0 2 0

,  ,  ,  ,  ,  ,

,  ,   ,  ,                          3.38

sx sy

x x y y

A A A A n n m m

V V j V V j V V j V V j

α α α α= = = = = =

= = − = = −

� �
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for the Hermite-cosh-Gaussian beam. After substitution of Eq. (3.38) into Eq. (3.36), the 

formulation turns into Hermite-cosh-Gaussian beam source equation. Also, from the 

general source beam formulation, with the parameters  

 

1 0 2 0 3 1 2

4 5 2 3

1 0 2 0 1 0

2 0

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  1,  = , 1,

2 2
,  ,  ,  ,  ,  ,   ,  

,                                 

r

sx sy x x y

y

N A A A A T c c A B

C G H F J F m F

n n m m V V j V V j V V j

V V j

γ

φ θ

α α α α

= = = = = = = = =

= = − = = = = = =

= = = = = = − =

= −

� �

( )                                                                   3.39

 

 

Eq. (3.36) can be converted to Hermite-cosh-Gaussian beam source equation. 

Substituting Eq. (3.39) into Eq. (3.1), Eq. (3.2) and Eq. (3.3), the general source beam 

equation reduces to the Hermite-cosh-Gaussian beam source equation [36].  

  

3.1.11.2 Hermite-cos-Gaussian Beam 

 

Hermite-cos-Gaussian beams also can be derived from Hermite-sinusoidal-Gaussian 

beams. The source equation can be written as Eq. (3.36). Using Table 3.1 the following 

parameters can be defined as  

 

1 0 2 0 3 1 2

4 5 3 2

1 0 2 0 1 0

2 0

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  1,  1,  ,  

2 2
,  ,  ,  ,  ,  ,  ,   

,                                    

r

sx sy x x y

y

N A A A A T c c A B

C G H F J F F m

n n m m V V V V V V

V V

γ

φ θ

α α α α

= = = = = = = = =

= = − = = = = = = =

= = = = = = − =

= −

� �

( )                                                                3.40

 

 

for the Hermite-cos-Gaussian beam source equation. Substituting Eq. (3.40) into Eq. 

(3.1), Eq. (3.2) and Eq. (3.3), the general source beam equation reduces to the Hermite-

cos-Gaussian beam source equation [36].  
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3.1.11.3 Hermite-sinh-Gaussian Beam 

 

Hermite-sinh-Gaussian beams can be derived from Hermite-sinusoidal-Gaussian beams. 

The following parameters can be defined as  

 

1 0 2 0 3 1 2

4 5 3 2

1 0 2 0 1 0

2 0

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  1,  1,  = ,  

2 2
,  ,  ,  ,  ,  ,  ,  

,                               

r

sx sy x x y

y

N A A A A T c c A B

C G H F J F F m

n n m m V V j V V j V V j

V V j

γ

φ θ

α α α α

= = = − = = = = = =

= = − = = = = = =

= = = = = = − =

= −

� �

( )                                                                      3.41

 

 

for the Hermite-sinh-Gaussian beam [36]. As it is shown in Table (3.1), only 

,  ,  ,  ,  x yV V A n m
� � � � �

 parameters change.  

 

3.1.11.4 Cos-Gaussian Beam 

 

Cos-Gaussian beams can be derived from the same equation for Hermite- sinusoidal -

Gaussian beam. A table can be generated for cos-Gaussian, sine-Gaussian, sinh-

Gaussian, cosh-Gaussian.  

 

Table 3-2 Parameters  for Sinosoidal GaussianBeams 

Parameters Cos-Gaussian 

Beam 

Cosh-Gaussian 

Beam 

Sine-Gaussian 

Beam 

Sinh-Gaussian 

Beam 

( )1 2,x xV V  ( )0 0,V V−  ( )0 0,V j V j−  ( )0 0,V V−  ( )0 0,V j V j−  

( )1 2,y yV V  ( )0 0,V V−  ( )0 0,V j V j−  ( ),m m  ( )0 0,V j V j−  

( )1 2,A A  ( )0 0,A A  ( )0 0,A A  ( )0 0,A j A j−  ( )0 0,A A−  

( )1 2,n n  ( )0,0  ( )0,0  ( )0,0  ( )0,0  

( )1 2,m m  ( )0,0  ( )0,0  ( )0,0  ( )0,0  

( )
1 2
,

x xs sα α  ( )s s,α α  ( )s s,α α  ( )s s,α α  ( )s s,α α  
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Although there exists x y−  symmetry for all Hermite-sinusoidal-Gaussian and 

sinusoidal-Gaussian beams, for higher-order annular beam there is a different case. For 

higher-order annular beam 1 2s sα α> . 

Using Table (3-2), the following parameters can be defined as 

 

 

1 0 2 0 3 1 2

4 5 3 2

1 0 2 0 1 0

2 0

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  1,  1,  = , 

2 2
,  ,  0,  0,  ,  ,  ,  

,                                    

r

sx sy x x y

y

N A A A A T c c A B

C G H F J F F m

n m V V V V V V

V V

γ

φ θ

α α α α

= = = = = = = = =

= = − = = = = = =

= = = = = = − =

= −

� �

( )                                                             3.42

 

 

for cos-Gaussian beam. After substituting Eq. (3.42) into Eq. (3.1), Eq. (3.2) and Eq. 

(3.3), the reduced  form of general beam source equation yields the cos-Gaussain beam 

source equation [37]. 

 

3.1.11.5 Cosh-Gaussian Beam 

 

According to the Table 3.2 the following parameters can be defined as 

 

1 0 2 0 3 1 2

4 5 3 2

1 0 2 0 1 0

2 0

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  =1, 1,  = , 

2 2
,  ,  0,  0,  V ,  ,  ,  

,                                 

r

sx sy x x y

y

N A A A A T c c A B

C G H F J F F m

n m V j V V j V V j

V V j

γ

φ θ

α α α α

= = = = = = = = =

= = − = = = = =

= = = = = = − =

= −

� �

( )                                                                   3.43

 

 

for cosh-Gaussian beam. After substitution of Eq. (3.43) into Eq. (3.1), reduced form of 

general source beam equation gives the cosh-Gaussian beam Eq. [38]. It can be derived 

from cos-Gaussian beam by changing  and x yV V
� �

 and making the rest of the source 

parameters the same. 
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3.1.11.6 Sine-Gaussian Beam 

 

The source equation can be derived from cosh-Gaussian beam source equation by 

changing A
�
 parameters, and making the rest of the parameters the same. 

The following parameters can be defined as 

 

 

1 0 2 0 3 1 2

4 5

3 2 1 0

2 0 1 0 2 0

2,  ,  ,  1,  0,  0,  0,  

1 1
0,  0,  0,  1,  ,  2,  ,  2,  

2 2
=1, 1,  = , ,  ,  0,  0,  ,  

,  ,  ,                                  

r

sx sy x

x y y

N A A j A A j T c c

A B C G H F J F

F m n m V V

V V V V V V

γ

φ θ α α α α

= = = − = = = =

= = = = − = = = =

= = = = = =

= − = = −

� �

( )                     3.44

 

 

for sine-Gaussian source beam. After substitution of Eq. (3.44) into Eq. (3.1), Eq. (3.2) 

and Eq. (3.3), reduced form of general source beam equation yields the sine-Gaussian 

beam equation [39]. 

 

3.1.11.7 Sinh-Gaussian Beam 

 

The source equation can be derived from sine-Gaussian beam source equation by 

changing ,   and x yA V V
� � �

 parameters, and making the rest of the parameters the same. 

The following parameters can be defined as 

 

 

1 0 2 0 3 1 2

4 5 3

2 1 0

2 0 1 0 2 0

2,  ,  ,  1,  0,  0,  0,  0,  

1 1
0,  0,  1,  ,  2,  ,  2,  1,

2 2
1,  = , ,  ,  0,  0,  ,  

,  ,  ,                                 

r

sx sy x

x y y

N A A A A T c c A

B C G H F J F F

m n m V V j

V V j V V j V V j

γ

φ θ α α α α

= = = − = = = = =

= = = − = = = = =

= = = = = =

= − = = −

� �

( )                     3.45

 

 

for sinh-Gaussian source beam. After substituting Eq. (3.45) into Eq. (3.1), Eq. (3.2) and 

Eq. (3.3), reduced form of general source beam equation gives the sinh-Gaussian beam 

equation [39]. 
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3.1.11.8 Higher-order Annular Beam 

 

Conventionally the annular beam comprises from the difference of two co-centric beam 

fields, called primary and secondary. Hence a higher-order annular beam aligned to be at 

the origin of the source plane oriented to be perpendicular to the axis of propagation, z , 

will have a field distribution [40], which is Eq. (3.36). 

The following parameters can be defined as  

 

1 0 2 0 3 1 2

4 5 3 2

1 1 2 2 1 1 2 2

2,  ,  ,  1,  0,  0,  0,  0,  0,  

1 1
0,  1,  ,  2,  ,  2,  1,  1,  =

2 2
,  ,  ,  ,  ,  ,  0,  

0,                                

r

sx s sx s sy s sy s x

y

N A A A A T c c A B

C G H F J F F m

n n m m V

V

γ

φ θ

α α α α α α α α

= = = − = = = = = =

= = − = = = = = =

= = = = = = =

=

� � �

� ( )                                                                      3.46

 

 

for the higher-order annular beam. Here, 1 2s sα α≠ . After substituting Eq. (3.46) into Eq. 

(3.1), Eq. (3.2) and Eq. (3.3), reduced form of general source beam equation yields the 

higher order annular beam equation [40]. 

 

3.1.12 Elegant Laguerre Gaussian Beam 

 

The standard and elegant Hermite Gaussian, Laguerre Gaussian and Ince Gaussian 

beams constitute the three orthogonal and biorthogonal, respectively, complete families 

of paraxial solutions for the scalar Helmholtz equation. The elegant solutions differ from 

the standard solutions in that the former contain polynomials with a complex argument, 

whereas in the latter the argument is real. Elegant Laguerre Gaussian beams form a 

biorthogonal set with their adjoint set of functions [41]. 

Elegant Laguerre Gaussian bam source equation can be defined as 

 

( ) ( ) ( )
2

2
0 0

, ,0 exp ,                         3.47

m

mr r
u r L jm

W W
θ θ

   
= −   
   

�
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where 2 2
x yr s s= + , mL

�
 denotes the Laguerre polynomial with mode orders �  and m  

and 0W  is the width of the beam waist.  

The following parameters can be defined as  

 

( ) ( )
( )( ) ( )/ 2 2 2

1 3 1 2

4

5 2

1 !
1,   ,  

2 ! ! !

1,  1,  / 2,  0,  1,  0,  0,  

0,  0,  0,  1,  0.5,  0.5,  2,  

2,  ,  ,  0,                                         

nm m m m

sx sy

r

i

N m
A

N m

T P m R c c

A B C G H J F

F m m m

ζ

ζ ζ ζ
ζ

α α ζ ζ ζ

γ ζ γ

φ θ

+ + +

− +
= + =

+ − +

= = = + = = = =

= = = = − = = =

= = = =

�
�

( )        3.48

 

 

for the elegant Laguerre Gaussian beam. Substituting Eq. (3.48) into Eq. (3.1), Eq. (3.2) 

and Eq. (3.3), reduced form of the general source beam becomes  

 

( )
( ) ( ) ( )
( )( ) ( )

( )
( )

( )

/ 22 2

/ 2 2 2
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2 2

2 2

1 !
,

2 ! ! !

                 exp ,                                          3.49
2
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N

x y
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sx sy

x y
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N m s s
E r

N m

s s
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θ
α α ζ ζ ζ

θ
α α

+

+ + +
=

− + +
=

+ − +

 +
 × − −
 + 

∑
 

 

which is the elegant Laguerre Gaussian beam [41]. 

 

3.1.13 Elliptical Gaussian Beam 

 

The optical field of the generalized elliptical Gaussian beam can be expressed in tensor 

form as follows [42] 

 

( ) ( )1, ,0 exp ,                               3.50
2

T

x y

jk
u s s r Q r− 

= − 
 

 

 

where 2 /k π λ=  is the wavenumber, λ  is the wavelength, r  denotes a position vector 

in a transverse plane given by ( ),T

x yr s s= , and 1  is the 2 2Q− ×  complex curvature 

tensor for the generalized elliptical Gaussian beam given by 
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( )
1 1

1 1 1

1 1

 
,  with .                            3.51

 

x x x y

x y y x

y x y y

s s s s

s s s s

s s s s

q q
Q q q

q q

− −

− − −

− −

 
 = =
  

 

 

The following parameters can be defined as 

 

( )

3 1 21,  1,  1,  0,  0,  0,  0,  

0,  1,  ,  0.201 ,                        3.52
2 x x x x

nm r

s s s s

N A T c c A

jk
B C D q q j

γ= = = = = = =

= = − = − = −

�

 

 

for the elliptical Gaussian beam. After substituting Eq. (3.52) into Eq. (3.1), Eq. (3.2) 

and Eq. (3.3), reduced form of the general source beam equation gives the elliptical 

Gaussian beam [42] such that 

 

( ) ( )1 2 1 1 1 2
xE r exp s +           3.53

2 x x x y x y y ys s s s x y s s x y s s y

jk
q q s s q s s q s− − − −  = − + +   

 

 

which is the same form as in Eq. (3.50). 
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CHAPTER 4 
 
 
 

FORMULATION AND RESULTS FOR THE AVERAGE RECEIVED 
INTENSITY OF GENERAL BEAMS IN ATMOSPHERIC TURBULENCE 

 
 

The variation of the received average intensity profile along a turbulent path depends on 

the type of the beam used as incidence. This dependency is investigated by many 

researchers for various types of beams. In all of the studies, the formulation is developed 

starting with the intended incidence. In this part, it is managed to combine the 

formulation of the average received intensity in turbulence for most of the mentioned 

beams in Chapter 3. Although the general source beam formulation can be used in this 

part to find the average received intensity in turbulence, because it will be bulky, it is not 

calculated. Here, a portion of Eq. (3.1) is used to calculate the average received intensity 

in turbulence. Eq. (4.1) is a part of Eq. (3.1) which satisfies the general beam source 

equation and can be written as 

 

( ) ( ) ( )

( ) ( ) ( )

22

2 2
1

exp exp
2 2

          exp .                         4.1

N
yx

n x x x

sx sy

m y y x x x y y

ss
u A j H a s b

H a s b jV s jV s

θ
α α=

 
= − + − −  

 

 × + − + 

∑s
�

�

� � � �

�

� � � �

 

 

The average intensity ( ), ,I Lp  of a general beam on a receiver plane located at L    

distance away from the source can be written as 

 

( ) ( ) ( ) ( )
*

, , , ,                                       4.2I L u L u L=p p p  

 

where  
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( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

* 2
1

2

2 *
2

2 *

, , exp
2

                            exp / 2

                            exp  
2

                            exp / 2

k
u L u L jkL u

j L

jk L

k
jkL u

j L

jk L

π

ψ

π

ψ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

=

 × +
 

× −
−

 × − +


∫ ∫

∫ ∫

1

1 1

2

2 2

p p ds s

p - s s ,p
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After substituting Eq. (4.4) into Eq. (4.2), the average received intensity can be 

calculated as  

( ) ( ) ( )

( ) ( ){ }
( ) ( ) ( )

2

2 2 *
1 2 1 2

2 2

1 2

*
1 2

,
2

                 exp / 2
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 
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∫ ∫ ∫ ∫p ds ds s s

p s p s

s p s p

 

 

where the ensemble average term within the integrand is  

 

( ) ( ) ( ) ( )* 2
1 2 0 1 2exp , , exp ,                        4.6ψ ψ ρ −   + ≅ − −   s p s p s s  

with ψ  being the fluctuations of the complex amplitude,  and x yp p  are the  and x y  

components of the receiver plane vector p , such that ( ), ,x yp pp =  

( )
3/52 2

0 0.545 nC k Lρ
−

=  is the coherence length of a spherical wave propagating in the 

turbulent  medium  and  2
nC   is the structure constant. Note that Eq. (4.6) is derived 

under   the   quadratic   approximation  for  the  Rytovs’s  phase  structure  function,  and 
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After substituting Eq. (4.6) and Eq. (4.7) into Eq. (4.5) and solving the resulting integral 

by the repeated use of Eq. (3.462.2) of Ref [43], which is 
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the following expression is obtained for the average intensity at the receiver plane 
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yE  is attained by changing all x  subscripts to y  in xE , 
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yS  is constructed by changing all x  subscripts to y  is xS  given by Eq. (4.8). 

1 11 3  (2 -1)  for 0 where 1, 2x xj xT j= × × ≠ =
�

� � .... , all appearances in the form of 1

2

B

B

 
 
 

 

represent binomial coefficients, hence ( )1
1 1 2 2

2

= !/ ! !
B

B B B B
B

 
−    

 
, ! is the factorial 

notation, the square brackets, [ ] , placed in the upper limits of some summations mean 

that the integral part of the expression within the square brackets is to be taken.  

 

In all the figures, rNI  means that for the average received intensity, the following 

normalization is applied 

( ) ( ) ( ) ( )*, / ,                                4.12rNI I L Max u u =  p s s  
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where the denominator corresponds to the maximum value of the source plane intensity. 

In all the figures, sNI  refers to rNI  at 0L = . 

The intensity is calculated and plotted at the source plane in Chapter 3. In this chapter, 

the average received intensity in atmospheric turbulence is calculated by using Eq. (4.1). 

Moving away from the source plane, the Hermite-sine-Gaussian, Hermite-cosh-

Gaussian, Hermite-cosine-Gaussian, and Hermite-sinh-Gaussian laser beams will keep 

their original shape for some distance; then because of inevitable spreading, neighboring 

lobes will start to merge [44].  

 

Fig. (4-1) shows the intensity variation of a Hermite-sine-Gaussian beam along the axis 

of propagation at the distances of 0 (source plane), 2, 5, 20 kmL =  with the parameters 

1,n =  0,m =  150 mx ya a −= = , 0,x yb b= =  2 cm,sx syα α= =  1 0.5 ,A j=  2 0.5 ,A j= −  

1
1 1 120 mx yV V −= = , 1

2 2 120 mx yV V −= = − ,  =1.55 m,λ µ  
2 15 2/31 10 mnC

− −= × . Fig. (4-1) 

shows that at a distance ( )2 kmL = , the beam appears as a sinh-positioned TEM when 

viewed along the slanted axis [44] which can be shown in Fig. (4-2). As the beam 

propagates further, the TEM appearance gradually diminishes, turning the beam to a 

sinh-Gaussian profile as seen in the 20 km L =  case plot of Fig. (4-1). 
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Figure 4-1 Intensity distribution of Hermite-sine-Gaussian beam 

1,  0,  at =0, 2, 5,20 km.n m L= =  

Fig. (4-2) is the intensity distribution of Hermite-cosh-Gaussian beam at source and 

receiver along the axis of propagation at the distances of 

0 (source plane), 2, 5, 20 kmL =  with the parameters 1,n =  0,m =  =1.55 m,λ µ  
2 15 2/31 10  mnC

− −= × , 1 20.5,  A 0.5A = = , 
1

1 1 120  mx yV V j −= = , 1
2 2 120  mx yV V j −= = − , 

3 cmsx syα α= = .  It can be seen from Fig. (4-2), with the increasing of propagation 

distance, the Hermite-cosh-Gaussian beam turns into a pure Gaussian beam [44]. 
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Figure 4-2 Intensity distribution of Hermite-cosh-Gaussian beam with 

1,  0,  at L=0, 2, 5,20 km.n m= =  

 

Fig. (4-3) shows the intensity distribution of a Hermite-cosine-Gaussian beam along the 

axis of propagation at the distances of 0 (source plane), 2, 5, 20 kmL =  with the 

parameters 1,n =  1,m =  =1.55 m,λ µ  
2 15 2 /31 10 m ,nC

− −= ×  1 20.5,  A 0.5,A = =    
1

1 1 120 m ,x yV V −= =  1
2 2 120 m ,x yV V −= = −  2 cmsx syα α= = . Moving away from the 

source plane, the Hermite-cosine-Gaussian beam will spread in a way such that some 

neighboring lobes will start to merge that can be seen from the Fig. (4-3) [45]. 
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Figure 4-3 Intensity distribution of Hermite-cosine-Gaussian beam with 

1,  1,  at =0, 2, 5,20 km.n m L= =  

 

Fig. (4-4) shows the intensity distribution of a Hermite-sinh-Gaussian beam along the 

axis of propagation at the distances of 0 (source plane), 2, 5, 20 kmL =  with the 

parameters 1,n =   0,m =  =1.55 m,λ µ  
2 15 2 /31 10 m ,nC

− −= ×  1 20.5,  A 0.5,A = = −  
1

1 1 120  m ,x yV V j −= =  1
2 2 120  m ,x yV V j −= = −  2 cmsx syα α= = . Here it can be seen for 

this specific combination of source and medium parameters that the Hermite-sinh-

Gaussian beam will produce a pure Gaussian as it propagates a sufficient distance [44]. 

By comparing Figs. (4-2) and (4-4), it is concluded that a similar intensity pattern is 

repeated both in the case of Hermite cosh-Gaussian and Hermite-sinh-Gaussian beams. 

An illustration of a Hermite-sine-Gaussian beam is given in Fig. (4-1) and a Hermite-

cosine-Gaussian beam is given in Fig. (4-3). From Figs. (4-1) and (4-3), it is observed 

that Hermite-sine-Gaussian beam and Hermite-cosine-Gaussian beam have not 

substantial differences along the propagation path. It is not shown in these plots but 

Hermite-sine-Gaussian beam and Hermite-cosine-Gaussian beam will turn into a pure 

Gaussian profile with the increasing distances such as 50 kmL = . 
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Figure 4-4 Intensity distribution of a Hermite-sinh-Gaussian beam with 

1,  0,  at =0, 2, 5,20 km.n m L= =  

 

Fig. (4-5) is the intensity distribution of a cosine-Gaussian beam at source and receiver 

along the axis of propagation at the distances of 0 (source plane), 2, 5, 20 kmL =  with 

the parameters 0,n =  0,m =  =1.55 m,λ µ  
2 15 2 /31 10 m ,nC

− −= × 1 20.5,  A 0.5,A = =  
1

1 1 50 m ,x yV V −= =  1
2 2 50 m ,x yV V −= = −  5 cmsx syα α= = . With the increasing of 

propagation distance, the beam spreading can clearly be identified [46]. The upper left 

and lower left part of Fig. (4-5) show this process. 
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Figure 4-5 Intensity distribution of cosine-Gaussian beam with 

0,  0,  at 0,  2,  5,  20 km.n m L= = =  

 

Fig. (4-6) is the progress of a cosh-Gaussian beam along the axis of propagation the 

distances of 0 (source plane), 2, 5, 20 kmL =  with the parameters 0,n =   0,m =  

=1.55 m,λ µ  
2 15 2 /31 10 m ,nC

− −= ×  1 20.5,  A 0.5,A = =  
1

1 1 120  m ,x yV V j −= =  

1
2 2 120  m ,x yV V j −= = −  2 cmsx syα α= = . It can be seen from Fig. (4-6), for this specific 

combination, the cosh-Gaussian beam will produce a pure Gaussian beam with the 

increasing distances [46]. 
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Figure 4-6 Intensity distribution of cosh-Gaussian beam with 

0,  0,  at 0,  2,  5,  20 km.n m L= = =  

 

Fig. (4-7) shows the progress of a sine-Gaussian beam along the axis of propagation at 

the distances of 0 (source plane), 2, 5, 20 kmL =  with the parameters 0,n =  0,m =  

150 m ,x ya a −= =  0,x yb b= =  2 cm,sx syα α= =  1 0.5 ,A j=  2 0.5 ,A j= −  

1
1 1 120 m ,x yV V −= =  1

2 2 120 m ,x yV V −= = −   =1.55 m,λ µ  
2 15 2/31 10 mnC

− −= ×   [44]. 
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Figure 4-7 Intensity distribution of a sine-Gaussian beam with 

1,  0,  at 0,  2,  5,  20 km.n m L= = =  

 

Fig. (4-8) shows the intensity distribution of sinh-Gaussian beam at source and receiver 

with different distances such as 0,  2,  5,  20 kmL =  with parameters 0,n =  0,m =  

150 mx ya a −= = , 0,x yb b= =  2 cm,sx syα α= =  1 0.5,A =  2 0.5,A = −  

1
1 1 120  mx yV V j −= = , 1

2 2 120  mx yV V j −= = − ,  =1.55 m,λ µ  
2 15 2/31 10 mnC

− −= ×   [44].  

The sine-Gaussian, cosine-Gaussian, sinh-Gaussian and cosh-Gaussian beams are 

obtained by taking the parameters as 0 and =0.n m=  It can be seen from the Figs. (4-6) 

and (4-8) both cosh-Gaussian and sinh-Gaussian beams will turn into a pure Gaussian 

profile at 20 kmL = .  
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Figure 4-8 Intensity distribution of a sinh-Gaussian beam with 

0,  0,  at 0,  2,  5,  20 km.n m L= = =  

 

Fig. (4-9) shows the intensity distribution of annular beam at source and receiver at the 

distances of 0 (source plane), 2, 5, 20 kmL =  with the parameters 0,n =   0,m =  

=1.55 m,λ µ  
2 15 2/31 10  m ,nC

− −= ×  1 1 2 2 0,x y x yV V V V= = = =  1 1 3 cm,sx syα α= =  

2 2 1.5 cm,sx syα α= =  1 20.5,  0.5A A= = − . It can be seen from Fig. (4-9), with the 

increasing propagation distances, the annular beam will settle down to a pure Gaussian 

shape at 20 kmL =  [47]. 
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Figure 4-9 Intensity distribution of annular beam with 

0,  0,  at 0,  2,  5,  20 km.n m L= = =  

 

Fig. (4-10) shows the intensity distribution of higher order annular beam at source and 

receiver at the distances of 0 (source plane), 2, 5, 20 kmL =  with the parameters 1,n =  

 0,m =  =1.55 m,λ µ  
2 15 2/31 10  m ,nC

− −= ×  1 1 2 2 0x y x yV V V V= = = = , 1 1 3 cmsx syα α= = , 

2 2 1.5 cmsx syα α= = , 1 20.5,  0.5A A= = − . Fig. (4-10) shows that the higher order annular 

beam will first act to enlarge the initially smaller lobes near on-axis, then the profile will 

turn into a pure Gaussian shape [47]. Although annular beam turns into a pure Gaussian 

profile at 20 kmL = , the higher order annular beam turns into a pure Gaussian profile at 

a longer propagation distance. 
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Figure 4-10 Intensity distribution of a higher order annular beam with 

1,  0,  at 0,  2,  5,  20 km.n m L= = =  
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CHAPTER 5 
 

 
 

CONCLUSIONS 
 

 
A formulation is developed to represent a general source beam to combine many types 

of different beams such as Bessel, Bessel Gaussian, Laguerre, Laguerre Gaussian, Ince 

Gaussian, dark hollow, bottle, super Gaussian, Lorentz, flat-topped, Hermite-sinusoidal-

Gaussian, sinusoidal-Gaussian like cos-Gaussian, sine-Gaussian, cosh-Gaussian, sinh-

Gaussian, annular and their higher order modes with their truncated, elegant and 

elliptical versions in a single expression. With this general source beam formulation, all 

the mentioned beams’ source equations are obtained, compared with their existing forms 

in the literature and intensity patterns of some of them are plotted at source plane.  

 

Then, using a simplified version of the developed general beam formula, received 

average intensity is calculated in the presence of atmospheric turbulence. Distributions 

of the average intensity patterns are obtained at the receiver plane of horizontal 

atmospheric links specifically for Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, 

annular beams and their higher order modes. Variation of the average received intensity 

profiles for such beams are examined at different propagation distances in atmospheric 

turbulence. In our formulation, extended Huygens-Fresnel diffraction integral is used. 

The normalized average intensity distribution is plotted for each beam at different 

distances as quartet plots, first plot showing the intensity distribution at the source plane, 

the next three exhibiting the average intensity distributions at different propagation 

distances.  

 

While Hermite-sinusoidal-Gaussian beams are propagating in turbulence, they keep their 

original  shape  for  a  certain  propagation  distance, then additional lobes start to 
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 lxxii

appear. For a sufficient distance, Hermite-sinusoidal-Gaussian beams turn into a 

Gaussian profile. It can be said that Hermite-sinh-Gaussian beams and Hermite-cosh-

Gaussian beams have similar average intensity profiles and at sufficient distances, they 

turn into Gaussian profile. Hermite-sine-Gaussian and Hermite-cosine-Gaussian beams 

take Gaussian shape at long propagation distances as compared to the Hermite-sinh-

Gaussian and Hermite-cosh-Gaussian beams. For the sinh-Gaussian and cosh-Gaussian 

beams, because of spreading, neighboring lobes start to merge. At sufficient distance, 

their average intensity profiles again attain pure Gaussian shapes. Sine-Gaussian beams 

and cosine-Gaussian beams take Gaussian profile at a longer propagation distances when 

compared with the sinh-Gaussian and cosh-Gaussian beams. It is interesting to note that 

the cos-Gaussian beam transforms into cosh-Gaussian beam after propagation in 

turbulence.  
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