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ABSTRACT

THE USE OF RESAMPLING TECHNIQUES FOR LIFETIME DATA ANALYSIS
IN INDUSTRIAL ENGINEERING

ASLAN, Miray Hanim
M.S.c., Department of Industrial Engineering
Supervisor  : Prof. Dr. Fetih YILDIRIM

August 2007, 92 pages

This study concerns with estimating the parameters in lifetime of fragile population
and the ratio of fragile population to the fragile and durable (mixed) population by
using trunsored models (unification of truncated and censored models) approach. The
purpose of this study is to illustrate the bootstrap resampling method used for the
parameter estimation in trunsored models. The bootstrap method is especially
convenient to make statistical inference when distributional assumptions are not valid.
Therefore, trunsored models with bootstrapping, which follow a consistent strategy in

statistical inference and data analysis, lead to more accuracy for evaluation.

Like many real world cases, the thermal endurance data in material failure analysis do
not follow any distribution perfectly. Furthermore, time and cost limitations prevent
to observe a great number of data to analyze accurately. Thus, the trunsored model
approach with bootstrapping is thought as potential to reduce the cost of destructive
testing due to reduced frequency of testing, to prevent failures and to improve product
reliability. The approach presented in this study may also be applied to many other
real life problems.

Keywords: Bootstrap, Censored Data, Lifetime Analysis, Resampling Methods,

Trunsored Models.
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ENDUSTRI MUHENDISLIGINDE YASAM SURESI ANALIZLERI ICIN
YENIDEN ORNEKLEME YONTEMLERININ KULLANILMASI

ASLAN, Miray Hanim
Yiikseklisans, Endiistri Miihendisligi Anabilim Dali
Tez Yoneticisi : Prof. Dr. Fetih YILDIRIM

Agustos 2007, 92 sayfa

Bu calisma, kirilgan populasyonun Omiir siiresi parametrelerini ve kirilgan
populasyonun duragan ve kirilgan (karisik) populasyona oranim1i  trunsored
(budanmis ve sansiirlenmis modellerin birlesimi) model yaklagimi kullanarak tahmin
etmekle ilgilidir. Bu g¢alismanin amaci, trunsored modellerde parametre tahmini
yapmak icin bootstrap yeniden Ornekleme yonteminin kullanilmasidir. Bootstrap
metodu, Ozellikle dagilim varsayiminin gegerli olmadigi durumlarda istatistiksel
cikarsama yapmak icin elverislidir. Bu nedenle, istatistiksel ¢ikarsama ve veri
analizlerinde tutarli bir strateji takip eden bootstrapli trunsored modelleri, daha ¢ok

kesin sonuglar elde etmeye Onciiliik etmektedir.

Bir¢ok gercek diinya vakalar1 gibi, malzeme ariza analizlerinde, 1s1 dayanimi verileri
hicbir dagilima tam olarak uymamaktadir. Ayrica, zaman ve maliyet kisitlar1 daha
dogru analiz i¢in ¢ok biiyiik sayida gézlem yapmay1 engellemektedirler. Bu nedenle,
bootstrapli trunsored model yaklagimi test sikliklarinin azalmasindan dolay1 tahrip
edici testlerin maliyetini diislirmek, arizalar1 azaltmak ve {irlin gilivenilirligini
gelistirmek i¢in bir potansiyel olarak diigiiniilmiistiir. Bu calismada gosterilen
yaklasimlar diger bir¢cok ger¢ek hayat problemine de uygulanabilir.

Anahtar Kelimeler: Bootstrap, Sansiirlii Veri, Yasam Siiresi Analizi, Yeniden

Ornekleme Yontemleri, Trunsored Modeller
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CHAPTER 1

INTRODUCTION

The perspective of statistical computing has been revolutionized by recent advances
in the power of computers. This modern perspective has been improved and oriented
the computer intensive techniques. The important aspect to this orientation is the
difficulty and complexity of the tasks by using traditional methods. In particular,
drawing of statistical inferences from a set of data always required high computer
power which made the analysis practical. Thus, this study demonstrates one of the
computer intensive techniques, resampling method, as an alternative for traditional
methods. Resampling methods are powerful, modern tools that can be used to make
statistical inference and to investigate the behavior of any estimation. The main
trigger mechanism to use a resampling method is thought as either elimination or
restriction of any unverifiable assumption about the data to a minimum. In this study,
a specific resampling method, bootstrap resampling, which uses the information
contained in a single sample from the population of interest, is mostly focused on. In
particular, the nonparametric bootstrap method is used to draw statistics based
conclusions since it requires fewer assumptions relative to both parametric and

traditional methods.

The primary aim of this study is to develop an efficient industrial engineering
application of bootstrap resampling method. Thus, the application is chosen from
reliability analysis to develop original solutions that arise in modern engineering

designs. The problem taken into account must seriously consider reliability because



lifetime data with incomplete observations frequently arises in reliability. A new
incomplete data model, i.e. trunsored model, will be used to analyze the data. This
method provides not only an estimate for the ratio of the fragile population to the
mixed fragile and durable populations, but also tests the hypothesis that the ratio is
equal to a prescribed value with estimated confidence intervals. Furthermore,
trunsored model approach with bootstrapping can cope with time and cost limitations
in lifetime data analysis. Therefore, for modern engineering design, trunsored model
approach with bootstrapping is thought as potential to reduce the cost of destructive
testing due to reduced frequency of testing, to prevent failures and to improve product

reliability.

This study presents the fundamentals of the bootstrap method with an original
application. Developing the mathematical and logical background of resampling
methods is required for understanding the bootstrap procedure. Thus, resampling
methods are defined in Chapter 2 of this study. Since the main philosophy is drawing
the pictures of resampling with a framework that comes from wider to narrower,
Chapter 3 presents the details of bootstrap method. The basics of lifetime data
analysis and the industrial engineering case study are proposed in Chapter 4. Finally,

conclusive remarks are provided in Chapter 5.



CHAPTER 2

RESAMPLING METHODS

The roles of computing in statistics became important with the increases in computer
power, decreases in computing costs and recent advances in the information
technology. Several terms are used when referring to computer intensive statistical
methods, including ‘resampling’, ‘Monte Carlo Simulation’, ‘permutation’,
‘randomization’, ‘jackknife’ and ‘bootstrapping’. The generic terms ‘resampling’
and ‘computer-intensive methods’ refer to all methods in which the observed data
are used to generate a reference distribution by means of randomization (Fortin et al.
(2002)). Hence, this chapter includes general background of resampling and computer
intensive methods. Section 2.1 explains principles and overview of the resampling.
Section 2.2 describes nonparametric resampling methods. Finally, Section 2.3 briefly

reviews parametric resampling methods.

2.1 An Overview of Resampling

Statistical inference relies on some statistics (or estimates) that are functions of the
data. Their sampling distributions depend upon the underlying population and
therefore are unknown. Traditional methods used in statistical inference are generally
based on postulated probability models. Even if the probability model has held, the
conclusions are often made by asymptotical and approximate results. Thus, instead of
traditional methods, resampling methods are proposed to provide strategies for

estimating or approximating the sampling distribution of a statistic or its



characteristics as well as making statistical inference. Since inferential statistics
include estimators (i.e. the functions of the data and the statistics computed from a
random sample and used to estimate parameters of population distributions) as well
as statistics used in hypothesis tests, resampling plays such an important role as the

architecture.

One important aspect of resampling is the growing importance of data analyses based
on recycling the scores constituting a data set and collection of computer intensive
techniques (Fortin et al. (2002)). These techniques generate distributions of statistics
by repeating the data analysis many times on replicate data sets (resamples) that are
based on an observed set of data (Lunneborg (2000), p. 78). The generated
distribution is then used to assess the significance of a statistic calculated from the
observed data. Significance is evaluated under the assumption that the statistic
computed by using the observed data is sampled from the distribution generated with

a randomization mechanism.

In most applied statistical analysis, statistical procedure models a physical process via
random samples. Thus, random samples are at the heart of statistical inference and are
in the concept of sampling distribution and resampling methods. A resampling
method simulates the model with easy-to-manipulate symbols via data-generating
mechanism to produce new hypothetical samples. Generated samples try to act as a
population and are the introductory part of resampling methods. Therefore, the
intellectual advantage of the resampling methods relative to traditional methods is the
data generation mechanism for achieving an enormous approximation to the

population.

When we compare traditional sampling methods with resampling methods, one can
have the following assertions: resampling methods have fewer assumptions than
traditional methods (Crowley (1992)). For example, resampling method does not

require that the data has analytically known distribution. Hence, an important feature



of resampling is that statistical significance is evaluated based on empirical
distributions generated from the observed sample. This ‘distribution-free’ alternative
to parametric statistics is quite appealing to reliability analysis, which statistical
inferences have to be made with small data sets that do not meet the assumed
parametric distribution, will be mentioned in the application part of this study in later
chapters. While resampling methods may involve fewer assumptions as stated before,
this does not mean no assumption exists. Hence, caution must be exercised because
the random sampling procedures often assume that data of independent observation
and this assumption is invalid when the data are spatially or temporally autocorrelated
(Cressie (1993), Edgington (1995), Efron and Tibshirani (1993), Good (2000, pp. 25-
29). The reliability of the statistical analysis applied by resampling methods depends
on the validity of this assumption. Also, in resampling, the observed data are assumed
to be a representative picture of the entire population. The essential idea then is to
make statistical inference based on an artificial resample, which is drawn from the

data.

Resampling procedure has some benefits with respect to traditional methods and
approaches and there exists some motivation to use this procedure. First of all,
traditional approaches rely strongly on postulated probability models as stated before.
Conclusions of traditional methods are frequently based on asymptotical or
approximate properties that increase the effect of biases. These approaches, however,
determine the various properties of a particular estimate with various assumptions
about the underlying population distribution. On the other hand, there are many
situations where the determination of estimators’ properties is not so straightforward.
However, resampling techniques can provide a solution in such situations that include,

but are not limited to, the following properties:

Distributional assumption violation/inadequacy: Classical procedures rely on the
distributional assumptions regarding to the population of interest. When the

population is not well-defined or the sample size is small, the analyst should be



sceptical whether the usefulness of the theoretical distributions available or not and

hence may wish to use “nonparametric approaches”.

Non-random samples: An important classical assumption is that the sample is
random and certain processes of inferring population quantities from a sample require
this assumption for validity. However, there are situations where the sample might
not be random: for example, “self-selected” samples obtained via certain types of
questionnaire in which people elect to be a part of the sample rather than being

chosen by the experimenter.

Small sample sizes: Many traditional methods for estimating various properties of a
certain characteristic of a population rely on the assumption of a “large” sample size.
Thus, for smaller samples, these methods may result in invalid estimates of the

various properties of a population.

Intractable calculations: In some cases, either the distributional assumptions made
for the random variable of interest or the particular nature of the estimator may
prevent finding explicit mathematical statements for the various properties of the

estimator because the mathematical calculations required to do so are intractable.

Different resampling plans result in different resampling techniques. The main
difference relies on the distribution assumption. In classical statistical theory, it is
usually assumed that there is a particular mathematical model, with adjustable
constants or parameters that fully determine the function. In general, such a model is
called as parametric and the data generated from the underlying model is in the
family of distributions. However, when no such mathematical model is used and any
explicit assumptions does not require about the population's distribution, then the
statistical inferences are made by nonparametric methods. Besides, independent and
identically distributed random variables should be used. Even if there is a plausible

parametric model, a nonparametric analysis can still be useful to assess the robustness



of conclusions drawn from a parametric analysis (Davison and Hinkley (1997), p. 11).
Some basics of parametric and nonparametric approaches are given in the following

sections.

2.2 Nonparametric Approach

In many practical situations that appear in resampling, it is useful to have available
statistical methods which do not depend upon specific parametric models. Therefore,
nonparametric resampling approaches, which do not rely on any specific assumptions
about the form of the probability distribution and have extremely different
methodology from parametric approaches, play a central role in statistical inference.
The observed data (the sample) used in this approach should come from empirical
distribution which puts equal probabilities at each sample value. When the sample
values are thought of as the outcomes of independent and identically distributed
random variables X,,...,X  , the equal probabilities will be n”' at each sample value X;.
The corresponding estimate of F is the empirical distribution function (EDF)

P, which is defined as the sample proportion

. #x, <
P(x)=@ for i=1,...,n 2.1)

where #{ A} means the number of times the event A occurs; or

0, X<X
P(x)=11i/n, X S XXy 5 (2.2)
1, X > X

()

where x; is the i'"™ ordered value of x. More formally,

p(X)Zﬁ i H(x-x @) )>



where H(u)is the unit step function which jumps from 0 to 1 at u=0. It should be

noticed that the values of the EDF are fixed (0,1,2
n

,...,Ej, so the EDF is equivalent
n

n
to its points of increase, the ordered values x ) <...<x, of the data. When there are

repeated values in the sample, as would often occur with the discrete data, the EDF
assigns probabilities proportional to the sample frequencies at each distinct observed
value y. The EDF plays the role of fitted model when no mathematical form is
assumed for F (i.e. distribution-free), analogous to a parametric cumulative
distribution function (CDF) with parameters replaced by their estimates (Davison and

Hinkley (1997), pp. 11-12).

Nonparametric resampling procedure has some benefits with respect to parametric
methods and approaches. There exists some motivation to use this procedure. These
include, but are not limited to:

> If the sample size is very small, there may be no alternative to using a
nonparametric resampling method unless the nature of the population distribution is
known exactly.

> Nonparametric resampling makes fewer assumptions about the data.

> Nonparametric resampling are available to analyze data which are inherently
in ranks or categorical.

> Nonparametric resampling is typically much easier to learn.

In contrast to these motivations, there may be rarer cases in which the use of a
resampling method can fail. These include, but are not limited to:

> A nonparametric resampling method is less powerful than a parametric
resampling when all the assumptions of the parametric one are met.

> Certain assumptions, which are associated with nonparametric resampling

methods, e.g. the observations are independent, may not be held.



Different nonparametric resampling methods are improved in the statistical inference.
Friedl and Stampfer (2002) denote that these plans are generally referred as setting of
all possible resamples to be taken and their weighting. Rather, the inference is based
upon repeated sampling within the same sample without a distribution assumption.
The resampling procedure is applied within the light of one of four major methods, i.e.
Bootstrap, Jackknife, Cross-Validation, Permutation-Randomization, which the
literature has mostly addressed for testing and estimation. Although today they are
unified or improved under a common theme, it is important to note that these four
techniques were developed by different people at different periods of time for
different purposes (Friedl and Stampfer (2002)). In the following subsections,
Permutation-Randomization, Cross-Validation and Jackknife will be explained. The
main topic of this study, the bootstrap method, is going to be given with details in the

next chapter.

2.2.1 Permutation and Randomization

Permutation test is a nonparametric procedure that calculates an attained significance
level of a test statistic by comparing it with its resampled values. Hence, it is
designed to condition out the unknown sampling distribution. This test utilizes
resamples that are drawn without replacement from the observations. The distribution
of the resampled values is called permutation distribution, and plays the role of the
null distribution in parametric testing problems. The applicability of permutation tests
relies on the property that some observations are exchangeable under the null
hypothesis, whereas under the alternative hypothesis they are not (Friedl and
Stampfer (2002)). Thus, this test is the nonparametric version of hypothesis tests.
Deeper insight into this topic is provided by Lehmann (1997) and Good (2006).

Permutation test can be employed for continuous as well as for ordinal and nominal

data. When the two random samples are taken as X,,...,X, from an unknown



distribution of X ~F,() and a random sample Y,,..,Y, from an unknown
distribution of Y ~ F, (.), the null hypothesis is that the mean of two distributions are
the same whereas the alternative hypothesis is that the mean of F, (.) is different from
the mean of F, (.). One feature of permutation tests is that any test statistic is as easy

to use as any other, at least in principle (Davison and Hinkley (1997), pp. 156-158).

For this reason, the test statistic, T(D,), where D is a data set with n data points,

can be computed for the observed data. If all possible permutations are defined as R,

M+N
then R=( M j where N and M are two subsets of n. If the null hypothesis is true,

M+N
such permutations are equally likely and there are [ M j of them. For each i"

permutation (i=1,....R ), T" is the statistic that should be computed and the value of
T(D, )should be compared with the set of values T". If the value of T(D,) falls in

the upper and lower /2 tail areas of the T® distribution, the null hypothesis is
rejected with type 1 error a. The permutation procedure will involve substantial
computation unless M and N are small and a random sample of a large number R of

the permutations can be taken when the number of permutations is too large.

Permutation method can be used for comparison of two means, estimated survivor
functions, testing correlations, and etc. The corresponding examples and the theory
can be seen in Davison and Hinkley (1997) and Lehmann (1997) and the detailed
algorithm of test can be seen in Efron and Tibshirani (1993, pp. 202-218).

The randomization test is introduced by Fisher (1949, pp. 17-21) as a device for
explaining and justifying significance tests, both in sample cases and for complicated
experimental designs (Davison and Hinkley (1997), p. 183). The terms ‘permutation
test’ and ‘randomization test’ are often used interchangeably. Formally, Fisher used

the former term to refer to a method that performed for inference from population,

10



while randomization test was applied to methods for sample-based inference. The
term permutation test or randomization test is also used when the test provides the
exact significance levels by exhaustive computation of all possible rearrangements
(permutations) of the data. In practice, even with current powerful computers,
permutation tests can only be performed when the number of observations, n, is small,
because the number of permutations increases as the factorial of the sample size (n!).
When the number of observations precludes an exact test, an ‘approximate
randomization’ test is used instead. This randomization test generates a subset of the
possible permutations because only a subsample of all possible permutations is
calculated. Many authors recommend that 10000 or more randomizations should be
used while constructing the reference distribution (Crowley (1992), Manly (1997)).
The reference distribution of any statistic is obtained using a six-step randomization
procedure that repeatedly reallocates the value of the observations over the sample,
and then recalculates the statistic to generate the null reference distribution. The
algorithm can be summarized as: (i) hypothesis definition; (ii) statistic determination
(choose a statistic that already existing or design a new one); (iii) statistic
computation for the observed data; (iv) null reference distribution generation by
rearranging the order of the observed data over the entire sample by shuffling them
randomly (i.e. the values of the response variable are shuffled over all the samples,
where each sample keeps its spatial identity); (v) computing the statistic for the
randomized data and repeating this step a large number of times; and (vi) comparison

of the observed statistic with respect to the reference distribution.

Randomization tests have several advantages and limitations:

> “The randomization tests include flexibility and relative ease of
implementation. They support significance testing without distributional assumptions
(e.g. normality) and complex designs for which parametric tests do not exist” (Fortin
et al. (2002)).

> “For comparable statistics, randomization tests are as powerful as

parametric tests when the number of randomizations is large” (Fortin et al. (2002)).
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> The test can be used with non-random data and allows user to create a
test statistic (Crowley (1992)).

> Results are not necessarily generalizeable to the population.
Generalizeable assumption is often made but not verified with standard statistics
(Crowley (1992)).

> Randomization and traditional methods give similar significance
levels if assumptions of traditional tests hold (Crowley (1992)).

> The test can only be used to test hypotheses comparing two or more

groups (Crowley (1992)).

2.2.2 Cross — Validation

Cross validation is another resampling method that was proposed by Kurtz (1948).
This method is especially designed for selecting and assessing models with
estimation of aggregate error. The paradigm is based on splitting the data set into a
training set and a separate assessment set. In general, a sample is randomly divided
into two or more subsets, say K (roughly equal-sized pieces). Then, the test results
are validated by comparing across subsamples. One piece, i.e. the training set, can be
used to test the model that was trained on the remaining K-1 pieces. Therefore for the
k™ part, the model is fitted to the other K-1 parts of the data, and prediction error of
the fitted model is to be calculated while predicting the k™ part of the data. To remove
the effect of a particular division, this is repeated for all K pieces of data. The results
of the K testing procedures are then combined suitably. This cross validation
procedure is called as K-fold cross-validation (Efron and Tibshirani (1993), pp. 239-
241). In the literature, there also exist more specific cases of K-fold cross-validation
such as simple cross-validation, double cross-validation, and multicross-validation.
Further details related with cross-validation are given by Stone (1974). Efron and
Gong (1983) compares cross validation with other resampling methods. Efron (1983)

shows that leave-one-out cross validation reduces the bias of the estimate from

O(1/n) to O(1/n*). Ang (1998) states that cross-validation is problematic because
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splitting an already small sample increases the risk of artifacts of the subsample, and

thus, Ang (1998) recommends to use of jackknife (to be explained in the next section).

The power of cross-validation comes from the reduced number of assumptions and its
applicability to complex situations. On the other hand, cross-validation suffers from
the same weakness as spilt-half reliability when the sample size is small. By dividing
the sample into two halves, each analysis is limited by a smaller number of
observations. However, it can have high variability particularly for small sample size.
Thus, the sample size must be large enough to fit the model reliably, assess the
prediction error reliably and be reasonably independent of the actual split into
assessment and trainings sets. The trick to achieve these things even for modest
sample sizes is to repeat this procedure for multiple trainings/assessment splits, and to

average out the prediction errors.

2.2.3 Jackknife

The resamples can be produced by repeatedly leaving out one observation from the
data by the method known as the jackknife. Although the method was coined by
Tukey to imply that the method is an all-purpose statistical tool in resampling,
jackknife is first proposed by Quenouille (1949). Quenouille (1956) finds out an
estimator of bias by using jackknife resamples then it is developed by Tukey (1958)
to quantify standard error of an estimate without making distributional assumptions.
In the later improvement, jackknife resampling plans generalized for estimating of

any statistic of interest.

Jackknife enumerates the reference distribution repeatedly by leaving out one
observation at a time and then recalculating the test statistic. When the sample values

y=(Y,,....y,) are thought of as the outcomes of independent and identically

distributed random variables, and @:S(y) is the estimator of the statistic of interest 0,
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the method aims to find bias and standard error estimate of @ by the samples that

leave out one observation at a time. The sample

Yor =OiYasosYirsYiers-sYn)

shows the remaining data set after removing i observation for i=1,...,n, is called as
i"™ jackknife sample (Efron and Tibshirani (1993), pp. 141-143). Let @(i)ZS(y(i)) be
the i" jackknife replication of @. Then, the jackknife estimate of the statistic 6 and

estimate of the bias biasj.« is given by

0. =né-(n-1)8 | (2.3)

biasjec=(n-1)(8,,-6), (24)

where

R I T

9<.>:HZQ®- (2.5)
i=1

The jackknife estimate of the standard error defined by

~ I T L
Sejack = I:HT Z (Q(i) ‘9(_) )2 :l . (26)

Another way defined in Efron and Tibshirani (1993, p. 145) is to think about the

jackknife in terms of the “pseudo values” as

0,=n0-(n-1)0, (2.7)

i)
It is stated that in the special case 8=X, 6,=x, is observed where x, is the i" data

value. Furthermore, for any @, the formula for se jack can be expressed as

s%jackz{i(éi -é)z/{(n-l)n}} , (2.8)
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where §=Z(§i/n. Here, sej.x 1s like an estimate of the standard error of the mean for

the data éi, for i=1,...,n owing to fact that the pseudo values are supposed to act as if
they were n independent data values. Likewise, an approximate (1-a)% confidence

interval can be formed as:
e.

0+t (2.9)

jack >
where t!'is the (1-a)" percentile of the t distribution on n-1 degrees of freedom.

Efron and Tibshirani (1993, p. 145) denote that this interval does not work very well;
in particular, it is not significantly better than cruder intervals based on normal theory.
Although pseudo values are intriguing, it is not clear whether they are a useful way of

thinking about the jackknife.

The methodology of the jackknife changes according to the number of deleted
observations. In the simplest case, the jackknife resamples are generated by deleting
single cases from the original sample (i.e. delete-one jackknife). A more generalized
technique uses resample that relies on multiple deletions (namely, delete-d jackknifes
where d is the number of deleted observations). The jackknife often provides a simple
and good approximation especially for estimation of standard errors and bias. Like as
the other nonparametric resampling methods, the jackknife can be applied to any
statistic that is a function of n independent and identically distributed variables. With
respect to the resampling plans the idea of cross validation is very similar to the
jackknife idea; however, cross validation should not be mixed up with jackknife since
both of these resampling procedures are quite different. The major difference is based
on their applications in which cross validation is used for model selection and

assessment, whereas jackknife provides estimate of bias and variance.
The major motivation for jackknife estimates is that they reduce bias. It is also a

nonparametric and easy to be implemented method and it solves a number of

problems like other nonparametric methods explained before. For instance, jackknife
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can be used for any estimator that is a sample analogue of a parameter as in the
following: the sample mean as an estimator of the population mean, the sample
variance as an estimator of the population variance, the sample minimum as an

estimator of the population minimum and so on. However, this method can fail

miserably if the statistic 0 is not “smooth”. Intuitively, the idea of smoothness is that
small changes in the data set cause only small changes in the statistic. Efron and
Tibshirani (1993, p. 148) state a way that fixes up the inconsistency of the jackknife
for non-smooth statistic. The detailed review about the Jackknife has been made by

Miller (1974).

2.3 Parametric Approaches

One mathematical route to specifying a sampling distribution is to require the
population distribution that has a particular mathematical form. Therefore, it is
considered that the observed data (the sample) comes from a specific distribution that
can be called as a representative picture of the entire population. The sample values
are thought of as the outcomes of independent and identically distributed (iid) random

variables Y,,...Y, whose probability density function (PDF) is denoted as f and

cumulative distribution function (CDF) is denoted as F. The sample is to be used to
make inferences about a population characteristic, generally denoted by 0, using a
statistic T whose value in the sample is t. The attention is to be focused on the
probability distribution of T. When the generating samples come from a known
distribution or one may be assumed the probability distributions fitted to samples’

data, the statistical analysis relies on the parametric approach.

Hypothesis tests and pivotal variables are used in parametric resampling. The major
disadvantages of these methods include model selection error, parameter estimation
error, and loss of important serial and cross dependencies in the data, and the

difficulty in convincing for the model’s validity.
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Hypothesis test is a method of sampling distribution that uses a statistic calculated
from the sample to test an assertion about the value of a population parameter. In this

method, population distribution parameter, 0, is assumed as taking a specific value, 0, .

The value of 0 is specified from a statistical hypothesis known as a null hypothesis.

So, the null hypothesized value is referred as0,. The main aim of the test is to

determine what the sampling distribution of the estimator would be if the null
hypothesis were correct. Therefore, in the first step, the sample statistic is calculated

and the hypothesis is formulated. The null hypothesis (H, ) specifies a value for the

population parameter. The decision about which sample statistic should be calculated
depends upon the scale used to measure the variable (i.e. a proportion, a mean, etc).

In contrast, the alternative hypothesis ( H,) specifies a competing value for the

population parameter and is formulated to reflect the proposition the researcher wants
to verify. Consistency judgments and the decision either reject the null hypothesis in
preference to the alternative or not reject the null hypothesis should be made on

statistical grounds. This statistical decision process is referred to as hypothesis testing.

Pivot variable is used to construct confidence intervals. “To avoid the difficulties
associated with a shifting sampling distribution, mathematical statisticians have
developed pivotal forms for several estimators. The sampling distribution of a pivotal
form does not change as we move from one population to another, with a consequent
change in the value of the parameter being estimated. The convenience of pivotal
forms, particularly for confidence interval estimation and hypothesis testing, has
encouraged researchers to use estimators that have pivotal forms”(Lunneborg (2000),
pp. 60-61). This method is called as “pivotal inference” because of the results
obtained by using pivots and the structure of pivotal inference is improved. Since the
parametric approaches are out of the scope of this thesis, details of hypothesis testing

and pivotal inference are not included.
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CHAPTER 3

BOOTSTRAP RESAMPLING

Bootstrap is a data-based simulation method for assigning measure of accuracy to
statistical estimates. “The use of the term bootstrap™ derives from the phrase to pull
oneself up by one's bootstrap” (Efron and Tibshirani (1993), pp. 5, 10). In statistical
data analysis, bootstrap means that one available sample gives rise to many others by
resampling. It can be employed in either nonparametric or parametric mode. The
nonparametric bootstrap, which is in the main scope of this study and is the original
form of bootstrapping, will be described in this chapter. Section 3.1 presents the
general framework of bootstrapping. Section 3.2 reviews arguments in the literature.
The detailed principle and concept of the bootstrapping are explained in Section 3.3.
The principle and algorithm of the bootstrap is described in Sections 3.4 and 3.5. The
estimations that can be made via bootstrapping are explained in Sections 3.6, 3.7, and

3.8.

3.1 An Overview of Bootstrap Method

Statistical inference is used in the vast part of the applied statistics to make strategic
level decisions. Two of most important problems in applied statistics are the

determination of an estimator for a particular parameter of interest and the evaluation

* 1t is widely thought to be based on one of the eighteenth century Adventures of Baron Munchausen’s, by R.E. Raspe. The
Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own

bootstraps.
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of the accuracy of that estimator through estimates of the standard error of the
estimator. When the estimator was complex and standard approximations were
neither appropriate nor accurate, estimation of the standard error of the
parameter estimator is the most encountered cases during statistical inference
procedure. (Chernick (1999), p. 6).Therefore, Efron (1979) proposed bootstrap
resampling methods. This technique, which is commonly used for estimating bias,
standard error of an estimator and confidence intervals, is further developed by Efron

and Tibshirani (1993) with inferential purposes.

The main assumption of bootstrapping is based on observations’ independence
whose validity is necessary for other resampling methods as well. It is also assumed
that sampling is performed from an infinite population where each observation has
the same probability of being chosen each time. In addition, if any parametric
assumptions can be made, bootstrapping also provides a way to make statistical

inferences.

The basic idea behind the bootstrap method is resampling the data with replacement.
Bootstrapping procedure consists of randomly choosing the sample data n times, from
an original sample of size n and repeating this large number of times, say B times,
with putting the chosen data back into the original set each time. Then by using the

resampled (generated) data, the parameters of interests can be estimated.

Bootstrap resampling method has an extensive usage and wide application area
because of its special features. Thus, bootstrapping is used in the solution
procedure of a wide variety of problems appears in various disciplines including
psychology, physics, geology, ecology, ornithology, econometrics, biology,
meteorology, genetics, signal and image processing, medicine, engineering,
reliability, chemistry, accounting, and etc. “The applications of bootstrapping in
these disciplines include not only estimation of biases, standard errors or

confidence intervals but also error rate estimation in discriminated analysis, subset

19



selection in regression, density estimation, quartile estimation, p-value adjustment
in multiple testing problems, estimating process capability indices, handling
missing data problems, and to cope with logistic regression and classification
problems, cluster analysis, kriging (i.e., a form of spatial modeling), nonlinear
regression, time series analysis, complex surveys and other finite population

problems, survival and reliability analysis problems” (Chernick (1999), pp. 6,7).

In this study, possible industrial area applications will be mentioned and a
reliability analysis application will be given in the next chapter. Before the
application part of the thesis, the bootstrapping mechanism and its all dimensions

will be given in the later sections.

3.2 Arguments on Bootstrapping: A Literature Review

Bootstrap resampling strategy was introduced by Efron (1979) to assess the
estimators. Therefore, statistical inference and data analysis applications made by the
bootstrap resampling method has begun after this append. Although bootstrap method
is nearly thirty years old, extensive literatures, researches, and projects exist in a
variety of disciplines listed before. Thus, relatively a narrow review will be given.
The framework of this review is drawn by Efron and Tibshirani(1993), Davison and
Hinkley (1997), Good (2006), and Chernick (1999), which are used as a guide
through the vast of this study. Since the basic topic in this study is bootstrapping, in
general, the literature is based mostly on bootstrap resampling, its theory and

application.

It should be pointed out that bootstrap research began in the late 1970s by
Efron as stated before and most important theoretical development had been made
after 1980s. Davison and Hinkley (1997, p. ix) denote this publication as major
event in statistic since it is synthesizing some of the earlier resampling ideas and

establishing a new framework for simulation based statistical analysis. This fact
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has been proved by the publications after Efron (1979) both in bootstrap
resampling and other methods. Efron and Gong (1983) and Diaconis and Efron
(1983) are the other introductory level papers about the bootstrap resampling. They
argue that the resampling method frees researchers from two limitations of
conventional statistics: "the assumption that the data conform to a bell-shaped curve
and the need to focus on statistical measures whose theoretical properties can be
analyzed mathematically". They also apply the bootstrap method to various types of
problems and then compare the results taken from the bootstrap with conventional
statistical tests, including the correlation coefficient and principal components. Most
of the time, the bootstrap method yielded the same answers that the more
conventional methods did. In some cases, bootstrap methods may not give a true
picture of every sample, just as conventional tests sometimes find deceptive answers
to problems. Efron (1983) compared several variations to the bootstrap estimate.
He has also demonstrated the value of the bootstrap in a number of applied and
theoretical contexts. Several nonparametric resampling methods are discussed in
Efron (1981b) for attaching a standard error to a point estimate such as the jackknife,
the bootstrap, half-sampling, subsampling, balanced repeated replications, and etc.
Beran (1982) compares the bootstrap with various competitive methods in
estimating sampling distributions. Parr (1983) is an early reference comparing the
bootstrap, jackknife, and delta method in the context of bias and variance
estimation. Efron (1987) shows that the standard approximate intervals based on
maximum likelihood theory can be misleading, hence, the accuracy of confidence
intervals can be improved based on transformations, bias corrections, and so forth.
The proposed intervals incorporate an improvement over previously suggested
methods. Three examples of the value of computer intensive inference are provided
by Efron (1988). Efron and Tibshirani (1986) show the basic ideas and applications
of bootstrap with some examples rather than theoretical considerations. The
computational methods for the bootstrap, which are given in Efron (1990), are more
efficient than the straightforward Monte Carlo methods usually used. The simplest

bootstrap form (one sample nonparametric problem) is taken and bias, variance and
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approximate confidence interval of some statistics is computed and number of
bootstrap replication is reduced. According to Simon and Bruce (1991), the method
prevents researchers from simply grabbing the formula for some test without

understanding why they chose that test.

In Efron (1992), relevant theoretical statistics of how the bootstrap has impacted is
explained by raising six basic theoretical questions. Also, as it is mentioned before,
Efron’s bootstrap idea is based on iid observations and guaranteed to work with large
samples. However, when small sample sizes are involved, it has been discovered
through the extensive research that the bootstrap sometimes works better than

conventional approaches even with small samples bootstrap resampling.

There also exist some critics for the bootstrap methods. The general question
marks are based on the accuracy of the estimates that resampling mechanism yields
and making enough experimental trials. In some cases resampling, and so
bootstrapping, may be less accurate than conventional methods. Peterson (1991)
states that using the numbers over and over again yields nothing, instead of,
assumptions have to be made because the analyzer may live to regret that hidden
assumptions. Noreen (1989) states several striking aspects of this approach especially

for random samples drawing from different populations.

Guidelines for nonparametric bootstrap hypothesis testing are described in Efron
(2000). DiCiccio and Romano (1988) present a major review article on the bootstrap
and its applications. It shows that the violation of the guidelines can reduce the power
of the test. DiCiccio and Efron (1996) give some heuristic overview of bootstrap
confidence intervals and some methods to obtain good approximate confidence

intervals are given.

Helmers et al. (1992) have mentioned that bootstrap can also be used as an

estimation technique to estimate quartile. Mak (2003) is proposed a method for the
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simultaneous estimation of the variances of a sample statistic for all sample sizes
using the bootstrap. He provides sample size determination based on a pilot sample
when an explicit expression for the asymptotic variance is either too complex or
unavailable at all. Since the bootstrap is employed, the method does not depend on
any specific properties of the sample statistic and can therefore be universally
implemented in a general computational algorithm. DiCiccio et al. (1992) have
presented a new method for the construction of approximate iterated bootstrap
confidence intervals which can be calculated by high coverage accuracy in small to
moderately sized samples. Bickel and Krieger (1989) use the bootstrap to obtain
confidence bands for a distribution function. Hall (1986) describes the number of
bootstrap simulations required to construct a percentile—t confidence intervals based
on a sample from continuous distribution. He has showed that smaller number of
bootstrap simulations cause longer confidence intervals. Hahn and Meeker (1991)

briefly discuss bootstrap confidence intervals.

Young and Daniels (1990) use the bias that is introduced in Efron's nonparametric
bootstrap as a substitute for the true unknown distribution. Cheng (2001)
describes some general procedures for analyzing the results of a simulation
experiment using bootstrap resampling. This paper explains the rationale and simple
steps needed to implement bootstrapping in estimation as well as distributional
properties of the output and its dependence of factors of interest, such as; model
fitting; model selection; model validation; sensitivity. Davidson and MacKinnon
(2000) present a growing body of evidence from simulation experiments. They
indicate that bootstrap tests do indeed yield more reliable inferences than asymptotic
tests in a great many cases (for more details see Davidson and MacKinnon (2000)).
Bootstrap tests will generally perform better in finite samples than asymptotic tests,

and thus, errors are reduced (Hall (1992)).
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Bickel and Freedman (1981) demonstrate consistency of the bootstrap under
certain mathematical conditions. They also provide a counterexample for

consistency of the nonparametric bootstrap.

Hall (1992) presents some sort of smoothness conditions for consistency of
bootstrap estimates. Tibshirani (1992) provides some examples of the usefulness
of the bootstrap in complex problems. Gine and Zinn (1989) show necessary
conditions for the consistency of the bootstrap. However, examples where the
bootstrap failed to be consistent due to its inability to meet certain necessary
mathematical conditions are shown by Athreya (1987) and Angus (1993).
Inconsistency of estimators of the bootstrap distribution is shown by Hall et al.
(1993). Martin (2007) describes the construction of bootstrap hypothesis tests which
can differ from bootstrap confidence intervals because of the requirements to
generate the bootstrap distribution of test statistics under a specific null hypothesis.
The performance of bootstrap tests, examining size and power properties of the tests
numerically using both real and simulated data is critically assessed. Bootstrap power

calculations for some scenarios are also described.

There exists several review papers that compare the resampling methods and argue
that which method is best under which conditions. The basic comparisons are to be
made among the three resampling methods: bootstrap, jackknife, and cross-validation.
The principles of these three methods are similar, but bootstrap is defined as “more
thorough” procedure since it can generate many sub-samples than others. Efron
(1982) compares these resampling methods. Through resampling procedure vast of
the paper found that the bootstrap resampling method provides less biased and more
consistent results than the jackknife method does. On the other hand, in rare, such as
Mooney and Duval (1993), it is suggested to use jackknife since it has been largely
studied than the others. However, unlike the jackknife the bootstrap is applicable
more widely, and gives better results in many situations. Therefore jackknifing is

recommended mainly if one needs only a variance estimator. Efron and Tibshirani
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(1993, pp. 10-15) state that unlike randomization tests, statistical inference for the
bootstrap applies to the population characteristics. The common use of bootstrap
methods is to provide estimates of standard errors, approximate confidence intervals
for unconventional statistics and approximate probability estimates relative to some
null hypotheses. Bootstrap hypothesis tests are often inferior to tests based on
parametric or permutation methods when such equivalent methods exist. There exists
an important difference between randomized and bootstrap sample. Unlike
randomization method, a bootstrap sample is generated by sampling with
replacement from the original sample. Therefore, randomization method is
appropriate when the order or association between parts of the data is assumed to be

important.

3.3 Bootstrapping

Bootstrap method is an application of simulation ideas to the problem of statistical
inference. The idea particularly comes from where the bootstrap method is assumed
as an imitation of real world. Thus, the real (original) world has observable
information about the population whereas the bootstrap world try to act as the
original world because it is created from original by data generating mechanism, i.e.

the bootstrapping.

The bootstrapping aims to draw best representative picture or imitation of the
population. The critical point, here, is to obtain the best imitation, i.e. bootstrap
samples. The bootstrap sample has the same size with the original sample and
consists of members of the original sample. However, the appearance of the data
changes from sample to sample such as some datum may appear zero times whereas
some may appear more than one times. The bootstrap samples are generated with
replacement from original data set and generation is repeated many times as
schematized in Efron and Tibshirani (1993, p.13) (see Figure 3.1) to estimate a

parameter, the standard error or a confidence interval for the parameter or test a
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hypothesis about the parameter in situation where there is a random sample from an

unknown distribution. A bootstrap sample X*Z(XI,X;,...,X;) is drawn from the

random sample X= (X1 ,Xz,...,Xn). The star (*) notation indicates that X" is not the

real world’s data set, but it is a resampled or imitated version of X.
Original Data

Set

Bootstrap
Samples

Bootstrap
Replications

Figure 3.1: Schematic representation of the bootstrap process for estimating standard error of a
statistic s(x)

Let F be a probability distribution. A random sample, which is taken from this

distribution, is denoted by X. Let x be a vector of random data points x; such as
X = (xl,xz,...,xn) and t(.) be a numerical evaluation procedure, then
0=t(F) (3.1)

will be some numerical evaluation to the distribution function F. Thus, (3.1)

represents the parameter of F (Efron (1993)). The statistic S(.) can be used to
calculate an estimate @ of the parameter 0 as
0=S(x) (3.2)

when the distribution F is unknown. In this case, the empirical distribution P, which

is a discrete distribution, is an estimate of distribution F and is obtained by assigning
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a probability — on each x; as stated before. Since it is a random sampling with
n

replacement procedure, some values may be observed several times in sample x .
Thus, empirical distribution can be denoted by the proportion of times each value

occurs and the probability of the k™ item in the empirical distribution would be

R:M (3.3)
n

The equation (3.3) is also defined as the frequency of the value k in the sample and

the EDF would be
B=(P.B...5). (3.4)
In equation (3.4) K represents the number of different values in the sample where

K <n, the sample size. This procedure is used to estimate the parameter(s) of the

unknown distribution.

3.4 Plug-In Principle

The plug-in principle is a simple method of estimating parameter from samples. The
plug-in estimate of parameter

0=t(F) (3.5)
is

0=t(P), (3.6)
where the parameter 0 is estimated by the function of the empirical distribution P. In
equation (3.5), the estimate @ was defined trough the sample x, which is the same as
equation (3.6), since the empirical distribution is constructed from the sample x.
“The statistics like @ that are used to estimate parameters are sometimes called
summary statistics, as well as estimates and estimators” (Efron and Tibshirani (1993),

pp- 35-36). The bias and standard error of plug-in estimate is going to be used in the

bootstrap application. The bootstrap’s advantage here is that it produces biases and
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standard errors in an automatic way, no matter how complicated the functional

mapping of (3.5).

The plug-in principle is less good in situations where there is information about F

other than that provided by the sample x . Thus, it is not recommended to use a plug-

in estimate of a statistic in parametric approaches (Efron and Tibshirani (1993), pp.

35-37).

3.5 Algorithm and Principle of the Bootstrap

Bootstrap algorithm has three basic steps defined as bootstrap samples, bootstrap

replications and bootstrap estimates. These are given as following:

Step 1 (Bootstrap Samples): B independent bootstrap samples x°, where b=1,....B,

are drawn.

Step 2 (Bootstrap Replications): The bootstrap replications of @ for each of the B
independent samples should be evaluated. Efron and Tibshirani (1993, pp. 45-49)
define this evaluation as fallows:

Let S(.) be a statistic, and S(x) would be the statistic taken from the original data set
stated before. Then, S(x) is the bootstrap replication of the statistic, e.g. if S(.) is the
sample mean, S(x") is the mean of the bootstrap sample. The bootstrap replication of
the estimate @ is then

¢'=S(x"). (3.7)
The equation (3.7) represents an estimate for parameter 0 based on the bootstrap data

set x . Thus, for each sample b, b=1,...,.B

0(b) =S(x™) (3.8)
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should be evaluated. The quantity of (3.7) is the result of applying same function S(.)

to x as was applied to x. For example, if S(x)is the sample mean X then S(x")is

the mean of the bootstrap data set, X' =) x;/n.

i=1

Step 3 (Bootstrap Estimates): The bootstrap estimate of the statistic is evaluated by

using B bootstrap estimate.

The number of bootstrap replications should be decided based on the target accuracy

of the estimates. However, there is a trade-off between computation time and the

accuracy of the approximation to the sampling distribution of 0. In this case parallel
computational technique (each resample can be done independently of the others) can
be used to cope with this trade-off. Unfortunately, most of authors propose to use a
general rule of thumb where B is taken as 1000 (Mooney and Duval (1993); Efron
and Tibshirani (1993)).

There exist a basic assumption to generate samples by using bootstrap method and its
algorithm. Under certain conditions, the variability of @ around the value 6 can be
assessed via the variability of 9? around the value @. This assumption is called as

bootstrap principle. In many situations, it is expected that this condition is satisfied.
However, there are some situations in which the assumption does not hold and

bootstrap resampling method is inappropriate.

3.6 The Bootstrap Estimate of Standard Error

The bootstrap is firstly introduced as a computer intensive method especially for

estimating standard error of some estimator, say @, in 1979. The bootstrap estimate

of standard error requires no theoretical calculations, and is available no matter how

mathematically complicated the estimator 0 may be. The estimation of standard error
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and the bias depend on the notation of a bootstrap sample. Therefore,

X= (X1 ,Xz,...,Xn)be a random sample from an unknown probability distribution F
and a parameter of interest 6=t(F)is to be estimated on the basis of X. Let define

again the empirical distribution Pbe an estimate of distribution F and be obtained by

assigning a probability 1 on each valuex, for i=1,...,n. Thus, an estimate @=S(x)
n

should be calculated where the S(x) may be the plug-in estimate t(P)as in (3.6). A

bootstrap sample X = (XI,X;,...,X:) is taken from P and corresponding to a bootstrap

data set X is a bootstrap replication of @ as in the equation (3.7).

Let the standard error of a statistic @ be se; (@). Then, the bootstrap estimate of the
standard error of the statistic @, sep(@*), i1s a plug-in estimate that uses empirical

distribution function P instated of unknown distribution F. Consequently, the

bootstrap estimate of se; (@) , which is the standard error of @ for data sets of size n

randomly sampled from P, is called the ideal bootstrap estimate of standard error of

9.

The ideal bootstrap estimate of standard error of @ can be evaluated by the algorithm
given in Section 3.5. The algorithm works by drawing many independent bootstrap

samples, evaluating the corresponding bootstrap replications, and estimating the
standard error of @ by the empirical standard deviation of the replications such as
B .. ., 2
> [0 016 0)]

sep=4 1 — : (3.9)

12

where

30



B ot
D AC)
0 ()= 3.10
() B (3.10)
and B is the number of replications. The limit of ses as B goes to infinity is the ideal

bootstrap estimate of se, (@) , which is given by

lim ses=se, =se,(§"). (3.11)

B—w
The limit in (3.11) means that an empirical standard deviation approaches the
population standard deviation as the number of replications grows large. The ideal

bootstrap estimate defined above is a nonparametric bootstrap estimate since it is

based on P, the nonparametric estimate of the population F.

3.7 Bootstrap Estimate of Bias and the Bias Correction

The standard error is a measure of accuracy for an estimator @. There are also some

other measures like bias that provides different frameworks of @°s behavior for

statistical accuracy. Bias can be defined as the difference between the expectation of

an estimator @ and the quantity 0 being estimated. The bootstrap resampling method
is also used as an important tool to estimate the bias of an estimator and the bootstrap
algorithm can be used for the estimation of bias with some adjustments and

adaptations.

Let’s assume that same statistical conditions given previous section is still valid. An
unknown probability distribution F has given data X*=(XT,X;,...,XZ) by random
sampling. The real valued parameter 6=t(F)is to be estimated and for this reason an

estimator @ZS(X) is taken to find the amount of bias. The bias of @:S(x) (an estimate
of 0) is defined as
bias, =bias, (8,0)=E, [s(x)] -t(F) (3.12)
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Estimator’s performance can be evaluated by comparing the associated amount of

bias. Thus, a large quantity of the bias is an undesirable case. Unbiased estimates,

which are mathematically shown as E, [s(x*)] -t (P), promote the scientific

objectivity of the estimation process. Plug-in estimate given in (3.12) does not have
to be necessarily unbiased, but they tend to have small biases compared to the
magnitude of their standard errors (Efron and Tibshirani (1993), pp. 124-125). This is

why the plug-in principle is used in bootstrap resampling.

The bootstrap estimate of bias of an estimator @ZS(X) that is shown in a different
form from (3.12) can be defined as

bias,=E,[ S(x") |-t(P). (3.13)

In equation (3.13), Pis substituted with F in the formula given in (3.12). Efron and

Tibshirani (1993, pp.124-125) describe that t(P), i.e. the plug-in estimate of 0, may

differ from @:S(x). They also show that the bias; is plug-in estimate of bias; ,

whether or not @ is the plug-in estimate of 6.

The ideal bootstrap estimate of bias bias, can be found with the bootstrap algorithm

given before. However, some adaptations have to be made in the last step as finding

approximate bootstrap expectation E [S(x*)} by the average

> (b) Zs(x*b)

0 ()=rl—-= 3.14
() B B (3.14)

Then, the bias of bootstrap estimate based on B replications, lg\asB, will be

biass=0"(.)t(). (3.15)

The mean square error then is
S
MSEZEZ(Q -t(P)) .

i=1
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In the statistical inference, in general, estimation of the bias is required to correct the
estimator @ so that the accuracy of the estimator increases. If the bias is an estimate of
bias, (@,9) , then the bias corrected estimator is

6=0-bias. (3.16)
If the (3.15) equals to (3.16), bias corrected estimator is given by

0=20-6"()). (3.17)

Efron and Tibshirani (1993, p. 138) noticed that the bias correction can be dangerous

in practice due to high variability in bias . Even if s less biased than 9, it may have
substantially greater standard error. Thus, correcting the bias may cause a larger

increase in the standard error and a larger mean square error is observed. Therefore,
this should be checked with the bootstrap. If bias is small compared to the estimated
standard error sAe, then it is safer to use @ than 0. If bias is large compared to the

estimated standard error se, then it may indicates that the statistic é’=S(x) is not an

appropriate estimate of the parameter 0.

3.8 Bootstrap Confidence Interval

Confidence intervals are statistical inference tools used in applied statistics. The
confidence intervals combine the interval estimation and hypothesis testing into a
single statistical inference procedure and give the range of plausible values for the
statistics. Confidence intervals (or interval estimates) are often more useful than just a
point estimate. In the statistical inference procedure, if point and interval estimates
are taken together, they give information about what the best guess is for the
parameter to be estimated and how far in error that guesses might be. Most
confidence intervals are approximate and favorite approximation being the standard

interval

(AR
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where @ is a point estimate of the parameter of interest 6, 6 is an estimate of 0’s
standard deviation, and z® is the 100a™ percentile of a standard normal distribution.
The trouble with “standard intervals” is that they are based on an asymptotic
approximation that can be quite inaccurate in practice (DiCiccio and Efron (1996)).
Over the years statisticians have developed tricks for improving standard interval
with bias corrections and parameter transformations. There are several approaches to
construct an approximate 100(1-a)% confidence interval for6 using the bootstrap
sample. The original approach described by Efron is known as the percentile
confidence interval. The other main approaches are discussed in DiCiccio and Efron
(1996); Efron and Gong (1983) and Efron and Tibshirani (1986, 1993). They state
that the bootstrap confidence interval can be evaluated from automatic algorithms for
carrying out these improvements without human intervention. For producing good
confidence intervals and improving the accuracy, five kinds of bootstrap confidence
intervals have been developed: the standard bootstrap (SB) confidence interval,
bootstrap-t confidence interval, the percentile bootstrap (PB) confidence interval, bias

corrected and accelerated (BC, ), and approximate bootstrap confidence intervals

(ABC).

3.8.1 Standard Bootstrap Confidence Interval

Standard bootstrap confidence intervals are based on the assumption that the

estimator @ is normally distributed with mean 0 and variance 6°. An approximate

100(1-0)% confidence interval is given by

Oz, Var, [6], (3.18)

where

B

> (8,9,

Var,, [0]=-2-L "
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is bootstrap estimate of variance. The standard confidence interval is improved by
using the equation (3.17), the bias corrected estimate of 6. Then, the new form of

standard confidence interval defined as

20-6 £z, Var, [6] . (3.19)

It should be noticed that, the estimated variance is the square of standard error

presented in the previous sections and@ is the plug-in estimate for statistic 6. The
standard confidence interval here gives the range of plausible values for the statistic

0. Thus, it is estimated in which range is the actual value of 0 likely to be.

3.8.2 Bootstrap-t Confidence Interval

The standard confidence interval holds for normal distributions and any other

distribution when the sample size n is large (i.e. the distribution of 0 approaches to
normal distribution according to central limit theorem). But for small sample sizes the
standard confidence intervals are not accurate. Thus, without making the normality
assumptions an accurate bootstrap confidence interval can be obtained. Bootstrap-t
confidence intervals, which are improved for small samples, are evaluated by

following procedure:

First, B bootstrap samples are generated in order to approximate pivot that is

computed for each sample x " as

¢ (b)-0

se (b)

Z (b)= (3.20)

where ¢ (b)=S(x™), stands for the value of estimator @ for the bootstrap sample x°;

sAe*(b) is the estimated standard error of @ for the sample x™®, b=12....B. The

approximate pivot means that its distribution is approximately the same for each

value of 0 (i.e. independent of 0).
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Second, the o™ percentile of Z'(b) in (3.20) estimated by ¢ and defined as

# 7" (b) < 67

g%ﬁ. (3.21)
B

Equation (3.21) is the proportion of the number of observed values lower than and

equal to §” to the number of replication B. If Bo is not an integer, then [(B+1)(x] is

used.

Finally, the bootstrap-t confidence interval will be
§-6 5; 6.6 sE:) (3.22)

The number of bootstrap replications here should be set large enough (i.e. B>1000)

to provide an accurate confidence interval.

3.8.3 Bootstrap Percentile Confidence Interval

Another approach to bootstrap confidence interval is based on the percentiles of the
bootstrap distribution of a statistic. Since this confidence interval has somewhat
different view of the standard normal theory, it results a bootstrap confidence interval

with reasonable stability in practice.

Let § be the plug-in estimate of a parameter 0 and se be its estimated standard error.

If the standard confidence interval is considered again as [@-z“"‘)se;@-z(”se} Efron

and Tibshirani (1993, pp. 168-169) state that the endpoints of this interval can be

described in a way that is particularly convenient for bootstrap calculations. Let o

again indicate a random variable drawn from the normal distribution as in the

... . ~2
standard confidence interval case® ~ N(@,se )then the lower and upper confidence

limits will be

0

lower

—0.70se (3.23)
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0 —679se (3.24)

upper
which are 1000™and 100(1-0))"™ percentiles of &, respectively. The confidence limits

given in (3.23) and (3.24) are more direct approaches for constructing a confidence

interval since it uses the upper and lower a values of the bootstrap distribution. If
@ denotes the cumulative distribution function of @, the 1-2a percentile interval is
defined by the a and 1-a percentiles of @ given by

[0t e |7 €7 (@0, (100 |

In other words
. . [ ét@ &rd-a
|:9%,lowcr ’9%,uppcr i| - |:9 ’9 j|

since by definition G'(0)=0"®, the 100a" percentile of the bootstrap distribution.

The confidence interval given above is the ideal form since the number of the
replication is assumed to be infinite. However, in practice it is required that some

finite number of replications B should be used. Thus, B independent bootstrap data
set x'x7,..x® is generated and € (b)=S(x™®) is computed for bootstrap
replications (b=1,2,...,B). If we denote @E“) as 1000™ empirical percentile of the
" (b) values, that is, the Ba™ value in the ordered list of the B replications of €.

Likewise é*’;l'“> be the 100(1-a)™ empirical percentile. Efron and Tibshirani (1993,

pp. 170-176) have shown that percentile confidence interval gives better results than

standard bootstrap confidence intervals do.

3.8.4 Bias-Corrected and Accelerated Bootstrap Confidence Interval

Bias-corrected and accelerated bootstrap confidence interval (BC,) is an improved

version of the percentile method providing closely match exact confidence intervals

and giving accurate coverage probabilities in all situations. Since neither bootstrap
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percentile nor bootstrap-t gives such kind of confidence interval, this method is

proposed to satisfy more coverage property.

Let @ indicate the 1000™ percentile of B bootstrap replication ¢'(1),0'(2),...9'(B).

The percentile interval (@l Q) Of the coverage 1-2a., is obtained from

ower ?

(O B |=[F. 5|, (3.25)

In the BC, interval limits are also given by the percentiles as in (3.25) with a 1-2a

coverage obtained by

|:@lower ’éupper :| = [@*(“1 ) ’@*(az) :| , (326)
where

PR s (3.27)
a = .

: O 1-6(d, +2)
and
. + (1_'1)
0, =D Byt —L |, (3.28)
1-6(5,+z"")

In fact, the percentile confidence limits take a different form from (3.27) and (3.28).
The basic difference is (3.26) depends on acceleration (@) and bias-correction (®,)
where ®@(.) is the standard normal cumulative distribution function and z® is the

100a™ percentile point of a standard normal distribution. The value of bias correction

is evaluated by

#{ ¢ (b)<é>}

=0 | =

, (3.29)

where (3.29) gives the proportion of bootstrap replications less than the original

estimate @; hence, we obtain 9,=0 if exactly half of @*(b) values are less then or

equal to®. Here, ®'(.) gives the inverse function of standard normal cumulative

distribution function, e.g., @ (.95)=1.645.
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The value of acceleration is evaluated by

i (@o '@(n )3

=—=-! : (3.30)

6{§(@0-@®)2}”

i=1

Equation (3.30) refers to the rate of change of the standard error of @ with respect to

true parameter value 0.

It should be noticed that if @ and #, are zero, then BC, is the same as the percentile
interval. The non-zero values of @ or B, change the percentiles used for the BC,

interval limits. Efron and Tibshirani (1993, pp. 178-190) have shown how these

values correct certain deficiencies of the percentile methods.

3.8.5 Approximate Bootstrap Confidence Interval

Approximate bootstrap confidence interval (ABC) is a method of approximating the
BC, limits without using Monte Carlo replications at all to compensate the
requirement of large number of replications. This method works with approximation
of bootstrap random sampling results by Taylor series expansions. Since this study
basically relies on Monte Carlo replications, this topic is assumed as out of the scope

of this study. The detailed information can be seen in Efron and Tibshirani (1993).
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CHAPTER 4

AN INDUSTRIAL ENGINEERING APPLICATION: LIFETIME
DATA ANALYSIS

The primary aim of this study is to develop an efficient lifetime data analysis that
takes into consideration of real life conditions by using nonparametric bootstrap
procedure. A new incomplete data model, i.e. trunsored model, will be used to
analyze the data. This method provides not only estimate the ratio of the fragile
population to the mixed fragile and durable populations, but also tests the hypothesis
that the ratio is equal to a prescribed value with estimated confidence intervals.
Therefore, a representative application of this method is used in the analysis of
thermal endurance of coil used in a special lamp. Reliability of the lamps is
determined to observe their performance. In fact, the effectiveness of lamps is
determined since the intended performance of the lamps shows their effectiveness and

reliability is one of important attribute of effectiveness (Kales (1998), pp. 6-7).

The engineers dealing with reliability eliminates early failures by observing their
distribution, eliminating the appropriate debugging method, and the length of the
debugging period. Then, they observe the statistical distribution of wearout and
determine the preventive replacement periods for the various parts or their design life.
Also they pay attention to chance failures and their prevention, reduction or complete

elimination in the scope of a reliability improvement program.
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The reliability improvement plan should be designed to optimize reliability at the
same time reducing costs and increasing output without increasing unit costs and
increasing customer satisfaction. The first step in such a program should integrate the
reliability and product assurance programs to all available company activities like
purchasing, engineering, research, manufacturing, quality control, packaging,
shipping and performance feedback. The others should be selection of better raw
materials, reduction of the number of components that makes up the product, using
reliability check lists in all phases of the product life (design, development,
manufacturing, and service life), implementation of an information feedback, analysis
and control systems, and implementation of a failure mode and effects analysis. One
of the key points here is implementing the reliability improvement program into the
manufacturing processes and quality control. For that reason, as a representative
industrial engineering application of the bootstrap resampling method, some special
reliability data are taken from a firm. The firm controls and analyzes the lifetime of
products to quantify the lifetime standards. Since a confidentiality agreement is made
with the firm, the name of the firm and the details of the product will not be defined
during the study.

In the application procedure, lifetime data analysis is made for an implementation of
a reliability program. The main advantage of the study is having a chance to apply the
bootstrap resampling method to lifetime data set and analyze the result. In addition to
this, different perspectives are obtained via getting better information about the types
of failures experienced by parts and systems that aid design, research, and
development efforts to minimize these failures, estimation of the failure ratio for both
new and old design products, and getting estimations of the required redundancy to
achieve the specified reliability. Thus, in this chapter, basics and application of
trunsored models will be presented as a new perspective in lifetime data analysis after
presentation of some basics of reliability and lifetime data. Section 4.1 defines the
reliability. Section 4.2 explains the key points for achieving reliability. Sections 4.3

and 4.4 explain the time and data perspective of reliability and trunsored data model.
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Section 4.5 gives the details of the problem and lifetime experiment. Section 4.6
explains how bootstrapping is applied with censored data and its possible application.
Finally, Section 4.7 describes the trunsored model constructed for the lifetime

estimation.

4.1 Definition of Reliability

The reliability of a component is the probability that the component will perform a
specified function under specified operational and environmental conditions, at and
throughout a specified time as reported by Kales (1998, p. 7). This probability deals
with the laws of random chance of lives or failures as they appear in nature. Thus,

reliability refers to the chance, or likelihood, which the device will work properly.

Reliability was developed to provide methods for assuring a product or service

functions. These methods consist of techniques for

> determining what can go wrong,
> how it can be prevented from going wrong ,
> if something goes wrong, how it can be quickly recovered and consequences

can be minimized.

In order to assure for product or service functions, product and service standards
(specifications) must be assessed. Satisfactory reliability specifications are given
below, which are pointed out by Doty (1989).

1. state exactly what is wanted;

2. explain the methods and procedures, including sampling and computations

and provide the means for test;

3. avoid nonessential quality restrictions that add to cost without adding to
utility;
4. conform, as far as possible, to the established commercial standards;
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5. explain condition and where the product is to be used;

6. contain a statement of purpose of the product as guide to usage and against
misapplication;
7. explain the inspection and testing procedure to be used in determining

conformance to the standards, including instrument and personnel;

8. state the applicable standards, including tolerances;

9. contain a statement of time frame;

10. define failures in terms of product use and explain how they are to be
measured;

11.  state the maintenance procedures and contains.

Adequate performance must be defined in term of a time frame, and hence the
standard must include a time limit. In reliability, there are several different types of
time frames: total test time, test period, mean test time, mean repair time, allowed
repair time, and mission time. Finally, operating conditions and environmental

conditions must also be included in the reliability standards.

4.2 Achieving Reliability

Modern programs are implemented for achieving and improving reliability of existing
products and for assuring continued high reliability for the next generations. Modern

programs involve the followings to achieve and improve reliability:

Emphasis: Increased emphasis is being given to product reliability because of that

product is more complicated and emphasis is due to the consumer protection act.
System Reliability: If products become more complex, the chance that they will not

function increases. The method of arranging the components affects the reliability of

the entire system. Components can be arranged in series, parallel or in combination.
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Design: The important aspect of the reliability is the design. It should be as simple as
possible. The fewer the number of components have the greater reliability. Another
way of achieving reliability is backup or redundant component. When primary
component does not function, another component is activated. Parallel arrangement
of component is cheaper to have inexpensive redundant components to achieve a
particular reliability than to have a single expensive component. Reliability can also
be achieved by over design. Using factors of safety can increase the reliability of a

product which is determined by Besterfield (2001, pp. 419-443).

Environmental Conditions: Dust, temperature, moisture, and vibration can be cause
of an unreliable product. The designer must protect the product from these conditions.
Heat shields, rubber vibration mounts, and filters are used to increase the reliability

under environmental condition.

Production: The production process is the second most important aspect of
reliability. Basic quality control techniques minimize the risk of product unreliability.
Production personnel can experiment with process conditions to determine which

condition produce the most reliable product.

Transportation: The third aspect of reliability is the transportation of the product to
the consumer. The reliability of the product can be greatly affected by the type of

handling. Good packaging techniques and shipment evaluation are essential.
Maintenance: While designers try to eliminate the need for customer maintenance,

there are many situations where it is not practical or possible. Maintenance should be

simple and easy to perform.
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4.3 Reliability Data

Bootstrap resampling method is used for the reliability data. Thus, the reasons for
collecting reliability data are defined in the following (Meeker and Escobar (1998), p.
2):

> assessing characteristics of materials over warranty period or over the

product’s design life;

> predicting product reliability;

> predicting product warranty costs;

> providing needed inputs for system-failure risk assessment;

> assessing the effect of a proposed design change;

> assessing whether customer requirements and government regulations have
been met;

> tracking the product in the field to provide field to provide information of
cause of failure and methods of improving product reliability;

> supporting programs to improve reliability through the use of laboratory
experiments, including accelerated life tests;

> comparing components from two or more different manufacturers, materials,
production periods, operating environments, and etc;

> checking the velocity of an advertising claim.

It is often necessary to use past experience and observations or other scientific and
engineering judgment provide information as input data analysis that requires the use
of special statistical methods. Owing to the fact that reliability data have a number of
special features, e.g. reliability data are typically censored or truncated which are
defined in the later sections, they are analyzed by using different statistical methods.
Hence, as the first of all, types of life time data will be defined in the following

sections.
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4.3.1 Types of Reliability Data

Statistical models briefly based on data to make predictions. The models are the
statistical distributions and the data are the life data or times-to-failure data of the
related component. The accuracy of any prediction is directly proportional to the
quality and accuracy and completeness of the supplied data. Good data, along with
the appropriate model choice, usually results in good predictions. Insufficient data

will almost always result in bad predictions.

Some synonyms for reliability data are used in the literature as failure time data, life
data, survival data (used in medicine and biological sciences), and event time data
(used in social sciences) (Meeker and Escobar (1998), p. 3). In the remaining part of

this study, life data or lifetime data is used because of the application part.

In the analysis of life data, the main aim is to use the all available data. In some cases,
the data set is incomplete which includes uncertainty as a failure occurred. To
accomplish this, the collection types of data are separated into two based categories;
complete (all information is available) or incomplete (some of the information is

missing) as given in the following:

Complete Data: Complete data means that the results of each sample exist, either
observed or known. Through life data analysis, the data would involve the times-to-
failure of all units in the whole data set. The whole application is continued up to all

data through the sample (see Figure 4.1).

Accelerated Data: It is often the case that systems have very long expected life
under normal conditions and a useful test may not be possible for long duration of
testing the whole sample to wait and see whether a failure occur or not. During the
observation, to obtain data from such kind of application, life testing is conducted at

higher than normal stress levels in order to induce failures. The data obtained under
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high stress level conditions are called accelerated data, which are observed for further

implementation of data analysis, is defined by Zacks (1992, p. 195).

A CommData
Unit 1 3¢ Failed
Unit 2 >( Failed
Unit 3 3 Failed
Unit 4 >( Failed
Unit & >{Failed
Time >

Figure 4.1%: Representation of Complete Data over Time

Incomplete Data: Some units in the sample may not have failed in a specific period
of time during the life time analysis of the data. This restriction causes that the failure
times of all the units cannot be observed exactly and, hence, this type of life time data
is also called as “censored”. There are four types of possible incomplete (or censored)
data form, namely, right censored (suspended data), interval censored, left censored,
and a special case of censored data as truncated data type. Meeker and Escobar (1998,
p. 34) denote the reasons for censoring as in the following:

> There exist some restrictions for the life test period. Therefore, analysis of life
test data should be completed before all units have failed. Because of the restrictions
one can use "time censoring" (Type I censoring) method, in which the unfailed units
are removed from the test at a prescribed time or the method "failure censoring”
(Type II censoring), in which a life test is terminated after a specified number of failures.
Although the failure-censored data can be statistically analyzed easier than time-
censored data, failure-censored tests are less common in practice.

> In many life tests, since the failures observed only at times of inspection,
observations consist of upper and lower bounds on a failure time. Hence, these life time

data is known as interval censored data (or inspection data, grouped data, read-out

* http://www.weibull.com/LifeDataWeb/data_classification.htm
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data). If a unit has failed at its first inspection, it is the same as a left-censored
observation and if a unit has not failed by the time of the last inspection, it is right-
censored which are defined in the next section.

> In some situations, products may have more than one cause of failure. If one
focus on a particular cause of failure, the failure from other causes is defined as a form
of random right censoring.

> In some life tests, units are put on test at different times. This is known as
staggered entry. If the data are to be analyzed at a point in time when not all units

have failed, the data will be classified as multiply right-censored.

Meeker and Escobar (1998, p. 35) state some assumptions for the use of most

reliability models and methods that analyze censored data as in the following:
1. censoring time can be either random or predetermined;

2. censoring time of a unit should depend only on the history of the observed

failure-time process in order to the analysis is valid;

3. using future events to stop observing a unit could introduce bias.

Meeker and Escobar (1998, pp. 34-41) defines four types of censoring mechanism as
in the following:

1. Right Censored Data: This type of censored life data is the most common case
in reliability applications. These data are composed of units that did not fail. The term
"right censored” means that the interested event (i.e. the time-to-failure) falls in the
right of the data point. In other words, during the operation of the components, the
failure occurs at some time after the data point (or to the right on the time scale that
can be seen in Figure 4.2).

2. Interval Censored Data: The second type of censoring is called interval-
censored data. The failing of components occur during an intervals with uncertainty
as shown in the Figure 4.3. This type of data results from tests or conditions where

the application is not monitored continually. With a certain sample of components the
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only information is whether the component failed or did not fail between inspections.

This is also called inspection data by some authors.

A
Data With Right Censoring (Suspensions)

Sample=5

Unit1 »  Running

Unit 2 3¢ Failed

Unit 3 >¢( Failed

Unit 4 » Running

Unit 6 3¢{Failed
Time e

Figure 4.2": Representation of Right Censored Data over Time

A
Data With Interval Censoring

Samplo=5
Unit 1 » Failed %
Unit2 pyEaled ¢
Unit 3 p-Falled o
Unit 4 »- ';a',': %

a

Unit 5 » ' <

Time >

Figure 4.3": Representation of Interval Censored Data over Time

3. Left Censored Data: Left censored observations occur when a failure is
observed before a certain time, i.e. its first inspection time, as it can be seen in the
Figure 4.4. If the starting time of interval censored mechanism is zero, then the
interval censored data is same as left censored.

4. Truncated Data: In some cases, it may also arise that the lifetime less than
some certain threshold may not be observed at all. This type of data is called as
truncated. It should be noted that truncation is different from censoring. The general

use of this case is observing data after the start of using system or component.

" http://www.weibull.com/LifeDataWeb/data_classification.htm
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1 Data With Left Censoring
Sempie=5
Failed

Unit 1 <

Unit 2 >( Failed

Unit 3 > Failed

Failed

Unit 4 2 c
Unit 5 MFailed

Time

Figure 4.4": Representation of Left Censored Data over Time

“It 1s important to distinguish between truncated and censored data. Censoring occurs
when there is a bound on an observation (lower bound for observations censored on
the right, upper bound for observations censored on the left and both upper and lower
bounds for observations that are interval censored). However, truncation arises when
even the existence of a potential observation would be unknown if its value were to

lie in a certain range” (Meeker and Escobar (1998), p. 266).

4.4 Trunsored Model

Life time data analysis generally express two kinds of incomplete data of importance
in estimation: censored data and truncated data which are defined before. Hirose
(2005) introduces a third data type, referred to as trunsored data, which is a
unification of censored and truncated data. A different view appears in the life data
analysis with this unification since it does not only estimate and test the parameter of
interests when both truncated and censored data exist but also estimate the ratio of
truncated and censored data in new trunsored model. Thus, the trunsored model is

proposed as a new incomplete data model to use in reliability and lifetime analysis.

Trunsored models define two types of samples. The first type has some observations

that fail and others may not fail by the prescribed time T defined as fragile samples

" http://www.weibull.com/LifeDataWeb/data_classification.htm
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whereas the second type has the observations that does not fail at all by the prescribed
time T defined as durable samples. Hirose (2005) discusses that how to estimate the
lifetime of a fragile population and corresponding confidence intervals using samples
of size n from a mixture of the fragile and durable populations assuming that the ratio

p of the fragile population to the durable population is unknown. Let assume that r
failures are observed by time T. It is considered that the data as censored when p=1,

while it is treated that the data is truncated if n is unknown. However, there are actual
mixed cases, in which p is unknown and n is known. Thus, the ratio p and the lifetime

of the fragile population are to be estimated as in Meeker (1987).

The primary part of the model construction procedure is to find out which population
is dominant. If the durable population is dominant (i.e. p is very small), a truncated
model approach solve the problem; if the fragile population is dominant (i.e. p is
close to 1), a censored model approach would solve the problem as stated in Hirose
(2005). There exists a third choice that p may be neither close to 0 nor 1. In this case,
the trunsored model approach would propose the solution. If the fragile population is
estimated to be dominant, existence of durable population should be searched. If any
durable population does not exist, then the estimates of parameter of interest should

be obtained by regarding the data as censored.

In following subsections, firstly the details of trunsored models and its relation with

bootstrap resampling will be given and then an application will be presented.

4.4.1 Possible Applications of the Trunsored Model

Typical applications of the trunsored model are given as follows:

1. Decision making by manufacturers: Estimating the ratio of the fragile

population to the total mixed population provides judgments that the whether

manufacturers should recall their products for safety reasons via assessing the ratio at
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an early stage or not. A small ratio may indicate that the manufacturers can handle
failed products on an individual case basis.

2. Assessment of the effectiveness of cancer treatment: When a newly developed
cancer treatment is introduced, physicians can assess the effectiveness of the new
treatment by comparing the survival rates between the new and old treatments. The
survival rate can be estimated at an early stage when the trunsored model is used.

3. Severe infectious disease alert: By estimating the case fatality ratio of
infectious diseases at an early stage, the people can be alerted to prevent the spread of
a disease. The case fatality ratio can be estimated based on the number of infected
persons, the number who have died, and the number of survivors. In this case, the
(type I) mixed trunsored model is used.

4. Precautions against possible failures: If the items in a system have two phases,
one in which the time of failure is observable and the other in which the appearance
of a malcondition is observable (but not the time at which the condition changes from
good to bad), and if the probability distributions of the time of failure and of the
appearance of malconditions have some common relationship, e.g., the distributions
have the same shape parameters, then the system manager can estimate the total
number of malconditions at an early stage. In this case, the (type II) mixed trunsored

model is used.

4.4.2 Construction of Trunsored Models

In many applications, life time data will be collected on a sample of units that are
assumed as representation of population. In life time estimation problems, it is
assumed that the underlying distribution is a single homogeneous population, and all
samples drawn that population will eventually fail (or die). When the sample has
incomplete data, the characteristics of the population are determined by regarding the
data as censored or truncated. Thus, the type of the sample should be defined by the

following inquiry: If the left endpoint, T, of the underlying distribution is very large,

the failures will not be observed within the prescribed time T, which is extremely
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smaller then the left endpoint. Then it is assumed that the sample is taken from
durable population. On the other hand, it is possible that some failures are observed
within the time interval of length T. Then, it is assumed that the sample is drawn
from the fragile population. If the sample size is not known, this kind of mixture
problem is reduced to a truncated model problem. The lifetime of the fragile
population can then be estimated using the conditional likelihood if a parametric
model of the underlying probability distribution is assumed. But, since we are dealing

with nonparametric models, this case is out of our scope.

After construction of the resampling and bootstrap basics, the problem that will be
discussed here is to estimate the lifetime of a fragile population when r failures are
observed within T from the mixture of the fragile and durable populations in which

the sample size is n, assuming that the ratio, p,, of the fragile population to the

mixed populations is unknown.

In the literature, there are very limited application studies in which fragile and
durable populations appear to be mixed. For example, Goldman (1984) discussed the
proportion of patients cured by a particular treatment by using Monte Carlo; Meeker
(1987) and Hirose (2000, 2002) applied the model to integrated circuit reliability. In

these studies, p,, i1s unknown and n is known, p, and the lifetime of the fragile

population is to be found out.

The motivations for trunsored model construction are summarized as in the
following:

1. The fragile and durable populations may be mixed,

2. The ratio of the fragile population to the mixed populations is unknown,

3. The sample size n is known.

If the durable population is dominant, the truncated model approach or if the fragile

population is dominant, i.e., p, . is regarded as close to 1, a censored model approach
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might solve the problem. The critical point here is to determine which model of the

censored model or truncated model should be used. In each case, the confidence

intervals of the parameters are very different from each other. To decide the model,

we need a hypothesis test, H,:p, =p, . This hypothesis test is done via bootstrap

confidence intervals.

The following notations are used in the model:

F,f
G, g
H, h

0, ¢
\}

S

Py
P.
9P,

0
HO

L.L L.L,

ts?

Cdf, pdf for the fragile population, respectively
Cdf, pdf for the durable population, respectively

Cdf, pdf of the linear combination of fragile and durable population,
respectively

parameter in the [fragile, durable] population

parameter in the linear combination of fragile and durable populations
linear combination parameter for F and G, —oc0 <s <o

prescribed real number, 0<p, <1

the ratio of the fragile population to the mixed populations, 0 <p_<1

estimated value in [trunsored, mixture] model

number of failed observations
number of observations

Time

observed failure time, (i=1,...,r)
censoring time

endpoint such that inf_, {t :G(1) > 0}
null hypothesis that p_=p,

likelihood function for [trunsored, mixture, censored, truncated]

model

Hirose (2005) defines following conditions and assumptions of the trunsored models:
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1. The probability density functions (pdf) f(t;0) and g(t;¢) are assumed as

smooth.

2. The observations finish at the prescribed time T.

3. The failure times, t,,t,,....t (<T), are observed.

4. The sample size is known, n.

5. G(T,)=0,T <« T,.

6. Type I, right censoring model is mainly considered here.

A cdf H(t;y), which is a linear combination of F(t;0) and G(t;¢) given by

H(t;y) =sF(t;0) +(1-5)G(t;9), (=0, -00<s<c0) (4.1)

where s is a combination parameter. Thus corresponding pdf of H is given in the

following form

h(t;y) =sf(t;0) +(1-s)g(t; ). (4.2)

Then, the likelihood function for the combination model is given in the form as

L(y) ={1-H(T:y)}"" [ [h(t;v). (43)
i=1

If g(t.)=0 and g(T)=0 because of the assumption (6), then L(y) — L _(0,s) where

L, (6,8) ={1-sF(T;0)}" " [ [{sf(t;;0)}, (-0<§<00) (4.4)

i=1
The likelihood function of mixture model is given in the form below by restricting the

s as 0<s<1,

L.(6,p,)={1-p,F(T;0)}"" ﬁ{pmf(ti; 0)}, (0<p, <I) 4.5)

i=1

where the parameter s is changed to p, for clarity.

As it is defined before, if p =1, then we have censored model instead of trunsored

model. Thus, the corresponding likelihood function will be
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L. (0) ={1-F(T;0)} " [ J{f(t;:0)} (4.6)
i=1
Finally, the truncated data model is known as
L f(t;0)
L. (0)= —L = 4.7
O=TT e @

The likelihood equations of trunsored model are

Ologi1—sF(T L, 0l f(t,
ologL, = (n—1) og{1-sF(T)} £y og{sf(t,)} =0 (4.8)
00 00 P 00
and
Ologi1—sF(T L, 0l f(t,
ologL, = (n—1) og{1-sF(T)} N og{sf(t,)} =0 (4.9)
0s 0s = oS
From the equation (4.9) we have
$P(T)="_. (4.10)
n
If we substitute (4.10) into the (4.8), then we have
OlogL,, __r 8F(T)+zﬁlogf(ti)=0, 4.11)
00 F(T) o6 <5 06
which is the same as likelihood equation of truncated model
OlogL, :_rﬁF(T)_anlogf(ti):O. (4.12)

00 00 P 00
According to the model formulation, Hirose (2005) shows that @m of mixture model

is the same as @_of the trunsored model if §<1, and @ is the same as @, of the

censored model if >1 . Thus, during the solution procedure for the linear
combination model, solution corresponding to the truncated model can always be
obtained as long as it exists and the solution corresponding to the censored model can
also be obtained by setting p=1 and because of this reason, this linear combination
model is referred as the trunsored model (Hirose (2005)). On the other hand, Hirose

also shows that if 0.6 <p<1 then the model approaches to the censored model. If
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p>1, the model is defined as imaginal mixture model with a likelihood function

given by

T

L,.(0,p) ={1-pF(T;0)}""[[{pf(t;0)},  (p=0). (4.13)

i=1

The primary objective in proposing the trunsored model here is to make it easier to

test the hypothesis H,: p_ =p, where p, is the ratio of the fragile population to the

total mixed population of fragile and durable populations. Here, it is assumed that the
fragile samples will eventually fail whereas the durable samples are assumed never to
fail. To estimate the parameters in an underlying probability distribution with (right)
censored homogeneous observed data, the censored model is used when the total
sample size n is known, and the truncated model is often used when n is unknown.

When p, is close to 1, it is preferable to test the hypothesis, H: p,=p,, before

adopting either the censored model or truncated model because the standard errors of
the parameters in the truncated model are markedly larger than those in the censored
model. The confidence intervals are used to decide whether we reject the null
hypothesis or not. Hirose (2005) classifies the patterns of the confidence intervals of
the estimates in the mixture model approximately into three categories:

1. Pattern A: The censored model confidence intervals,

2. Pattern B: The truncated model confidence intervals,

3. Pattern C: The combination of these two confidence intervals.

Pattern A should be used only if there are strong indications that the data are
censored; even if 9is close to 1, the confidence intervals in the censored model
absolutely differ from those in the mixture model. Pattern B is used after we have a
rejected result from the hypothesis test related with the ratio p_, . For both patterns A
and B, the confidence intervals of the estimates may be constructed based on the
observed Fisher information matrix or the likelihood ratio statistics. For pattern C,
however, it is necessary to perform the bootstrap resampling methods (Efron, 1979).

Another motivation here is to use bootstrap to have a small §.
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4.5 Problem Definition and Lifetime Experiment

In this study, we demonstrate experimentally how the life-time of new designs can be
estimated with the minimum biases as well as how the ratio of the fragile population
to the mixed fragile and durable populations can be estimated for both old and new
products. Since confidentiality agreement is made with the firm, the name of the firm

and the details of product will not be given.

The firm is faced with such problems as:

> The products do not correspond to European standards of quality. Therefore,
the firm desire to make reliable lifetime analysis whether they can correspond the
standards or not.

> Achieving long lifetime is the main goal in new designs. The capability of
monitoring the impact of different design options of the lamps is the key point in
these lifetime tests. Besides, it may be guaranteed that the reliability of the chosen
optimizations. However, in order to monitor reliable results, lifetime tests should be
repeated many times which is costly and time consuming.

> They also desire to decide the best design only with testing the prototypes.
However, they experienced that the test results based on classical random sampling
do not represent the result of the population of new designs.

They also decide to develop a reliability program and construct a 100% control and
test mechanism to monitor the products’ reliability which is also costly.

The experimentation of thermal endurance is made in a laboratory. In each
experiment, seven lamps (say, one lot) are taken to apply the endurance test because
of limited capacity of the testing machine. 10 lots were tested by the machine during
the observation. It is assumed that each lot is experimented in same environmental

and physical conditions. A simple experiment result form can be seen in Appendix A.

The lifetime of a lamp is to be found out by using accelerated tests from the following

formula:
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1 1
LoglL =LogL, +S| ————|,
g gy (K K ]

w

where
L Target endurance time" (in 30, 60, 90, and 120 days),
L, 3652 days (nearly 10 years),
K The temperature** (theoretically assumed) of the coil in the experiment
(in Kelvin),
K, Maximum observed temperature in which the lamp does not fail (in
Kelvin),
S Constant  that depends on design of lamp control mechanism and the
type of coil insulator used (unitless).
> The experiment is stopped at 4™ and 24™ hours to control the temperature of

the coil and observed up to thirty days passed. At the end of the experiment, the failed
lamps are detected and the test results are analyzed to estimate the life time of lamps

and, hence, the coils.

The censoring time, T, is set as 30 days. We suppose the lifetimes after T are not
observed. Thus, we have right censored data set. The total number of observations is
70. Table 5.1 represents the experiment results of a lot. If any lamp fails before 30
days, then it is assumed that the lamp could not pass the test. Hence, all the lifetimes

have passed the test and are censored in the table given below.

Descriptive statistics, histogram and the experiment results of the whole lifetime data

can be seen in Appendix B.

* L=30 in the observed data set.
" K=232 C° in the observed data set.
" §=4500 in the observed data set.
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Table 4.1: Experiment Results of a Lot

Lamp no 1 |23 4 56 |7
Starting current (A”) 0.9810.97[0.96]0.97[0.97]0.98|0.96
Temperature of coil after 4 hour (C°) | 189 |190|192 | 198|198 | 198 | 197
Temperature of coil after 24 hour (C°) | 185 | 186 | 186 | 185 | 184 | 184 | 185
Ending time of the experiment (day) 33 132 131 |33 |32 ]33] 33

4.6 Bootstrapping with Censoring Mechanism and its Application

The analysis of data from experiments in the development phase and measurements
during production plays an important role in manufacturing. Experiments are
performed during the development phase to ensure the design fitness for mass
production. During production, a large number of measurements in the production
control the quality and reliability of the products and processes. As the number of
measurements increases, the traditional data analysis approaches its limits, and
alternative methods are needed. Thus, bootstrapping is a crucial solution for limited
experimental conditions. In many industrial areas, these conditions force the analyzer

for using bootstrapping with censoring mechanism.

The bootstrap method for uncensored data is extremely simple and given
theoretically in the previous chapter. Bootstrap procedures are developed to support
inference for the reliability function because resampling techniques provide a useful

methodology for constructing nonparametric confidence intervals.

Let us define the right censored data as of the form {(xl,dl),(xz,dz),...,(xn,dn)} ,
where x; is the i observation, censored or not, and

i

1, ifx, is uncensored .
= i=1,..n).

0, ifx, is censored

TA: Ampere
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For convenience it is assumed Xx,<x,<..<x, in the calculations below to avoid

notational difficulties and some minor technical problems arising from ties.

Bootstrap algorithm has defined for uncensored data set with three basic steps in the
previous chapter. The algorithm takes following form to generate censored data

(Efron (1981a)):

Step 1: Bootstrap sample, {(xr,d:),(xz,d;),...,(x;,d; )} , is drawn with independent
sampling n times with replacement from P, the distribution putting mass 1/n at each
point (x;,d,).

Step 2: The bootstrap replication of the estimate @, i.e. @*ZS(X*), should be evaluated.
Step 1 and 2 are repeated independently B times. Thus, we obtain

§ 0

Step 3: The bootstrap estimate, @, of the statistic, 0, is evaluated by using B bootstrap

estimate.

This form of the bootstrap requires only that the observed pairs (x,,d;) are

independently and identically distributed observations from a distribution F. Here the

statistic to be considered is of the form
0-0(9),
where 9(t)is the Kaplan Meier curve. The Kaplan Meier curve 9(t)is nearly unbiased

estimate of the true survival curve and is given by

§(t)=f[( ool j (4.14)

n—-i+l1

Here £, 1s the value of k such that te [xk,xkﬂ); in other words, the largest observed
value, censored or not, equal to or less than t. If there is no censoring, then all d.=1,

and §(t)=(n—kt)/n , the ordinary right sided cdf. Kaplan and Meier (1958) shows that
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§(t) is the nonparametric maximum likelithood estimator (MLE) for S(t). Hence, we

will use Kaplan-Meier estimator in trunsored model.

The Kaplan-Meier estimating procedure is applied before bootstrapping because of
the presence of censored cases. The model is based on estimating conditional
probabilities at each time point when an event occurs and taking the product limit of
those probabilities to estimate the survival rate at each point in time (Kaplan and
Meier (1958)). The Figure 4.5 shows Kaplan Meier estimated survival curve for all
70 data. Of the 70 lifetimes, 23 were exactly observed; i.e. the lamp failed during the
experiment. The remaining 47 observations were censored; i.e. the lamps were still
working on the 30™ day of experiment. Mean and standard deviation of lifetimes are
estimated as 34 and 1 days, respectively. The proportions of terminating and
surviving events are given as 0.3286 and 0.6714. The proportion of surviving events

(i.e. fragile population) will be estimated in the trunsored model analysis.

4.7 Lifetime Estimation for the Trunsored Data Model

A cdf H(t;y), which is a linear combination of F(t;0) and G(t;¢), correspond to the
mixture of fragile and durable populations given by

H(t;y) = pF(5:0) + (1-p)G(t;0),  (120,0<p<1), (4.15)
where p is a combination parameter. Thus, corresponding pdf of H is given in the
following form

h(t;y) = pf(t;0) +(1-p)g(t; ). (4.16)
If the observation is finished by the prescribed time T, and failure times,

t,t,,...t. (£T), are observed, then the likelihood function for the mixture model in

the form,
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Figure 4.5: Kaplan Meier Estimated Survival Curve of the Lamp Lifetimes
Ly) ={1-H(T;y)}" " [[h(t;y),  (r/n<p<l) (4.17)
i=l
where n=70 and r=23 in the original data set.

Let us assume that g(t,) >0 and G(T) — 0 because this population is durable. Then,

L(y)—L,_(0,p) where

T

L,.(0,p) ={1-pF(T;0)}" " [ [{pf(t;;0)}, (tm<p<l) (4.18)

i=1

If p=1, then we have the likelihood for the censored data model,

L, =(0) ={1-F(T;0)} " >_f(t;;0). (4.19)
i=1
On the other hand, the truncated data model can be expressed as
o | £(t,;0)
L.(0)= ——==. 4.20
O=TT{ 1] (420)

Hirose (2005) states that the MLE estimate ) corresponding to the mixture model is

the same as that corresponding to the truncated model if p<1, and it is the same as
that to the censored model if p=1. The number of replication of bootstrapping

samples is chanced from 1000 to 10000 and ten types of replication are performed.
The histogram and quantile-quantile plots of each replication type can be seen in

Appendix from Figure C.1 to Figure C.20. The solution of the likelihood equation in
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the mixture model can be obtained either by the solution of truncated model or by the

solution in the censored model, and thus, this mixture model is called as trunsored
model. By maximizing the MLE of the parameters, (éts,pts) =(32,0.68). The number
of fragile population is estimated by 47.6 in the original data set, where the number of
censored data is, in fact, 47. Hence, we have a bias nearly 0.6 for the original data set.
However, the results for the generated data sets for all replications with ratio of
fragile population to mixed population, mean lifetimes, biases, standard errors,
empirical and BC, percentiles of 2.5%, 5%, 95%, 97.5% are given in Table 4.2. The
results can be summarized as in the following:

> The 95% confidence interval of ratio of fragile population to mixed

population is (0.69838, 0.73142). Hence, the null hypothesis H,: p, =1 is rejected

with 0.05 level of significance.

> Thermal endurance of coil approaches to a censored model since
0.69838<p<0.73142.
> Bias of the mean lifetime is estimated as nearly zero. This fact again shows

the power of bootstrapping with trunsored models (see Appendix, Figure C.21).

> The ratio of fragile population to mixed population is increases if the number
of replication increases (see Appendix, Figure C.22).

> Bootstrap percentile confidence intervals give almost same results with the

BC, confidence intervals (see Appendix, Figure C.23).

> Bootstrap estimate of standard error gives better results than jackknife after
bootstrap method (JAB) (see Appendix, Figure C.24). In fact, this result illustrates the
power of bootstrapping.

> In five of the ten types of replications, estimated mean lifetime is the same as
the sample mean (see Appendix, Figure C.25).

> Standard error of the mean lifetime changes from 0.44 to 0.46 (see Appendix,
Figure C.26).
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> Increasing the number of replication affects only the ratio of fragile
population to mixed population because number of replication is chosen as large
number as 1000 and greater as proposed in the literature.

> As it can be seen in histograms in Appendix from Figure C.1 to C.20, if the
number of replications increases, the form of the model approaches to the censored
model.

> Estimated mean lifetimes are changing between 31 and 32 days. Thus, the

firm absolutely cannot achieve the European Standards which is 35 days.
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Table 4.2: Bootstrap Resampling Results for Each Replication

Empirical Percentiles

BCa Percentiles

Number

B P. F ai(l)lf res BIAS ~ \MEAN SE |SE(JAB) 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
1000 0.673 327 0.003243 | 31.67 |0.4416| 0.4579 | 30.8425 [30.97071| 32.4 |32.57143|30.84286(30.96774| 32.4 |32.57143
2000 0.689 622 -0.01776 | 31.65 [0.4547| 0.4797 |30.78536(30.92786|32.40071|32.57143| 30.8 |30.94448|32.44286(32.61429
3000 0.697 909 -0.003848 | 31.67 [0.4441| 0.4386 30.8 [30.94286(32.38643|32.52857| 30.8 [30.92857|32.38571|32.52857
4000 0.711 1156 |-0.002289 | 31.67 [0.4444| 0.4454 30.8 [30.94286| 324 |32.54286|30.78571(30.92857|32.38571|32.52857
5000 0.708 1460 -0.01653 | 31.65 |0.4467| 0.4489 30.8 [30.91429(32.38571|32.52857|30.82857(30.94286|32.41429|32.57143
6000 0.726 1644 | -0.008331 | 31.66 [0.4518| 0.4646 |30.78571|30.92857| 324 32.5575 130.81429(30.95714(32.44286|32.61429
7000 0.735 1855 0.006265 | 31.68 [0.4524| 0.4575 |30.78571{30.92857(32.41429|32.54321{30.72857|30.87143|32.37143|32.48571
8000 0.732 | 2144 0.002721 | 31.67 {0.4536| 0.4651 |30.81429(30.94286(32.42857|32.55714| 30.8 [30.92857|32.41429|32.54286
9000 0.741 2331 |-0.0007825| 31.67 |0.4544| 0.4633 30.8 [30.91429(32.42857|32.55714| 30.8 [30.92857|32.44286|32.57143
10000 |0.737 | 2630 0.005281 | 31.68 |0.4485| 0.455 30.8 [30.94286(32.41429|32.55714|30.75714| 309 |32.37143|32.51429
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CHAPTER 5

CONCLUSION

In most applied statistical analysis random samples are at the heart of statistical
inference and are in the concept of resampling methods. Experimentations, which are
made for obtaining random sample(s), are performed under some restrictions such as
time and cost. Although accurate and reliable statistical inferences depend on the
sample size, time and cost limitations prevent to obtain a great number of data. The
experimenters are generally faced with these restrictions inevitably and try to cope
with large amount of biases. However, when the estimator of interest was complex
and standard approximations were neither appropriate nor accurate, estimation
of the standard error of the parameter estimator is the most encountered cases
during statistical inference procedure. On the other hand, statistical inference is
used in the vast part of the applied statistics to make strategic level decisions, and
thus, the biases should be decreased with optimum time and cost perspectives.
Resampling methods are proposed to compensate these problems and restrictions by
achieving an enormous approximation to the population. Therefore, the samples that
are generated by bootstrapping are used to draw conclusions. There exist some
alternative methods for bootstrap resampling procedure. But, literature shows that this
method gives the best results when one tries to estimate accurate bias and standard

€1TOoT1.

In this study, we statistically analyze lifetime data with incomplete observations by

bootstrap method and we use an evolutionary model. Specifically, we try to adapt
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trunsored data model to a nonparametric approach and construct the model with
bootstrap resampling results. Thus, the bootstrapped samples are used as input for the
trunsored model. This method was not a conventional reliability approach but a more
sophisticated on utilizing incomplete data analysis models. Since the literature
proposes limited applications for handling the questions about nonparametric
approach in trunsored models, the main difficulty in this adaptation is to provide the
best estimates of the parameters of interest that are used in the key points of the
model. Therefore, various numbers of replications (>1000) are performed to generate
lifetime data. The estimated parameters are used to find the ratio of truncated and

censored models.

The main advantage of this study is having a chance to apply the bootstrap
resampling method to a real lifetime data set with an original perspective in trunsored
models. In addition to this, during the problem definition and data analysis procedure,
different perspectives are obtained via getting better information about the types of
failures experienced by parts and systems that aid design, research, and development
efforts to minimize these failures, estimation of the failure ratio for both new and old
design products, and getting estimations of the required redundancy to achieve the
specified reliability. Since the trunsored models are proposed for decision making by
manufacturers, the model becomes a potential to reduce cost of experimentations, to
prevent failures especially for new design products and to improve product reliability.
The framework presented in this study may also be applied for survival analysis such
as assessment of the effectiveness of cancer treatment, severe infectious disease alert
and precautions against possible failures. On the other hand these models can be used
in the industrial engineering applications such as decision making by manufacturers
as in our case. Estimating the ratio of the fragile population to the total mixed
population provides judgments that the whether manufacturers should recall their
products for safety reasons via assessing the ratio at an early stage or not. A small
ratio may indicate that the manufacturers can handle failed products on an individual

case basis. Because of its growing global market, the product’s manufacturing and
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performance have become the focus of much research. In today’s technological world,
consumers demand and expect reliable products. When products fail, most of the time
the results are costly. Thus, it is critical to produce correct designed, processed and
produced products. The main difference from the traditional methods is that the
trunsored models with bootstrapping mechanism provide solutions without making
unrealistic assumptions to produce reliable products in limited experimental

conditions.

For future research, the proposed adaptation can be compared with the original form
of the model by using different resampling and/or bootstrapping procedures. The
adaptation can be realized very easily by updating the algorithms of bootstrapping
with trunsored data set. In particular, the updated algorithms for trunsored data
models with bootstrapping will be practical for measuring the effectiveness of

treatment in survival analysis as well as for repairable products in lifetime analysis.
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APPENDIX B

DESCRIPTIVE STATISTICS AND EXPERIMENT RESULTS
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Figure B.1: Histogram of Lifetime Data
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Table B.1: Descriptive Statistics of the Lifetime Data

Sample Size 70
Min 25
Max 38
Range 13
Mean 31.67
SE of Mean 0.45
Variance 14.46
Median 32
Skewness -0.02
Kurtosis -1.159

Table B.2: Experiment Results

Lamp no 1 2 3 4 5 6 7
Starting current (A) 0.980.97]0.96]0.97]0.97]0.98 | 0.96
Temperature of coil after 4 hour (C°) | 189 | 190 | 192 | 198 | 198 | 198 | 197
Temperature of coil after 24 hour (C°) | 185 | 186 | 186 | 185 | 184 | 184 | 185
Ending time of the experiment (day) 33 132 | 31|33 |32 | 33| 33
Lamp no 8 9 10 | 11 | 12 | 13 | 14
Starting current (A) 0.96 | 0.97 | 0.96 | 0.97 | 0.96 | 0.97 | 0.96
Temperature of coil after 4 hour (C°) | 195 | 198 | 195 | 198 | 197 | 197 | 193
Temperature of coil after 24 hour (C°) | 186 | 185 | 184 | 186 | 185 | 185 | 184
Ending time of the experiment (day) 28 | 26 | 31 | 26 | 26 | 37 | 33
Lamp no 15 | 16 | 17 | 18 | 19 | 20 | 21
Starting current (A) 0.9710.96 10.98/0.980.96|0.96 | 0.96
Temperature of coil after 4 hour (C°) | 196 | 190 | 197 | 198 | 191 | 195 | 195
Temperature of coil after 24 hour (C°) | 186 | 184 | 184 | 186 | 185 | 184 | 186
Ending time of the experiment (day) 32 | 28 | 35 | 25 | 27 | 33 | 31
Lamp no 22 | 23 | 24 | 25 | 26 | 27 | 28
Starting current (A) 0.95/0.98]0.980.97]0.96|0.98|0.98
Temperature of coil after 4 hour (C°) | 189 | 194 | 197 | 197 | 192 | 198 | 197
Temperature of coil after 24 hour (C°) | 184 | 186 | 185 | 185 | 184 | 186 | 186
Ending time of the experiment (day) 27 | 37 | 33 | 35 | 32 | 37 | 37
Lamp no 29 | 30 | 31 | 32 | 33 | 34 | 35
Starting current (A) 0.97]0.960.97]0.98]0.98|0.97 | 0.96
Temperature of coil after 4 hour (C°) | 196 | 191 | 192 | 198 | 198 | 196 | 191
Temperature of coil after 24 hour (C°) | 185 | 184 | 184 | 186 | 184 | 184 | 184
Ending time of the experiment (day) 25 | 26 | 28 | 35 | 38 | 35 | 25
Lamp no 36 | 37 | 38 | 39 | 40 | 41 | 42
Starting current (A) 0.9710.97 |0.97 | 0.96 | 0.97 [ 0.98 | 0.97
Temperature of coil after 4 hour (C°) | 198 | 197 | 195 | 189 | 195 | 198 | 197
Temperature of coil after 24 hour (C°) | 186 | 186 | 185 | 184 | 185 | 184 | 185
Ending time of the experiment (day) 26 | 32 | 27 | 36 | 31 | 37 | 37
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Table B.2: Experiment Results (Cont’d)

Lamp no 43 | 44 | 45 | 46 | 47 | 48 | 49
Starting current (A) 0.97]0.98/0.9710.95[0.96|0.98|0.98
Temperature of coil after 4 hour (C°) 193 1951941190 | 192 | 198 | 195
Temperature of coil after 24 hour (C°) 184 | 186 | 186 | 184 | 184 | 186 | 185
Ending time of the experiment (day) 26 | 33 | 26 | 27 | 34 | 31 | 29
Lamp no 50 | 51 | 52 | 53 | 54 | 55 | 56
Starting current (A) 0.98[0.97/0.98/0.98[0.98|0.97|0.96
Temperature of coil after 4 hour (C°) 197 {197 [ 194 |1 198 | 196 | 196 | 193
Temperature of coil after 24 hour (C°) 186 | 186 | 185 | 185|184 | 184 | 184
Ending time of the experiment (day) 28 | 35|36 | 35| 29 | 28 | 29
Lamp no 57 | 58 | 59 | 60 | 61 | 62 | 63
Starting current (A) 0.96[0.96|0.97[0.97 0.96|0.97 | 0.98
Temperature of coil after 4 hour (C°) 192 1190 | 189 | 198 | 195 | 193 | 198
Temperature of coil after 24 hour (C°) 184 | 186 | 185 | 186 | 184 | 185 | 186
Ending time of the experiment (day) 26 | 26 | 36 | 27 | 31 | 30 | 28
Lamp no 64 | 65 | 66 | 67 | 68 | 69 | 70
Starting current (A) 0.96[0.95/0.98[0.97/0.98]0.97]0.97
Temperature of coil after 4 hour (C°) 190 {190 | 196 | 196 | 198 | 195 | 195
Temperature of coil after 24 hour (C°) 184 | 186 | 185 | 186 | 184 | 186 | 185
Ending time of the experiment (day) 29 | 35| 33|36 | 28| 37| 34
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APPENDIX C

BOOTSTRAP AND TRUNSORED MODEL RESULTS
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Param

315 32.0 325 33.0
| | | |

Quantiles of Replicates

31.0
|

Quantiles of Standard Normal

Figure C.4: Quantile-Quantile Plot of Bootstrap Samples for B=2000

A6



Density

0.4

Quantiles of Replicates

31.0

Figure C.6: Quantile-Quantile Plot of Bootstrap Samples for B=3000

0.8

0.6

0.2

0.0

32.0 325 33.0

315

30.5

30.0

Param

] I i
T T T T T T T
30.0 305 31.0 315 320 325 33.0
Value
Figure C.5: Histogram of Bootstrap Samples for B=3000
Param

Quantiles of Standard Normal

A7




Param

0.8
!

Density

0.2
|

30.0 30.5 31.0 315 32.0 325 33.0

Value

Figure C.7: Histogram of Bootstrap Samples for B=4000
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Figure C.9: Histogram of Bootstrap Samples for B=5000
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