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ABSTRACT 
 

THE USE OF RESAMPLING TECHNIQUES FOR LIFETIME DATA ANALYSIS 
IN INDUSTRIAL ENGINEERING 

 

ASLAN, Miray Hanım
M.S.c., Department of Industrial Engineering 
Supervisor      : Prof. Dr. Fetih YILDIRIM 

 
August 2007, 92 pages 

 
This study concerns with estimating the parameters in lifetime of fragile population 

and the ratio of fragile population to the fragile and durable (mixed) population by 

using trunsored models (unification of truncated and censored models) approach. The 

purpose of this study is to illustrate the bootstrap resampling method used for the 

parameter estimation in trunsored models. The bootstrap method is especially 

convenient to make statistical inference when distributional assumptions are not valid. 

Therefore, trunsored models with bootstrapping, which follow a consistent strategy in 

statistical inference and data analysis, lead to more accuracy for evaluation. 

 

Like many real world cases, the thermal endurance data in material failure analysis do 

not follow any distribution perfectly. Furthermore, time and cost limitations prevent 

to observe a great number of data to analyze accurately. Thus, the trunsored model 

approach with bootstrapping is thought as potential to reduce the cost of destructive 

testing due to reduced frequency of testing, to prevent failures and to improve product 

reliability. The approach presented in this study may also be applied to many other 

real life problems.  

Keywords: Bootstrap, Censored Data, Lifetime Analysis, Resampling Methods, 

Trunsored Models. 
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ÖZ 
 

ENDÜSTRİMÜHENDİSLİĞİNDE YAŞAM SÜRESİ ANALİZLERİ İÇİN
YENİDEN ÖRNEKLEME YÖNTEMLERİNİN KULLANILMASI 

 

ASLAN, Miray Hanım
Yükseklisans, Endüstri Mühendisliği Anabilim Dalı

Tez Yöneticisi          : Prof. Dr. Fetih YILDIRIM 
 

Ağustos 2007, 92 sayfa 
 
Bu çalışma, kırılgan populasyonun ömür süresi parametrelerini ve kırılgan 

populasyonun durağan ve kırılgan (karışık) populasyona oranını trunsored 

(budanmış ve sansürlenmiş modellerin birleşimi) model yaklaşımı kullanarak tahmin 

etmekle ilgilidir. Bu çalışmanın amacı, trunsored modellerde parametre tahmini 

yapmak için bootstrap yeniden örnekleme yönteminin kullanılmasıdır. Bootstrap 

metodu, özellikle dağılım varsayımının geçerli olmadığı durumlarda istatistiksel 

çıkarsama yapmak için elverişlidir. Bu nedenle, istatistiksel çıkarsama ve veri 

analizlerinde tutarlı bir strateji takip eden bootstrapli trunsored modelleri, daha çok 

kesin sonuçlar elde etmeye öncülük etmektedir. 

 

Birçok gerçek dünya vakaları gibi, malzeme arıza analizlerinde, ısı dayanımı verileri 

hiçbir dağılıma tam olarak uymamaktadır. Ayrıca, zaman ve maliyet kısıtları daha 

doğru analiz için çok büyük sayıda gözlem yapmayı engellemektedirler. Bu nedenle, 

bootstrapli trunsored model yaklaşımı test sıklıklarının azalmasından dolayı tahrip 

edici testlerin maliyetini düşürmek, arızaları azaltmak ve ürün güvenilirliğini 

geliştirmek için bir potansiyel olarak düşünülmüştür. Bu çalışmada gösterilen 

yaklaşımlar diğer birçok gerçek hayat problemine de uygulanabilir.    

Anahtar Kelimeler: Bootstrap, Sansürlü Veri, Yaşam Süresi Analizi, Yeniden 

Örnekleme Yöntemleri, Trunsored Modeller 
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CHAPTER 1 
 

INTRODUCTION 

 

The perspective of statistical computing has been revolutionized by recent advances 

in the power of computers. This modern perspective has been improved and oriented 

the computer intensive techniques. The important aspect to this orientation is the 

difficulty and complexity of the tasks by using traditional methods. In particular, 

drawing of statistical inferences from a set of data always required high computer 

power which made the analysis practical. Thus, this study demonstrates one of the 

computer intensive techniques, resampling method, as an alternative for traditional 

methods. Resampling methods are powerful, modern tools that can be used to make 

statistical inference and to investigate the behavior of any estimation. The main 

trigger mechanism to use a resampling method is thought as either elimination or 

restriction of any unverifiable assumption about the data to a minimum. In this study, 

a specific resampling method, bootstrap resampling, which uses the information 

contained in a single sample from the population of interest, is mostly focused on. In 

particular, the nonparametric bootstrap method is used to draw statistics based 

conclusions since it requires fewer assumptions relative to both parametric and 

traditional methods.  

 

The primary aim of this study is to develop an efficient industrial engineering 

application of bootstrap resampling method. Thus, the application is chosen from 

reliability analysis to develop original solutions that arise in modern engineering 

designs. The problem taken into account must seriously consider reliability because 
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lifetime data with incomplete observations frequently arises in reliability.  A new 

incomplete data model, i.e. trunsored model, will be used to analyze the data. This 

method provides not only an estimate for the ratio of the fragile population to the 

mixed fragile and durable populations, but also tests the hypothesis that the ratio is 

equal to a prescribed value with estimated confidence intervals. Furthermore, 

trunsored model approach with bootstrapping can cope with time and cost limitations 

in lifetime data analysis. Therefore, for modern engineering design, trunsored model 

approach with bootstrapping is thought as potential to reduce the cost of destructive 

testing due to reduced frequency of testing, to prevent failures and to improve product 

reliability.  

 

This study presents the fundamentals of the bootstrap method with an original 

application. Developing the mathematical and logical background of resampling 

methods is required for understanding the bootstrap procedure. Thus, resampling 

methods are defined in Chapter 2 of this study. Since the main philosophy is drawing 

the pictures of resampling with a framework that comes from wider to narrower, 

Chapter 3 presents the details of bootstrap method. The basics of lifetime data 

analysis and the industrial engineering case study are proposed in Chapter 4. Finally, 

conclusive remarks are provided in Chapter 5. 
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CHAPTER 2 
 

RESAMPLING METHODS 

 

The roles of computing in statistics became important with the increases in computer 

power, decreases in computing costs and recent advances in the information 

technology. Several terms are used when referring to computer intensive statistical 

methods, including ‘resampling’, ‘Monte Carlo Simulation’, ‘permutation’, 

‘randomization’, ‘jackknife’ and ‘bootstrapping’. The generic terms ‘resampling’

and ‘computer-intensive methods’ refer to all methods in which the observed data 

are used to generate a reference distribution by means of randomization (Fortin et al. 

(2002)). Hence, this chapter includes general background of resampling and computer 

intensive methods. Section 2.1 explains principles and overview of the resampling. 

Section 2.2 describes nonparametric resampling methods. Finally, Section 2.3 briefly 

reviews parametric resampling methods.  

 

2.1 An Overview of Resampling 
 

Statistical inference relies on some statistics (or estimates) that are functions of the 

data. Their sampling distributions depend upon the underlying population and 

therefore are unknown. Traditional methods used in statistical inference are generally 

based on postulated probability models. Even if the probability model has held, the 

conclusions are often made by asymptotical and approximate results. Thus, instead of 

traditional methods, resampling methods are proposed to provide strategies for 

estimating or approximating the sampling distribution of a statistic or its 
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characteristics as well as making statistical inference. Since inferential statistics 

include estimators (i.e. the functions of the data and the statistics computed from a 

random sample and used to estimate parameters of population distributions) as well 

as statistics used in hypothesis tests, resampling plays such an important role as the 

architecture.  

 

One important aspect of resampling is the growing importance of data analyses based 

on recycling the scores constituting a data set and collection of computer intensive 

techniques (Fortin et al. (2002)). These techniques generate distributions of statistics 

by repeating the data analysis many times on replicate data sets (resamples) that are 

based on an observed set of data (Lunneborg (2000), p. 78). The generated 

distribution is then used to assess the significance of a statistic calculated from the 

observed data. Significance is evaluated under the assumption that the statistic 

computed by using the observed data is sampled from the distribution generated with 

a randomization mechanism.  

 

In most applied statistical analysis, statistical procedure models a physical process via 

random samples. Thus, random samples are at the heart of statistical inference and are 

in the concept of sampling distribution and resampling methods. A resampling 

method simulates the model with easy-to-manipulate symbols via data-generating 

mechanism to produce new hypothetical samples. Generated samples try to act as a 

population and are the introductory part of resampling methods. Therefore, the 

intellectual advantage of the resampling methods relative to traditional methods is the 

data generation mechanism for achieving an enormous approximation to the 

population.  

 

When we compare traditional sampling methods with resampling methods, one can 

have the following assertions: resampling methods have fewer assumptions than 

traditional methods (Crowley (1992)). For example, resampling method does not 

require that the data has analytically known distribution. Hence, an important feature 
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of resampling is that statistical significance is evaluated based on empirical 

distributions generated from the observed sample. This ‘distribution-free’ alternative 

to parametric statistics is quite appealing to reliability analysis, which statistical 

inferences have to be made with small data sets that do not meet the assumed 

parametric distribution, will be mentioned in the application part of this study in later 

chapters. While resampling methods may involve fewer assumptions as stated before, 

this does not mean no assumption exists. Hence, caution must be exercised because 

the random sampling procedures often assume that data of independent observation 

and this assumption is invalid when the data are spatially or temporally autocorrelated 

(Cressie (1993), Edgington (1995), Efron and Tibshirani (1993), Good (2000, pp. 25-

29). The reliability of the statistical analysis applied by resampling methods depends 

on the validity of this assumption. Also, in resampling, the observed data are assumed 

to be a representative picture of the entire population. The essential idea then is to 

make statistical inference based on an artificial resample, which is drawn from the 

data.  

 

Resampling procedure has some benefits with respect to traditional methods and 

approaches and there exists some motivation to use this procedure. First of all, 

traditional approaches rely strongly on postulated probability models as stated before. 

Conclusions of traditional methods are frequently based on asymptotical or 

approximate properties that increase the effect of biases. These approaches, however, 

determine the various properties of a particular estimate with various assumptions 

about the underlying population distribution. On the other hand, there are many 

situations where the determination of estimators’ properties is not so straightforward. 

However, resampling techniques can provide a solution in such situations that include, 

but are not limited to, the following properties:  

 

Distributional assumption violation/inadequacy: Classical procedures rely on the 

distributional assumptions regarding to the population of interest. When the 

population is not well-defined or the sample size is small, the analyst should be 
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sceptical whether the usefulness of the theoretical distributions available or not and 

hence may wish to use “nonparametric approaches”. 

 

Non-random samples: An important classical assumption is that the sample is 

random and certain processes of inferring population quantities from a sample require 

this assumption for validity. However, there are situations where the sample might 

not be random: for example, “self-selected” samples obtained via certain types of 

questionnaire in which people elect to be a part of the sample rather than being 

chosen by the experimenter. 

 

Small sample sizes: Many traditional methods for estimating various properties of a 

certain characteristic of a population rely on the assumption of a “large” sample size. 

Thus, for smaller samples, these methods may result in invalid estimates of the 

various properties of a population. 

 

Intractable calculations: In some cases, either the distributional assumptions made 

for the random variable of interest or the particular nature of the estimator may 

prevent finding explicit mathematical statements for the various properties of the 

estimator because the mathematical calculations required to do so are intractable. 

 

Different resampling plans result in different resampling techniques. The main 

difference relies on the distribution assumption. In classical statistical theory, it is 

usually assumed that there is a particular mathematical model, with adjustable 

constants or parameters that fully determine the function. In general, such a model is 

called as parametric and the data generated from the underlying model is in the 

family of distributions. However, when no such mathematical model is used and any 

explicit assumptions does not require about the population's distribution, then the 

statistical inferences are made by nonparametric methods. Besides, independent and 

identically distributed random variables should be used. Even if there is a plausible 

parametric model, a nonparametric analysis can still be useful to assess the robustness 
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of conclusions drawn from a parametric analysis (Davison and Hinkley (1997), p. 11). 

Some basics of parametric and nonparametric approaches are given in the following 

sections.     

 

2.2 Nonparametric Approach 
 
In many practical situations that appear in resampling, it is useful to have available 

statistical methods which do not depend upon specific parametric models. Therefore, 

nonparametric resampling approaches, which do not rely on any specific assumptions 

about the form of the probability distribution and have extremely different 

methodology from parametric approaches, play a central role in statistical inference. 

The observed data (the sample) used in this approach should come from empirical 

distribution which puts equal probabilities at each sample value. When the sample 

values are thought of as the outcomes of independent and identically distributed 

random variables 1 nX ,...,X , the equal probabilities will be -1n at each sample value ix .

The corresponding estimate of F is the empirical distribution function (EDF) 

F̂, which is defined as the sample proportion  

{ }(i)# x x
F̂(x)=           for i=1,...,n          

n
≤

(2.1) 

where { }# A means the number of times the event A occurs; or  

 

(1)

(i) (i+1)

(n)

0,          x<x

F̂(x)= i/n,        x x<x

1,          x x




≤
 ≥

, (2.2) 

where (i)x is the ith ordered value of x. More formally,  

n

(i)
i=1

1F̂(x)= H(x-x )
n∑ ,
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where H(u) is the unit step function which jumps from 0 to 1 at u=0. It should be 

noticed that the values of the EDF are fixed 1 2 n0, , ,...,
n n n

 
 
 

, so the EDF is equivalent 

to its points of increase, the ordered values (1) (n)x ... x≤ ≤  of the data. When there are 

repeated values in the sample, as would often occur with the discrete data, the EDF 

assigns probabilities proportional to the sample frequencies at each distinct observed 

value y. The EDF plays the role of fitted model when no mathematical form is 

assumed for F (i.e. distribution-free), analogous to a parametric cumulative 

distribution function (CDF) with parameters replaced by their estimates (Davison and 

Hinkley (1997), pp. 11-12). 

 

Nonparametric resampling procedure has some benefits with respect to parametric 

methods and approaches. There exists some motivation to use this procedure. These 

include, but are not limited to:  

� If the sample size is very small, there may be no alternative to using a 

nonparametric resampling method unless the nature of the population distribution is 

known exactly. 

� Nonparametric resampling makes fewer assumptions about the data. 

� Nonparametric resampling are available to analyze data which are inherently 

in ranks or categorical. 

� Nonparametric resampling is typically much easier to learn.  

 

In contrast to these motivations, there may be rarer cases in which the use of a 

resampling method can fail. These include, but are not limited to: 

� A nonparametric resampling method is less powerful than a parametric 

resampling when all the assumptions of the parametric one are met.  

� Certain assumptions, which are associated with nonparametric resampling 

methods, e.g. the observations are independent, may not be held.  
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Different nonparametric resampling methods are improved in the statistical inference. 

Friedl and Stampfer (2002) denote that these plans are generally referred as setting of 

all possible resamples to be taken and their weighting. Rather, the inference is based 

upon repeated sampling within the same sample without a distribution assumption. 

The resampling procedure is applied within the light of one of four major methods, i.e. 

Bootstrap, Jackknife, Cross-Validation, Permutation-Randomization, which the 

literature has mostly addressed for testing and estimation. Although today they are 

unified or improved under a common theme, it is important to note that these four 

techniques were developed by different people at different periods of time for 

different purposes (Friedl and Stampfer (2002)). In the following subsections, 

Permutation-Randomization, Cross-Validation and Jackknife will be explained. The 

main topic of this study, the bootstrap method, is going to be given with details in the 

next chapter.         

 

2.2.1 Permutation and Randomization 
 
Permutation test is a nonparametric procedure that calculates an attained significance 

level of a test statistic by comparing it with its resampled values. Hence, it is 

designed to condition out the unknown sampling distribution. This test utilizes 

resamples that are drawn without replacement from the observations. The distribution 

of the resampled values is called permutation distribution, and plays the role of the 

null distribution in parametric testing problems. The applicability of permutation tests 

relies on the property that some observations are exchangeable under the null 

hypothesis, whereas under the alternative hypothesis they are not (Friedl and 

Stampfer (2002)). Thus, this test is the nonparametric version of hypothesis tests. 

Deeper insight into this topic is provided by Lehmann (1997) and Good (2006). 

Permutation test can be employed for continuous as well as for ordinal and nominal 

data. When the two random samples are taken as 1 mX ,...,X from an unknown 
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distribution of XX F (.)∼ and a random sample 1 nY ,...,Y from an unknown 

distribution of YY F (.)∼ , the null hypothesis is that the mean of  two distributions are 

the same whereas the alternative hypothesis is that the mean of XF (.) is different from 

the mean of YF (.) . One feature of permutation tests is that any test statistic is as easy 

to use as any other, at least in principle (Davison and Hinkley (1997), pp. 156-158). 

For this reason, the test statistic, nT(D ) , where nD is a data set with n data points, 

can be computed for the observed data. If all possible permutations are defined as R, 

then 
M+N

R=
 M
 
 
 

where N and M are two subsets of n. If the null hypothesis is true, 

such permutations are equally likely and there are 
M N

M
+ 

 
 

of them. For each ith 

permutation ( i=1,...,R ), (i)T is the statistic that should be computed and the value of 

nT(D ) should be compared with the set of values (i)T . If the value of nT(D ) falls in 

the upper and lower α/2 tail areas of the (i)T distribution, the null hypothesis is 

rejected with type 1 error α . The permutation procedure will involve substantial 

computation unless M and N are small and a random sample of a large number R of 

the permutations can be taken when the number of permutations is too large.  

 

Permutation method can be used for comparison of two means, estimated survivor 

functions, testing correlations, and etc. The corresponding examples and the theory 

can be seen in Davison and Hinkley (1997) and Lehmann (1997) and the detailed 

algorithm of test can be seen in Efron and Tibshirani (1993, pp. 202-218). 

 

The randomization test is introduced by Fisher (1949, pp. 17-21) as a device for 

explaining and justifying significance tests, both in sample cases and for complicated 

experimental designs (Davison and Hinkley (1997), p. 183). The terms ‘permutation 

test’ and ‘randomization test’ are often used interchangeably. Formally, Fisher used 

the former term to refer to a method that performed for inference from population, 
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while randomization test was applied to methods for sample-based inference. The 

term permutation test or randomization test is also used when the test provides the 

exact significance levels by exhaustive computation of all possible rearrangements 

(permutations) of the data. In practice, even with current powerful computers, 

permutation tests can only be performed when the number of observations, n, is small, 

because the number of permutations increases as the factorial of the sample size (n!). 

When the number of observations precludes an exact test, an ‘approximate 

randomization’ test is used instead. This randomization test generates a subset of the 

possible permutations because only a subsample of all possible permutations is 

calculated. Many authors recommend that 10000 or more randomizations should be 

used while constructing the reference distribution (Crowley (1992), Manly (1997)). 

The reference distribution of any statistic is obtained using a six-step randomization 

procedure that repeatedly reallocates the value of the observations over the sample, 

and then recalculates the statistic to generate the null reference distribution. The 

algorithm can be summarized as: (i) hypothesis definition; (ii) statistic determination 

(choose a statistic that already existing or design a new one); (iii) statistic 

computation for the observed data; (iv) null reference distribution generation by 

rearranging the order of the observed data over the entire sample by shuffling them 

randomly (i.e. the values of the response variable are shuffled over all the samples, 

where each sample keeps its spatial identity); (v) computing the statistic for the 

randomized data and repeating this step a large number of times; and (vi) comparison 

of the observed statistic with respect to the reference distribution.  

 

Randomization tests have several advantages and limitations:  

� “The randomization tests include flexibility and relative ease of 

implementation. They support significance testing without distributional assumptions 

(e.g. normality) and complex designs for which parametric tests do not exist” (Fortin 

et al. (2002)). 

� “For comparable statistics, randomization tests are as powerful as 

parametric tests when the number of randomizations is large” (Fortin et al. (2002)).  
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� The test can be used with non-random data and allows user to create a 

test statistic (Crowley (1992)). 

� Results are not necessarily generalizeable to the population. 

Generalizeable assumption is often made but not verified with standard statistics 

(Crowley (1992)).   

� Randomization and traditional methods give similar significance 

levels if assumptions of traditional tests hold (Crowley (1992)). 

� The test can only be used to test hypotheses comparing two or more 

groups (Crowley (1992)).  

 

2.2.2 Cross – Validation  
 

Cross validation is another resampling method that was proposed by Kurtz (1948). 

This method is especially designed for selecting and assessing models with 

estimation of aggregate error. The paradigm is based on splitting the data set into a 

training set and a separate assessment set. In general, a sample is randomly divided 

into two or more subsets, say K (roughly equal-sized pieces). Then, the test results 

are validated by comparing across subsamples.  One piece, i.e. the training set, can be 

used to test the model that was trained on the remaining K-1 pieces. Therefore for the 

kth part, the model is fitted to the other K-1 parts of the data, and prediction error of 

the fitted model is to be calculated while predicting the kth part of the data. To remove 

the effect of a particular division, this is repeated for all K pieces of data. The results 

of the K testing procedures are then combined suitably. This cross validation 

procedure is called as K-fold cross-validation (Efron and Tibshirani (1993), pp. 239-

241). In the literature, there also exist more specific cases of K-fold cross-validation 

such as simple cross-validation, double cross-validation, and multicross-validation. 

Further details related with cross-validation are given by Stone (1974). Efron and 

Gong (1983) compares cross validation with other resampling methods. Efron (1983) 

shows that leave-one-out cross validation reduces the bias of the estimate from 

O(1/n) to 2O(1/n ) . Ang (1998) states that cross-validation is problematic because 
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splitting an already small sample increases the risk of artifacts of the subsample, and 

thus, Ang (1998) recommends to use of jackknife (to be explained in the next section). 

 

The power of cross-validation comes from the reduced number of assumptions and its 

applicability to complex situations. On the other hand, cross-validation suffers from 

the same weakness as spilt-half reliability when the sample size is small. By dividing 

the sample into two halves, each analysis is limited by a smaller number of 

observations. However, it can have high variability particularly for small sample size. 

Thus, the sample size must be large enough to fit the model reliably, assess the 

prediction error reliably and be reasonably independent of the actual split into 

assessment and trainings sets. The trick to achieve these things even for modest 

sample sizes is to repeat this procedure for multiple trainings/assessment splits, and to 

average out the prediction errors. 

 

2.2.3 Jackknife 
 
The resamples can be produced by repeatedly leaving out one observation from the 

data by the method known as the jackknife. Although the method was coined by 

Tukey to imply that the method is an all-purpose statistical tool in resampling, 

jackknife is first proposed by Quenouille (1949). Quenouille (1956) finds out an 

estimator of bias by using jackknife resamples then it is developed by Tukey (1958) 

to quantify standard error of an estimate without making distributional assumptions. 

In the later improvement, jackknife resampling plans generalized for estimating of 

any statistic of interest. 

 

Jackknife enumerates the reference distribution repeatedly by leaving out one 

observation at a time and then recalculating the test statistic. When the sample values 

1 ny=(y ,...,y )
�

are thought of as the outcomes of independent and identically 

distributed random variables, and θ̂=S(y) is the estimator of the statistic of interest θ,
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the method aims to find bias and standard error estimate of θ̂ by the samples that 

leave out one observation at a time. The sample  

(i) 1 2 i-1 i+1 ny =(y ,y ,...,y ,y ,...,y )
�
shows the remaining data set after removing ith observation for i=1,...,n , is called as 

ith jackknife sample (Efron and Tibshirani (1993), pp. 141-143). Let (i) (i)θ̂ =S(y ) be 

the ith jackknife replication of θ̂ . Then, the jackknife estimate of the statistic θ and 

estimate of the bias � jackbias is given by  

jack (.)
ˆ ˆ ˆθ =nθ-(n-1)θ (2.3) 

�
jack (.)

ˆ ˆbias =(n-1)(θ -θ), (2.4) 

where 

n

(.) (i)
i=1

1ˆ ˆθ = θ .
n∑ (2.5) 

The jackknife estimate of the standard error defined by 

�
1/2

2
jack (i) (.)

n-1 ˆ ˆse = (θ -θ ) .
n

 
  

∑ (2.6) 

Another way defined in Efron and Tibshirani (1993, p. 145) is to think about the 

jackknife in terms of the “pseudo values” as  

i (i)
ˆ ˆθ =nθ-(n-1)θ .� (2.7) 

It is stated that in the special case θ̂=x , i iθ =x� is observed where ix is the ith data 

value. Furthermore, for any θ̂, the formula for � jackse can be expressed as  

� { }
1/2n

2
jack i

1

se = (θ -θ) / (n-1)n , 
 
 
∑ � �  (2.8) 
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where iθ= θ /n.∑� � Here, � jackse is like an estimate of the standard error of the mean for 

the data iθ , for i=1,...,n� owing to fact that the pseudo values are supposed to act as if 

they were n independent data values. Likewise, an approximate (1-α)% confidence 

interval can be formed as: 

�(1-α)
n-1 jackθ±t se ,� (2.9) 

where (1-α)
n-1t is the th(1-α) percentile of the t distribution on n-1 degrees of freedom. 

Efron and Tibshirani (1993, p. 145) denote that this interval does not work very well; 

in particular, it is not significantly better than cruder intervals based on normal theory. 

Although pseudo values are intriguing, it is not clear whether they are a useful way of 

thinking about the jackknife. 

 

The methodology of the jackknife changes according to the number of deleted 

observations. In the simplest case, the jackknife resamples are generated by deleting 

single cases from the original sample (i.e. delete-one jackknife). A more generalized 

technique uses resample that relies on multiple deletions (namely, delete-d jackknifes 

where d is the number of deleted observations). The jackknife often provides a simple 

and good approximation especially for estimation of standard errors and bias. Like as 

the other nonparametric resampling methods, the jackknife can be applied to any 

statistic that is a function of n independent and identically distributed variables. With 

respect to the resampling plans the idea of cross validation is very similar to the 

jackknife idea; however, cross validation should not be mixed up with jackknife since 

both of these resampling procedures are quite different. The major difference is based 

on their applications in which cross validation is used for model selection and 

assessment, whereas jackknife provides estimate of bias and variance. 

 

The major motivation for jackknife estimates is that they reduce bias. It is also a 

nonparametric and easy to be implemented method and it solves a number of 

problems like other nonparametric methods explained before. For instance, jackknife 
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can be used for any estimator that is a sample analogue of a parameter as in the 

following: the sample mean as an estimator of the population mean, the sample 

variance as an estimator of the population variance, the sample minimum as an 

estimator of the population minimum and so on. However, this method can fail 

miserably if the statistic θ̂ is not “smooth”. Intuitively, the idea of smoothness is that 

small changes in the data set cause only small changes in the statistic. Efron and 

Tibshirani (1993, p. 148) state a way that fixes up the inconsistency of the jackknife 

for non-smooth statistic. The detailed review about the Jackknife has been made by 

Miller (1974).   

 

2.3 Parametric Approaches 
 
One mathematical route to specifying a sampling distribution is to require the 

population distribution that has a particular mathematical form. Therefore, it is 

considered that the observed data (the sample) comes from a specific distribution that 

can be called as a representative picture of the entire population. The sample values 

are thought of as the outcomes of independent and identically distributed (iid) random 

variables 1 nY ,...Y whose probability density function (PDF)  is denoted as f and 

cumulative distribution function (CDF) is denoted as F. The sample is to be used to 

make inferences about a population characteristic, generally denoted by θ , using a 

statistic T whose value in the sample is t. The attention is to be focused on the 

probability distribution of T. When the generating samples come from a known 

distribution or one may be assumed the probability distributions fitted to samples’ 

data, the statistical analysis relies on the parametric approach.  

 

Hypothesis tests and pivotal variables are used in parametric resampling. The major 

disadvantages of these methods include model selection error, parameter estimation 

error, and loss of important serial and cross dependencies in the data, and the 

difficulty in convincing for the model’s validity.     
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Hypothesis test is a method of sampling distribution that uses a statistic calculated 

from the sample to test an assertion about the value of a population parameter. In this 

method, population distribution parameter,θ , is assumed as taking a specific value, 0θ .

The value of θ is specified from a statistical hypothesis known as a null hypothesis. 

So, the null hypothesized value is referred as 0θ . The main aim of the test is to 

determine what the sampling distribution of the estimator would be if the null 

hypothesis were correct. Therefore, in the first step, the sample statistic is calculated 

and the hypothesis is formulated. The null hypothesis ( 0H ) specifies a value for the 

population parameter. The decision about which sample statistic should be calculated 

depends upon the scale used to measure the variable (i.e. a proportion, a mean, etc). 

In contrast, the alternative hypothesis ( 1H ) specifies a competing value for the 

population parameter and is formulated to reflect the proposition the researcher wants 

to verify. Consistency judgments and the decision either reject the null hypothesis in 

preference to the alternative or not reject the null hypothesis should be made on 

statistical grounds. This statistical decision process is referred to as hypothesis testing.  

 

Pivot variable is used to construct confidence intervals. “To avoid the difficulties 

associated with a shifting sampling distribution, mathematical statisticians have 

developed pivotal forms for several estimators. The sampling distribution of a pivotal 

form does not change as we move from one population to another, with a consequent 

change in the value of the parameter being estimated. The convenience of pivotal 

forms, particularly for confidence interval estimation and hypothesis testing, has 

encouraged researchers to use estimators that have pivotal forms”(Lunneborg (2000), 

pp. 60-61).  This method is called as “pivotal inference” because of the results 

obtained by using pivots and the structure of pivotal inference is improved. Since the 

parametric approaches are out of the scope of this thesis, details of hypothesis testing 

and pivotal inference are not included.   
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CHAPTER 3 
 

BOOTSTRAP RESAMPLING 

 

Bootstrap is a data-based simulation method for assigning measure of accuracy to 

statistical estimates. “The use of the term bootstrap∗ derives from the phrase to pull 

oneself up by one's bootstrap” (Efron and Tibshirani (1993), pp. 5, 10). In statistical 

data analysis, bootstrap means that one available sample gives rise to many others by 

resampling. It can be employed in either nonparametric or parametric mode. The 

nonparametric bootstrap, which is in the main scope of this study and is the original 

form of bootstrapping, will be described in this chapter. Section 3.1 presents the 

general framework of bootstrapping. Section 3.2 reviews arguments in the literature. 

The detailed principle and concept of the bootstrapping are explained in Section 3.3. 

The principle and algorithm of the bootstrap is described in Sections 3.4 and 3.5. The 

estimations that can be made via bootstrapping are explained in Sections 3.6, 3.7, and 

3.8.    

 

3.1 An Overview of Bootstrap Method 
 

Statistical inference is used in the vast part of the applied statistics to make strategic 

level decisions. Two of most important problems in applied statistics are the 

determination of an estimator for a particular parameter of interest and the evaluation 

____________________________________________________________________ 
∗ It is widely thought to be based on one of the eighteenth century Adventures of Baron Munchausen’s, by R.E. Raspe. The 

Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own 

bootstraps. 
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of the accuracy of that estimator through estimates of the standard error of the 

estimator.  When the estimator was complex and standard approximations were 

neither appropriate nor accurate, estimation of the standard error of the 

parameter estimator is the most encountered cases during statistical inference 

procedure. (Chernick (1999), p. 6).Therefore, Efron (1979) proposed bootstrap 

resampling methods. This technique, which is commonly used for estimating bias, 

standard error of an estimator and confidence intervals, is further developed by Efron 

and Tibshirani (1993) with inferential purposes.  

 

The main assumption of bootstrapping is based on observations’ independence 

whose validity is necessary for other resampling methods as well.  It is also assumed 

that sampling is performed from an infinite population where each observation has 

the same probability of being chosen each time. In addition, if any parametric 

assumptions can be made, bootstrapping also provides a way to make statistical 

inferences.   

 

The basic idea behind the bootstrap method is resampling the data with replacement. 

Bootstrapping procedure consists of randomly choosing the sample data n times, from 

an original sample of size n and repeating this large number of times, say B times, 

with putting the chosen data back into the original set each time. Then by using the 

resampled (generated) data, the parameters of interests can be estimated.  

 

Bootstrap resampling method has an extensive usage and wide application area 

because of its special features. Thus, bootstrapping is used in the solution 

procedure of a wide variety of problems appears in various disciplines including 

psychology, physics, geology, ecology, ornithology, econometrics, biology, 

meteorology, genetics, signal and image processing, medicine, engineering, 

reliability, chemistry, accounting, and etc. “The applications of bootstrapping in 

these disciplines include not only estimation of biases, standard errors or 

confidence intervals but also error rate estimation in discriminated analysis, subset 
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selection in regression, density estimation, quartile estimation, p-value adjustment 

in multiple testing problems, estimating process capability indices, handling 

missing data problems, and to cope with logistic regression and classification 

problems, cluster analysis, kriging (i.e., a form of  spatial modeling), nonlinear 

regression, time series analysis, complex surveys and other finite population 

problems, survival and reliability analysis problems” (Chernick (1999), pp. 6,7).  

 

In this study, possible industrial area applications will be mentioned and a 

reliability analysis application will be given in the next chapter. Before the 

application part of the thesis, the bootstrapping mechanism and its all dimensions 

will be given in the later sections.  

 

3.2 Arguments on Bootstrapping: A Literature Review  
 
Bootstrap resampling strategy was introduced by Efron (1979) to assess the 

estimators. Therefore, statistical inference and data analysis applications made by the 

bootstrap resampling method has begun after this append. Although bootstrap method 

is nearly thirty years old, extensive literatures, researches, and projects exist   in a 

variety of disciplines listed before. Thus, relatively a narrow review will be given. 

The framework of this review is drawn by Efron and Tibshirani(1993), Davison and 

Hinkley (1997), Good (2006), and Chernick (1999), which are used as a guide 

through the vast of this study. Since the basic topic in this study is bootstrapping, in 

general, the literature is based mostly on bootstrap resampling, its theory and 

application. 

 

It should be pointed out that bootstrap research began in the late 1970s by 

Efron as stated before and most important theoretical development had been made 

after 1980s. Davison and Hinkley (1997, p. ix) denote this publication as major 

event in statistic since it is synthesizing some of the earlier resampling ideas and 

establishing a new framework for simulation based statistical analysis. This fact 
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has been proved by the publications after Efron (1979) both in bootstrap 

resampling and other methods. Efron and Gong (1983) and Diaconis and Efron 

(1983) are the other introductory level papers about the bootstrap resampling. They 

argue that the resampling method frees researchers from two limitations of 

conventional statistics: "the assumption that the data conform to a bell-shaped curve 

and the need to focus on statistical measures whose theoretical properties can be 

analyzed mathematically". They also apply the bootstrap method to various types of 

problems and then compare the results taken from the bootstrap with conventional 

statistical tests, including the correlation coefficient and principal components. Most 

of the time, the bootstrap method yielded the same answers that the more 

conventional methods did. In some cases, bootstrap methods may not give a true 

picture of every sample, just as conventional tests sometimes find deceptive answers 

to problems. Efron (1983) compared several variations to the bootstrap estimate. 

He has also demonstrated the value of the bootstrap in a number of applied and 

theoretical contexts. Several nonparametric resampling methods are discussed in 

Efron (1981b) for attaching a standard error to a point estimate such as the jackknife, 

the bootstrap, half-sampling, subsampling, balanced repeated replications, and etc. 

Beran (1982) compares the bootstrap with various competitive methods in 

estimating sampling distributions. Parr (1983) is an early reference comparing the 

bootstrap, jackknife, and delta method in the context of bias and variance 

estimation. Efron (1987) shows that the standard approximate intervals based on 

maximum likelihood theory can be misleading, hence, the accuracy of confidence 

intervals can be improved based on transformations, bias corrections, and so forth. 

The proposed intervals incorporate an improvement over previously suggested 

methods. Three examples of the value of computer intensive inference are provided 

by Efron (1988). Efron and Tibshirani (1986) show the basic ideas and applications 

of bootstrap with some examples rather than theoretical considerations. The 

computational methods for the bootstrap, which are given in Efron (1990), are more 

efficient than the straightforward Monte Carlo methods usually used. The simplest 

bootstrap form (one sample nonparametric problem) is taken and bias, variance and 
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approximate confidence interval of some statistics is computed and number of 

bootstrap replication is reduced. According to Simon and Bruce (1991), the method 

prevents researchers from simply grabbing the formula for some test without 

understanding why they chose that test.  

 

In Efron (1992), relevant theoretical statistics of how the bootstrap has impacted is 

explained by raising six basic theoretical questions. Also, as it is mentioned before, 

Efron’s bootstrap idea is based on iid observations and guaranteed to work with large 

samples. However, when small sample sizes are involved, it has been discovered 

through the extensive research that the bootstrap sometimes works better than 

conventional approaches even with small samples bootstrap resampling. 

 

There also exist some critics for the bootstrap methods. The general question 

marks are based on the accuracy of the estimates that resampling mechanism yields 

and making enough experimental trials. In some cases resampling, and so 

bootstrapping, may be less accurate than conventional methods. Peterson (1991) 

states that using the numbers over and over again yields nothing, instead of, 

assumptions have to be made because the analyzer may live to regret that hidden 

assumptions. Noreen (1989) states several striking aspects of this approach especially 

for random samples drawing from different populations.    

 

Guidelines for nonparametric bootstrap hypothesis testing are described in Efron 

(2000). DiCiccio and Romano (1988) present a major review article on the bootstrap 

and its applications. It shows that the violation of the guidelines can reduce the power 

of the test. DiCiccio and Efron (1996) give some heuristic overview of bootstrap 

confidence intervals and some methods to obtain good approximate confidence 

intervals are given.  

 

Helmers et al. (1992) have mentioned that bootstrap can also be used as an 

estimation technique to estimate quartile. Mak (2003) is proposed a method for the 
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simultaneous estimation of the variances of a sample statistic for all sample sizes 

using the bootstrap. He provides sample size determination based on a pilot sample 

when an explicit expression for the asymptotic variance is either too complex or 

unavailable at all. Since the bootstrap is employed, the method does not depend on 

any specific properties of the sample statistic and can therefore be universally 

implemented in a general computational algorithm. DiCiccio et al. (1992) have 

presented a new method for the construction of approximate iterated bootstrap 

confidence intervals which can be calculated by high coverage accuracy in small to 

moderately sized samples. Bickel and Krieger (1989) use the bootstrap to obtain 

confidence bands for a distribution function. Hall (1986) describes the number of 

bootstrap simulations required to construct a percentile–t confidence intervals based 

on a sample from continuous distribution. He has showed that smaller number of 

bootstrap simulations cause longer confidence intervals. Hahn and Meeker (1991) 

briefly discuss bootstrap confidence intervals.  

 

Young and Daniels (1990) use the bias that is introduced in Efron's nonparametric 

bootstrap as a substitute for the true unknown distribution. Cheng (2001) 

describes some general procedures for analyzing the results of a simulation 

experiment using bootstrap resampling. This paper explains the rationale and simple 

steps needed to implement bootstrapping in estimation as well as distributional 

properties of the output and its dependence of factors of interest, such as; model 

fitting; model selection; model validation; sensitivity. Davidson and MacKinnon 

(2000) present a growing body of evidence from simulation experiments. They 

indicate that bootstrap tests do indeed yield more reliable inferences than asymptotic 

tests in a great many cases (for more details see Davidson and MacKinnon (2000)). 

Bootstrap tests will generally perform better in finite samples than asymptotic tests, 

and thus, errors are reduced (Hall (1992)). 
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Bickel and Freedman (1981) demonstrate consistency of the bootstrap under 

certain mathematical conditions. They also provide a counterexample for 

consistency of the nonparametric bootstrap. 

 

Hall (1992) presents some sort of smoothness conditions for consistency of 

bootstrap estimates. Tibshirani (1992) provides some examples of the usefulness 

of the bootstrap in complex problems. Gine and Zinn (1989) show necessary 

conditions for the consistency of the bootstrap. However, examples where the 

bootstrap failed to be consistent due to its inability to meet certain necessary 

mathematical conditions are shown by Athreya (1987) and Angus (1993). 

Inconsistency of estimators of the bootstrap distribution is shown by Hall et al. 

(1993). Martin (2007) describes the construction of bootstrap hypothesis tests which 

can differ from bootstrap confidence intervals because of the requirements to 

generate the bootstrap distribution of test statistics under a specific null hypothesis. 

The performance of bootstrap tests, examining size and power properties of the tests 

numerically using both real and simulated data is critically assessed. Bootstrap power 

calculations for some scenarios are also described. 

There exists several review papers that compare the resampling methods and argue 

that which method is best under which conditions. The basic comparisons are to be 

made among the three resampling methods: bootstrap, jackknife, and cross-validation. 

The principles of these three methods are similar, but bootstrap is defined as “more 

thorough” procedure since it can generate many sub-samples than others. Efron 

(1982) compares these resampling methods. Through resampling procedure vast of 

the paper found that the bootstrap resampling method provides less biased and more 

consistent results than the jackknife method does. On the other hand, in rare, such as 

Mooney and Duval (1993), it is suggested to use jackknife since it has been largely 

studied than the others. However, unlike the jackknife the bootstrap is applicable 

more widely, and gives better results in many situations. Therefore jackknifing is 

recommended mainly if one needs only a variance estimator. Efron and Tibshirani 
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(1993, pp. 10-15) state that unlike randomization tests, statistical inference for the 

bootstrap applies to the population characteristics. The common use of bootstrap 

methods is to provide estimates of standard errors, approximate confidence intervals 

for unconventional statistics and approximate probability estimates relative to some 

null hypotheses. Bootstrap hypothesis tests are often inferior to tests based on 

parametric or permutation methods when such equivalent methods exist. There exists 

an important difference between randomized and bootstrap sample. Unlike 

randomization method, a bootstrap sample is generated by sampling with 

replacement from the original sample. Therefore, randomization method is 

appropriate when the order or association between parts of the data is assumed to be 

important. 

 

3.3 Bootstrapping 
 
Bootstrap method is an application of simulation ideas to the problem of statistical 

inference. The idea particularly comes from where the bootstrap method is assumed 

as an imitation of real world. Thus, the real (original) world has observable 

information about the population whereas the bootstrap world try to act as the 

original world because it is created from original by data generating mechanism, i.e. 

the bootstrapping.  

 

The bootstrapping aims to draw best representative picture or imitation of the 

population. The critical point, here, is to obtain the best imitation, i.e. bootstrap 

samples. The bootstrap sample has the same size with the original sample and 

consists of members of the original sample. However, the appearance of the data 

changes from sample to sample such as some datum may appear zero times whereas 

some may appear more than one times. The bootstrap samples are generated with 

replacement from original data set and generation is repeated many times as 

schematized in Efron and Tibshirani (1993, p.13) (see Figure 3.1) to estimate a 

parameter, the standard error or a confidence interval for the parameter or test a 



hypothesis about the parameter in situation where there is a random sample from an 

unknown distribution. A bootstrap sample ( )* * *
1 2 nX*= X ,X ,...,X is drawn from the 

random sample ( )1 2 nX= X ,X ,...,X . The star (*) notation indicates that *X is not the 

real world’s data set, but it is a resampled or imitated version of X.  
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Figure 3.1: Schematic representation of the bootstrap process for estimating standard error of a 
statistic s(x)  

 

Let F be a probability distribution. A random sample, which is taken from this 

distribution, is denoted by X. Let x be a vector of random data points ix such as 

x ( )1 2 nx ,x ,...,x= and t(.) be a numerical evaluation procedure, then  

θ=t(F) (3.1) 

will be some numerical evaluation to the distribution function F. Thus, (3.1) 

represents the parameter of F (Efron (1993)). The statistic S(.) can be used to 

calculate an estimate θ̂ of the parameter θ as  

θ̂=S(x) (3.2) 

when the distribution F is unknown. In this case, the empirical distribution F̂ , which 

is a discrete distribution, is an estimate of distribution F and is obtained by assigning 
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a probability 1
n

on each ix as stated before. Since it is a random sampling with 

replacement procedure, some values may be observed several times in sample x
�

.

Thus, empirical distribution can be denoted by the proportion of times each value 

occurs and the probability of the kth item in the empirical distribution would be 

{ }i
k

# x =k
f̂ =

n
. (3.3) 

The equation (3.3) is also defined as the frequency of the value k in the sample and 

the EDF would be  

( )1 2 K
ˆ ˆ ˆF̂= f ,f ,...,f . (3.4) 

In equation (3.4) K represents the number of different values in the sample where 

K n≤ , the sample size. This procedure is used to estimate the parameter(s) of the 

unknown distribution.  

 

3.4 Plug-In Principle 
 
The plug-in principle is a simple method of estimating parameter from samples. The 

plug-in estimate of parameter  

θ=t(F) (3.5) 

is 

ˆ ˆθ=t(F), (3.6) 

where the parameter θ is estimated by the function of the empirical distribution F̂ . In 

equation (3.5), the estimate θ̂ was defined trough the sample x
�

, which is the same as 

equation (3.6), since the empirical distribution is constructed from the sample x
�

.

“The statistics like θ̂ that are used to estimate parameters are sometimes called 

summary statistics, as well as estimates and estimators” (Efron and Tibshirani (1993), 

pp. 35-36). The bias and standard error of plug-in estimate is going to be used in the 

bootstrap application. The bootstrap’s advantage here is that it produces biases and 
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standard errors in an automatic way, no matter how complicated the functional 

mapping of (3.5).  

 

The plug-in principle is less good in situations where there is information about F 

other than that provided by the sample x
�

. Thus, it is not recommended to use a plug-

in estimate of a statistic in parametric approaches (Efron and Tibshirani (1993), pp. 

35-37).  

 

3.5 Algorithm and Principle of the Bootstrap 
 

Bootstrap algorithm has three basic steps defined as bootstrap samples, bootstrap 

replications and bootstrap estimates. These are given as following: 

 

Step 1 (Bootstrap Samples): B independent bootstrap samples *bx , where b=1,...,B ,

are drawn.  

 

Step 2 (Bootstrap Replications): The bootstrap replications of θ̂ for each of the B 

independent samples should be evaluated. Efron and Tibshirani (1993, pp. 45-49) 

define this evaluation as fallows:       

Let S(.) be a statistic, and S(x) would be the statistic taken from the original data set 

stated before. Then, *S(x ) is the bootstrap replication of the statistic, e.g. if S(.) is the 

sample mean, *S(x ) is the mean of the bootstrap sample. The bootstrap replication of 

the estimate θ̂ is then  
* *θ̂ =S(x ) . (3.7) 

The equation (3.7) represents an estimate for parameter θ based on the bootstrap data 

set *x . Thus, for each sample b, b=1,...,B

* *bθ̂(b) =S(x ) (3.8) 
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should be evaluated. The quantity of (3.7) is the result of applying same function S(.)

to *x as was applied to x. For example, if S(x) is the sample mean x then *S(x ) is 

the mean of the bootstrap data set, 
n

* *
i

i=1
x = x /n∑ .

Step 3 (Bootstrap Estimates): The bootstrap estimate of the statistic is evaluated by 

using B bootstrap estimate.  

 

The number of bootstrap replications should be decided based on the target accuracy 

of the estimates. However, there is a trade-off between computation time and the 

accuracy of the approximation to the sampling distribution of θ̂ . In this case parallel 

computational technique (each resample can be done independently of the others) can 

be used to cope with this trade-off. Unfortunately, most of authors propose to use a 

general rule of thumb where B is taken as 1000 (Mooney and Duval (1993); Efron 

and Tibshirani (1993)).   

 

There exist a basic assumption to generate samples by using bootstrap method and its 

algorithm. Under certain conditions, the variability of θ̂ around the value θ can be 

assessed via the variability of *
iθ̂ around the value θ̂ . This assumption is called as 

bootstrap principle. In many situations, it is expected that this condition is satisfied. 

However, there are some situations in which the assumption does not hold and 

bootstrap resampling method is inappropriate.  

 

3.6 The Bootstrap Estimate of Standard Error 
 
The bootstrap is firstly introduced as a computer intensive method especially for 

estimating standard error of some estimator, say θ̂ , in 1979. The bootstrap estimate 

of standard error requires no theoretical calculations, and is available no matter how 

mathematically complicated the estimator θ̂ may be. The estimation of standard error 
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and the bias depend on the notation of a bootstrap sample. Therefore, 

( )1 2 nX= X ,X ,...,X be a random sample from an unknown probability distribution F 

and a parameter of interest θ=t(F) is to be estimated on the basis of X. Let define 

again the empirical distribution F̂ be an estimate of distribution F and be obtained by 

assigning a probability 1
n

on each value ix for i=1,...,n . Thus, an estimate θ̂=S(x)

should be calculated where the S(x) may be the plug-in estimate ˆt(F) as in (3.6). A 

bootstrap sample ( )* * * *
1 2 nX = X ,X ,...,X is taken from F̂ and corresponding to a bootstrap 

data set *x is a bootstrap replication of θ̂ as in the equation (3.7). 

 

Let the standard error of a statistic θ̂ be F
ˆse (θ) . Then, the bootstrap estimate of the 

standard error of the statistic θ̂ , *
F̂

ˆse (θ ) , is a plug-in estimate that uses empirical 

distribution function F̂ instated of unknown distribution F. Consequently, the 

bootstrap estimate of F
ˆse (θ) , which is the standard error of θ̂ for data sets of size n 

randomly sampled from F̂ , is called the ideal bootstrap estimate of standard error of 

θ̂ .

The ideal bootstrap estimate of standard error of θ̂ can be evaluated by the algorithm 

given in Section 3.5. The algorithm works by drawing many independent bootstrap 

samples, evaluating the corresponding bootstrap replications, and estimating the 

standard error of θ̂ by the empirical standard deviation of the replications such as 

�

1/2B 2* *

b=1
B

ˆ ˆθ (b)-θ (.)
se =

B-1

     
 
 
  

∑
, (3.9) 

where  
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B
*

* b=1

θ̂ (b)
θ̂ (.)=

B

∑
. (3.10) 

and B is the number of replications. The limit of  � Bse as B goes to infinity is the ideal 

bootstrap estimate of F
ˆse (θ) , which is given by 

� *
B ˆ ˆF FB

ˆlim se =se =se (θ )
→∞

. (3.11) 

The limit in (3.11) means that an empirical standard deviation approaches the 

population standard deviation as the number of replications grows large. The ideal 

bootstrap estimate defined above is a nonparametric bootstrap estimate since it is 

based on F̂ , the nonparametric estimate of the population F .

3.7 Bootstrap Estimate of Bias and the Bias Correction 
 

The standard error is a measure of accuracy for an estimator θ̂ . There are also some 

other measures like bias that provides different frameworks of θ̂ ’s behavior for 

statistical accuracy. Bias can be defined as the difference between the expectation of 

an estimator θ̂ and the quantity θ being estimated. The bootstrap resampling method 

is also used as an important tool to estimate the bias of an estimator and the bootstrap 

algorithm can be used for the estimation of bias with some adjustments and 

adaptations.  

 

Let’s assume that same statistical conditions given previous section is still valid. An 

unknown probability distribution F has given data ( )* * * *
1 2 nX = X ,X ,...,X by random 

sampling. The real valued parameter θ=t(F) is to be estimated and for this reason an 

estimator θ̂=S(x) is taken to find the amount of bias. The bias of  θ̂=S(x) (an estimate 

of θ ) is defined as 

[ ]F F F
ˆbias =bias (θ,θ)=E s(x) -t(F) (3.12) 
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Estimator’s performance can be evaluated by comparing the associated amount of 

bias. Thus, a large quantity of the bias is an undesirable case. Unbiased estimates, 

which are mathematically shown as *
F

ˆE s(x )  - t (F),    promote the scientific 

objectivity of the estimation process. Plug-in estimate given in (3.12) does not have 

to be necessarily unbiased, but they tend to have small biases compared to the 

magnitude of their standard errors (Efron and Tibshirani (1993), pp. 124-125). This is 

why the plug-in principle is used in bootstrap resampling.  

 

The bootstrap estimate of bias of an estimator θ̂=S(x) that is shown in a different 

form from (3.12) can be defined as 
*

ˆ ˆF F
ˆbias =E S(x ) -t(F)   . (3.13) 

In equation (3.13), F̂ is substituted with F in the formula given in (3.12).  Efron and 

Tibshirani (1993, pp.124-125) describe that ˆt(F), i.e. the plug-in estimate of θ, may 

differ from θ̂=S(x) . They also show that the 
F̂

bias is plug-in estimate of Fbias ,

whether or not θ̂ is the plug-in estimate of θ .

The ideal bootstrap estimate of bias 
F̂bias can be found with the bootstrap algorithm 

given before. However, some adaptations have to be made in the last step as finding 

approximate bootstrap expectation *
F̂

E S(x )   by the average  

B B
* *b

* b=1 b=1

θ̂ (b) s(x )
θ̂ (.)= = .

B B

∑ ∑
 (3.14) 

Then, the bias of bootstrap estimate based on B replications, � Bbias , will be 

� *
B ˆ ˆbias =θ (.)-t(F). (3.15) 

The mean square error then is  

� ( )
2B

*
i

i=1

1 ˆ ˆMSE= θ -t(F) .
B∑
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In the statistical inference, in general, estimation of the bias is required to correct the 

estimator θ̂ so that the accuracy of the estimator increases. If the�bias is an estimate of 

F
ˆbias (θ,θ) , then the bias corrected estimator is  

�ˆθ=θ-bias. (3.16) 

If the (3.15) equals to (3.16), bias corrected estimator is given by  
*ˆ ˆθ=2θ-θ (.). (3.17) 

 

Efron and Tibshirani (1993, p. 138) noticed that the bias correction can be dangerous 

in practice due to high variability in �bias . Even if θ is less biased than θ̂ , it may have 

substantially greater standard error. Thus, correcting the bias may cause a larger 

increase in the standard error and a larger mean square error is observed.  Therefore, 

this should be checked with the bootstrap.  If �bias is small compared to the estimated 

standard error �se , then it is safer to use θ̂ than θ . If �bias is large compared to the 

estimated standard error �se , then it may indicates that the statistic θ̂=S(x) is not an 

appropriate estimate of the parameter θ .

3.8 Bootstrap Confidence Interval 
 
Confidence intervals are statistical inference tools used in applied statistics. The 

confidence intervals combine the interval estimation and hypothesis testing into a 

single statistical inference procedure and give the range of plausible values for the 

statistics. Confidence intervals (or interval estimates) are often more useful than just a 

point estimate. In the statistical inference procedure, if point and interval estimates 

are taken together, they give information about what the best guess is for the 

parameter to be estimated and how far in error that guesses might be. Most 

confidence intervals are approximate and favorite approximation being the standard 

interval  
(α)ˆ ˆθ±z σ
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where θ̂ is a point estimate of the parameter of interest θ , σ̂ is an estimate of  θ̂ ’s 

standard deviation, and (α)z is the 100αth percentile of a standard normal distribution. 

The trouble with “standard intervals” is that they are based on an asymptotic 

approximation that can be quite inaccurate in practice (DiCiccio and Efron (1996)). 

Over the years statisticians have developed tricks for improving standard interval 

with bias corrections and parameter transformations. There are several approaches to 

construct an approximate 100(1-α)% confidence interval for θ using the bootstrap 

sample. The original approach described by Efron is known as the percentile 

confidence interval. The other main approaches are discussed in DiCiccio and Efron 

(1996); Efron and Gong (1983) and Efron and Tibshirani (1986, 1993). They state 

that the bootstrap confidence interval can be evaluated from automatic algorithms for 

carrying out these improvements without human intervention. For producing good 

confidence intervals and improving the accuracy, five kinds of bootstrap confidence 

intervals have been developed: the standard bootstrap (SB) confidence interval, 

bootstrap-t confidence interval, the percentile bootstrap (PB) confidence interval, bias 

corrected and accelerated ( αBC ), and approximate bootstrap confidence intervals 

(ABC). 

 

3.8.1 Standard Bootstrap Confidence Interval 
 
Standard bootstrap confidence intervals are based on the assumption that the 

estimator θ̂ is normally distributed with mean θ and variance 2σ . An approximate 

100(1-α)%  confidence interval is given by  

α/2 bs
ˆ ˆθ±z Var [θ] , (3.18) 

where 
B

2
(b) (.)

b=1
bs

ˆ ˆ(θ -θ )
ˆVar [θ]=

B-1

∑
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is bootstrap estimate of variance. The standard confidence interval is improved by 

using the equation (3.17), the bias corrected estimate of θ . Then, the new form of 

standard confidence interval defined as 

(.) α/2 bs
ˆ ˆ ˆ2θ-θ ±z Var [θ] . (3.19) 

 

It should be noticed that, the estimated variance is the square of standard error 

presented in the previous sections and θ̂ is the plug-in estimate for statistic θ . The 

standard confidence interval here gives the range of plausible values for the statistic 

θ . Thus, it is estimated in which range is the actual value of θ likely to be.  

 

3.8.2 Bootstrap-t Confidence Interval 
 

The standard confidence interval holds for normal distributions and any other 

distribution when the sample size n is large (i.e. the distribution of θ̂ approaches to 

normal distribution according to central limit theorem). But for small sample sizes the 

standard confidence intervals are not accurate. Thus, without making the normality 

assumptions an accurate bootstrap confidence interval can be obtained. Bootstrap-t 

confidence intervals, which are improved for small samples, are evaluated by 

following procedure:  

 

First, B bootstrap samples are generated in order to approximate pivot that is 

computed for each sample *bx as 

�

*
*

*

ˆ ˆθ (b)-θZ (b)=
se (b)

, (3.20) 

where * *bθ̂ (b)=S(x ) , stands for the value of estimator θ̂ for the bootstrap sample *bx ;

�*
se (b) is the estimated standard error of *θ̂ for the sample *bx , b=1,2,...,B . The 

approximate pivot means that its distribution is approximately the same for each 

value of θ (i.e. independent of θ ). 
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Second, the αth percentile of *Z (b) in (3.20) estimated by (α)t̂ and defined as 

{ }* (α)ˆ# Z (b) t
=α

B

≤
. (3.21) 

Equation (3.21) is the proportion of the number of observed values lower than and 

equal to (α)t̂ to the number of replication B. If Bα is not an integer, then [ ](B+1)α is 

used.  

 

Finally, the bootstrap-t confidence interval will be 

� �( )1-α αˆ ˆˆ ˆθ-t se;θ-t se . (3.22) 

The number of bootstrap replications here should be set large enough (i.e. B 1000≥ )

to provide an accurate confidence interval.  

 

3.8.3 Bootstrap Percentile Confidence Interval 
 
Another approach to bootstrap confidence interval is based on the percentiles of the 

bootstrap distribution of a statistic. Since this confidence interval has somewhat 

different view of the standard normal theory, it results a bootstrap confidence interval 

with reasonable stability in practice.  

 

Let θ̂ be the plug-in estimate of a parameter θ and �se be its estimated standard error. 

If the standard confidence interval is considered again as � �(1-α) (α)ˆ ˆθ-z se;θ-z se 
  , Efron 

and Tibshirani (1993, pp. 168-169) state that the endpoints of this interval can be 

described in a way that is particularly convenient for bootstrap calculations. Let *θ̂

again indicate a random variable drawn from the normal distribution as in the 

standard confidence interval case � 2*ˆ ˆθ N(θ,se )∼ then the lower and upper confidence 

limits will be  

�(1-α)
lower

ˆ ˆθ =θ-z se (3.23) 
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�(α)
upper

ˆ ˆθ =θ-z se (3.24) 

which are th100α and th100(1-α) percentiles of *θ̂ , respectively. The confidence limits 

given in (3.23) and (3.24) are more direct approaches for constructing a confidence 

interval since it uses the upper and lower α values of the bootstrap distribution. If 

Ĝ denotes the cumulative distribution function of *θ̂ , the 1-2α percentile interval is 

defined by the α and 1-α percentiles of  Ĝ given by 
-1 -1

%,lower %,upper
ˆ ˆ ˆ ˆθ ,θ = G (α),G (1-α)   
    .

In other words 
*(α) *(1-α)

%,lower %,upper
ˆ ˆ ˆ ˆθ ,θ = θ ,θ   
   

since by definition -1 *(α)ˆ ˆG (α)=θ , the th100α percentile of the bootstrap distribution. 

The confidence interval given above is the ideal form since the number of the 

replication is assumed to be infinite. However, in practice it is required that some 

finite number of replications B should be used. Thus, B independent bootstrap data 

set *1 *2 *Bx ,x ,...,x is generated and * *Bθ̂ (b)=S(x ) is computed for bootstrap 

replications (b=1,2,...,B). If we denote *(α)
Bθ̂ as th100α empirical percentile of the 

*θ̂ (b) values, that is, the thBα value in the ordered list of the B replications of *θ̂ .

Likewise *(1-α)
Bθ̂ be the th100(1-α) empirical percentile. Efron and Tibshirani (1993, 

pp. 170-176) have shown that percentile confidence interval gives better results than 

standard bootstrap confidence intervals do. 

 

3.8.4 Bias-Corrected and Accelerated Bootstrap Confidence Interval 
 

Bias-corrected and accelerated bootstrap confidence interval ( αBC ) is an improved 

version of the percentile method providing closely match exact confidence intervals 

and giving accurate coverage probabilities in all situations. Since neither bootstrap 
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percentile nor bootstrap-t gives such kind of confidence interval, this method is 

proposed to satisfy more coverage property.  

 

Let *(α)θ̂ indicate the 100αth percentile of B bootstrap replication * * *ˆ ˆ ˆθ (1),θ (2),...,θ (B) .

The percentile interval lower upper
ˆ ˆ(θ ,θ ) of the coverage 1-2α , is obtained from  

*(α) *(1-α)
lower upper

ˆ ˆ ˆ ˆθ ,θ = θ ,θ   
    . (3.25) 

In the αBC interval limits are also given by the percentiles as in (3.25) with a 1-2α

coverage obtained by 

1 2*(α ) *(α )
lower upper

ˆ ˆ ˆ ˆθ ,θ = θ ,θ ,   
    (3.26) 

where  
(α)

0
1 0 (α)

0

ẑ +zˆα =Φ z +
ˆ ˆ1-α(z +z )

 
 
 

(3.27) 

and  
(1-α)

0
2 0 (1-α)

0

ẑ +zˆα =Φ z +
ˆ ˆ1-α(z +z )

 
 
 

. (3.28) 

In fact, the percentile confidence limits take a different form from (3.27) and (3.28). 

The basic difference is (3.26) depends on acceleration ( α̂ ) and bias-correction ( 0ẑ )

where Φ(.) is the standard normal cumulative distribution function and (α)z is the 
th100α percentile point of a standard normal distribution. The value of bias correction 

is evaluated by 

{ }*
-1

0

ˆ ˆ# θ (b)<θ
ẑ =Φ ,

B

 
 
 
 

(3.29) 

where (3.29) gives the proportion of bootstrap replications less than the original 

estimate θ̂ ; hence, we obtain 0ẑ =0 if exactly half of  *θ̂ (b) values are less then or 

equal to θ̂ . Here, -1Φ (.) gives the inverse function of standard normal cumulative 

distribution function, e.g., -1Φ (.95)=1.645 .
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The value of acceleration is evaluated by  

( )

( )

n 3

(.) (i)
i=1

3/2n 2

(.) (i)
i=1

ˆ ˆθ -θ
α̂=

ˆ ˆ6 θ -θ 
 
 

∑

∑
. (3.30) 

Equation (3.30) refers to the rate of change of the standard error of θ̂ with respect to 

true parameter value θ .

It should be noticed that if α̂ and  0ẑ are zero, then αBC is the same as the percentile 

interval. The non-zero values of α̂ or 0ẑ change the percentiles used for the αBC

interval limits. Efron and Tibshirani (1993, pp. 178-190) have shown how these 

values correct certain deficiencies of the percentile methods.  

 

3.8.5 Approximate Bootstrap Confidence Interval 
 
Approximate bootstrap confidence interval (ABC) is a method of approximating the 

αBC limits without using Monte Carlo replications at all to compensate the 

requirement of large number of replications. This method works with approximation 

of bootstrap random sampling results by Taylor series expansions. Since this study 

basically relies on Monte Carlo replications, this topic is assumed as out of the scope 

of this study. The detailed information can be seen in Efron and Tibshirani (1993). 
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CHAPTER 4 
 

AN INDUSTRIAL ENGINEERING APPLICATION: LIFETIME 

DATA ANALYSIS 

 

The primary aim of this study is to develop an efficient lifetime data analysis that 

takes into consideration of real life conditions by using nonparametric bootstrap 

procedure. A new incomplete data model, i.e. trunsored model, will be used to 

analyze the data.  This method provides not only estimate the ratio of the fragile 

population to the mixed fragile and durable populations, but also tests the hypothesis 

that the ratio is equal to a prescribed value with estimated confidence intervals. 

Therefore, a representative application of this method is used in the analysis of 

thermal endurance of coil used in a special lamp. Reliability of the lamps is 

determined to observe their performance. In fact, the effectiveness of lamps is 

determined since the intended performance of the lamps shows their effectiveness and 

reliability is one of important attribute of effectiveness (Kales (1998), pp. 6-7).   

 

The engineers dealing with reliability eliminates early failures by observing their 

distribution, eliminating the appropriate debugging method, and the length of the 

debugging period. Then, they observe the statistical distribution of wearout and 

determine the preventive replacement periods for the various parts or their design life. 

Also they pay attention to chance failures and their prevention, reduction or complete 

elimination in the scope of a reliability improvement program.  
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The reliability improvement plan should be designed to optimize reliability at the 

same time reducing costs and increasing output without increasing unit costs and 

increasing customer satisfaction. The first step in such a program should integrate the 

reliability and product assurance programs to all available company activities like 

purchasing, engineering, research, manufacturing, quality control, packaging, 

shipping and performance feedback. The others  should be selection of better raw 

materials, reduction of the number of components that makes up the product, using 

reliability check lists in all phases of the product life (design, development, 

manufacturing, and service life), implementation of an information feedback, analysis 

and control systems, and implementation of a failure mode and effects analysis. One 

of the key points here is implementing the reliability improvement program into the 

manufacturing processes and quality control. For that reason, as a representative 

industrial engineering application of the bootstrap resampling method, some special 

reliability data are taken from a firm. The firm controls and analyzes the lifetime of 

products to quantify the lifetime standards. Since a confidentiality agreement is made 

with the firm, the name of the firm and the details of the product will not be defined 

during the study. 

 

In the application procedure, lifetime data analysis is made for an implementation of 

a reliability program. The main advantage of the study is having a chance to apply the 

bootstrap resampling method to lifetime data set and analyze the result. In addition to 

this, different perspectives are obtained via getting better information about the types 

of failures experienced by parts and systems that aid design, research, and 

development efforts to minimize these failures, estimation of the failure ratio for both 

new and old design products, and getting estimations of the required redundancy to 

achieve the specified reliability. Thus, in this chapter, basics and application of 

trunsored models will be presented as a new perspective in lifetime data analysis after 

presentation of some basics of reliability and lifetime data. Section 4.1 defines the 

reliability. Section 4.2 explains the key points for achieving reliability. Sections 4.3 

and 4.4 explain the time and data perspective of reliability and trunsored data model. 
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Section 4.5 gives the details of the problem and lifetime experiment. Section 4.6 

explains how bootstrapping is applied with censored data and its possible application. 

Finally, Section 4.7 describes the trunsored model constructed for the lifetime 

estimation.  

 

4.1 Definition of Reliability 
 

The reliability of a component is the probability that the component will perform a 

specified function under specified operational and environmental conditions, at and 

throughout a specified time as reported by Kales (1998, p. 7). This probability deals 

with the laws of random chance of lives or failures as they appear in nature. Thus, 

reliability refers to the chance, or likelihood, which the device will work properly.  

 

Reliability was developed to provide methods for assuring a product or service 

functions. These methods consist of techniques for 

� determining what can go wrong, 

� how it can be prevented from going wrong , 

� if something goes wrong, how it can be quickly recovered and consequences 

can be minimized. 

 

In order to assure for product or service functions, product and service standards 

(specifications) must be assessed. Satisfactory reliability specifications are given 

below, which are pointed out by Doty (1989). 

1. state exactly what is wanted; 

2. explain the methods and procedures, including sampling and computations 

and provide the means for test; 

3. avoid nonessential quality restrictions that add to cost without adding to 

utility; 

4. conform, as far as possible, to the established commercial standards; 
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5. explain condition and where the product is to be used; 

6. contain a statement of purpose of the product as guide to usage and against 

misapplication; 

7. explain the inspection and testing procedure to be used in determining 

conformance to the standards, including instrument and personnel; 

8. state the applicable standards, including tolerances; 

9. contain a statement of time frame; 

10. define failures in terms of product use and explain how they are to be 

measured; 

11. state the maintenance procedures and contains. 

 

Adequate performance must be defined in term of a time frame, and hence the 

standard must include a time limit. In reliability, there are several different types of 

time frames: total test time, test period, mean test time, mean repair time, allowed 

repair time, and mission time. Finally, operating conditions and environmental 

conditions must also be included in the reliability standards.  

 

4.2 Achieving Reliability 

Modern programs are implemented for achieving and improving reliability of existing 

products and for assuring continued high reliability for the next generations.  Modern 

programs involve the followings to achieve and improve reliability:      

 

Emphasis: Increased emphasis is being given to product reliability because of that 

product is more complicated and emphasis is due to the consumer protection act. 

 

System Reliability: If products become more complex, the chance that they will not 

function increases. The method of arranging the components affects the reliability of 

the entire system. Components can be arranged in series, parallel or in combination. 
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Design: The important aspect of the reliability is the design. It should be as simple as 

possible.  The fewer the number of components have the greater reliability. Another 

way of achieving reliability is backup or redundant component. When primary 

component does not function, another component is activated. Parallel arrangement 

of component is cheaper to have inexpensive redundant components to achieve a 

particular reliability than to have a single expensive component. Reliability can also 

be achieved by over design. Using factors of safety can increase the reliability of a 

product which is determined by Besterfield (2001, pp. 419-443).  

 

Environmental Conditions: Dust, temperature, moisture, and vibration can be cause 

of an unreliable product. The designer must protect the product from these conditions. 

Heat shields, rubber vibration mounts, and filters are used to increase the reliability 

under environmental condition. 

 

Production: The production process is the second most important aspect of 

reliability. Basic quality control techniques minimize the risk of product unreliability. 

Production personnel can experiment with process conditions to determine which 

condition produce the most reliable product. 

 

Transportation: The third aspect of reliability is the transportation of the product to 

the consumer. The reliability of the product can be greatly affected by the type of 

handling. Good packaging techniques and shipment evaluation are essential. 

 

Maintenance: While designers try to eliminate the need for customer maintenance, 

there are many situations where it is not practical or possible. Maintenance should be 

simple and easy to perform. 
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4.3 Reliability Data 
 

Bootstrap resampling method is used for the reliability data. Thus, the reasons for 

collecting reliability data are defined in the following (Meeker and Escobar (1998), p. 

2):  

 

� assessing characteristics of materials over warranty period or over the 

product’s design life; 

� predicting product reliability; 

� predicting product warranty costs; 

� providing needed inputs for system-failure risk assessment; 

� assessing the effect of a proposed design change; 

� assessing whether customer requirements and government regulations have 

been met;  

� tracking the product in the field to provide field to provide information of 

cause of failure and methods of improving product reliability; 

� supporting programs to improve reliability through the use of laboratory 

experiments, including accelerated life tests; 

� comparing components from two or more different manufacturers, materials, 

production periods, operating environments, and etc; 

� checking the velocity of an advertising claim. 

 

It is often necessary to use past experience and observations or other scientific and 

engineering judgment provide information as input data analysis that requires the use 

of special statistical methods. Owing to the fact that reliability data have a number of 

special features, e.g. reliability data are typically censored or truncated which are 

defined in the later sections, they are analyzed by using different statistical methods. 

Hence, as the first of all, types of life time data will be defined in the following 

sections.    
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4.3.1 Types of Reliability Data 

 

Statistical models briefly based on data to make predictions. The models are the 

statistical distributions and the data are the life data or times-to-failure data of the 

related component. The accuracy of any prediction is directly proportional to the 

quality and accuracy and completeness of the supplied data. Good data, along with 

the appropriate model choice, usually results in good predictions. Insufficient data 

will almost always result in bad predictions.  

 

Some synonyms for reliability data are used in the literature as failure time data, life 

data, survival data (used in medicine and biological sciences), and event time data 

(used in social sciences) (Meeker and Escobar (1998), p. 3). In the remaining part of 

this study, life data or lifetime data is used because of the application part. 

 

In the analysis of life data, the main aim is to use the all available data. In some cases, 

the data set is incomplete which includes uncertainty as a failure occurred. To 

accomplish this, the collection types of data are separated into two based categories; 

complete (all information is available) or incomplete (some of the information is 

missing) as given in the following: 

 

Complete Data: Complete data means that the results of each sample exist, either 

observed or known. Through life data analysis, the data would involve the times-to-

failure of all units in the whole data set. The whole application is continued up to all 

data through the sample (see Figure 4.1). 

 

Accelerated Data: It is often the case that systems have very long expected life 

under normal conditions and a useful test may not be possible for long duration of 

testing the whole sample to wait and see whether a failure occur or not. During the 

observation, to obtain data from such kind of application, life testing is conducted at 

higher than normal stress levels in order to induce failures. The data obtained under 
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high stress level conditions are called accelerated data, which are observed for further 

implementation of data analysis, is defined by Zacks (1992, p. 195).  

 

Figure 4.1*: Representation of Complete Data over Time 

 
Incomplete Data: Some units in the sample may not have failed in a specific period 

of time during the life time analysis of the data. This restriction causes that the failure 

times of all the units cannot be observed exactly and, hence, this type of life time data 

is also called as “censored”. There are four types of possible incomplete (or censored) 

data form, namely, right censored (suspended data), interval censored, left censored, 

and a special case of censored data as truncated data type. Meeker and Escobar (1998, 

p. 34) denote the reasons for censoring as in the following: 

� There exist some restrictions for the life test period. Therefore, analysis of life 

test data should be completed before all units have failed. Because of the restrictions 

one can use "time censoring" (Type I censoring) method, in which the unfailed units 

are removed from the test at a prescribed time or the method "failure censoring" 

(Type II censoring), in which a life test is terminated after a specified number of failures. 

Although the failure-censored data can be statistically analyzed easier than time-

censored data, failure-censored tests are less common in practice. 

� In many life tests, since the failures observed only at times of inspection, 

observations consist of upper and lower bounds on a failure time. Hence, these life time 

data is known as interval censored data (or inspection data, grouped data, read-out 

____________________________________________________________________ 
* http://www.weibull.com/LifeDataWeb/data_classification.htm 
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data). If a unit has failed at its first inspection, it is the same as a left-censored 

observation and if a unit has not failed by the time of the last inspection, it is right-

censored which are defined in the next section.    

� In some situations, products may have more than one cause of failure. If one 

focus on a particular cause of failure, the failure from other causes is defined as a form 

of random right censoring. 

� In some life tests, units are put on test at different times. This is known as 

staggered entry. If the data are to be analyzed at a point in time when not all units 

have failed, the data will be classified as multiply right-censored. 

 

Meeker and Escobar (1998, p. 35) state some assumptions for the use of most 

reliability models and methods that analyze censored data as in the following:    

1. censoring time can be either random or predetermined; 

2. censoring time of a unit should depend only on the history of the observed 

failure-time process in order to the analysis is valid; 

3. using future events to stop observing a unit could introduce bias.  

 

Meeker and Escobar (1998, pp. 34-41) defines four types of censoring mechanism as 

in the following: 

1. Right Censored Data: This type of censored life data is the most common case 

in reliability applications. These data are composed of units that did not fail. The term 

"right censored” means that the interested event (i.e. the time-to-failure) falls in the 

right of the data point. In other words, during the operation of the components, the 

failure occurs at some time after the data point (or to the right on the time scale that 

can be seen in Figure 4.2). 

2. Interval Censored Data: The second type of censoring is called interval-

censored data. The failing of components occur during an intervals with uncertainty 

as shown in the Figure 4.3. This type of data results from tests or conditions where 

the application is not monitored continually. With a certain sample of components the 
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only information is whether the component failed or did not fail between inspections. 

This is also called inspection data by some authors. 

 

Figure 4.2*: Representation of Right Censored Data over Time 

 

Figure 4.3*: Representation of Interval Censored Data over Time 

 

3. Left Censored Data: Left censored observations occur when a failure is 

observed before a certain time, i.e. its first inspection time, as it can be seen in the 

Figure 4.4. If the starting time of interval censored mechanism is zero, then the 

interval censored data is same as left censored. 

4. Truncated Data: In some cases, it may also arise that the lifetime less than 

some certain threshold may not be observed at all. This type of data is called as 

truncated. It should be noted that truncation is different from censoring. The general 

use of this case is observing data after the start of using system or component. 

 
____________________________________________________________________ 
* http://www.weibull.com/LifeDataWeb/data_classification.htm 
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Figure 4.4*: Representation of Left Censored Data over Time 

 

“It is important to distinguish between truncated and censored data. Censoring occurs 

when there is a bound on an observation (lower bound for observations censored on 

the right, upper bound for observations censored on the left and both upper and lower 

bounds for observations that are interval censored). However, truncation arises when 

even the existence of a potential observation would be unknown if its value were to 

lie in a certain range” (Meeker and Escobar (1998), p. 266).  

 

4.4 Trunsored Model 

 
Life time data analysis generally express two kinds of incomplete data of importance 

in estimation: censored data and truncated data which are defined before. Hirose 

(2005) introduces a third data type, referred to as trunsored data, which is a 

unification of censored and truncated data. A different view appears in the life data 

analysis with this unification since it does not only estimate and test the parameter of 

interests when both truncated and censored data exist but also estimate the ratio of 

truncated and censored data in new trunsored model. Thus, the trunsored model is 

proposed as a new incomplete data model to use in reliability and lifetime analysis.  

 

Trunsored models define two types of samples. The first type has some observations 

that fail and others may not fail by the prescribed time T defined as fragile samples 

____________________________________________________________________ 
* http://www.weibull.com/LifeDataWeb/data_classification.htm 



51 
 

whereas the second type has the observations that does not fail at all by the prescribed 

time T defined as durable samples. Hirose (2005) discusses that how to estimate the 

lifetime of a fragile population and corresponding confidence intervals using samples 

of size n from a mixture of the fragile and durable populations assuming that the ratio 

p of the fragile population to the durable population is unknown. Let assume that r 

failures are observed by time T. It is considered that the data as censored when p=1 ,

while it is treated that the data is truncated if n is unknown. However, there are actual 

mixed cases, in which p is unknown and n is known. Thus, the ratio p and the lifetime 

of the fragile population are to be estimated as in Meeker (1987).      

 

The primary part of the model construction procedure is to find out which population 

is dominant. If the durable population is dominant (i.e. p is very small), a truncated 

model approach solve the problem; if the fragile population is dominant (i.e. p is 

close to 1), a censored model approach would solve the problem as stated in Hirose 

(2005). There exists a third choice that p may be neither close to 0 nor 1. In this case, 

the trunsored model approach would propose the solution. If the fragile population is 

estimated to be dominant, existence of durable population should be searched. If any 

durable population does not exist, then the estimates of parameter of interest should 

be obtained by regarding the data as censored.  

 

In following subsections, firstly the details of trunsored models and its relation with 

bootstrap resampling will be given and then an application will be presented.   

 

4.4.1 Possible Applications of the Trunsored Model 
 
Typical applications of the trunsored model are given as follows: 

 

1. Decision making by manufacturers: Estimating the ratio of the fragile 

population to the total mixed population provides judgments that the whether 

manufacturers should recall their products for safety reasons via assessing the ratio at 
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an early stage or not. A small ratio may indicate that the manufacturers can handle 

failed products on an individual case basis. 

2. Assessment of the effectiveness of cancer treatment: When a newly developed 

cancer treatment is introduced, physicians can assess the effectiveness of the new 

treatment by comparing the survival rates between the new and old treatments. The 

survival rate can be estimated at an early stage when the trunsored model is used. 

3. Severe infectious disease alert: By estimating the case fatality ratio of 

infectious diseases at an early stage, the people can be alerted to prevent the spread of 

a disease. The case fatality ratio can be estimated based on the number of infected 

persons, the number who have died, and the number of survivors. In this case, the 

(type I) mixed trunsored model is used.  

4. Precautions against possible failures: If the items in a system have two phases, 

one in which the time of failure is observable and the other in which the appearance 

of a malcondition is observable (but not the time at which the condition changes from 

good to bad), and if the probability distributions of the time of failure and of the 

appearance of malconditions have some common relationship, e.g., the distributions 

have the same shape parameters, then the system manager can estimate the total 

number of malconditions at an early stage. In this case, the (type II) mixed trunsored 

model is used. 

 

4.4.2 Construction of Trunsored Models 

 
In many applications, life time data will be collected on a sample of units that are 

assumed as representation of population. In life time estimation problems, it is 

assumed that the underlying distribution is a single homogeneous population, and all 

samples drawn that population will eventually fail (or die). When the sample has 

incomplete data, the characteristics of the population are determined by regarding the 

data as censored or truncated. Thus, the type of the sample should be defined by the 

following inquiry: If the left endpoint, 0T , of the underlying distribution is very large, 

the failures will not be observed within the prescribed time T, which is extremely 
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smaller then the left endpoint. Then it is assumed that the sample is taken from 

durable population. On the other hand, it is possible that some failures are observed 

within the time interval of length T.  Then, it is assumed that the sample is drawn 

from the fragile population. If the sample size is not known, this kind of mixture 

problem is reduced to a truncated model problem. The lifetime of the fragile 

population can then be estimated using the conditional likelihood if a parametric 

model of the underlying probability distribution is assumed. But, since we are dealing 

with nonparametric models, this case is out of our scope.  

 

After construction of the resampling and bootstrap basics, the problem that will be 

discussed here is to estimate the lifetime of a fragile population when r failures are 

observed within T from the mixture of the fragile and durable populations in which 

the sample size is n, assuming that the ratio, mp , of the fragile population to the 

mixed populations is unknown.  

 

In the literature, there are very limited application studies in which fragile and 

durable populations appear to be mixed. For example, Goldman (1984) discussed the 

proportion of patients cured by a particular treatment by using Monte Carlo; Meeker 

(1987) and Hirose (2000, 2002) applied the model to integrated circuit reliability. In 

these studies, mp is unknown and n is known, mp and the lifetime of the fragile 

population is to be found out. 

 

The motivations for trunsored model construction are summarized as in the 

following:  

1. The fragile and durable populations may be mixed,  

2. The ratio of the fragile population to the mixed populations is unknown, 

3. The sample size n is known.  

If the durable population is dominant, the truncated model approach or if the fragile 

population is dominant, i.e., mp is regarded as close to 1, a censored model approach 
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might solve the problem. The critical point here is to determine which model of the 

censored model or truncated model should be used. In each case, the confidence 

intervals of the parameters are very different from each other. To decide the model, 

we need a hypothesis test, 0 m 0H :p =p . This hypothesis test is done via bootstrap 

confidence intervals.  

 

The following notations are used in the model: 

F, f Cdf, pdf for the fragile population, respectively 

G, g Cdf, pdf for the durable population, respectively 

H, h Cdf, pdf of the linear combination of  fragile and durable population, 

respectively 

,θ φ parameter in the [fragile, durable] population 

ψ parameter in the linear combination of fragile and durable populations 

s linear combination parameter for F and G, s−∞ < <∞

0p prescribed real number,  00 p 1≤ ≤

mp the ratio of the fragile population to the mixed populations, m0 p 1≤ ≤

mˆ ˆs,p estimated value in [trunsored, mixture] model 

r number of  failed observations 

n number of observations 

t Time 

it observed failure time, ( i=1,...,r )

T censoring time 

0T endpoint such that { }t 0inf t : G(t) 0≥ >

0H null hypothesis that m 0p =p

ts m c tL ,L ,L ,L likelihood function for [trunsored, mixture, censored, truncated] 

model 

 

Hirose (2005) defines following conditions and assumptions of the trunsored models: 
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1. The probability density functions (pdf) f(t;θ) and g(t; )φ are assumed as 

smooth.  

2. The observations finish at the prescribed time T. 

3. The failure times, 1 2 rt ,t ,...,t ( T)≤ , are observed. 

4. The sample size is known, n. 

5. 0 0G(T )=0,T T� .

6. Type I, right censoring model is mainly considered here.  

 

A cdf H(t;ψ) , which is a linear combination of F(t;θ) and G(t; )φ given by 

H(t; ) sF(t; ) (1 s)G(t; ),     (t 0, - <s< )ψ = θ + − φ ≥ ∞ ∞ (4.1) 

where s is a combination parameter. Thus corresponding pdf of H is given in the 

following form 

h(t; ) sf (t; ) (1 s)g(t; ).ψ = θ + − φ (4.2) 

Then, the likelihood function for the combination model is given in the form as 

{ }
r

n r
i

i 1

L( ) 1 H(T; ) h(t ; )−

=

ψ = − ψ ψ∏ . (4.3) 

If ig(t )=0 and g(T)=0 because of the assumption (6), then tsL( ) L ( ,s)ψ → θ where  

{ } { }
r

n r
ts i

i 1

L ( ,s) 1 sF(T; ) sf (t ; ) ,         (- <s< )−

=

θ = − θ θ ∞ ∞∏ (4.4) 

The likelihood function of mixture model is given in the form below by restricting the 

s as 0 s 1≤ ≤ ,

{ } { }
r

n r
m m m m i m

i 1

L ( ,p ) 1 p F(T; ) p f (t ; ) ,         (0 p 1)−

=

θ = − θ θ ≤ ≤∏ (4.5) 

where the parameter s is changed to mp for clarity.  

 

As it is defined before, if mp =1, then we have censored model instead of trunsored 

model. Thus, the corresponding likelihood function will be 
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{ } { }
r

n r
c i

i 1

L ( ) 1 F(T; ) f (t ; ) .−

=

θ = − θ θ∏ (4.6) 

Finally, the truncated data model is known as 
r

i
t

i 1

f (t ; )L ( ) .
F(T; )=

 θ
θ =  θ 

∏ (4.7) 

The likelihood equations of trunsored model are 

{ } { }r
its

i 1

log 1 sF(T) log sf (t )log L (n r) 0
=

∂ − ∂∂ = − +
∂θ ∂θ ∂θ∑ � (4.8) 

and 

{ } { }r
its

i 1

log 1 sF(T) log sf (t )log L (n r) 0
s s s=

∂ − ∂∂ = − +
∂ ∂ ∂∑ � (4.9) 

From the equation (4.9) we have  

rˆŝF(T)= .
n

(4.10) 

If we substitute (4.10) into the (4.8), then we have 
r

ts i

i 1

log L log f (t )r F(T) 0
F(T) =

∂ ∂∂= − + =
∂θ ∂θ ∂θ∑ , (4.11) 

which is the same as likelihood equation of truncated model 
r

t i

i 1

log L log f (t )F(T)r 0
=

∂ ∂∂= − + =
∂θ ∂θ ∂θ∑ . (4.12) 

According to the model formulation, Hirose (2005) shows that mθ̂ of mixture model 

is the same as tsθ̂ of the trunsored model if ŝ 1≤ , and mθ̂ is the same as cθ̂ of the 

censored model if ŝ 1≥ . Thus, during the solution procedure for the linear 

combination model, solution corresponding to the truncated model can always be 

obtained as long as it exists and the solution corresponding to the censored model can 

also be obtained by setting p=1 and because of this reason, this linear combination 

model is referred as the trunsored model (Hirose (2005)). On the other hand, Hirose 

also shows that if ˆ0.6 p 1≤ ≤ then the model approaches to the censored model. If 
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p̂>1 , the model is defined as imaginal mixture model with a likelihood function 

given by  

{ } { }
r

n r
im i

i 1

L ( ,p) 1 pF(T; ) pf (t ; ) ,         (p 0)−

=

θ = − θ θ ≥∏ . (4.13) 

 

The primary objective in proposing the trunsored model here is to make it easier to 

test the hypothesis 0 m 0H : p =p where mp is the ratio of the fragile population to the 

total mixed population of fragile and durable populations. Here, it is assumed that the 

fragile samples will eventually fail whereas the durable samples are assumed never to 

fail. To estimate the parameters in an underlying probability distribution with (right) 

censored homogeneous observed data, the censored model is used when the total 

sample size n is known, and the truncated model is often used when n is unknown. 

When 0p is close to 1, it is preferable to test the hypothesis, 0 m 0H : p =p , before 

adopting either the censored model or truncated model because the standard errors of 

the parameters in the truncated model are markedly larger than those in the censored 

model. The confidence intervals are used to decide whether we reject the null 

hypothesis or not. Hirose (2005) classifies the patterns of the confidence intervals of 

the estimates in the mixture model approximately into three categories:  

1. Pattern A: The censored model confidence intervals, 

2. Pattern B: The truncated model confidence intervals, 

3. Pattern C: The combination of these two confidence intervals.  

Pattern A should be used only if there are strong indications that the data are 

censored; even if ŝ is close to 1, the confidence intervals in the censored model 

absolutely differ from those in the mixture model. Pattern B is used after we have a 

rejected result from the hypothesis test related with the ratio mp . For both patterns A 

and B, the confidence intervals of the estimates may be constructed based on the 

observed Fisher information matrix or the likelihood ratio statistics. For pattern C, 

however, it is necessary to perform the bootstrap resampling methods (Efron, 1979). 

Another motivation here is to use bootstrap to have a small ŝ .
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4.5 Problem Definition and Lifetime Experiment 

In this study, we demonstrate experimentally how the life-time of new designs can be 

estimated with the minimum biases as well as how the ratio of the fragile population 

to the mixed fragile and durable populations can be estimated for both old and new 

products. Since confidentiality agreement is made with the firm, the name of the firm 

and the details of product will not be given.   

 

The firm is faced with such problems as: 

� The products do not correspond to European standards of quality. Therefore, 

the firm desire to make reliable lifetime analysis whether they can correspond the 

standards or not.  

� Achieving long lifetime is the main goal in new designs. The capability of 

monitoring the impact of different design options of the lamps is the key point in 

these lifetime tests. Besides, it may be guaranteed that the reliability of the chosen 

optimizations. However, in order to monitor reliable results, lifetime tests should be 

repeated many times which is costly and time consuming.  

� They also desire to decide the best design only with testing the prototypes. 

However, they experienced that the test results based on classical random sampling 

do not represent the result of the population of new designs. 

They also decide to develop a reliability program and construct a 100% control and 

test mechanism to monitor the products’ reliability which is also costly. 

The experimentation of thermal endurance is made in a laboratory. In each 

experiment, seven lamps (say, one lot) are taken to apply the endurance test because 

of limited capacity of the testing machine. 10 lots were tested by the machine during 

the observation. It is assumed that each lot is experimented in same environmental 

and physical conditions. A simple experiment result form can be seen in Appendix A. 

 

The lifetime of a lamp is to be found out by using accelerated tests from the following 

formula: 
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0
w

1 1LogL LogL S ,
K K
 

= + − 
 

where  

L Target endurance time* (in 30, 60, 90, and 120 days), 

0L 3652 days (nearly 10 years), 

K The temperature** (theoretically assumed) of the coil in the experiment 

(in Kelvin), 

wK Maximum observed temperature in which the lamp does not fail (in 

Kelvin), 

S Constant*** that depends on design of lamp control mechanism and the 

type of coil insulator used (unitless). 

 

� The experiment is stopped at 4th and 24th hours to control the temperature of 

the coil and observed up to thirty days passed. At the end of the experiment, the failed 

lamps are detected and the test results are analyzed to estimate the life time of lamps 

and, hence, the coils.  

 

The censoring time, T, is set as 30 days. We suppose the lifetimes after T are not 

observed. Thus, we have right censored data set. The total number of observations is 

70. Table 5.1 represents the experiment results of a lot. If any lamp fails before 30 

days, then it is assumed that the lamp could not pass the test. Hence, all the lifetimes 

have passed the test and are censored in the table given below.     

 

Descriptive statistics, histogram and the experiment results of the whole lifetime data 

can be seen in Appendix B.   

 

____________________________________________________________________ 
* L=30 in the observed data set. 
** K=232 C° in the observed data set. 
*** S=4500 in the observed data set.   
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Table 4.1: Experiment Results of a Lot 

Lamp no 1 2 3 4 5 6 7
Starting current (A*) 0.98 0.97 0.96 0.97 0.97 0.98 0.96
Temperature of coil after 4 hour (C°) 189 190 192 198 198 198 197
Temperature of coil after 24 hour (C°) 185 186 186 185 184 184 185
Ending time of the experiment (day) 33 32 31 33 32 33 33 

4.6 Bootstrapping with Censoring Mechanism and its Application 
 

The analysis of data from experiments in the development phase and measurements 

during production plays an important role in manufacturing. Experiments are 

performed during the development phase to ensure the design fitness for mass 

production. During production, a large number of measurements in the production 

control the quality and reliability of the products and processes. As the number of 

measurements increases, the traditional data analysis approaches its limits, and 

alternative methods are needed. Thus, bootstrapping is a crucial solution for limited 

experimental conditions. In many industrial areas, these conditions force the analyzer 

for using bootstrapping with censoring mechanism.    

 

The bootstrap method for uncensored data is extremely simple and given 

theoretically in the previous chapter. Bootstrap procedures are developed to support 

inference for the reliability function because resampling techniques provide a useful 

methodology for constructing nonparametric confidence intervals.  

 

Let us define the right censored data as of the form { }1 1 2 2 n n(x ,d ),(x ,d ),...,(x ,d ) ,

where ix is the ith observation, censored or not, and  

i
i

i

1,    if x  is uncensored
d =          (i=1,...n)

0,    if x  is censored




.

____________________________________________________________________ 
* A: Ampere 
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For convenience it is assumed 1 2 nx <x <...<x in the calculations below to avoid 

notational difficulties and some minor technical problems arising from ties.  

 

Bootstrap algorithm has defined for uncensored data set with three basic steps in the 

previous chapter. The algorithm takes following form to generate censored data 

(Efron (1981a)): 

 

Step 1: Bootstrap sample, { }* * * * * *
1 1 2 2 n n(x ,d ),(x ,d ),...,(x ,d ) , is drawn with independent 

sampling n times with replacement from F̂ , the distribution putting mass 1/n at each 

point i i(x ,d ) .

Step 2: The bootstrap replication of the estimate θ̂ , i.e. * *θ̂ =S(x ), should be evaluated. 

Step 1 and 2 are repeated independently B times. Thus, we obtain 
* * *
1 2 B

ˆ ˆ ˆθ ,θ ,...,θ .

Step 3: The bootstrap estimate, θ̂ , of the statistic,θ , is evaluated by using B bootstrap 

estimate.  

 

This form of the bootstrap requires only that the observed pairs i i(x ,d ) are 

independently and identically distributed observations from a distribution F. Here the 

statistic to be considered is of the form  

ˆ ˆθ=θ(S),

where Ŝ(t) is the Kaplan Meier curve. The Kaplan Meier curve Ŝ(t) is nearly unbiased 

estimate of the true survival curve and is given by 
it

dk

i 1

n iŜ(t)
n i 1=

− =  − + 
∏ . (4.14) 

Here tk is the value of k such that [ )k k 1t x , x ;+∈ in other words, the largest observed 

value, censored or not, equal to or less than t. If there is no censoring, then all id =1,

and tŜ(t)=(n-k )/n , the ordinary right sided cdf. Kaplan and Meier (1958) shows that 
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Ŝ(t) is the nonparametric maximum likelihood estimator (MLE) for S(t) . Hence, we 

will use Kaplan-Meier estimator in trunsored model.  

 

The Kaplan-Meier estimating procedure is applied before bootstrapping because of 

the presence of censored cases. The model is based on estimating conditional 

probabilities at each time point when an event occurs and taking the product limit of 

those probabilities to estimate the survival rate at each point in time (Kaplan and 

Meier (1958)). The Figure 4.5 shows Kaplan Meier estimated survival curve for all 

70 data. Of the 70 lifetimes, 23 were exactly observed; i.e. the lamp failed during the 

experiment. The remaining 47 observations were censored; i.e. the lamps were still 

working on the 30th day of experiment. Mean and standard deviation of lifetimes are 

estimated as 34 and 1 days, respectively. The proportions of terminating and 

surviving events are given as 0.3286 and 0.6714. The proportion of surviving events 

(i.e. fragile population) will be estimated in the trunsored model analysis.     

 

4.7 Lifetime Estimation for the Trunsored Data Model  

 

A cdf H(t;ψ) , which is a linear combination of F(t;θ) and G(t;φ) , correspond to the 

mixture of fragile and durable populations given by 

H(t; ) pF(t; ) (1 p)G(t; ),     (t 0, 0<p 1)ψ = θ + − φ ≥ ≤ , (4.15) 

where p is a combination parameter. Thus, corresponding pdf of H is given in the 

following form 

h(t; ) pf (t; ) (1 p)g(t; ).ψ = θ + − φ (4.16) 

If the observation is finished by the prescribed time T, and failure times, 

1 2 rt , t ,..., t ( T)≤ , are observed, then the likelihood function for the mixture model in 

the form,  
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Figure 4.5: Kaplan Meier Estimated Survival Curve of the Lamp Lifetimes 

{ }
r

n r
i

i 1

L( ) 1 H(T; ) h(t ; ),        (r / n p 1)−

=

ψ = − ψ ψ ≤ ≤∏ (4.17) 

where n=70 and r=23 in the original data set.  

Let us assume that ig(t ) 0→ and G(T) 0→ because this population is durable. Then, 

mL( ) L ( , p)ψ → θ where  

{ } { }
r

n r
m i

i 1

L ( ,p) 1 pF(T; ) pf (t ; ) ,         (r/n p 1)−

=

θ = − θ θ ≤ ≤∏ (4.18) 

If p=1, then we have the likelihood for the censored data model, 

{ }
r

n r
c i

i 1
L ( ) 1 F(T; ) f (t ; )−

=
= θ = − θ θ∑ . (4.19) 

On the other hand, the truncated data model can be expressed as 
r

i
t

i 1

f (t ; )L ( ) .
F(T; )=

 θ
θ =  θ 

∏ (4.20) 

Hirose (2005) states that the MLE estimate θ̂ corresponding to the mixture model is 

the same as that corresponding to the truncated model if p 1≤ , and it is the same as 

that to the censored model if p=1 . The number of replication of bootstrapping 

samples is chanced from 1000 to 10000 and ten types of replication are performed. 

The histogram and quantile-quantile plots of each replication type can be seen in 

Appendix from Figure C.1 to Figure C.20. The solution of the likelihood equation in 
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the mixture model can be obtained either by the solution of truncated model or by the 

solution in the censored model, and thus, this mixture model is called as trunsored 

model. By maximizing the MLE of the parameters, ts ts
ˆ ˆ( , p ) (32,0.68).θ ≅  The number 

of fragile population is estimated by 47.6 in the original data set, where the number of 

censored data is, in fact, 47. Hence, we have a bias nearly 0.6 for the original data set. 

However, the results for the generated data sets for all replications with ratio of 

fragile population to mixed population, mean lifetimes, biases, standard errors, 

empirical and aBC percentiles of 2.5%, 5%, 95%, 97.5% are given in Table 4.2. The 

results can be summarized as in the following:  

� The 95% confidence interval of ratio of fragile population to mixed 

population is (0.69838, 0.73142). Hence, the null hypothesis 0 mH : p =1 is rejected 

with 0.05 level of significance.  
� Thermal endurance of coil approaches to a censored model since 

0.69838 p 0.73142≤ ≤ .

� Bias of the mean lifetime is estimated as nearly zero. This fact again shows 

the power of bootstrapping with trunsored models (see Appendix, Figure C.21).    

� The ratio of fragile population to mixed population is increases if the number 

of replication increases (see Appendix, Figure C.22). 
� Bootstrap percentile confidence intervals give almost same results with the 

aBC confidence intervals (see Appendix, Figure C.23).    

� Bootstrap estimate of standard error gives better results than jackknife after 

bootstrap method (JAB) (see Appendix, Figure C.24). In fact, this result illustrates the 

power of bootstrapping.  

� In five of the ten types of replications, estimated mean lifetime is the same as 

the sample mean (see Appendix, Figure C.25).    

� Standard error of the mean lifetime changes from 0.44 to 0.46 (see Appendix, 

Figure C.26).  
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� Increasing the number of replication affects only the ratio of fragile 

population to mixed population because number of replication is chosen as large 

number as 1000 and greater as proposed in the literature.     

� As it can be seen in histograms in Appendix from Figure C.1 to C.20, if the 

number of replications increases, the form of the model approaches to the censored 

model.    

� Estimated mean lifetimes are changing between 31 and 32 days. Thus, the 

firm absolutely cannot achieve the European Standards which is 35 days.   
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Table 4.2: Bootstrap Resampling Results for Each Replication

Empirical Percentiles BCa Percentiles
B ˆ mp

Number
of

Failures
BIAS MEAN SE SE(JAB)

2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%

1000 0.673 327 0.003243 31.67 0.4416 0.4579 30.8425 30.97071 32.4 32.57143 30.84286 30.96774 32.4 32.57143
2000 0.689 622 -0.01776 31.65 0.4547 0.4797 30.78536 30.92786 32.40071 32.57143 30.8 30.94448 32.44286 32.61429
3000 0.697 909 -0.003848 31.67 0.4441 0.4386 30.8 30.94286 32.38643 32.52857 30.8 30.92857 32.38571 32.52857
4000 0.711 1156 -0.002289 31.67 0.4444 0.4454 30.8 30.94286 32.4 32.54286 30.78571 30.92857 32.38571 32.52857
5000 0.708 1460 -0.01653 31.65 0.4467 0.4489 30.8 30.91429 32.38571 32.52857 30.82857 30.94286 32.41429 32.57143
6000 0.726 1644 -0.008331 31.66 0.4518 0.4646 30.78571 30.92857 32.4 32.5575 30.81429 30.95714 32.44286 32.61429
7000 0.735 1855 0.006265 31.68 0.4524 0.4575 30.78571 30.92857 32.41429 32.54321 30.72857 30.87143 32.37143 32.48571
8000 0.732 2144 0.002721 31.67 0.4536 0.4651 30.81429 30.94286 32.42857 32.55714 30.8 30.92857 32.41429 32.54286
9000 0.741 2331 -0.0007825 31.67 0.4544 0.4633 30.8 30.91429 32.42857 32.55714 30.8 30.92857 32.44286 32.57143

10000 0.737 2630 0.005281 31.68 0.4485 0.455 30.8 30.94286 32.41429 32.55714 30.75714 30.9 32.37143 32.51429
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CHAPTER 5 
 

CONCLUSION  
 

In most applied statistical analysis random samples are at the heart of statistical 

inference and are in the concept of resampling methods. Experimentations, which are 

made for obtaining random sample(s), are performed under some restrictions such as 

time and cost. Although accurate and reliable statistical inferences depend on the 

sample size, time and cost limitations prevent to obtain a great number of data. The 

experimenters are generally faced with these restrictions inevitably and try to cope 

with large amount of biases. However, when the estimator of interest was complex 

and standard approximations were neither appropriate nor accurate, estimation 

of the standard error of the parameter estimator is the most encountered cases 

during statistical inference procedure. On the other hand, statistical inference is 

used in the vast part of the applied statistics to make strategic level decisions, and 

thus, the biases should be decreased with optimum time and cost perspectives. 

Resampling methods are proposed to compensate these problems and restrictions by 

achieving an enormous approximation to the population. Therefore, the samples that 

are generated by bootstrapping are used to draw conclusions. There exist some 

alternative methods for bootstrap resampling procedure. But, literature shows that this 

method gives the best results when one tries to estimate accurate bias and standard 

error.      

 

In this study, we statistically analyze lifetime data with incomplete observations by 

bootstrap method and we use an evolutionary model. Specifically, we try to adapt 
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trunsored data model to a nonparametric approach and construct the model with 

bootstrap resampling results. Thus, the bootstrapped samples are used as input for the 

trunsored model.  This method was not a conventional reliability approach but a more 

sophisticated on utilizing incomplete data analysis models. Since the literature 

proposes limited applications for handling the questions about nonparametric 

approach in trunsored models, the main difficulty in this adaptation is to provide the 

best estimates of the parameters of interest that are used in the key points of the 

model. Therefore, various numbers of replications (≥1000) are performed to generate 

lifetime data. The estimated parameters are used to find the ratio of truncated and 

censored models.     

 

The main advantage of this study is having a chance to apply the bootstrap 

resampling method to a real lifetime data set with an original perspective in trunsored 

models. In addition to this, during the problem definition and data analysis procedure, 

different perspectives are obtained via getting better information about the types of 

failures experienced by parts and systems that aid design, research, and development 

efforts to minimize these failures, estimation of the failure ratio for both new and old 

design products, and getting estimations of the required redundancy to achieve the 

specified reliability. Since the trunsored models are proposed for decision making by 

manufacturers, the model becomes a potential to reduce cost of experimentations, to 

prevent failures especially for new design products and to improve product reliability.  

The framework presented in this study may also be applied for survival analysis such 

as assessment of the effectiveness of cancer treatment, severe infectious disease alert 

and precautions against possible failures. On the other hand these models can be used 

in the industrial engineering applications such as decision making by manufacturers 

as in our case. Estimating the ratio of the fragile population to the total mixed 

population provides judgments that the whether manufacturers should recall their 

products for safety reasons via assessing the ratio at an early stage or not. A small 

ratio may indicate that the manufacturers can handle failed products on an individual 

case basis. Because of its growing global market, the product’s manufacturing and 
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performance have become the focus of much research. In today’s technological world, 

consumers demand and expect reliable products. When products fail, most of the time 

the results are costly. Thus, it is critical to produce correct designed, processed and 

produced products. The main difference from the traditional methods is that the 

trunsored models with bootstrapping mechanism provide solutions without making 

unrealistic assumptions to produce reliable products in limited experimental 

conditions.  

For future research, the proposed adaptation can be compared with the original form 

of the model by using different resampling and/or bootstrapping procedures. The 

adaptation can be realized very easily by updating the algorithms of bootstrapping 

with trunsored data set. In particular, the updated algorithms for trunsored data 

models with bootstrapping will be practical for measuring the effectiveness of 

treatment in survival analysis as well as for repairable products in lifetime analysis.   
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APPENDIX A 
 

SAMPLE FORM OF EXPERIMENT RESULT 
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Lifetime data of lamps
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APPENDIX B 
 

DESCRIPTIVE STATISTICS AND EXPERIMENT RESULTS  
 

Figure B.1: Histogram of Lifetime Data 
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Table B.1: Descriptive Statistics of the Lifetime Data 

 
Sample Size 70 
Min 25 
Max 38 
Range 13 
Mean 31.67 
SE of Mean 0.45 
Variance 14.46 
Median 32 
Skewness -0.02 
Kurtosis -1.159 

Table B.2: Experiment Results 

Lamp no 1 2 3 4 5 6 7
Starting current (A) 0.98 0.97 0.96 0.97 0.97 0.98 0.96
Temperature of coil after 4 hour (C°) 189 190 192 198 198 198 197
Temperature of coil after 24 hour (C°) 185 186 186 185 184 184 185
Ending time of the experiment (day) 33 32 31 33 32 33 33 
Lamp no 8 9 10 11 12 13 14 
Starting current (A) 0.96 0.97 0.96 0.97 0.96 0.97 0.96
Temperature of coil after 4 hour (C°) 195 198 195 198 197 197 193
Temperature of coil after 24 hour (C°) 186 185 184 186 185 185 184
Ending time of the experiment (day) 28 26 31 26 26 37 33 
Lamp no 15 16 17 18 19 20 21 
Starting current (A) 0.97 0.96 0.98 0.98 0.96 0.96 0.96
Temperature of coil after 4 hour (C°) 196 190 197 198 191 195 195
Temperature of coil after 24 hour (C°) 186 184 184 186 185 184 186
Ending time of the experiment (day) 32 28 35 25 27 33 31 
Lamp no 22 23 24 25 26 27 28 
Starting current (A) 0.95 0.98 0.98 0.97 0.96 0.98 0.98
Temperature of coil after 4 hour (C°) 189 194 197 197 192 198 197
Temperature of coil after 24 hour (C°) 184 186 185 185 184 186 186
Ending time of the experiment (day) 27 37 33 35 32 37 37 
Lamp no 29 30 31 32 33 34 35 
Starting current (A) 0.97 0.96 0.97 0.98 0.98 0.97 0.96
Temperature of coil after 4 hour (C°) 196 191 192 198 198 196 191
Temperature of coil after 24 hour (C°) 185 184 184 186 184 184 184
Ending time of the experiment (day) 25 26 28 35 38 35 25 
Lamp no 36 37 38 39 40 41 42 
Starting current (A) 0.97 0.97 0.97 0.96 0.97 0.98 0.97
Temperature of coil after 4 hour (C°) 198 197 195 189 195 198 197
Temperature of coil after 24 hour (C°) 186 186 185 184 185 184 185
Ending time of the experiment (day) 26 32 27 36 31 37 37 
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Table B.2: Experiment Results (Cont’d) 

Lamp no 43 44 45 46 47 48 49 
Starting current (A) 0.97 0.98 0.97 0.95 0.96 0.98 0.98
Temperature of coil after 4 hour (C°) 193 195 194 190 192 198 195
Temperature of coil after 24 hour (C°) 184 186 186 184 184 186 185
Ending time of the experiment (day) 26 33 26 27 34 31 29 
Lamp no 50 51 52 53 54 55 56 
Starting current (A) 0.98 0.97 0.98 0.98 0.98 0.97 0.96
Temperature of coil after 4 hour (C°) 197 197 194 198 196 196 193
Temperature of coil after 24 hour (C°) 186 186 185 185 184 184 184
Ending time of the experiment (day) 28 35 36 35 29 28 29 
Lamp no 57 58 59 60 61 62 63 
Starting current (A) 0.96 0.96 0.97 0.97 0.96 0.97 0.98
Temperature of coil after 4 hour (C°) 192 190 189 198 195 193 198
Temperature of coil after 24 hour (C°) 184 186 185 186 184 185 186
Ending time of the experiment (day) 26 26 36 27 31 30 28 
Lamp no 64 65 66 67 68 69 70 
Starting current (A) 0.96 0.95 0.98 0.97 0.98 0.97 0.97
Temperature of coil after 4 hour (C°) 190 190 196 196 198 195 195
Temperature of coil after 24 hour (C°) 184 186 185 186 184 186 185
Ending time of the experiment (day) 29 35 33 36 28 37 34 
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APPENDIX C 
 

BOOTSTRAP AND TRUNSORED MODEL RESULTS 
 

Figure C.1: Histogram of Bootstrap Samples for B=1000 

 

Figure C.2: Quantile-Quantile Plot of Bootstrap Samples for B=1000 
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Figure C.3: Histogram of Bootstrap Samples for B=2000 

 

Figure C.4: Quantile-Quantile Plot of Bootstrap Samples for B=2000 
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Figure C.5: Histogram of Bootstrap Samples for B=3000 

 

Figure C.6: Quantile-Quantile Plot of Bootstrap Samples for B=3000 
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Figure C.7: Histogram of Bootstrap Samples for B=4000 

 

Figure C.8: Quantile-Quantile Plot of Bootstrap Samples for B=4000 
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Figure C.9: Histogram of Bootstrap Samples for B=5000 

 

Figure C.10: Quantile-Quantile Plot of Bootstrap Samples for B=5000 
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Figure C.11: Histogram of Bootstrap Samples for B=6000 

 

Figure C.12: Quantile-Quantile Plot of Bootstrap Samples for B=6000 
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Figure C.13: Histogram of Bootstrap Samples for B=7000 

 

Figure C.14: Quantile-Quantile Plot of Bootstrap Samples for B=7000 
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Figure C.15: Histogram of Bootstrap Samples for B=8000 

 

Figure C.16: Quantile-Quantile Plot of Bootstrap Samples for B=8000 
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Figure C.17: Histogram of Bootstrap Samples for B=9000 

 

Figure C.18: Quantile-Quantile Plot of Bootstrap Samples for B=9000 
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Figure C.19: Histogram of Bootstrap Samples for B=10000 

 

Figure C.20: Quantile-Quantile Plot of Bootstrap Samples for B=10000 
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Figure C.21: Estimated Bias vs. Number of Replications 

 

Figure C.22: Estimated Ratio of Fragile Population to Mixed Population vs. Number of 

Replications    
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Figure C.23: Percentiles vs. Number of Replications 

 

Figure C.24: Standard Errors of Mean Lifetime vs. Number of Replications 
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Figure C.25: Estimated Mean Lifetime vs. Number of Replications 

 

Figure C.26: Estimated Standard Error vs. Number of Replications 
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