

A COMPARATIVE ANALYSIS OF FEATURE-ORIENTED DEVELOPMENT (FOD)
WITH OBJECT-ORIENTED DEVELOPMENT (OOD) IN SOFTWARE ENGINEERING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

İLKER SAPAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER, 2007

ABSTRACT

A COMPARATIVE ANALYSIS OF FEATURE-ORIENTED DEVELOPMENT (FOD)
WITH OBJECT-ORIENTED DEVELOPMENT (OOD) IN SOFTWARE

ENGINEERING

Sapan, İlker

M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Ziya Aktaş

Co-Supervisor : Dr. Semih Çetin

September 2007, 78 pages

The objective of this thesis is to compare the Feature-Oriented Development (FOD)

with Object-Oriented Development (OOD) on a case problem. Employing the

features in software engineering has become quite popular recently with the

emerging tools and techniques. FOD is used within a context in this thesis as

partitioning an application domain in terms of “features” yielded by Feature-

Oriented Domain Analysis, and then managing them through a relevant software

process model known as Feature-Driven Development (FDD).

The conventional FDD approach makes use of classical objects to implement

features. Whereas, features can also be implemented by means of a dedicated

programming model, i.e. Feature-Oriented Programming, to treat the features as

first class entities. However, the FOD vision in this study proposes another model

for expressing and implementing the features in terms of “business processes”,

“business rules”, and “business services”.

The thesis will examine and evaluate the processes, analysis of the performance,

time management, and other relevant issues of FOD in comparison specifically

 iv

with OOD. Eventually, the advantages and disadvantages of FOD will be

summarized with respect to other related development methodologies.

Keywords: Features, Feature-Driven Development, Feature-Oriented Development,

Object-Oriented Development, Service-Oriented Architecture

 v

ÖZ

YAZILIM MÜHENDİSLİĞİNDE ÖZELLİK YÖNELİMLİ GELİŞTİRME METODU İLE
NESNEYE YÖNELİK GELİŞTİRME METODUNUN KARŞILAŞTIRMALI ANALİZİ

Sapan, İlker

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Prof. Dr. Ziya Aktaş

Ortak Tez Yöneticisi : Dr. Semih Çetin

Eylül 2007, 78 sayfa

Bu tez çalışmasının amacı Özellik Yönelimli Geliştirme (ÖYG) metodu ile Nesneye

Yönelik Geliştirme (NYG) metodunun karşılaştırmalı analizini bir örnek problem

üzerinde gerçekleştirmektir. Yazılım mühendisliğinde “özellik” kavramı; yeni araç

ve teknikler sayesinde oldukça popüler olmaya başlamıştır. Burada ÖYG kavramı;

Özellik Yönelimli Alan Analizi yaklaşımı kullanılarak bir uygulama kümesinin

özellikler bazında ayrıştırılması ve sonrasında bu özelliklerin bir yazılım süreç

yaklaşımı olan Özellik Güdümlü Geliştirme (ÖGG) ile yönetilmesi anlamında

kullanılmaktadır.

Klasik anlamda ÖGG yaklaşımı; özelliklerin modellenmesinden sonra bilinen

nesneler yardımı ile gerçekleştirilmesini öngörmektedir. Bununla birlikte, Özellik

Yönelimli Programlama yaklaşımı ise özelliklerin kendi başlarına ifade edilebildiği

tamamen konuya özgü bir programlama modeli ortaya koymaktadır. Ancak bu tez

çalışması; ÖYG vizyonu bünyesinde özelliklerin ifade edilebilmesi ve

gerçekleştirilmesi için “iş süreçleri”, “iş kuralları” ve “iş servisleri”nden oluşan yeni

bir model önermektedir.

Bu çalışma; ÖYG metodunun özellikle NYG metodu ile karşılaştırılması adına

yazılım süreçlerini irdeleyecek ve değerlendirecek, her iki metodun

 vi

performanslarını analiz edecek ve diğer uygun nitelikleri gözönünde tutacaktır.

Sonuçta, ÖYG’nin avantaj ve dezavantajları diğer uygulama geliştirme yöntemleri

ile de karşılaştırılacaktır.

Anahtar Kelimeler: Nesneye Yönelik Geliştirme, Özellikler, Özellik Güdümlü

Geliştirme, Özellik Yönelimli Geliştirme, Servis Odaklı Mimari

 vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Ziya Aktaş

and co-supervisor Dr. Semih Çetin for their guidance, advice, criticism,

encouragements, and insight throughout the research.

 viii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM ...iii

ABSTRACT... iv

ÖZ ... vi

ACKNOWLEDGMENTS... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES..xiii

LIST OF FIGURES.. xiv

LIST OF ABBREVIATIONS.. xvi

CHAPTERS:

1. INTRODUCTION ..1

1.1 Statement of the Problem..1

1.2 Objective of the Study ...3

1.3 Organization of the Thesis...4

2. AN OVERVIEW OF SOFTWARE DEVELOPMENT METHODOLOGIES.........6

2.1 Software Development Processes...6

2.2 Heavy Software Development Methodologies......................................7

 2.2.1 Object-Oriented Development...8

 2.2.2 Model-Driven Development...8

 2.2.3 Software Product Line Engineering...9

2.3 Agile Software Development Methodologies10

 2.3.1 Scrum..10

 2.3.2 Dynamic Systems Development Method11

 2.3.3 Crystal Methods ...11

 2.3.4 Lean Development..11

 ix

 2.3.5 Extreme Programming..12

 2.3.6 Adaptive Software Development..12

 2.3.7 Feature-Driven Development ..12

3. USING FEATURES IN SOFTWARE DEVELOPMENT.................................13

3.1 Features in Software Development ...13

3.2 Feature-Oriented Domain and Application Engineering...................14

3.2.1 Feature-Driven Domain Engineering15

 3.2.1.1 Domain Analysis ...16

 3.2.1.2 Domain Design ..17

 3.2.1.3 Domain Implementation...18

3.2.2 Feature-Driven Application Engineering19

 3.2.2.1 Feature-Driven Development....................................19

 3.2.2.2 Milestones..26

 3.2.2.3 Best Practices ..27

 3.2.2.4 Role-Playing in Feature-Driven Development............28

3.3 The Relationship between Domain and Application Engineering......29

4. THE PROPOSED APPROACH: FEATURE-ORIENTED DEVELOPMENT
USING SERVICE-ORIENTED ARCHITECTURE ..33

4.1 From Object-Orientation to Service-Orientation...............................34

4.2 Business Process Execution Language for Web Services34

4.3 Business Process Modeling ..36

 4.3.1 Business Workflow Model (BWM)..36

 4.3.2 Business Rule Model (BRM)..36

 4.3.3 Business Computation Model (BCM)38

4.4 Service-Oriented Architecture ..40

4.5 The Proposed Approach ..43

5. THE IMPLEMENTATION WITH OBJECT-ORIENTED DEVELOPMENT45

5.1 A Case Study: BIONET ...45

5.2 Implementation with OOD Approach ..46

 x

 5.2.1 Project Schedule ..46

 5.2.2 Object-Oriented Analysis and Design46

 5.2.3 Object-Oriented Model..48

 5.2.4 Use Case Diagram..48

 5.2.5 Activity Diagram...49

 5.2.6 Class Diagram..49

6. THE IMPLEMENTATION WITH FEATURE-ORIENTED DEVELOPMENT....52

6.1 Implementation with FOD on SOA ..52

6.2 Implementation Tools ...53

 6.2.1 Microsoft BizTalk Server 2006 ..53

 6.2.2 What BizTalk Server 2006 Provides54

6.3 Analysis using FODA ..55

 6.3.1 Context Diagram ...55

 6.3.2 Feature Model ...56

6.4 FDD Practices ..57

 6.4.1 Domain Service Modeling ...57

 6.4.2 Build a Feature List..59

 6.4.3 Plan by Feature..61

 6.4.4 Design and Build by Feature List ...61

7. COMPARATIVE ANALYSIS ...64

 7.1 Fundamentals...64

 7.2 Requirements Analysis and System Behavior Issues68

 7.3 Architectural Issues ..69

 7.4 Analysis Issues ...69

 7.5 Design Issues..70

 7.6 Implementation Issues ..70

 7.7 Testing Issues ...71

 7.8 Maintenance Issues...72

 7.9 Administrative Issues ..72

 xi

 7.10 Tool Support ...73

8. SUMMARY AND CONCLUSIONS..74

 8.1 Summary ..74

 8.2 Conclusions ..75

 8.3 Extensions of the Study ..77

REFERENCES.. R1

APPENDICES:

A. Desktop Application of BioNET Administration Module A1

B. BioNET Credit Management Module... A2

C. BioNET Shopping Management Module.. A3

D. BioNET Shopping Management Module Sale Processing........................... A4

E. BioNET Transition Management Module .. A5

F. Sample BioNET Orchestrations, XML Schemas and Rule Compositions.... A6

 F1: Read a Fingerprint.. A6

 F2: Verify a Fingerprint... A7

 F3: Validate an Account.. A9

 F4: Calculate a Sale.. A11

G. BioNET Web Services ... A12

 G1: ReadFingerprint Web Service.. A13

 G2: VerifyFingerprint Web Service .. A14

 G3: CalculateOfTheSale Web Service .. A15

H. BioNET Web Service: VB.NET Code.. A17

 xii

LIST OF TABLES

Table 1. A Sample of Feature List ...24

Table 2. Milestones ..26

Table 3. Features Database Table... 60-61

Table 4. The Comparison of UP, FDD and XP ...65

Table 5. The Comparison of OOD using RUP with FOD using FDD.....................66

Table 6. The Comparison of BioNET with FOD and BioNET with OOD.......... 67-68

 xiii

LIST OF FIGURES

Figure 1. Product-Line Engineering Phases..15

Figure 2. Domain Engineering Process...16

Figure 3. A Sample Feature Model ...18

Figure 4. The Domain Neutral Component or a Class Diagram of UML20

Figure 5. The FDD Project Lifecycle..21

Figure 6. The Design By Feature and Build By Feature Processes of FDD22

Figure 7. A Sample Overall Model ..23

Figure 8. Component Assembly in FDD ...25

Figure 9. Application Engineering Process ...30

Figure10. The Relationship between Domain and Application Engineering......31

Figure 11. Domain Engineering vs. Application Engineering32

Figure 12. The Proposed Approach: Feature-Oriented Development33

Figure 13. BPEL4WS Logical View..35

Figure 14. A Sample Sequential Workflow..37

Figure 15. A Sample Business Rule ...38

Figure 16. A Finite State Machine ..38

Figure 17. Object-Oriented Computation ...39

Figure 18. Conceptual Structure of SOA ..41

Figure 19. Web Services with Protocols ..42

Figure 20. Orchestration of Features in Business Process Modeling.................43

Figure 21. Project Schedule of BioNET...47

Figure 22. Use Case Diagram of Shopping Module ...48

Figure 23. Activity Diagram of Shopping Module..50

Figure 24. Class Diagram of Shopping Module...51

Figure 25. Communication via Web Services..53

Figure 26. BizTalk Server 2006 Engine and Its Interactions54

Figure 27. Context Diagram of Shopping Module ...56

Figure 28. The Feature Model of BioNET Shopping Module57

Figure 29. Business Workflow Model of VerifyFingerPrint58

Figure 30. Domain Service Model...59

Figure 31. Business Orchestration in BizTalk Server 2006...............................62

 xiv

Figure 32. A Sample XML Schema File...63

Figure 33. A Sample Business Rule Composition ...63

 xv

LIST OF ABBREVIATIONS

AHEAD : Algebraic Hierarchical Equations for Application Design
AM : Agile Modeling

AOP : Aspect-Oriented Programming
ASD : Adaptive Software Development

ASDE : Agile Software Development Ecosystem
BAM : Business Activity Monitoring

BCM : Business Computation Model
BPEL : Business Process Execution Language

BPEL4WS : Business Process Execution Language for Web Services

BPM : Business Process Management

BPMN : Business Process Modeling Notation

BRM : Business Rule Model
BWM : Business Workflow Model

CORDET : Component-Oriented Development Techniques

DNC : Domain Neutral Component

DSDM : Dynamic Systems Development Method

FDD : Feature-Driven Development

FOD : Feature-Oriented Development

FODA : Feature-Oriented Domain Analysis

FOP : Feature-Oriented Programming

LD : Lean Development

MDA : Model-Driven Architecture

MDD : Model-Driven Development

OOA : Object-Oriented Analysis

OOAD : Object-Oriented Architecture Design

OOADM : Object-Oriented Analysis and Design Method

OOD : Object-Oriented Development
OOP : Object-Oriented Programming

OORA : Object-Oriented Requirements Analysis

OOSDM : Object-Oriented Software Development Methodology

PIM : Platform Independent Model

 xvi

PSM : Platform Specific Model

RAD : Rapid Application Development

RSEB : Reuse-Driven Software Engineering Business

SDK : Software Development Kit

SDLC : Software Development Life Cycle

SEI : Software Engineering Institute

SOA : Service-Oriented Architecture

SOAP : Simple Object Access Protocol

SPL : Software Product Line

SPLE : Software Product Line Engineering

SRS : System Requirements Specification

SSD : System Sequence Diagram

TDD : Test-Driven Development

UDDI : Universal Description, Discovery and Integration

UML : Unified Modeling Language

USDP : Unified Software Development Process

XML : Extensible Markup Language

XP : Extreme Programming

WSDL : Web Services Description Language

WSIL : Web Services Inspection Language

 xvii

CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

During the last decade, several agile software development methodologies have

emerged, which position themselves as an alternative to the traditional “waterfall”

development model. Waterfall model divides the whole software development

lifecycle into a number of stages, and it also assumes that each stage is 100%

complete before the next stage starts. One of the main weaknesses of this

approach is the fact that the design errors are often not discovered till deployment

[Khramtchenko, 2004].

Object-Oriented Development (OOD), as a paradigm based on the basic building

block of “objects”, has been used increasingly as an approach to cure the

weaknesses of the waterfall approach. The use of object-oriented programming

languages, object-oriented analysis and design methodologies, distributed object

computing techniques, and object-oriented domain modeling languages have come

to the scene for better quality software and improved reuse. During the decades, it

had been sternly advocated that OO paradigm encompassed the complete view of

software engineering without the loss of communication between the stages

[Booch, 1993].

However, more detailed research on object technologies has also revealed that

OOD, on its own, has some drawbacks in achieving better quality software

especially in terms of the right level of abstraction and reuse [Rothenberger, 1999]

[Fichman, 1997] [Pancake, 1995]. This mainly stems from the fact that OOD has

been originally designed for completely meeting the functional requirements,

whereas it has lack of design in mind to manage the crosscutting concerns based

 1

on non-functional issues such as security, performance, and reliability in software

development.

Managing these non-functional concerns crosscutting the objects has yielded

another programming model known as Aspect-Oriented Programming (AOP), which

proposes that applications are better structured by separately specifying the

various concerns that can be weaved together into a coherent program [Kiczales,

1996] [Elrad et al., 2001]. These related concerns are grouped as “aspects”, and

AOP provides appropriate isolation, composition and reuse of the code used to

implement them. This is useful when these concerns are crosscutting design

decisions that have many objects leading to different places in the code doing the

same thing like logging [Kiczales et al., 1997].

While OOD tries to manage functional requirements by means of “objects” whereas

AOP handles the non-functional issues crosscutting the objects by means of

“aspects”, another school of thought has approached to the problem by means of

encapsulating the interrelated functional and non-functional issues in a single

building block, known as “feature”, to better model the software systems [Kang et

al., 1990] [Jadhav et al.]. A feature model, including feature definitions and

composition rules, describes a domain that not only includes the standard

terms/concepts and their definitions, but also describes how they are related

structurally and compositionally [Kang et al., 1998].

Current research and practical experience suggest that achieving significant

progress with respect to the software reuse requires a paradigm shift towards

modeling and developing software system families rather than individual systems.

System Family Engineering (i.e. Product Line Engineering) seeks to exploit the

commonalities among systems from a given problem domain while managing the

variability among them in a systematic way [Kuloor and Eberlein, 2002]

[Czarnecki, 2005]. The construction of product line architectures is divided into

corresponding two phases: “domain engineering” that takes care of producing the

common core architecture, and “application engineering” that derives the

individual application from core architecture [Harsu, 2003].

 2

1.2 Objective of the Study

Stemmed from the fact that features might abstract more cohesive building blocks

in domain and application engineering rather than objects or aspects either

individually or both together, they demand on more loosely coupled architectures.

An emerging approach, known as Service-Oriented Architecture (SOA), can provide

such a baseline to manage the component interaction where the components may

be executed by business services, governed by business rules, and directed by

business flows.

This thesis work proposes a Feature-Oriented Development (FOD) model where

features can be expressed in terms of “business services”, “business rules”, and

“business workflows”, and can be executed by proper frameworks based on

Service-Oriented Architecture. The FOD model proposed here has two distinct

stages: it starts first with a domain engineering activity where features are

determined, modeled and represented by Feature-Oriented Domain Analysis

(FODA) [Kang et al., 1990], and then the features are built in an agile and iterative

manner according to the well-known Feature-Driven Development (FDD) method

[Coad et al., 1999].

FDD has become quite popular recently with the tools and techniques for

managing a software project. FDD is an agile and adaptive approach for developing

systems within the context of separated software “features”. It is a reality of

software development projects is that application requirements change for many

reasons. The problem is worse in development projects using the traditional

waterfall approach where there could be months between the initial requirements

gathering and the construction, and testing of an application [Morrison]. FDD is

designed to address such difficulties in software development.

The conventional FDD approach employs basic objects to build features, but it has

already been realized that pure object-oriented models suffers from the

crosscutting concerns that may be better expressed with aspects. However, using

two different paradigms, OOD and AOP respectively, might complicate the

development process, and [Batory et al., 2003] has introduced a step-wise

refinement model accordingly to design and develop features by using a dedicated

programming approach known as Feature-Oriented Programming (FOP) in order to

deal with such difficulties. However, the AHEAD (Algebraic Hierarchical Equations

 3

for Application Design) model proposed by this approach has also suffered from

the lack of complete design and development environments, which complicates the

development process as well.

Consequently, the FOD model proposed here uses a different programming model

where features can be expressed in terms of “business services”, “business rules”,

and “business workflows” all of which are the basic building blocks of today’s

modern Service-Oriented Architecture and Business Process Management (BPM)

paradigms. Moreover, proper frameworks and development environments directly

support these building blocks as of today. As an example, the case study carried

out within the context of FOD in the thesis has been completely modeled,

designed, developed, and executed by Microsoft BizTalk Server 2006 environment.

Apart from proposing an FOD model, this thesis work compares this Feature-

Oriented Development model with classical Object-Oriented Development on a case

study in order to experiment and validate the proposed model. This thesis work

will also examine and evaluate the processes, analysis of the performance, time

management and the advantages of FOD comparing it with OOD specifically, and

also with other agile development methodologies and traditional incremental

iterative approach. Eventually, the advantages and disadvantages of FOD will be

summarized with respect to OOD methodology.

The expected gain from the planned studies will be specified how to tackle the

recent core problems in software development, that of constructing the software

correctly and delivering on time, using the FDD approach and FOD method.

1.3 Organization of the Thesis

The rest of the manuscript has been organized as follows: in Chapter 2, an

overview of software development methodologies has been given where these

methods have been mainly classified according to being formal or agile in nature.

Chapter 3 discusses the use of features in software development. This chapter

introduces the feature concept as well as the use of features both in domain and

application engineering. Regarding the domain engineering and especially domain

analysis, Feature-Oriented Domain Analysis method has been introduced. For

application engineering, the agile software development lifecycle of Feature-Driven

Development has been given in detail.

 4

The proposed approach for Feature-Oriented Development is introduced in

Chapter 4. Basic constituents of the proposed approach, namely business services,

business rules and business workflows have been given together with the adequate

principles of service orientation and business process management.

Chapter 5 and 6 are dedicated to the implementation of a case problem with

Object-Oriented Development and Feature-Oriented Development, respectively.

Chapter 7 provides the comparative analysis of the results obtained from Chapter

5 and 6, and Chapter 8 finally concludes the thesis.

 5

CHAPTER 2

AN OVERVIEW OF SOFTWARE DEVELOPMENT METHODOLOGIES

2.1 Software Development Processes

A software development process defines the values, principles and practices used

to achieve the goal of the software project. It aims, to promote best practices, to

reduce the risks, to increase the productivity, try to satisfy customers' real needs,

and to infuse a common vision and culture in a team [Hayes and Andrews].

Software engineers are highly skilled individuals and software development

processes define how they work as a team. A development process is the way one

organizes the creation of software systems. A software development process deals

with the people, technologies, tools and organizational patterns. People defines a

wide-range of people, with different skill-sets, are involved. Technologies are

infrastructure upon which software will be based. Tools are software development

and project management tools. Organizational Patterns define how team members

interact [Hayes and Andrews].

There has been a lot of software development processes created over the years.

[Hayes and Andrews] identifies a number of categories of processes, which are

most real-life projects employ a blend of these:

1. Pure waterfall

2. Code-and-fix

3. Spiral

4. Modified Waterfalls

5. Evolutionary Prototyping

6. Staged Delivery

 6

7. Evolutionary Delivery

8. Design-to-Schedule

9. Design-to-Tools

10. Commercial Off-the-Shelf Software

With the exception of code-and-fix, these processes have a few things in common –

they assume that software development is analogous to a defined industrial

process; they are based on physical engineering processes; they are predictive; and

they assume that people can be treated as abstract resources.

As noted by Pressman [2005] software engineering methods can be categorized on

a “formality” spectrum that is loosely tied to the degree of mathematical rigor

applied during analysis and design. One can place the above stated methods into

the informal end of the spectrum. A combination of diagrams, text, tables, and

simple notation is used to create analysis and design models, but little

mathematical rigor has been applied.

On the other end of the formality spectrum, say formal methods, a specification

and design are described using a formal syntax and semantics that specify system

function and behavior.

Informal methods may be divided into two as Heavy Software Development

Methodologies and Agile Software Development Methodologies.

2.2 Heavy Software Development Methodologies

Regardless of the software development process lifecycle a methodology follows,

every methodology has some certain characteristics to identify it from the others.

As an example, each one uses different abstractions for software building blocks

such as objects in Object-Oriented Development, models in Model-Driven

Development, and assets in Software Product Line Engineering. These three

development methodologies will be introduced briefly in the following subsections.

 7

2.2.1 Object-Oriented Development (OOD)

Object Orientation (OO), as a paradigm, has been used increasingly as an

approach to facilitate the reuse. The use of object-oriented programming

languages, object-oriented analysis and design methodologies, distributed object

computing techniques, and object-oriented domain modeling languages have come

to scene for better quality software and improved reuse. During the last decades, it

had been sternly advocated that OO paradigm encompassed the complete view of

software engineering without the loss of communication [Booch, 1993].

The idea behind object orientation assumes that we have been living in a world of

objects. Modeling, understanding, and developing objects are easier since they

constitute a common vocabulary. The objects take place in nature, in human made

entities, in businesses, and in the products that we use. Both data and the

processing applied to that data have been encapsulated by objects. The practice of

defining data structures and code in the same class keeps the elements that need

to be reused as a unit within one framework, and encapsulation forces to clearly

define the interfaces of each class to the outside world [Aktas and Cetin, 2006].

OOD has a common modeling language (Unified Modeling Language – UML) where

all stakeholders of the OOD are expected to speak the same language to overcome

the communication barriers.

The object-oriented paradigm has been attractive to many software development

organizations with the expectation that it yields reusable classes and objects.

While, at the same time, the software components derived using the object-

oriented paradigm exhibit design characteristics (e.g. proper decomposition,

functional independence, information hiding etc.) that are associated with high-

quality software [Coad and Yourdon, 1991].

2.2.2 Model-Driven Development (MDD)

Model-Driven Development (MDD) is a development practice where high-level and

iterative software models (often domain-specific) are created and evolved as

software design and implementation takes place. The key characteristic of MDD is

that the model literally becomes part of the development process. Contrast this

with an approach such as the waterfall development process where modeling

 8

appears as a separate step in the process and tends to get left behind once the

development proceeds to the next phase [Schwaderer, 2006].

MDD is a model-centric software engineering approach, which aims at improving

the quality and lifespan of software artifacts by focusing on models instead of code

[Gitzel and Korthaus, 2004]. Models are considered as first class entities. A system

is described by a family of models, each representing the system from a specific

perspective and at a specific level of abstraction. Thus, working with models by

means of refinement and transformation provides traceability between elements in

different models.

The most important realization of MDD is definitely OMG's MDA [OMG]. The MDA

approach comprises the creation of a Platform Independent Model (PIM), which is

based on a suitable UML profile and represents business functionality and

behavior and, subsequently, the semi-automatic or fully automatic transformation

of the PIM into a Platform Specific Model (PSM). In the next step, code can then be

generated from the PSM.

2.2.3 Software Product Line Engineering (SPLE)

A Software Product Line (SPL) is a set of software-intensive systems sharing a

common, managed set of features that satisfies the specific needs of a particular

market segment or mission and that are developed from a common set of core

assets in a prescribed way [Clements and Northrop, 2001]. A product line's scope

is a description of the products that constitute the product line or what the

product line is capable of producing. Within that scope, the disciplined reuse of

core assets, such as requirements, designs, test cases, and other software

development artifacts greatly reduces the cost of development.

The key objectives of SPLs are to capitalize on commonality and manage variation

thus reduce the time, effort, cost, and complexity of creating and maintaining a

different product line of similar software systems. Therefore, with the disciplined

reuse of core assets and commonalities, SPLs can address problems such as

dissatisfaction with current project performance, reduce cost and schedule,

decrease complexity of managing and maintaining product variants, and quickly

respond to customer / marketplace demands.

 9

The key component enabling the effective resolution of these problems is the use of

a product line architecture that allows an organization to identify and reuse

software artifacts for the efficient creation of products sharing some commonality,

but varying in known and managed ways. The architecture, in a sense, is the glue

that holds the product line together [Zubrow and Chastek, 2003].

2.3 Agile Software Development Methodologies

Agile methods are approaches to managing the development of Internet products

and services based on principles of flexible manufacturing and lean development.

Agile methods have been a reaction to the rise of traditional software development

methods, which were too large, expensive, rigid, and fraught with failure.

Downsizing was the norm and large corporations in decline, rather than young,

energetic firms on the rise were using traditional methods. Millions of websites

were created overnight by anyone with a computer and a modicum of curiosity.

Agile methods marked the end of traditional methods in the mind of their creators

[Rico, 2006].

Agile methods emerged with a focus on early customer involvement, iterative

development, self-organizing teams, and flexibility. Internet technologies such as

HTML and Java were powerful new prototyping languages, enabling smaller teams

to build bigger software products in record time. Because they could be built

faster, customers could see the finished product sooner and provide earlier

feedback, and developers could rapidly refine their products. This gave rise to

closed-loop, circular, highly recursive, and tightly knit processes for rapidly

creating Internet products, leading to increased customer satisfaction and firm

performance [Hayes and Andrews].

Jim Highsmith has explored and compared the major agile methodologies. The

following synopses are taken from the introduction to his book [2002].

2.3.1 Scrum

Ken Schwaber and Jeff Sutherland initially developed scrum, named for the scrum

in Rugby, with later collaborations with Mike Beedle. Scrum provides a project

management framework that focuses development into 30-day Sprint cycles in

 10

which a specified set of Backlog features are delivered. The core practice in Scrum

is the use of daily 15-minute team meetings for coordination and integration.

Scrum has been in use for nearly ten years and has been used to successfully

deliver a wide range of products.

2.3.2 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) was developed in the U.K. in

the mid-1990s. It is an outgrowth of, and extension to, rapid application

development (RAD) practices. DSDM boasts the best-supported training and

documentation of any Agile Software Development Ecosystem (ASDE), at least in

Europe. DSDM’s nine principles include active user involvement, frequent delivery,

team decision-making, integrated testing throughout the project life cycle, and

reversible changes in development.

2.3.3 Crystal Methods

Alistair Cockburn is the author of the “Crystal” family of people-centered methods.

Alistair is a “methodology archaeologist” who has interviewed dozens of project

teams worldwide trying to separate what actually works from what people say

should work. Alistair and Crystal focus on the people aspects of development –

collaboration, good citizenship, and cooperation. Alistair uses project size,

criticality, and objectives to craft appropriately configured practices for each

member of the Crystal family of methodologies.

2.3.4 Lean Development (LD)

The most strategic-oriented development methodology might also be the least

known: Bob Charette’s Lean Development (LD), which is derived from the

principles of lean production, the restructuring of the Japanese automobile

industry that occurred in the 1980’s. In LD, traditional methodology’s view of

change as a risk of loss to be controlled with restrictive management practices is

extended to a view of change producing “opportunities” to be pursued during “risk

entrepreneurship”. LD has been used successfully on a number of large

telecommunications projects in Europe.

 11

2.3.5 Extreme Programming (XP)

Extreme Programming (XP) was developed by Kent Beck, Ward Cunningham, and

Ron Jeffries. XP preaches the values of community, simplicity, feedback and

courage. Important aspects of XP are its contribution to altering the view of the

cost of change and its emphasis on technical excellence through refractory and

test-first development. XP provides a system of dynamic practices, whose integrity

as a holistic unit has been proven. XP has clearly garnered the most interest of any

of the agile approaches.

2.3.6 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) is Jim Highsmith’s contribution to the Agile

movement, and it provides a philosophical background for Agile methods, showing

how software development organizations can respond to the turbulence of the

current business climate by harnessing rather than avoiding change. ASD contains

both practices – iterative development, feature-based planning, customer focus

group reviews – and an “Agile” management philosophy called Leadership-

Collaboration management.

2.3.7 Feature-Driven Development (FDD)

Feature-Driven Development (FDD) is a client-centric, architecture-centric and

pragmatic software process. In FDD, the term client represents what Agile

Modeling (AM) refers to as project stakeholders and Extreme Programming calls

customers. Significantly, FDD contains just enough process to ensure scalability

and repeatability, all the while encouraging creativity and innovation [Ambler, 1].

FDD was first introduced in 1999 [Coad et al., 1999]. It is a combination of the

software process followed by De Luca's company and Coad's concept of features.

FDD was first applied on a 15-month, 50-person project for a large Singapore bank

in 1997, immediately followed by a second, 18-month, 250-person project [Coad et

al., 1999]. In Chapter 3, FDD will be discussed with its processes in detail.

 12

CHAPTER 3

USING FEATURES IN SOFTWARE DEVELOPMENT

Feature modeling originating from the Feature-Oriented Domain Analysis method

has been commonly used in literature to represent the basic building blocks of

modern software development of product line engineering. As part of the Domain

Analysis method, feature models are used to describe and hierarchically structure

common and variable features for product line-members. Features represent

product capabilities and characteristics that are important to the user (stakeholder

or external system). A feature indicating variability corresponds to a variation point

[Berg, 2005].

This chapter examines the use of “features” in software development, modeling

them in domain analysis, implementing them within the context of the agile

Feature-Driven Development in application engineering, and the best practices of

employing features.

3.1 Features in Software Development

A feature is a small, client-valued function expressed in the form of

<action><result><object> [Palmer and Felsing, 2002].

Examples of features are [Palmer]:

• Calculate the total of a sale.

• Assess the performance of a salesman.

• Validate the password of a user.

• Retrieve the balance of a bank account.

• Authorize a credit card transaction of a card-holder.

• Perform a scheduled service on a car.

 13

The explicit template in the form of <action> <result> <object> provides some

strong clues to the operations required in the system and the classes to which

they should be applied. For example:

• "Calculate the total of a sale" suggests a calculateTotal() operation in a Sale

class.

• "Assess the performance of a salesman" suggests an assessPerformance()

operation in a Salesman class.

• "Determine the validity of the password of a user" suggests a

determinePasswordValidity() operation on a User class that can then be

simplified into a validatePassword() operation on the User class.

The use of a natural language, such as English, means that the technique is far

from foolproof. However, after a little practice, it becomes a powerful source of

clues to use in discovering or verifying operations and classes [Palmer].

Features are to FDD as use cases are to the Rational Unified Process (RUP) and

user stories are to Extreme Programming (XP) – they’re a primary source of

requirements and the primary input into your planning efforts [Ambler, 2].

3.2 Feature-Oriented Domain and Application Engineering

Using features in software development is not quite new but it has been widely

anticipated by the vision of Software Product Line Engineering (SPLE). SPLE

demands on a product line architecture where features can be modeled,

implemented and deployed accordingly. Product-line architectures emphasize

software reuse among several closely related applications. Concerning product-line

architectures, the requirements analysis and design of such applications are

carried out together. These applications form a family sharing the same core

architecture. Each application typically has a variant part the design of which is

also supported by product-line architectures, for example, via parameterization. It

is essential to find out the common features and components of the applications

belonging to the same family. Thus, the requirements analysis and design of a

family of applications are more complicated than those of a single system [Harsu,

2003].

Product-line software architectures consist of two parts: the common (application-

independent) core architecture and the variant (application-specific) architecture.

 14

The former part includes those components that are common for (at least almost)

the whole family of applications sharing the same architecture. The latter part

includes (specialized) components that are specific for an individual application. In

the same way, the construction of product-line architectures is divided into

corresponding two phases. The first phase, called domain engineering, takes care

of producing the common core architecture, while the second phase, called

application engineering, derives individual application from the core

architecture. The second phase consists typically of composing and specializing the

components by parameterization. This whole product-line architecting process is

depicted in Figure 1 [Harsu, 2003].

Figure 1. Product-Line Engineering Phases

In the following subsections domain engineering and application engineering are

briefly summarized.

3.2.1 Feature-Driven Domain Engineering

Domain engineering is a process for creating a competence in application

engineering for a family of similar systems. Domain engineering covers all the

activities for building software core assets. These activities include identifying one

or more domains, capturing the variation within a domain (domain analysis),

constructing an adaptable design (domain design), and defining the mechanisms

for translating requirements into systems with reusable components (domain

implementation). The products (or software assets) of these activities are domain

 15

model(s), design model(s), domain-specific languages, code generators, and code

components [SEI].

The Domain Engineering Process is divided into three phases: Domain analysis,

Domain Design and Domain Implementation as shown in Figure 2 [Olivier].

Domain-Specific Languages
Specs & Standards

Services / Components
Generators

Domain Engineering

System Family
Architecture Domain Model Domain Knowledge

Domain
Analysis

Domain
Design

Domain
Implementation

Figure 2. Domain Engineering Process

3.2.1.1 Domain Analysis

Feature-Oriented Domain Analysis (FODA) is a domain analysis and engineering

technique, which focuses on developing reusable core assets for multiple products

in the domain [Kollu, 2005]. Domain analysis is “the process of identifying,

collecting, organizing and representing relevant information in a domain based on

the study of existing systems and their development history” [Kang et al., 1990].

Domain Analysis is the activity that discovers and formally describes the

commonalities and variability within a domain. The domain engineer captures and

organizes this information in a set of domain models with the end of making it

reusable when new systems. The output of domain analysis is a domain model: an

explicit representation of knowledge about the domain [GMV, 2007].

The Domain Model [GMV, 2007] will consist of:

• Domain dictionary (domain lexicon)

• Context model (using e.g. diagrams, formalisms,) and

• Feature models

 16

The Domain dictionary provides and defines the terms concerning the domain.

Its purpose is to make communication among developers and other stakeholders

easier and more precise.

The Context model specifies the boundaries of the domain. The model considers

both the commonalities and variabilities of the application in the domain.

The Feature model is a hierarchical decomposition of features. Feature model

that also tell which combinations of features are meaningful can depict features.

Feature models provide notations for different kinds of features such as the FODA-

like features.

FODA feature models describe mandatory, optional and alternative properties of

concepts within domain. A filled circle at the top of the feature identifies a

mandatory feature. A mandatory feature must be selected in all the systems of a

domain. An empty circle at the top of the feature identifies as optional feature.

Optional features are only present in the application if the customer has chosen

them. An arc spanning two or more edges of the feature nodes depicts as set of

alternative features. The term alternative feature indicates that a system can

possess only one sub-feature at a time for main feature [Griss et al., 1998].

As an example of the requirements of representation of a Feature Model

[Benavides, 2006], the features are from the automotive industry where features

are used to specify and build software for configurable cars. In order to clarify the

subject, a simple example is used where one considers only the features of

transmission type (automatic or manual), engine type (electric or gasoline), and the

option of cruise control. See Figure 3 from [Benavides, 2006] for this widely used

example.

3.2.1.2 Domain Design

The Domain Design takes a Domain Model as input and applies Partitioning

Strategy Architecture as a control model to produce a Generic Design. According to

the domain models, it should also be selected which components or items (such as

requirements) are provided in the core architecture and which items are

implemented as variations in individual applications [GMV, 2007].

 17

car

 18

Figure 3.a) A Sample Feature Model

Figure 3.b) Requirements Representation of a Feature Model

The partitioning strategy defines the elements (e.g. subsystem, objects, data types

etc.) and how the domain features are allocated to them. Selection of a strategy in

part depends on the major factors of change identified in the domain models. In

advance to the domain design, the domain implementation takes as inputs the

design models and the generic architectures designed to identify and create

reusable assets. The main outputs are these reusable and also application

generators and domain languages [GMV, 2007].

3.2.1.3 Domain Implementation

The domain implementation takes as inputs the design models and the generic

architectures designed to identify and create reusable assets. The main outputs

are these reusable and also application generators and domain languages [GMV,

2007].

car body transmission engine pulls trailer

mandatory features optional feature

automatic manual electric gasoline

alternative features OR features

Optional Requirement

Mandatory Requirement

OR Requirement

Alternative Requirement
(Exclusive OR)

3.2.2 Feature-Driven Application Engineering

An application engineering activity conducted in parallel to feature-oriented

domain engineering is highly probable either “feature-oriented” or “feature-driven”.

The basic difference between being “feature-oriented” and “feature-driven” is

whether using the “features” as first class entities or not throughout the stages. A

“feature-oriented” one treats the features as first class entities whereas a “feature-

driven” one makes use of features but they do not treated them as first class

entities. The proposed approach in this thesis does not treat the features as first

class entities in application engineering and it anticipates the Feature-Driven

Development process model as the application engineering methodology.

3.2.2.1 Feature-Driven Development (FDD)

Feature-Driven Development (FDD) is a client-centric, architecture-centric and

pragmatic software process [Ambler, 2], which follows the belief that a strong

design will create a process that is better managed and thus more efficient. The

project is divided into "features," which are small pieces of the project that possess

some customer value. FDD creates design, code, and code inspection schedules

that lack the depth and mounds of paperwork associated with a system completely

specified in the requirements phase, instead relying on people and their roles to

address the details as needed [Palmer and Felsing, 2002].

As the name suggests, FDD is "feature-driven", which means that it makes use of

the concept of a "feature". A feature in FDD is [Cause, 2004]:

a. Small: 1-10 days of effort are required to complete it, mostly 1-3 days. They

are designed and built in batches. The batch is the work package. A work

package cannot take more than 10 days.

b. Client valued: it is relevant and has a meaning to the business; in

business systems this usually relates to a step within some business

activity within a business process.

c. Named: <action><result><object> naming template has proper prepositions

between them <action> the <result> <by|for|of|to> a(n) <object>.

 19

In the Coad Method [FDD], definition of a feature is based on the following

template:

<action>[a|the]<result> [of|to|for|from|…]<object>[with|for|of|…]<parameters>

Features are defined based on a domain model. The domain model is created using

a technique called the Unified Modeling Language (UML) class diagram and Peter

Coad’s enhanced technique called the Domain Neutral Component (DNC) and class

archetypes, as shown in Figure 4 [Coad, 1999].

Fi
gu

re
 4

. T
he

 D
om

ai
n

N
eu

tr
al

 C
om

po
ne

nt
 o

r
a

C
la

ss
 D

ia
gr

am
 o

f
U

M
L

 20

As Figure 5 from [Palmer and Felsing, 2002] depicts, there are five main activities

in FDD that are performed iteratively:

a) Develop an Overall Model

b) Build a Feature List

c) Plan by Feature

d) Design by Feature

e) Build by Feature

Figure 5. The FDD Project Lifecycle

The first is Develop an Overall Model, the initial result being a high-level object

model and notes. At the start of a project your goal is to identify and understand

the fundamentals of the domain that your system is addressing, and throughout

the project you will flesh this model out to reflect what you’re building [Ambler, 2].

The second step is Build a Features List, grouping them into related sets and
subject areas. Next you Plan By Feature, the end result being a development, the

identification of class owners and the identification of feature set owners [Ambler,

2].

 21

http://www.agilemodeling.com/artifacts/feature.htm#Figure2FeatureSets
http://www.agilemodeling.com/artifacts/feature.htm#Figure2FeatureSets

The majority of the effort on an FDD project, roughly 75%, is comprised of the

fourth and fifth steps namely, Design by Feature and Build by Feature. These

two activities are exactly what you would expect; they include tasks such as

detailed modeling, programming, testing, and packaging of the system. During the

first three sequential activities an overall model shape is established. The final two

activities are iterated for each feature [Ambler, 2].

This iterative process includes such tasks as design inspection, coding, unit

testing, integration, and code inspection. After a successful iteration, the

completed features are promoted to the main build while the iteration of designing

and building begins with a new group of features taken from the feature set in

Figure 6 [Abrahamsson, 2002].

Figure 6. The Design By Feature and Build by Feature Processes of FDD

The following subsections are excerpted from [Palmer and Felsing, 2002] unless

specified or referenced otherwise.

 22

a) Develop Overall Model

The project starts with a high-level walkthrough of the scope of the system and its

context. Next, detailed domain walkthroughs are held for each modeling area. In

support of each domain, walkthrough models are then composed by small groups,

which are presented for peer review and discussion. One of the proposed models or

a merge of them is selected which becomes the model for that particular domain

area. Domain area models are merged into an overall model, the overall model

shape being adjusted along the way. Figure 7 represents order process as a link of

a Feature Set to one or more objects in the object model [Morrison].

Figure 7. A Sample Overall Model

b) Build Feature List

The knowledge that is gathered during the initial modeling is used to identify a list

of features. This is done by functionally decomposing the domain into subject

areas. Subject areas each contain business activities; the steps within each

business activity form the categorized feature list. As noted earlier, features in this

respect are small pieces of client-valued functions expressed in the form <action>

<result> <object>. Features should not take more than two weeks to complete;

else they should be broken down into smaller pieces [FDD]. A sample feature list is

shown in Table 1 [Morrison].

 23

Table 1. A Sample of Feature List

Feature List
ID Feature

Group
Feature Set Feature Name Object

Customer Add a new customer to

customer list
Customer
Maintenance

Maintenance 2.1.1.1

 Customer
Display list of customers 2.1.1.2 Maintenance Display

Customers

….

Add Items to Inventory Inventory Maintenance Inventory

Maintenance
2.1.2.1

….

OrderDetail Reduce total inventory for

product Inventory
Order Entry Inventory

Control
2.2.1.1

OrderDetail

Check available inventory
for product Inventory

Order Entry Inventory
Control

2.2.1.2

….

Thus, FDD offers a mechanism for defining value in a fine-grained manner and for

tracking the flow of the value through a set of transformative steps [Anderson,

2004].

Features are grouped into collections known simply as “feature sets”. Each set of

features is associated with a single <<Moment-Interval>> archetype class (link) on

the domain model. In turn, features sets are grouped into collections known as

“subject areas”. Each subject area is associated with a sequence of <<Moment-

Interval>> archetype classes on the domain model. In this respect FDD is

2.2.2.1

Order Entry

Add a new order for
customer Order

Customer Create Order

2.2.2.2

Order Entry

Create Order

Add a product to order
Order

OrderDetail

 24

analogous to a V-Plant where very small components, called features, are

constructed from a raw material, a feature description and subject matter

expertise. They are, then, assembled into larger components of greater value called

feature sets and, then, yet larger components of even greater value called subject

areas, as shown in Figure 8. The flow of value in FDD happens in a V-Plant model

[Anderson, 2004].

Figure 8. Component Assembly in FDD in a V-Plant Model

c) Design by Feature

A design package is produced for each feature. A chief programmer selects a small

group of features that are to be developed within two weeks. Together with the

corresponding class owners, the chief programmer works out detailed sequence

diagrams for each feature and refines the overall model. Next, the class and

method prologues are written and finally a design inspection is held.

d) Plan by Feature

Now that the feature list is complete, the next step is to produce the development

plan. Class ownership is accomplished by ordering and assigning features (or

feature sets) as classes to chief programmers.

 25

e) Build by Feature

After a successful design inspection for each feature activity, a complete client-

valued function (feature) is being produced. The class owners develop the actual

code for their classes. After a unit test and a successful code inspection, the

completed feature is promoted to the main build.

3.2.2.2 Milestones

Since features are small, completing a feature is a relatively small task. For

accurate state reporting and keeping track of the software development project it

is, however, important to mark the progress made on each feature. FDD therefore

defines six milestones per feature that are to be completed sequentially. The first

three milestones are completed during the “Design by Feature” activity; the last

three are completed during the “Build by Feature” activity. To help with tracking

progress, a percentage completed is assigned to each milestone. In Table 2, the

milestones and their completion percentage are shown where the feature that is

still being coded is 44% complete (Domain Walkthrough 1%, Design 40% and

Design Inspection 3% = 44%) [Anderson, 2004].

Table 2. Milestones

Domain Walkthrough 1%

Design 40%

Design Inspection 3%

Code 45%

Code Inspection and Unit Test 10%

Promote To Build 1%

The terms in Table 2 are defined as follows [Anderson, 2004]:

 26

1. Domain Walkthrough – explanation of the requirement to the developers

(face-to-face)

2. Design – creation of the sequence diagram

3. Design Inspection – peer review to check the design meets the

requirements

4. Code – methods are written in class files to deliver the design

5. Code Inspection and Unit Test – test & peer review to check that code

does what was specified in the design

6. Promote To Build – into the integrated build for system / product testing

3.2.2.3 Best practices

Feature-Driven Development is built around a core set of industry-recognized best

practices, derived from software engineering. These practices are all driven from a

client-valued feature perspective. It is the combination of these practices and

techniques that makes FDD so compelling. The best practices that make up FDD

are shortly described below. For each best practice, a short description will be

given from [Palmer and Felsing, 2002].

a) Domain Object Modeling: Domain Object Modeling consists of exploring and

explaining the domain of the problem to be solved. The resulting domain object

model provides an overall framework in which to add features.

b) Developing by Feature: Any function that is too complex to be implemented

within two weeks is further decomposed into smaller functions until each sub-

problem is small enough to be called a feature. This makes it easier to deliver

correct functions and to extend or modify the system.

c) Individual Class (Code) Ownership: Individual class ownership means that

distinct pieces or grouping of code are assigned to a single owner. The owner is

responsible for the consistency, performance, and conceptual integrity of the class.

d) Feature Teams: A feature team is a small, dynamically formed team that

develops a small activity. By doing so, multiple minds are always applied to each

design decision and also multiple design options are always evaluated before one is

chosen.

 27

e) Inspections: Inspections are carried out to ensure good quality design and

code, primarily by detection of defects.

f) Configuration Management: Configuration management helps with identifying

the source code for all features that have been completed to date and to maintain a

history of changes to classes as feature teams enhance them.

g) Regular Builds: Regular builds ensure there is always an up to date system that

can be demonstrated to the client and helps highlighting integration errors of

source code for the features early.

h) Visibility of progress and results: By frequent, appropriate, and accurate

progress reporting at all levels inside and outside the project, based on completed

work, managers are helped at steering a project correctly.

3.2.2.4 Role-Playing in Feature-Driven Development

There are several roles recommended for every FDD project. Besides the Project

Manager who maintains the expected project responsibilities, there is the Chief

Architect who is responsible for the overall technical design of the solution. The

Chief Architect is primarily involved early in the project when the problem domain

is being documented. One or more Chief Programmers are assigned to a project as

senior developers. A Chief Programmer will be responsible for the day-to-day

tracking of development progress. Class Owners are developers who are given

responsibility for a particular piece of the application [Ambler, 1].

Whether or not these roles are held by individual people depends on the size of the

organization and project. In many cases a Project Manager may also be a Chief

Architect and Chief Programmers are often Class Owners as well [Morrison]. The

final role required in FDD is the Domain Expert(s). They are the subject matter

experts that will be working with the project team to explain and document the

problem domain, as well as identify and prioritize the features required [Ambler, 2].

FDD also defines a collection of supporting roles, including:

• Domain Manager

• Release Manager

 28

• Language Guru

• Build Engineer

• Toolsmith

• System Administrator

• Tester

• Deployer

• Technical Writer

3.3 The Relationship between Domain and Application Engineering

Application engineering uses the production facilities provided during domain

engineering to produce applications of the family quickly. However, as shown

already in Figure 1, application engineering can be performed in parallel to the

domain engineering. Application engineering exploits those parts (tools,

components) that are already available and implemented in the context of domain

engineering [Harsu, 2003].

The applications should satisfy customer requirements, and thus, application

engineering is connected to customers either directly or via other people.

Application engineering is an iterative process, because the customers are not

necessarily satisfied with the application for the first time, and they may suggest

improvements. Application engineering is also iterative with domain engineering,

because the custom suggestions may have effect on the core architecture, and

thus, on domain engineering [Harsu, 2003].

Application Engineering Process also has three elements as shown in Figure 9

[Olivier]:

• Requirements Analysis

• Product Configuration

• Integration and Testing

 29

 30

Application Engineering

Figure 9. Application Engineering Process

Application engineering (also referred to as product development) is “development

with reuse”, where concrete applications are built using the reusable assets. Just

as traditional system engineering, it starts with requirements elicitation, analysis,

and specification; however, the requirements are specified as a configuration of

some generic system requirements produced in domain engineering. The

requirements specification is the main input for system derivation, which is the

manual or automated construction of the system from the reusable assets

[Czarnecki, 2005].

As seen in Figure 10 [Olivier], domain and application engineering feed on each

other: domain-engineering supplies application engineering with the reusable

assets, whereas application engineering feeds back new requirements to domain

engineering. This is so because application engineers identify the requirements for

each given system to be built and may be faced with requirements that are not

covered by the existing reusable assets. Therefore, some amount of application-

specific development or tailoring is often required in order to quickly respond to

the customer’s needs. However, the new requirements should be fed back into

domain engineering in order to keep the reusable assets in sync with the product

needs [Czarnecki, 2005].

Domain engineering can be applied at different levels of maturity. At minimum,

domain analysis activities can be used to establish a common terminology among

different product-development teams. The next level is to introduce a common

architecture for a set of systems. Further advancement is to provide a set of

components covering parts or all of the systems in the system family. Finally, the

assembly of these components can be partially or fully automated using generators

and/or configurators. The last level represents the focus of generative software

development. In general, the generated products may also contain non-software

Customer Needs

Requirements
Analysis

Features

Product
Configuration

Product
Configuration

Custo
m

Custom
Developmen

Integration and
Testing

Application

artifacts, such as test plans, manuals, tutorials, maintenance guidelines, etc.

[Czarnecki, 2005].

Domain Engineering

System Family
Architecture Domain Knowledge Domain Model

Domain
Analysis

Domain
Design

Domain
Implementation

Figure 10. The Relationship between Domain and Application Engineering

Domain engineering is a process that aims at identifying, representing and

implementing reusable artifacts. Examples of methods that apply the “domain

engineering” principles are FODA and Reuse-Driven Software Engineering

Business (RSEB) [Griss et al. 1998]. Figure 11 shows the possible interactions

between domain engineering and application engineering [Bragança and Machado,

2004].

The artifacts produced by domain engineering can be reused in application

engineering. The arrows from application engineering to domain engineering show

that application engineering can supply input to domain engineering, usually in

the form of domain knowledge. Each new application that is built within the

domain will gain from reusing domain artifacts but will also provide knowledge to

refine the domain artifacts or build new ones.

The artifacts that result from the domain engineering process consist on common

components to be used in applications but also on components implementing the

variants of a variability point that will be used only in specific applications. This is

Customer Needs

Requirements
Analysis

Features

Product
Configuration

Product
Configuration

Integration and
Testing

Domain-Specific
Languages

Specs & Standards
Services / Components

New Requirements

Custo
m

Custom
Developmen

Application Engineering Application

 31

also what is needed when building flexible and extensible applications based on

variability. So, instead of using domain engineering as a process to support the

development of diverse applications in a domain, it may be used to develop the

variants of variability points in single applications.

Figure 11. Domain Engineering vs. Application Engineering

Domain engineering methods can be adopted to support the design of variability

points in single application development processes. In fact, if we consider each

variability point a domain, then domain engineering methods can be applied for

each variability point. Since domain engineering methods require extra effort in the

engineering process, care must be taken in the selection of variability points that

should be designed using domain engineering methods [Bragança and Machado,

2004].

Requirements

Analysis

Design

Implementation

Requirements

Analysis

Design

Implementation

Compilation

Linking

Installation

Execution

Domain Engineering Application Engineering

Pre-Deployment

Post-Deployment

 32

CHAPTER 4

THE PROPOSED APPROACH:

FEATURE-ORIENTED DEVELOPMENT
USING SERVICE-ORIENTED ARCHITECURE

In this chapter, the proposed approach will be explained in detail. The basic

concept of the proposed Feature-Oriented Development approach, which is shown

in Figure 12, is to provide adequate design models, software components, and

techniques in domain engineering by Feature-Oriented Domain Analysis method to

support the actual development process in application engineering through

Feature-Driven Development. FOD specifies and implements the “features” in an

application within the domain artifact of Web services based on an emerging

paradigm of Service-Oriented Architecture (SOA). Hence, the proposed approach

has been technically identified as “Feature-Oriented Development using

Service-Oriented Architecture”.

Figure 12. The Proposed Approach: Feature-Oriented Development

FODA
Domain Engineering (Feature-Oriented

Domain Analysis)

FDD Application

Engineering

(Feature-Driven
Development)

Figure 12. The Proposed Approach: Feature-Oriented Development

SOA
(Service-Oriented

Architecture)

Implementing
Features

 33

4.1 From Object Orientation to Service Orientation

This section is based on [Fancey]. The problem of coordinating and managing

messages as they are routed from service to service comes onto the stage with the

ability to easily integrate with and invoke Web services. As time passes, it will

become increasingly unlikely that any interesting business processes will execute

in a single message exchange. Traditionally, implementing business logic meant

writing code (C++ or C#, for example). With some system, however, many common

requirements can be realized without coding a single line. It seems reasonable to

code manually when dealing with a few services, but this becomes more

problematic as the number and complexity of services increases. Business Process

Execution Language (BPEL) is based on XML, WSDL, and XML Schema.

Successful SOA implementations require reusable logic and service autonomy. In

order to achieve them, you need to start thinking of applications as the

collaboration of message exchanges. Of course, when you begin exposing

application functionality as services, you give up a certain amount of control

because you no longer know how your services are being employed or even who is

using them.

Designing an application architecture that fits this description using existing

standards in such a way that the specifications themselves do not intrude on the

process is the great challenge in Web services today.

4.2 Business Process Execution Language for Web Services (BPEL4WS)

In July 2002, BEA, IBM, and Microsoft released a trio of specifications designed to

support business transactions over Web services. These specifications, BPEL4WS

(Business Process Execution Language for Web Services), WS-Transaction, and

WS-Coordination, together form the bedrock for reliably choreographing Web

services based applications, providing business process management,

transactional integrity, and generic coordination facilities respectively [Webber].

The value of BPEL4WS is that if a business is the sum of its processes, the

orchestration and refinement of those processes is critical to an enterprise’s

continued viability in the marketplace. Those businesses whose processes are agile

 34

and flexible will be able to adapt rapidly to and exploit new market conditions. This

section introduces the key features of “Business Process Execution Language for

Web Services”, and shows how it builds on the features offered by WS-

Coordination and WS-Transaction to support the reliable orchestration of business

processes [Webber].

The BPEL4WS model is built upon a number of layers, with each layer building on

the facilities of the previous one [Webber]. Figure 13 shows the fundamental

components of the BPEL4WS architecture [Webber].

C
ontainers

Scopes Partners

Activities Service Link

(State)

Service Reference Basic
Activities

Structured
Activities

Message Correlation

Message Properties

Figure 13. BPEL4WS Logical View

The fundamental components are:

• a means of capturing enterprise interdependencies with partners and

associated service links;

• a message correlation layer which ties together messages and specific

workflow instances

• state management features to maintain, update and interrogate parts of

process state as a workflow progresses;

• scopes where individual activities (workflow stages) are composed to form

actual algorithmic workflows.

 35

4.3 Business Process Modeling (BPM)

Business Process Modeling (BPM) is the discipline of defining and outlining

business practices, processes, information flows, data stores and systems. BPM

often involves using a notation such as UML to capture graphical representations

of the major processes, flows and stores [Sparx Systems].

 “Business Process Modeling is an important part of understanding and

restructuring the activities and information a typical enterprise uses to achieve its

business goals. With a particular modeling tool, you can model, document and

restructure those processes and information flows using industry standard UML

and the Business Process Modeling Notation (BPMN). Best of all, the process

designs and models can be used to drive process re-structuring and software

development.” [Sparx Systems]

4.3.1 Business Workflow Model (BWM)

An example of sequential workflow is shown in Figure 14 [Schapiro]. Workflow

systems are currently the leading technology for supporting business processes.

This technology manages the execution of the tasks involved in a business activity,

the scheduling of resources and the control of the flow of the associated

information required by performers to execute the tasks. Typically the tasks

involved in the business process are interdependent in that the execution of one

task is conditional upon the execution of one or a number of other tasks [Mangan

and Sadiq, 2003].

4.3.2 Business Rule Model (BRM)

A business rules model is a software system that helps manage and automate

business rules. The rules a business follows may come from legal regulation ("An

employee can be fired for any reason or no reason but not for an illegal reason"),

company policy ("All customers that buy more than $100 at one time will receive a

10% discount") or other sources. The Rule Engine software, among other

functions, may help to register, classify and manage all these rules; verify

consistency of formal rules ("Flooring material must be flattish to ease cleaning" is

 36

ifElse

ifElseBranch1 ifElseBranch2

invokeMetho
dActivity1

 Code1

eventSinkA
ctivity1

invokeWeb
Service1

Figure 14. A Sample Sequential Workflow

inconsistent with "flooring material must be rough to avoid slipping"); infer some

rules based on other rules; and relate some of these rules to Information

Technology applications that are affected or need to enforce one or more of the

rules. Rules can also be used to detect interesting business situations

automatically. For example, "notify sales when inventory is lower than 10 and we

have more than 5 pending orders on a Monday". In Figure 15, a simple business

rule is represented. The conditions may be collected either from a database tables

or a defined schema property or a combination of them.

 37

Figure 15. A Sample Business Rule

4.3.3 Business Computation Model (BCM)

“Model of computation” is an academic term for a particular way of representing

the behavior of a system, such as the finite state machine seen in Figure 16

[Garcia], or a data flow representation. A particular model of computation may

better reveal execution characteristics of the system [Garcia].

Figure 16. A Finite State Machine

 38

A finite state machine offers a valuable representation of the system. The designer

can define exactly what state the system is in depending on various inputs to the

system and previous state information.

Consider the definition of a model of computation as containing aesthetic

properties (i.e., how it looks) and execution properties (i.e., how it runs) [Garcia].

A model named SCOOP (Simple Concurrent Object-Oriented Programming) and

developed by Arslan et al. [2003] offers a comprehensive approach to building

high-quality concurrent and distributed systems. The model takes advantage of the

inherent concurrency implicit in object-oriented programming to provide

programmers with a simple extension enabling them to produce concurrent

applications with little more effort than sequential ones.

The basic idea of OO computation shown in Figure 17 [Arslan et al., 2003] offers

for performing computation is to apply certain actions, to certain objects and to

using certain processors.

Figure 17. Object-Oriented Computation

The properties of the model are

• Processor is a thread of control supporting sequential execution of

instructions on one or several objects.

• Processor is an abstract concept

• A processor can be implemented as; process, thread, web service, .NET

application domain etc.

 39

• All actions on a given object are executed by its handling processor. No

shared access to objects.

• The object is handled by its processor.

• This relationship is fixed, i.e. not considered migration of objects between

processors.

• Each processor, together with all objects it owns, can be seen as a

sequential subsystem.

• A (concurrent) software system is composed of such subsystems.

4.4 Service-Oriented Architecture

A Service Oriented Architecture (SOA) [MSDN] is an approach that partially

overlaps building distributed systems. A service-oriented approach has several

characteristics:

• Loosely coupled. The application's business logic is separate from the logic

of handling the service.

• Discoverable. There should be a mechanism for applications to find the

service.

• Contractual. The interface to the service implements the contract between

users and the service.

Although the literature often treats service-oriented approaches as synonymous

with web services, they are not necessarily synonyms. Web services present an

attractive way to implement service-oriented solutions, but you can use other

technologies, such as .NET remoting, to create services [MSDN].

Web services can be viewed as an implementation of a SOA. The SOA promotes the

ability to use of Web services from anywhere on the network. SOA is a natural

evolution from the world of procedural and object-oriented programming. In order

to realize the full benefit of the SOA, we should not use our traditional systems to

implement a solution that requires a dynamic, adaptable infrastructure [Dearing].

As shown in Figure 18 [Dearing] [Gardner], any service-oriented architecture

contains three roles:

 40

• Service provider

• Service registry

• Service requestor

Service
Registry

Figure 18. Conceptual Structure of a SOA

a) Service Provider
The service provider is responsible for publishing a description of the service to the

service registry. Normally, the service provider hosts the web service.

b) Service Registry

The service registry is a repository that provides the capability of discovering

services by the service requestors.

c) Service Requestor

A software application that is responsible for discovering and invoking the service.

The service requestor binds to the service obtained from the service registry.

Service Oriented Architecture also includes three operations:

• Publish

• Find

• Bind

Find Publish

Service

Requestor
Service
Provider

Bind

 41

Services discover and communicate with each other using the publish, find, bind

triad of operations. A service publishes its interface definition to the network, a

service consumer finds the definition and, using the information in the definition,

is able to bind (resolve the address and send messages), to the service [Harrison

and Taylor].

These operations define the contracts between the Service Oriented Architecture

roles.

Web Services and SOA

Web services are reusable components with standard interfaces and

communication protocols. They are based on a set of standards as shown in Figure

19 [Zhang, 2003].

They are namely,

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

• Universal Description, Discovery and Integration (UDDI)

• Web Services Inspection Language (WSIL)

Service
Registry
(UDDI)

Figure 19. Web Services with Protocols

Find
(WSIL, UDDI and client API)

Publish
(WSIL, UDDI and client API)

Service
Requestor

Service
Provider

(WSDL) (WSDL) Bind (SOAP)

BPEL

 42

4.5 The Proposed Approach

In the proposed approach, each feature can be represented with the Business

Workflow Model (BWM) to follow business activities, the Business Rule Model

(BRM) to classify and manage all its rules, and the Business Computation Model

(BCM) to execute the business activities. So, the term “feature” can be simply

defined in this form (4.1) as a combination of business process models:

Feature= BWM + BRM + BCM (4.1)

Figure 20 shows the orchestration of business processes of features. One or more

than one feature combination might be implemented as a web service; each one

must be defined and designed in a business process.

Feature1
.BWM1
.BRM1
.BCM1

Feature2

.BWM2

.BRM2

.BCM2

Feature3

.BWM3

.BRM3

.BCM3

Featuren

.BWMn

.BRMn

.BCMn

Orchestration

... … ... …

Figure 20. Orchestration of Features in Business Process Modeling

In the following feature term (4.2), each feature may not have workflow models

(4.3), and also rule models (4.4). But each one should have at least one

computational model (4.5). A feature can be composed with more than one

workflow models. For example, to register a person in a system firstly needs to

 43

check its record in the system if it is exits or not. Secondly, after the verifying the

record, desired information of the person can be loaded to the system. So just to

check and load the person information needs 2 different workflow models

separately. Each model can be represented as BWM1, BWM2. A Web service may

happen from one or more than one workflow model or combination of business

models.

Thus, one can express the feature as

where

In summary, we can simply express the feature in proposed FOD model as:

Feature = BWM + BRM + BCM

In the next section, the proposed new feature term will be explained on service-

oriented architecture with a case study that is a real life commercial application.

This application has already been implemented by using the Rational Unified

Process (RUP) and object-oriented architecture design (OOAD) by UML.

∑
L

BWMi

i=1

∑
M

∑
N

Feature = BRMj BCMk (4.2)+ +

j=0 k=1

∑
L

BWM = (4.3)OSi (OS: Orchestration Service) Web Service

i=1

∑
M

BRM = RBSj (RBS: Rule-Based Service) Web Service (4.4)

j=0

∑
N

BCM = CSk (CS: Computational Service) Web Service (4.5)
k=1

 44

CHAPTER 5

THE IMPLEMENTATION WITH OBJECT-ORIENTED DEVELOPMENT

The case study given below has already been implemented using .NET Framework

with Rational Unified Process (RUP) and UML in the company that author works.

In the analysis and design stages of the system RUP methodology had been used.

In addition to use cases and object modeling, web service technology to

communicate different applications servers was also used.

5.1 A Case Study: BioNET

BioNET is a security controlling, product and shopping management system using

fingerprint validation system.

As noted above this application has been developed using .NET

Framework with Rational Unified Process and UML. It consists of

seven modules as System Management, Transition Management,

Product Management, Credit Management, Shopping Management,

Policy Management and KIOSK.

Nowadays, automatic fingerprint matching is becoming increasingly popular in

systems that control access to physical locations (such as doors and entry gates),

which register employee attendance time in enterprises.

Human fingerprints are unique to each person and can be regarded as a sort of

signature, certifying the person's identity.

Alternative access control systems (such as Password entrance, ID Cards and

 45

TOM-Touch on Memory) have some disadvantages. These systems are vulnerable

to misuses when the password data or ID cards are shared between users. And

also physical devices like Cards and TOM are easy to lose and the reproduction of

these items are costly. Because of disadvantages of other access control systems,

fingerprint identification is adopted as a better solution for access control.

BioNET Fingerprint System is developed by YUCE Information Systems and it is a

fingerprint identification system. The basic property of BioNET Fingerprint System

is that it is a centralized system meaning that administration and security policy of

the system is easy to control and the system can store unlimited fingerprint

samples.

5.2 Implementation with OOAD Approach

5.2.1 Project Schedule

In Figure 21, the project schedule has been defined after designed uses cases and

activity diagrams of the system using Microsoft Project. The time period for whole

the project is 3 months with 4 persons.

5.2.2 Object-Oriented (OO) Analysis and Design

The OO process begins with definition of a Use Case diagram and a Concept

Model. The Use Case Diagram shows external actors (users and systems) and their

interaction with Use Cases. The concept model is an initial class model based on

domain concepts, their attributes and associations [White, 2004].

Each Use Case is further detailed as required. A Use Case is a scenario that

identifies the interaction between an actor (human or external system) and the

system under consideration. The scenario includes normal flow of events and

system actions, followed by alternate events that may take place, and the resulting

system actions. Use Cases can be represented in System Sequence Diagrams

(SSDs). An SSD is a trace of messages from the actor to the system. Each message

represents a high level operation that the system shall perform. Input and Output

parameters are included on the SSD for each system operation. Each System

Operation is further defined in a Contract. The Contract pre-conditions and post-

 46

conditions specify the system state prior to Operation execution and the system

state after Operation execution [White, 2004].

Fi
gu

re
 2

1.
 P

ro
je

ct
 S

ch
ed

ul
e

of
 B

io
N

E
T

 47

5.2.3 Object-Oriented Model

Use Case Diagrams define context & high-level system functions. Use Cases can be

formalized using extended abstract machines (state transition diagrams with

guards)or System Sequence Diagram traces. Class Diagrams define class

attributes, methods, association, and visibility. Package Diagrams define system

composition. Interaction Diagrams define collaboration among cooperating objects.

Each object can also be defined as an extended abstract machine. Deployment

Diagrams specify allocation of components to nodes [White, 2004].

5.2.4 Use Case Diagram

In Figure 22, the Use Case Diagram of BioNET Shopping Module is shown. Two

actors are participated to the system as employee and person. In the sale

processing use case Add Item is always needed, but Remove Item depends on if the

total of the sale exceeds the daily or total credit limits.

Figure 22. Use Case Diagram of Shopping Module

 48

5.2.5 Activity Diagram

The Activity Diagram of BioNET Shopping Module is shown in Figure 23. As well as

verifying the fingerprint, controlling the restrictions and updating person’s and

product account are represented in detail. If the added new item is defined as

restricted for the person, the item is removed and also the total of the sale exceeds

any limit either daily or credit limit, an item is removed from the sale. Otherwise,

the sale is not realized.

5.2.6 Class Diagram

The class diagram of BioNET Shopping Module is shown in Figure 24. The classes

of Application, UserLogin, UserSearch and Shopping are represented.

BioNET desktop application components are shown in Appendix A, B, C, D, and E.

 49

Figure 23. Activity Diagram of Shopping Module

 50

Shopping Application UserLogin

UserSearch

Figure 24. Class Diagram of Shopping Module

 51

CHAPTER 6

THE IMPLEMENTATION WITH FEATURE-ORIENTED DEVELOPMENT

In this chapter, the proposed approach will be applied on the case study as noted

in the previous chapter; the proposed approach is a Feature-Oriented Development

using Service-Oriented Architecture. The proposed approach will deal with the

Shopping Management Module of BioNET.

6.1 Implementation with FOD using SOA

The case study, Shopping Management Module of BioNET, has been analyzed,

designed and implemented with Feature-Oriented Development using Service-

Oriented Architecture.

Feature-Oriented Development methodology is used for the general design and

planning and analysis of the system process. Eventually, FOD suggests us a

software management system, but does not offer construction architecture. For

implementation of the system designed by FOD, SOA and FODA, Microsoft BizTalk

Server 2006 tools and techniques have been used.

The created BioNET Web Services (in Figure 25) provide the relation between

clients and database server. Each client makes request to web service. Web service

transmits the request to database server and finally web service response to

clients. BioNET UpdateService also provides the software updates to clients and

databases.

 52

6.2 Implementation Tools

The business workflows of the system have been created using BizTalk Server

2006 environment.

Figure 25. Communication via Web Services

6.2.1 Microsoft BizTalk Server 2006

As organizations move toward a service-oriented world, BizTalk Server 2006

[Chappel, 2005] supports creating effective business processes that unite separate

systems into a coherent whole. Like its predecessors, this latest release allows

connecting diverse software, then graphically creating and modifying process logic

that uses that software. The product also lets information workers monitor

running processes, interact with trading partners, and perform other business-

oriented tasks.

 53

BizTalk Server 2006 is built on the foundation of its predecessors, BizTalk Server

2000, 2002 and 2004. The most important new additions in BizTalk Server 2006

are [Chappel, 2005]:

• Better support for deploying, monitoring, and managing applications.

• Significantly simpler installation.

• Improved capabilities for Business Activity Monitoring (BAM).

BizTalk Server 2006 is built on version 2.0 of the .NET Framework, and its

developer tools are hosted in Visual Studio 2005. For storage, the product can use

SQL Server 2005, the latest version of Microsoft’s flagship database product, or

SQL Server 2000, the previous release. BizTalk Server 2006 can also run on 64-bit

Windows, taking advantage of the larger memory and other benefits this new

generation of hardware offers [Chappel, 2005].

6.2.2 What BizTalk Server 2006 Provides

Combining different systems into effective business processes is a challenging

problem. Accordingly, BizTalk Server 2006 includes a range of technologies. Figure

26 illustrates the product’s major components [Chappel, 2005].

Enterprise Single
Sign-On

Business
Activity
Services

Health and
Activity Tracking

Business
Activity

Monitoring

Business Rules
Engine

BizTalk Server
2006 Engine

Orchestration

Messaging

Figure 26. BizTalk Server 2006 Engine and Its Interactions

 54

As the Figure 26 suggests, the heart of the product is the BizTalk Server 2006

Engine. The engine has two main parts:

• A messaging component that provides the ability to communicate with a

range of other software. By relying on pluggable adapters for different kinds

of communication, the engine can support a variety of protocols and data

formats, including Web services and many others.

• Support for creating and running graphically defined processes called

orchestrations. Built on top of the engine’s messaging components,

orchestrations implement the logic that drives all or part of a business

process.

Several other technologies can also be used in concert with the engine, which is in

interactions, including:

• A Business Rules Engine that allows evaluating complex sets of rules.

• A Health and Activity Tracking tool that lets developers and administrators

monitor and manage the engine and the orchestrations it runs.

• An Enterprise Single Sign-on facility, providing the ability to map

authentication information between Windows and non-Windows systems.

• On top of this foundation, BizTalk Server 2006 provides a group of

technologies that address the more business-oriented needs of information

workers such as Business Activity Monitoring and Business Activity

Services.

6.3 Analysis Using FODA

6.3.1 Context Diagram

The highest-level graphic representation is a context diagram of the system, as

shown in Figure 27.

The external entities such as Person’s Account Registration, Person’s Account

Verification, Terminal and Product Constraints, Sale and Invoice Processing are

represented according to request and response type.

 55

TERMINAL
CONSTRAINTS

SALE
PROCESSING

Figure 27. Context Diagram of Shopping Module

Shopping Management System starts with reading person’s fingerprint from the

fingerprint scanner and verifying the record on the database according to person’s

fingerprint images. External entity Person’s Account Verification returns account’s

status as true or false. According to status system either load account information

of the person to the session or direct to Person’s Account Registration to create a

new account. If the account verified, system opens a new session and load account

information with its constraints, which are restricted terminals or products and

daily-account credit limit. Shopping Management System is in collaboration with

Product Management System to control product accounts. If added items to a sale

processing are met the conditions, system starts sale and invoice processing.

6.3.2 Feature Model

All the components of the system decomposed as features are shown in FODA

feature model in Figure 28, using the notation already given in Figure 3.

SHOPPING
MANAGEMENT

SYSTEM

INVOICE
PROCESSING

PERSON’S
ACCOUNT
REGISTRATION

Constraints
and Options Sale

Request

Account
Request

Invoice
Request

Account Status

Product
Request Fingerprint

Request
PERSON’S
ACCOUNT
VERIFICATION

Product Status Constraints
and Options

PRODUCT
MANAGEMENT

SYSTEM

PRODUCT
CONSTRAINTS

 56

Fingerprint Scanner with its Software Development Kit’s (SDK) of the scanners,

Account, and Terminal and Product are mandatory features of the system.

Meanwhile, sub features of an Account are Credit Limit and Fingerprint. Daily

Limit, Restricted Terminals and Restricted Products are optional features. In the

system, staff may not be a customer.

6.4 FDD Practices

This section follows the FDD practices from Domain Service Modeling to Build

Feature step on only one feature of Shopping Management Module, which is Verify

Fingerprint feature. The business workflow model of VerifyFingerPrint is shown

in Figure 29.

6.4.1 Domain Service Modeling

Domain Service Modeling has been adapted from Domain Object Modeling for the

case study. The domain object model provides an overall framework to which to

add function, feature by feature. It helps to maintain the conceptual integrity of

FINGERPRINT
SCANNER

TERMINAL

SDK

CREDIT
LIMIT

DAILY
LIMIT

PRODUCT

SHOPPING

RESTRICTED
TERMINALS

RESTRICTED
PRODUCTS

FINGERPRINT

CUSTOMER ACCOUNT

STAFF

Figure 28. The Feature Model of BioNET Shopping Module

 57

the system. Using it to guide them, feature teams produce better initial designs for

each group of features [Palmer and Felsing, 2002].

Figure 29. Business Workflow Model of VerifyFingerPrint

Domain Object Modeling is a form of object decomposition [Palmer and Felsing,

2002]. The business services with their functional requirements are decomposed

without classes and methods in the modeling representation as in Figure 30. The

problem is broken down into the significant web objects involved. The design and

implementation of each object or inside class identified in the model is smaller

problem to solve. When the completed classes are combined, they form the

solution to the larger problem [Palmer and Felsing, 2002].

 58

Figure 30. Domain Service Model

6.4.2 Build a Feature List

Now considering the seven modules of the BioNET given in Section 5.1 they are

listed as follows.

a) Feature Group

1. SYSTEM MANAGEMENT

2. TRANSITION MANAGEMENT

3. PRODUCT MANAGEMENT

4. CREDIT MANAGEMENT,

5. SHOPPING MANAGEMENT

6. POLICY MANAGEMENT

7. KIOSK

The following Feature Sets are composed according to V-Plant model [Anderson,

2004] which is given in subsection 3.2.2.1.

 59

b) Feature Sets of the Shopping Management Feature Group
5.1. Reading a Fingerprint

5.2. Validating an Account

5.3. Registering an Account

5.4. Opening a Session

5.5. Processing a Sale

5.6. Creating an Invoice

5.7. Performing a Shopping

Features Database Table of Shopping Management Feature Group is shown in

Table 3. In the table, for each feature set’s feature specifications are defined in the

feature format at <action><result><object> with its prerequisite feature ID.

Table 3. Features Database Table

Feature
ID

Feature
Group

Feature Set Feature Specification
Prerequisite
Feature (set)

5.
Shopping
Management

5.1
Reading a
Fingerprint

5.1.1
Read the fingerprint by
fingerprint scanner

-

5.1.2
Verify the fingerprint for
the person

5.1.1

5.2
Validating an
Account

5.2.1
Validate the account for
the person

5.1.2

5.3
Registering an
Account

5.3.1
Add a new record for the
person

5.2.1

5.4 Opening a Session

5.4.1
Load the account
information for the session
owner

5.2.1

5.4.2
Load the shopping
information for the session
owner

5.2.1

5.4.3
Load the allowed items for
the session owner

5.2.1

 60

Table 3. Features Database Table (continued)

Feature
ID

Feature
Group

Feature Set Feature Specification
Prerequisite
Feature (set)

5.4.4
Load the allowed terminals
for the session owner

5.2.1

5.5 Processing a Sale

5.5.1 Create a space for a sale 5.4

5.5.2 Read an item for sale 5.5.1

5.5.3 Add an item to sale 5.5.1

5.5.4
Calculate the total of the
sale

5.5.1

5.5.5
Validate the total sale by
the account

5.5.1

5.6
Creating an
Invoice

5.6.1
Create an invoice for the
sale

5.5.1

5.7
Performing a
Shopping

5.7.1
Update the product
account for the sale

5.6.1

5.7.2
Update the person
account for the sale

5.6.1

6.4.3 Plan by Feature

In this step, all the feature sets have been sequenced, depending on priority and

dependencies. Also, the Web services – its classes- identified in the modeling

activity have been assigned to individual developers; the owner of a web service or

class is responsible for its development.

6.4.4 Design and Build by Feature

A number of features have been scheduled for development by assigning to

programmer. The defined and assigned features have been implemented on

Microsoft BizTalk Server 2006 environment to create schema and orchestration of

the processes of a feature and to generate business rules respectively.

 61

Figure 31 shows an orchestration to receive fingerprint image and validate the

image id and then to return a result. In this orchestration, evaluating data has

been done via messages. Each orchestration should have input and output ports to

receive and send data. In order to receive and send data from a source to a

destination for each functional operational in feature schemas (XML files) has been

used. As an example of VerifyFingerPrint schema file is shown in Figure 32.

Figure 31. Business Orchestration in BizTalk Server 2006

Finally, Business Rule Composer may be used to match sending and storing data.

It needs to create a schema, which is defined at the previous step. However, some

feature may not need to create business rules; they might be just functional

business activities. As an example of VerifyFingerPrint rule sets is shown in Figure

33.

 62

 <?xml version="1.0" encoding="utf-16" ?>
- <xs:schema xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
xmlns="http://FingerPrint.VerifyFingerPrint" targetNamespace="http://FingerPrint.VerifyFingerPrint"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

- <xs:element name="PersonRecord">
- <xs:complexType>

- <xs:sequence>
 <xs:element name="MernisID" type="xs:unsignedInt" />

 <xs:element name="FingerPrintImageID" type="xs:unsignedByte" />
 <xs:element name="Result" type="xs:boolean" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Figure 32. A Sample XML Schema File

Figure 33. A Sample Business Rule Composition

The created sample BioNET orchestrations, XML schemas, rule compositions, web

services with their SOAP messages and Visual Basic.NET code are shown in

Appendix F, G and H.

 63

CHAPTER 7

COMPARATIVE ANALYSIS

The case problem, BioNET, has been implemented according to Object-Oriented

Development and Feature-Oriented Development in Chapters 5 and 6 respectively.

In this chapter, results of the proposed approach and object-oriented approach will

be compared.

7.1 Fundamentals

Every popular method or process contains some form of functional decomposition

activity that breaks down this high-level statement into more manageable

problems. Functional specification documents, use case models and use case

descriptions, and user stories and features all represent functional requirements,

and each representation has its own advantages and disadvantages [Palmer].

An important feature of Object-Oriented Development (OOD) is that software

objects represent the real-world objects, which are derived from classes, and a

class hierarchy allows objects to inherit characteristics from parent classes. This

allows software object reuse, less coding, encapsulation of functionality, and many

other advantages. A major problem that arose with OO programming is that if the

class hierarchy is not properly designed, almost all of the OO advantages might

disappear. The OO model attempts to properly define and document the class

hierarchy from which all the system objects are created and object interactions are

defined [Palmer and Felsing, 2002].

Commonly, a statement of purpose has been taken and broken it down into a

number of smaller problems and defined a set of subsystems (or modules) to solve

those smaller problems using Feature Oriented Development. Then, each

 64

subsystem has been broken its problem into a hierarchical list of functional

requirements. When getting the requirements granular enough that decomposition

has been stopped and started to implementation respectively [Palmer and Felsing,

2002].

In Feature-Oriented Development, the software features represented in feature-set

models and every feature-set is divided into “features’ in development process.

[Coad, 2003] compares some software development phases, which are define,

design, build and test, among UP, FDD and XP in Table 4 [Coad, 2003].

Table 4. The Comparison of UP, FDD and XP

 UP FDD XP

Define

Uses cases and
class diagrams

Feature list and class
diagrams (sub teams then
teams)

User stories

Design

Sequence diagram

Sequence diagram

Refactor

Build

Code

Feature teams (chief
programmers and class
owners)

Pair programming
(team ownership)

Test

Code, test, inspect

Code, test, inspect

Write test, code, test-
and continuously
inspect

Accordingly, Table 5 shows the comparison of “FOD using FDD” with “OOD using

RUP”, which is basically adapted from the Table 4. Both the common phases of

software development life cycles (analysis, design, build, and test) and external

properties (activities and roles) have been compared for FOD and OOD. The case

study comparison of FOD with OOD, shown in Table 5, is based on software

development activities, which are software architecture, overall model, process of

development and implementation.

 65

The case study comparison of BioNET with FOD and BioNET with OOD, shown in

Table 6, is based on issues, which are Requirements Analysis and System Behavior

Issues, Architectural Issues, Analysis Issues, Design Issues, Implementation

Issues, Testing Issues, Maintenance Issues, Administrative Issues, and Tool

Support. The following subsections will discuss the items of Table 5 in detail.

Table 5. The Comparison of OOD using RUP with FOD using FDD

 OOD using RUP FOD using FDD

Activities

Inception, Elaboration,
Construction, Transition

Develop an Overall Model, Build a
Feature List, Plan by Feature, Design by
Feature, Build by Feature

Roles

Requirements Analyst,
Designer, Project Manager,
Software Quality Assurance
(SQA) Analyst, Domain
Analyst, Tester, Project
Librarian, Other Roles

Project Manager, Chief Architect, Chief
Programmers, Class Owners, Domain
Manager, Release Manager, Language
Guru, Build Engineer, Toolsmith, System
Administrator, Tester, Deployer,
Technical Writer, Sub Feature Teams,
Feature Teams

Based on

Object Orientation Service Orientation

Define

Software Requirements
Specification (SRS), Uses
Cases and Class Diagrams

Software Requirements Specification
(SRS), Feature List and Service Hierarchy
Diagrams (Sub teams and teams)

Analysis

UML Activity Diagrams,
Object Diagrams

Context Diagrams, Feature-Oriented
Domain Analysis (FODA) Feature Model,
Domain Service Modeling

Design Sequence Diagram

Sequence Diagram, Business Workflow
Model, Business Rule Model, Business
Computation Model, Business
Orchestration Model

Build

Code Code, Deploy and Publish Web Services

Test

Code, Test, Inspect Model, Code, Test, Inspect

 66

Table 6. The Comparison of BioNET with FOD and BioNET with OOD

Issues BioNET with OOD BioNET with FOD

Requirements
Analysis and
System Behavior
Issues

• System Requirements
• Functional

Requirements
• Based on system

requirements captured
as objects and use
cases

• System Requirements
• Functional

Requirements
• Based on system

requirements captured
as features

Architectural
Issues

• Components (Objects)
• Connectors (Object

Method Calls)
• Configurations (Tightly

Coupled)
• Client-server

architecture
• Based on functional,

behavioral, and
structural modeling of
the problem domain
and the system

• Components (Services)
• Connectors (Service

Calls)
• Configurations (Loosely

Coupled)
• Service-Oriented

architecture
• Based on structural

and behavioral
modeling of the
problem domain

Analysis Issues

• Define activity diagram
• Identify domain objects
• Express relationships

among objects
• Describe classes with

their relationships

• Design context diagram
• Identify services
• Define feature model
• Define the relationship

among features

Design Issues

• Define software objects
• Define relationships

among objects
• Design class diagrams
• Inheritance and

Overloading
• User Interface Design

• Design feature model
• Design domain service

modeling
• Build a feature list
• Design business

modeling of
feature(s)(sets)-
workflow, rule and
computational model

Implementation
Issues

• Object-oriented

implementation
• Coding
• Object interactions

• Service-oriented

implementation
• Build by feature list
• Create orchestration,

rule modeling for web
services by feature list

• Web services deploying
and publishing

 67

Table 6. The Comparison of BioNET with FOD and BioNET with OOD (continued)

Issues BioNET with OOD BioNET with FOD

Testing Issues

• Error handling
• Defect testing
• Functional testing
• Integration testing

(tightly coupled)

• Error handling
• Defect testing
• Functional testing
• Model testing
• Integration testing

(loosely coupled)

Maintenance
Issues

• Tightly coupled

refactoring
• Tracing
• Debugging
• Monitoring (by developer)

• Loosely coupled

refactoring
• Tracing
• Debugging
• Monitoring (by

environment)

Administrative
Issues

• Unified Modeling

Language (UML)
• Rational Unified Process

(RUP)

• Domain Engineering
• Feature-Driven

Development (FDD)
• Service-Oriented

Architecture (SOA)

Tool Support

• .NET Framework 2.0,

MSSQL Server 2000

• .NET Framework 2.0,

MSSQL Server 2000,
BizTalk Server 2006

7.2 Requirements Analysis and System Behavior Issues

The system and functional requirements of BioNET are fingerprint scanner with its

Software Development Kit (SDK), modules, clients, and server and their behaviors

with actors in the system. For both development methodologies, Software

Requirements Specification (SRS) has been used to specify requirements and behavioral

issues. For these issues, use case diagrams have been used in OOD; features have

been used in FOD to capture software components and requirements. The

difficulties of use case diagrams were in design and implementation phases caused

to dive into an inappropriate level of detail. The use of features provided the facility

for user and developer ensuring to understand that requirements in a business value.

 68

7.3 Architectural Issues

First application of BioNET has been implemented using object-oriented

methodology as a client-server application. So, the components and connectors

have been planned with objects. The communication between clients and server

has been realized via local area network. The basic building blocks in OOD

implementation are the objects and they have been interconnected with object

method calls, which created a very tightly coupled interaction model, which

complicated the maintenance issues.

BioNET in FOD was implemented as a Web-based application in Service-Oriented

Architecture. The basic building blocks were Web Services, rules and workflows.

They are defined and deployed onto BizTalk Server 2006, which provided a loosely

coupled environment for and facilitated the further maintenance with a great deal

of ease and effectiveness.

7.4 Analysis Issues

System analysis of BioNET with OOD has been detailed with activity diagrams

derived from the previous uses case diagrams. Domain objects and their

relationships are revealed for each module, but they couldn’t lead to a thorough

domain object model. During the increments of systems analysis, majority of the

diagrams should have been revisited and modified accordingly. Such dynamism

through the increments makes the use of Case tools a must for OOD. Otherwise, it

would be quite complicated to manage the complete model with complex

interdependencies of the object model.

For the FOD case, Feature-Oriented Domain Analysis techniques have been used.

The highest-level graphic representation was drawn as a context diagram that used

to obtain the business domain. All components of the system decomposed as

features (mandatory, optional, alternative etc.) in a feature model. The feature

model of BioNET provided the capturing of commonalities and differences between

features as reusable domain and application artifacts. For example read fingerprint

and validate account are stressed in the feature model for this purpose.

 69

7.5 Design Issues

Major differences between the design of BioNET with FOD and OOD are the

focused items. In FOD approach, the system is designed with “features” to yield the

“domain service” model, and a feature list is built to feed the implementation

phase. Main strategy is to define the elements, which are subsystems, services,

etc., through which domain features are allocated to achieve them. The feature

lists have been built using FDD practices facilitated to decompose the application.

In the proposed approach, this is as a combination of business workflows,

business services and business rules to create a business process model for a

feature.

In OOD approach, the software objects, class diagrams, and relationships such as

inheritance and aggregation have been mainly used to design the system.

Commonly, this approach provided many advantages in BioNET desktop

application such as code reuse and fast implementation, but it has brought some

disadvantages such as lack of changeability and lack of testability in isolation,

since such monolithic nature of object models does usually end up with very

tightly coupled designs.

7.6 Implementation Issues

The implementation of BioNET with OOD has been realized by using object-

oriented programming in 3-tiers, which are presentation, business and data tiers.

Each of these tiers has been accompanied by a set of components comprising

dedicated class hierarchies, and they have been linked at the middle tier in .NET

2.0 Component Framework. Implementing an object-oriented model in N-tier

architecture complicates the coding efforts since class hierarchies should be

aligned accordingly to manage the transactions. Another drawback was to manage

the crosscutting issues such as security and logging, as identified by Aspect-

Oriented paradigm.

The implementation of BioNET with FOD has been realized as business process

modeling using Microsoft BizTalk Server 2006 environment. In the defined

business process of features, each feature or feature set(s) has been designed in

service orchestration model, which expects the manipulation of data via messages.

 70

Each orchestration should have input and output ports to receive and send data.

In order to receive and send data from a source to a destination for each functional

operation, dedicated feature schemas (XML files) have been used. In Business Rule

Composer tool of BizTalk Server 2006, the created schema or storage data in

database tables may establish connection as individually or mutual for defined

conditions. For each defined feature in orchestration or rule composer has been

deployed and published as Web services. This technique provides implementation

without single line coding thought the declarative and generative nature of BizTalk

Server 2006.

The FOD implementation has ended up with a loosely coupled design model in

which every building block (business rule, business service and business workflow)

has been managed on its own and composed through the orchestration capability

of the BizTalk Server 2006. This directed and facilitated the implementation

roadmap without any hassles. Another advantage of this approach is to provide the

reuse and sharing model. For example, a created rule model of a feature or feature

set(s) might be used for other feature or feature set(s). However, the first insight of

the BPM approach required the understanding of roadmap in advance.

Consequently, a certain time and dedication are needed upfront for the proposed

approach.

7.7 Testing Issues

Error handling and defect recovery have been applied for both methodologies.

Integration testing has been applied to check the complete modules of BioNET and

their interactions. Functional testing has been attempted to determine whether a

component's implementation provides the behavior described in its specification,

which is SRS and defined use case diagrams or feature set.

Model testing has been applied for implementation with FOD distinctly. Using

model testing with Web services for “workflow model”, “rule model”, “business

process” has been applied in cases where the models are used and attached with a

kind of executability.

It has been observed that loosely coupled designs of FOD has yielded more

facilitated environments for unit and integration testing when compared to more

monolithic and tightly coupled designs of OOD. Moreover, model testing was

 71

available in FOD by default but OOD needs extra effort to put this on the table

unless a pure Model-Driven Development approach has been anticipated.

7.8 Maintenance Issues

The maintenance issues of continuously checking against desired functionality,

tracing, debugging, monitoring have been applied for both of the development

methodologies for the measurements of performance, serviceability, usability, and

reliability.

Debugging and monitoring in FOD method follow easily rather than OOD method

during the implementation of BioNET. Because of each feature can be implemented

in a single application as Web service, FOD provided a better environment for

separation and composition of concerns when compared to the monolithic building

blocks of objects. Managing crosscutting issues is another fact to consider.

Pragmatically, OOD should be accompanied with separate techniques like Aspect-

Oriented Programming, but since the proposed FOD approach has been

implemented on a proper application framework (BizTalk Server 2006), which has

managed majority of these issues on its own.

7.9 Administrative Issues

In the development of BioNET with OOD, both the functional and non-functional

requirements were all realized in terms of active and running objects. This

approach necessitates the coding or re-coding of all issues in order to manage the

change of requirements. Another administrative issue for OOD to keep in mind

that almost every requirement should be delegated to IT personnel to model,

design, develop and deploy, which lengthens and complicates the process as well

as making it more error prone.

On the other hand, the development of BioNET with FOD has embraced a more

declarative and generative approach that facilitates some minor changes even

through the standard tools and abilities BizTalk Server 2006 provides. In that

sense, the loosely coupled nature of Service-Oriented Architecture and the more

agile nature of Feature-Driven Development have helped much to leverage a more

systematic administrative environment for BioNET with FOD implementation.

 72

7.10 Tool Support

The implementation of BioNET with OOD has been facilitated with Visio as the

UML Case tool, .NET 2.0 Framework as the composing environment, Visual Studio

2005 as the development environment, and MS-SQL Server 2000 as the database

management system. Even though the same vendor has provided the complete

toolset, a lack of integrity has been observed during the development of the

application. For example, model changes in Visio could not be reflected

automatically to the actual class implementations in Visual Studio. This

complicated the debugging and monitoring efforts as well.

Microsoft BizTalk Server 2006, rather, provides a more complete environment to

model, design, implement, test, and deploy the application within the context of

FOD approach. The development environment empowers more declarative and

generative abilities, which lessens down the development and maintenance efforts

dramatically. The most important drawback of FOD approach in tool support has

been faced in drawing the FODA-compliant feature diagrams since this part is

completely an add-on to BizTalk Server 2006, which was not originally designed to

support neither features, nor Feature-Oriented Domain Analysis.

 73

CHAPTER 8

SUMMARY AND CONCLUSIONS

This chapter summarizes the achievements and concludes the issues based on

applying Feature-Oriented Development and Object-Oriented Development

approaches on a case study and comparing the results accordingly. Extensions of

the study have also been provided at the end.

8.1 Summary

A software development process defines the values, principles and practices used

to achieve the goal of the software project. It aims, to promote best practices, try to

satisfy customers' real needs, and to infuse a common vision and culture in a team

[Hayes and Andrews]. There has been a lot of software development processes

created over the years [Hayes and Andrews]. An overview of software development

methodologies reported in Chapter 2, where these methods have been mainly

classified as formal and informal. Informal methods were classified as heavy or

agile in nature.

Each heavy methodology, such as Object-Oriented Development using objects,

Model-Driven Development using models and Software Product Line Engineering

using assets, has some certain characteristics to identify it from the others.

On the other hand, agile methods are approaches to managing the development of

Internet products and services based on principles of flexible manufacturing and

lean development [Rico, 2006]. Agile methods emerged with a focus on early

customer involvement, iterative development, self-organizing teams, and flexibility

[Hayes and Andrews]. The fundamental agile methods are Scrum, Dynamic

Systems Development Method, Crystal Methods, Lean Development, Extreme

 74

Programming, Adaptive Software Development, and Feature-Driven Development

[Highsmith, 2002].

The use of features in software development has been discussed in Chapter 3. The

feature concept and the use of features both in domain and application

engineering have been introduced. For domain engineering, Feature-Oriented

Domain Analysis is commonly used in a case study to represent the basic building

blocks of the software development. For application engineering, the agile software

development lifecycle of Feature-Driven Development introduced and applied

practices whole the software development also in a case study. Application

engineering uses the production facilities provided during domain engineering to

produce applications of the family quickly. However, application engineering can

be performed in parallel to the domain engineering [Harsu, 2003].

Chapter 4 has introduced the proposed Feature-Oriented Development approach.

FOD uses a FODA-based feature domain modeling approach for domain

engineering, which is supported by an agile Feature-Driven Development process

for the application engineering. Moreover, the proposed FOD approach uses a

different implementation strategy rather than conventional FDD is proposing the

classical objects of OO, which is based on a loosely coupled combination model

composing “business services”, “business rules”, and “business workflows” on a

Service-Oriented Architecture.

Chapter 5 and Chapter 6 have demonstrated the way to apply OOD and FOD on

the case study BioNET, respectively. BioNET is a security-based controlled,

product and shopping management system using fingerprint validation system.

The comparative analysis of both methodologies has been explained in detailed in

Chapter 7.

8.2 Conclusions

An Object-Oriented Software Development Methodology (OOSDM) is specifically

aimed at viewing, modeling and implementing the system as a collection of

interacting objects, using specialized modeling languages, activities and techniques

needed to address the specific issues of the object-oriented paradigm [Ramsin,

2006]. An important feature of Object-Oriented Development (OOD) is that

software objects represent real-world objects [Palmer and Felsing, 2002].

 75

The Object-Oriented Software Development Life Cycle [Purcell, 2007] model has

these phases that roughly correspond to the traditional SDLC phases noted in

brackets:

1. Object-Oriented Requirements Analysis (OORA) [System Analysis]: This

is where classes of objects and the interaction between them are defined.

2. Object-Oriented Analysis (OOA) [Analysis]: In terms of object-oriented

concepts, understanding, and modeling a particular problem within a

problem domain.

3. Object-Oriented Design (OOD) [System Design Specification]: The object

is the basic unit of modularity; objects are instantiations of a class.

4. Object-Oriented Programming (OOP) [Programming and Testing]:

Emphasizes the employment of objects and methods rather than types or

transformations, as in other programming approaches.

The proposed approach, Feature-Oriented Development using Service-Oriented
Architecture, is defined with models, methodology and techniques. The concept of

the proposed approach is analyzing the domain by FODA as a “feature model”, and

applying the software development processes with FDD based on “feature lists”,

and implementing the features in terms of “business services”, “business rules”,

and “business workflows” all having their roots on Web services of Service-Oriented

Architecture.

The followings are the main results and contributions of this thesis:

In the proposed approach, each feature can be represented with the Business

Workflow Model (BWM) to follow business activities, the Business Rule Model

(BRM) to classify and manage all its rules, and the Business Computation Model

(BCM) to execute the business activities. So, the term “feature” can be simply

defined in this form as a combination of business process models:

Feature = BWM + BRM + BCM

This thesis work either formed or exploited the FOD approach with:

1. Using features facilitates the user and developer ensuring to understand

the requirements in terms of business-valued “features”.

 76

2. Main strategy is to define the elements, which are subsystem, services, etc.,

and how the domain features are allocated to them. The feature lists have

been built using FDD practices, which provided a facility to decompose the

application acts.

3. The business process model is created with feature or feature set(s) and the

feature lists are then realized by FDD practices.

4. The features are modeled in terms of services, rules, and workflows with a

“separation of concerns” principle in mind. They are later composed and

orchestrated by a Business Process Modeling framework.

5. FOD approach provides the communication in terms of loosely coupled Web

services.

6. Business modeling technique provides implementation with less effort of

coding.

7. The FOD approach facilitates the reuse and sharing of feature models.

8. Debugging and monitoring in FOD follow easily rather than OOD method in

implementation BioNET. Because of each feature can be implemented in a

single application as Web service. Consequently, the maintenance of a

single application or service is rather easy to achieve.

8.3 Extensions of the Study

As an extension, a seamless integration of a FODA modeling tool with BizTalk

Server 2006 will make the FOD a “roundtrip engineering” approach, where reverse

and forward engineering might be facilitated.

Another extension of the study might be proposing a more detailed feature-oriented

design technique to manage the commonality and variability of features in terms of

“business services”, “business rules”, and “business workflows”.

 77

A future work might be another comparative analysis of OOD with FOD, but this

time features can be implemented with AHEAD model and thorough Feature-

Oriented Programming (FOP). Even, the results of such a study will be further

cross-analyzed with the results of this thesis study where a three column (OOD,

FOD using SOA, and FOD using FOP) matrix can be formed.

 78

REFERENCES

[1] ABRAHAMSSON, P., et al., [2002], Agile Software Development Methods Review
Analysis, VTT Electronics, University of Oulu, Finland.

[2] AKTAS, Z., and CETIN, S., [2006], We Envisage the Next Big Thing, In Integrated

Design and Process Technology, IDPT-2006, Society for Design and Process Science,
San Diego, CA, USA, June.

[3] AMBLER, S.W., [1], URL: http://www.ddj.com/dept/architect/184415799.

[4] AMBLER, S.W., [2], URL: http://www.agilemodeling.com/essays/fdd.htm.

[5] ANDERSON, D.J., [2004], Feature-Driven Development: Towards a TOC, Lean and

Six Sigma Solution for Software Engineering, Microsoft Corporation, October.

[6] ANDERSON, D.J., URL: http://www.agilemanagement.net/Articles/Weblog/

Archives/ February2007.html.

[7] ARSLAN, V., et al., [2003], Concurrent Object-Oriented Programming on .NET, IEE

Proceedings Software, Special Issue on ROTOR, October.

[8] BATORY, D., et al., [2003], Scaling Step-Wise Refinement, International Conference

on Software Engineering, Portland, Oregon.

[9] BENAVIDES, D., et al., [2006], A Survey on the Automated Analyses of Features

Models, XV Jornadas de Ingenier´ıa del Software y Bases de Datos JISBD,
Barcelona.

[10] BERG, K., and BISHOP. J., [2005], Tracing Software Product Line Variability – From

Problem to Solution Space, University of Pretoria and DIRK MUTHIG Fraunhofer
IESE.

[11] BOOCH, G., [1993], Object-Oriented Analysis and Design with Applications (2nd ed.).

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.

[12] BRAGANÇA, A., and MACHADO, R.J., [2004], A Methodological Approach to

Domain Engineering for Software Variability Enhancement, Proceedings of the 2nd
Workshop on Method Engineering for Object Oriented and Component Based
Development - ME’04 (OOPSLA’04), Vancouver, Canada, pp. 39-50, COTAR Edition,
Sydney, Australia, [ISBN-0-9581915-3-0], October.

 R1

[13] CAUSE. G., [2004], Delivering Real Business Value using FDD, Methods & Tools,
Global knowledge source for software development professionals ISSN 102-4918,
Winter 2004 (Volume 12 – number 4).

[14] CHAPPEL, D., [2005], Understanding BizTalk Server 2006, Microsoft Corporation.

[15] CLEMENTS, P., and NORTHROP, L., [2001], Software Product Lines: Practices and

Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[16] COAD, P., and YOURDON, E., [1991], Object-Oriented Analysis (2nd ed.), Yourdon

Press, Upper Saddle River, NJ, USA.

[17] COAD, P., et al., [1999], Java Modeling in Color with UML, Prentice Hall.

[18] COAD, P., [2003], Agile Processes: Developing Your Own Secret Recipes, Borland.

[19] COHEN, S.G., et al., [1992], Application of Feature-Oriented Domain Analysis to the

Army Movement Control Domain, Technical Report CMU/SEI-91-TR-028 ESD-91-TR-
028, Carnegie Mellon University, Pittsburgh, Pennsylvania.

[20] CZARNECKI, K., [2005], Overview of Generative Software Development. In J.-P.

Banâtre et al. (Eds.): Unconventional Programming Paradigms (UPP) 2004, Mont
Saint-Michel, France, LNCS 3566, pp. 313–328.

[21] DE OLIVEIRA, T.C., et al., [2001], Using XML and Frameworks to Develop

Information Systems, Pontifícia Universidade Católica do Rio de Janeiro, Brazil.

[22] DEARING, R., URL:http://searchwebservices.techtarget.com/originalContent/

0,289142, sid26_gci871817,00.html.

[23] ELRAD, T., et al., [2001], Discussing Aspects of AOP, Communications of the ACM

44, pp. 33–38.

[24] FANCEY, J., URL:http://msdn.microsoft.com/msdnmag/issues/05/03/BPEL4WS.

[25] FDD, URL:http://www.featuredrivendevelopment.com/.

[26] FICHMAN, R. G., and KEMERER, C. F., [1997] Object Technology and Reuse:

Lessons from Early Adopters. Computer, 30(10):47–59.

[27] GARCIA, G., URL:http://www.eetasia.com/ARTICLES/2006JUN/PDF/EEOL_

2006JUN16_ EMS_EDA_TA_01.pdf.

[28] GARDNER, T., URL: http://www.ariadne.ac.uk/issue29/gardner/.

[29] GITZEL, R., and KORTHAUS, A., [2004], The Role of Metamodeling in Model-Driven

Development. In Proceedings of the 8th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI2004) , 19-21 July, 2004, Orlando, USA, July.

 R2

[30] GMV, [2007], Domain Engineering Methodologies Survey, Version: Issue 1 Draft C,
Date: June 20, 2007, GMV Innovating Solutions, Madrid.

[31] GRISS, M.L., et al., [1998], Integrating Feature Modeling with the RSEB, Software

Reuse, 1998. Proceedings of Fifth International Conference on Volume, Issue, 2-5
Jun 1998 Page(s): 76 – 85.

[32] HARRISON, A., and TAYLOR, I., URL: http://www.cl.cam.ac.uk/~ey204/ADPUC

/ADPUCSCHEDULE/ Papers/ a2-harrison.pdf.

[33] HARSU M., [2003], From Architectural Requirements to Architectural Design. Report

34, Institute of Software Systems, Tampere University of Technology, May, 44 pp.

[34] HAYES, S., and ANDREWS, M., URL: http://www.wrytradesman.com/articles/.

[35] HIGHSMITH, J. [2002], Agile Software Development Ecosystems, Pearson

Education.

[36] HIGHSMITH, J.M., and Cutter Consortium, [2002], What Is Agile Software

Development?, CrosTalk The Journal of Defense Software Engineering.

[37] JADHAV, A., et al., URL: http://wwwagse.informatik.unikl.de/teaching/re/

ss2007/ downloads/Student%20Talks/FODA_Talk.pdf.

[38] KANG K., et al., [1990], Feature Oriented Domain Analysis (FODA) Feasibility Study,

Technical report CMU/SEI -90-TR-021, Software Engineering Institute, Carnegie
Mellon University, Pittsburg, PA.

[39] KANG K., et al., [1998], FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures. Annals of Software Engineering, 5:143–168.

[40] KHRAMTCHENKO, S., [2004], Comparing eXtreme Programming and Feature Driven

Development in Academic and Regulated Environments, Final paper for CSCIE-275:
Software Architecture and Engineering, Harvard University.

[41] KICZALES, G., [1996], Aspect-Oriented Programming, ACM Computing Survey,

Volume 4: 157.

[42] KICZALES, G., et al., [1997] Aspect–Oriented Programming, in ECOOP’97, LNCS

1241, pp. 220–242.

[43] KOLLU, K.R., [2005], Evaluating the PLUSS Domain Modeling Approach by Modeling

the Arcade Game Maker Product Line, Master’s Thesis in Computing Science June
21st, 2005, Umeå University, Sweden.

[44] KULOOR, C., and EBERLEIN, A., (2002), Requirements Engineering for Software

Product Lines, Proceedings of the 15th International Conference on Software &
Systems Engineering and their Applications (ICSSEA’02), Paris, France.

 R3

[45] LEICH. T. et al., URL: http://www.cs.uvic.ca/~mstorey/etx2005/papers-
1/12%20Tool%20Support%20for%20Feature%20Oriented%20Software%20Develop
ment% 20FeatureIDE.pdf.

[46] MANGAN, P.J., and SADIQ, S., [2003], A Constraint Specification Approach to

Building Flexible Workflows, Journal of Research and Practice in Information
Technology, Vol. 35, No. 1, February.

[47] MICROSOFT, URL: http://www.microsoft.com/.

[48] MORRISON, K., URL: http://www.nysia.org/events/past/docs/20031021_ softEng

Proj Mgt_fddMorrison.pdf.

[49] MSDN, URL: http://msdn2.microsoft.com/en-us/library/aa560249.aspx.

[50] OLIVIER, B., URL: http://www.jisc.ac.uk.

[51] OMG, URL: http://www.omg.org/mda.

[52] PALMER, S.R., URL: http://www.phptr.com/articles/article.asp?p=26059&rl=1.

[53] PALMER, S.R., and FELSING, J.M., [2002], A Practical Guide to Feature-Driven

Development, Prentice Hall, (ISBN 0-13-067615-2).

[54] PANCAKE, C. M., [1995], The Promise and the Cost of Object Technology: A Five-

Year Forecast. Communications of ACM, 38(10):32–49.

[55] PINTO, M., et al., [2002], Separation of Coordination in a Dynamic Aspect Oriented

Framework, AOSD 2002, Enschede, The Netherlands.

[56] PRESSMAN, M., [2005], Software Engineering, 6th Ed., McGraw Hill, International

Edition.

[57] RAMSIN, R., [2006], The Engineering of an Object-Oriented Software Development

Methodology, Department of Computer Science The University of York, UK, April.

[58] RICO, D.F., [2006], Agile Methods and the Links to Customer Satisfaction and Firm

Performance, Strawman, Version 0.0, August 21.

[59] ROTHENBERGER, M. A., et al., [2003], Strategies for Software Reuse: A Principal

Component Analysis of Reuse Practices. IEEE Transactions on Software Engineering,
29(9):825–837.

[60] SCHAPIRO, A., URL: http://blogs.southworks.net/blogs/ariel/default.aspx?p=2.

 R4

[61] SCHWADERER, C., [2006], Pioneering Model Mriven Development, CompactPCI and
AdvancedTCA Systems, US.

[62] SEI, URL: http://www.sei.cmu.edu/domain-engineering/domain_eng.html.

[63] SPARX SYSTEMS, URL: http://www.sparxsystems.com/platforms/business_

process modeling.html.

[64] SYED-ABDULLAH, S.L., [2005], Empirical Study on Extreme Programming,

Department of Computer Science University of Sheffield, January.

[65] WEBBER, J., URL: http://soa.sys-con.com/read/39830.htm.

[66] WHITE, S.M., [2004], A Comparative Analysis of Object-Oriented and Other Methods

For Modeling Computer Based Systems, Proceedings of the 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS’04).

[67] ZHANG, L.J., [2003], On Demand Business Collaboration with Services Computing,

E-Business Solutions, IBM T.J. Watson Research Center.

[68] ZUBROW, D., and CHASTEK, G., [2003], Measures for Software Product Lines.

Technical Report CMU/SEI-2003-TN-031, Carnegie Mellon University, Software
Engineering Institute.

 R5

APPENDIX A

Desktop Application of BioNET: ADMINISTRATION MODULE

E
m

p
lo

y
e
e
 S

e
a
rc

h
in

g
:

 -b
y
 S

ta
tu

s
-b

y
 N

a
m

e
 a

n
d

 S
u

rn
a
m

e

 A1

APPENDIX B

BioNET CREDIT MANAGEMENT MODULE

 A2

APPENDIX C

BioNET SHOPPING MANAGEMENT MODULE

P
ro

d
u

ct
s

 A3

APPENDIX D

BioNET SHOPPING MANAGEMENT MODULE

SALE PROCESSING

 A4

APPENDIX E

BioNET TRANSITION MANAGEMENT MODULE

 A5

APPENDIX F

SAMPLE BioNET ORCHESTRATIONS, XML SCHEMAS AND RULE

COMPOSITIONS

F1: READ A FINGERPRINT

Orchestration

XML Schema

 A6

F2: VERIFY A FINGERPRINT

Orchestration

XML Schema

 A7

F2: (Cont’d)

Rule Composition

 A8

F3: VALIDATE AN ACCOUNT

Orchestration

XML Schema

 A9

F3: (Cont’d)

Rule Composition

 A10

F4: CALCULATE A SALE

Orchestration

XML Schema

 A11

APPENDIX G

BioNET WEB SERVICES

 A12

G1: READFINGERPRINT WEB SERVICE

ReadFingerPrint

Click here for a complete list of operations.

Reading

Test
To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

FingerPrintImageID:

 Invoke

SOAP 1.1

The following is a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with actual
values.

Produced by Yuce Information System, May 2007
POST /ReadFinger/ReadFingerPrint.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Reading"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Reading xmlns="http://tempuri.org/">
 <FingerPrintImageID>string</FingerPrintImageID>
 </Reading>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ReadingResponse xmlns="http://tempuri.org/">
 <ReadingResult>long</ReadingResult>
 </ReadingResponse>
 </soap:Body>
</soap:Envelope>

 A13

http://localhost/ReadFinger/ReadFingerPrint.asmx

G2: VERIFYFINGERPRINT WEB SERVICE

VerifyFingerPrint

Click here for a complete list of operations.

Verifying

Test
To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

MernisID:

FingerPrintImageID:

 Invoke

SOAP 1.1

The following is a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with actual
values.

Produced by Yuce Information System, May 2007
POST /VerifyFinger/VerifyFingerPrint.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Verifying"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Verifying xmlns="http://tempuri.org/">
 <MernisID>long</MernisID>
 <FingerPrintImageID>string</FingerPrintImageID>
 </Verifying>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <VerifyingResponse xmlns="http://tempuri.org/">
 <VerifyingResult>boolean</VerifyingResult>
 </VerifyingResponse>
 </soap:Body>
</soap:Envelope>

 A14

http://localhost/VerifyFinger/VerifyFingerPrint.asmx

G3: CALCULATEOFTHESALE WEB SERVICE

CalculateOfTheSale

Click here for a complete list of operations.

Calculating

Test
To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

SaleID:

ProductID:

Amount:

Price:

Total:

 Invoke

SOAP 1.1

The following is a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with actual
values.

Produced by Yuce Information System, May 2007
POST /CalculateSale/CalculateOfTheSale.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Calculating"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Calculating xmlns="http://tempuri.org/">
 <SaleID>int aleID> </S
 <ProductID>int</ProductID>
 <Amount>double</Amount>
 <Price>double</Price>
 <Total>double</Total>
 </Calculating>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK

 A15

http://localhost/CalculateSale/CalculateOfTheSale.asmx

G3: (Cont’d)

Content-Type: text/xml; charset=utf-8
Content-Length: length<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <CalculatingResponse xmlns="http://tempuri.org/">
 <CalculatingResult>boolean</CalculatingResult>
 </CalculatingResponse>
 </soap:Body>
</soap:Envelope

 A16

APPENDIX H

BioNET WEB SERVICE: VB.NET CODE

'Produced by Yuce Information System, May 2007
Imports System.Web.Services
<System.Web.Services.WebService(Namespace :=

ervice/BioNETWebService")> _ "http://tempuri.org/BioNETWebS
Public Class BioNETWebService
 Inherits System.Web.Services.WebService
#Region " Web Services Designer Generated Code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Web Services Designer.
 InitializeComponent()
 'Add your own initialization code after the
InitializeComponent() call
 End Sub
....................
 <WebMethod(MessageName:="Identify(Byte(), Integer)")> _
 Public Function Identify(ByVal fingerprint As Byte(), ByVal
threshold As Integer) As Long
 Dim G As Byte
 Dim parmak As Parmak
 Dim contextH As Integer = VFCreateContext()
 Dim errorID As Integer = VFIdentifyStart(fingerprint,
contextH)
 SetDefault()
 CheckError()
................
 If errorID <> 0 Then
 VFIdentifyEnd(contextH)
 VFFreeContext(contextH)
 Throw New Exception(VFErrorToString(errorID))
 End If
......................
 End Function

 <WebMethod(MessageName:="Identify(String, Integer)")> _
 Public Function Identify(ByVal fingerprint As String, ByVal
threshold As Integer) As Long
................................
 End Function

 A17

 <WebMethod(MessageName:="RunProcedure(String)")
 Public Function RunProcedure(ByVal sql As String) As Integer
...............
 End Function

 <WebMethod(MessageName:="RunProcedure(String,Integer)")> _
 Public Function RunProcedure(ByVal sql As String, ByVal ID As
Integer) As Integer

 Dim db As New dbObject
 Dim value As Integer
 value = db.RunProcedure(sql, ID)
 db.Close()
 Return value
 End Function

 <WebMethod(MessageName:="RunProcedure(String,String)")> _
 Public Function RunProcedure(ByVal sql As String, ByVal
tableName As String) As DataSet
...............
 End Function

<WebMethod(MessageName:="RunProcedure(String,DataSet,tableName)")>
_
 Public Function RunProcedure(ByVal sql As String, ByRef dataset
As DataSet, ByVal tableName As String) As DataSet
 Dim db As New dbObject
 Dim ds As DataSet
...............
 Return ds
 End Function

 <WebMethod(MessageName:="Load(mernisID)")> _
 Public Function Load(ByVal mernisID As Long) As Kullanici
...............
 End Function

 <WebMethod(MessageName:="Load(userName,password)")> _
 Public Function Load(ByVal userName As String, ByVal password
As String) As Kullanici
..................
 End Function

 <WebMethod()> _
 Public Sub ParmakSave(ByVal parmak As Parmak)
 Dim db As New dbObject
 Dim ds As DataSet
 Dim parameters(4) As SqlClient.SqlParameter
 Dim gruplar As ParmakGruplari =
CType(Application("ParmakGruplari"), ParmakGruplari)
...................
 parameters(0) = New SqlClient.SqlParameter
 parameters(0).ParameterName = "@Prefix"
 parameters(0).SqlDbType = SqlDbType.Char

 If ds.Tables(0).Rows.Count = 0 Then

 A18

 parameters(0).Value = "I"
 Else
 parameters(0).Value = "U"

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel

<System.Web.Services.WebService(Namespace:="http://tempuri.org/")>
_
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.Basi
cProfile1_1)> _
<ToolboxItem(False)> _
Public Class CalculateOfTheSale
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function Calculating(ByVal SaleID As Integer, ByVal
ProductID As Integer, ByVal Amount As Double, ByVal Price As
Double, ByVal Total As Double) As Boolean
 Return True
 End Function

 End If
.....................
 End Sub

 <WebMethod()> _
 Public Sub ParmakDelete(ByVal parmak As Parmak)
 Dim gruplar As ParmakGruplari =
CType(Application("ParmakGruplari"), ParmakGruplari)
 Dim grup As ParmakGrubu
 Dim rParmak As Parmak
 Dim db As New dbObject

..................

 For Each grup In gruplar
 For index As Integer = 0 To grup.Parmaklar.Count - 1
 If index < grup.Parmaklar.Count Then
 rParmak = grup.Parmaklar(index)
 If rParmak.Kullanici.MernisID =
parmak.Kullanici.MernisID AndAlso rParmak.Index = parmak.Index Then
 grup.Parmaklar.Remove(rParmak)
 index -= 1
 End If
 End If
 Next
 Next
 End Sub

 <WebMethod()> _
 Public Function CheckIsRegistered() As String
 Return CStr(Application("ErrorString"))
 End Function

 Private Sub CheckError()

 A19

 If Not CStr(Application("ErrorString")) = "Registered" Then
 Throw New Exception(CStr(Application("ErrorString")))
 End If
 End Sub
End Class

Public Class ReadFingerPrint
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function Reading(ByVal FingerPrintImageID As String) As
Long
 Dim mernisID As Long
........
 End Function

Public Class VerifyFingerPrint
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function Verifying(ByVal MernisID As Long, ByVal
FingerPrintImageID As String) As Boolean
.....
 End Function

Public Class CalculateOfTheSale
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function Calculating(ByVal SaleID As Integer, ByVal
ProductID As Integer, ByVal Amount As Double, ByVal Price As
Double, ByVal Total As Double) As Boolean

.............
 End Function

 A20

	thesis_part1
	1_September2007Report_Header1
	2_September2007Report_Header2
	3_September2007Report_AbstractLists1
	4_September2007Report_AbstractLists2

	thesis_part2
	6.2.2 What BizTalk Server 2006 Provides

	thesis_part3
	6_September2007Report_Referencing
	[5] ANDERSON, D.J., [2004], Feature-Driven Development: Towards a TOC, Lean and Six Sigma Solution for Software Engineering, Microsoft Corporation, October.
	[24] FANCEY, J., URL:http://msdn.microsoft.com/msdnmag/issues/05/03/BPEL4WS.

	7_September2007Report_Appendix
	Reading
	Test
	SOAP 1.1

	Verifying
	Test
	SOAP 1.1

	Calculating
	Test
	SOAP 1.1

