

WIRELESS NETWORK SECURITY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

ÇANKAYA UNIVERSITY

BY

ÇAĞLAR ÜLKÜDERNER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2007

iii

iv

v

ABSTRACT

WIRELESS NETWORK SECURITY

Ülküderner, Çağlar

M.S.c., Department of Computer Engineering

Supervisor : Asst Prof. Dr. Reza Hassanpour

SEPTEMBER 2007, 102 pages

This thesis includes a comparative study on wireless network security

issues. Thesis also introduces a new method using a GSM operator which

can control the internet accesses with improved security. By this method,

mobile devices without GPRS cards can use internet access services

using 802.11x connections and making acceptable investment by GSM

operators.

Keywords: Wireless Network Security, One Time Password on Wireless
Networks

vi

ÖZ

KABLOSUZ AĞ GÜVENLİĞİ

Ülküderner, Çağlar

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Yar. Doç. Dr. Reza Hassanpour

Eylül 2007, 102 sayfa

Bu çalışma, kablosuz ağ güvenliğini incelemektedir. Çalışma, GSM

operatörlerinin, internet erişim noktalarını nasıl kontrol edebileceği ve

güvenliği arttırılmış yeni bir yöntem içermektedir. Bu yöntem ile mobil

araçlar için GPRS kart kullanmadan, 802.11x bağlantısı kullanılarak,

makul bir yatırımla GSM operatörleri üzerinden internet erişim hizmeti

vermek mümkün olabilir.

Anahtar Kelimeler: Kablosuz Ağ Güvenliği, Kablosuz Ağlarda Tek
Kullanımlık �ifre

vii

ACKNOWLEDGMENTS

I would like to give my pleasures to my supervisor Asst. Prof. Dr. Reza

Hassanpour for his great patience throughout my university life and thesis.

Also thanks for the great support to my brother Türker Gülüm.

I dedicate this thesis to my mom Gülay Ülküderner.

viii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM... iii

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES... x

LIST OF TABLES .. xi

CHAPTERS:

1INTRODUCTION..1

1.1Problem Definition and Motivation ...2

1.2 Scope of Thesis ...2

1.3. Main Challenges ..3

1.4. Brief Introduction to Methods Used ..3

2. FUNDAMENTALS OF WIRELESS NETWORK PROTOCOLS AND
SECURITY ISSUES...4

2.1. IEEE 802.11 standards ..5

2.2. Prevalence of Wireless and 802.11..7

2.3. General Security Problems on 802.118

2.3.1. EAP-MD5 ..8

2.3.2. EAP-OTP ..10

2.3.3. EAP-GTC..10

2.4. Seven Problems on 802.11..10

2.4.1.PROBLEM #1: EASY ACCESS ..10

2.4.2. Problem #2: "Rogue" Access Points11

ix

2.4.3. Problem #3: Unauthorized Use of Service12

2.4.4. Problem #4: Service and Performance Constraints13

2.4.5. Problem #5: MAC Spoofing and Session Hijacking...........15

2.4.6. Problem #6: Traffic Analysis and Eavesdropping..............16

2.4.7. Problem #7: Higher Level Attacks.....................................17

3.Wi-Fi NETWORK TRAFFIC...19

3.1. Connection / Access Protocol in Wi-Fi Networks19

3.2. Analyzing Wi-Fi Network Traffic ...20

3.3. Information From All Frames..21

3.4. Information From Data Frames ..22

3.5. Information From Management Frames...................................23

3.6. Summary of Wi-Fi traffic...24

4.WEP Overview ..26

4.1. Decrypting data without keys ...29

4.2. WEP IV problems...29

4.3. Some attacks ...31

4.4. Problems with RC4 ..34

4.5. Cipher and mode of operation..35

4.6. Session key derivation ...36

5.Wi-Fi PROTECTED ACCESS (WPA)..38

5.1. Background information for WPA...38

5.1.1. WPA-PSK ...38

5.1.2. Breaking Confidentiality ..38

6.BREAKING THE SECURITY OF WI-FI ...39

6.1. Recovering a Passphrase Seeded WPA Key...........................39

6.2. WI-FI Protected Access (WPA) ..41

6.3. Software Tools ...42

6.3.1. KISMET...43

6.3.2. TCPDump ...44

6.3.3. ETHREAL ...45

6.3.4. Ettercap...46

6.3.5. IPTABLES...47

x

6.3.6. HOSTAP ...47

6.3.7. WPA Supplicant ..48

6.3.8. MadWiFi..48

7.GSM LOCATION BASED AUTHENTICATION USING SMS...............49

7.1. Steps Of Authentication..50

8.CONCLUSION...52

REFERENCES.. R1

APPENDICESY... A1

A. Acronyms & Abbreviations .. A1

B. Used Configurations:... A6

B.1. hostapd.conf .. A6

B.2. wpa_supplicant.conf... A3

B.3. wireless_ap configuration shell script............................... A3

B.4. SMS Server-Client Program... A4

B.4.1.corePortAccess.c .. A4

B.4.2.messageSendingCore.c.. A7

B.4.3.zaman.c .. A19

B.4.4.sms_server.c... A20

B.4.5.sms_client.c .. A26

B.4.6.Makefile... A29

B.4.7.SMSd .. A30

 xi

LIST OF FIGURES

Figure 1 Simple Working Diagram..4

Figure 2 Eap-Md5 Choreography ...9

Figure 3 The Protocols Of Connecting To A Wi-Fi Network.19

Figure 4 Mac Frame Format. ..20

Figure 5 Frame Control Field..21

Figure 6 Capability Field Of The Beacon Frame.....................................23

Figure 7 Kismet Screen Shot..43

Figure 8 Ethreal Screen Shot ...45

Figure 10 Gsm Location Based Authentication Using Sms50

 xii

LIST OF TABLES

Table 1 Information Available From An Analysis Of Wi-Fi Frames.24

 1

CHAPTER 1

INTRODUCTION

There are many authentication techniques for wireless networks. Some of

these techniques can be easily cracked by hackers yet others can be

cracked by pattern matching, brute force attacks and similar techniques.

Nowadays there are some additional authentication mechanisms such as

radius servers for wireless authentication. They create user name

password authentications for wireless access.

There are next generation security mechanisms which generate one time

passwords. This mechanism uses time as input. After obtaining the time, it

generates the password for predefined time space. By this method user’s

password is changed every time. User does not need to worry about

his/her password.

This method is useful for public areas such as hotels, cafes, schools,

offices etc. In such places every user will have a one time password

generator and except them nobody can use the wireless network. This

password generator can be configured by other services as well as

wireless authentication server.

This method is not used for wireless authentication. This thesis is also

related to an application using one time password generators with mobile

phones in wireless network authentication

1.1 Problem Definition And Motivation

Mainly there are several authentication techniques on wireless access.

The problem is that hacking those systems are not very complicated. The

strongest one is WPA and it can be hacked in one hour on fair average.

Most of the attackers use open source cracking program called aircrack

[1]. We can use One Time Password (OTP) against these attacks. This

can be achieved by using token cards (EAP-GTC) but this is not very

useful. Nowadays we are using PDA, embedded computers etc. with or

without USB ports or PCMCIA slots. This means that the token card is not

meaningful for such devices in daily life. The alternative of this technology

is OTP generators. The approach is using OTP with mobile operators. In

public areas, the internet connection is becoming a problem. The security

is the most important part of these connections. Mobile operators can be

used for these operations. Short Message Services (SMS) can be used for

password transactions. Also the requested area coordinates can be used

as input.

Wireless systems are widely used in nowadays. Therefore, the main

problem is restriction of users in wireless access. There is mobile

communication almost everywhere. Mobile phones are a part of daily life.

No one wants to remember passwords. On the other hand, no one wants

anyone to get his or her passwords. For this reason, mobile technologies

can be combined with wireless access authentication. This will be the

simplest method for secure connection.

1.2 Scope Of The Thesis

This thesis includes a research on general wireless security mechanisms

and their problems. It also introduces a new method of using securely one

time password generators in public areas. Using this method, it is possible

to merge mobile SMS technology, mobile location finder and wireless OTP

technology.

 3

1.3 Main Challenges

Our first goal is to analyze wireless security mechanisms and holes and

offering different authentication methods.

There are two authentication mechanisms related to OTP in Extensible

Authentication Mechanism (EAP). Those authentication mechanisms are

named as EAP-OTP and EAP-GTC. EAP-OTP is based of EAP-MD5.

Both use an external authentication server. This is also another problem.

The second goal is not to use any external authentication server with OTP.

The authentication password can be changed by UNIX time but reentering

the password is the main problem for an authenticated user. A session

base system can be developed as a solution. After the authentication, the

user will start the session and continue with a session period. At this point,

session can be stolen by an attacker. However, first of all attacker must

find the security code which is generated by the user using one time

password generator. It can be resolved by pattern matching technique as

the attacker can catch a specific pattern.

1.4 Brief Introduction To Methods Used

Open source architectures are used for testing and developing the OTP

codes. First, a wireless access point (AP) which is a wireless card that can

work on managed mode is constructed. For authentication, open source

programs are used. A shell code which is just as the proof of concept for

using one time password generator without EAP-OTP and EAP-GTC is

developed. It has been started by analyzing the authentication

mechanisms.

D-Link PCMCIA card with RA link chip set [2] for managed mode AP is

used. For client, Intel based wireless card is used. As an open source

 4

product hostap1 driver for AP and madwifi [3] for authentication and

iptables for routing the packets between the interfaces is chosen. As the

operating system, Fedora Core 5 Linux Kernel 2.6.20-1.2312.fc5 is used.

Kismet [4] for detecting access points, Ettercap for wireless sniffing,

Ethreal and Wire Shark for sniffing and TCPDUMP for dumping the

packets are used.

It is simply shown below (Figure 1):

Figure 1 Simple Working Diagram

__
1 Appendix 10.2.1 hostapd configuration, 10.2.2 wpa_supplicant configuration, 10.2.3
wireless_ap_configuration shell script

 5

CHAPTER 2

FUNDAMENTALS OF WIRELESS NETWORK PROTOCOLS

AND SECURITY ISSUES

2.1 IEEE 802.11 standards

These standards are also known as Wi-Fi. The purpose of these standards

is to provide wireless connectivity to automatic machinery, equipment or

stations that require rapid deployment, which may be portable or hand-

held or which may be mounted on moving vehicles within a local area.

These standards also offers regulatory bodies a means of standardizing

access to one or more frequency bands for the purpose of local area

communication.

The IEEE standards numbers and contents are shown below [5]:

IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standards for

Information Technology — Telecommunications and Information

Exchange between Systems — Local and Metropolitan Area Network —

Specific Requirements — Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications

IEEE 802.11a-1999 (8802-11:1999/Amd 1:2000(E)), IEEE Standard for

Information Technology — Telecommunications and information exchange

between systems — Local and metropolitan area networks — Specific

requirements — Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications — Amendment 1: High-speed

 6

Physical Layer in the 5 GHz band

IEEE 802.11b-1999 Supplement to 802.11-1999, Wireless LAN MAC and

PHY specifications: Higher speed Physical Layer (PHY) extension in the

2.4 GHz band

802.11b-1999/Cor1-2001, IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local

and metropolitan area networks — Specific requirements — Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications — Amendment 2: Higher-speed Physical Layer (PHY)

extension in the 2.4 GHz band — Corrigendum1

IEEE 802.11d-2001, Amendment to IEEE 802.11-1999, (ISO/IEC 8802-

11) Information technology — Telecommunications and information

exchange between systems — Local and metropolitan area networks —

Specific requirements — Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications: Specification for

Operation in Additional Regulatory Domains

IEEE 802.11e-2005, IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local

and metropolitan area networks — Specific requirements Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications: Amendment 8: Medium Access Control (MAC) Quality of

Service Enhancements

IEEE 802.11F-2003 IEEE Recommended Practice for Multi-Vendor

Access Point Interoperability via an Inter-Access Point Protocol Across

Distribution Systems Supporting IEEE 802.11 Operation

IEEE 802.11g-2003 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local

 7

and metropolitan area networks — Specific requirements — Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications — Amendment 4: Further Higher-Speed Physical Layer

Extension in the 2.4 GHz Band

IEEE 802.11h-2003 IEEE Standard for Information technology —

Telecommunications and Information Exchange Between Systems —

LAN/MAN Specific Requirements — Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications: Spectrum

and Transmit Power Management Extensions in the 5GHz band in Europe

IEEE 802.11i-2004 Amendment to IEEE Std 802.11, 1999 Edition (Reaff

2003). IEEE Standard for Information technology — Telecommunications

and information exchange between system — Local and metropolitan area

networks — Specific requirements — Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications —

Amendment 6: Medium Access Control (MAC) Security Enhancements

Interpretation

IEEE 802.11j-2004 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local

and metropolitan area networks — Specific requirements — Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications — Amendment 7: 4.9 GHz–5 GHz Operation in Japan

2.2 Prevalence of Wireless and 802.11

This chapter summarizes the currently available Local Area Wireless

technologies that can be employed to build a wireless communication

network. Wireless systems can be divided into three categories namely

portable, fixed and IR (infrared) wireless systems.

 8

• Portable wireless systems are battery-powered devices that can be

used both inside and outside the wireless facility. Examples include

laptops and personal digital assistants (PDAs).

• Fixed wireless systems require a line of sight for connection. They

use fixed antennas, provide data connectivity as high as a cable and

are used for high-speed data connection.

• IR wireless systems use infrared radiation to send signals. They

have very short range. Examples are television remote controls,

cordless computer keyboards and mouse.

Our thesis is based on the 802.11-based Wireless Local Area Networks

(WLANs) Security, which comes under the category of portable wireless

systems.

2.3 General Security Problems on 802.11

Many organizations are now considering deployment of wireless LANs and

are working on the basic network designs before going to pilot projects as

long as network security is concerned. The problems with security on

802.11 networks have been widely reported elsewhere. Network architects

are now facing the challenge of designing secure networks in light of the

known problems. This article will discuss seven of the most pressing

wireless LAN security problems and potential designs that can mitigate the

risk associated with each of them.

2.3.1 EAP-MD5

The EAP-MD5 is a Challenge Handshake Authentication Protocol (CHAP),

as defined in RFC 1994. Figure 2 shows the choreography of the EAP-

MD5 mechanism.

 9

Figure 2 EAP-MD5 Choreography

For EAP-MD5 to work, the client and the authentication server must have

a shared secret, usually a password associated with an identity/username.

This needs to be established out of band (Step 1 in Figure 2). The

connectivity (Step 2 in Figure 2) and identity exchange (Step 3 in Figure 2)

are required before the EAP-MD5 process. The EAP-MD5 method

consists of a random challenge to the supplicant (Step 4-a in Figure 2) and

a response from the supplicant (Step 4-c, Step 4-d in Figure 1), which

contains the hash of the challenge created using the shared secret (Step

4-b in Figure 2). The authentication server verifies the hash (Step 4-e in

Figure 2 and accepts or rejects the authentication. The authenticator

allows or disallows access (Step 5 in Figure 2) based on this decision. If

successful, the supplicant gains access (Step 6 in Figure 2).

 10

EAP-MD5 is a pure authentication protocol; after the authentication, the

messages are transmitted in clear text. It is also a client authentication

protocol - the server side (authenticator) is not authenticated; therefore, it

cannot detect a rogue AP.

EAP-MD5 also contains a set of good features: It requires only lightweight

processing (which translates to less hardware) and does not require a

key/certificate infrastructure. Although pure EAP-MD5 has some value in

the PPP world, it is of limited use in the wireless world. For example,

Microsoft has dropped the support for EAP-MD5 for the wireless interface

in Windows XP. Support was dropped because of security problems; EAP-

MD5 is vulnerable to dictionary and brute-force attacks when used with

Ethernet and wireless.

2.3.2 EAP-OTP

EAP-OTP is similar to MD5, except it uses the OTP as the response. The

request contains a displayable message. The OTP method is defined in

RFC 2289. The OTP mechanism is employed extensively in VPN and PPP

scenarios but not in the wireless world.

2.3.3 EAP-GTC

The EAP-GTC (Generic Token Card) is similar to the EAP-OTP except

with hardware token cards. The request contains a displayable message,

and the response contains the string read from the hardware token card.

2.4 Seven Problems on 802.11

2.4.1 Problem #1: Easy Access

Wireless LANs are easy to find. Strictly speaking, this is not a security

threat. All wireless networks need to announce their existence so potential

 11

clients can link up and use the services provided by the network. 802.11

require that networks periodically announce their existence to the world

with special frames called Beacons.

However, the information needed to join a network is also the information

needed to launch an attack on a network. Beacon frames are not

processed by any privacy functions, which means that the 802.11 network

and its parameters are available for anybody with an 802.11 card. "War

drivers" have used high-gain antennas and software to log the appearance

of Beacon frames and associate them with a geographic location using

GPS.

Short of moving into heavily-shielded office space that does not allow RF

signals to escape, there is no solution for this problem. The best you can

do is to mitigate the risk by using strong access control and encryption

solutions to prevent a wireless network from being used as an easy entry

point into the network. Deploy access points outside firewalls, and protect

sensitive traffic with VPNs.

2.4.2 Problem #2: "Rogue" Access Points

Easy access to wireless LANs is coupled with easy deployment. When

combined, these two characteristics can cause headaches for network

administrators. Any user can run to a nearby computer store, purchase an

access point and connect it to the corporate network without authorization.

Many access points are now priced well within the signing authority of

even the most junior managers. Departments may also be able to roll out

their own wireless LANs without authorization from the powers that be.

"Rogue" access points deployed by end users pose great security risks.

End users are not security experts, and may not be aware of the risks

posed by wireless LANs. Most existing small deployments mapped by war

drivers do not enable the security features on products, and many access

 12

points have had only minimal changes made to the default settings. It is

hard to believe that end users within a large corporation will do much

better.

Unfortunately, no good solution exists to this concern. Tools like

NetStumbler allow network administrators to wander their building looking

for unauthorized access points, but it is expensive to devote time to

wandering the building looking for new access points.

Monitoring tools will also pick up other access points in the area, which

may be a concern if you are sharing a building or a floor with another

organization. Their access points may cover part of your floor space, but

their access points do not directly compromise your network and are not

cause for alarm. The periodic "walk-through" of your campus is the only

way to address the threat of unauthorized deployment. At least network

analyzers are moving to a handheld form, so you won't have to carry as

much.

2.4.3 Problem #3: Unauthorized Use of Service

Several war drivers have published results indicating that a clear majority

of access points are put in service with only minimal modifications to their

default configuration. Nearly all of the access points running with default

configurations have not activated WEP (Wired Equivalent Privacy) or have

a default key used by all the vendor's products out of the box. Without

WEP, network access is usually there for the taking.

Two problems can result from such open access. In addition to bandwidth

charges for unauthorized use, legal problems may result. Unauthorized

users may not necessarily obey your service provider's terms of service

and it may take only one spammer to cause your ISP to revoke your

connectivity.

 13

Whether unauthorized use is a problem depends on the objectives of the

service. For corporate users extending wired networks, access to wireless

networks must be as tightly controlled as for the existing wired network.

Strong authentication is a must before access is granted to the network.

If you have deployed a VPN to protect the network from wireless clients, it

probably has strong authentication capabilities already built-in.

Administrators can also choose to use 802.1x to protect the network from

unauthorized users at the logical point of attachment. 802.1x also allows

administrators to select an authentication method based on Transport

Layer Security (TLS), which can be used to ensure that users attach only

to authorized access points.

Not all networks, however, need to deploy ironclad user authentication.

Theft of service was a major concern for connectivity providers in "hot

spots" such as hotels and airports. After all, the business model was to

charge for network access, so preventing unauthorized access was a

business requirement. In the wake of the spectacular failure of some of the

former big-name players like MobileStar, the hot-spot connectivity industry

is experimenting with new business models.

Newer players in the market have based the business model on the idea

that free wireless network access is an amenity that might draw guests

and convention business. In this newer business model, user

authentication is necessary only to ensure accountability. Authentication

using a Web browser is a perfectly acceptable solution because it allows

sessions to be identified and does not require specialized client software

or a certain model of 802.11 network interface.

2.4.4 Problem #4: Service and Performance Constraints

Wireless LANs have limited transmission capacity. Networks based on

802.11b have a bit rate of 11 Mbps, and networks based on the newer

 14

802.11a technology have bit rates up to 54 Mbps. This capacity is shared

between all the users associated with an access point. Due to MAC-layer

overhead, the actual effective throughput tops out at roughly half of the

nominal bit rate. It is not hard to imagine how local area applications might

overwhelm such limited capacity, or how an attacker might launch a denial

of service attack on the limited resources.

Radio capacity can be overwhelmed in several ways. It can be swamped

by traffic coming in from the wired network at a rate greater than the radio

channel can handle. If an attacker were to launch a ping flood from a Fast

Ethernet segment, it could easily overwhelm the capacity of an access

point. Depending on the deployment scenario, it might even be possible to

overwhelm several access points by using a broadcast address as the

destination of the ping flood.

Attackers could also inject traffic into the radio network without being

attached to a wireless access point. The 802.11 MAC is designed to allow

multiple networks to share the same space and radio channel. Attackers

wishing to take out the wireless network could send their own traffic on the

same radio channel and the target network would accommodate the new

traffic as best it could using the CSMA/CA mechanisms in the standard.

Large traffic loads need not be maliciously generated, either, as any

network engineer can tell you. Large file transfers or complex client/server

systems may transfer large amounts of data over the network to assist

users with their jobs. If enough users start pulling vast tracts of data

through the same access point, network access may resemble sucking

molasses through a straw north of the Arctic Circle in January.

Addressing performance problems starts with monitoring and discovering

them. Many access points will report statistics via SNMP, but not with the

level of detail required to make sense of end-user performance

complaints. Wireless network analyzers can report on the signal quality

 15

and network health at a single location, but tools designed for wireless

network administrators are only beginning to emerge.

The initial commercial wireless analyzer offerings were straightforward

ports of their wired cousins; new products such as AirMagnet's handheld

analyzer look like extremely promising additions to the wireless network

engineer's toolkit. No enterprise-class wireless network management

system has yet emerged. Some performance complaints could be

addressed by deploying a traffic shaper at the point at which a wireless

LAN connects to your network backbone. While this will not defend against

denial of service attacks, it may help prevent heavy users from

monopolizing the radio resources in an area.

2.4.5 Problem #5: MAC Spoofing and Session Hijacking

802.11 networks do not authenticate frames. Every frame has a source

address, but there is no guarantee that the station sending the frame

actually put the frame "in the air". Just as on traditional Ethernet networks,

there is no protection against forgery of frame source addresses.

Attackers can use spoofed frames to redirect traffic and corrupt ARP

tables. At a much simpler level, attackers can observe the MAC addresses

of stations in use on the network and adopt those addresses for malicious

transmissions.

To prevent this class of attacks, user authentication mechanisms are being

developed for 802.11 networks. By requiring authentication by potential

users, unauthorized users can be kept from accessing the network (Denial

of service attacks will still be possible, though, because nothing can keep

attackers from having access to the radio layer.).

The basis for the user authentication mechanism is the 802.1x standard

ratified in June 2001. 802.1x can be used to require user authentication

 16

before accessing the network, but additional features are necessary to

provide all of the key management functionality wireless networks require.

The additional features are currently being ironed out by Task Group I for

eventual ratification as 802.11i.

Attackers can use spoofed frames in active attacks as well. In addition to

hijacking sessions, attackers can exploit the lack of authentication of

access points. Access points are identified by their broadcasts of Beacon

frames. Any station that claims to be an access point and broadcasts the

right service set identifier (SSID, also commonly called a network name)

will appear to be part of an authorized network.

Attackers can, however, easily pretend to be an access point because

nothing in 802.11 requires an access point to prove it really is an access

point. At that point, the attacker could potentially steal credentials and use

them to gain access to the network through a man-in-the-middle (MITM)

attack.

Fortunately, protocols that support mutual authentication are possible with

802.1x. Using methods based on TLS, access points will need to prove

their identity before clients provide authentication credentials, and

credentials are protected by strong cryptography for transmission over the

air.

Session hijacking will not be completely solved until the 802.11 MAC

adopts per-frame authentication. Until that point, if session hijacking is a

concern, you must deploy a cryptographic protocol on top of 802.11 to

protect against hijacking.

2.4.6 Problem #6: Traffic Analysis and Eavesdropping

802.11 provides no protection against attacks that passively observe

traffic. The main risk is that 802.11 does not provide a way to secure data

 17

in transit against eavesdropping. Frame headers are always "in the clear"

and are visible to anybody with a wireless network analyzer. Security

against eavesdropping was supposed to be provided by the much-

maligned Wired Equivalent Privacy specification.

A great deal has been written about the flaws in WEP. It protects only the

initial association with the network and user data frames. Management

and control frames are not encrypted or authenticated by WEP, leaving an

attacker wide latitude to disrupt transmissions with spoofed frames.

Early WEP implementations are vulnerable to cracking by tools such as

AirSnort and WEPCrack, but the latest firmware releases from most

vendors eliminate all known attacks. The latest products go one step

farther and use key management protocols to change the WEP key every

15 minutes. Even the busiest wireless LAN does not generate enough

data for known attacks to recover the key in 15 minutes.

Whether you rely on WEP solely, or layer stronger cryptographic solutions

on top of it is largely a question of risk management. The latest product

releases have no known vulnerabilities. While that is some comfort, the

same claim could have been made in July 2001 before release of the

current generation of WEP-cracking tools. If your wireless LAN is being

used for sensitive data, WEP may very well be insufficient for your needs.

Strong cryptographic solutions like SSH, SSL, and IPSec were designed to

transmit data securely over public channels and have proven resistant to

attack over many years and will almost certainly provide a higher level of

security. [6]

2.4.7 Problem #7: Higher Level Attacks

Once an attacker gains access to a wireless network, it can serve as a

launch point for attacks on other systems. Many networks have a hard

outer shell composed of perimeter security devices that are carefully

 18

configured and meticulously monitored. Inside the shell, though, is a soft,

vulnerable (and tasty?) center.

Wireless LANs can be deployed quickly if they are directly connected to

the vulnerable backbone, but that exposes the network to attack.

Depending on the perimeter security in place, it may also expose other

networks to attack, and you can bet that you will be quite unpopular if your

network is used as a launch pad for attacks on the rest of the world. The

solution is straightforward in theory: Treat the wireless network as

something outside the security perimeter, but with special access to the

inside of the network. Although security diligence is time consuming, so is

being sued.

CHAPTER 3

Wi-Fi NETWORK TRAFFIC

3.1 Connection / Access Protocol in Wi-Fi Networks

Figure 3 The protocols of connecting to a Wi-Fi network.

Figure 3 illustrates the basic protocols and flow of frames when connecting

to an access point. First the client will detect access points either by

sending a probe request and receiving a probe response, or purely by

looking at the beacon frames frequently transmitted by an access point.

Upon discovery, the client may try to authenticate to the access point. If

successfully authenticated, the client may try to associate with the access

point by sending an association request. If permitted by the access point

the client will receive a positive association response. Whenever WPA is

enabled, the shared-key authentication mechanism of WEP is skipped

(open system authentication is used), and the real authentication is

performed after association.

During this four-way handshake, important keys are generated and

exchanged. After the initialization, the client is permitted and able to send

and receive data frames to and from the network.

3.2 Analyzing Wi-Fi Network Traffic

Figure 4 MAC frame format.

Every packet transmitted in Wi-Fi networks contain bits of information used

to maintain the various layers of the communication. Although packets

may be encrypted in Wi-Fi networks, they still have plaintext headers. As

this section shows, the headers are valuable to anyone analyzing the

network. The entire MAC frame displayed in Figure 4 is easily available to

user-space tools in Linux2. All packets in a Wi-Fi network conform to the

MAC frame format. The Frame Control field specifies which type of

payload the MAC frame transports. There are three main types of packets

__
2
 Put the interface into monitor mode and it will pass on the entire MAC frame to listeners.

 21

and many subtypes. The main types, in bold and their subtypes, are:

1. Management: Association, Probe, Beacon, and Authentication.

2. Control: RTS, CTS, PS-Poll, ACK, CF-Ack/Poll.

3. Data: Data, Data + CF-Ack/Poll and Null-function.

In the following sections, only the interesting fields of interesting frames

are discussed [7].

3.3 Information From All Frames

Figure 5 shows the frame control field. From it, the following information

can be extracted.

Figure 5 Frame control field.

Network is part of a WDS8: ToDS = 1 and FromDS = 1.

Network is in ad-hoc mode: ToDS = 0 and FromDS = 0; and Type = Data.

Network is in infrastructure mode: ToDS = 1 or FromDS = 1; and Type =

Data.

Additionally, every captured frame includes signal-strength measured by

the radio receiver. When combining this data with GPS-coordinates, it is

possible to estimate:

Network range: Wherever frames from an access point where received.

Access point location: Triangulate from position and signal strength of

frames transmitted by the access point and captured in multiple locations.

 22

Client location: Same procedure as above, but only on frames

transmitted from the desired client.

Buildings, other obstacles, and multipath fading will reduce the accuracy of

the estimations. Moving clients or access points are not handled either and

introduce errors. [8]

3.4 Information From Data Frames

WEP or WPA encryption: B14 = 1

Type of payload: E.g. if the destination address is the broadcast address,

and the size of the payload is 68 bytes, then it is very likely to be an

Address Resolution Protocol (ARP) request.

Network is a bridge: Only data packets with Frame Capability: ToDS = 1

and FromDS = 1 are transmitted.

MAC address of access point: In MAC header: Address 1, 2 or 3.

MAC address of mobile stations: In MAC header: Address 1, 2, 3 or 4.

Another piece that is valuable is the IV. It is sent with every data frame in

an encrypted network. The IV and the use of makes it possible to guess

from sniffed data frames exclusively, if the encryption scheme is WEP or

WPA. When comparing frames from the same transmitting address, the IV

is different with each frame for WEP. However, WPA has duplicate values

in the 3-byte IV field several frames in a row, only the Extended

Initialization Vector (EIV) values change for each field. [9]

The payload of the data frames can be ARP, Internet Protocol (IP) [10]

Internet Control Message Protocol (ICMP) [11], Transport Control Protocol

(TCP) [12], Universal Datagram Protocol (UDP), etc. All of these are

 23

appended to Subnetwork Access Protocol (SNAP) [13] headers which are

specific to ethernet. The different types of packets and knowledge of their

structures are used in the next chapters to enable and improve some of

the attacks described there.

3.5 Information From Management Frames

Some management frames transmit many parameters about the network.

The beacon frame is one of them. Access points will broadcast beacon

frames to inform stations that they are available. The frames provide

enough information for a client to be able to join the network. However

management frames are strictly used to administer the network

connections. They do not send any data from the application layer. The

capability field is part of the beacon frame. Its structure is depicted in

Figure 6.

Figure 6 Capability field of the beacon frame.

From the capability field the following useful information can be extracted:

Network is in infrastructure mode: B0 = 1 and B1 = 0.

Network is in ad-hoc mode: B0 = 0 and B1 = 1.

WEP is required: B4 = 1.

Other fields that can be extracted from the frame body of a beacon frame

are:

 24

Beacon interval: is the time between each transmitted beacon frame

(typically 100*1024us = 100ms).

Service Set Identity (SSID): a string of maximum 32 bytes/characters that

gives a human readable identification of a Wi-Fi network. It also serves

another purpose to group together multiple access points to form a

network of collaborating access points.

Supported rates: a ”list” of supported transmit rates in the network.

Extended supported rates: other supported rates.

Channel: the channel the network is operating on.

The Basic Service Set Identifier (BSSID) discloses information about who

manufactured the access point. The first 16bits of the BSSID can be

looked up from an IEEE database [14].

3.6 Summary of Wi-Fi traffic

Available information from passively capturing ordinary Wi-Fi traffic is

compiled in Table 1:

Table 1 Information available from an analysis of Wi-Fi frames .

Fact Frame Requirements

WDS Data 1 frame

Ad-hoc/Infrastructure Beacon/Probe/Data 1 frame

Network range Any 3 frames and GPS

Client/Access point location Any 3 frames and GPS

WEP Beacon/Probe/Data 1 frame

 25

Table 1 Information available from an analysis of Wi-Fi frames .

Fact Frame Requirements

WPA Beacon/Probe/Data 1frame

SSID Beacon/Probe 1 frame

Access point MAC address Any 1 frame

Client MAC address Probe Request/Data 1 frame

Wired client MAC address Data 1 frame

Contents of data Data Intelligent guess

CHAPTER 4

WEP OVERVIEW

IEEE 802.11 defines a mechanism for encrypting the contents of 802.11

data frames. This scheme uses five elements directly relevant to its

analysis:

a) A key shared between all the members of the BSS (there are really

four shared keys, but this is irrelevant to the analysis).

b) An encryption algorithm. For WEP this is the RC4 stream cipher, used

to generate a key stream, which is XORed against plaintext to produce

cipher text.

c) The corresponding decryption algorithm. For WEP this is the same as

the encryption algorithm. RC4 is used to generate a key stream, which

is XORed against the cipher text to reproduce plaintext. [15]

d) A 24-bit initialization vector or IV. WEP appends the IV to the shared

key; WEP uses this combined key and IV to generate the RC4 key

schedule. WEP selects a new IV for every packet.

e) An encapsulation that transports the IV and the cipher text from the

sender (encryptor) to the receiver (decryptor).

f) WEP also uses a CRC of the frame payload plaintext in its

encapsulation. The CRC is computed over the data payload and then

appended to the payload before encryption. WEP encrypts the CRC

with the rest of the data payload.

The operation of WEP is very simple to describe. First, each member of

the BSS is initialized with the shared key via an unspecified,

implementation specific, out-of-band mechanism.

To send a WEP encapsulated frame, the sender calculates the CRC of the

frame payload and appends it to the frame. It then selects a new IV,

appends this to the shared key to form a “per-packet” key, and uses the

result to generate an RC4 key schedule. The sender then uses RC4 to

generate a key stream equal to the length of the frame payload plus CRC.

The sender XORs the generated key stream against the plaintext payload

data and CRC. The sender also inserts the IV into the appropriate field in

the frame header, and sets a bit indicating this is a WEP encrypted packet.

At this point, the WEP encapsulation is complete, and the frame can be

sent to the peer.

To process a WEP frame, the receiver checks the “encrypted” bit in the

arriving frame. If it is set, the receiver extracts the IV from the frame,

appends it to the BSS shared key, and generates the “per-packet” RC4

key schedule. RC4 is applied to the key schedule to produce a key stream

the length of the packet’s encrypted payload. The receiver then XORs this

key stream against the encrypted payload to extract plaintext. Finally the

receiver verifies the CRC of the decrypted payload data to verify that the

frame data correctly decrypted.

Several features of this design require comment.

The first is that the loss of a single bit of a data stream encrypted under

RC4 causes the loss of all the data following the lost bit. This is because

 28

data loss desynchronizes the RC4 encryption and decryption engines. The

resynchronization problem gets only worse as more bits become lost.

Since 802.11 often drops entire packets, it is infeasible to use a stream

ciphers like RC4 across 802.11 frame boundaries. To be useful across

packet boundaries, this environment instead requires that the cipher

support a random access, “seek” type capability, where it is feasible to

instantly and efficiently switch the cipher to any selected point in the key

stream. Many stream ciphers offer random access support—any block

cipher such as AES [16] in counter mode, for instance, or SEAL [17] for

another. Instead of selecting a stream cipher with characteristics needed

for a datagram environment, however, the WEP architecture

accommodates itself to loss by reinitializing the cipher key schedule on

every data frame.

Stream ciphers have a second property that is particularly important to the

analysis: it is unsafe to use the same key twice, ever. Suppose the cipher

produces a key stream of bits

k1 k2 k3…

The encryptor uses the key stream sequence to encrypt the plaintext

stream p1 p2 p3… into a cipher text stream c1 c2 c3 … by XORing each

plaintext bit with the corresponding key stream bit:

ci = pi ⊕ ki, for i = 1, 2, 3, …

(Most practical implementations actually XOR whole bytes or words

instead of bits.) The decryptor recovers the plaintext stream from the

ciphertext stream by XORing each ciphertext bit with the corresponding

key stream bit:

pi = ci ⊕ ki, for i = 1, 2, 3, … (*)

 29

The cipher stream is public knowledge, and it is presumed that

adversaries will record the entire stream. If an adversary learns the

plaintext value of bit i, she can recover the corresponding plaintext value

of any other ciphertext stream encrypted from the same key stream: first

compute the key stream bit

and then use equation (*) to decrypt the corresponding bit of any other

stream encrypted under the same key.

ki = ci ⊕ pi

The WEP design attempts to accommodate this second property by

introducing the IV. WEP combines the IV with the key to produce a new

frame specific encryption key [18].

4.1 Decrypting Data Without Keys

This clause begins by describing problems with the WEP IV. Then it turns

to practical techniques to recover the WEP RC4 key stream, based on the

WEP IV deficiencies. Finally it closes with a discussion of some issues

around the analysis [19].

4.2 WEP IV Problems

The WEP IV is 24 bits long. WEP appends the IV to the shared key to form

a family of 224 keys. As described above, each frame transmission selects

one of these 224 keys and encrypts the data under the key.

This scheme suffers from a basic problem. Since a stream cipher key

stream can never be reused, it obliges the BSS to change the base key as

soon as its members have consumed all of the 224 keys derived from the

base key. WEP defines no practical way to accomplish this, so in practice

WEP keys are not replaced frequently enough to maintain the level of

 30

privacy intended. This leads to wide-spread key abuse; a single access

point BSS running at 11 Mbps and with a typical packet distribution can

exhaust the derived key space in about an hour. A multi-access point

network with tens or hundreds or thousands of access points can exhaust

the key space at a faster rate, indeed, inversely proportional to the number

of access points.

The problem is worse than this suggests, however. Since WEP shares the

same base key among all the members of the BSS and since the security

of WEP depends on the <base-key, IV> pair never being recycled, WEP

needs an IV avoidance algorithm, to prevent one node from reusing an IV

already used by another. WEP defines no such algorithm and it is unclear

how to even begin to design one. A BSS could, for instance, partition the

IV space among the BSS elements in a pre-defined manner, but this sort

scheme either pre-supposes a static BSS membership static behavior or

some (secure) scheme to transfer an indication of which IVs have been

used among members of the BSS, etc.

The usual way to avoid this kind of difficulty is to randomly select the IV

instead. Random selection of the IV, however, presents its own difficulties

because of the Birthday Paradox (see [20] or [21]). The Birthday Paradox

is named for the counter-intuitive fact that, in a group of people as small as

23, there is a 50% chance that two members of the group will share the

same birthday. In general, if a set has n members, and elements are

selected from the set one at a time with replacement, then the probability

of a duplicate after two draws is p2 = 1/n and, for k ⊕ 3, the probability of at

least one duplicate is

pk = pk–1 + (k–1) ⊕ 1/n ⊕ (1 – pk–1).

In the WEP case the IV space takes n = 224, and we exceed a 50%

chance of a collision among IVs after only k = 4823 ⊕ 212 frames. The

probability of collision is already 99% after 12,430 frames, or in 2 to 3

 31

seconds of normal traffic at 11 Mbps. There is already a 10% chance of

collision after 1881 frames, a 1% chance after 582, a 0.1% after 184

frames, 0.01% after 59, and 0.001% after only 19 frames. With randomly

selected IVs, maintaining the five zeroes of assurance (0.000001%)

becoming customary in many fields of computing requires changing the

base key after all the members of a BSS have transmitted a total 6 frames

under the key! The odds are a normal 11 Mbps BSS will begin to reuse

keys in less than a second of operation and there is a non-negligible

probability that an attack can succeed well before this time has elapsed.

The WEP IV space is far, far too small to protect against IV abuse.

It is important to be clear on what this does not say. It does not say that

50% of the IVs (and hence keys) will collide at about 212 packets. It says

that if an adversary collects a packet trace of about 212 frames, there is

about a 50% chance that the trace will contain at least one duplicate IV.

But this is all the help an attacker needs.

4.3 Some Attacks

So how does an attacker exploit the key reuse brought about by WEP’s IV

duplication? There is no magic here. All of the attacks are standard. WEP

does not protect against any of them.

As with any stream cipher, an attacker can launch known plaintext and

chosen ciphertext attacks. In today’s computing environments, these

attacks are ridiculously easy. The attacker Eve, for instance, can forge e-

mail from Bob, asking the victim Alice to e-mail a file with known content. A

telephone call from Eve works just as well, if Alice knows Eve or Eve can

pass herself off as Bob. If Eve does not know Alice, she can use an e-mail

anonymizer to send spam to her. All of this appears completely innocent,

but it causes known text to be encrypted. Eve captures the encrypted text

with a packet sniffer and uses the relation

 32

ki = ci ⊕ pi

to recover the key stream. She can save any key streams generated this

way, each indexed by the appropriate IV, and immediately decrypt any

WEP frame she sees later (or appears earlier in the packet trace!) with the

same IV.

Eve can work a little harder, with two sniffers, one on the radio link and

one outside the firewall of the organization being attacked. Using a bit of

traffic analysis, it is not difficult to correlate the unencrypted traffic

recorded from outside the firewall with encrypted traffic captured from the

over-the-air link. She repeats the same process above to recover more

key streams.

When 802.11 is used as the data link for a TCP/IP network, every data

frame contains an IP datagram conveying large amounts of known

plaintext. In such an environment Eve can recover a partial key stream for

every frame sent. Traffic analysis can usually identify the type of traffic

fairly accurately even when it is encrypted, and this information can be

used to guess the values of variable fields in the packet headers, such as

IP addresses and protocol numbers. This reveals even more of the data

and hence key stream. The known plaintext from a single DHCP exchange

can provide sufficient information to decode almost the entire TCP/IP

header of every subsequent IP datagram encrypted by the DHCP client.

Similarly, any “decrypted” packet can provide context and hints to help

identify the plaintext of a still not fully decrypted packet, and this process

can continue until the key streams are revealed for almost every IV.

As easy as these attacks are, they are largely for amateurs; there is no

need to work this hard; at 24 bits, collisions come to you rapidly, one on

the order of every second or two. A serious attacker will simply trace the

802.11 frames and XOR together ciphertext streams produced under the

same IV. If an IV is used at least twice, then the packet trace will show the

cipher streams

 33

ci = pi ⊕ ki, for i = 1, 2, 3, …

ci⊕ = pi⊕ ⊕ ki, for i = 1, 2, 3, …

Produced from the key stream k1 k2 k3… associated with the IV. XORing

these together yields

pi⊕ ⊕ pi, for i = 1, 2, 3, …

i.e., the attacker knows with certainty the XOR of corresponding plaintext

bits from p1⊕ p2⊕ p3⊕… and p1 p2 p3… This means the attacker can know

when each bit is the same or different in the two streams, so can

immediately reduce the number of possibilities for each byte pair <b, b⊕>

from the two streams from 216 possibilities to 28. Having a third or a fourth

frame encrypted under the same IV can reduce the possibilities for the two

plaintexts even more. These facts mean pattern recognition techniques

can often split apart the intertwined plaintext streams.

For instance, in any computing system a considerable percentage of

actual data exchanged over a link is ordinary text from some natural

language. In any natural language represented by an alphabet, certain

character sequences occur more frequently than others, and the

probabilities for various character sequences have been computed from

empirical measurement. These facts mean that with a fairly high

probability the adversary can easily and mechanically eliminate all but one

of the 28 possibilities for almost all of the byte pairs <b, b⊕>. The WEP

checksum can be used to referee among guesses for the few that cannot

be eliminated by probabilities. In this way the attacker can recover the

plaintext and the key stream without knowing any of the plaintext in

advance. There is a good reason why the operating instructions for RC4

explicitly warn never to use the same key twice! [22]

As already noted, WEP as constituted today has no automated

mechanism to change the BSS key, so people change it only infrequently,

 34

typically on the order of days or weeks or even months. After n hours of

typical use, it is likely that the overwhelming number of IVs have been

used at least n/2 times, so a packet trace of all the BSS traffic provides

collisions among most of the IVs. In this way, an attacker can easily build

up a dictionary of key streams for every IV. Since WEP frames are small,

and since there are only 224 possible IVs, an attacker using even obsolete

hardware can afford to store the key streams for all the IVs associated with

thousands of base keys. Given that people tend to cycle through a small

number manually configured base keys, an attacker usually only has to

resort to these techniques only a few times before the BSS’s privacy is

permanently compromised. It is simply not worth trying to provide any

privacy if this is the best we can do.

There is still one more problem with WEP’s use of the IV that is worth

noting. As we have seen, it is feasible to recover the key streams

associated with a large number of IVs in a short time. It is mechanical to

use RC4’s definition along with the key stream and plaintext to reconstruct

the underlying key schedule. Not every recovered key stream will

reconstruct the entire key schedule, but we can expect to recover a certain

amount of these. When we have recovered a full key schedule, it is worth

asking ourselves: can we also recover the key used to compute it? We

know the IV corresponding to the key schedule is the least significant 24

bits of the key, and we know the deterministic algorithm generating key

schedule from the key. Can we compute the key using this knowledge?

Questions like this worry cryptographers. WEP’s highly questionable

method of concatenating the IV directly to the base key exposes the base

key to direct attack. Because of this, it would also be advisable to find a

new way to mix the IV with the base key.

4.4 Problems With RC4

Most of the analysis thus far applies to any stream cipher, although we

have noted a few problems with RC4 that makes its use by WEP a

 35

dubious decision, the most important being it has no random access

capability. RC4 also suffers from one more problem that makes its

applicability to 802.11 even more questionable.

One in every 256 RC4 key is “weak” [23], which means the key schedules

for these keys are less correlated with the key than they ought to be. This

makes it far easier to cryptanalyze data encrypted under these keys, in

case we fix enough of the other WEP problems to justify its continued use

in new submissions. If WEP were to continue to use RC4, there is a

standard fix to this problem that should be incorporated into WEP’s

definition. This is to run the RC4 key stream generator at least 256 steps

each time its key schedule is re-initialized, i.e. to begin with encrypting the

257th byte of the key stream instead of the first. Given that WEP already

has to reinitialize the RC4 key schedule with every frame, this additional

overhead probably costs too much to bear.

One final problem should be noted but is not a concern. The key stream

RC4 produces exhibits an empirically measurable bias, meaning it only

imperfectly hides correlation in the encrypted data. This problem is

inconsequential as long as WEP uses only an infinitesimal part of the

generated key stream (there is not sufficient data to correlate, since WEP

recomputes the key schedule on every frame) and far easier attacks

against WEP’s use of RC4 exist [24].

4.5 Cipher and Mode of Operation

All new symmetric key encryption efforts starting now should be based on

the AES block cipher. It is thought to be as good as any symmetric key

cipher in the public domain, and allows for very efficient implementations

over a very wide range of environments (8-bit processors to super

computers). This submission recommends against RC4 for any future

WEP encapsulation scheme; attempts to twist WEP around RC4 have led

to enough problems already. The reformulated WEP should instead

 36

employ 128-bit AES as the mandatory to implement cipher.

This submission also recommends that WEP use AES in Offset Codebook

Mode (OCB, [25]). This is a stream cipher that also produces a message

authentication code, preventing an adversary from forging messages. The

data encrypted under OCB is the same length as the plaintext data, a

single key is used for both encryption and authentication, and it requires

only the AES encryption, not decryption, engine. It is also a parallelizable

mode, allowing for very high throughput. OCB has been optimized to

minimize the number of calls to lower level cryptographic primitives and

can both encrypt/decrypt and tag/verify a message in a single pass [26].

The OCB state is the key, a stride, which provides the offset in the mode’s

name and an IV. The stride and the IV are of the cipher block size (128

bits for AES). The stride is computed once per session. The per-frame

overhead of OCB is 128 bits for the IV, and 128 bits for the OCB

authentication tag [27].

4.6 Session Key Derivation

This submission recommends a session key derivation algorithm in the

case of a manually configured base key, as used by WEP today. It does

not recommend an algorithm for session key derivation when dynamic

keying is available, because the scheme should incorporate state from the

dynamic keying operation, to tie the key to the particular session that

negotiated the key.

This algorithm produces two session keys, one for sending and the other

for receiving.

1. Concatenate the (a) BSSID, (b) the sender’s MAC address, and (c) the

receiver’s MAC address to produce a string. The order is important, as

the two MAC addresses are reversed for sending and receiving.

 37

2. Using the base key (manually configured key) and an IV of 128 zero

bits, run the OCB-AES algorithm on the concatenated string. The

session key is the authentication tag output by this:

session-key ⊕ OCB-AES-tagbase-key(0, BSSID | sender-mac-addr |

receiver-mac-address)

Here ‘a | b’ means the concatenation of strings a and b.

The motives for this algorithm are (a) to remove the base-key from direct

attack and (b) weakly tie the session key to the particular parties using it.

Under this algorithm different sets of peers use different session keys,

even though all the members of the BSS share the same base key. Note

that the keys produced by this algorithm are still subject to dictionary

attack when the base key is a password or derived from a password by

techniques such as PCKS #5 3. In addition, all the keys are subject to

spoofing if the base key is revealed to an adversary. There is no magic

that can avoid these weaknesses [28].

__
3
 PKCS #5: Password-Based Encryption Standard, RSA Laboratories.

CHAPTER 5

Wi-Fi PROTECTED ACCESS (WPA)

In this section some of the security mechanisms of Wi-Fi Protected Access

are given shortly. The few vulnerabilities inherent in WPA are

demonstrated.

5.1 Background Information for WPA

5.1.1 WPA-PSK

Wi-Fi Protected Access—Pre-Shared Key (WPA-PSK) is currently the

most common mode of operating a WPA protected Wi-Fi network. Much

like WEP, a secret key is shared among all the clients in the network. This

shared master key is called the Pairwise Master Key (PMK). When a client

connects to an access point, a Pairwise Transient Key (PTK) is derived

from the PMK, client and access point MAC address and a pair of nonces.

From the PTK a MIC key is generated, which will be used to create MICs

on the transmitted data. Also calculated from the PTK are the RC4

encryption keys, which are different from each encrypted frame.

5.1.2 Breaking Confidentiality

So far, only one attack to break the confidentiality provided by WPA is

known. It uses the fact that a WPA key is often generated from a

passphrase. By capturing the 4-way handshake of WPA authentication, an

offline dictionary attack can be mounted.

CHAPTER 6

BREAKING THE SECURITY OF Wi-Fi

6.1 Recovering a Passphrase Seeded WPA Key

For security modes to be enabled in a user friendly manner, the secret

PMK is often generated by a user supplied passphrase. The passphrase

needs to be typed into the access point and each and every client that

connects to the network. The function (Equation 1) to generate the PMK is

openly available and is taken from [29]. The input is the passphrase, the

SSID, length of the SSID, 4096 which specifies the number of times the

algorithm should iterate, and 256—the size to output.

PMK = PBKDF2(passphrase, ssid, ssidLength, 4096, 256) (1)

In order for a dictionary attack to be possible, it is necessary to validate if

the PMK that is generated, is the correct key. With the help of the MIC this

is possible. A captured packet is decrypted using the guessed PMK and a

new MIC is generated over the decrypted data, with the MIC key from the

guessed PMK. The original and newly generated MICs are compared and

if they match the guessed PMK is likely to be the correct PMK [30].

WPA Cracker was the first tool to implement the offline dictionary attack

against WPA. Its performance is approximately 24 passphrases per

second when measured on a “AMD Athlon(tm) 64 Processor 2800+”. This

tool requires the nonces, SSID and traffic dump of the handshake be

inserted manually at start-up.

The popular tool Aircrack eventually implemented the WPA dictionary

attack in addition to its powerful WEP attacks. A Pentium M processor

running at 1.86 GHz manages to guess up to 150 passphrases per

second, or use roughly one hour to check all the words in a Turkish or

English word list.

Any word that may be found in a word list is a bad choice for a

passphrase. Creating more words that match the usual requirements of a

passphrase may be tried after going through the normal word lists. For

instance, append numbers or symbols to the end of words, even just 123,

666, or “!”. John the Ripper is a tool to automate the creation of such

passwords from simple word lists.

It seems few people choose good passwords and then only for their

“important” accounts. Certainly they don’t use their important passwords to

register on various on-line services such as forums. As many Wi-Fi routers

are configured from the browser, there is a good chance they will choose a

poor password since it is typed into the web browser.

airodump ath0 dump

BSSID CH MB ENC PWR Packets LAN IP / # IVs ESSID

00:12:17:49:D1:81 6 48 WEP 21 23 0 linksys

00:13:10:9 B:47:F1 1 48 55 1279 118 Profelis

Listing 1 Airodump capturing the 4-way handshake.

 41

6.2 WI-FI Protected Access (WPA)

In Listing 1 Airodump [31] will capture all traffic from the ath0 network

interface, including the 4-way handshake after a client has associated.

The traffic is stored in the file dump.cap.

./aireplay -0 5 -a 00:13:10:9B:47:F1 ath0

Use -c to target a specific station .

16:01:04 Sending DeAuth to broadcast -- BSSID : [00:13:10:9 B:47:F1]

16:01:04 Sending DeAuth to broadcast -- BSSID : [00:13:10:9 B:47:F1]

16:01:05 Sending DeAuth to broadcast -- BSSID : [00:13:10:9 B:47:F1]

16:01:09 Sending DeAuth to broadcast -- BSSID : [00:13:10:9 B:47:F1]

16:01:12 Sending DeAuth to broadcast -- BSSID : [00:13:10:9 B:47:F1]

Listing 2 Aireplay injecting de-authentication frames

The command in Listing 2 will force a 4-way handshake by transmitting de-

authentication frames to everyone connected to the network. The

parameter -O 5 instructs airplay to send 5 de-authentication frames, -a

00:13:10:9B:47:F1 sets the BSSID address of the frames to the correct

address, ath0 is the Wi-Fi interface to transmit on. Each new line displayed

represents the de-authentication frame that was transmitted. Most of the

time the de-authentication client will re-authenticate milliseconds later.

When the 4-way handshake has been captured by airodump it is time to

start aircrack. In Listing 3 aircrack will perform the offline dictionary attack

on the WPA PMK. Everything it needs to test passphrases is in the 4-way

handshake. After aircrack has tested 38,480 passphrases it found

“cikolata” which was the passphrase used in the WPA secured Wi-Fi

network. The PMK, and the PTK used in the connection is also displayed.

The last line is the MIC key.

 42

./aircrack -e Profelis -w ../Tools/turkish.dic dump .cap

Opening dump .cap

Read 1507 packets .

aircrack 2.2

[00:04:15] 38480 keys tested (68.21 k/s))

KEY FOUND ! [cikolata]

Master Key : 4A A1 6A 13 CF 7A C7 72 6D F3 95 AE 5F 57 43 58

51 5F 52 C3 05 7D A5 97 8C 6F B3 90 93 8B 5C 37

Transcient Key : 34 1D 01 3D F9 1D 44 1A 34 D1 6A DE 7B A8 91 45

4B 25 7A 91 F0 1E 38 61 AD 14 9E 32 15 92 EA 0B

1C E3 DA D9 EA E5 D3 CE 60 06 B1 BE 0F 57 C6 40

67 F2 B9 CB 54 24 CD 10 64 DB 44 65 4D D7 80 D1

EAPOL HMAC : 26 D1 7B 4A C0 88 D1 DA F0 89 73 E6 47 DE 36 60

Listing 3 Aircrack performing the dictionary attack on WPA

6.3 Software Tools

Software is equally as important as the hardware involved in capturing

information about Wi-Fi networks. Software tools described in the following

sections reduce the amount of effort needed for anyone to study a

network. There are different tools for different purposes where some tools,

such as Kismet, give a good overview over a network or several networks

while others like Ethereal give details about every byte or even bit of a

packet. Another tool called Ettercap makes it easy to follow connections,

which consists of related packets.

Although as pointed out, it is possible to learn a great deal about a

network from its beacon frames. However, an engineer simply listening for

beacon frames will not gain much knowledge he didn’t already know. An

engineer will typically want to know from where it is possible to use and

connect to the network. Since it is likely that a client can hear the access

point but not the other way around, engineers will want to go as far as

associating with the access point under a site-survey.

 43

If a cracker associates with the access point he becomes much more

exposed. The process of associating requires two-way communication.

The second the cracker transmits packets, the attack has become “active”.

It is well known that active attacks are much more dangerous for a hacker,

he may even be located or examined.

6.3.1 Kismet

Kismet is the de facto software tool for wardrivers. It uses most of the

information in Section 4 and gives the wardriver a simple and user friendly

UI with an overview of detected access points.

Figure 7 Kismet Screen Shot

In case visual feedback is difficult, come to mind warbikers and

warwalkers, Kismet interfaces with a text-to-speech library and may inform

its user of events via an earplug.

Kismet will communicate directly with the GPS receiver and record the

position of every single received packet. This enables it to guess the

physical location of the access point. An arrow in the user-interface tries to

point the user in the right direction to the access point.

 44

All currently available commercial Wi-Fi cards are restricted to listen on

only a single channel at a given point in time. Kismet instructs the card to

jump from channel to channel. It can also use two or more network cards

to listen on multiple channels at a time. Kismet can be locked on to a

particular channel to capture as much traffic from there as possible.

Kismet compiles interesting statistics such as channel usage distribution

and the percentage of WEP or WPA enabled networks.

Some access points disable broadcasting of their SSID in beacon frames

or probe responses. Hiding the SSID is used to increase the security since

only clients that know an access point’s SSID are able to associate with it.

But because management frames are transmitted in cleartext the SSID is

also sent in cleartext when an “authenticated” client associates

(authenticated in the sense that it has proved that it knows the “secret”

SSID). Kismet will use this packet to display the network name of even so-

called “hidden” or “cloaked” Wi-Fi networks.

6.3.2 TCPDump

TCPDump is an excellent tool to follow and filter communications in real

time. In Listing, TCPDump listens on an associated Wi-Fi link for ARP

packets. The TCPdump command is executed. Each line, apart from the

first two, contains a description of the captured packet. The first packet

captured is an ARP request, captured at 11 hours, 58 minutes 1.704626

seconds. The request is asking for who has the IP address 192.168.1.2

and to send the ARP response to 192.168.1.213. The request goes

unanswered since nobody owns 192.168.1.2. Later the request for

192.168.1.213 is replied to by the network card with MAC address

00:0e:35:a3:0f:56 since that card owns the 192.168.1.213 IP address.

 45

tcpdump –I eth2 arp

tcpdump : verbose output suppressed , use - v or - vv for full protocol decode

listening on eth2 , link - type EN10MB (Ethernet) , capture size 96 bytes

11:58:01.704626 arp who - has 192.168.1.2 tell 192.168.1.213

11:58:02.704491 arp who - has 192.168.1.2 tell 192.168.1.213

11:58:03.704355 arp who - has 192.168.1.2 tell 192.168.1.213

11:58:44.184709 arp who - has 192.168.1.213 tell 192.168.1.1

11:58:44.184733 arp reply 192.168.1.213 is - at 00:0e:35:a3:0f:56 (oui Unknown

)

Listing 4 Looking for ARP packets

6.3.3 Ethreal

Figure 8 Ethreal Screen Shot

Ethereal is useful for an in depth look at a single packet including all

available headers. Libraries over the structure of several types of packets

give the user hints for each fragment of a packet. If Kismet does not

provide enough feedback of what it finds, then Ethereal may be used to

dig out the valuable parameters on the network or communication. Figure

 46

is a screenshot of Ethereal. The first list in the window gives frames that

are captured by the monitoring Wi-Fi network interface card. A dissection

of an Acknowledgment frame is displayed in the list below. Fields of the

frame are described in human-readable sentences or words. The last list

in the window is the raw frame in hex-notation, and American Standards

Character (ASCII) to the far right.

6.3.4 Ettercap

Ettercap is a user friendly packet sniffer. It gives a great overview over the

connections in the network and may display the network traffic. Several

plug-ins have been developed to do a number of attacks. In its current

incarnation it

requires the network card to associate with the access point in order to

show live network traffic. However it may display pre-captured data, even

if it is WEP encrypted, although the WEP key must be provided to it. [32]

Figure 9 Ettercap Screen Shot

 47

In Figure 9 a session with Ettercap is depicted. Ettercap can display a

number of screens; in the figure it displays all live connections in the

network with their source and destination IP address, and port numbers.

The lower part of the screen is a console where interesting information that

Ettercap finds will be displayed to the user.

6.3.5 IPTables

Iptables is Linux based firewall. You can make network address translation

and masquerading using iptables.

6.3.6 HostAP

HostAP is a Linux driver for wireless LAN cards based on Intersil's

Prism2/2.5/3 chipset. The driver supports a so called Host AP mode, i.e. it

takes care of IEEE 802.11 management functions in the host computer

and acts as an access point. This does not require any special firmware

for the wireless LAN card. In addition to this, it has support for normal

station operations in BSS and possible also in IBSS. WPA and RSN

(WPA2) are supported when used with accompanied tools,

wpa_supplicant (WPA/RSN Supplicant) and hostapd (WPA/RSN

Authenticator). All these programs have been designed for both

desktop/laptop computers and embedded systems.

Intersil's station firmware for Prism2 chipset supports a so called Host AP

mode in which the firmware takes care of time critical tasks like beacon

sending and frame acknowledging, but leaves other management tasks to

host computer driver. This driver implements basic functionality needed to

initialize and configure Prism2-based cards, to send and receive frames,

and to gather statistics. In addition, it includes an implementation of

following IEEE 802.11 functions: authentication (and de-authentication),

association (reassociation, and disassociation), data transmission between

 48

two wireless stations, power saving (PS) mode signaling and frame

buffering for PS stations. The driver has also various features for

development debugging and for researching IEEE 802.11 environments

like access to hardware configuration records, I/O registers, and frames

with 802.11 headers.

6.3.7 WPA Supplicant

wpa_supplicant is a WPA Supplicant for Linux, BSD, and Windows with

support for WPA and WPA2 (IEEE 802.11i / RSN). It is suitable for both

desktop/laptop computers and embedded systems. Supplicant is the IEEE

802.1X/WPA component that is used in the client stations. It implements

key negotiation with a WPA Authenticator and it controls the roaming and

IEEE 802.11 authentication/association of the wlan driver.

6.3.8 MadWiFi

MadWifi is short for Multiband Atheros Driver for Wireless Fidelity. In other

words: this project provides a Linux kernel device driver for Atheros-based

Wireless LAN devices. The driver works such that your WLAN card will

appear as a normal network interface in the system. Additionally there is

support for the Wireless Extensions API. This allows you to configure the

device using common wireless tools (ifconfig, iwconfig and friends).

CHAPTER 7

GSM LOCATION BASED AUTHENTICATION USING SMS

We know that GSM operators can get the location information from the

stations. With this method we can get the users position other than using

Wi-Fi.

The method has some requirements:

1. GSM station.

2. Mobile Phone with Mobile Sign.

3. Mobile Operator.

4. Wireless AP which is synchronized by mobile operator.

5. Client

The method is simply shown in figure.

Figure 10 GSM Location Based Authentication using SMS

In Figure 10, the client wants to connect internet using its wireless card.

Server must authenticate user. For security reasons user request must be

logged. There are some commercial sites which shows your location on

the internet site like: http://www.mapamobile.com/. For Turkey,

TURKCELL4 has similar applications for monitoring vehicles on the map.

Also the police is using such services for searching stolen mobile phones.

7.1 Steps of Authentication

Step 1: User request OTP from his/her mobile phone by sending SMS

with mobile sign [33] in this format:

<MAC> <User Name> <Password>

Step 2: Operator receives the SMS and checks user name, password,

__
4
 TURKCELL: One of the biggest mobile operator companies in Turkey.

 51

MAC, location, mobile phone number. If all information has matched with

the database, server sends back SMS which includes SSID and OTP in

this format:

<SSID> <OTP>

Step 3: User authenticates himself/herself by using that information.

In this method EAP-OTP can be used or simply WAP or WEP can be

used. Some codes are added to this thesis, which are related to this

method as a proof on this concept. The code is examined using WPA-

PSK. But if it can be EAP-OTP it is better for working model.

There is also an SMS server5 which can be used by the user without

mobile operator.

With this technique, multiple technologies are combined in one hand.

There is no new authentication method. There is just an authentication

database from operator side. WPA-PSK can be changed by the time.

When user requests a SSID and password from operator the main

problem is SMS sending and receiving time. The time value shall be set to

the calculated time value.

__
5
 Appendix B.4

 52

CHAPTER 8

CONCLUSION

By using this method, mobile phone operators, hotels or some public area

authenticate requests can be fulfilled. Also using these methods wireless

attackers can be defeat.

As a feature work OTP JAVA can be developed for mobile phones. This

key can be used with mobile sign.

In this thesis we achieve our goal. This method is useful for information

technology law of Turkey service operator requirements. According to that

law, operator must know the identity of who is connected to the network

and all traffic information on the network.

R1

REFERENCES

[1] http://www.aircrack-ng.org

[2] http://ralink.rapla.net/

[3] http://madwifi.org

[4] http://www.kismetwireless.net

[5] IEEE Std 802.11 (1997), Part 11: Wireless LAN medium access control

(MAC) and physical layer (PHY) specifications, IEEE.

[6] McGrew D. A. and Fluhrer S. R. (2000), “The stream cipher

encapsulating security payload”, draft-mcgrew-ipsec-scesp-01.txt, IETF.

[7] Helleseth H. (2005), Data set of WEP encrypted frames, international

WiFi conference, NY.

[8] Edney J. and Arbaugh A. W. (2004), Real 802.11 security, Wi-Fi

protected access and 802.11i. ISBN 0321136209.

[9] Dubrawsky I. (2007), Safe layer 2 security in-depth—version

2,Printace Hall.

[10] Postel J. (1981), Internet protocol message protocol., RFC 792

(Standard).

R2

[11] Postel J. (1981), Internet protocol message protocol, RFC 791

(Standard).

[12] Postel J. (1981), Internet protocol message protocol, RFC 793

(Standard).

[13] Postel J. and Reynolds J.K. (1988), A standard for the transmission

of ip datagrams over ieee 802 networks, RFC 1042 (Standard).

[14] IEEE Standards Association.(2006) IEEE OUI and company id

assignments, IEEE.

[15] Hulton D. (2002), Practical exploitation of RC4 weaknesses in WEP

environments, security conference of Canada’02.

[16] Scott Ananian C.(2007) Open source PPTP client, open source

PPTP client documentation.

[17] FortConsult Aps. (2005) Ny metode til at afsløre hackere,

FortConsult Web.

[18] Daemon J. and Rijmen V. (2001), AES proposal, Rijndael.

[19] Menezes A. J., van Orschot P. C., and Vanstone S. A. (1996),

Handbook of applied cryptography, CRC.

[20] Roos A. (1995), A Class of weak keys in the RC4 stream cipher.,

CRC.

[21] Martin Scott Fluhrer I. and Shamir Ron Rivest A., Weaknesses in

the key scheduling algorithm of RC4, Prentice Hall.

 R3

[22] Schneier B. (1997), Applied cryptography, 2nd addition, Wiley.

[23] Eastlake D., Crocker S., and Schiller J. (1994), RFC 1750,

Randomness recommendations for security, IETF.

[24] Bellovin S. M. (2000), “Problem areas for IP security protocols”, 6th

USENIX UNIX security conference.

[25] Rogaway P. (2002), OCB mode: parallelizable authenticated

encryption, UNIX security conference.

[26] Dierks T. and Allen C. (1999), RFC 2246, the TLS protocol, version

1.0, IETF.

[27] Kent S. and Atkinson R. (1998), RFC 2401, security architecture for

the internet protocol, IETF.

[28] Rogaway P. and Coppersmith D. (1994), “A software-oriented

encryption algorithm”, in fast software encryption, Cambridge security

workshop, Springer-Verlag.

[29] http://www.rsasecurity.com/

[30] Dingledine R. and Mathewson N. (2006), Tor protocol specification.,

IETF.

[31] http://www.dachb0den.com/projects/bsd-airtools

[32] Helleseth H. (2005), Data from warbiking in Bergen, network security

conference, Belgium.

[33]

http://www.turkcell.com.tr/bireysel/servisler/asistan/Turkcell_mobil_imza

 A1

APPENDIX A

Acronyms & Abbreviations

ACK Acknowledgement

AP Access Point

API Application Programming Interface

ARP Address Resolution Protocol

ASCII American Standards Character

BS Base Station

BSD Berkeley Software Distribution

BSS Basic Service Set

BSSID Basic Service Set Identifier

CF Contention-Free

CRC Cyclic Redundancy Check

CTS Clear To Send

dB Decibel

dBi Decibel Gain Related to an Isotropic Radiator

DCF Distributed Coordination Function

DGPS Differential Global Positioning System

DHCP Dynamic Host Configuration Protocol

DIFS Inter-Frame Spacing

DNS Dynamic Name Resolution

DSSS Direct Sequence Spread Spectrum

EIRP Effective Isotropic Radiated Power

EIV Extended Initialization Vector

ESS Extended Service Set

ESSID Extended Service Set Identifier

 A3

FCC Federal Communications Commission

FCS Frame Check Sequence

FMS Fiat, M, and Shamir

FTP File Transfer Protocol

GPS Global Positioning System

HTTP Hyper Text Transport Protocol

IBSS Independent Basic Service Set

ICMP Internet Control Message Protocol

ICV Integrity Check Value

IP Internet Protocol

IEEE Institute of Electrical and Electronics Engineers

IMAP Internet Message Access Protocol

IR Infrared

ISM Industrial, Scientific, and Medical

IV Initialization Vector

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LLC Link Layer Control

MAC Medium Access Control

MadWiFi Multiband Atheros Driver for WiFi

Mbps Mega bits per second

MD5 Message Digest, version 5

MIC Message Integrity Code

mini-PCI Miniature Peripheral Component Interconnect

MPDU MAC Protocol Data Unit

MPPE Microsoft Point-to-Point Encryption

MS Mobile Station

mW Milli Watt

NAT Network Address Translation

NMEA National Marine Electronics Association

 A4

PAN Personal Area Network

PCF Point Coordination Function

PC-Card Peripheral Component Interconnect Card

PCMCIA Personal Computer Memory Card International Association

PGP Pretty Good Privacy

PIFS Inter-Frame Spacing

PKI Public Key Infrastructure

PLCP Physical Layer Convergence Protocol

PMK Pairwise Master Key

PPTP Point-to-Point Tunneling Protocol

PRGA Pseudo Random Number Generator Algorithm

PRNG Pseudo Random Number Generator

PRGN Pseudo Random Number Generator Number

PS Power Save

PSK Pre-Shared Key

PTK Pairwise Transient Key

QoS Quality of Service

RC4 Rivest Cipher 4 or Ron’s Code

RF Radio Frequency

RSA Rivest, Shamir, & Adleman

RSN IE Robust Security Network Information Element

RSN Robust Security Network

RTS Request To Send

SNAP Subnetwork Access Protocol

SSID Service Set Identity

TCP Transport Control Protocol

TCP/IP Transport Control Procotol/Internet Protocol

TKIP Temporal Key Integrity Protocol

U.FL Highrose Connector

U-NII Unlicensed National Information Structure

 A5

UDP Universal Datagram Protocol

URI Universal Resource Identifier

USB Universal Serial Bus

VPN Virtual Private Network

W Watt

WDS Wireless Distribution System

WEP Wired Equivalent Privacy

Wi-Fi Wireless-Fidelity

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

WPA2 Wi-Fi Protected Access version 2

WPA-PSK Wi-Fi Protected Access—Pre-Shared Key

XOR Bitwise addition

 A6

APPENDIX B

Used Configurations

B.1. hostapd.conf

An additional configuration parameter, bridge,

must be used to notify hostapd if the interface is included in a bridge.

#bridge=br0 # Enable this for standard bridging, leave disabled for

netfilter firewalls

interface=ath0

driver=madwifi

logger_syslog=-1

logger_syslog_level=2

logger_stdout=--1

logger_stdout_level=2

debug=1

ctrl_interface_group=0

macaddr_acl=0

deny_mac_file=/etc/hostapd.deny

auth_algs=3

eapol_key_index_workaround=0

eap_server=0

dump_file=/tmp/hostapd.dump

ssid=caglar

wpa=3

 A3

wpa_psk=65edadd8c6a29b1e5a898ef9f9a18e4edb82982d7923565008aa

a0213d13ea61

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP CCMP

B.2. wpa_supplicant.conf

network={

 ssid="caglar"

psk=65edadd8c6a29b1e5a898ef9f9a18e4edb82982d7923565008aaa021

3d13ea61

 key_mgmt=WPA-PSK

 proto=RSN

}

B.3. Wireless_AP Configuration Shell Script

#!/bin/bash

ifconfig ath0 down

wlanconfig ath0 destroy

wlanconfig ath0 create wlandev wifi0 wlanmode ap

iwconfig ath0 mode Master

echo -n "Enter ESSID of AP (Ex: caglar): "

read AP_NAME

iwconfig ath0 essid ${AP_NAME}

echo -n "Enter IP for AP (Ex: 10.1.1.1): "

read AP_IP

ifconfig ath0 ${AP_IP} up

 A4

#firewall options

echo 1 > /proc/sys/net/ipv4/ip_forward

echo -n "Enter output interface (Ex: eth1): "

read AP_EXT_INT

iptables -t nat -A POSTROUTING -o ${AP_EXT_INT} -j MASQUERADE

iptables -F

clear

echo "DONE.."

iptables -t nat -L

iwconfig ath0

ifconfig ath0

hostapd -B /etc/hostapd.conf

B.4. SMS Server-Client Program

B.4.1. corePortAccess.c

/*

Port related functions are in this file.

version 2,stable.

*/

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <termios.h>

/*

 A5

Nokia 7110 Connection Parameters

BAUD: 19200

DATA BITS: 8

STOP BITS: 1

PARITY: NO PARITY

FLOW CONTROL: H/W FLOW CONTROL (RTSCSTS)

*/

int portInit(int mode, char *port)

{

 static int portDescriptor;

 int status;

 char whichPort[]="/dev/ttyS";

 static struct termios oldSetup;

 if(mode==1)

 {

 strcat(whichPort,port);

 portDescriptor=open(whichPort, O_RDWR | O_NOCTTY);// |

O_NDELAY); //Now Waits port reply

 fcntl(portDescriptor, F_SETFL,0);// FNDELAY);

 //setting port parameters

 struct termios portSetup;

 tcgetattr(portDescriptor, &oldSetup);

 tcgetattr(portDescriptor, &portSetup);

 cfsetispeed(&portSetup, B19200); //input baud

 cfsetospeed(&portSetup, B19200); //output baud

 A6

 portSetup.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); //Raw

mode.

 //portSetup.c_oflag &= ~OPOST; //Raw output

 //portSetup.c_iflag &= ~OPOST; //Raw input

 portSetup.c_cflag |=(CREAD| CLOCAL); // Read Enable, Local

Mode

 portSetup.c_cflag &= ~PARENB; //Clear Parity bit (no parity)

 portSetup.c_cflag &= ~CSTOPB; //Clear stop bit (1 stop bit)

 portSetup.c_cflag &= ~CSIZE; //clear data size bits (0 data bits)

 portSetup.c_cflag |= CS8; //set 8 data bits

 portSetup.c_cflag |= CRTSCTS; //Set hardware flow control.

 //portSetup.c_iflag |= (IGNPAR); //Ignore Parity.

 tcsetattr(portDescriptor, TCSAFLUSH, &portSetup);

 tcflush(portDescriptor, TCIOFLUSH);

 return portDescriptor;

 }

 if(mode==0)

 {

 tcflush(portDescriptor, TCIOFLUSH);

 tcsetattr(portDescriptor, TCSAFLUSH, &oldSetup);

 close(portDescriptor);

 }

 return portDescriptor;

}

 A7

B.4.2. messageSendingCore.c

/*

SMS sending core. Used by other modules to send SMS when needed.

version 0.6alpha. //connecting to port, optimized a bit, nearly complete. /

stable

*/

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <termios.h>

/*

Argument table for this prgoram

-d or --destination : destination

-m or --message : the text to be sent

-c or --center : the message center to be used

Note: These arguments have no specific order.

*/

void help(char *name)

{

 printf("\ncommand line SMS sender core.\n");

 printf("--\n");

 printf("Usage: %s [options]\n\n",name);

 printf("Options:\n");

 printf("\n-c --center [number]:Defines an SMS center to work with

<Optional>\n");

 printf("\n-d --destination [number]: Defines the destination of the

 A8

message.\n");

 printf("\n-m --message [\"message\"]: The message itself.\n");

 printf("\n-p --port [n]: defines which serial port to be used. Use port

number-1 for n. (i.e. 0 for com port 1).\n");

 printf("\n-i --interactive [0 | 1 | 2]: Debugging mode. 1 gives steps'

output. 2 enables confirmation.");

 printf("\n-h --help: This screen\n\n");

 printf("\nNote:Format the numbers of center and destination as you

are sending an ordinary SMS from your phone.");

}

int sms_main(int parameterCount, char * parameterValue[], int output)

{

 int interactiveMode=0; //Interactive mode is used for debugging

purposes. if 1, prints information on screen.

 //if 2, wants confirmation before sending.

 int portDescriptor; //returning file descriptor from portInit()

function.

 int status; //used for checking error conditions.

 int i,j; //classic loop constant.

 int counter; //used in duplicate argument detector.

 int messageIndex=-1; //Holds the array positions of variables

that are needed.

 int centerIndex=-1;

 int destinationIndex=-1;

 char *parameterMask[12]={"-c","--center","-d","--destination","-m", "--

message","-i","--interactive","-h","--help","-p","--port"};

 char centerBuffer[512]; //this is the variable that helps on editing

of message center.

 char destinationBuffer[512]; //this is the variable that helps on

 A9

editing of message destination.

 char overflowPreventer[512]; //this variable must stay here. it's

acting as a buffer overflow green zone.

 char *transferBuffer; //this is a temporary buffer for copying a

string into stringBuffer. (uses strcpy())

 char *processBuffer; //another temporary buffer used for

adding components and for other temporary stuff.

 char commandBuffer[512]; //a temporary buffer used for string

transfer to port.

 char decision;

 char *whichPort="0"; //used to look for which port is used.

 FILE *f;

 //checking for true formatting

 if((parameterCount%2)==0)

 {

 help(parameterValue[0]);

 return 0;

 }

 //Checking for too less parameters.

 if(parameterCount<2)

 {

 help(parameterValue[0]);

 return(0);

 }//done.

 //Checking for too many parameters.

 if(parameterCount > 13)

 {

 help(parameterValue[0]);

 A10

 return(0);

 }//done.

 //a duplicate argument detection mechanism

 for(i=0; i<12; i++)

 {

 counter=0;

 for(j=1; j<parameterCount; j++)

 {

 if(!strcmp(parameterValue[j],parameterMask[i]))

 {

 counter++;

 }

 }

 if (counter>1)

 {

 help(parameterValue[0]);

 return(0);

 }

 }//done.

 //searching for help request

 for(i=1; i<parameterCount; i++)

 {

 if(!strcmp(parameterMask[8],parameterValue[i]) ||

!strcmp(parameterMask[9],parameterValue[i]))

 {

 help(parameterValue[0]);

 return(0);

 }

 }

 //searching for port number

 A11

 for(i=1; i<parameterCount; i++)

 {

 if(!strcmp(parameterMask[10],parameterValue[i]) ||

!strcmp(parameterMask[11],parameterValue[i]))

 {

 whichPort=parameterValue[i+1];

 a }

 }

 //searching for interactiveMode parameter

 for(i=1; i<parameterCount; i++)

 {

 if(!strcmp(parameterMask[6],parameterValue[i]) ||

!strcmp(parameterMask[7],parameterValue[i]))

 {

 interactiveMode=parameterValue[i+1];

 }

 }

 //Searching for message center

 for(i=1; i<parameterCount-1; i++)

 {

 if(!strcmp(parameterMask[0],parameterValue[i]) ||

!strcmp(parameterMask[1],parameterValue[i]))

 {

 if(interactiveMode)

 {

 printf("OK, message center found:");

 }

 centerIndex=i+1;

 A12

 if(interactiveMode)status=read(portDescriptor,

&processBuffer,255);

 {

 printf("%s\n",parameterValue[i+1]);

 }

 }

 }//done

 //searching for message destination

 for(i=1; i<parameterCount-1; i++)

 {

 if(!strcmp(parameterMask[2],parameterValue[i]) ||

!strcmp(parameterMask[3],parameterValue[i]))

 {

 if(interactiveMode)

 {

 printf("OK, message destination found:");

 }

 destinationIndex=i+1;

 if(interactiveMode)

 {

 printf("%s\n",parameterValue[i+1]);

 }

 }

 }//done

 //searching for message itself

 for(i=1; i<parameterCount-1; i++)

 {

 A13

 if(!strcmp(parameterMask[4],parameterValue[i]) ||

!strcmp(parameterMask[5],parameterValue[i]))

 {

 if(interactiveMode)

 {

 printf("OK, message found:");

 }

 messageIndex=i+1;

 if(interactiveMode)

 {

 printf("%s\n",parameterValue[i+1]);

 }

 }

 } //done

 //looking for too long messages.

 if(strlen(parameterValue[messageIndex])>159)

 {

 printf("Too long message. Please trim under 160 chars.\n");

 return 0;

 }

 //done.

 //searching if vital parameters are here.

 if(messageIndex==-1 || destinationIndex==-1)

 {

 help(parameterValue[0]);

 return(-1);

 }

 //done.

 A14

 //accessing "/dev/ttyS0"

 portDescriptor=portInit(1,whichPort); // Setting up COM1 (/dev/ttyS0)

for accessing the phone.

 if (portDescriptor==-1) // If cannot access, abort the execution.

 {

 if(output)

 {

 printf("Cannot access device %c\n",whichPort);

 }

 else

 {

 f=fopen("/var/log/sms_server","a+");

 fprintf(f,"%s Cannot access device %c\n",zaman(),whichPort);

 fclose(f);

 }

 return(0);

 }

 if(interactiveMode)

 {

 printf("Port descriptor obtained: %d\n", portDescriptor);

 }

 //string processing starts here

 //first, message center.

 if(centerIndex!=-1)

 {

 processBuffer=parameterValue[centerIndex];

 transferBuffer="AT+CSCA=\"";

 strcpy(centerBuffer,transferBuffer);

 A15

 strcat(centerBuffer,processBuffer);

 processBuffer="\"\r";

 strcat(centerBuffer, processBuffer);

 }

 //message center ends here.

 //then, destination.

 processBuffer=parameterValue[destinationIndex];

 transferBuffer="AT+CMGS=\"";

 strcpy(destinationBuffer, transferBuffer);

 strcat(destinationBuffer, processBuffer);

 processBuffer="\"\r";

 strcat(destinationBuffer,processBuffer);

 //destination ends here.

 //end of string processing.

 if(interactiveMode)

 {

 printf("\nText re-formatting complete, results:\n");

 printf("-------------------------------------\n");

 if(centerIndex!=-1)

 {

 printf("Center: %s\n", centerBuffer);

 }

 printf("Destination: %s\n", destinationBuffer);

 printf("Message: %s\n", parameterValue[messageIndex]);

 }

 if(interactiveMode>1)

 {

 printf("\nLast exit before the bridge...\n");

 printf("------------------------------\n");

 A16

 printf("Send? [Y/n]:");

 scanf("%c",&decision);

 if(decision=='n' || decision=='N')

 {

 printf("Aborted...\n");

 portInit(0);

 return 0;

 }

 }

 //sending message.

 if(interactiveMode)

 {

 printf("\nStarting to send commands to phone\n");

 printf("----------------------------------\n");

 }

 sleep(1); //remove me. after testing of course.

 transferBuffer="ATZ\n";

 strcpy(commandBuffer,transferBuffer);

 status=write(portDescriptor, commandBuffer,strlen(commandBuffer));

 sleep(1);

 if(interactiveMode)

 {

 printf("Obtained port descriptor: %d\n", portDescriptor);

 printf("Write status for %s: %d\n",transferBuffer, status);

 status=read(portDescriptor, &processBuffer,50);

 printf("Read status for %s: %d\n", transferBuffer, status);

 }

 A17

 transferBuffer="ATE0\r";

 strcpy(commandBuffer, transferBuffer);

 status=write(portDescriptor, commandBuffer,strlen(commandBuffer));

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for %s: %d\n",transferBuffer, status);

 status=read(portDescriptor, &processBuffer,50);

 printf("Read status for %s: %d\n", transferBuffer, status);

 }

 transferBuffer="AT+CMGF=1\r";

 strcpy(commandBuffer,transferBuffer);

 status=write(portDescriptor, commandBuffer,strlen(commandBuffer));

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for %s: %d\n",transferBuffer, status);

 status=read(portDescriptor, &processBuffer,50);

 printf("Read status for %s: %d\n", transferBuffer, status);

 }

 if(centerIndex!=-1)

 {

 status=write(portDescriptor, centerBuffer,strlen(centerBuffer));

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for %s: %d\n", centerBuffer, status);

 A18

 status=read(portDescriptor, &processBuffer,50);

 printf("\nRead status for %s: %d\n",centerBuffer, status);

 }

 }

 status=write(portDescriptor, destinationBuffer,

strlen(destinationBuffer));

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for %s: %d\n", destinationBuffer, status);

 status=read(portDescriptor, &processBuffer,50);

 printf("\nRead status for %s: %d\n",destinationBuffer, status);

 }

 processBuffer="\n";

 strcat(parameterValue[messageIndex],processBuffer);

 status=write(portDescriptor, parameterValue[messageIndex],

strlen(parameterValue[messageIndex]));

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for %s: %d\n",

parameterValue[messageIndex], status);

 status=read(portDescriptor, &processBuffer,50);

 printf("\nRead status for %s:

%d\n",parameterValue[messageIndex], status);

 }

 decision=0x1A;

 status=write(portDescriptor, &decision ,1);

 A19

 sleep(1);

 if(interactiveMode)

 {

 printf("Write status for 0x1A: %d\n", status);

 status=read(portDescriptor, &processBuffer,50);

 printf("\nRead status for 0x1A: %d\n",status);

 }

 portInit(0,whichPort);

 return 0;

}

B.4.3. zaman.c

#include <time.h>

#include <stdio.h>

#define SIZE 256

char * zaman (void)

{

 char buffer[SIZE];

 time_t curtime;

 struct tm *loctime;

 /* Get the current time. */

 curtime = time (NULL);

 /* Convert it to local time representation. */

 loctime = localtime (&curtime);

 A20

 /* Print it out in a nice format. */

 strftime (buffer, SIZE, "[%d-%m-%Y %H:%M:%S]", loctime);

 return buffer;

}

B.4.4. sms_server.c

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <stdio.h>

#include <unistd.h> /* close */

#define SUCCESS 0

#define ERROR 1

#define END_LINE 0x0

#define SERVER_PORT 1500

#define MAX_MSG 160

/* function readline */

int read_line();

int sms_main(int parameterCount, char * parameterValue[], int output);

char * zaman (void);

int main (int argc, char *argv[]) {

 int sd, newSd, cliLen, pid, kontrol;

 int parc,i,output=1;

 A21

 char *parv[20];

 struct sockaddr_in cliAddr, servAddr;

 char line[MAX_MSG];

 char mesaj[MAX_MSG];

 char telefon[MAX_MSG];

 char temp[MAX_MSG][MAX_MSG];

 FILE *f;

 /* create socket */

 sd = socket(AF_INET, SOCK_STREAM, 0);

 if(sd<0) {

 perror("cannot open socket ");

 return ERROR;

 }

 /* bind server port */

 servAddr.sin_family = AF_INET;

 servAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servAddr.sin_port = htons(SERVER_PORT);

 if(bind(sd, (struct sockaddr *) &servAddr, sizeof(servAddr))<0) {

 perror("cannot bind port ");

 return ERROR;

 }

 listen(sd,5);

 if(argc>1)

 {

 if(!strcmp(argv[1],"-d"))

 {

 daemon(1,1);

 pid=getpid();

 A22

 //printf("pid: %d\n\n",pid);

 output=0;

 if(f=fopen("/var/run/sms_server.pid","w"))

 {

 fprintf(f,"%d",pid);

 fclose(f);

 }

 else

 {

 printf("WARNING: faild to create /var/run/sms_server.pid\n");

 }

 }

 }

 else

 {

 printf("/---\\\n");

 printf("| Welcome to SMS server v1.0 |\n");

 printf("|---|\n");

 printf("|SMS Server by Caglar ULKUDERNER

<caglar@ulkuderner.net>|\n");

 printf("| |\n");

 printf("| use -d for daemon mode |\n");

 printf("\\---/\n\n");

 }

 if(!output)

 {

 if(f=fopen("/var/log/sms_server","a+"))

 {

 fprintf(f,"%s waiting for data on port TCP

%u\n",zaman(),SERVER_PORT);

 fclose(f);

 }

 A23

 else

 {

 printf("WARNING fail to open /var/log/sms_server\n");

 }

 }

 while(1) {

 if(output)

 {

 printf("%s waiting for data on port TCP %u\n",argv[0],SERVER_PORT);

 }

 cliLen = sizeof(cliAddr);

 newSd = accept(sd, (struct sockaddr *) &cliAddr, &cliLen);

 if(newSd<0) {

 perror("cannot accept connection ");

 return ERROR;

 }

 /* init line */

 memset(line,0x0,MAX_MSG);

 /* receive segments */

 parc=1;

 kontrol=0;

 while(read_line(newSd,line)!=ERROR) {

 if(output)

 {

 printf("%s: received from %s:TCP%d : %s\n", argv[0],

 inet_ntoa(cliAddr.sin_addr),

 ntohs(cliAddr.sin_port), line);

 }

 A24

 strcpy(temp[kontrol],line);

 parv[parc]=temp[kontrol];

 kontrol++;

 parc++;

 /* init line */

 memset(line,0x0,MAX_MSG);

 } /* while(read_line) */

 if(!output)

 {

 if(f=fopen("/var/log/sms_server","a+"))

 {

 fprintf(f,"%s received from %s : ",

zaman(),inet_ntoa(cliAddr.sin_addr));

 for(i=1;i<parc;i++)

 {

 fprintf(f,"%s ", parv[i]);

 }

 fprintf(f,"\n");

 fclose(f);

 }

 }

 sms_main(parc,parv,output);

 if(!output)

 {

 if(f=fopen("/var/log/sms_server","a+"))

 {

 fprintf(f,"%s Sending SMS-Core done. \n", zaman());

 fclose(f);

 }

 }

 A25

 } /* while (1) */

}

int read_line(int newSd, char *line_to_return) {

 static int rcv_ptr=0;

 static char rcv_msg[MAX_MSG];

 static int n;

 int offset;

 offset=0;

 while(1) {

 if(rcv_ptr==0) {

 /* read data from socket */

 memset(rcv_msg,0x0,MAX_MSG); /* init buffer */

 n = recv(newSd, rcv_msg, MAX_MSG, 0); /* wait for data */

 if (n<0) {

 perror(" cannot receive data ");

 return ERROR;

 } else if (n==0) {

 //printf(" connection closed by client\n");

 close(newSd);

 return ERROR;

 }

 }

 /* if new data read on socket */

 /* OR */

 /* if another line is still in buffer */

 /* copy line into 'line_to_return' */

 A26

 while(*(rcv_msg+rcv_ptr)!=END_LINE && rcv_ptr<n) {

 memcpy(line_to_return+offset,rcv_msg+rcv_ptr,1);

 offset++;

 rcv_ptr++;

 }

 /* end of line + end of buffer => return line */

 if(rcv_ptr==n-1) {

 /* set last byte to END_LINE */

 *(line_to_return+offset)=END_LINE;

 rcv_ptr=0;

 return ++offset;

 }

 /* end of line but still some data in buffer => return line */

 if(rcv_ptr <n-1) {

 /* set last byte to END_LINE */

 *(line_to_return+offset)=END_LINE;

 rcv_ptr++;

 return ++offset;

 }

 /* end of buffer but line is not ended => */

 /* wait for more data to arrive on socket */

 if(rcv_ptr == n) {

 rcv_ptr = 0;

 }

 } /* while */

}

B.4.5. sms_client.c

/*

 smsClient by Caglar Ulkuderner

 A27

*/

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <stdio.h>

#include <unistd.h> /* close */

#define SERVER_PORT 1500

#define MAX_MSG 100

int main (int argc, char *argv[]) {

 int sd, rc, i;

 struct sockaddr_in localAddr, servAddr;

 struct hostent *h;

 if(argc < 3) {

 printf("SMS Client v1.0\n");

 printf("===============\n");

 printf("usage: %s <sms-gw_ip> <options>\n",argv[0]);

 printf("\nOptions:\n");

 printf("-c --center [number]:Defines an SMS center to work with

<Optional>\n");

 printf("-d --destination [number]: Defines the destination of the

message.\n");

 printf("-m --message [\"message\"]: The message itself.\n");

 printf("-p --port [n]: defines which serial port to be used. Use port

number-1 for n. (i.e. 0 for com port 1).\n");

 printf("\nSMS Client v1.0\nDeveloped by: Caglar Ulkuderner\nSpecial

thanks to Hakan BAYINDIR for SMS_CORE\n");

 A28

 exit(1);

 }

 h = gethostbyname(argv[1]);

 if(h==NULL) {

 printf("%s: unknown host '%s'\n",argv[0],argv[1]);

 exit(1);

 }

 servAddr.sin_family = h->h_addrtype;

 memcpy((char *) &servAddr.sin_addr.s_addr, h->h_addr_list[0], h-

>h_length);

 servAddr.sin_port = htons(SERVER_PORT);

 /* create socket */

 sd = socket(AF_INET, SOCK_STREAM, 0);

 if(sd<0) {

 perror("cannot open socket ");

 exit(1);

 }

 /* bind any port number */

 localAddr.sin_family = AF_INET;

 localAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 localAddr.sin_port = htons(0);

 rc = bind(sd, (struct sockaddr *) &localAddr, sizeof(localAddr));

 if(rc<0) {

 printf("%s: cannot bind port TCP %u\n",argv[0],SERVER_PORT);

 perror("error ");

 exit(1);

 }

 A29

 /* connect to server */

 rc = connect(sd, (struct sockaddr *) &servAddr, sizeof(servAddr));

 if(rc<0) {

 perror("cannot connect ");

 exit(1);

 }

 for(i=2;i<argc;i++) {

 rc = send(sd, argv[i], strlen(argv[i]) + 1, 0);

 if(rc<0) {

 perror("cannot send data ");

 close(sd);

 exit(1);

 }

 //printf("%s: data%u sent (%s)\n",argv[0],i-1,argv[i]);

 }

//printf("data sent to %s\n",argv[1]);

return 0;

}

B.4.6. Makefile

CFLAGS=-g -WALL

LDFLAGS= -s

all:

 @echo "For SMS_Server: make server"

 @echo "For SMS_Client: make client"

 A30

 @echo "For Clean : make clean"

server: sms_server.c messageSendingCore.c corePortAccess.c zaman.c

 gcc -g -c -Wall sms_server.c -o sms_server.o

 gcc -g -c -Wall messageSendingCore.c -o messageSendingCore.o

 gcc -g -c -Wall corePortAccess.c -o corePortAccess.o

 gcc -g -c -Wall zaman.c -o zaman.o

 gcc sms_server.o messageSendingCore.o corePortAccess.o

zaman.o -o sms_server

client: sms_client.c

 gcc sms_client.c -o sms_client

clean:

 rm -rf zaman.o corePortAccess.o messageSendingCore.o

sms_server.o sms_server sms_client

B.4.7. SMSd

#!/bin/bash

SMS Server control script

Caglar Ulkuderner

source function library

. /etc/rc.d/init.d/functions

Variables

RETVAL=0

prog="SMSd"

PID_FILE=/var/run/sms_server.pid

start()

 A31

{

 CURDIR=`pwd`

 echo -n $"Starting $prog:"

 /usr/bin/sms_server -d

 echo_success

 RETVAL=$?

 echo

}

stop()

{

 echo -n $"Stopping $prog:"

 pid=`cat $PID_FILE`

 kill -9 $pid

 rm -rf $PID_FILE

 echo_success

 RETVAL=$?

 echo

}

status()

{

 if `test -f $PID_FILE`

 then

 echo "PID(`cat $PID_FILE`) Running.."

 else

 echo "Stoped.."

 fi

}

case "$1" in

 start)

 start

 A32

 ;;

 stop)

 stop

 ;;

 restart)

 stop

 sleep 5

 start

 ;;

 status)

 status

 ;;

 *)

 echo $"Usage: $0 {start|stop|restart|status}"

 RETVAL=1

esac

exit $RETVAL

