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ABSTRACT 
 
 

AN INTEGRATION OF BAYESIAN BELIEF NETWORKS  
IN MULTI-CRITERIA DECISION ANALYSIS: 

AN APPLICATION IN MEDICAL DECISION MAKING 
 
 

Karatepe, Dilan 

M.Sc., Department of Industrial Engineering 

Supervisor : Prof. Dr. Fetih Yıldırım 
 
 
        September 2007, 90 pages 

 
 
 
 
 
 
 
This thesis analyzes the Medical counseling problem regarding breast cancer 

disease by using Bayesian Belief Network structure to visualize the conditional 

dependencies between variables and their impact on each other. Analytical 

Hierarchy Process (AHP) method is utilized to approximate the conditional 

probabilities of the diagnostic Fine Needle Aspiration (FNA) test outcome. The 

accuracy of the results obtained from surgical biopsy are compared to the actual 

outcomes and evaluated in terms of consistency and error magnitude.     

 
 
 
Keywords: Bayesian Belief Networks, Multi-criteria Decision Analysis, AHP, 

Medical Decision Making, Fine Needle Aspiration (FNA) 
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ÖZ 
 
 

ÇOK ÖLÇÜTLÜ KARAR ANALİZİNİN BAYES AĞLARI İÇİNDE KULLANIMI: 
 TIBBI KARAR VERME SÜREÇLERİNDE BİR UYGULAMA  

 
 

Karatepe, Dilan 

Yükseklisans, Endüstri Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Fetih Yıldırım 
 
 

September 2007, 90 sayfa 
 
 
 
 
 
 
 

Bu çalışma, meme kanseri hastalığına yönelik tıbbi danışmanlık problemini, 

değişkenler arasındaki koşullu olasılıkları ve birbirleri üzerindeki koşullu 

bağımlılıklarını görünür hale getirmek amacıyla Bayes Ağları kullanılarak 

incelemiştir. Analitik Hiyerarşi Süreci metodundan, İnce İğne Aspirasyonu tanı 

testine ait koşullu olasılıkları hesaplamada faydalanılmıştır. Sonuçların doğruluğu 

biyopsi ameliyatından elde edilen gerçek sonuçlarla karşılaştırılmış ve tutarlılık ve 

hatanın büyüklüğü yönünden değerlendirilmiştir.   

 
 
 
Anahtar Kelimeler: Bayes Ağları, Çok-Kriterli Karar Analizi, Analitik Hiyerarşi 

Süreci , Tıbbi Karar Verme, İnce İğne Aspirasyonu 
 

v 



 

 

6

 
 
 
 
 
 
 
 

ACKNOWLEDGMENTS 
 
 

I would like to thank my supervisor Prof. Dr. Fetih YILDIRIM for his guidance, 

criticism, encouragements and insight throughout the research.  

 

I would also like to thank the thesis jury Assistant Professor Suat KASAP and Dr. 

Özlem TÜRKER BAYRAK for reading and evaluating the thesis.  

 

I would like to express my thanks to Professor Şevket RUACAN and his assistant 

Dr. Sevgen ÖNDER for their help during interpretation of the data.  

 

The guidance of Assistant Professor Selim AKSOY for the data set and the technical 

assistance of Ms. Miray Aslan are gratefully acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 



 

 

7

 
 
 
 
 
 
 
 

TABLE OF CONTENTS 
 
 

STATEMENT OF NON PLAGIARISM....................................................…................iii 

ABSTRACT…………………………………………………………………………………………..iv 

ÖZ……………………………………………………………………………………………….. .…...v 

ACKNOWLEDGMENTS…………………………………………… …………………..………….vi 

TABLE OF CONTENTS ……………………………………………………………..……………vii 

LIST OF FIGURES …………………………………………………………………………………ix 

LIST OF TABLES ..…….………………………………………………………..………………….x 

CHAPTERS: 

1. INTRODUCTION .......................................................................................... 11 

2. BAYESIAN APPROACH................................................................................. 13 

2.2 Some Advantages of Bayesian Methods .................................................. 15 

2.3 Basics of Bayesian Analysis ................................................................... 17 

3. MEDICAL DECISION MAKING ..................................................................... 20 

3.1 Medical Diagnosis ................................................................................. 20 

3.2 Estimating Test Accuracy Parameters .................................................... 21 

3.2.1 Sensitivity and Specificity ............................................................... 21 

3.2.2 Positive and Negative Predictive Values ........................................... 22 

4. BAYESIAN BELIEF NETWORKS ................................................................... 24 

4.1 Definition .............................................................................................. 24 

4.2 Introduction to Inference in Bayesian Networks ..................................... 28 

4.3 Advanced Inference for Bayesian Networks ............................................ 29 

4.3.1 Variable Elimination ....................................................................... 30 

4.3.2 Junction Tree Algorithm ................................................................. 31 

4.3.2 Pearl’s Message Passing Algorithm .................................................. 33 

5. MULTI-CRITERIA DECISION ANALYSIS ....................................................... 45 

5.1 Literature Review .................................................................................. 45 

5.2 An Overview of MCDA Methods.............................................................. 47 

5.3 Definitions ............................................................................................ 48 

5.4 Definition of Analytical Hierarchy Method (AHP) ..................................... 49 

5.5 An Example of AHP ............................................................................... 51 

vii 



 

 

8

6. INTEGRATING BAYESIAN BELIEF NETWORKS AND ANALYTICAL HIERARCHY 

PROCESS ................................................................................................... 53 

7. AN APPLICATION IN MEDICAL DIAGNOSIS .................................................. 55 

7.1 Information about the Application Data ................................................. 55 

7.1.1. Wisconsin Prognostic Breast Cancer (WPBC) Dataset (Set 1) ........... 57 

7.1.2 Wisconsin Diagnostic Breast Cancer (WDBC) Dataset (Set 2) ........... 58 

7.2  Analysis of the Data ............................................................................. 59 

7.2.1 Outline of the Analysis:................................................................... 60 

7.2.2 Analysis Procedure: ........................................................................ 61 

7.2.3 Analysis 1: Finding causal dependencies between attributes ............ 62 

7.2.4 Analysis 2: Construction of the BBN model ..................................... 63 

7.3 Entering evidence into the network ........................................................ 66 

7.4 Checking The Accuracy Of The AHP Part Of The Model .......................... 67 

7.5 Checking the Accuracy of the BBN model .............................................. 68 

7.6 Comment on Results ............................................................................. 69 

8. CONCLUSIONS ............................................................................................ 70 

REFERENCES ................................................................................................. R1 

APPENDICES 
  A: Conditional and Marginal Probability Tables of Hypothetical Problem ......... A1 

  B: Evidence Propagation Using Pearl’s Message Passing Algorithm .................. A3 

  C: Tables and Figures that are not included in Chapter 7 ............................... A9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii 



 

 

9

 
 
 
 
 
 
 
 

LIST OF TABLES 

 

 

Table 3.1: An example showing the effect of disease prevalence on the        

predictive values .......................................................................... 22 

Table 3.2: Calculation of Sensitivity and Specificity ........................................ 22 

Table 4.1: Marginal probabilities of the nodes in the hypothetical  

problem after evidence 1 and evidence 2 are introduced ............... 43 

Table 5.1: Saaty’s relative importance scale .................................................... 50 

Table 5.2: Random Consistency Index (RI) ...................................................... 52 

Table-7.1: Classification of the correlation coefficient values ........................... 62 

Table-7.2: Correlation matrix of attributes in Set 2 ......................................... A8 

Table-7.3: Correlation matrix of attributes in Set 2 (summarized) ................... A8 

Table-7.4: Correlation matrix of attributes in Set 2 (converted into words) ....... A9 

Table-7.5: AHP priority matrix for parents of FNA node ................................... 65 

Table-7.6: Priorities of size, shape, texture and smoothness nodes .................. 65 

Table-7.7: Priorities of concavity and symmetry nodes .................................... 65 

Table-7.8: Contingency Table ......................................................................... 68 

Table-7.9: Effect of evidences on prior probabilities of the nodes ..................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix 



 

 

10

 
 
 
 
 
 
 
 

LIST OF FIGURES 
 
 

Figure-4.1: Sample factored joint distributions ............................................................ 29 

Figure 4.2: An example of a small Bayesian Network: The Asia Network ....................... 29 

Figure 4.3: Asia Network after moralization .................................................................. 31 

Figure 4.4: The Asia network, triangulated .................................................................. 32 

Figure 4.5: The junction-tree for the Asia network ....................................................... 32 

Figure 4.6: Equilibrium in the network after evidence introduction .............................. 35 

Figure 4.7: Downward propagation .............................................................................. 35 

Figure 4.8: Downward propagation after initiation of variable X to x1 ........................... 36 

Figure 4.9: (a) A directed cyclic graph that is not singly connected 

 (b) A singly connected network that is not a tree ........................................ 39 

Figure 4.10: BBN of the hypothetical problem generated in MSBN ............................... 42 

Figure 4.11: Prior and posterior probabilities of the nodes ........................................... 43 

Figure 4.12: Graph of hypothetical example showing prior probabilities and posterior 

probabilities of the sink node ................................................................. 44 

Figure 5.1: MCDM Hierarchy ....................................................................................... 49 

Figure-7.1: A magnified image of a breast FNA ............................................................. 56 

Figure-7.2: Scatter plot identifying the relations between attributes ............................. A9 

Figure-7.3: Scatter plot matrix identifying the difference of the attribute 

  values (Set 2) in terms of their type of diagnosis  .................................. A10 

Figure-7.4: Three dimensional scatter plot showing the dependency of compactness           

on area and perimeter ......................................................................... A10 

Figure-7.5: Dependency between concave points and concavity; fractal dimension            

and symmetry ..................................................................................... A10 

Figure-7.6: BBN of FNA study ...................................................................................... 63 

Figure-7.7: CPTs of BBN model .................................................................................. A11 

Figure-7.8: Marginal probabilities of the nodes after the introduction of evidence 1 ...... 66 

Figure-7.9: Marginal probabilities of the nodes after the introduction of evidence 2 ...... 67 

Figure-7.10: Effect of evidences on prior probabilities of the nodes ............................... 69 

 

 

 

 

 x 



 

 

11

 
 
 
 
 
 
 
 

CHAPTER 1 
 
 

1. INTRODUCTION 
 
 

The complexity of the decisional problems that arise in Medical Sciences requires 

greater specialization of individuals in this new context and needs the use of 

approaches more open and flexible than traditional decision-making techniques.  

 

The graphical model techniques that have been developed over the recent years try 

to help human-minds to understand the world around us, i.e stating the relations 

between variables, collecting data and processing it to have reasonable results. In 

order to make inferential statements or decisions concerning the parameters of a 

given process or population, information is obtained from the process or 

population. In the light of this sample information, Bayes’ Theorem is a tool to 

revise the probabilities. As another new decision tool, Multi-criteria decision 

methods enable the consensus in a case of multi-actor decision-making and 

multiple solution alternatives.  

 

For the cases where both statistical data and expert judgments are present, there 

is a need for an integrative model that combines the expert’s beliefs with the 

historical data and gives accurate results with acceptable errors. The Fine Needle 

Aspirate diagnostic test is an example of such a case. For breast cancer tumors, 

the Fine Needle Aspirate test provides evidence about the tumor’s status (benign or 

malignant) and directly effects the doctor’s surgical biopsy decision. However, the 

researches have shown that the 80 percent of the patients are directed to the 

surgical biopsy although their tumor is benign. This comes from the fact that there 

is no standardization for the evaluation of FNA test outcomes with accurate results. 

FNA image has both qualitative and quantitative (measurable) parameters. The 

evaluation is realized by the cyto-pathologist generally without interpretation of 

measurable data.  
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In this study, we aimed to model the factors of FNA test such that the model 

outcome has the minimum error compared to the real world. The thesis is divided 

into two parts. First part provides a concise overview of important definitions, 

principles and techniques focusing on inference, graphical models and decision-

making. First a brief introduction of Bayesian approach to probability and its usage 

in diagnostic test evaluation are given. The applications appeared in literature are 

mentioned which use Bayesian probability and multi-criteria decision methods 

together. Second part gives a detailed application on breast cancer tumors. In this 

part of the thesis study, the interdependencies between the features of a visual 

interpretation test and its outcome are found in terms of probabilities as a result of 

the AHP study, and then they are used as the conditional probabilities to construct 

the Bayesian Belief Network model for the Fine Needle Aspiration test, which gives 

the cyto-pathologist an idea about the breast tumors behavior. The accuracy of the 

generated model is measured in terms of consistency index of the AHP pair-wise 

comparison matrices and the error between the model result and actual outcome. 

The compliance of the model is evaluated both for the diagnostic data and 

prognostic data sets. This integrated approach enabled us to assess the 

interdependencies between uncertain variables and express them in terms of 

conditional probabilities. 

 

The methodology proposed in this study is important due to the fact that it 

combines the expert knowledge with the statistical data by utilizing expert 

judgment in conditional probability generation process. The conditional 

probabilities are approximated with an integrated AHP approach. Additionally, this 

study succeeded to generate an approximate model of Fine Needle Aspiration with 

an acceptable error and inconsistency, which would help the pathologists for 

making the hard surgical biopsy decision. 
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CHAPTER 2 
 
 

2. BAYESIAN APPROACH 
 

 

In the Bayesian approach to statistics, all available information is utilized in order 

to reduce the amount of uncertainty that is present in the decision-making 

problem. As new information is obtained, it is combined with any previous 

information to form the basis for statistical procedures. The mechanism used to 

combine the new information with the previously available information is known as 

Bayesian approach to probability. Bayes’ theorem involves the use of probabilities 

to generate beliefs. The content of this chapter consists of the basics of conditional 

probability and Bayesian approach as well as the differences between frequentists 

and Bayesian approach to probability. 

 

2.1 The Conditional Nature of Probability 

 

An important concept in the theory of probability is that of conditional probability, 

which is interested in the probability that one event will occur, given that a 

particular second event has occurred or will occur.  

For instance, one might be interested in the probability that; 

• sales of a certain firm’s products will go down, given that a rival firm introduces 

a competing product 

• the price of a certain stock will go up, given that taxes remain the same 

• breast cancer develops on a woman by age 40 given that she carries a 

deleterious copy of breast cancer susceptibility gene.  

 

In a sense, all probabilities are conditional upon some assumptions, upon the 

details of an experiment, upon some action or upon numerous similar factors. For 

example, if one says that the probability of rain is 1/3, we should write; 
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                P( rain │current atmospheric conditions) = 1/3 

Of course, the notion of conditional probability is not restricted to the case in 

which there is only one “given” event. For example, the probability that a person is 

involved in an automobile accident in a one-year period, we might be interested in  

                P( accident │age of the person) 

 or 

                P( accident │occupation of the person) 

or 

                P( accident │number of miles the person drives per year) 

then the conditional probability of the event becomes: 

P( accident │age of the person, occupation of the person, and number of miles the 

person drives per year) 

 
Statistical methods, such as significance test and confidence intervals which can 

be interpreted in terms of the frequency of certain outcomes occurring in 

hypothetical repeated realizations of the same experimental situations. Under this 

approach, parameters of interest are obtained from the observed data. Concepts 

such as hypothesis testing, power calculation, p values, random forest, bootstrap 

and cross-validation are commonly used by classical statisticians (e.g., 

frequentists). 

 

Frequentists view data as random variables while Bayesians view the unknown 

parameters as unknown parameters as random because those quantities are 

unknowable and are the quantities about which belief statements are needed. 

(Harrel, and Shieh, 2001). 

 

As it is stated by Draper (2006); two main ways to think about the meaning of 

probability have been developed: 

 

• the frequentist (or relative frequency) approach, in which attention is restricted 

to the phenomena that are repeatable under identical conditions (with each 

repetition logically independent of the others) and the probability P(A) of an 

event A is regarded as the long-run relative frequency with which A would occur 

in the repetitions; and 

 

• the Bayesian approach, in which A can be any (true/false) propositions you 

want (in other words, in this approach attention need not be restricted to 
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repeatable phenomena) and P(A) is a numerical measure of the weight of 

evidence in favor of the statement that A is true. 

 

Bayesian statisticians, think of the parameters as random variables, from a prior 

belief of regarding these parameters, and the use of the observed data to update 

their belief in the posterior distribution. The Bayesian posterior distribution offers a 

lot more flexibility in the type of evidence one can report and produce results more 

transparent to interpret. Bayesian applications are especially useful in studies 

involving multiple endpoints, which are common in clinical studies. (Harrel and 

Shieh, 2001)  

 

2.2 Some Advantages of Bayesian Methods 

 

The advantages of the Bayesian Methods can be summarized as follows:  

 

In contrast to frequentist methods, Bayesian methods answer the right 

questions and agree with natural common sense. That is, they give explicit 

probability distributions for both parameters and future outcomes and revise these 

probabilities as new evidence becomes available. All probabilities are appropriately 

conditioned on the observed data, and users can find any probabilities of interest. 

Examples are the probability that one treatment effect is greater than another, the 

probabilities of various side effects from a given treatment, or the probability that a 

particular patient will survive a surgical procedure. (Winkler, 2001) 

 

Important basic principles are consistently followed by Bayesian procedures. 

Most notable among these is the likelihood principle. In conditioning on the 

observed data, Bayesian methods ignore the likelihoods of any possible past 

outcomes that might have but did not occur. Only the likelihoods associated with 

the outcomes that actually occurred are used. Any probability manipulations, such 

as the determination of posterior and predictive probabilities, follow the usual rules 

of probability theory. (Winkler, 2001) 

 

The output of Bayesian methods is ideal for decision-making and therefore 

for healthcare decision making. Posterior and predictive probabilities represent 

the uncertainties of interest to decision makers and can be used in calculating any 

expected values of interest such as expected payoffs, expected losses, or expected 

utilities. Prior probabilities play an important role in pre-posterior decisions, which 

are decisions about whether to gather information, how to gather it, and how much 
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information to gather. Such decisions are very important in settings such as the 

testing of new drugs or medical procedures (Raiffa and Schlaifer,1961). Work in the 

1950s and early 1960s leading to the recent increase in interest in Bayesian 

methods was motivated in large part by decision-making considerations. 

 

Bayesian methods force careful thought. They require more inputs than are 

needed in frequentist procedures, and this generally encourages more careful 

thought about the model. This is not to say that many frequentist analyses are not 

done with careful modeling and thought, but as noted above, frequentist 

procedures are easier to apply mindlessly. Bayesian analyses often heighten 

awareness of some modeling issues. (Savage, 1954) 

 

In general, Bayesian analyses are more thorough and more transparent. 

There are fewer formal inputs to a frequentist analysis, which leaves greater leeway 

for modeling choices that are not always explicitly discussed. The need to specify 

explicitly the inputs to a Bayesian analysis makes the analysis and any 

assumptions more transparent to observers and to decision makers for whom the 

analysis is relevant. (Schlaifer, 1959) 

 

Bayesian methods allow for the formal incorporation of relevant 

information other than the data immediately at hand. Some actually view this 

as a weakness of the Bayesian approach, but in important real-world problems it is 

important to draw on any information that may be available pertaining to the 

question of interest. Excluding available information as the frequentist approach 

does is just as much a subjective judgment as including it explicitly and is less 

defensible. Lilford and Braunholtz (1996) state, “Health issues are now much more 

complex and the amount of disparate evidence that impacts on belief has 

increased. Only the Bayesian approach can do justice to all this information and 

provide the probabilistic basis for action.” 

 

Bayesian techniques lend themselves better to situations with messy data 

sets and with multiple data sets. Prior information, as expressed through the 

prior distribution, can serve to identify such models and enable us to differentiate 

between these different combinations (Bernardo and Smith, 1994).  
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2.3 Basics of Bayesian Analysis 

 

Three basic components in the Bayesian analysis are the prior distribution, 

likelihood function, and posterior distribution. The prior distribution describes 

analysts' belief a priori; the likelihood function captures how data modify the prior 

knowledge; and the posterior distribution synthesizes both prior and likelihood 

information. The Bayesian approach treats the parameters of interest as random 

variables, uses the entire posterior distribution to quantify the evidence, and 

reports evidence in a probabilistic manner. 

 

Frank P. Ramsey in The Foundations of Mathematics (1931) first used subjective 

belief as a way of interpreting probability. Ramsey proposed this interpretation as a 

complement to the frequency interpretation of probability, which was more 

established and accepted at the time. The statistician Bruno de Finetti in 1937 

adopted Ramsey's view as an alternative to the frequency interpretation of 

probability. L.J. Savage expanded the idea in The Foundations of Statistics (1954). 

 

Formal attempts have been made to define and apply the intuitive notion of a 

"degree of belief". The most common application is based on betting: a degree of 

belief is reflected in the odds and stakes that the subject is willing to bet on the 

proposition at hand. 

 
General form of Bayes’ theorem can be stated as Equation-2.1 below. If the J 

events A1, A2,……..,AJ are mutually exclusive (i.e, no two of the events can both 

occur; if one of them occurs, none of the other J-1 can occur) and collectively 

exclusive (i.e, one of the events must occur; the J events exhaust all of the possible 

results), and B is another event (the “given” event), then;  

 

)()(......)()()()(

)()(
)(

2211 JJ

JJ

J

APABPAPABPAPABP

APABP
BAP

+++


=  

 
 
Two distinct features of the Bayesian approach are the use of the prior distribution 

and the way θ, the parameter (or parameters) of interest, is conceptualized. The 

likelihood function serves as an intersection between frequentists and Bayesian 

statisticians; it is a common element in both approaches. Frequentists treat θ as a 

fixed unknown value and use the observed data to estimate θ. However, Bayesian 

statisticians treat θ  as an unknown random variable. They have a prior belief 

(2.1) 
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regarding θ, update their prior belief with the data observed, and summarize this 

information in the posterior distribution.  

Pr(θ data) ∝ Pr(data θ )  Pr(θ ) 

 

The posterior distribution obtained from the Equation 2.2 contains, from left to 

right, information on both the prior belief of analysts and the likelihood for the 

observed data, obtained from the experiment or study.  

 

An example for Bayesian Approach used in clinical studies is the GUSTO Study 

(Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries), 

which analysis the short-acting Nifedipine and the dose-related mortality of 

Nifedipine. 53 patients were enrolled in GUSTO. The purpose of this study was to 

evaluate if either drug alone, or a combination of both medications, is more 

effective in the treatment of heart attacks.  

 
The application of Bayesian Analysis can be summarized in five steps as follows:  

 

Step 1 involves determining the loss, called Bayes loss, if the wrong 

recommendation is made, which could be represented in clinical terms (e.g., lives 

lost, years of life lost, or quality-adjusted years of life lost), in economic terms 

(direct or total costs saved), or in combination of both (cost-effectiveness or net 

health benefits (Stinnett and Mullahy,1998)). Many trials directly measure the 

outcome of interest for deciding a policy. However, in some instances, the trial may 

have to rely on a surrogate measure. For example, for trials of drugs to treat 

hepatitis C, the main outcome measure is viral load, because it would be 

exceedingly difficult to keep patients in trials lasting many years to show an effect 

on liver cirrhosis, and thus mortality. In either case, it can be transformed 

mathematically into a relevant measure of risk relevant to the decision maker. 

 

 In step 2, the policy maker specifies the prior distribution function before the trial 

(the results of a Bayes analyses are likely to be viewed more credibly if the prior is 

defined before trial data are analyzed). For both standard and experimental 

treatment, the functions, denoted as pi(θ i), give the probability for each possible 

value of θ i. If there exists an abundance of prior information (e.g., biological 

plausibility, epidemiologic studies, prior randomized studies), then the prior 

distribution function is likely to appear narrower than if there exists little prior 

information. 

 

(2.2) 
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At Step 3, the statistician estimates the probabilities of observing the outcomes 

seen in the clinical trial, for any given level of parameter, θi. These represent the 

likelihood functions, fi(xi|θi).  

 

Bayes rule is used to estimate the posterior distribution of the θi’s (step 4) based on 

the prior distribution and the likelihood function. For example, in a clinical trial 

enrolling 200 patients, 100 for standard treatment and 100 for experimental 

treatment, the survival rate of patients became 45% and 65%, respectively.  

 

The Bayes method permits the decision maker to be more explicit about the risk of 

making the wrong recommendation. For either the prior or posterior distribution, 

the expected number of lives lost because of making wrong decision due to 

uncertainty in the true survival rates can be computed, and is called Bayes risk 

(step 5). The risk of deciding to recommend using the experimental treatment, 

when not using it is less harmful, occurs when θ1 < θ0. Conversely, the risk of 

deciding not to recommend using the experimental treatment, when using it is less 

harmful, occurs when θ1 > θ0.  (Hornberger, 2001). 
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CHAPTER 3 
 
 

3. MEDICAL DECISION MAKING 
 
 

Medical decision-making often involves making a diagnosis and selecting 

appropriate treatment. They help determine what prevention program to promote, 

what diagnose to make, what tests to order and what treatments to perform. 

Medical decisions are one of the most important factors determining the cost and 

quality of medical care. Since in medical decision-making, decisions in the light of 

information are converted into action; the alternatives, events and outcomes 

should be clearly defined to prevent wrong decisions. In this chapter, the usage of 

the test accuracy parameters which are calculated using contingency tables are 

explained in detail with an example. 

 
3.1 Medical Diagnosis 
 

While choosing one of many alternating test, the decision depends on several 

factors regarding the test: 

• Accuracy of the test 

• Availability 

• Difficulty in performance 

• and cost of the test 

Another important consideration in making diagnostic decision is to weigh up how 

much additional information the test will add to what is already known. The 

accuracy of tests is reported in terms of their sensitivity, specificity and predictive 

values. The meaning of these terms should be clearly understood by the doctors 

not to lead any wrong conclusions. For example, in a district with low disease 

prevalence, some doctors grossly overestimate the disease probability from a 

screening test, when the patient has a positive test result. This is due to the fact 

that, the predictive values of the tests change according to the prevalence of the 

disease on the population, on which the test has been performed. An example for 

this situation is given in Section 3.2.2. 
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3.2 Estimating Test Accuracy Parameters 
 
There are several characteristics that can be used to describe the quality and 

usefulness of a test. Accuracy is one of these characteristics that can be expressed 

through sensitivity and specificity, positive and negative predictive values. Each 

measure of accuracy should be used in combination with its complementary 

measure. 

• Sensitivity complements specificity 

• Positive predictive value complements negative predictive value 

 
3.2.1 Sensitivity and Specificity 
 
Sensitivity is the proportion of patients who were positive for the test among all 

patients with the disease. Specificity is the proportion of patients who were 

negative for the test among all patients without the disease. 

 

Generally the sensitivity and specificity depend on the cut-off values and may have 

some trade-off. A more sensitive test may be less specific and a more specific test 

may be less sensitive, so the decision on what test to request is often not easy. The 

answer depends on the purpose of doing the test. 

 

For example, a family physician has to decide to rule out the possibility of a 

treatable disease because the outcome is dangerous, that is, early detection of 

cervical cancer so that surgical intervention can be done immediately. If the 

purpose is making sure that the patient does not have cervical neoplasm, then a 

more sensitive test will be the right choice. Therefore, the physician may request a 

regular Pap smear test, which is more sensitive but not specific to cervical 

neoplasm. However, if the physician has to decide to only recommend treatment for 

those who really have the disease because the effect of treatment for a non-

diseased patient can harm the patient physically, emotionally or financially. In 

such a case, a more specific test will be the right choice because a very specific 

such as cervical biopsy test is rarely positive in the absence of the disease 

(Espallardo, 2003). 
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3.2.2 Positive and Negative Predictive Values 
 
A positive predictive value is the proportion of patients with the disease among all 

patients who were positive for the test.  

 

A negative predictive value is the proportion of patients who do not have the 

disease among those patients who were negative for the test. 

It gives us the probability of the presence or absence of the disease if the test is 

positive or negative, respectively.  

 

Predictive values are affected by the prevalence of the disease. For example, A test 

with 90% sensitivity and 80% specificity in a population that has 30% prevalence 

of the disease will have a positive predictive value of 66% and a negative predictive 

value 95%. However, if the same test is applied to an area where the prevalence of 

a disease is 10%, the positive predictive value becomes 33% and the negative 

predictive value becomes 99%. See Table 3.1 

 

Table 3.1: An example showing the effect of disease prevalence on the predictive 
values 

 
  High Prevalence  Low Prevalence 

  Disease 
No 

disease Total  Disease 
No 

disease Total 
Positive 27 14 41 Positive 9 18 27 
Negative 3 56 59 Negative 1 72 73 
Total 30 70 100 Total 10 90 100 

 

                       

                          Table 3.2: Calculation of sensitivity and specificity 
 

  Disease No disease 

Positive 
True Positive False Positive 

(TP) (FP) 

Negative 

False Negative True Negative 

(FN) (TN) 
 

Using Table 3.2, the prevalence, sensitivity, specificity, positive predictive value and 

negative predictive value parameters are calculated as follows: 

Prevalence = (TP+FN)/(TP+FP+FN+TN) 

Sensitivity= TP/(TP+FN)      

Specificity=TN/(FP+TN)   
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Positive Predictive Value = TP/(TP+FP) 

Negative Predictive Value = TN/(FN+TN) 

 

Using these formula for the values given in Table 3.1,  

 

In high prevalence case, 

sensitivity= 90%     

specificity = 80% 

prevalence =30% 

Positive Predictive Value =  66% 

Negative Predictive Value = 95% 

 

In low prevalence case, 

sensitivity= 90%     

specificity = 80% 

prevalence=10% 

Positive Predictive Value =  33% 

Negative Predictive Value = 99% 

 

Thus, the prevalence of the disease has crucial effect on the test performance. A 

diagnostic test that is applied in high prevalence area will have higher positive 

predictive values when applied to a low prevalence area. The negative predictive 

values, however, hardly change in such a case. Therefore, the doctor should take 

this fact into account in order not to make wrong comments about patient’s 

situation. 
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CHAPTER 4 
 
 
 
 
 

4. BAYESIAN BELIEF NETWORKS 
 
 

Bayesian Belief Networks (BBN), which are used to model the uncertainty in a 

domain able to make reasoning under uncertainty, has grown rapidly over the last 

few years. A BBN provides a model representation for the joint distribution of a set 

of variables in terms of conditional and prior probabilities, in which the 

orientations of the arrows represent influence or causality relations that are 

observed from data or expert opinion. In this chapter, the idea behind the Bayesian 

Belief Network propagation is identified, and then an hypothetical medical problem 

is generated and solved using Pearl’s algorithm. 

 
4.1 Definition 
 
Graphical models are a marriage between probability theory and graph theory. 

They provide a natural tool for dealing with two problems that occur throughout 

applied mathematics and engineering __ uncertainty and complexity __ and in 

particular they are playing an increasingly important role in design and analysis of 

machine learning algorithms. Fundamental to the idea of a graphical model is the 

notion of modularity __ a complex system is built by combining simpler parts. 

Probability theory provides the bond whereby the parts are combined, insuring that 

the system as a whole is consistent, and providing ways to interface models to data 

(Jordan, 1999).  

 

A Bayesian Belief Network (Bayes Nets, Bayesian Networks) is a graphical model 

that encodes probabilistic relationships among variables of interest. Heckerman 

(2004) stated the advantages of Bayes Nets for data analysis when used in 

conjunction with statistical techniques:  
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• Bayesian Networks can handle incomplete data sets. When one of the inputs is 

not observed, however, most models will produce an inaccurate prediction, 

because they do not encode the correlation between the input variables. When 

we use Bayesian networks constructed from statistical data, missing data is 

processed by EM algorithm. 

 

• Bayesian Networks allow one to learn about causal relationships. Learning 

about causal relationships are important for at least two reasons. The process 

is useful when we are trying to gain understanding about a problem domain. In 

addition, knowledge of causal relationships allows us to make predictions in the 

presence of interventions. For example, a marketing analyst may want to know 

whether or not it is worthwhile to increase exposure of a particular 

advertisement in order to increase the sales of a product. To answer this 

question, the analyst can determine  

 

• Whether or not the advertisement is a cause for increased sales, and to what 

degree. The use of Bayesian Networks helps to answer such questions even 

when no experiment about the effects of increased exposure is available. 

 

• Bayesian Networks in conjunction with Bayesian statistical techniques facilitate 

the combination of domain knowledge and data. Anyone who has performed a 

real-world analysis knows the importance of prior or domain knowledge, 

especially when data is scarce or expensive. The fact that some commercial 

systems (i.e., expert systems) can be built from prior knowledge alone is a 

testament to the power of prior knowledge. Bayesian networks have a causal 

semantics that makes the encoding of causal prior knowledge particularly 

straightforward. In addition, Bayesian networks encode the strength of causal 

relationships with probabilities.  

 

Consequently, prior knowledge and data can be combined with well-suited 

techniques from Bayesian statistics. 

 

Belief networks are capable of representing the probabilities over any discrete 

sample space. The probability of any sample point in that space can be computed 

from the probabilities in the belief network. The key feature of belief networks is 

their explicit representation of the conditional independence and dependence 

among events. 
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Bayesian statistical methods in conjunction with Bayesian networks offer an 

efficient and principled approach for avoiding the over fitting of data. There is no 

need to hold out some of the available data for testing. Using the Bayesian 

approach, models can be “smoothed” in such a way that all available data can be 

used for training. 

 

Bayesian probability of an event x is a person’s degree of belief in that event.  

Whereas a classical probability is a physical property of the world (e.g., the 

probability that a coin will land heads), a Bayesian probability is a probability of 

the person who assigns the probability (e.g., your degree of belief that the coin will 

land heads).  

 

One important difference between physical probability and personal probability is 

that, to measure the latter, we do not need repeated trials. For example, if we 

imagine the repeated tosses of a sugar cube onto a wet surface, every time the cube 

is tossed, its dimensions will change slightly. Thus, although the classical 

statistician has a hard time measuring the probability that the cube will land with 

a particular face up, the Bayesian simply restricts his or her attention to the next 

toss, and assigns a probability.  

 

Heckerman (1996) listed the advantages of graphical models when used in 

conjunction with statistical techniques. Since the model encodes dependencies 

among all variables, it readily handles situations where some data entries are 

missing. A Bayesian network can be used to learn causal relationships, and hence 

can be used to gain understanding about a problem domain and to predict the 

consequences of intervention. Since the model has both a causal and probabilistic 

semantics, it is an ideal representation for combining prior knowledge (which often 

comes in causal form) and data. Bayesian statistical methods in conjunction with 

Bayesian networks offer an efficient and principled approach for avoiding the over-

fitting of data.  

 

Due to the advances in Bayesian algorithms, BBNs have been employed to support 

decision making in a variety of domains, that include; 

• medical diagnosis and advice 

• software safety assessment 

• system reliability prediction 

• system fault analysis 

• PC software user-assistance and trouble shooting 
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• Financial risk and return analysis 

• Weapons scheduling 

• Agriculture related applications. 

 

Bayesian networks have become increasingly popular in biomedicine and health-

care for handling the uncertain knowledge involved in establishing diagnoses of 

diseases, in selecting optimal treatment alternatives, and predicting treatment 

outcome in various areas. Bayesian networks are also increasingly developed in 

areas of health-care that are not directly related to the management of disease in 

individual patients. Some examples of the use of Bayesian networks in medicine 

are clinical epidemiology for the construction of disease models and within 

bioinformatics for the interpretation of micro-array gene expression data. 

 

Bayesian networks have been applied to problems in medical diagnosis (Heckerman 

1990; Franklin et al., 1989), map learning (Dean, 1990), language understanding 

(Charniak and Goldman, 1989; Goldman, 1990), vision (Levitt, Mullin, and Binford 

1989), heuristic search (Hansson and Mayer, 1989).  

 

To construct a Bayesian Belief Network, the graph structure or net topology must 

first be determined. This involves deciding upon the uncertain variables of interest, 

which provide the nodes and attributing values to these variables, if discrete in 

nature. This latter activity provides node states. The conditional relationships 

between the nodes must then be identified and these provide arcs. Finally, the BBN 

topology must be quantified or populated with node probability values, which 

describe the nature of uncertainty in the domain (Rajabally et al., 2004). 

 

An independence assumption is made with BBNs; xi, given its parents πi, is 

independent of any other variables except its descendents. Equation 4.1 gives the 

joint probability distribution of  X = (x1,….xn) , which can be factored out as a 

product of the conditional distributions in the network:  

∏
=

=
n

i

iixPXP
1

)|()( π
 

The uncertainty of the interdependence of the variables is represented locally by the 

conditional probability table (CPT). P(xi│πi) associated with each node xi, where πi is 

the parent set of xi. 

 

Following definitions are related to dependency between the nodes in Bayes Nets. 

 

(4.1) 
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Definition 4.1: (Conditional Independence) Two variables A and C are 

conditional independent given variable B if the Equation 4.2 holds: 

 
P(A|B) = P(A|B,C) 

Definition 4.2: (Marginal Independence) A variable A and a variable C are 

marginally independent if the Equation 4.3 holds: 

P(A,C) = P(A) P(C) 
 

Definition 4.3: (d-Separation) Two distinct variables A and B are d-separated in a 

causal network if, for all paths between A and B there is a variable V such that the 

connection is either serial or diverging and variable V is instantiated or the 

connection is converging and neither V or any of its descendants are instantiated 

(have received evidence). 

 

4.2 Introduction to Inference in Bayesian Networks 
 
 
Although it has been proven that inference in BBNs with general directed a-cyclic 

graph (DAG) structure is NP-hard (deterministic non-polynomial time hard) 

(Cooper,1990), probabilistic inference algorithms that are more efficient than the 

brute force use of gigantic joint probability table have been developed by exploring 

the interdependency captured by the network structure (Watthayu and Peng, 

2004). Most important among them are algorithms for computing posterior 

probabilities P(xi│e), where e denotes evidence, the observed values for some 

variables. These class of algorithms include “belief propagation” by Judea Pearl 

(1988) and “Junction Tree” by Shafer (1996) and Jensen (1995). Belief Propagation 

and Junction Tree are methods of exact solution. For extremely large BBNs, various 

statistical sampling techniques (e.g. Markov Chain Monte Carlo (MCMC) sampling) 

are used which find approximate solutions (Castillo et al., 1997).  

 

A graphical model specifies a complete joint probability distribution (JPD) over all 

the variables. Given the JPD, we can answer all possible inference queries by 

marginalization (summing out over irrelevant variables).  

 

Some examples are given in Figure-4.1 below showing the application of Bayes Rule 

in directed graphs. Their joint probability representations are as follows: 

(a) P(x1, x2, x3) = P(x3|x1) P(x2|x1) p(x1) 
(b) P(x1, x2, x3) = P(x3|x1) P(x1|x2) p(x2)  
(c) P(x1, x2, x3) = P(x3|x2, x1) P(x2) p(x1) 
(d) P(x1, x2, x3) = P(x2|x3, x1) P(x3|x1) p(x1) 
(e) P(x1, x2, x3, x4, x5, x6) = P(x6|x5) P(x5|x3, x2) P(x4|x2, x1) P(x3|x1) P(x2|x1) P(x1) 

(4.2) 

(4.3) 
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Figure-4.1: Sample factored joint distributions 

Figure-4.2 is an example of a small Bayesian Network. (Lauritzen and 

Spiegelhalter,1988). The initial conditional probabilities of each node are given for 

each state of parent nodes.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
  

Figure 4.2: An example of a small Bayesian network: The Asia network 
 

4.3 Advanced Inference for Bayesian Networks 
 

Inference in Bayes Nets can be performed either exactly or approximately. Variable 

Elimination, Pearl’s Message Passing and Junction Tree algorithms provide exact 

inference, whereas Markov Chain Monte Carlo methods provide approximate 

solution for the node probabilities after evidence.  
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4.3.1 Variable Elimination 
 
Variable elimination (VE) is a query-based algorithm that formalizes the process 

used to derive the marginal probability of X-node from the Asia network in Figure 

4.3. VE computes a distribution over its query variables by marginalizing other 

variables from the joint probability one by one. 

 

Variable elimination begins by creating a pool of distributions, which initially 

contains the CPTs of the Bayesian network. A variable to be marginalized is 

selected, and all distributions defined over that variable are removed from the pool. 

 

These distributions are multiplied into a single distribution, and the selected 

variable is marginalized from the resulting distribution. This distribution is then 

placed in the pool, and the process is repeated, until all non-query variables have 

been marginalized. The remaining distributions in the pool are combined using 

multiplication, and the resulting distribution is normalized, giving us the posterior 

probability over the query variables. 

 

The complexity of the algorithm is O(n exp(wp)), where n is the number of variables 

in the Bayesian network, is the ordering in which the variables are eliminated, and 

wp is the induced width of the variable ordering, which is equivalent to the number 

of variables in the largest intermediate distribution. The induced width is a 

function of the variable ordering. Finding an optimal elimination ordering is a hard 

problem, but with several heuristics giving good approximations to the optimal 

(Kjaerulff, 1990), (Rose, 1974). The primary advantages of the VE algorithm are its 

simplicity and its dynamic nature. The algorithm is very straightforward to 

implement, and no recompilation takes place, allowing the algorithm to exploit 

barren and d-separated variables at runtime. The main disadvantage to VE is that 

it requires k runs to compute the individual posterior for k variables. Much of the 

work is repeated for each computation, something that other methods are able to 

avoid. 

 

There exist several variants to the VE algorithm. Bucket Elimination (Dechter,1996) 

places the distributions into separate pools (or buckets) according to the domains 

of the distributions, thus eliminating the need to search for distributions defined 

over a particular variable when marginalizing. Mini-buckets (Dechter, 1997) is an 

algorithm that computes an approximation to the posterior of the query variables in 

less time and space than VE. In the mini-bucket algorithm, the set of distributions 
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of a bucket is partitioned into smaller buckets, and each smaller bucket is 

processed the same as a standard bucket in Bucket Elimination. This further 

partitioning typically creates smaller intermediate distributions, which reduces the 

time and space requirements of the algorithm, at the expense of an exact answer. 

 
4.3.2 Junction Tree Algorithm 
 

Junction-tree propagation (JTP) is a batch update technique that pre-compiles the 

Bayesian network into a junction-tree. ((Jensen et al., 1990), (Jensen,1996), 

(Lauritzen and Spiegelhalter, 1988)), Computing over the junction tree allows the 

posterior probability of each variable to be computed simultaneously and 

efficiently. 

 

A junction-tree is an undirected, acyclic graph derived from the Bayesian network. 

Each node in the junction-tree, called a cluster, is a subset of the variables from 

the Bayesian network. The JTP algorithm calculates a joint probability distribution 

over each cluster in the junction-tree. Once JTP completes, the posterior 

probability of a variable can be obtained from any cluster containing that variable 

by marginalizing out all other variables in that cluster, and normalizing the 

resulting distribution. The clusters of a junction-tree are identified after the 

Bayesian network is moralized and triangulated. To moralize the Bayesian network, 

the parents of each variable are married (an edge is placed between any two 

variables that share a common child and do not already have an edge between 

them), and the direction of all links are dropped (Figure 4.3). Triangulating a graph 

ensures that any cycles of length greater than 3 have a chord intersecting them 

(Figure 4.4). Triangulating a graph is typically done through an elimination 

procedure, where one variable is eliminated from the graph, and edges are added 

between the remaining neighbors of the eliminated variable. The triangulated graph 

is the original graph with these new added edges.  

 

 

 

 

 

 

 

Figure 4.3: Asia Network after moralization. (Marriage between T and L, and 

between C and B, also the direction of the arcs has been dropped) 
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Definition 4.1: (Cluster) A cluster Qi corresponds to a set of variables Vi where Vi 

can consist of an arbitrary subset of nodes from a BBN. 

Definition 4.2: (Junction Trees) A cluster tree is a junction tree (JT) if for every 

pair of clusters Qi and Qj , Qi ∩ Qj is contained in every cluster on the path ρ 

between Qi and Qj . This is called the running intersection property. 

 

 

 
 
 
 
 
 
 
 
 

 
 

    Figure 4.4: The Asia network, triangulated 

 
Each maximal clique in the moralized, triangulated graph contains the variables for 

a cluster in the junction-tree. Once the clusters of the graph have been identified, 

the junction-tree can be constructed. A vertex is created for each cluster, and edges 

are added between the vertices such that 1) the graph is connected, with no loops 

and 2) the running intersection property is maintained.  

 

If a junction-tree maintains the running intersection property, then if two clusters 

share a common variable, then all clusters along the path between those two 

clusters contain the variable as well. Each edge in the junction tree is also labeled 

with a variable set, known as its separator set. The separator set is just the 

intersection of the clusters that the edge connects.  

 

Figure 4.5 given below shows a junction-tree for the Asia network. 

 

 

 
 
 
 
 
 
 
Figure 4.5: The junction-tree for the Asia network. Clusters are shown as 
rectangles with rounded corners, and separator sets are shown as rectangles with 
square corners. 

 

 



 

 

33

Inference in a junction tree proceeds with each node passing messages to each 

other. These messages take the form of a distribution. One message is passed from 

each cluster to each of its neighbors. These messages are combined into a final 

distribution at each node, and the posterior probability for a variable at a cluster 

can be obtained by marginalizing away all other variables in the cluster. The 

complexity of inference in junction-trees is O(n exp(w)), where w is the size of the 

largest clique. The clique sizes depend on the triangulation of the Bayesian 

network, which in turn depends on the variable ordering used to determine fill-

edges. Finding the optimal variable elimination ordering for this problem is NP-hard 

[Kjaerulff, 1990]. In fact, the problem of finding an optimal variable ordering is the 

same for both Variable Elimination (VE) method and JTP, so the same heuristics 

can be applied. 

 

The primary advantage of JTP is that it calculates the individual posterior of each 

variable simultaneously. That is, after the completion of the algorithm, the 

posterior of any variable is available from the distribution of any cluster containing 

that variable. One disadvantage of a junction-tree is that its space requirement is 

exponential on the size of its largest clique. As well, because the junction-tree is a 

precompiled structure, it is more difficult to take advantage of barren variables and 

d-separation. 

 
4.3.2 Pearl’s Message Passing Algorithm 
 

Pearl (1988) developed a message-passing algorithm for inference in Bayesian 

networks. Pearl’s message passing algorithm computes the posterior probability 

distribution of each variable in a Bayesian network in a single run ((Dechter, 1997), 

(Dechter and Rish, 2003)). The algorithm only computes correct probabilities for a 

singly-connected network. Hence, the algorithm is typically used in conjunction 

with a conditioning algorithm that renders the network singly-connected. 

 

During the message passing algorithm, a variable in the Bayesian network becomes 

a processing unit. The variable receives messages from its neighboring nodes. 

These messages are in the form of a distribution, representing information from 

another part of the network. A variable uses these messages to calculate the 

posterior probability distribution over itself, as well as to calculate messages to 

send to its neighbors. The message sent to a neighboring variable is a summary of 

all information received from all other neighbors. The algorithm terminates when all 

messages have been sent. 



 

 

34

The number of messages sent during the message passing algorithm is 2e, where e 

is the number of arcs in the network (since a node sends and receives one message 

from each neighbor). Calculating messages to be sent to parent variables takes 

O(exp(f)) time, where f is the size of the largest family (calculating a message to be 

sent to a child can be done in time linear on the size of the variable, once the 

posterior probability has been calculated, and therefore does not contribute to the 

complexity). Calculating the posterior probability of a variable from the messages 

also takes O(exp(f)) time. Hence, the overall time for the algorithm is O((n +e) exp(f)). 

The space required by the algorithm is O(nexp(f)), for CPT storage (the messages 

passed are linear in the domain size of the variables, and therefore do not 

contribute to the space complexity). 

 

The advantage of Pearl’s algorithm is its low resource requirements: in terms of 

complexity, it is among the fastest and smallest inference algorithms for Bayesian 

networks to date. The algorithm calculates posterior probability distributions for 

each variable simultaneously, as opposed to a single distribution as in VE. Also, 

because each variable processes independently, much of the computation can be 

done in parallel. However, the algorithm works only for singly-connected networks, 

which in practice occurs infrequently. 

 

Pearl conjectured that running the message passing algorithm in a multiply-

connected network (containing undirected loops) might stabilize to an equilibrium, 

even though the posteriors at equilibrium may not be representative of the real 

posteriors. Murphy et al. (1999) explored this idea on general probabilistic 

networks, attempting to ascertain empirically if message-passing was a reasonable 

approximation approach on “loopy” networks. The results showed that when 

convergence occurred, the approximations were quite good, outperforming other 

standard approximation methods given a similar amount of running time. However, 

the algorithm would exhibit oscillatory behavior over certain networks, and never 

converge. 

 

In Pearl’s Algorithm, the impact of each new piece of evidence is viewed as a 

perturbation that propagates through the network via message-passing between 

neighboring variables. The example shown in Figure 4.6 requires five time periods 

to reach equilibrium after the introduction of data.  
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         Figure 4.6: Equilibrium in the network after evidence introduction 
 

Examples given in Figure 4.7 given below show the types of propagations in belief 

networks (Neapolitan,2004). 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Downward propagation 

 
Down propagation: 

For example, if variable X is instantiated to x1, then 
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Figure 4.8: Downward propagation after initiation of variable X to x1 

 

Upward propagation:  

For example, if variable W is instantiated to w1,  
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4.3.2.1 Details of Pearl’s Message Passing Algorithm 
 
Given a set a of values of a set A of instantiated variables, the algorithm determines 

P(x│a) for all values x of each variables X in the network. It accomplishes this by 

initiating messages from each instantiated variable to its neighbors. These 

neighbors pass messages to their neighbors. The updating does not depend on the 
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order in which the messages are initiated, which means the evidence can arrive in 

any order.  

Inference in rooted trees 
 
A rooted tree is a directed acyclic graph, where the root has no parent, every other 

node has precisely one parent, and every node is a descendent of the root.  

The algorithm for rooted trees is based on Theorem-1 (Neapolitan, 2004). 

 
Theorem-1: Let a be a set of values of a subset A of V, for each variable X, the λ 
messages, λ values, π messages and π values are defined as follows: 
 

1. Define λ messages: 
For each child Y of X, for all values of x, 

)()()( yxyPx
y

Y λλ ∑≡  

2. Define λ values: 

If X∈A and X’s value is 
∧

x , 

.0)(

1)(

∧
≠≡

≡
∧

xxforx

x

λ

λ
 

If X∉A and X is a leaf, for all values of x, 

1)( ≡xλ  
If X∉A and X is a nonleaf, for all values of x, 

,)()( ∏
∈

≡
X

CHU

x
U

x λλ  where CHX denotes the set of children of X. 

3. Define π messages: 
 

If Z is the parent of X, then for all values of z, 

∏
−∈

≡
}{

)()()(
XCHU

UX

Z

zzz λππ  

4. Define π values: 

If X∈A and X’s value is 
∧

x , 

.0)(

1)(

∧
≠≡

≡
∧

xxforx

x

π

π
 

If X∉A and X is the root, for all values of x, 

)()( xPx ≡π  
If X∉A, X is not the root, and Z is the parent of X, for all values of x, 

)()()( zzxPx X

x

ππ ∑≡  

5. Given the above definitions, for each variable X, we have for all values of x, 
 

P(x│a)= Eλ(x) π(x),           where E is a normalizing constant. 
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Pearl presented an algorithm based on Theorem-1. The steps of the algorithm 

include initialization and updating processes. Updating process includes sending λ 

messages to parents and π messages to child nodes. 

 

Initial_tree (Bayesian-network:(G,P) where G=(V,E), set of variables: A, set of 
variable values: a) 

 
A = Ø; a = Ø; 
for (each X∈V) 
   for (each variable x of X) 
 λ(x)=1;    //Compute λ values. 
   for (the parent Z of X)  //Does nothing if X is a root. 
 for (each value z of Z) 
  λX(z)=1;  //Compute λ messages. 
for (each value r of the root R) 
 P(r│a)=P(r);   //Compute P(r│a). 
 π(r)= P(r);   //Compute R’s π values. 
   for (each child X of R) 
 send_ π_msg(R,X); 
 
 

 
Update_tree (Bayesian-network:(G,P) where G=(V,E), set of variables: A, set of 

variable values: a, variable:V, variable value 
∧

v ) 

A=A U{V}; a = a U { 
∧

v };  //Add V to A. 

 λ(
∧

v )=1; π(
∧

v )=1; P(
∧

v │a)=1;  //Instantiate V  to 
∧

v . 

for (each value of v ≠
∧

v ) 
    λ(v)=0; π(v)=0; P(v│a)=0;  
if (V is not the root and V’s parent Z ∈A) 
    send_ λ _msg(V,Z); 
for (each child X of V such that X ∉A) 
    send_ π _msg(V,X); 
 
 
 
send_ λ _msg(node Y,node X); 
for (each value of x) 

);()()( yxyPx
y

Y λλ ∑=   //Y sends X a λ message. 

∏
∈

=
XCHU

U xx )()( λλ ;  //Compute X’s λ values. 

P(x│a)= Eλ(x) π(x);  // Compute P(x│a) 
normalize P(x│a); 
 
if (X is not the root and X’s parent Z∉A) 
    send_ λ _msg(X,Z); 
for (each child W of X such that W ≠ Y and W∉A) 
    send_ π _msg(X,W); 
send_ π _msg(node Z,node X); 
for (each value of z) 
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;)()()(
}{

∏
−∈

=
XCHY

YX

Z

zzz λππ   //Z sends X a π  message. 

for (each value of x) 

);()()( zzxPx X

z

ππ ∑=   //Compute X’s π values. 

P(x│a)= Eλ(x) π(x);   // Compute P(x│a) 
normalize P(x│a); 
 
for (each child Y  of X such that Y ∉A) 
    send_ π _msg(X,Y); 
 
Inference in singly connected trees 
 
A directed acyclic graph is called singly connected if there is at most one chain 
between any two nodes. Otherwise, it is called multiply connected. 
 
 

 
 
Figure 4.9: (a) A directed cyclic graph that is not singly connected (b) A singly 

connected network that is not a tree (Neapolitan,2004). 

 

Theorem-2: Let (G,P) be a Bayesian network that is singly connected, where 

G=(V,E), and let a be a set of values of a subset A of V, for each variable X, the λ 

messages, λ values, π messages and π values are defined as follows: 

 
1. Define λ messages: 

For each child Y of X, for all values of x, 

)()(),.......,,,()(
,...,, 1

21

21

ywwwwxyPx
y www

k

i

iYkY

k

λπλ ∑ ∑ ∏ 















≡

=

 

where W1,W2,……., Wk are the other parents of Y. 
2. Define λ values: 

If X∈A and X’s value is 
∧

x , 
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.0)(

1)(

∧
≠≡

≡
∧

xxforx

x

λ

λ
 

If X∉A and X is a leaf, for all values of x, 

1)( ≡xλ  
If X∉A and X is a nonleaf, for all values of x, 

,)()( ∏
∈

≡
X

CHU

x
U

x λλ  where CHX is the set of all children of X. 

3. Define π messages: 
 

Let  Z be a parent of X, then for all values of z, 

∏
−∈

≡
}{

)()()(
XCHU

UX

Z

zzz λππ  

4. Define π values: 

If X∈A and X’s value is 
∧

x , 

.0)(

1)(

∧
≠≡

≡
∧

xxforx

x

π

π
 

If X∉A and X is the root, for all values of x, 

)()( xPx ≡π  
If X∉A, X is a nonroot, and Z1,Z2,…,Zj are the parents of X, for all values of x, 

∑ ∏ 







≡

=jxxx

j

i

iXj zzzzxPx
,...,, 1

21

21

)(),....,,()( ππ  

5. Given the above definitions, for each variable X, we have for all values of x, 
 

P(x│a)= Eλ(x) π(x),          where E is a normalizing constant. 
 
Pearl presented an algorithm based on Theorem-2 (Neapolitan, 2004). The steps of 

the algorithm include initialization and updating processes. Updating process 

includes sending λ messages to parents and π messages to child nodes. 

 
Initial_tree (Bayesian-network:(G,P) where G=(V,E), set of variables: A, set of 

variable values: a) 
 
A = Ø; a = Ø; 
for (each X∈V) 
   for (each variable x of X) 
 λ(x)=1;    //Compute λ values. 
   for (the parent Z of X)  //Does nothing if X is a root. 
 for (each value z of Z) 
  λX(z)=1;  //Compute λ messages. 
for (each value r of the root R) 
 P(r│a)=P(r);   //Compute P(r│a). 
 π(r)= P(r);   //Compute R’s π values. 
   for (each child X of R) 
 send_ π_msg(R,X); 
 



 

 

41

 
Update_tree (Bayesian-network:(G,P) where G=(V,E), set of variables: A, set of 

variable values: a, variable:V, variable value 
∧

v ) 

A=A U{V}; a = a U { 
∧

v };  //Add V to A. 

 λ(
∧

v )=1; π(
∧

v )=1; P(
∧

v │a)=1;  //Instantiate V  to 
∧

v . 

for (each value of v ≠
∧

v ) 
    λ(v)=0; π(v)=0; P(v│a)=0;  
if (V is not the root and V’s parent Z ∈A) 
    send_ λ _msg(V,Z); 
for (each child X of V such that X ∉A) 
    send_ π _msg(V,X); 
 
 
send_ λ _msg(node Y,node X); 
for (each value of x) 

);()()( yxyPx
y

Y λλ ∑=   //Y sends X a λ message. 

∏
∈

=
XCHU

U xx )()( λλ ;  //Compute X’s λ values. 

P(x│a)= Eλ(x) π(x);  // Compute P(x│a) 
normalize P(x│a); 
 
if (X is not the root and X’s parent Z∉A) 
    send_ λ _msg(X,Z); 
for (each child W of X such that W ≠ Y and W∉A) 
    send_ π _msg(X,W); 
 
 
 

 
send_ π _msg(node Z,node X); 
 
for (each value of z) 

;)()()(
}{

∏
−∈

=
XCHY

YX

Z

zzz λππ   //Z sends X a π  message. 

if (X∉A) { 
for (each value of x) { 

;)(),...,,()(
1,....,,

21

21

∏∑
=

=
j

i

iX

zzz

j zzzzxPx
j

ππ  //the Zi’s are Compute X’s 

parents. 
P(x│a)= Eλ(x) π(x);    // Compute X’s π values. 
} 
normalize P(x│a);     // Compute P(x│a). 
for (each child Y  of X)    

     send_ π _msg(X,Y); 
} 

if not (λ(x) =1 for all values of x)  // Do not send λ messages to X’s other  

for (each parent W of X such       //parents if X and all of X’s  

         that W ≠ Z and W ∉A) //descendents are uninstantiated. 
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     send_ λ _msg(X,W); 

} 

Remark: It is important that the comment in module send_ π _message says “do 

not send λ messages to X’s other parents if X and all of X’s descendents are 

uninstantiated.” The reason is that, if X and all X’s descendents are uninstantiated, 

X d-separates each of its parents from every other parent. Clearly, if X and all X’s 

descendents are uninstantiated, then all X’s λ values are still equal to 1.  

 
4.3.2.2 An Hypothetical Example solved with Pearl’s Algorithm 
 

An hypothetical medical decision example is generated to visualize the updating 

procedure of Pearl’s message passing algorithm. In the network model, there exist 

tests, which give information regarding the possible diseases on the patient. The 

results of the tests influence the choice of the treatment. Also the treatments have 

various dangerous effects on the health of patient’s baby. The doctor will give a 

decision regarding the continuation of the pregnancy.  

 
I. Generation of the Network 
 

An hypothetical model is generated, which has the diseases D1,D2 and D3; tests 

T1, T2, T3, T4, T5, treatments TR1, TR2 and TR3. The patient is pregnant and has 

to make a decision about ending or continuing the pregnancy due to the bad effects 

of the treatments to the child. PR node at the bottom of the network corresponds to 

this decision. Figure-4.10 below shows the Bayes Network of the problem. 

 

 

 

 

 

 

  

     

 

Figure 4.10: BBN of the hypothetical problem generated in MSBN  

 
The conditional and marginal probability tables of all the nodes in the network are 

given in Appendix-A. 
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II. Entering Evidence 
 

Evidence 1: Suppose T5 is made on the patient and the result is found as negative. 

Then the probabilities of other nodes change as follows: 

Evidence 2: Being the T5 test result negative on hand, another information is 

obtained regarding node D1. Suppose that a genetic history of the patient’s mother 

about Disease 1 strongly claims that the patient has Disease 1.  

The values of the node probabilities after evidence introduction are given in Table-

4.1 and the change is shown in Figure-4.11. 

 
Table 4.1: Marginal probabilities of the nodes in the hypothetical problem after 
evidence 1 and evidence 2 are introduced. 
 

 initial probabilites 
after evidence 
T5=negative 

after evidence 
D1=disease 

D1 0.005 0.995 0.005 0.995 1 0 

D2 0.003 0.997 0.003 0.997 0.003 0.997 

D3 0.001 0.999 0.0007 0.9993 0.0007 0.9993 

PR 0.2733 0.7267 0.2099 0.7901 0.4389 0.5611 

T1 0.1441 0.8559 0.1441 0.8559 0.95 0.05 

T2 0.1147 0.8853 0.1147 0.8853 0.6709 0.3291 

T3 0.3993 0.6007 0.3993 0.6007 0.6385 0.3615 

T4 0.2703 0.7297 0.0676 0.9324 0.0676 0.9324 

T5 0.28 0.72 0 1 0 1 

TR1 0.1549 0.8451 0.1549 0.8451 0.574 0.426 

TR2 0.4495 0.5505 0.4495 0.5505 0.6408 0.3592 

TR3 0.2852 0.7148 0.12 0.88 0.12 0.88 
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    Figure 4.11: Prior and posterior probabilities of the nodes    (Series1: 

prior, Series2: 1st posterior, Series3: 2nd posterior)  

 
III. Evidence Propagation using Pearl’s Algorithm 
 
The detailed solution made using this algorithm is given step-wise in Appendix-B. 
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IV. Comment on Results 
 
For this example application, the decision maker should make a decision about 

continuing or ending pregnancy according to the treatments to be applied on her, 

since the treatments will have dangerous effects on child.  

 

Before making any test on the woman, according to the prior probabilities of the 

nodes gathered from population data, the woman should continue the pregnancy 

being 72.67% sure.  

 

After the first evidence is obtained and entered into the network, the probability of 

continuing pregnancy goes up to 79.01%, since a negative result of Test 5 is a sign 

for having no disease 3.  

 

However, after a second evidence is obtained which gives information about the 

presence of disease 1, this results a decrease in the probability of continuing the 

pregnancy: the probability of continuing the pregnancy in the light of two evidence 

goes down to 56.19%.  See Figure-4.12 below. 
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Figure 4.12: Graph of hypothetical example showing prior probabilities and 
posterior probabilities of the sink node (PR) after evidence propagations  
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CHAPTER 5 
 
 

5. MULTI-CRITERIA DECISION ANALYSIS 
 
 

Bayesian Belief Networks, Multiple criteria decision analysis (MCDA) is a field, 

which has seen a considerable development during the last ten years. Researchers 

and practitioners are now more aware of the presence of multiple criteria in real-life 

problems of management and decision, whatever their nature. The links cannot be 

ignored which exists between multi-criteria decision analysis and other fields of 

research such as the theory of social choice, voting procedures, decision in a 

context of uncertainty, the theory of fuzzy sets, negotiation and expert systems.  

 
5.1 Literature Review 

 

A detailed analysis of the theoretical foundations of different MCDA methods and 

their comparative strengths and weaknesses is presented in Belton and Stewart 

(2002). Roy and Vanderpooten (1996) defined four different categories of problems, 

for which MCDA may be useful: 

• The choice problems to make a simple choice from a set of alternatives. 

• The sorting problems to sort actions into classes or categories, such as 

“definitely acceptable“, “possibly acceptable but needing more information”, 

and “definitely unacceptable”.  

• The ranking problems to place actions in some form of preference ordering 

which might not necessarily be complete.    

• The description problems to describe actions and their consequences in a 

formalized and systematic manner, so that decision makers can evaluate 

these actions. 

Belton and Stewart (2002) added the two categories the design problems and the 

portfolio problems. 

Use of MCDA in Healthcare and Medical Diagnosis can be summarized as follows:  
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• Lee et al. (2003) mentioned about the difficulty of healthcare decisions. Making 

medical decisions are difficult because they are complex and have important 

consequences such as the impact on survival or quality-of-life of individuals 

and on allocation of limited resources. 

 

• Akhavi and Hayes (2003) compared MCDA methods and concluded that AHP 

resulted in lower variance in the assessments produced by different decision 

makers due to the richer information collected by the AHP method. 

 

• Carter et al. (1999) compared three decision-making techniques (Analytical 

Network Process, AHP and Markov Process) using a common clinical problem: 

the evaluation of the optimal post-lumpectomy treatment strategy for an elderly 

woman with a mammographically detected, nonpalpable early-stage breast 

cancer. The treatment alternatives considered were: observation, radiation, 

tamoxifen, combination radiation and tamoxifen, and simple mastectomy. 

 

• Dolan (1989) used AHP to determine which of seven recommended antibiotic 

regimens represented optimal initial therapy for a young woman hospitalized for 

treatment of acute pyelonephritis. The model included the following criteria: 

maximize cure, minimize adverse effects (broken down into very serious, 

serious, and limited), minimize antibiotic resistance, and minimize cost (divided 

into total cost and patient cost). Alternatives were compared relative to the 

criteria using published information on the expected frequencies of urinary 

pathogens and drug toxicity, local antibiotic sensitivities and antibiotic charges, 

and expert opinion regarding their propensities for inducing anti-microbial 

resistance. 

 

• Saaty and Vargas (1998) used AHP to find conditional probabilities of symptoms 

given diseases. In case expert judgment is present, it is possible to combine 

judgment with statistical data to identify the disease that best describes the 

observed symptoms. They used priorities obtained from pair-wise comparisons 

of symptoms given diseases, and used them as conditional probabilities inside 

Supermatrix. AHP dealed with dependence among the elements or clusters of a 

decision structure to combine statistical and judgmental information. It is 

shown that the posterior probabilities derived from Bayes theorem, which is a 

sufficient condition of a solution in the sense of the AHP. 
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5.2 An Overview of MCDA Methods 

 

MCDA aims to give the decision-maker some tools in order to enable him to 

advance in solving a decision problem where several – often contradictory- points of 

view must be taken into account. 

 
MCDA is divided into four families: 

 

(1) multiple attribute utility theory 

 

The first family, of American inspiration, consists in aggregating the 

different points of view into a unique function which must subsequently be 

optimized. The work related this family studies the mathematical conditions 

of aggregation, the particular forms of the aggregating function and the 

construction methods. 

 

(2) outranking methods 

 

The second family, of French inspiration, aims first to build a relation, 

called an outranking relation, which represents the decision-maker’s 

strongly established preferences, given the information at hand. The latter 

relation is therefore neither complete nor transitive. ELECTRE, MELCHIOR, 

trichotomic segmentation and PROMETHEE methods are the most 

representative and most commonly cited outranking methods. 

 

(3) interactive methods 

 

The third and most recent family proposes methods which alternate 

calculation steps (yielding successive compromise solutions) and dialogue 

steps (sources of extra information on the decision-maker’s preferences). 

Though they are most recently developed in the frame of multiple objective 

mathematical programming, some of these methods can be applied to more 

general cases. 

 

(4) Eigenvalue Methods 

 

These are based on calculation of the eigenvector of the largest modulus of a 

matrix constructed after pair wise comparisons of the criteria. Though the 
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method was first published in a previous article by Klee (1971), namely 

DARE method, the most well-known work is by Saaty (1980), as Analytical 

Hierarchy Process (AHP). 

 

5.3 Definitions 

 

Some definitions regarding MCDA are given below:  

Definition 5.1:(Set of Actions) The set of actions, denoted by A, is the set of 

objectives, decisions or candidates to be explored during the decision procedure. It 

may be defined by: 

• listing its members when it is finite and sufficiently small for an enumeration to 

be possible 

• stating the properties which characterize its elements when it is infinite or finite 

but too large for an enumeration to be possible. 

Examples: 

=> Choosing where to build a new factory between 10 possible locations: Set of 

actions A is defined by listing its elements. 

=> Product-mix problem:  

A company manufactures plastic boards with properties of flexibility, 

resistance, weight, color, etc. determined by customers. These properties 

depend upon amounts x1, x2,…..xn of the different components used in 

manufacturing the plastic. A procedure must be set up in order to satisfy 

customers as far as possible. In this case, A is the set of vectors (x1, x2,…..xn) 

yielding a plastic which satisfies the requirements determined by the 

customers: it is infinite and can be described by the mathematical constraints 

which translate the physical and chemical properties of the mixture resulting 

from the components involved. A is an evolutive set since the constraints and 

the components of the mixture vary from one customer to another.  

 

The definition of set A does not only depend upon the problem to be solved and the 

actors involved in the decision procedure; it also strongly interacts with the steps: 

defining criteria, modeling preferences, stating the problem and choosing the 

MCDA method to be applied. 

 

When a decision-maker must compare two actions a and b, he/she will react in one 

of three following ways: 
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(1) preference for one of them  

(2) indifference between them 

(3) refusal or inability to compare them 

 

Definition 5.2: (MCDM problem) A multi-criteria decision problem is a situation in 

which, having defined a set A of actions and a consistent family F of criteria on A, 

one wishes 

 

(1) to determine a subset of actions considered to be the best with respect to F 

(choice problem) 

(2) to divide A into subsets according to some norms (sorting problem) 

(3) to rank the actions of A from best to worst (ranking problem) 

 

It will in fact frequently happen that a real-life problem gives rise to a mixture of 

choice, sorting and ranking problems. The same real-life problem may imply: 

 

• different definitions of A 

• different definitions of F 

• different statements of the problem (choice, sorting or ranking)  

 

 

 

 

 

 

 

 

 

 

 
 
 

 
                             Figure 5.1: MCDM Hierarchy 
 

 5.4 Definition of Analytical Hierarchy Method (AHP) 

 

The Analytical Hierarchy Process is one of the most extended multicriteria decision 

making techniques. It was proposed by Thomas L. Saaty in the mid 1970s and 

combines tangible and intangible aspects to obtain, in ratio scale, the priorities 
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associated with the alternatives of the problem. AHP methodology consists of four 

steps (Saaty,1980):   

(1) Modelization, i.e. establishing a hierarchical representation of the problem, 

which should include all the relevant aspects of the decision problem. 

(2) Valuation, in which the decision maker incorporates his judgments through 

pair-wise comparisons between the elements in the problem taken into 

consideration. He/she makes her comparisons using Saaty’s relative importance 

scale shown in Table-5.1.                    

 
                     Table 5.1: Saaty’s relative importance scale  

value of aij When criterion i compared with j is: 
1  equally important 
3  slightly more important 
5  strongly more important 
7  demonstrably more important 
9  absolutely more important 

 

The intermediate values 2,4,6 and 8 can also be used if necessary. If criterion I is 

neither greater than nor equal to j, aji is first evaluated as previously and we then 

write aij =1/ aji. 

(3) Priorization where the local priorities are obtained by using any of the existing 

priorization procedures (the eigenvector method – EGVM- and the row geometric 

mean method- are the most widely used)  

 

W denoting the comparison matrix,  

W  = (wij) =(wi/wj) 
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where n is an eigenvalue of W and that w is an associated eigenvector.  

 

The normalized eigenvector of the matrix is also called the priority vector. For a 

symmetric matrix A, the eigenvalue is the root of the characteristic equation  

(A-λI ).x =0,  

where I is the identity matrix and x is the eigenvector of matrix A. 

 

(5.1) 
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The characteristic equation can be solved if the determinant of the first term is 

equal to zero;        

det(A-λI)=0.  

(4) Synthesis, in which the total priorities are derived.  

One of the main characteristics of AHP is the existence of a measure to evaluate the 

inconsistency of the decision maker when eliciting his judgments [Aguaron et al., 

2003].  

The standard method to calculate the values for the weights from an AHP-matrix is 

to take the eigenvector corresponding to the largest eigenvalue of the matrix, and 

then to normalize the sum of the components. 

5.5 An Example of AHP 

Supposing following 3x3 reciprocal matrix constructed as a result of the paired 

comparisons regarding cost-comfort-duration preference of a Decision Maker (DM) 

who is going to choose one of the transportation alternatives. According to Saaty’s 

relative importance scale (Pomerol and Romero, 2000), the DM shows the following 

preference matrix: 

                                     
 

 

 

Then each element of the matrix is divided by the 

sum of its column to normalize the relative weights. The normalized principle 

eigenvector can be obtained by averaging across the rows: 
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The normalized principal eigenvector is also called priority vector. Since it is 

normalized, the sum of all elements in priority vector is 1. The priority vector shows 

relative weights among the things that we compare. In our example above, Cost is 

28.28%, Comfort is 64.34% and Duration is 7.38%. In this case, we know more than 

their ranking. In fact, the relative weight is a ratio scale that we can divide among 

Sum of  
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principle 
Eigenvector 
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(5.2) 
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them. For example, we can say that for the DM comfort is 2.27 (=64.34/28.28) 

times more important than cost. Aside from the relative weight, we can also check 

the consistency of the DM’s answer, for which the Principle eigenvalue is used. It is 

obtained from the summation of products between each element of eigenvector and  

the sum of the columns of the reciprocal matrix.
       

0967.3)0738.0(13)6434.0()2828.0(
21

31

5

21

max =++=λ  

A comparison matrix A is said to be consistent if  aij ajk = aik  for all I, j and k. Saaty 

proved that for consistent reciprocal matrix, the largest eigenvalue is equal to the 

number of comparisons, or n=maxλ .He gave a measure of consistency, called 

Consistency Index as deviation or degree of consistency using the following 

Equation 5.3:  

  

 

 

Saaty proposed an appropriate index called Random Consistency Index (RI) to 

comparing the CI value found. He randomly generated reciprocal matrix using scale 

1/9, 1/8, …., 1, …8,9 which is similar to the idea of Bootstrap and get the random 

consistency index to see if it is about 10% or less. The average random consistency 

index of sample size 100 matrices is shown in the table below: 

                    
Table 5.2: Random Consistency Index (RI) 

 
n 1 2 3 4 5 6 7 8 9 10 
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Then, he proposed what is called Consistency Ratio, which is a comparison 

between Consistency Index and Random Consistency Index and given in Equation 

5.4: 

 

If the value of Consistency Ratio is smaller or equal to 10%, the consistency is 

acceptable. If the Consistency Ratio is greater than 10%, the subjective judgments 

need to be revised. For the example above, RI for n=3 is 0.58, which equates the CR 

to 8.3% < 10%. Thus, the DM’s subjective evaluation about his cost-comfort-

duration preference is consistent. Since AHP method includes expert knowledge 

inside the pair-wise comparison matrix, requires less time for solution and gives 

more accurate results, in the application of this thesis AHP will be used. 

0484.0
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CHAPTER 6 
 
 

6. INTEGRATING BAYESIAN BELIEF NETWORKS AND 
ANALYTICAL HIERARCHY PROCESS 

 
 
Bayesian Belief Networks, which are used in a range of real applications concerned 

with predicting properties of critical systems, are extremely powerful technique 

under uncertainty. Although they provide important support for decision-making, 

in many cases one has to make decisions based on multiple criteria. As it is the 

application in this thesis, a BBN for predicting the occurrence probability of a 

disease for an individual cannot be used to make a decision about which one of the 

alternating diagnostic tests to choose. In such situations, the BBN must be 

complemented by other decision-making techniques such as multi-criteria decision 

aid (Fenton and Neil, 2000).  

 

BBN enables us to calculate a probability for each criterion for a given alternative. 

Then the MCDA methods can be applied to combine the values for a given action 

and rank them. (Fenton and Neil, 2000) 

 

In literature, Saaty and Vargas (1998) used expert judgments to generate 

conditional probabilities. They combined Bayesian approach with AHP, where they 

only converted expert’s beliefs into probabilities. In their model, there were diseases 

and symptoms (diagnostic tests) related to (actually caused by) these diseases. For 

a selected disease and a pair of symptoms and they asked the following question to 

the doctor: 

 

• of the pair, which symptom is more characteristic of that disease and how 

strongly more when compared with the other? 

 

Actually, for the cases, where statistical data is present, it is possible to combine 

judgments with statistical data to identify the disease that best describes the 

observed symptoms. In this thesis, a generated decision making procedure is 
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introduced that uses BBNs and MCDA in a complementary way.  The procedure 

consists of defining the variables and their states, and then observing the relations 

between variables. Marginal probabilities of the variables are calculated from the 

actual data with a frequentist approach. At the conditional probability generation 

step, first the pairwise comparisons generated the priorities, then these priorities 

are utilized to generate beliefs, which is actually the Bayesian approach to 

probability.  

 

In MCDA, the criteria are evaluated separately as if they were independent of each 

other. To model the complex and uncertain interactions between criteria as well as 

between criteria and other factors, BBNs can be used since it takes the 

interdependencies between variables into account. Interdependencies among these 

nodes can be qualitatively modeled by the arcs in the diagram and quantitatively by 

CPTs regarding each chance node. 

 

In this framework, a decision problem can be represented by a graphical model, 

where each decision node represents the set of alternatives, the utility node 

represents the set of objectives (the DM’s preferences), decision criteria and internal 

and external factors that may affect the criteria are represented by chance nodes.  

 

To sum up, what makes the probability generation procedure of this thesis different 

is the fact that the conditional probability generation step utilizes the occurrence 

frequencies (probabilities), in addition to priority weights. The probabilities are then 

multiplied with priority weights to compute the beliefs of the doctor for the nodes 

of that variable. 
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CHAPTER 7 
 
 

7. AN APPLICATION IN MEDICAL DIAGNOSIS 
 
 

The problem studied in this application is about breast cancer diagnosis. The 

analysis includes network model generation, initialization and evidence insertion 

steps. The accuracy of the suggested model is checked and compared to the actual 

(observed) results obtained from surgical biopsy. 

 
7.1 Information about the Application Data 
 
Despite the public awareness and scientific research, breast cancer continues to be 

the most common cancer and the second largest cause of cancer deaths among 

women (Marshall, 1993). Approximately 12% of women are diagnosed with breast 

cancer (Muier et al., 1987) and 3.5 % die of it1.  

 

Most breast cancers are detected by the patient as a lump in the breast. The 

majority of breast lumps are benign, so it is the physician’s responsibility to 

diagnose breast cancer, that is to distinguish benign lumps from malignant ones 

(Mangasarian et al., 1994). Masses in the breast are a diagnostic dilemma in 

clinical medicine. Because of the possibility of cancer, a majority of breast masses 

are exercised usually with surgical biopsy for accurate diagnosis. However most of 

these surgical biopsy results (80%) are benign (Aitken, 1990). In other words, 

surgery has a high false-positive rate, and many women are subject to unnecessary 

surgery although their mass is benign. So, it would be useful to define clinical, 

radiologic and cytologic parameters more accurately to determine who should 

undergo surgery (i.e. surgical biopsy). 

There are three available methods for diagnosing breast cancer: 

1. Mammography 

2. FNA (Fine Needle Aspirate) with visual interpretation 

                                                 
1
 National Center for Health Statistics, GPO. Vital Statistics of US, Mortality, volume 2, 1990. 
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3. Surgical Biopsy 

The following sensitivity values of these diagnostic tests are given in Mangasarian 

et al. (1994): 

1. Mammography: varies from 68% - 79%  

2. FNA with visual interpretation: varies from 65% to 98% due to the visual 

interpretation  

3. Surgical Biopsy: close to 100% 

It is generally known that;  

• mammography lacks sensitivity 

• sensitivity of FNA varies widely 

• surgical biopsy gives accurate result, however it is invasive, more time 

consuming, expensive, traumatic than FNA. Also skin incision is necessary 

for surgical biopsy, where immediate diagnosis is not possible. 

 

Treatment for breast cancer generally consists of surgery (either mastectomy or 

lumpectomy), followed by radiation therapy, chemotherapy, and/or hormonal 

therapy. In this thesis, the data used for the application are gathered from 

Wisconsin Diagnostic Breast Cancer Database. The data respond to the features, 

which are computed from the digitized image of breast masses obtained as the 

result of FNA study. An FNA is taken from the breast mass. This material is then 

mounted on a microscope slide and stained to highlight the cellular nuclei. A 

portion of the slide in which the cells are well-differentiated is then scanned using a 

digital camera and a frame-grabber board, as shown in Figure-7.1. 

 

 
 

Figure-7.1: A magnified image of a breast FNA 
 

Two different groups of data are recorded after FNA study. First group is the 

prognostic data set, and second group is the diagnostic data set. Prognostic data 

gives information about progress of the disease in long-term period. Therefore it will 

be used to calculate evidence information. Diagnostic data on the other hand will 
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be used to construct and compute initial network. Both data set have the same 

attributes (features found after  FNA study). The data sets also include the actual 

state of the patient’s tumor (Benign or Malignant), which is found after surgical 

biopsy study. Prognostic data includes 2 additional attributes (tumor size and 

lymph node status). The details of the data groups are given below. 

 

7.1.1. Wisconsin Prognostic Breast Cancer (WPBC) Dataset (Set 1) 

 

The source of data (completed on December, 1995) belong to Dr. William H. 

Wolberg from Clinical Sciences Center-General Surgery Dept. of University of 

Wisconsin, W. Nick Street from Computer Sciences Dept. University of Wisconsin 

and Olvi L. Mangasarian from Computer Sciences Dept. University of Wisconsin. 

Various versions of this data have been used in Street et al. (1995), Mangasarian et 

al. (1995), Wolberg et al. (1995).  

 

There are 198 records (instances) and 15 attributes in the data set. Each record 

represents follow-up data for one breast cancer case. These are consecutive 

patients seen by Dr. Wolberg since 1984, and include only those cases exhibiting 

invasive breast cancer. In the data set, the outcome is divided into two classes: a 

number of 151 patients not recurred and 47 occurred. There exist missing valued 

attributes (Lymph node status is missing in 4 cases). 

 
Attribute (features) information 
 
The features are computed from a digitized image of a fine needle aspirate (FNA) 

of a breast mass.  They describe the characteristics of the cell nuclei present in 

the image. The attributes are: 

 1) ID number (of the patient) 

 2) Outcome (R = recurrence, N = no recurrence) 

 3) Time (recurrence time if field 2 = R, disease-free time if field 2= N) 

Features computed for each cell nucleus are given from (4) to (15). Features (4) to 

(12) are nuclear features, whereas (14) and (15) are surgical biopsy parameters. In 

the network model, only the outcome will be used from surgical biopsy parameters, 

since  (14) and (15) are not comparable to FNA  parameters. 

 4) radius (mean of distances from center to points on the perimeter): is 

computed by averaging the length of radial line segments from the center of the 

nuclear mass to each of the points of the nuclear border. 
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 5) texture (standard deviation of gray-scale values): is measure by finding the 

variance of the gray scale intensities in the component pixels. 

 6)  perimeter: is measured as the distance around the nuclear border. 

 7) area: is measured by counting the number of pixels in the interior of the 

nuclear border and adding one-half of the pixels on the perimeter. 

 8) smoothness (local variation in radius lengths): is quantified by measuring 

the difference between the length of each radius and the mean length of 

adjacent radii. 

 9) compactness: perimeter and area are combined to give the measure of the 

compactness (perimeter2/area) 

 10) concavity (severity of concave portions of the contour): is determined by 

measuring the size of any indentations in the nuclear border. 

 11) concave points (number of concave portions of the contour): count the 

number of points on the nuclear border that lie on an indentation. 

 12) symmetry: is measured by finding the relative difference in length between 

line segments perpendicular to and on either side of the major axis.   

 13) fractal dimension: is approximated using the “coast-line approximation” 

which measures nuclear border irregularity. 

 14) Tumor size (diameter of the excised tumor in centimeters) 

     15) Lymph node status (number of positive axillaries lymph nodes observed at 

time of surgery) 

 

7.1.2 Wisconsin Diagnostic Breast Cancer (WDBC) Dataset (Set 2) 
 

The source of Information is same as Set 1 and it is completed on November 1995. 

It consists of 569 cases; 357 of them are benign, 212 cases are found as malignant 

after the surgical biopsy. There are no missing values in this data set. 

Various versions of this data have been used in Wolberg et al. (1995), Street et al. 
(1993) and Mangasarian et al. (1994). 
 
Diagnostic features of the digital images for samples can be classified in three 

groups (Wolberg, et al., 1999): 

1. nuclear size features: radius, area perimeter 

2. nuclear shape features: smoothness, compactness, concavity, concave 

points, symmetry, fractal dimension. 

3. other features: (not nuclear) lymph node status, tumor size.  

Area is expressed as square micro meters (µm2), and for Radius and Perimeter as 

micro meters (µm). Values for remaining features are dimensionless. 

In the data set, there types of parameter are defined for each feature:  
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1. mean value 

2. standard error 

3. worst value (mean of the three largest values) 

Attribute information 
 
 1) ID number (of the patient) 

 2) Diagnosis (M = malignant, B = benign)  

 Features computed for each cell nucleus are given from (3) to (12): 

 3)  radius 

 4)  texture 

 5)  perimeter 

 6)  area 

 7)  smoothness 

 8)  compactness 

 9) concavity 

 10) concave points 

 11) symmetry  

     12) fractal dimension 

 

7.2  Analysis of the Data 
 
In order to avoid misinterpretation of the dataset, we have taken information from 

pathologist specialized on cytology. Prof. Şevket Ruacan and his assistant Dr. 

Sevgen Önder from Pathology Department of Hacettepe University Medicine 

Faculty. They made following comments on FNA study and on the data set to be 

used in this thesis: 

 

• FNA study is performed prior to the surgical biopsy. According to the 

parameters found in FNA study, a decision is made about applying biopsy. If 

FNA parameters show a tendency to malignant tumor, then surgical biopsy will 

be performed to get exact solution. However, it is invasive for the woman, costly, 

time consuming and dangerous for some cases. Therefore it is important which 

decision is given in the light of the FNA study. 

• Usually pathologist do not prefer morphometric study (means measuring the 

values of quantitave variables) due to the time, cost and effort constraints. 

Instead they prefer to use their experience to interpret the image in a visual 

way. According to Dr. Onder’s comments, some of the important features of the 
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tumor image, which make the doctor absolutely suspicious about the 

malignancy are  

o the contrast (texture value) of the tumor compared to the adjacent cells 

o the uniformity of cell shape 

o the distance between this type of suspicious cells 

• He also added that a peak in one variable being others normal can be a sign to 

malignancy. 

• Shape of the tumor is more important than its size. Also contrast and 

smoothness are more important then size. 

• Worst values (mean of the three largest values) of the nuclear characteristics 

are more important and effective than mean and standard error parameters. 

• Area, radius, perimeter, texture, smoothness, compactness, concavity, concave 

points, symmetry and fractal dimensions are nuclear-characteristics of the 

image. 

• Tumor size and lymph node status are non-nuclear characteristics which can 

only be observed after surgery.  

 

Moreover, he added that the final diagnosis comes after the surgical biopsy. So, the 

outcome (malignant or benign) given in the data set is not the outcome of FNA 

study, they are actual disease status gathered after surgery. 

 

Since worst values (average of the largest three values) are more meaningful for the 

diagnosis than mean values and standard error of each attribute, only worst 

values data will be used in this thesis to decrease the variables of interest. 

 

Both the statistical and the RSA machine learning analyses performed Wittekind, et 

al. (1987) demonstrate that computer-derived nuclear features are prognostically 

more important than are the classical prognostic features; tumor size and lymph 

node status. Also classical prognostic features are not comparable to the diagnostic 

ones. Due to these reasons, tumor size and lymph node status are not used in the 

network model generated. 

 
7.2.1 Outline of the Analysis: 
       
The aim of the data analysis is to find the causal relations between the variables in 

order to construct the Bayesian Belief Network. After learning the networks 

structure, we will be able to enter evidences regarding additional information. After 

the relations between variables are found, their priorities are found with Saaty’s 
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AHP method. The priorities will be used to find the probabilities of hidden nodes 

representing each variable group. Finally, the probabilities of the FNA study 

(malignant or benign) will be compared to the surgical biopsy results found 

according to the same attribute values.  

 

7.2.2 Analysis Procedure: 
 

Diagnostic Data set (Set 1) consists of 10 attributes {three different value for each 

attribute: mean, standard error, worst value (mean of three largest)} of FNA and the 

diagnosis found by surgical biopsy.  

 

Prognostic Data set (Set 2) includes the same 10 attributes as diagnostic, however 

it also includes the tumor size and lymph node status, which are after surgery 

parameters (Tumor size and lymph node status parameters will not be used in the 

study). Prognostic means the behavior of the disease in long term period. Therefore, 

prognostic data enables the doctor to predict the direction or long term behavior of 

the tumors. We will use the prognostic data to state the evidence information. 

 

The problem is to compute conditional probabilities of the nodes. In order to find 

the conditional probabilities, the values of the nodes should be converted into 

binary variables, which represent whether the parameter has a serious value for 

the malignancy or not. After the parameters are converted into binary variables, we 

will able to count their frequency, then multiply with priorities of parameters to find 

the conditional probabilities. The marginal probability of the sink node is calculated 

using conditional probabilities of that node and the marginal probabilities of the 

parent nodes. 

 

To determine the critical value, which separate the serious value from non-serious 

one, we took the opinion of Dr. Onder about 3rd Quantile. According to his 

comments, a value bigger than 75% of the values on the sample can be used as 

threshold value. So, for the parameters in Set 1 and Set 2, 3rd quantile will be used 

as threshold values. In literature, threshold values of the parameters included in a 

scaled diagnostic breast cancer data set of Wisconsin University (Set 3) have been 

determined with data clustering and discretisation using Chi2 technique (Hoffman et 

al., 2001). 
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Set 2 will be used to construct the network model. Set 1 will be used both to check 

the accuracy of the model and compute the evidences (prognostic information), 

which will be entered into the model. 

 

The outcome variables included in both Set 1 and Set 2 are not the outcome of the 

FNA study. They show the exact outcome of the surgical biopsy. Therefore, the 

marginal probability of the sink node of the network model (FNA study result with 

states “suspect for biopsy”, “no suspect for biopsy”) will be compared with exact 

biopsy result to check the accuracy of the model. This accuracy comparison will be 

performed two times: 1.for diagnostic data, 2.for prognostic data.  

 

7.2.3 Analysis 1: Finding causal dependencies between attributes 

  

The purpose is to state the dependency relations between features, which will be 

utilized to construct Bayes Network. Dependencies between the variables are 

measured in terms of scatter plots and correlation coefficients and regression. 

 

Correlation, also called correlation coefficient, indicates the strength and direction 

of a linear relationship between two random variables. In general statistical usage, 

correlation or co-relation refers to the departure of two variables from 

independence. There are several coefficients, measuring the degree of correlation, 

adapted to the nature of data. A number of different coefficients are used for 

different situations. The best known is the Pearson product-moment correlation 

coefficient, which is obtained by dividing the covariance of the two variables by the 

product of their standard deviations. 

 

 

Several authors have offered guidelines for the interpretation of a correlation 

coefficient. Cohen (1988) for example, has suggested the following interpretations 

for correlations in psychological research, in the table below. 

Table-7.1: Classification of the correlation coefficient values 

Correlation Negative Positive 
Small -0.29 to –0.10 0.10 to 0.29 

Medium -0.49 to –0.30 0.30 to 0.49 

Large -1.00 to –0.50 0.50 to 1.00 
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Correlation matrix given in Table-7.2, is summarized in Table-7.3 and converted 

into verbal values in Table-7.4. Two versions of Scatter Plots are drawn for the 

attributes in Set 2; Figure-7.2 states the general relation between variables, while 

Figure-7.3 shows the effect of outcome (benign, malignant) on this relation.  

A general comment can be made looking at graph in Figure-7.3 for this effect. As 

the attribute values increase, the tendency to malignant tumor increases also. This 

is because the malignant (green points) cases are generally cumulated on the right 

upper part and benign (red points) cases are located on the left lower part of the 

graphs. 

 

7.2.4 Analysis 2: Construction of the BBN model 

 

Perimeter and area are calculated using radius parameter. However, they are not 

calculated with an exact formula, since the image of the lump includes infinitely 

many radiuses due to its non-circular (irregular) shape. We can say that the area 

and perimeter variables are d-separated. Compactness is independent of radius 

given its parents perimeter and area. In the light of Figures 7.2 to 7.5, correlation 

tables and according to the comments of the Cyto-pathologist, the network shown 

in Figure-7.6 is constructed. 

 

 
Figure-7.6: BBN of FNA study  

The objective of this study is to find an approximation of FNA study prediction, 

which is close to the exact biopsy outcome. 

 

As an initial step, the values of variables are converted into binary values using 3rd 

quartile as threshold value (i.e. “1” is assigned to the values bigger than threshold 
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and “0” to the values less than the threshold). As it is expected, all the nodes 

without parents have an initial marginal probability of 0.25. 

• P(radius=serious)=0.25    P(radius=not serious)=0.75 

• P(fractal_dimension=serious)=0.25 P(fractal_dimension =not serious)=0.75 

• P(concave pts=serious)=0.25   P(concave pts=not serious)=0.75 

• P(smoothness=serious)=0.25   P(smoothness=not serious)=0.75 

• P(texture=serious)=0.25    P(texture=not serious)=0.75 

 

We have already learned the conditional probabilities of real nodes from the data. 

That is, the conditional probabilities for area, perimeter, compactness, concavity 

and symmetry are found from frequencies from data-set which provides joint 

probabilities: 
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Likewise, the conditional probabilities of other nodes are calculated as: 

• 86014.0)int_( === seriousspoconcaveseriousConcavityP  

• 046948.0)int_( === seriousnotspoconcaveseriousConcavityP  

• 979167.0)( === seriousradiusseriousPerimeterP  

• 004706.0)( === seriousnotradiusseriousPerimeterP  

• 986111.0)( === seriousradiusseriousAreaP  

• 002353.0)( === seriousnotradiusseriousAreaP  

 

However, the node Shape_parameters and FNA_study_result are generated (hidden) 

variables. Shape_parameters node is generated to summarize and represent the 

concavity, concave points, symmetry and fractal dimension features in a single 

variable. Similarly, FNA result node is a hidden node representing the outcome of 

the FNA study, which is effected from shape, size, texture and smoothness 
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parameters. The conditional probabilities of these hidden nodes are calculated 

using AHP weights of their parent nodes.  

 

Calculation of AHP weights 

 

FNA node: For the FNA study result being suspicious, following question is asked 

to pathologist to construct AHP matrix: 

Ø of the pair, which feature of the tumor is more characteristic of the FNA study 

outcome and how strongly more when compared with the other?  

 

The comments of the pathologist are then converted into the AHP matrix as shown 

in Table-7.5:  

Table-7.5: AHP priority matrix for parents of FNA node 

pairwise 
comparisons size Shape texture smoothness 

size 1 0.5 0.11 0.11 
shape 2 1 0.20 0.33 

texture 9 5 1 2 
smoothness 9 3 0.5 1 

 

Then the pair-wise comparison matrix is normalized, and the priority weights are 

found for the attributes as shown in Table-7.6. 

 

Table-7.6: Priorities of size, shape, texture and smoothness nodes 

 
 

Shape_parameters node: According to the pair-wise comparison matrix given in 

Table-7.7, the weights of concavity and symmetry are found 67% and 33%, 

respectively. 

Table-7.7: Priorities of concavity and symmetry nodes 

 

The probabilities of their parents are multiplied with priorities of their parent nodes 

to find the conditional probability of the hidden child node. Since a Bayesian 
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probability is a probability of the person who assigns the probability, the weighted 

probability represents the belief of the decision maker. 

 

We need marginal probabilities of real nodes to calculate the conditional 

probabilities of the hidden nodes. The dataset provides the joint probabilities for 

real nodes. After the marginal probabilities of the parent nodes of Shape_parameter 

are calculated, AHP weights are multiplied to generate conditional probability of 

Shape_parameter. 

 

FNA study belief is found by summing the multiplications of the probabilities of 

size, shape, texture and smoothness parameters with their priorities, respectively 

as shown in Figure-7.7.  

 

7.3 Entering evidence into the network 

 

Prognostic data is used to find evidences, since they show the long term behavior of 

the tumor.  

 

Evidence 1: For the case P(FNA_result=suspicious for biopsy)=1, this evidence 

effects other nodes as follows  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-7.8: Marginal probabilities of the nodes after the introduction of evidence 1  
 

Evidence 2: Being evidence 1 on hand, another evidence is obtained saying 

concave points attribute is serious, then the probabilities of the nodes change as 

follows 
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Figure-7.9: Marginal probabilities of the nodes after the introduction of evidence 2  
 

7.4 Checking The Accuracy Of The AHP Part Of The Model 

 

The accuracy of the model generated can be assessed in terms of the consistency of 

the decision maker and in terms of the validity of the results found. The pair-wise 

comparisons which formed the AHP comparison matrix should be checked in terms 

of consistency. As mentioned in the definitions part of the thesis, consistency index 

(CI) and the consistency ratio (CR) help us to check this.  

First, the λmax values for all four tumor characteristics (Table-7.6) are computed as 

follows: 

For n = 4, RI=0.9
 
 

Consistency Index:
 1

max

−
−

=
n

n
CI

λ
 

Consistency Ratio 
RI

CI
CR =

 

Since the CR value is 2% and less than 10%, the DM’s subjective evaluation about 

his symptoms priorities on the diseases can be said to have a high consistency. The 

AHP pair-wise comparison matrix generated for shape parameters node (Table-7.7) 

is a 2x2 matrix and completely consistent. 

 

λmax CI CR 

4.060018 0.020006 0.022229 
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7.5 Checking the Accuracy of the BBN model 
 

The accuracy of the model and the priorities can be assessed by comparing the 

estimated outcome of FNA study result with the exact outcome of biopsy. Since we 

have the biopsy results in the dataset for each individual (1 or 0), we are able to 

calculate the probability of the tumor being malignant (or benign) from real 

frequencies. 

ü For diagnostic data, using the frequencies, the probability of outcome is 

found as P(surgical biopsy result is malignant)= 0.372583 

Network model computed the probability of being suspicious about to FNA 
test result as: 
P(FNA_study result is suspicious about malignancy)= 0.387916 

 
In case the priority weights assigned for parent nodes of FNA are: 

• size: 4.85%  
• shape: 10.19% 
• texture: 52.19% 
• smoothness: 32.77% 

 

For diagnostic data: the percentage error between observed and estimated 

outcomes is 4.12%, which is small enough to consider the model accurate.  

ü Using same priority values for the parents of FNA, the FNA outcome 

estimated from the same network model for prognostic data is: P(FNA_study 

result is suspicious about malignancy)= 0.228967  

ü Using prognostic frequencies, the probability of outcome is found as 

P(surgical biopsy result is malignant)= 0.237374 

For prognostic data: The percentage error between observed and estimated 

outcomes is 3.54%, which is also small enough to consider the model accurate. 

This result is parallel to the diagnostic data set. 

 

The contingency table of the proposed model shown below (Table 7.8) enables us 

to calculate the sensitivity, specificity, positive and negative predictive values of the 

FNA model as 82%, 94%, 91% and 88%, respectively. These values show the 

accuracy of the test outcomes for individuals.  

Table-7.8: Contingency table of the test 

  
Surgical 

biopsy = + 
Surgical 

biopsy = -  Total 
Model 

result = + 201 20 221 
Model 

result = - 43 305 348 
 Total 357 212 569 
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7.6 Comment on Results 

 
In this application we have tried to modeled the FNA test result and observe the 

changes in the outcome probabilities of this test in the light of new information. 

Initially, the estimated prior probabilities of the FNA outcome (about malignancy) 

was 0.388.  The effects of evidence 1 and evidence 2 on other nodes is shown in 

Table-7.1 and Figure-7.14 

            

         Table-7.8: Effect of evidences on prior probabilities of the nodes 

  Prior Probability 
Posterior after 

evidence 1 
Posterior after 

evidence 2 
area 0.0639 0.0629 0.0629 
concave points 0.2500 0.2333 1.0000 
concavity 0.0850 0.0465 0.1291 
FNA_result 0.3879 1.0000 1.0000 

fractal dimensions 0.2500 0.2492 0.2491 

perimeter 0.0651 0.0642 0.0642 

radius 0.2500 0.2485 0.2484 
shape 0.8344 0.9939 0.9912 
smoothness 0.2500 0.2560 0.2565 
symmetry 0.1225 0.0741 0.0724 
texture 0.2500 0.2551 0.2555 
compactness 0.1007 0.1204 0.1218 

 

 

 

 

 
 
 
 
 
 
 

         
          Figure-7.10: Effect of evidences on prior probabilities of the nodes 
 
The accuracy parameters of the FNA test calculated according to the proposed 

method are high and good enough to consider the method as an applicable 

alternative to the visual interpretation. Our study showed a very high and 

comparable sensitivity, specificity, positive and negative predictive values. The most 

important accuracy parameter is the rate of the people for whom the FNA outcome 

gave negative result although their surgical biopsy were positive. Here, our 

approximated test provided a ratio of %7. Also, the error between estimated and 

actual result is small for both the prognostic and the diagnostic cases. only results 

given in the contingency table In summary,  
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CHAPTER 8 
 
 

8. CONCLUSIONS 
 
 

Judgments are needed in medical diagnosis to determine which treatments to 

perform given certain symptoms. These judgments belong to the decision-makers, 

here the pathologists, physicians and cytologists, who decide the procedure to be 

followed, which is usually critical for the life of the patient. At the decision making 

step, using a single criterion to justify a decision offers an advantage by simplifying 

the problem. However, this does not guarantee that the problem is well formulated 

with respect to the reality. In order to state the problem nearest to the real 

situation, multiple criteria should be taken into account. 

 

This thesis study is aimed to introduce the usage of Graphical Models especially 

Bayesian Belief Networks in Medical Diagnosis problems. To make the idea behind 

the belief network structure clearer, first a brief introduction of Bayesian approach 

to probability and its usage in diagnostic test evaluation are given. The applications 

appeared in the literature are mentioned which use Bayesian probability and multi-

criteria decision methods together. In the application part of the thesis study, the 

interdependencies between the features of a visual interpretation test Fine Needle 

Aspirate and its outcome are found in terms of probabilities as a result of AHP 

study, and then they are used as the conditional probabilities to construct the 

Bayesian Belief Network model for the Fine Needle Aspiration test, which gives the 

cyto-pathologist an idea about the breast tumors behavior. This integrated 

approach enabled us to assess the interdependencies between uncertain variables. 

Consistency index is found for the result to evaluate the inconsistency of the 

Decision Maker for his answers. Evidence information originated from prognostic 

data of the same test, is added to the model to calculate posterior probabilities. The 

approach we used in this thesis to generate conditional probabilities seems visible 

and applicable due to its small error compared to real observation. However, the 

model constructed in the application had limitations at modeling reality and 
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evidence calculation steps. The reason for preferring to use AHP as the MCDA 

method is that AHP provides pair-wise comparisons of the factors, which is easier 

for a doctor to comment. Also the usage of AHP in medical decision making and the 

comparisons with other MCDA methods in the literature show the superiority of 

AHP method. 

 
In a BBN model, we observe the casualty effect of the nodes on each other; however 

the important thing is that they only affect each other, this means: there may be 

other factors having a causal effect on a node but not included in the model. In the 

model, there are 13 cases (patients), which had “0” in all diagnostic variables but 

have a positive biopsy result. This is an evidence for the fact that there are factors 

other than the observed morphometric characteristics explaining the tumor’s 

malignancy. Actually, according to the decision makers, they are the morphologic 

characteristics of the tumors, which are not measurable and determined by the 

subjective assessments of the doctor. 

 
As it is already mentioned in Chapter-7, the prognostic data provides evidence 

information. From the prognostic data set, we observed dramatic increases in the 

probability of FNA and concave points node, which are 57% and 68% respectively.  

For simplicity and due to the MSBN software limitations, the evidence are 

converted into “1”. That is, MSBN software has the option to enter evidences in 1 or 

0 formats. Using a more flexible BBN software, the actual prognostic evidences can 

be entered into the model.  

 
As a further application of this thesis, a study can be performed using all the 

attributes affecting the outcome. In this application we only preferred to use worst 

values of the attributes, since we decided them as more important then standard 

error and mean values. In such a study, continuous probability distributions of the 

variables can be found and assigned to the nodes. That would model the system 

more accurately with a smaller error. 

 
Additionally, first data set includes missing data. The EM algorithm can be used to 

approximate these missing values, and increase the accuracy of the model. 

 
We believe that multi-criteria decision aid will still see some important 

development, on the theoretical side (the theory is still at its very beginning) as well 

as on the practical side with the help of the increasingly user-friendly software, 

which is currently being developed. Also the use of Bayesian Belief Network 

phenomena to model real world systems is at its beginning. 
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APPENDIX A 
 
 

Conditional and Marginal Probability Tables of Hypothetical Problem in 
Chapter 4 

 
The conditional probabilities regarding the network are assigned as follows: 
 

  T1 

D1 Positive Negative 

Exists 0.95 0.05 

No Disease 0.14 0.86 

 

  T2 

D1 D2 Positive Negative 

Exists Exists 0.98 0.02 

Exists No Disease 0.67 0.33 

No Disease Exists 0.75 0.25 

No Disease No Disease 0.11 0.89 

 

  T3 

T2 Positive Negative 

Positive 0.78 0.22 

Negative 0.35 0.65 

 

  T4 

D3 Positive Negative 

Exists 0.55 0.45 

No Disease 0.27 0.73 

 

  T5 

T4 Positive Negative 

Positive 0.82 0.18 

Negative 0.08 0.92 

 

  TR1 

T1 Apply Do not apply 

Positive 0.6 0.4 

Negative 0.08 0.92 

 

 

 

  TR2 

T3 Apply Do not apply 

Positive 0.93 0.07 

Negative 0.13 0.87 

 

A1 
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The marginal probabilities regarding the network are calculated as follows: 
 

D1 

Exists No Disease 

0.005 0.995 

 

 

D3 

Exists No Disease 

0.001 0.999 

 

 

T2 

Positive Negative 

0.11471505 0.88528495 

 
T4 

Positive Negative 

0.27028 0.72972 

 

 

TR1 

Apply Do not apply 

0.15491 0.845094 

 

TR2 

Apply Do not apply 

0.44946198 0.55053802 

 

TR3 

Apply Do not apply 

0.285204248 0.714795752 

 

 
The conditional probabilities of the sink node “PR” 
 

 

 

 

 

 

 

 

 

 

 

  TR3 

T5 Apply Do not apply 

Positive 0.71 0.29 

Negative 0.12 0.88 

D2 

Exists No Disease 

0.003 0.997 

 

T1 

Positive Negative 

0.14405 0.85595 

T3 

Positive Negative 

0.399327472 0.600673 

 

T5 

Positive Negative 

0.28001 0.719993 
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APPENDIX B 
 
 

Evidence Propagation Using Pearl’s Message Passing Algorithm 
 

Evidence 1: Suppose Test 5 (T5) is performed on the patient and the result 
seems to be negative (n). In that case, the changes on other nodes are 
shown below: 
 
Update_tree (APPLICATION2,T5,negative(n)) 
 
λ(T5_n)=1;π(T5_n)=1;P(T5│{T5_n})=1;  //Instantiate T5 for negative (T5_n) 
 λ(T5_p)=0;π(T5_p)=0;P(T5│{T5_n})=0; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The flow of evidence 1 on the network  
 
The call 
 
send_ λ_message(T5,T4) 
λT5(T4_p)=P(T5_p│T4_p) λ(T5_p)+ P(T5_n│T4_p) λ(T5_n) 
     = (0.82)(0) + (0.18)(1)=0.18 
 
λT5(T4_n)=P(T5_p│T4_n) λ(T5_p)+ P(T5_n│T4_n) λ(T5_n) 
     = (0.08)(0) + (0.92)(1)=0.92 
 
λ(T4_p)= λT5(T4_p)=0.18   //Compute T4’s λ values 
λ(T4_n)= λT5(T4_n)=0.92 
 
P(T4_p│{T5_n})=α λ(T4_p) π(T4_p)= α(0.18)(.27028)=0.0486504α 
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P(T4_n│{T5_n})=α λ(T4_n) π(T4_n)= α(0.92)(.72972)=0.6713424α 
 
P(T4_p│{T5_n})=(0.0486504α)/( 0.0486504α+0.6713424α)=0.067571;
 //Compute P(T4│{T5_n}) 
P(T4_n│{T5_n})=(0.6713424α)/( 0.0486504α+0.6713424α)=0.932429; 
 
send_ λ_message(T4,D3) 
 
λT4(D3_y)=P(T4_p│D3_y) λ(T4_p)+ P(T4_n│D3_y) λ(T4_n) 
     = (0.55)(0.18) + (0.45)(0.92)=0.513 
 
λT4(D3_n)=P(T4_p│D3_n) λ(T4_p)+ P(T4_n│D3_n) λ(T4_n) 
     = (0.27)(0.18) + (0.73)(0.92)=0.7202 
 
λ(D3_y)= λT4(D3_y)=0.513; 
λ(D3_n)= λT4(D3_n)=0.7202; 
 
P(D3_y│{T5_n})=α λ(D3_y) π(D3_y)= α(0.513)(0.001)=0.000513α 
P(D3_n│{T5_n})=α λ(D3_n) π(D3_n)= α(0.7202)(.999)=0.7194798α 
 
P(D3_y│{T5_n})=(0.000513α)/( 0.000513α +0.7194798α)=0.0007125071251; 
P(D3_n│{T5_n})=1-0.0007125071251=0.9992874929 ; //Compute P(D3│{T5_n}) 
 
send_ π_message(T5,TR3) 
 
πTR3(T5_p)= π(T5_p)=0; 
πTR3(T5_n)= π(T5_n)=1; 
 
π(TR3_y)= P(TR3_y│T5_p) πTR3(T5_p)+ P(TR3_y│T5_n) πTR3(T5_n) 
    = (0.71)(0)+(0.12)(1)=0.12 
π(TR3_n)= P(TR3_n│T5_p) πTR3(T5_p)+ P(TR3_n│T5_n) πTR3(T5_n) 
    = (0.29)(0)+(0.88)(1)=0.88 
 
P(TR3_y│{T5_n})=0.12;   //Compute P(TR3│{T5_n}) 
P(TR3_n│{T5_n})=0.88; 
 
 
send_ π_message(TR3,PR) 
 
πPR(TR3_y)= π(TR3_y)=0.12; 
πPR(TR3_n)= π(TR3_n)=0.88; 
 
π(PR_y)= P(PR_y│TR3_y,TR2_y,TR1_y) πPR(TR3_y) πPR(TR2_y) πPR(TR1_y) 
   + P(PR_y│TR3_n,TR2_y,TR1_y) πPR(TR3_n) πPR(TR2_y) πPR(TR1_y) 
   + P(PR_y│TR3_y,TR2_y,TR1_n) πPR(TR3_y) πPR(TR2_y) πPR(TR1_n) 
   + P(PR_y│TR3_n,TR2_y,TR1_n) πPR(TR3_n) πPR(TR2_y) πPR(TR1_n) 
   + P(PR_y│TR3_y,TR2_n,TR1_y) πPR(TR3_y) πPR(TR2_n) πPR(TR1_y) 
   + P(PR_y│TR3_n,TR2_n,TR1_y) πPR(TR3_n) πPR(TR2_n) πPR(TR1_y) 
   + P(PR_y│TR3_y,TR2_n,TR1_n) πPR(TR3_y) πPR(TR2_n) πPR(TR1_n) 
   + P(PR_y│TR3_n,TR2_n,TR1_n) πPR(TR3_n) πPR(TR2_n) πPR(TR1_n) 
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π(PR_y)=0.2099206; 
π(PR_n)=1-0.2099206=0.7900794; 
 
P(PR_y│{T5_n})=0.2099206;   //Compute P(PR│{T5_n}) 
P(PR_n│{T5_n})=0.7900794; 
 
Evidence 2: Being the T5 test result on hand (as negative), another 
information is obtained regarding node D1. Suppose that the genetic history 
of the patient’s mother about Disease 1 strongly claims that the patient has 
Disease 1.  
 
This evidence affects the probabilities of the other nodes as follows:  
 
 

 
Figure 4.12: The flow of evidence 2 on the network, being evidence 1 
present  
 
Update_tree (APPLICATION2,T5:negative(n),D1:exists(y)) 
 
λ(D1_y)=1; λ(D1_n)=0;  //Instantiate D1 for disease exists (D1_y) 
πT1(D1_y)= π(D1_y)=1; 
πT1(D1_n)= π(D1_n)=0; 
 
The Call 
 
send_ π_msg(D1,T1) 
 
πT1(D1_y)= π(D1_y) λT2(D1_y)=(1)(1)=1; //D1 sends T1 a π message. 
πT1(D1_n)= π(D1_n) λT2(D1_n)=(0)(1)=0; 

= (1) (0.12) (0.4495) (0.15491) 
+ (0.65) (0.88) (0.4495) (0.15491) 
+ (0.6) (0.12) (0.4495) (0.84509) 
+ (0.2) (0.88) (0.4495) (0.84509) 
+ (0.75) (0.12) (0.5505) (0.15491) 
+ (0.5) (0.88) (0.5505) (0.15491) 
+ (0.4) (0.12) (0.5505) (0.84509) 
+ (0) (0.88) (0.5505) (0.84509) 
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π(T1_y)=P(T1_y│D1_y) πT1(D1_y) + P(T1_y│D1_n) πT1(D1_n)  
  = (0.95)(1)+(0.14)(0)=0.95; 
π(T1_n)=(0.05)(1)+(0.86)(0)=0.05;  //Compute T1’s π values. 
 
P(T1_y│{T5_n},{D1_y})=o λ(T1_y) π(T1_y)= o(1)(0.95)=0.95o 
P(T1_n│{T5_n},{D1_y})=o λ(T1_n) π(T1_n)=0.05o 
 
P(T1_y│{T5_n},{D1_y})=0.95; 
P(T1_n│{T5_n},{D1_y})=0.05; 
 
send_ π_msg(T1,TR1) 
 
πTR1(T1_y)= π(T1_y)=0.95; 
πTR1(T1_n)= π(T1_n)=0.05; 
 
π(TR1_y)=P(TR1_y│T1_y) πTR1(T1_y) + P(TR1_y│T1_n) πTR1(T1_n) 
             = (0.6)(0.95)+(0.08)(0.05)=0.574; 
π(TR1_n)= (0.4)(0.95)+(0.92)(0.05)=0.426; //Compute TR1’s π values. 
 
P(TR1_y)│{T5_n},{D1_y})=0.574; 
 P(TR1_n)│{T5_n},{D1_y})=0.426; 
 
 
send_ π_msg(D1,T2) 
 
λ(D1_y)= 1; π(D1_y)= 1; P(D1_y│{D1_y})=1; 
λ(D1_n)= 0; π(D1_n)= 0; P(D1_n│{D1_y})=0; 
 
 
send_ λ_msg(T2,D2) 
 
λT2(D2_y)= [ P(T2_y│D2_y,D1_y) πT2(D1_y) + P(T2_y│D2_y,D1_n) πT2(D1_n) ] λ(T2_y) 
    + [ P(T2_n│D2_y,D1_y) πT2(D1_y) + P(T2_n│D2_y,D1_n) πT2(D1_n) ] λ(T2_n) 
     =[(0.98)(1)+(0.75)(0)](1)+ [(0.02)(1)+(0.25)(0)](1) 
     =1       //T2 sends D2 a λ 
message. 
 
λT2(D2_n)= 0;   
 
 
λ(D2_y)= λT2(D2_y)= 1; //Compute D2’s λ values. 
λ(D2_n)= λT2(D2_n)= 0; 
 
P(D2_y│{T5_n},{D1_y})=o λ(D2_y) π(D2_y)= o(1)(0.003)=0.003o 
P(D2_n│{T5_n},{D1_y})=o λ(D2_n) π(D2_n)= o(1)(0.997)=0.997o 
 
 
P(D2_y│{T5_n},{D1_y})=0.003; 
P(D2_n│{T5_n},{D1_y})=0.997; 
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send_ π_msg(D2,T2)πT2(D2_y)= π(D2_y)=0.003; 
πT2(D2_n)= π(D2_n)=0.997; 
 
πT2(D1_y)= π(D1_y)=1; 
πT2(D1_n)= π(D1_n)=0; 
 
π(T2_y)=P(T2_y│D1_y,D2_y) πT2(D1_y) πT2(D2_y) + P(T2_y│D1_y,D2_n) πT2(D1_y) πT2(D2_n) 
  + P(T2_y│D1_n,D2_y) πT2(D1_n) πT2(D2_y) + P(T2_y│D1_n,D2_n) πT2(D1_n) πT2(D2_n) 
   = (0.98)(1)(0.003)+(0.67)(1)(0.99)+(0.75)(0)(0.003)+(0.11)(0)(0.99) 
   = 0.67093  

π(T2_y)= 0.32907 
P(T2_y│{T5_n},{D1_y})=0.67093; 
P(T2_n│{T5_n},{D1_y})=0.32907; 
 
send_ π_msg(T2,T3) 
 
πT3(T2_y)= π(T2_y)=0.67093; 
πT3(T2_n)= π(T2_n)=0.32907; 
 
π(T3_y)=P(T3_y│T2_y) πT3(T2_y) + P(T3_y│T2_n) πT3(T2_n) 
             = (0.78)(0.67093)+(0.35)(0.32907)=0.63384999; 
π(T3_n)= 1-0.63384999=0.3615001; //Compute T3’s π values. 
 
send_ π_msg(T3,TR2) 
 
πTR2(T3_y)= π(T3_y)= 0.63384999; 
πTR2(T3_n)= π(T3_n)= 0.3615001; 
 
π(TR2_y)=P(TR2_y│T3_y) πTR2(T3_y) + P(TR2_y│T3_n) πTR2(T3_n) 
             = (0.93)( 0.63384999)+(0.13)( 0.3615001)=0.636476; 
π(T3_n)= 1-0.636476=0.3635245; //Compute T3’s π values. 
 
For the sink node 
 
send_ π_msg(PR; TR1, TR2, TR3) 
 
πPR(TR1_y)=0.574 
πPR(TR2_y)=0.636476   
πPR(TR3_y)=0.12 
 
πPR(TR1_n)=0.426 
πPR(TR2_n)=0. 3635245   
πPR(TR3_n)=0.88 
 
π(PR_y)= (1)(0.12)(0.636476)(0.574)+(0.65)(0.88)(0.636476)(0.574) 
  + (0.6)(0.12)(0.636476)(0.426)+(0.2)(0.88)(0.636476)(0.426) 
  + (0.75)(0.12)(0.3635245)(0.574)+(0.5)(0.88)(0.3635245)(0.574) 
  + (0.4)(0.12)(0.3635245)(0.426)+(0)(0.88)(0.3635245)(0.426) 
  = 0.4380805478 
 
π(PR_y)=0.5619194522 
 
P(PR_y│{T5_n},{D1_y})=0.438081; 
P(PR_n│{T5_n},{D1_y})=0.561919; 
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APPENDIX C 
 
 

Tables and Figures that are not included in Chapter 7 
 

Table-7.2: Correlation matrix of attributes in Set 2 
Correlations

1.000 .344** .998** .988** .157** .492** .667** .817** .151** -.306**

. .000 .000 .000 .000 .000 .000 .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.344** 1.000 .351** .338** .005 .257** .323** .316** .093* -.065

.000 . .000 .000 .907 .000 .000 .000 .028 .125

556 556 556 556 556 556 556 556 556 556

.998** .351** 1.000 .987** .195** .545** .708** .846** .187** -.254**

.000 .000 . .000 .000 .000 .000 .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.988** .338** .987** 1.000 .166** .486** .677** .818** .153** -.278**

.000 .000 .000 . .000 .000 .000 .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.157** .005 .195** .166** 1.000 .659** .521** .554** .557** .591**

.000 .907 .000 .000 . .000 .000 .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.492** .257** .545** .486** .659** 1.000 .880** .827** .610** .584**

.000 .000 .000 .000 .000 . .000 .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.667** .323** .708** .677** .521** .880** 1.000 .919** .509** .354**

.000 .000 .000 .000 .000 .000 . .000 .000 .000

556 556 556 556 556 556 556 556 556 556

.817** .316** .846** .818** .554** .827** .919** 1.000 .471** .182**

.000 .000 .000 .000 .000 .000 .000 . .000 .000

556 556 556 556 556 556 556 556 556 556

.151** .093* .187** .153** .557** .610** .509** .471** 1.000 .477**

.000 .028 .000 .000 .000 .000 .000 .000 . .000

556 556 556 556 556 556 556 556 556 556

-.306** -.065 -.254** -.278** .591** .584** .354** .182** .477** 1.000

.000 .125 .000 .000 .000 .000 .000 .000 .000 .

556 556 556 556 556 556 556 556 556 556

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

RADIUS

TEXTURE

PERIMETE

AREA

SMOOTH

COMPACT

CONCAVIT

CONCAPTS

SYMMETRY

FRACTDIM

RADIUS TEXTURE PERIMETE AREA SMOOTH COMPACT CONCAVIT CONCAPTS SYMMETRY FRACTDIM

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 

 

 
 

Table-7.3: Correlation matrix of attributes in Set 2 (summarized) 
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Table-7.4: Correlation matrix of attributes in Set 2 (converted into verbal 
values) 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-7.2: Scatter plot identifying the relations between attributes (Set 2)  
 

 
Field 4: 
texture  

 
Field 5:  

perimeter 
 

Field 6:   
area 

 
Field 7:  

smoothness  
 

Field 8:  
compactness  

 
Field 9: 

concavity  
 

Field 10: 
concave pts  

 
Field 11: 

symmetry  
 

Field 12: 
fractal 

dimension 

Radius       Texture      Perimeter     Area      Smoothness    Compactness    Concavity    Concave Pts   Fractal  Dim 
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Figure-7.3: Scatter plot matrix identifying the difference of the attribute 
values (Set 2) in terms of their type of diagnosis. Red points: benign tumors, 
Green points: malignant tumors 
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Figure-7.4: Three dimensional Scatter plot showing the dependency of 
compactness on area and perimeter 
 
 
 
 
 
 
 
 
Figure-7.5: Dependency between concave points & concavity; fractal 
dimension & symmetry 
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Figure-7.7: Conditional Probability Tables (CPTs) of the BBN model 
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