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ABSTRACT

“3D VISUALIZATION USING DATA RECEIVED FROM
THE PROCESSES OF OBJECT RECOGNITION
AND OBJECT RECONSTRUCTION”

Guveng, Seher Pelin
M.S.c., Department of Computer Engineering
Supervisor: Asst. Prof. Dr. Abdiil Kadir GORUR

June 2008, 61 pages

This thesis presents the demonstration of what two images or two video
sequences can tell us about the situation and model of a third video sequence or
image. The method bears ideas from projective geometry as it’s basis.

The main purpose of the thesis is to be able to form a base line for
tracking an object in a 3D environment not only by using two stereo cameras
but also by using other cameras that may be located in various points of the
environment. The method visualizes the object and gives the information to a
third camera. This way it can be possible to track a moving object, along with
it’s visualized model, in an environment without losing sight of it and without

having to move the other two stereo cameras which we received data from.

Keywords: 3D Visualization, Projective Geometry, Pinhole Camera Model,
Hidden Surface Removal.
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“CISIM TANIMLAMA VE CISIM REKONSTRUKSIYONUNDAN
ALINAN BILGI ILE CISMI 3-BOYUTLU OLARAK GORUNTULEME”

Guveng, Seher Pelin
Y ukseklisans, Bilgisayar Muhendisligi Anabilim Dali
Tez Yoneticisi: Yrd. Dog. Dr. Abdil Kadir GORUR

Haziran 2008, 61 sayfa

Bu tez calismasi, iki ¢iftli kameranin bize t¢unct bir kameradaki durum
hakkinda neler soyleyebilecegi ile ilgilidir. Bu goruntiler video veya resim
seklinde de olabilir Uygulanan metod izdiisimsel geometrinin fikirlerinden yola
cikararak gerceklestirilmistir.

Tezdeki asil ama¢ 3 boyutlu bir ortamda takip edilen cismi
kaybetmemeye cahsmaktir. iki tane sabit ciftli kameradan aldigimiz cisim
rekonstruksiyon ve cisimi tanimlama bilgileri ile tigtinct bir kamerada o cisimin
nerede olabilecegi ile ilgili, gorsel bir sembol ile bilgi vermis oluyoruz. Boylece
Uc boyutlu ve birden fazla sabit kameranin bulundugu bir ortamda cismi

kaybetmeden takip edebiliriz.

Anahtar Kelimeler: 3-Boyutlu Gorintiileme, izdlstimsel Geometri, igne

Deligi Kamera Modeli, Gizli Yuzey Giderme.
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CHAPTER 1

INTRODUCTION

The purpose of this thesis is to create a progranwill visualize a 3D wire
frame model of an object that will be tracked in @bject tracking system. This
visualization will give us an idea of the locatiohthe object being tracked since
with a simple use of superimposition we will mahe tlocation of the object while
being tracked. Though since this process takes din@eto various calculations that
are pursued, it is not done in real time.

Various methods like geometric transformations,spective projection,
visualization and superimposition were used in thaking of this thesis. The

methods are elucidated in the following chapterthisfthesis.

In Chapter 2 we describe the basic geometric msthioat were used in the
basis of the thesis. These geometric methods i@gotand translation) were used to
convert the 3D corner and edge point coordinatesived from the second or first
camera, to the world coordinates and then to tleedooates of the third camera or
third view point. This way we obtained the 3D panbrdinates as numeric data and

stored them into a file to use them in the nextpss.



In Chapter 3 we describe the basics of image foomaby describing the
Pinhole Camera Model and perspective projectiorsgeetive projection plays a big
role in mapping 3D image data’s to 2D image plariesvas one of the main
processes used in the implementation part of tperaxent. The mapping of the 3D
coordinates, that were transformed using the gewmn&tinsforms, rotation and
translation, were used in the geometric backgrafriie projective geometry.

The Pinhole Camera model shows us how an imagP iis &apped onto the
a 2D image plane. Here we also define the tenmnsisic parametersandextrinsic

paramete reof a camera.

In the next chapter, Chapter 4, the tensualizationis defined. It explains
the types of visualization; though emphasizing atadvisualization. It shows the
types of data that may be used when visualizingtgect. And gives examples of the
tools used in graphics visualization. The data mcW we used in this experiment
was the 3D edge and corner point coordinates whete stored in a file, or in other
words numeric data. Another file which included theface 3D point coordinates,

which was used in the process of applying the Zdudlgorithm, was used as well.

Chapter 5 defines the meaning of removing hiddefases and explains the
various hidden surface algorithms used to elimisatéaces that remain behind other
surfaces. The algorithm in which we emphasize othésZ-Buffer (depth buffer)
algorithm, because this algorithm was used in tleéhod for performing the hidden
surface eliminations.

The reason of removing such surfaces gives us & mealistic view of the

object modeled.



The last method used was superimposition, seemapi€r 6. This section of
the thesis gives a brief explanation of the tesuperimposingand explains it's
applications. It also mentions very briefly aboub application in which

superimposition is used, calladgmented reality

In the end we combine the methods and explain ribeegs done and how the
methods were used during the study period of tkeish along with what could be

done in the future with a more advanced versiatmeimethods and system.



CHAPTER 2

THE GEOMETRIC BACKGROUND

In the basis of the experiment, the geometricalhodt used are the
mathematical and geometrical algorithms and eqgusitiwsed in both the camera
model, image processing and the three dimensiagaphges operations.

The most commanly used geometric method are émsfwsrmations.

2.1 Transformations

There are several transformations in linear algelnaar transformation,
affine transformation and perspective projectionolr case we have used the linear
transformation.

A linear transformation can be represented by &ixndf we have a linear
transformationl which maps a column vector x that lesntries to a vector witm

columns, then we have;
I(r)=Az1 2.1)

Where thanxnmatrix A is called th@éransformation matrix of T.



The following are the most common used linear fiansations and are also

the ones that were used in the baseline of therienpast.
2.1.1 Rotation

Rotation is a transformation around a plane or eplaat describes the motion
of a solid object around a fixed point. At the ¢hd distance between any two points
on the object are unchanged.

R is said to be a rotation matrix ®* = R, which means that each rotation

matrix is orthogonal.

There are two types of rotation; axis rotation &edtor rotation. In our case
we used the axis rotation since we had two camgms#tioned in different places
which means their coordinate axis’s were rotatemating to one another.

The representation of a 3x3 rotation matrix cagilen as follows;
£ =HR,R,; 2.2)

Where in matrix notation;

1 0
(&) cos(€) 0 |,
1
(2.3)

(Rotation done around the z-axis)



2y " (m.s(,,) 0 -ﬂ'ﬂ(ﬂ))
0 1 0 and

sin(g) 0 cos(y)

(2.4)
(Rotation done around the new y-axis)
R~ cos({) sn() 0
—sinl(¢) cos(¢) 0 |.
0 0 1
(2.5)
(Rotation done around the new z-axis (x-axis))
When we multiply each individual matrix we get tis¢ation matrixRr,;
cos{{Jos{yos(¢) - sin{QJin)  ens{Jeasgsn(f) + si(Jeos(f) —eusQin(y)
B= | -sin{C)cos(n)eos(() - cos(C)oin€) —sin(Cleos(n)sin(¢) + cos{C)eas(() ~ sin(C)oin()
sin(peos(¢) sin(p)sin(¢) wst) o)

Figure 2.1 shows the rotation around xk&xis Figure 2.2 shows the rotation

around they-axisand Figure 2.3 shows the rotation aroundztiaeis

x

Figure 2.1 : Rotation Around the X-Axis

6
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Figure 2.2 : Rotation Around the Y-Axis

pr

Figure 2.3 : Rotation Around the Z-Axis

2.1.2 Translation

In image processing translation is the movemermvefry point on the object
in a specified direction. Though the points all m@/constant distance, meaning that

each point on the object moves the same amountdswae specified direction.

7



The translation matrixT is a vector that takes 2 or 3 parameters deperuting
the dimension that the translation will be takihgce. In our case we have used three

parameters in our translation vector since tramslatvas done in 3D. It is

represented as follows;
=T(tx, ty, t) (2.7)
Where t, represents the translation done in thexis t, represents the

translation done in thg-axisandt, represents the translation done inzkexis

Figure 2.4 shows translation done in 2D and Figuseshows the translation

done in 3D.

L J
W
1

X' =X+t

y=y+t

Figure 2.4 : 2D Translation



Figure 2.5 : 3D Translation

There are other types of transformations as wel @sScalingin which the
object either enlarges or deminishes in size. tay happen in 2D or 3D. Another
transformation method is thidormal Transform Just as we use the matfxto
transform the geometry of the points or lines we tiie normal transform method to

transform the normals of these geometries.



CHAPTER 3

IMAGE FORMATION

The commonly used model for capturing images f8inrto 2D is the Pinhole
Camera Model. Originally the Pinhole Camera is me@ without a glass lens. It
consists of an extremely small hole and is madefugery thin material. This hole
can focus the light by confining all rays from &se through a single point.

In order to understand the Pinhole Camera Mod€iinseneed to understand

the term;perspective projectian

3.1 Perspective Projection

Perspective projection is used to project the 3Dldvto the 2D image plane.
A basic rule of perspective projection is that stimmgy that is further away from the
viewer at a three-dimensional space is “smaller” time two-dimensional
representation and “larger” if it is closer in tiwe-dimensional space [1].

Figure 3.1 illustrates how perspective projectiarks.

10



Figure 3.1 : Standard Perspective Projection.[2]

As it is seen theenter of projections at the cente® which is located at the
center of the 3D reference frame, or in other wdh#sworld coordinate axis. The
image plang] is parallel to the (x, y) plane and is shiftedistahce the size of the
focal lengthf along thez-axisfrom the origin of the 3D reference frame. The 3D
point P projects to the image poipt

Though in order to perform perspective projectiame simple geometric
arrangements need to be done. We know that in glether world coordinate system
does not align or overlap with the camera coor@isgstem.

Figure 3.2 shows a simple model of how the cameey fe aligned
according to the world coordinate system. As gaen in the figure the z-axis of the
world coordinate system is upward when the cameradxis faces a different
direction. The camera coordinate system is rotated translated compare to the
world coordinate system.

This can make things more difficult when calculgtand projecting points on

the image plane.

11



Camera
Coordinate
System

World
Coordinate
System Wy

/ Yo

.
Figure 3.2 : Alignment of the Camera with respedhie World Coordinate
System.[2]
For this reason, in order to simplify the derigatiof the perspective
projection equations, the following assumptionsuithdbe made;
1. The center of projectio®, described above, overlaps with the origin of the
world coordinate system.
2. The camera’s axis (optical axis) is aligned witl World’s z coordinate axis.
3. And we should avoid image inversion by assuming tha location of the
image plane is in front of the center of projectaashown in Figure 3.3.

IMAGE

CAMERA PLANE

FRAME

OPTICAL
AXIS

Figure 3.3 : Assumed Alignment of the Image Plaita vespect t®. [2]
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The line passing througB, and that is perpendicular to the image plane is
called theoptical axis as seen in the figure above. The intersectiothebptical
axis with the image plane is called tpencipal pointor image center(Though the

principal point does not always have to be the enaanter.)
3.1.1 The Equations of Perspective Projection

Figure 3.4 shows the geometric model of perspegiegction, according to

the figure the following equations are derived.

¥ (x, ¥, 2)

1 /J‘FI) A

|
f oy
L |
o
P
I
L
ro
o
.fl, |
- |
1

i

P
fl ')
' il

Figure 3.4 : Geometric Model of Perspective Pragect[2]

(notations: %, ¥,2 2 (X,Y,2),r>R,X,y,2)> (X,y,2),r 27
By using the simple triangles indicated in thaufeyabove, and with the help
of simple geometry and ratio we have;
* FromOA'B’ andOAB:f/Z=r/R {is the focal length.)

* FromA'B'C’ andABC x/X=y/Y =r/R

13



From the above equations we obtain the following;

X I

X =
(3.1)

By using the matrix notation the perspective priggcmatrix looks like the

following;
Xy, 0 0 0[X
Vi | | 0 f o0 of|r
ol o o fF ool z
W 0O 0 1 0 1

(3.2)
To verify whether the matrix above is correct ot me& do the following

(homogenize the matrix by assuming w = Z);

(3.3)

3.1.2 Properties of Perspective Projection [2]

¢ Many-to-One Mapping The projection of a point is not
unique. Any point on the line connecting theenter of
projection O, and the point P as shown in figure 3.3, has the
same projection.

 Scaling/Foreshortenin@he distance of an object is inversely
proportional to its image size. In other words, thgher away

the object is the smaller it would look on the iraggane. Why

14



it is like that is explained in Figure 3.5. It showhe geometric

basics.

B

Figure 3.5 : Model of Object Distance and Size Ratahip. [2]

When a line (or surface) is parallel to the imatgne the
effect of perspective projection $galing In the reverse situation,
meaning that if the line or surface is not parattelthe image
plane the ternforeshorteningis used to describe the projective
distortion. As shown in figure 3.6 the line parhlie the optical

axis is compressed relative to the frontal line.

Foreshortening

Figure 3.6 : Difference betwe&talingandForeshortening[2]

15



 Effect of the Focal Lengths the focal lengtli gets smaller
the number of points projected on the image plane
increase.(example: wide-angle camera). On the aontif f gets
larger the field of view gets smaller (exampleeselopic view.)

 Lines, Distances, Angles&ines in 3D project to lines in 2D.
While doing that the distances and angleshatereserved. And
parallel lines do not project to parallel lines esd they are
parallel to the image plane.

 Vanishing Point Parallel lines in space project perspectively
onto lines that intersect at a single point in thege plane
called thevanishing pointor point at infinity The vanishing
point of any given line in space is located at ploént in the
image where a parallel line through the center @ijgetion

intersects the image plane. Figure 3.7 shows amena a

vanishing point.

Figure 3.7 : Example of a Vanishing Point in a Refd Image. [2]
16



The following figure shows the geometric represeoitaof the
perspective projection of parallel lines in the ldocoordinate
system. See how the parallel lines tend to vanisénaprojected

onto the image plane.

Center of

e Projection
Projection

Plane

/Vanishing Point

Vanishing Point

Figure 3.8 : Geometric Representation of Vanisitomt. [2]

« Vanishing Line The vanishing points of all the lines that lie on

the same plane form tlvanishing line

3.2 The Pinhole Camera Model

As it is stated at the beginning of this chapteraiPinhole Camera model a
scene view is formed by projecting 3D points inte timage plane by using
perspective projection.

Figure 3.9 shows a simple drawing of how the Pial@amera model looks

like. The rays of light which reflect from the tapd bottom of the object go through
17



the tiny hole to form an image in the back of tlee,though an upside down image

of the object is created. It is similar to the iradgrmation in the human eye.

Image

"Pinhole"

Object

Figure 3.9 : The Pinhole Camera Model. [2]

The geometry of the Pinhole Camera Model is shmwifigure 3.1 where we
described the geometry of perspective projectiancesthe basis of the Pinhole
Camera relies on perspective projection there iother way then to represent it

geometricaly.

The projection of a 3D point on an object to tH2 iZnage plane can be

represented by the following equation;

s* p'= A*[R|t]* P’ (3.4)
or
]
u fx 0 cx rii ri2 rizs t1
v =0 fy cy|*|ra1 rao ra t2|* 32/ (3.5)
1 0O 0 1 Fs1 ra2 ra {3 1

18



Here the X, y, 2) coordinates are the coordinates of a point in3Deworld
coordinate space. The “1” in the coordinate vedtiates that the coordinates are
homogeneous coordinatesl, ) represent the coordinates of the point projection
The camera matrix, or matrix of intrinsic parametisrrepresented b4. It includes
the parameterscy, c,), which is the principal point that is usually satered as the
image center ant}, fy which are the focal lengths in both thend they direction
respectively.

If the image maybe scaled by some factor the petems {y, f,, ¢ andc,)
must all be scaled (multiplied or divided dependorgthe sampling done) by the

same factor as well.[3]

The matrix of intrinsic parameters does not depemdhe scene viewed, and
once it is estimated it can be used again as Isrtheafocal length does not change.
Otherwise it may differ in case of zoom lens, whiohthat case will have to be

estimated again with the new focal length valuégs.[3

The joint rotation-translation matrixR | t ] is called the matrix of extrinsic
parameters and is used to describe the motioncafreera around a static scene or a
motion of an object in front of a still camera. Tjo@nt rotation-translation matrix;

[ R|t] translates coordinates of a poirt ¥, z) to some other coordinate system,

fixed with respect to the camera. [3]

The equation above is a detailed version of haveatttual estimation is done

when converting coordinates from one coordinateesysto another coordinate

19



system or in other words another camera’s coordiggstem, the following equation

is another representation of the equation abovenak®;

X X
Y|=R*|Y |+t &3B.
z Z

X'=x/z

y=ylz

u= fx* X'+cx

v=f*y+g

HereR represents the rotation matrix belonging to tamera in which the
coordinates X, y, 2 want to be estimated.is the translation vector of the same
camera. The projected points and v are calculated using the transformed

coordinates X', y') and the intrinsic parameters of the camera matrix

Though in the real case lens usually have distortmwhich means the
abnormal rendering of lines in an image. Theret@memajor distortion components
which are radial and slightly tangential distortioNith these two components the

above equation turns into the following equation;

X X
YI=R*|Y [+t
z Z

20



X'=x/z

, (3.7)
y=ylz
X" =x*(1+ kar? + k2r4) +2%pxX*y + pz(r2+ 2 *
Y'Y (L kar® ko) +py(rf+ 2 y?) + 2y Xty
Wherer? = x?+ y*,
And from this thej, v) parameters become;
u=f,*x" +¢ &B.

v=f,*y" +c

The parameterk; and k, are the radial distortion coefficients. The
parametersp; and p, are the tangential distortion coefficients. Thestalition
coefficients also do not depend on the scene viesivent they are also considered as
the intrinsic parameters of the camera. And theyndb differ according to the

resolution of the image taken.

The following are the methods in which the Pinhalamera model

described above is used:;

* Projecting 3D points to an image plane given theinsic and
extrinsic parameters of the camera.
« Computing extrinsic parameters given intrinsic paaters of the

camera and a few 3D points and there projections.
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« Estimating intrinsic and extrinsic camera paransefeym several
views of a known calibration pattern (i.e. evergwiis described

by several 3D-2D point correspondences). [3]
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CHAPTER 4

VISUALIZATION

Visualization can be any technique used for cngaitnages, diagrams and
animations to show what the data has to tell usast been used since the first times
man learned how to draw.

We can visualize 2D or 3D data depending on thaetic values that are
present. Because, visualization transforms numeait@ into a visual form that
enables the users to conceptualize and underdtaniciformation. 3D visualization
is the ability to display, analyze, manipulate anteract with 3D data in a 3D
environment [4].

There are various fields, in computer graphicswinch visualization is
used. These fields are; Information Visualizatioknowledge Visualization,
Educational Visualization and Product Visualizati@vie are going to emphasize on
Information Visualization since it is the type ofswalization method used in the
experimental part of this thesis. The informatienaived for applying visualization

iS numeric data.
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4.1 Information Visualization

Information visualization concentrates on the useoonputer-supported
tools and libraries to examine large amounts ofrabsdata. The use of visualizing
such data helps the user or developer gain knowladgut the information written
in a file or another type of structure and helps tiser or developer analyze the
abstract data in more detail. These structures eagwordinates of points in 3D
space, or point cloud data of an object (whichus aase) or could be color data or

texture data etc.

There are various visualization techniquesciwtare commonly used;
some of them are; constructing isosurfaces, dirgdtime rendering, parallel
coordinates which is a common visualization techeiqused to visualize high-

dimensional geometry, tables, matrixes, Maps etc...

Figure 4.1 shows an example of 3D informatiesualization. The
information received by the supported tool or Ifgrés a point cloud, or in other
words the 3D coordinates of the points, of the Higecurves and edges of the
human face. These points are extracted using oestgect reconstruction methods

and can be stored in a file for later use.
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Figure 4.1 : Visualization of the Human Face ugot clouds. [5]

Figure 4.2 shows another example of 3D informatiualization. This
figure represents an example for architectural dstaalization. It is clearly seen that
the data source used here is much larger and osntaore detail such as color,

texture and depth information.

Figure 4.2 : Visualization of an Architectural Mod@]
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These types of 3D models are visualized usinghgtrasualization toolkits
for architectural development and modeling.

As it is seen from the figures above, computeplgies plays a huge role in
the area of visualization. Not only can tools beduso visualize certain data but
some libraries such as OpenGL (Open Source Graghimsry) or VTK (The
Visualization Toolkit) can be used as well, where teveloper writes his/her own
code by using special functions to visualize theadgven. These are only some

examples of visualization libraries used in compgtaphics programming.
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CHAPTER 5

HIDDEN SURFACE DETERMINATION

When visualizing a source of data, such as polgboreshes, due to the data
being 3 dimensional the surface of an object whieeds to be behind another object
or obstacle may be seen through the first objeaddéh surface determination,
which is also known as hidden surface removal eible surface determination is
used to find a solution to such a problem. It datees which parts of an object in a

scene is not visible from a certain point of view.

Figure 5.1 : Drawing done without Figure 5.2 : Drawing done by

performing hidden surface removal. performing hidden surface removal.
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Figures 5.1 and 5.2 show a polygonal mesh reprasemtof a cat without
performing hidden surface removal and by performidden surface removal
respectively.

As it is seen in the images, the figure in whietiden surface removal was
not performed is complex and uncertain and notectoswhat the object would look
like in real life, on the other hand the figurevitmich hidden surface removal was
performed the front meshes have come forward aedobject no longer has a
transparent look, which means that the objectndesed in a way in which it would
look like in real life.

Another type of removal is the hidden line remawhlch is used in rendering
lines. Figure 5.3 and 5.4 show some polygonal d¢bjeitawn with hidden line

removal performed and not performed respectively.

Figure 5.3 : Hidden Line Removal Figure 5.4 : Hidden Line Removal

performed. [6] not perform¢dl.

There are many algorithms used in order to perfdididen Surface Removal
in the rendering pipline, the projection, the cipgpand the rasterization steps of the
the visualization of the scene. All of these stepshandled differently according to

the following algorithms;
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* Warnock’s Algorithm.

* The Painter’s Algorithm.

* Binary Space Partitioning.
* Ray Tracing.

» The Z-Buffer Algorithm. (Depth Buffer Algorithm)

5.1 Warnock’s Algorithm

Warnock’s Algorithm divides the screen into smalieeas and sorts out the
triangles within these areas. If there is ambigyitg., polygons overlap in depth
extent within these areas), then further subdivissecurs. Subdivision may occur
down to the pixel level, which is the limit of tperformance of the algorithm [7].

Figure 5.5 shows an example of the applicatiothefWarnock Algorithm.

N N
_;.../

0

Figure 5.5 : The Application of Warnock’s Algorithii3]
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A simple implementation of this algorithm can beeg by the following
steps [8];

1. Take a given section of the screen. (In the fitst it is the
entire screen.)
2. Check to see that it is “simple enough”. The meguoihsimple
enough is; no more then one polygon in the viewf&jrt
3. Ifitis simple enough, display it.
4. If it isn’t then subdivide the screen into four sexs and begin

from the first step.

You can see the above algorithm applied in figuke 5

5.2 The Painter’s Algorithm

The painter's algorithm, also known as a priorilly is one of the simplest
solutions to the visibility problem. When projegia 3D scene onto a 2D plane, it is

necessary at some point to decide which polygoawiaible, and which are hidden

[71

The name "painter's algorithm” refers to a simpladad painter who paints
the distant parts of a scene at first and then rsotreem by those parts which are
closer. The painter's algorithm sorts all the pohgin a scene by their depth and
then paints them in this order. It will paint oike parts that are normally not visible
-- thus solving the visibility problem -- at the stoof having painted unnecessary

areas of distant objects [7].
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Figure 5.6 shows the simple steps of how the Pédsnddgorithm works.

Ve 0.\

Figure 5.6 : The mountains are painted first, dn@htthe meadows and

finally the trees up close are painted last. (Sevgample of the Painter’s

Algorithm) [7]

5.3 Binary Space Partitioning (BSP)

Binary space patrtitioning is a generic processeotirsively dividing a scene
into two until the partitioning satisfies one or morequirements. The specific
method of division varies depending on its finatgmse. For instance, in a BSP tree
used for collision detection, the original objeadwdd be partitioned until each part
becomes simple enough to be individually tested,ianmendering it is desirable that

each part be convex so that the painter's algorttéumbe used. [7]

It divides a scene along planes corresponding tggpoal boundaries. The
subdivision is constructed in such a way to prosadeunambiguous depth ordering
from any point in the scene when the BSP treeaigensed. The disadvantage here is
that the BSP tree is created with an expensivgppreess. This means that it is less
suitable for scenes consisting of dynamic geoméding advantage is that the data is

pre-sorted and error-free [7].
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The following figure shows an example of how Bin&pace Partitioning

works, in a simple way.

| ] 3. <4 "
< %, — "--d-q-q'h -~
T e E e ‘H\j ,u'lr N
C IL---""\'} |L B | - g 'xﬁﬁ ]I| ¢
N X gt SN 20
i I | %)
’_I,.-"'““v‘ Fet J__.:" {- B ':_\. ] | I.-"'H-. e F |I ;,—
LY ., W [ . ! .,
"'; Y R 1‘]"-\- . .;I'-h..___\_\____,.'- ___.-;I"-\-.._\____}
S S oZ i
(A
-H-\-ll @{ f""'-\."lrl"ﬁl ~ F—\-.\'.}‘m-"&.li‘-l-;-l]
(&) (B8] ¢ L M,{*E \C
: ! gf:l E ,_.1__,.{-[-_)-":2 | e
GG

Figure 5.7 : The few simple steps of Binary Spaasiffoning. [7]

As it is seen, A is the root of the tree and thizrempolygon. A is split into B
and C. Then B is split into D and E. And in the lgart D is split into G and F which

are convex and hence become leaves on the tree. [7]

5.4 Ray Tracing

Ray tracing; attempts to model the path of liglysrip a viewpoint by tracing
rays from the viewpoint into the scene. Althoughmiay not be considered as a
hidden surface removal algorithm, it implicitly ges the hidden surface removal
problem by finding the nearest surface along eaelw-vay. Effectively this is
equivalent to sorting all the geometry on a peepbasis [7].

The following figure shows an example of how raactng works.
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Scene Object

Figure 5.8 : The Ray Tracing Algorithm. [7]

5.5 The Z-Buffer Algorithm (The Depth Buffer Algori thm)

The final algorithm and the algorithm which was dise this experiment is
the Z-Buffer Algorithm. It is one of the simpleshda most easily implemented
methods for removing hidden surfaces. Though tlaeeesome limitations to this
algorithm such as large amount of memory usagetariten renders an object that
is later on neglected by an object that is rendereidh is nearer, which means that
the amount of time spent for the first object isted.

The reason this algorithm is called the Z-Buffegoaithm is because the
coordinate that represents depth value is used.

Figure 5.9 shows a frame buffer along with itstdquffer.
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Figure 5.9 : Conceptual view of the depth bufféf][

=

For every pixelp[X][y] the depth buffer stores a b-bit (that is usuatlythe
range from 12 to 30) quantitfx][y]. During the rendering process the depth buffer,
d[x][y] contains the pseudodepth (provides an adequassure for pixelp) of the
closest object encountered so far at the ppfg][y]. As the algorithm proceeds,
“tile” by “tile” (we can consider each pixel as e}, it checks and compares the
pseudodepth (z value) of the current tile with tepthd[x][y] stored in the depth
buffer. If it is less than the value stored in tepth buffer then the color of the closer
“tile” or surface replaces the color stored in pixgx][y], and the smaller
pseudodepth value replaces the old value in ththdegferd[x][y].

The faces can be drawn in any order, though asiomeat above if the
surface that is far away is drawn first then thdame that is near will be drawn on
top of it which yields into a waste of time spenttbe drawing of the far surface.

This algorithm can be used on any surface and wiarkany type of object
shape, including curved shapes, since it findsltbgest surface based on a point-by-

point (pixel-by-pixel) testing.
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Figure 5.10 shows a simple example of how the Zduklgorithm works. A

tile sample is used to visually show how eachisildrawn step by step.

0|0/0j0|0|0[0O|0 515[5[5]5]5]5] 5/5|5|5(5|5[5|0
0(0|0|0|0|0|0|0 5(5|5|5|5|5 5(5|5|5(5(5]|0|0
0[0|0|0/0j0|0|0 5/5|5|5|5 5/5|5/5(5/0|0|0
0(0|0|0|0[0|0|0| + [SI5|5]5 = |5[5]|5[5]|0/0]|0|0
0[0|0|0/0j0|0|0 5/5|5 5/5|5/0(0/0|0|0
0(0|0|0|0|0|0|0 5|5 5(5|0|0(0(0]|0|0
0(0|0|0/0|0|0|0 15| 5/0|/0|0({0[0]|0|0
0/0]0]|0|0|0O[0]0 0/0]0|0[0[0]|O|0O
5|5|5|5(5]|5[5]0 5/5|5|5|5(5[5|0
5|5|5|5(5]5/0]|0 5(5|5|5|5(5(0|0
5|5|5|5(5]0/0|0 5/5/5/5|5/0/0|0
5|5|5|5(0]0|0|0 n _ 5|5|5(0(0(0]|0
5|5/5|0({0]0|0|0 B 0|0|0|0
5|5/0|0(0]0|0|0 000
5|0/0|0]/0]|00|0 0)0
0|0|0|0[0]0O|0]0 0]0

Figure 5.10 : The Z-Buffer Algorithm [10]

As seen in the figure the arrajx][y] is initially loaded with the value “0”.
Though usually the depth buffdfx][y] is initially loaded with the value 1.0 since it
is the greatest pseudodepth value possible. Timeftauffer on the other hand is

initially loaded with the value of the backgrouralar.

Now that we have given the information about thBufer let’s find out how

we can find the pseudodepth of each pixel.

In order to compute the pseudodepth we need arfatiod. Recall that each
vertexP = (Pyx, Py, P;) of a face is sent down the graphics pipeline gmes through
various transformations. The information of eachieseafter these transformations is

the scaled and shifted version of the followingadon;
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P B aR+b
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z

(xy,2) =( )

(5.1)

The third component is the pseudodepth. The cotsstaandb are used so
that the third component equals zer® iies in the near plane and equals to orfe if
lies in the far plane.

For more efficiency the pseudodepth at each pxe&omputed along a scan

line incrementally as it is done for the color cament of each pixel.

Figure 5.11 shows a face being filled along thendoee ys. The pseudodepth

values at certain points are marked.

Figure 5.11 : Computation of pseudodepth. [10]

Let’s say the pseudodepth values at the verfgeB; andP, are known, our
aim is to calculate the pseudodepth value at g&inon the scan lings. So we have

the following;
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Pa@) = lerp(Po, Py, f) = diett

Whére (ys —Yo) / (Y1 —Yo) and (5.2)

lerp(a, b, t) =a + (b - a)*t

To find the pseudodepth value at poi on the scan lings, we use the
following;

Po() = lerp(P1, P2, h) = diignt

Whdte= (Vs —Y>) / (y1 —Y2) and (5.3)

lerp(a, b, t) =a + (b - a)*t

So in general; to find the pseudodepth valust each pixelx, y) along the

scan line we can use the following;

d( I::.x ) = lerp( dIeftv dright, k)
Wheke= (X - X5 ) / (X4 —Xp ) and (5.4)

lerga, b, t) =a+ (b - a)*t

(Not: Lerp is a quasi-acronym fdinear interpolation)

Now that we have defined the Z-Buffer, the quest®mwhy is the Z-Buffer
algorithm so popular and why is it the most commamded algorithm among the
hidden surface removal algorithms? Let's list thdvamtages of the Z-Buffer
algorithm to give us an idea of why it is used smmonly.

» Itis simple to implement in hardware.
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* It supports non-polygonal primitives.

* It does not have any limit in scene complexity.

* The depth values calculated can be saved fer lege or for other

uses.

Along with the advantages there are also some isdadges of the Z-Buffer

algorithm.

e It uses up extra memory (one storage cell foe qixel) and

bandwidth.

* It wastes time drawing objects that may turn twtbe hidden

afterwards. So it may draw the same pixel more trare.

» Certain errors that may be done with the Z giens lead to depth

aliasing.

If we should make a brief comparison of the thrégor@hms; Painter’s

Algorithm, Warnock’s Algorithm and Z-Buffer Algohim, it shall look like the

following table [6];

Painter’s Algorithm

Warnock’s Algorithm

Z-Buffer Al gorithm

- Details are tough.

- Algorithm is slow.

- Device independent.

- Semi-device dependent.

- Easy to implement.

- Not very fast.

- Device dependent.
- Easy to implement.
- Fast algorithm.

- Memory intensive.
- Algorithm of choice

for hardware.
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The reason we are not including the other two @lgmis into the table is
because the Ray Tracing algorithm is actually rests@lered as a hidden surface
removal algorithm and the Binary Space Partitiorahgprithm is not a convenient
algorithm. The three algorithms compared above tre most widely used
algorithms for hidden surface detection and removal

Another algorithm, Backface Culling, which we hatanentioned above is
another algorithm that is used for hidden surfaemaval. Even though this

algorithm is fast it is insufficient when used seillf.
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CHAPTER 6

SUPERIMPOSITION

In computer graphics, superimposition is the plaeet of an image or video
on top of an already existing image or video. Tikisisually done to add effects to
the video or image or to just conceal the origingge (such as superimposition of a
face on the original face in an image).

Figure 6.1 shows an example of 3D superimposititma video sequence. A
model of a teapot has been placed onto a cerata @ the table and on the floor.
Though determining that location is another stejcvimeed to be taken in order to

place the modeled object on that specific location.

Figure 6.1 : Superimposition of a 3D teapot mofel]

40



Superimposition can be done with 3D or 2D obje¥isu can superimpose
lines or dots to emphasize a certain region innaage as well as place an entirely
different modeled object onto another object inithage. These processes can both

be done in video sequences or images.

A common application area of superimposition igraanted reality. The
image above is an example of augmented reality.

If we shall give a brief definition of augmentedlity (AR); it combines a
virtual environment with the real world, in orderhelp people to understand the real
world more easily by providing additional informati about interesting objects in
the real environment. An AR system should be ablé1];

1. Combine real environments and computer-generateghViobjects,

2. Operate virtual objects interactively with the charn the real world,

3. Align virtual graphic objects onto real environment
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CHAPTER 7

METHODS AND ALGORITHMS

The application consists of certain steps to pertbe visualization of an
object that is being tracked in a tracking systdmough the system first goes
through certain calculations and observations @ghbject recognition and object
reconstruction. This application of the thesishie part of the system in which it
receives the data from those two methods and tedorms it’s task.

The experiment includes many inputs taken fronelodxperiments, which is

why it requires alot of data which was calculatetbbe.

7.1 Steps Followed During the Application Process

The whole application process went through a seriesteps to achieve the

goal set for starting this experiment. The stepdumhe the methods and theory

mentioned in the previous chapters. We explain teege methods were applied in

the following headlines.
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7.1.1 Receiving Image Data from Two Stereo Camera’s

Before the process started, in another applicatfonera calibration was done
using two stereo camera’s and with the use of thiggct reconstruction and object
recognition was applied to the images receivedmFtiois application the 3D edge
points and 3D corner points were found, and theaibj other features were found
and stored in a file.

In the experiment these files were used as a basieginning the process of

implementation which would lead on to the main idethe purpose of this thesis.

7.1.2 Using the Geometric Transformation Methods

The data stored in the files mentioned above warenumeric format
including the 3D edge points and corner points dimates and the calibration
information of the camera’s (intrinsic parameterd axtrinsic parameters).

Since we assumed that the third camera we welkdnigdahrough was the
same, we used the same calibration data that bedotayeither the first or second
camera to perform the geometric methods.

We applied this to still images since the datairesd was not from a video
sequence. Each view was a separate image takendifterent view points. We
considered each view point to be a view point fanfixed camera.

Figure 7.1 shows the view points used in the eviexperiment in which
the image data was received from and Figure 7.%vshbe view point used in the

basis of this experiment.
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Figure 7.2 : The point of view used in this expenn

44



As mentioned above we used the same calibratitanafdahe first two camera
view points for the third view point as well. Scetimage size was the same, the
camera’s intrinsic parameters were the same andlitertion coefficients were
considered the same.

The rotation matrix and translation vectors wersoateceived from the

calibration method of the previous experiment.

With all the data in hand we had to calculateviloeld coordinates first using
the data we had received. We used the followingagou for calculating the world

coordinates;

X2 Xw

V2 | = R2*| yw|+12 7.1)

Z2 Zw

Here the vector containinge( Y2, z) are the 3D coordinates of the edge
points received in the data file (the same proeessdone for the 3D coordinates of
the corner points as welllR; is the rotation matrix belonging to the second &&an
The vector %, Yw, Zy) are the world coordinates that is going to bewated and;
is the translation vector of the second camera.

So in this equation we have one unknown whiclhés3D world coordinates
that we need to calculate to move on to the neefi.s$o with basic arithmetic we

extracted the world coordinates as follows;
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(Let’s replace the second camera coordinate veatbr X; and the world coordinate

vector with;Xw.) By using the equation 7.1 we can have the falgw

X2 Xw

= * +
Y2 | = Re*| yw|+t2 5 X=Ro* X+t
Z2 2w

Now let’s extract the world coordinates;

Xo—t =R * Xy
(Xe—T) * Ry = Ro* Xw* Ry™
(Rz'l is the transpose of the mati&y)
(X2 —To) * Ra= Xw

(calculated using equation 7.1)

With the equation above we have calculated thew®Illd coordinates. By
finding the world coordinates or in other words trepresentation of the 3D
coordinates in the world space, we can convertdberdinates to any type of
coordinate system. Our aim was to find the 3D comatés of the points in the third
camera view point. So we used the following equeftaken by using equation 7.1)

again to find the 3D coordinates of camera three;

X3:R3*Xw+t3
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Where X3 represents the coordinate vectey, {3, z3) of camera three ang;
andt; are the rotation matrix and traslation vector eesipely of the third camera.
Though before calculating the world coordinatesriftation data received from the
previous experiment needed to be trasformed. Becafisr calibration the rotation
data was in the form of a vector, though to use the equation we first needed to
transfer the rotation vector of the third camera 8x3 rotation matrix. That way we
could calculate theX; coordinates using the above equation. The trasfethe

rotation vector to a rotation matrix was done bygs special function in OpenCV.

The implementation of this part was done by usihng dpen source library,
OpenCV. Microsoft Visual Studio 6.0 was used asglaform for implementation.

The programming language used for the implemematiadhe code was C.

7.1.3 Performing Perspective Projection

After calculating the 3D coordinates it was timeut® perspective projection
to project the points calculated onto the imagéestd whether the points have been
transformed correctly according to the third cameesv point.

The 3D point coordinates were read from an ingatdnd then given to a
special function used in OpenCV. The function reeeithe object points, the
translation and rotation vectors of the coordingystem belonging to the third
camera and the third camera’s intrinsic parametadsdistortion coefficients. As a

result it gives us the matrix of image points oa #D image plane.
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In order to test whther the projection of the p®iwas done right, dots were
drawn on the image where the projected points lgeldnAt first by giving the
rotation and translation vectors the projected fsothd not align with the points in

which they should have. This is shown in figure. 7.3

Figure 7.3 : Erroneous Projection

As it is faintly seen in the image above only do¢ was drawn on an axis of
the image yet the other points are no where toobed. From this solution it was
understood that the function used in this methaddlated and rotated the already
translated and rotated points. In fact the poimtahich were given as an input were

already rotated and translated according to tHeviahg equation;

3 ARy * Xy +13 (see equation 7.1)

48



After realizing the reason for the erroneous oytjnstead of giving the
rotation and translation vectors as inputs zeraorecwere given, along with the
other parameters mentioned above, so that thespwiotild be projected directly
without an change. And with having done this thégpatiimage turned out to look
like the image predicted at the beginning. Theltexfithe projection of the 3D edge

point coordinates are shown in figure 7.4.

Figure 7.4 : Projection of the 3D edge point cooadies.

The same method was used to project and draw thec@er point

coordinates as well. That application is showniguFe 7.5.

It is seen in both of the figures that the projdotelge point coordinates and
corner point coordinates all overlap on the pointsvhich they were suppose to.
This shows that the geometric methods used wereataand the calculationns done

were correct as well.
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Figure 7.5 : Projection of the 3D corner point acboates.

7.1.4 3D Visualization (3D Data Visualization)

In the process of 3D Visualization the open sogreghics library, OpenGL,
was used.

As an input the calculated 3D edge point coordimatere used. The aim was
to draw the coordinates in the 3D format, in orevisualize the 3D edge points in a
discrete environment. For this method a functionhi@a OpenGL library was used.
Though due to the lack of surface point coordinates other types of features such
as lighting effects and texture we needed to us¢han mesh file in order to test the
algorithm. The output of this test will be explainand shown in section 7.1.5
Performing the Z-Buffer (Depth Buffer) Algorithm.

The following figure shows the output of the viszation of the 3D edge

point coordinates of the third point of view.
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Cam3 Object Coordinates

Figure 7.6 : 3D Visualization of 3D edge point adioates.

As it is seen in the image, there is something giorthe way that the points
have been drawn. The image above does not looklegxike the original image.
The reason for this is the way that the points Haeen projected to the 2D screen.
The function used actually projects the pointsagtinally, meaning directly without
giving any perspective. The perspective comes fthen points itself. The edges
which are blue are the ones that are far away tladreen edges are the edges that
are closer to the viewer.

This image is not enough though. As an input theust also be texture or
surface information (for example 3D surface poiobrcinates) at least in order to
perform the next task. These informations are weckfrom object recognition.

From that method we will receive a mesh file inahgdevery data, such as
vertices, faces, and normals of the faces or \extiBy using these data’s we form a

3D triangular mesh of the object being tracked.
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7.1.5 Performing the Z-Buffer (Depth Buffer) Algorithm

The Z-Buffer algorithm was applied to another ddéato test the algorithm.
Since the data file calculated did not include sbhgface data. In order to perfom the
Z-Buffer algorithm the data that will be drawn nedd include 3D point coordinates
of the surface of the object as well, otherwiseubing only edge point coordinates,
the elimination of the hidden parts can not be deoviéch means that the Z-Buffer
algorithm will not work properly.

As mentioned before the Z-Buffer algorithm elimegthe hidden surfaces,
meaning it only shows what is suppose to be seethembjects that remain behind
of other objects.

By using the sample test data to test the Z-Budfgorithm it was seen that it
worked. The test data file included the vertex’stloé polygonal surfaces in the
image and the point coordinates of the surfacegh Whis data the following

algorithm was used in order to apply the hiddefiesgrmethod,;

For each polygon P
For each pixel (x, y) in P
Compute z_depth at x, y
If z_depth < z_buffer (x, y) then
set_pixel (X, y, color)

z_buffer (x, y) = z_depth

The algorithm shown above is done during the Vigaton period of the
program. Since the Z-Buffer algorithm works in sdare format it checks th&

value of the pixel and then draws it on the screen.
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The Z-Buffer defined was first initialized to 1.6ince 1.0 is the largest
value stated for the Z-Buffer, because the rangdetbuffer was taken from 0.0 to
1.0. So theZ values in which we are dealing with are actudfly. By doing this it
helped us to linearly interpolate tlevalues along the polygon edges. This also
means thaZ (Z%) has been inverted, so points that are far awalyhaive small
numbers, and points that are close to the viewdr haive larger numbers. The
calculation was implemented as follows; as the 2lhgs were projected onto the
screen, th&/Z value at thax, y point was stored.

This continued on until every polygonal edge wesah onto the image
screen. The surfaces and edges that were in tikedhoiot appear. So the Z-Buffer
algorithm worked successfully. Instead of having ire frame, transparent view,
as shown before in the visualization of the edgmtpave have a non-transparent
though again wire frame view due to the data. Ifimgude the texture as well then
we will have a complete solid model view of the ieowment and object.

Normally the data file will contain the surfaceiqtodata along with the
edge data, of the scene in which we are viewingwel. These data’s will be
received from the results of object recognition aedmentation (accomplished in

other experiments).

Though in order to test the algorithm that hadnbeetten another sample
mesh file was used. This mesh file was compilechqushe Z-Buffer algorithm,
which is why this example is being explained irstpart of the thesis; to show how
the algorithm worked as a whole. Since a propeualization can not be done

without the use of the Z-Buffer algorithm.
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Our example mesh file was the simple Barn examples example is
usually used in Computer Graphics text books.

The following figure shows how the file lookedédik

a7

ooo 100 110 00.51.5 010
oo1 101 111 10.51.5 011
-1 00 0 -0.70710%7 0.70710%Y 0O O0.707107 0.707107
100 0-10 010 00-1

4 059 4 o1z 3

4 3 493 o1z 3

4 Z 387 o1z 3

4 12 7 a o1z 3

4 0165 o1z 3

5 587389 o1z 3 4

5 043 21 o1z 3 4

Figure 7.7: Barn Mesh File

The format of the file was like the following; Tinembers at the beginning
of the file indicate the number of vertices, thentner of normals and number of
faces in the mesh. Each vertex is listed belowd ®llowing it are the normals to
those vertices. Next, each face is listed contgitine number of vertices in the face,
the vertex list and the normal list for the versice

By using this very simple file we managed to test algorithm and we
obtained the solution seen in figure 7.8. The smhutloes not only contain the edges

and vertices it also contains the shading and ligbtmation as well.
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Barn Example

Figure 7.8: Visualization of the Barn Example.

As it is seen in the figure the part of the bdrat remains in the back is not
seen, this shows us that the Z-Buffer algorithm heasked. Our visualization

algorithm has worked also.

7.1.6 Simple Superimposition

After having modeled the object our intentions waspply a very simple
superimposition method to locate the whereaboutghef object, since we are
considering of tracking a certain object in a 3isnment. Though since we did

not have enough feature points to define the obmeath as we mentioned in the
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previous sections, we only considered about drawiogcle or rectangle that shows
us the objects whereabouts.

If we can consider the boxes in the following tiigures;

Figure 7.10: Point of view of second camera.

As it is seen in the figures the boxes are visifileese were the point of
views from the two cameras’ we had taken data frionour case we can not see the
box, it is somewhere behind the computer.

The following figure shows us the point of viewtbg third camera in which

we used to apply the algorithms.
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Figure 7.11: Point of view of the third camera.

The red rectangle was superimposed to show us d@pmtey where the
boxes in the figure may be.

Superimposition was used in this way. A more adedncuse of

superimposition would be to superimpose a virtiaIn3odel of the object which we

explain in the next chapter.

7.2 Experimental Results

As a result the algorithms used for this part @f slystem all worked though
were tested with different testing data due toléo# of data belonging to the same
system.

If the data used in the object tracking experitraerd the object recognition

and reconstruction experiments were all the samgpkeadata it would have been
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better to show how the system would’'ve worked ashale. Though we only got to
test the algorithms using different testing dat&jcl led to different views and
solutions. But the algorithms can work on any tgbelata received as long as the
data is in the suitable format.

This experiment requires various inputs receivexinf other experiments.

Which makes it difficult to achieve if the systesmiot well set.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

As a conclusion of this thesis we managed to gneeviewer from the third
camera an idea of where the object, in which tis¢éesy it was being tracked, is.

The results are not precise since we have not umeyg statistical
computations, but the results still give us an idethe whereabouts of the object do
to the visalization done. The program has a rdgincon the input data given to
pursue the process. The data needs to be the 3Dquardinates of the vertices and
edges of the object along with the 3D point coaaiths of the polygonal surfaces that
were calculated using the segmentation method athan experiment. With these
data’s the program will work. In order to expane hrogram, so it can work for
texture data and other details certain additionstrhe made to the algorithm.

As mentioned above the program provides a viewhefdbject in the third
camera. This object may be behind an obstacle whea® no be seen at all or it can
remain behind another object but can be partly, saeaning a certain portion of the
object can no be viewed. Even in these two casepritgram is capable of telling us

the whereabouts of the object.
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Since we tend to use this program in a an objacking system, the amount
of data given as an input to the program will béeglarge. The processing of this
data will slow down the run time of the system. Tkeason for the data being so
large is because of the amount of detail that melladded for the determination and
modeling of the object. In our case we only havec8iher and edge coordinates and
3D surface coordinates, though in the more compéese we will have texture data,
distance data and intensity data. These data’sheifii us render the object in a more
realistic way. Though with this data the Z-Buffégaithm will work much slower
since it already has a tendancy of working slow tluehe amount it spend on
drawing points that may be eliminated later on.

To reduce the amount of time spent optimization banapplied to the
calculations. For example not all data may be u®edcertain processes in the
program, such as the Z-Buffer algorithm, since amefdata is sufficient for the Z-

Buffer algorithm to work.

As future work this thesis can be developed insystem that shows us a 3D
virtual model of the object superimposed on thé obgect itself during the tracking
process. The third camera or other camera’s canttieus the exact location of the
object along with it's features. This way the caaetll act sort of like a human eye
focusing only on one object.

In order for this to take place a 3D model of th®eot must be rendered
using a graphics library. The model does not nedaketperfectly rendered, meaning
that it is not necessary for the object to looklistia, as long as the features are
clearly pointed out. Later on this 3D model cansbhperimposed onto the original

view of the object in the viewing screen of theedhtamera. The 3D model can be

60



obaque or transparent depending on the level afldetwhich the object wants to be
tracked. By purusing such an application the ohjeethich we intend to track will
not be lost by the tracking system. Each cametaenenvironment, will be able to
show the exact location of the object along with fiéatures. So as long as the object
moves around in the boundaries of the trackingesyswe will not lose sight if it.
The camera’s used in the system may be fixed @atabke. They will be sending
each other the data they calculate once one of lbees sight of the object, the other
one will continue on with tracking the object urkibt one has lost sight as well. This
process will continue on until the object is totdtst.

Though this application has certain problems. Siweewant to track the
object in full detail the rendering process wilkéaup most of the run-time of the
program. So until the object is superimposed os dfiginal view it may have
already moved to another location or even haveheftracking systems boundaries,
which will give us false information of the locaticof the object. Another time
consuming process will be the transfer of suchdangount of data from one camera
to the other. This will effect the system in a negaway since the tracking system
will be working in real-time. So as the processetimf calculation and drawing
increases the system will be far away from beconaimgal-time application. These
problems can be over come with certain optimizatiand better hardware, though

further studies are also required.
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