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ABSTRACT 
 
 
 

SCHEDULING IN A THREE-STAGE DEDICATED HYBRID FLOWSHOP 

WITH A COMMON THIRD-STAGE 

 
SOYSAL, Serdar 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Ferda Can ÇETİNKAYA 

 
September 2008, 118 pages 

 
 
In this study, we consider a scheduling problem of a manufacturing environment 

in which there are two manufacturing flow lines, where the third stage of the first 

line and the second stage of the second line are common. Each stage in the first 

flow line has a single machine whereas the second flow line contains two identical 

parallel machines in its first stage. Type-1 jobs are processed in the first flow line, 

whereas second flow line is dedicated to type-2 jobs. The last operation, of both 

types of jobs, must be processed on a common machine. The problem is to 

determine the sequence and schedule of all jobs at all stages of the two flow lines 

so that the makespan is minimized. We develop a mathematical model and a 

branch-and-bound algorithm with lower and upper bounding procedures to find 

optimal solution; we propose heuristic algorithms which provide good quality 

solutions at little computational effort when the computational effort to obtain an 

exact solution is prohibitive. The effectiveness of our solution approaches are 

demonstrated by computational analyses.  

 

Keywords: Hybrid Flowshop Scheduling, Dedicated Machine, Mathematical 

Model, Branch-and-bound Algorithm. 
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ÖZ 
 
 
 

ÜÇÜNCÜ AŞAMASI ORTAK ÜÇ AŞAMALI TAHSİSLİ KARMA AKIŞ TİPİ 

BİR ATÖLYEDE ÇİZELGELEME 

 
SOYSAL, Serdar 

Yüksek lisans, Endüstri Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Yrd.Doç. Dr. Ferda Can ÇETİNKAYA 
 

Eylül 2008, 118 sayfa 
 
 
Bu çalışmada, birincisinin üçüncü aşaması ile ikincisinin ikinci aşaması ortak olan 

iki imalat hattını barındıran bir imalat ortamının çizelgelenmesi problemi ele 

alınmıştır. Birinci imalat hattının her aşamasında tek makine mevcut iken, ikinci 

imalat hattının ilk aşamasında iki tane özdeş parallel makine yer almaktadır. 

Birinci tür işler ilk imalat hattında işlenirken ikinci imalat hattı ikinci tip işlere 

tahsis edilmiştir. Her iki tür işin son operasyonu ortak makinada işlenmek 

durumundadır. Problemimiz, bütün işlerin iki imalat hattının tüm aşamalarındaki 

sıra ve çizelgelerini belirlemek ve böylelikle başlangıç ve bitiş arasında geçen 

süreyi en aza indirmektir. Problemin optimal çözümünü bulmak için bir 

matematiksel model ile alt ve üst sınır işlemleriyle birlikle bir dal-sınır algoritması 

geliştirilmiştir; kesin çözümün elde edilemediği durumlarda, makul bir hesaplama 

uğraşıyla iyi çözümler sağlamak üzere sezgisel algoritmalar önerilmiştir. Çözüm 

yaklaşımlarımızın etkinliği sayısal analizlerle ispat edilmiştir. 

 

Anahtar Kelimeler: Karma Akış Tipi Atölye Çizelgelemesi, Tahsisli Makine, 

Matematiksel Model, Dal-Sınır Algoritması.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Scheduling is defined as the allocation of limited resources over time to perform a 

set of tasks. The resources and tasks may take many different forms. Machines, 

money, energy, processing units may represent resources, and operations of a 

process or part of a program may be considered as tasks. 

 

In both manufacturing and service sectors, competition is getting harder. Time is a 

big pressure in such a market on the producers; customers have no tolerance for 

long lead times and products come out of fashion quickly. Because of that, 

efficient scheduling and sequencing have gained increasing importance in the 

enhancement of the productivity, utilization of the scarce resources, and 

profitability of the production lines. For high level performance, some production 

lines need special configuration and layout to process operations. For example, 

slower or overloaded manufacturing resources are duplicated in order to prevent 

any bottleneck or obstacle, hence balance the speed of production for all 

manufacturing stages as is in hybrid flowshop systems.  

 

Hybrid flowshops are encountered in today’s manufacturing environments quite 

often. It is a generalization of the flowshop and parallel machine environments, 

since it is a combination of these two systems where at least one stage of the 

hybrid flowshop environments contains more than one machine. Some examples 

of hybrid flowshop organizations from pharmaceutical industry and from 

semiconductor manufacturing industry are given in Artiba (1994) and in 
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Herrmann and Lee (1992), respectively. Besides, these organizations fit very well 

to glass container and glass manufacturing industries (He et al. (1996), Mei 

(1996), Paul (1979)), chemistry industry (Artiba and Riane (1998)), and cable 

manufacturing industry (Narasimhan and Panwalkar (1984)). 

 

Many optimality criteria, like maximum lateness, total completion time, number 

of tardy jobs, total weighted tardiness are used as a measure of the performance in 

scheduling literature. The minimization of the makespan, which is the maximum 

completion time, is the most common one. Minimum makespan implies high 

utilization of the resources, gives room to early arrivals and early satisfaction of 

customer demand (Riane et al. (1998)). 

 

Our study is concerned with scheduling two types of jobs on the three-stage 

dedicated flow lines where the third stage of the first line and the second stage of 

the second line are common. Each stage in the first flow line has a single machine 

whereas the second flow line contains two identical parallel machines in the first 

stage. Our aim is to minimize the maximum completion time of the jobs which is 

called as makespan.  

 

We propose two heuristic algorithms for this NP-hard problem. Besides, we 

formulate the problem as a mixed integer program and develop a branch-and-

bound algorithm with its lower and upper bounding procedures. 

 

This thesis contains seven chapters that are organized as follows: In Chapter 2, we 

describe our problem and give its mathematical representation. In Chapter 3, we 

survey the related literature. The studies in the literature are classified according 

to the machine environment, as flowshop environment, identical parallel machine 

environment, hybrid flowshop environment with identical parallel machines and 
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hybrid flowshop environment with dedicated machines. All these machine 

environments are reviewed for makespan objective. In Chapter 4, we present our 

branch-and-bound algorithm for the reversed problem. This algorithm gives us the 

exact solution. In Chapter 5, we propose two heuristic procedures based on the six 

different sequencing rules and a branch-and-bound based algorithm to be able to 

get a satisfactory; hopefully near optimal solution to our problem. Moreover, we 

discuss lower bounding procedures that are developed to evaluate the efficiency of 

the proposed heuristics. The sequencing rules are especially based on the well-

known algorithm of Johnson (1954). Also, list scheduling procedures like Longest 

Processing Time (LPT) and Shortest Processing Time (SPT) are utilized in these 

heuristics. In Chapter 6, we discuss the results of our computational experiments 

to highlight the performance of our proposed heuristic, bounding procedures and 

the branch-and-bound algorithm. Finally, in Chapter 7, the study ends with some 

concluding remarks, together with some areas for future research. 
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CHAPTER 2 
 
 

THREE-STAGE DEDICATED HYBRID FLOWSHOP WITH A 

COMMON THIRD-STAGE 
 
 
 

In this chapter, we first define our problem together with its assumptions, and then 

present the associated mathematical model.  

 

2.1 Problem Definition  

 

The scheduling problem considered in this study can be stated as follows: 

Consider a manufacturing environment in which there are two flow lines having 

two and three stages. The third stage of the first line and the second stage of the 

second line are common. Each stage in the first flow line has a single machine 

whereas the second flow line contains two identical parallel machines in the first 

stage. There are two sets of 1 2n n n= +  jobs, which are 1 1{1,2,..., }J n=  

and 2 1 1 1 2{ 1, 2,..., }J n n n n= + + + , where 1 2J J J= ∪ , and 1n  and 2n  are the 

number of type-1 and type-2 jobs, respectively. All jobs are simultaneously 

available at time zero, and each type-1 job has three operations, 1
jO , 2

jO , and 3
jO , 

with positive processing times ,1jp , ,2jp , and ,3jp ; each type-2 job has two 

operations, 1
jO  and 3

jO , with positive processing times ,1jp  and ,3jp . The first and 

second operations of type-1 jobs must be processed at the first two stages of the 

first flow line, and the first operation of type-2 jobs must be processed by one of 

the identical machines at the first stage of the second flow line. The last operation, 

of all type-1 and type-2 jobs, must be processed on a common machine, which is 
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utilized by the first and second flow lines at their last stage. Each machine at any 

stage of any flow line can handle no more than one job at a time. Also, each job 

can be processed by at most one machine at a time. Furthermore, we assume that 

preemption is not allowed; i.e., any operation once started must be completed 

without interruption. The problem, in such manufacturing environment, is to 

determine the sequence and schedule of all jobs at all stages of the two flow lines 

so that the makespan maxC , which is the completion time of the job processed in 

the last position at the third stage, is minimized. 

 

Scheduling problems can be denoted by a three-field notation | |α β γ , where α  

specifies the machine environment, β  signifies the job and machine 

characteristics, and γ  denotes the objectives to be optimized. Following the 

standard three-field notation, we denote our problem of minimizing the makespan 

for a three-stage dedicated hybrid flowshop with a common third-stage by 

1 2 3 max3 | 3, 1, 1, 2 |F k k k T C= = = = , where ki denotes number of machines at stage 

i and T denotes the number of job types, as illustrated by Figure 2.1. 
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Figure 2.1: A Three-stage Dedicated Hybrid Flowshop with a Common Third-stage Machine 

( = = = =1 2 33 | 3, 1, 1, 2F k k k T ) 

 
 
 
As an example of a practical application of this proposed model, consider the 

potato chips and pop corn production in the same workshop. In such 

environments, there are mainly two types of product families, which are potato 

products and corn products. Two separate flow lines are dedicated for each 

product family. Each product in a potato products family is processed at the first 

two stages of its associated flow line, where peeling and frying operations are 

performed, whereas each product in a corn products family is processed by one of 

the two identical machines at the first stage of its associated flow line, where 

frying operation is performed, and then the products are packed in bags at the last 

stage. Another application occurs in a manufacturing environment in which initial 

operations of two different product families are processed at two separate flow 

lines but each product family must go through a final quality control operation, 

which is to be carried out on a common testing machine. 
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In this thesis, we extend the work of Oğuz et al. (1997). They studied a similar 

problem for the two-stage flow lines, where each stage consists of one machine 

only, and proved that the two-stage flow line problem belongs to the class of NP-

hard problems. For this reason, they proposed a heuristic algorithm and analyzed 

its worst-case error bound. They also derived a global lower bound to 

computationally test the performance of their proposed heuristic.  

 

Observe that when all operations 3
jO  have zero processing time, the problem 

reduces to two separate problems: a classical two-stage flowshop problem which 

can be solved in ( log )O n n  time using the well-known algorithm of Johnson 

(1954) and a parallel machine problem with two identical machines which is 

proved to be NP-hard by Karp (1972). When operations 1
jO  and 3

jO  have zero 

processing time for type-2 jobs, then the resulting problem is one of scheduling 1n  

jobs on three-stage flowshop to minimize the makespan, which is known to be 

NP-hard by Garey et al. (1976). Further, when operations 2
jO  have zero 

processing time for type-1 jobs, and one of the identical parallel machines at the 

second flow line is removed, the problem reduces to the dedicated two-stage 

flowshop scheduling with a common second-stage machine, which was proved to 

be strongly NP-hard by Oğuz et al. (1997). Thus, our problem is also strongly NP-

hard. 

 

2.2 Mathematical Model 

 

The problem addressed in this research can also be expressed as a scheduling 

problem for a four-stage hybrid flowshop where the first two stages are for the 

first flow line, third stage is for the parallel machines of the second flow line and 

the fourth stage is the common stage. In this case, note that the processing times 
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of type-1 jobs in the third stage and the processing times of type-2 jobs in the first 

two stages are all zero. The sequence of jobs on the machines and the completion 

time of the jobs at each stage define the decision variables. The indices, 

parameters and decision variables are as follows: 

 

Indices 

,i r  : index for jobs ( 1 1 1 2, 1,..., , 1,...,i r n n n n= + + ) 

j  : index for stages ( 4,..,1=j ) 

 

Parameters 

jip ,  : processing time of job i  at stage j  

M  : a very large positive number 

 

Decision Variables 

jiC ,  : completion time of job i  at stage j  

maxC : maximum completion time (makespan) 

iY  = 
1, if job  on stage 3 is asigned to machine 1
0, otherwise

i⎧
⎨
⎩

 

jriX ,,  = 
1, if job  precedes job  on stage  
0, otherwise

i r j⎧
⎨
⎩

 

 

iY  and jriX ,,  are binary variables. The rest of the variables are continuous that 

take integer values when the processing times are given as integers. 
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Given the above-defined variables and parameters, the scheduling problem of the 

three-stage dedicated hybrid flowshop with a common third stage can be 

formulated as follows: 

Minimize  maxC  

 

Subject to 

 

(1) Makespan cannot be smaller than the completion time of any job at the 

common stage. 

 

max ,4iC C≥       for 21,...,1 nni +=    (2.1) 

 

(2) Completion time of any type-1 job at stages 1, 2 and 3 cannot be less than its 

completion time at the previous stage. 

 

, , 1 ,i j i j i jC C p−≥ +      for 1,...,1 ni = ; 

            1, 2,3j =     (2.2) 

 

(3) Completion time of any type-2 job at parallel machine environment must be 

greater than or equal to the processing time of it in the same stage. 

 

,3 ,3i iC p≥       for 211 ,...,1 nnni ++=   (2.3) 

 

(4) Completion time of any job before the common stage cannot be less than its 

completion time at the previous stage. 

 

,4 ,3 ,4i i iC C p≥ +      for 21,...,1 nni +=    (2.4) 
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(5) It is necessary to have non-interference for every pair of jobs i  and r , either i  

precedes r  or the other way around. Hence, the difference between the processing 

times of any two jobs at any stage must be such that they do not overlap.  

 

, , , , , i r j i j r j i jM X C C p+ − ≥     for 1,...,1 ni = ;  

            1, 2j = ; 

            1,...,1 nr = ;  

            i r<     (2.5) 

 

, , , , , (1 )i r j r j i j r jM X C C p− + − ≥    for 1,...,1 ni = ; 

            1, 2j = ; 

            1,...,1 nr = ; 

            i r<     (2.6) 
 

( ), ,3 ,3 ,3 ,32 i r i r i r iM Y Y X C C p− − + + − ≥   for 211 ,...,1 nnni ++= ; 

          211 ,...,1 nnnr ++= ; 

          i r<            (2.7) 

 

( ), ,3 ,3 ,3 ,3i r i r i r iM Y Y X C C p+ + + − ≥    for 211 ,...,1 nnni ++= ; 

          211 ,...,1 nnnr ++= ; 

          i r<            (2.8) 

 

( ), ,3 ,3 ,3 ,33 r i i r r i rM Y Y X C C p− − − + − ≥   for 211 ,...,1 nnni ++= ; 

          211 ,...,1 nnnr ++= ; 

          i r<            (2.9) 
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( ), ,3 ,3 ,3 ,31 r i i r r i rM Y Y X C C p+ + − + − ≥   for 211 ,...,1 nnni ++= ; 

          211 ,...,1 nnnr ++= ; 

          i r<            (2.10) 

 

, ,4 ,4 ,4 ,4 i r i r iM X C C p+ − ≥    for 21,...,1 nni += ; 

            21,...,1 nnr += ;  

            i r<         (2.11) 

 

, ,4 ,4 ,4 ,4 (1 )i r r i rM X C C p− + − ≥    for 21,...,1 nni += ;  

            21,...,1 nnr += ;  

            i r<      (2.12) 

 

(6) Constraint sets (2.13) and (2.14) enforce the integrality for iY  and jriX ,, . 

 

{ }0,1iY ∈        for 211 ,...,1 nnni ++=   (2.13) 

 

{ }1,0,, ∈jriX       for 21,...,1 nni += ;  

            21,...,1 nnr += ;  

            4,..,1=j      
            i r<     (2.14) 

 

(7) Completion time of any job at any stage cannot be negative. 

 

0, ≥jiC        for 21,...,1 nni += ;  

            4,..,1=j     (2.15) 
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The proposed heuristic algorithm in Section 5.1 can be used to derive an upper 

bound for the makespan. Instead of assuming the initial upper bound of infinity, 

the makespan value obtained from the heuristic algorithms can used as an upper 

bound. Moreover, the global lower bound value in Section 5.3 can also be utilized 

as a lower bound. Thus, the following constraint can be added to the above model,  

 

max UBLB C ≤≤           (2.16)  

where ( ){ }maxmin Rule ;UB C k=  { },...k A F∈  and { }
1,...,4

max .i
i

LB LB
=

=  

 

Number of constraints, binary variables, and continuous variables in our 

mathematical model can be computed as follows: 

 

Constraints 

 

n    constraints from equation (2.1) where 1 2= +n n n  

13n    constraints from equation (2.2) 

2n    constraints from equation (2.3) 

n    constraints from equation (2.4) 

( )( )1 11
2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
×

n n
 constraints from equation (2.5) 

( )( )1 11
2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
×

n n
 constraints from equation (2.6) 

( )( )2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.7) 

( )( )2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.8) 
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( )( )2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.9) 

( )( )2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.10) 

( )( )1
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.11) 

( )( )1
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n   constraints from equation (2.12) 

2n    constraints from equation (2.13) 

( )( )1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
×

n n  constraints from equation (2.14) 

4n    constraints from equation (2.15) 

1   constraint from equation (2.16) 

 

Number of constraints = ( ) ( ) ( )( )1 1 1 2 2 26 3 1 3 2 1 2 1 1+ − + + − + + − +n n n n n n n n n  

    = 2 2 2
1 2 13 2 2 3 1n n n n n+ + + + +  

 

Binary Variables 

 

2n    binary variables from iY  

( )( )1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n   binary variables from jriX ,,  

 

Number of binary variables = ( )2 2 1+ −n n n  
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Continuous Variables 

 

4n    continuous variables from jiC ,  

( )( )1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n   continuous variables from maxC  

 

Number of continuous variables = ( )4 2 1+ −n n n  = 22 2n n+  
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CHAPTER 3 
 
 

LITERATURE REVIEW 
 
 
 

Hybrid flowshop systems are encountered in today’s manufacturing environment 

quite often. Having a wide area of applicability reveals the importance of the 

system and researchers have directed their studies on the hybrid flowshop 

scheduling problems. Hybrid flowshop environment is closely related with 

flowshop and parallel machine environments, since it is a skillful combination of 

these two items in such a manner that at least one stage of the hybrid flowshop 

environments contains more than one machine.  

 

We survey the related literature according to the machine environment, as 

flowshop environment, identical parallel machine environment, hybrid flowshop 

environment with identical parallel machines and dedicated machine hybrid 

flowshop environment. All these machine environments are reviewed according to 

the objective function makespan. 

 

3.1 Flowshop Scheduling Problem 

 

“In the flowshop scheduling problem, we are given machines M1, M2,…, Mm, 

where m ≥ 2 and a set N = {1, 2,…, n} of jobs. Each job has to be processed first 

on M1, then on M2, and so on, until it is processed on the last machine Mm” (Chen 

et al. (1996)).  
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3.1.1 Two-Machine Problem 

 

The optimal solution for the makespan problem in the two-machine flowshop is 

presented in S. M. Johnson’s (1954) famous paper, which is the pioneer work on 

these problems. In this paper, Johnson proposes the following optimizing 

algorithm. 

 

Johnson’s Algorithm (1) 

 

Step 1: Find the minimum processing time among unscheduled jobs. 

Step 2: If the minimum in Step 1 occurs on machine 1, place the associated 

job in the first available position in sequence (Ties may be broken 

arbitrarily), and go to Step 3; otherwise, place the associated job in 

the last available position in sequence (Ties may be broken 

arbitrarily).  

Step 3: Remove the assigned job from the list of unscheduled jobs and 

return to Step 1 until all sequence positions are filled. 

 

An alternative statement of this algorithm is provided by using a different 

perspective (Baker (1995), pp. 8.7-8.8). 

 

Johnson’s Algorithm (2) 

 

Step 1: Partition the jobs into two sets, according to whether the first 

operation is shorter or longer than the second operation. In case of 

tie, the job can be placed into any set arbitrarily. 

Step 2: Sequence the jobs with shorter first operations in nondecreasing 

order of their processing time on machine 1, and sequence the jobs 
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with longer first operations in nonincreasing order of their 

processing time on machine 2. 

Step 3: Arrange the two sequences in tandem to produce a full sequence for 

the solution. 

 

3.1.2 Multi-Machine Problem 

 

Johnson’s Algorithm cannot be generalized for flowshops with more than two 

machines. However, there are some special polynomially solvable cases for 

flowshops with three machines. Burns and Rooker (1976, 1978) and Szwarc 

(1977) discuss these special cases. Smits and Baker (1981) design experiments to 

test these special cases on sample problems. They present special conditions that 

optimal solutions to three-machine flowshop problem can be found by a 

polynomial algorithm. Garey et al. (1976) study the same problem. They show 

that the 3 maxF C  problem is NP-hard in strong sense. 

 

Several optimizing algorithms have been proposed for scheduling problems with n 

jobs on m machines in a flowshop environment to minimize the makespan. In 

these algorithms, numerous assumptions are made. Dudek and Teuton (1964) 

provide all these assumptions as follows: 

A. Assumptions regarding machines: 

1. No machine may process more than one job at any given time and each 

job, once started, must be processed to completion. 

2. A known, finite time, is required to perform each operation and the 

time intervals for processing are independent of the order in which the 

operations are performed. 

B. Assumptions regarding jobs: 
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1. All jobs are known and are completely organized for processing before 

the period under consideration begins. 

2. All jobs are considered equal in importance, i.e., there are no due 

dates. 

3. Jobs are processed by the machines as soon as possible and in a 

common order. 

C. Other: 

1. The time required to transport jobs between machines may be 

considered negligible or as a part of the processing time on the 

preceding machine. 

2. In-process inventory is allowable. 

 

Palmer (1965) studies the maxmF C  problem and proposes a heuristic algorithm 

which is called as the slope order heuristic. The heuristic is based on the idea that 

give precedence to the jobs having the strongest tendency to progress from short 

times to long times in the sequence of processes. Campbell et al. (1970) show that 

optimal or near-optimal solutions can be produced to the maxmF C  problem by 

using the heuristic algorithm CDS. The algorithm constructs 1m −  artificial two-

machine problems from the original m-machine problem. Then, these artificial 

problems are solved by using Johnson’s two-machine algorithm, and the best 

solution among them becomes the solution to the original problem. The authors 

compare their algorithm with Palmer’s slope order heuristic by solving many 

problem instances. Their computational experiments show that computation time 

of Palmer’s heuristic is less than the computation time of CDS. However, CDS is 

superior to the slope order heuristic in point of producing solutions with less 

average error percentage. Page (1961) studies the same problem. He proposes four 

heuristics which are mainly based on the sorting techniques. Two of these 

heuristics, individual exchange heuristic and group exchange heuristic, are 
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improvement procedures. They attempt to find better solutions by using initial 

solutions. The other ones, merging and pairing heuristics, generate initial 

solutions. Computational experiments show the efficiency of these heuristic 

algorithms. Gupta (1971) develops a heuristic algorithm, functional heuristic 

algorithm, as an extension of Page’s analogy of scheduling and sorting. His 

heuristic is capable to solve problems optimal or near optimal. Many experiments 

are conducted to compare the performance of the proposed heuristic with Palmer’s 

slope order heuristic. The algorithms are compared in point of the two criteria. 

One of them is algorithms’ effectiveness in finding better solution and the other 

one is computational times required to obtain the solution. Solutions obtained by 

this algorithm are better than the Palmer’ slope order heuristic.  

 

Dannenbring (1977) studies the same problem and explores neighborhood search 

techniques. He proposes three new heuristics which are rapid access procedure 

(RA), rapid access with close order search (RACS), and rapid access with 

extensive search (RAES). RA generates a good starting solution quickly and 

easily; RACS and RAES take this solution as initial and attempt to find better 

solutions. His computational experiments show the efficiency of his algorithms. 

Nawaz et al. (1983) propose a heuristic, NEH heuristic, based on the idea that jobs 

with more processing time on all the machines should be given priority and 

scheduled earlier than the ones with less total processing time on all the machines. 

Initially, first two jobs are scheduled in order to minimize makespan; then other 

jobs are inserted in the partial schedule one by one to find the best schedule at 

every step. And, finally a complete schedule is obtained. Computational 

experiments show that the NEH heuristic is capable to solve problems optimal or 

near optimal. Framinan et al. (2003) modify the NEH heuristic by using different 

initial orders based on the approaches in the literature. Jobs are not only sorted 

according to the sum of processing time; also sum of absolute differences of a 
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job’s processing time on every single machine with other jobs, or sum of absolute 

residuals (Stinson and Smith (1982)), etc are used to sort them. Among these 

results, the one with the smallest value is accepted as the solution of the proposed 

heuristic. Their computational studies show that for the makespan minimization 

problem original NEH heuristic is the best solution, but for different objective 

functions, better solutions are obtained with different initial orders. Koulamas 

(1998) proposes the HFC heuristic for the same problem. His heuristic is based on 

the Johnson’s algorithm and has two phases. In the first part, a sequence is 

produced by extensive use of Johnson’s algorithm; while in the second part, this 

sequence is used as an input and by allowing non-permutation schedules an 

improvement is expected. Suliman (2000) proposes a two-phase heuristic for the 

problem. In the first phase of the heuristic, well-known heuristics like CDS, 

Palmer’s slope index, RA, are used to generate initial job sequence, and in the 

second phase, this initial sequence is improved by using a pair exchange 

mechanism. The performance of the heuristic is compared with the other heuristic 

in the literature, and computational experiments express the efficiency of the 

heuristic. 

 

Taillard (1990) applies tabu search technique to the same problem. He addresses 

that good solutions are found for the randomly generated instances by using this 

technique; however, it needs great calculation times. Computational experiments 

demonstrate the efficiency of the algorithm. Ponnambalam et al. (2001) propose 

another metaheuristic algorithm, genetic algorithm, to solve the problem. Their 

computational experiments report the performance of the algorithm.  

 

Wagner (1959) studies the same problem. He provides a mixed integer 

programming model to solve small size problem instances. Computational 

experiments show the performance of the model. 



 21

Ignall and Schrage (1965) apply the branch-and-bound technique to the three-

machine flowshop problem to minimize the makespan. In order to use this 

technique, the problem is described as a tree which each node represents a partial 

solution. At the roof of this tree, there is only one node and this node has n 

number of branches that equals to the number of jobs in the problem. One of these 

branches is chosen and the job that is represented by the node at the end of this 

branch is assigned to the first position in the sequence. So, in the next level, there 

are only 1n −  branches to assign the second position. The tree structure is shaped 

in this manner until last job is assigned to the last position in the sequence. The 

authors propose a lower bound to be used in branching procedure. At the each 

level of the tree, the node with the smallest lower bound is selected and the tree is 

branched from this node. Their branch-and-bound algorithm is capable of solving 

problem instances with up to 10 jobs. Lomnicki (1965) studies the same problem 

and proposes an efficient lower bound for his branch-and-bound algorithm. His 

computational experiments show the efficiency of his algorithm.  

 

Lomnicki, Ignall and Schrage obtain their lower bound by considering the total 

processing time on one machine. McMahon and Burton (1967) form a new lower 

bound that is based on the idea of determining makespan by the total processing 

time for a job rather than by the total processing time on one machine. The 

authors also propose some methods to improve the efficiency of their algorithm. 

By placing the dominant machine, which has the greater total processing time 

than the other machine, last the efficiency of the algorithm is increased. The 

advantage of the fact that scheduling problems are symmetrical with respect to 

time-reversal is taken in that point. They test the performance of their lower 

bound with respect to Lomnicki and Ignall and Schrage’s lower bounds and report 

that it performs better than the others. Besides, their computational experiments 
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show that placing dominant machine last increases the performance of the 

algorithm. 

 

Ruiz and Maroto (2005) and Hejazi and Saghafian (2005) present a review of the 

previous studies. Exact methods, constructive and improvement heuristics are 

surveyed and their performances are pointed out.  

 

3.2 Parallel Machines Scheduling Problem  

 

In the classical parallel machines scheduling problem, there are n  jobs and m  

machines in parallel. Furthermore, each job is processed on one of the m machines 

during a fixed processing time with keeping the job on the machine until 

completion.  

 

Machines are considered as identical if they have the same speed. On the identical 

parallel machines, the processing time of each job are not affected by the machine 

processing it, each can be processed on any of the machines.  

 

In the following subsection, identical parallel machines scheduling problems 

without preemption, keeping the job on machine until completion, and precedence 

among jobs are reviewed for the makespan. 

 

3.2.1 Identical Parallel Machine Problem 

 

Pioneer work on the complexity of the maxmP C  problem is done by Karp (1972). 

He shows that the 2 maxP C  problem is NP-hard. Since there is no way to find 

optimization polynomial time algorithm for maxmP C , some approximation 
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algorithms are used to evaluate the problems’ worst case and mean behavior. One 

of the most used approximation algorithm for scheduling problem is list 

scheduling. The main idea in list scheduling is forming an ordered list of 

processes by giving them priorities. Then, at each step the job with the highest 

priority in the list is assigned to the first available machine (Graham (1966)). One 

of the well-known list scheduling algorithms is longest processing time (LPT) 

algorithm which the jobs are arranged in non-increasing order of processing time. 

Graham (1969) shows that Cmax value of the LPT rule is at most  4 1
3 3m
−  times the 

optimal Cmax value for the problems with two or more identical parallel machines. 

Coffman and Sethi (1976) suggest another absolute performance ratio for LPT 

rule. The new worst case error bound is 1 11
k km

+ −  where k  is the number of 

tasks on any machine whose last task terminates the schedule. They show that this 

error bound is tight when there are three or more machines. And, for the two and 

one machine cases, the worst case error bound is 1. Coffman et al. (1984) present 

how good the LPT algorithm is on the average for two machine environment 

under the assumptions that task processing times are independent samples and 

uniformly distributed on [0,1]. They prove that mean value of schedule length for 

the LPT algorithm, max( )LPTE C , is bounded with  

max
1

4 4( 1) 4 2( 1)
( )LPTn n e

n n
E C+ ≤ +

+ +
≤  

where e is the base of the natural algorithm and n is the number of task. Frenk and 

Rinnooy Kan (1984) show that the absolute error between maxC  value of LPT and 

maxC  value of optimum (i.e., max max
LPT OPTC C− ) converges to zero almost surely as 

well as in expectation as number of tasks goes to infinity. They consider special 

cases of the uniform and exponential distributions to analyze the speed at which 

the absolute error converges to 0. In Frenk and Rinnooy Kan (1986), the authors 
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extend and generalize the results. They prove that rate of convergences for almost 

sure and in expectation are ( )( )log log /O n n  and 1/n respectively.  

 

Coffmann et al. (1978) presents a new approximation algorithm, multifit 

algorithm, to get better performance guarantees. In this algorithm, it is tried to 

determine whether a schedule can be constructed that is consistent with the 

smallest feasible value of makespan (M) by using a heuristic procedure known as 

first-fit decreasing (FFD). This procedure operates by first sorting the tasks 

according to LPT, and then inserting each task one by one into the first machine 

so that it completes before or on M. Then, jobs are assigned to another machine. 

This is repeated until all jobs are scheduled. If any partial schedule exceeds on 

any machine, then the procedure fails. Friesen and Langston (1986) prove that 

maxC  value of multifit algorithm is at most 72
61

 times the optimal maxC  value. 

Although multifit produces tighter bounds than LPT, it requires more 

computational effort. An example is given that multifit produces worse makespan 

than LPT in (Baker (1995), pp. 7.6-7.7). Lee and Massey (1988) suggest 

combining LPT and multifit to improve performance. First a schedule is arranged 

by using LPT rule, then this schedule is used as an initial upper bound and multifit 

search is performed in the interval that is bounded on the upper side with this 

bound. Their computational experiments show that combined algorithm needs less 

searching them multifit alone. Haouari et al. (2006) present a review of the 

previous studies on bounds for the identical parallel machine scheduling problem 

and recommend new lower bounding strategies and heuristics for this scheduling 

problem. The lower bounds are based on the lifting procedure. Their optimization-

based heuristic yields the solution by iteratively solving a subset-sum problem. 

The authors’ computational experiments show the satisfactory performance of 
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their lower bound strategy and algorithm. The algorithm performs well on wide 

range of instances.  

 

Rothkopf (1966) studies the maxmP C  problem. He develops an exponential-time 

algorithm, based on a dynamic programming approach, which only solves small 

instances. Mokotoff (2002) studies the same problem and proposes an exact 

cutting plane algorithm built from identification of valid inequalities that apply to 

the subset of the solutions by a maximum value of the makespan. With these 

inequalities, constraints are generated for the algorithm and these constraints are 

added iteratively starting from the solution obtained by successive linear 

programming relaxation. Upper and lower bounds are also used in the algorithm 

to narrow the interval that will be searched. A simple lower bound is obtained by 

giving permission to preemption and an upper bound is obtained by using the 

most known procedures, i.e. LPT, multifit. His computational experiments show 

the efficiency of the algorithm to produce quality feasible solutions. Lee et al. 

(2006) propose simulated annealing heuristic algorithm, Min and Cheng (1999) 

develop genetic algorithm for minimizing makespan value on identical parallel 

machines. Computational experiments show the efficiency of these algorithms. 

 

3.3 Hybrid Flowshop Scheduling Problem  

 

A hybrid flowshop is a generalization of the flowshop and the parallel machine 

environments. It consists of a series of production stages in series instead of m 

machines in series. And, at least one of these stages has multiple machines in 

parallel.  Each job is processed by one machine in each stage and it flows through 

one or more stage. Besides, all the assumptions for flowshop and parallel machine 

scheduling problems are valid for hybrid flowshop scheduling problems. 
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In the next two subsections, hybrid flowshop scheduling problems with identical 

parallel machines in at least one of the stages are surveyed according to the 

makespan. 

 

3.3.1 Two-Stage Hybrid Flowshop  

 

Arthanari and Ramamurthy (1971) study the two-stage hybrid flowshop problem, 

where there is only one machine at the second stage. They suggest several lower 

bounds and a branch-and-bound algorithm to minimize makespan. However, they 

test this exact algorithm only for small instances that are less than ten jobs. Gupta 

(1988) proves that the two-stage flowshop problem when there are identical 

multiple machines at each stage to minimize makespan is NP-complete. He 

develops a heuristic algorithm, which is based on the Johnson’s rule, for the 

special case when there is one machine at the second stage. His computational 

experiments are limited with two machines at the first stage.  

 

Sriskandarajah and Sethi (1989) study the performance of algorithms for 

minimizing makespan schedules. The authors show that for Johnson’s algorithm 

applied to problems 1 2 max2 | 1, 2 |F k k k C= = =  and 1 2 max2 | 1, 3 |F k k k C= = ≥  

with { }max 1 2
1

max
n

j jjj

C p p
=

≤ +∑ where n  is the number of jobs, 1  jp  and 2  jp are 

processing times of job j at stages 1 and 2, respectively; the best possible bound is 

max max 2optimumC C ≤ . Also, for Johnson’s algorithm applied to problems 

1 2 max2 | 1, 3 |F k k k C= = ≥  with { }max 1 2
1

max
n

j jjj

C p p
=

> +∑ , the bound is 

max max
1 11 2 1optimum

k k
C C ⎛ ⎞⎛ ⎞≤ + − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. Moreover, the list scheduling algorithm is 
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applied to the problem 1 max| 1, 2 |m mFm k k k C− = = ≥ , they get the bound 

max max
11optimum m
k

C C ≤ + − . The authors propose two algorithms for the 

1 2 max2 | 2 |F k k k C= = ≥  problem. First one is based on the list scheduling 

algorithm whereas the other one is based on the LPT rule.  

Gupta and Tunc (1991) study the two-stage hybrid flowshop problem with 

multiple identical machines in second stage. They propose several lower bounds, 

polynomial bounded approximate algorithms and an improved branch-and-bound 

algorithm. The authors form a global lower bound by assigning the maximum of 

the proposed lower bounds. This global lower bound on makespan is used as 

surrogates for minimum makespan values for large problems, so the effectiveness 

of the proposed heuristic algorithms is calculated. They develop two polynomial 

bounded approximate algorithms, and then these algorithms are used to improve 

the efficiency of an existing branch-and-bound algorithm by assuming the 

makespan obtained from one of the two heuristic algorithms as initial upper 

bound. Their computational experiments show the satisfactory performance of 

their algorithms. Gupta et al. (1997) study the scheduling of two-stage hybrid 

flowshop problem in which there are many identical machines at the first stage. 

The authors present several lower bounds, a branch-and-bound algorithm and 

constructive heuristics. The proposed lower bounds and a dominance rule are used 

to restrict the size of the search tree. Besides, it is pointed out that using one of the 

heuristic algorithms in the literature as an initial upper bound helps shorten the 

search in the tree. Computational experiments show the efficiency of the 

algorithms.  

 

Oğuz et al. (2003) propose heuristic algorithms for a two-stage hybrid flowshop 

scheduling problem. The heuristics are based on some priority rules. In the first 

part of the heuristics, they construct the processing order for the jobs by using 
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various sequencing rules like SPT, LPT, etc. In the second part, the schedule is 

formed for the obtained sequence. The lower bounds are developed to evaluate the 

performance of the heuristics. Haouari and M’Hallah (1997) study the two-stage 

hybrid flowshop problem with several identical machines per stage. They suggest 

a two phase heuristic. Firstly a feasible solution is computed by using a simple 

heuristic that is easy to implement and then simulated annealing and tabu search 

are employed to improve the initial solution. The results are compared with a new 

derived lower bound. Their computational experiments show the efficiency of the 

proposed heuristics. 

 

3.3.2 Multi-Stage Hybrid Flowshop 

 

Pioneer work on the multi-stage hybrid flowshop scheduling problem is done by 

Wittrock (1985). He develops a heuristic periodic algorithm where small set of 

jobs is scheduled and the schedule is repeated many times. However, it is difficult 

to adapt periodic scheduling to practical scheduling environments. In another 

study of Wittrock (1988), the author presents a non-periodic algorithm. He 

suggests decomposing the scheduling problem into three sub-problems: machine 

allocation, sequencing and timing. The algorithm employs the LPT heuristic for 

machine allocation and the workload approximation heuristic for sequencing. For 

the first time, Brah and Hunsucker (1991) propose several lower bounds and a 

branch-and-bound algorithm for multi-stage hybrid flowshop scheduling problem 

to minimize makespan. They also develop elimination rules to utilize along with 

the derived lower bounds to increase the efficiency of the algorithm. Jin et al. 

(2006) study the same problem. They propose a number of lower bound and two 

metaheuristic algorithms that are based on the simulated annealing and shop 

partitioning. Their computational experiments provide satisfactory performance 

for two, three and five stage problems with maximum 10 machines at each stage. 
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3.4 Hybrid Flowshop Scheduling Problem with Dedicated Machines 

 

Dedicated machines are specialized for the execution of certain type of jobs. Oğuz 

et al. (1997) study a problem in which first stage includes two dedicated machines 

and second stage contains a common machine. In their manufacturing 

environment, two different products are initially processed by independent 

dedicated machines and finally jobs flow through a common machine such as an 

inspection and testing station. The authors prove that the max3 | 2 |F T C= problem 

is NP-hard. They study two polynomially solvable cases of the problem and 

present their solution procedure. They propose a heuristic algorithm that is based 

on the Johnson’s rule and analysis the worst-case bound for this heuristic. 

Computational experiments show the efficiency of the proposed algorithm. Riane 

et al. (1998) study hybrid three-stage flowshop problem with one machine in the 

first and third stages and two dedicated machines in stage two. They propose two 

heuristic algorithms which one of them is dynamic programming-based and the 

other one is branch-and-bound-based. Their computational experiments which are 

conducted for varying job numbers from 10 to 130 show the satisfactory 

performance of their algorithms. Riane et al. (2002) study hybrid three-stage 

flowshop problem with one machine in the first and two dedicated machines in 

the second stage. The authors point out that the problem is NP-hard and presents 

four polynomially solvable cases. They propose an exact algorithm based on a 

dynamic program and three heuristic algorithms for large scale problems. Two of 

the heuristics are based on the Johnson’s rule and the other heuristic is a greedy 

heuristic. Their computational experiments show the efficiency of the algorithms.  

 

In this section, 60 journal articles are reviewed according to the machine 

environment and objective function, makespan. The most closely related study to 
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ours is Oğuz et al. (1997). They study the same problem with two-stage flow 

lines, unlike ours, in flowshop machine environment. 

 

In this study, we extend their work by considering the problem with three-stage 

flow lines in hybrid flowshop machine environment. There are many studies in 

scheduling literature that deal with makespan minimization problem in hybrid 

flowshop environment; however, scheduling in a three-stage dedicated hybrid 

flowshop with a common third-stage is studied first time with this work, to the 

best of our knowledge. 
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CHAPTER 4 
 
 

BRANCH-AND-BOUND ALGORITHM FOR THE REVERSED 

PROBLEM 
 
 
 

Our problem of scheduling in a three-stage dedicated hybrid flowshop with a 

common third stage is a NP-hard problem of minimizing makespan. In Chapter 2, 

we develop a mathematical model to find optimal solutions and in this chapter, we 

present a branch-and-bound algorithm to solve the problem exactly. 

 

4.1 The Reversed Problem 

 

In the reversed problem, the direction of the job flow is reversed so that the jobs 

flow from the common machine to their related production lines according to their 

types. As it is illustrated by Figure 4.1, in stage 1, the first operations, last 

operations in the original problem, of the jobs are processed on the common 

machine regardless of the job type. The next operations of type-1 jobs are 

performed on the first flow line that contains two serial machines in stage 2 and 3, 

respectively. The last operations, first operations in the original problem, of type-2 

jobs are completed on one of the identical parallel machines. 
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Figure 4.1: The Reversed Problem 

 
 
 
Proposition 1: In the three-stage dedicated hybrid flowshop with a common 

third-stage, makespan minimization problem and its reverse are equivalent. 

 

Proof: Consider any feasible schedule S  for the original problem. By right-

shifting the jobs so that the makespan of the schedule S  will not increase will 

lead to a feasible schedule 'S  for the reverse problem. The feasibility of S  

ensures that 'S  is feasible. Moreover, the makespans for these two schedules in 

their respective problems are identical. That is, ( ) ( )max max
' .C S C S=  Similarly, 

any feasible schedule for the reverse problem converts into a feasible schedule for 

the original problem with the same makespan. Thus, the two problems, original 

and reverse, are equivalent. 
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4.2 Branch-and-bound Algorithm for the Reversed Problem 

 

In this section, we propose a branch-and-bound algorithm for the reversed 

problem to find exact solution to the problem addressed in this research. Since 

constructing branch-and-bound algorithm for reversed problem is easier than 

constructing for original problem, our branch-and-bound procedure is designed 

for the reversed problem to take the advantage of scheduling problems are 

symmetric with respect to time-reversal as shown in Proposition 1.  

 

In order to use the branch-and-bound algorithm, the problem must be described as 

a tree in which each node represents an allocation of some of the jobs. The first 

node in the tree structure is called root node. It can be thought as starting node. 

From this node n  branches corresponding to n  possible jobs that can be assigned 

to the first position in the sequence are originated. From each of these nodes 1n −  

branches are produced which corresponding to 1n −  possible jobs that can be 

assigned to the second position in the sequence, etc. At level s  of the tree, the 

decision about assignment of the ths  job of the sequence is made and a complete 

schedule is reached at level n . The node having the lowest lower bound is chosen 

to branch at any level s n≤ . After a complete schedule is obtained at level n , we 

backtrack to level 1n −  and continue from this stage. Thus, there are !n  feasible 

solutions and 1 ( 1) ... !n n n n+ + − + +  nodes in the tree unless any of nodes are 

fathomed. We fathom the node if the associated lower bound is greater than or 

equal to the upper bound. Upper bound is updated whenever a complete schedule 

with n  jobs and smaller lower bound is found. We terminate when there is no 

unfathomed or nonbranched node. And, the latest updated upper bound is the 

optimal solution. 
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Depth-first search method is utilized to guide in the branch-and-bound tree. 

According to this strategy, the branch of the tree goes down by dealing only one 

job at each level. We reach a complete schedule at the bottom of the tree and then 

we backtrack. We favor this strategy because of its relatively low memory 

requirement.  

 

The following notation is needed for the description of the lower bounds. 

 

sJ  = the ordered set of scheduled jobs at any arbitrary node, say i . 

uJ  = the set of unscheduled jobs at any arbitrary node, say i . 

f
uJ  = the set of unscheduled jobs that will be processed on flowshop  

environment at any arbitrary node, say i . 
p

uJ  = the set of unscheduled jobs that will be processed on parallel  

machine environment at any arbitrary node, say i .                    

iLB  = the lower bound value for the makespan at node i . 

jkP  = processing time of job j at stage k . 

( )k sT J  = the time at which machine at stage k  completes processing on the jobs 

     in set sJ .  

 

Then, a lower bound on the makespan at node i  is calculated as below 

 

{ }1 2 3 4 5max ,  ,  ,  ,  ,=LB LB LB LB LB LBi i i i i i  

where 

{ }1 ( ) min4 ,3 ,2 ,1ff
uu

LB T J P P Pi s j j jj Jj J
= + + +∑

∈∈
                              (4.1) 
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{ }2 ( ) min2 ,2 ,1ff
uu

LB T J P Pi s j jj Jj J
= + +∑

∈∈
    (4.2) 

3 ( )1 ,1f
u

LB T J Pi s jj J
= + ∑

∈
       (4.3) 

{ }4 ( ) min4 ,3 ,1, pp
uu

LB T J P Pi s j ji j Jj J
= + +∑

∈∈
    (4.4) 

{ }
{ }

{ }
{ }

5 max ( ),min ( ),  ( )4 3,1 3,2

max ,,1,
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 (4.5) 

 

The stepwise description of our branch-and-bound algorithm is given below: 

 

Step 1. Initialization  

1.1. Let 0,k = ,sJ =∅  ( ) ,us J n=  0iLB =  for all i  in the tree. 

1.2. Compute upper bound, ,UB from proposed heuristic algorithm.   

 

Step 2. Partial Schedule Arrangement   

            2.1. Set 1.k k= +  

            2.2. If ,k n>  then go to Step 6. 

 

Step 3. Lower Bounding             

            3.1. Compute iLB  for all unscheduled jobs. 
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            3.2. If iLB UB> , fathom node .i  

            3.2. If all nodes are pruned, then go to Step 6. 

 

Step 4. Branching 

            4.1. At each level branch from the node having the lowest lower bound 

            4.2. If ,k n=  then go to Step 5 else go to Step 2. 

 

Step 5. Upper Bound Updating 

If complete schedule has a better makespan value, then updates UB. 

 

Step 6. Backtracking 

            6.1. Set 1.k k= −  

            6.2. If 0,k =  then go to Step 7 else go to Step 3. 

 

Step 7. Termination 

            7.1. Terminate the procedure when there is no unfathomed or branched 

node. 

            7.2. The last upper bound is optimal solution to our problem 

 

A numerical example that illustrates the implementation of branch-and-bound 

algorithm for reversed problem is given in APPENDIX A. 
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CHAPTER 5 
 
 

PROPOSED HEURISTIC ALGORITHMS 
 
 
 

Since the three-stage dedicated hybrid flowshop problem is NP-hard, an 

optimizing algorithm that runs in polynomial-time cannot exist. In this section, we 

propose heuristic algorithms; one of them is based on the six different sequencing 

rules and the other one is based on the branch-and-bound algorithm, to schedule 

jobs on the machines at all stages. It is important to evaluate the performance of 

these heuristic procedures, because we employ them as an upper bound in our 

exact solution approaches, i.e., branch-and-bound algorithm and mathematical 

model. Moreover, when the computational effort to obtain an exact solution with 

branch-and-bound algorithm or mathematical model is prohibitive, these 

heuristics provide good quality solution at little computational effort. In order to 

evaluate how good the proposed heuristics algorithms, we consider the optimum 

value that is obtained by exact solution approaches for small size problems and 

the global lower bound that is generated by our proposed four lower bounds. 

 

5.1 Sequencing Rules and the Sequencing-rules Based Heuristic  

 

5.1.1 Sequencing Rules 

 

Rule A: 

 

Step 1: a) Sequence the jobs of the two stage of the first flow line by applying 

Johnson Algorithm with processing times ,1jp  and ,2jp ; and 
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 b) Sequence the jobs of the parallel machining shop by applying 

Shortest Processing Time List Rule with processing times ,1jp . 

Step 2: Sequence the jobs on the common stage in an ascending order of their 

completion times (earliest release time) at the previous stage. 

 

In this rule, our motivation is to finish the first and second operations of all jobs as 

soon as possible.  

 

The computational time complexity of the sequencing rule A is 

( )1 1 2 2log logO n n n n+ . In Step 1 of the sequencing rule, both type-1 and type-2 

jobs have to be sorted. These operations take ( )1 1 2 2log logO n n n n+  steps. 

Furthermore, Step2 can be done in ( )1 2O n n+  time. Thus, we have 

( )1 1 2 2log logO n n n n+ complexity. 

 

Rule B: 

 

The Rule B is similar to the previous one. Instead of SPT, LPT is employed to 

sequence the jobs of the parallel machining shop. 
Step 1:     a) Sequence the jobs of the two stage of the first flow line by applying 

Johnson Algorithm with processing times ,1jp  and ,2jp ; and 

 b) Sequence the jobs of the parallel machining shop by applying LPT 

with processing times ,1jp . 

Step 2: Sequence the jobs on the common stage in an ascending order of their 

completion times (earliest release time) at the previous stage. 
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The computational time complexity of the sequencing rule B is the same with the 

previous one, ( )1 1 2 2log logO n n n n+ . In Step 1 of the sequencing rule, both type-

1 and type-2 jobs have to be sorted, which can be done in ( )1 1 2 2log logO n n n n+  

time. Moreover, operation in Step2 takes ( )1 2O n n+  time. Thus, we have 

( )1 1 2 2log logO n n n n+ complexity. 

 

Rule C: 

 

The Rule C is based on the algorithm due to Campbell, Dudek and Smith (CDS), 

which is based on the repeated application of the Johnson algorithm. The 

underlying idea of this algorithm is to generate two fictitious two-stage flow shop 

problems for first flow line. These fictitious two-stage flow shop problems have 

the processing times ( ),1 ,3,j jp p  and ( ),1 ,2 ,2 ,3,j j j jp p p p+ + , respectively. We 

then apply Johnson Algorithm to each of the two fictitious two-stage flow shop 

problems generated for first flow line, and finally select the better of two 

sequences. The Rule C has the following three steps: 

 

Step 1: Sequence the jobs on the first two stages of first flow line by applying 

Johnson Algorithm with processing times ,1jp  and ,3jp . Sequence the 

jobs of the parallel machining shop by applying SPT with processing 

times ,1jp . Sequence the jobs on the common stage in an ascending 

order of their completion times (earliest release time) at the previous 

stage. Let 1
maxC  be the makespan of the resulting schedule. 

Step 2: Sequence the jobs on the first two stages of first flow line by applying 

Johnson Algorithm with processing times ,1 ,2j jp p+   and ,2 ,3j jp p+ . 
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Sequence the jobs of the parallel machining shop by applying SPT 

with processing times ,1jp . Sequence the jobs on the common stage in 

an ascending order of their completion times (earliest release time) at 

the previous stage. Let 2
maxC  be the makespan of the resulting 

schedule. 

Step 3: If 1 2
max maxC C≤ , select schedule obtained in Step 1 for 

implementation, otherwise, select schedule obtained in Step 2. 

 

The computational time complexity of the sequencing rule C is 

( )( )1 1 2 22 log logO n n n n+ . Since we execute the Step 1 and Step 2 of the rule A 

twice for each fictitious problem in rule C, its complexity 

is ( )( )1 1 2 22 log logO n n n n+ . 

 
Rule D: 

 

Step 1: Sequence the jobs on the first two stages of first flow line by applying 

Johnson Algorithm with processing times ,1jp  and ,1jp . Sequence the 

jobs of the parallel machining shop by applying LPT with processing 

times ,1jp . Sequence the jobs on the common stage in an ascending 

order of their completion times (earliest release time) at the previous 

stage. Let 1
maxC  be the makespan of the resulting schedule. 

Step 2: Sequence the jobs on the first two stages of first flow line by applying 

Johnson Algorithm with processing times ,1 ,2j jp p+   and ,2 ,3j jp p+ . 

Sequence the jobs of the parallel machining shop by applying LPT 

with processing times ,1jp . Sequence the jobs on the common stage in 
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an ascending order of their completion times (earliest release time) at 

the previous stage. Let 2
maxC  be the makespan of the resulting 

schedule. 

Step 3: If 1 2
max maxC C≤ , select schedule obtained in Step 1 for 

implementation, otherwise, select schedule obtained in Step 2. 

 

The computational time complexity of the sequencing rule D is the same with the 

previous one. The sorting operation in Step 1 takes ( )1 1 2 2log logO n n n n+  time. 

Furthermore, Step2 can be done in ( )1 2O n n+  time. Since we execute the Step 1 

and Step 2 twice for each fictitious problem in rule D, its complexity 

is ( )( )1 1 2 22 log logO n n n n+ . 

 

Rule E: 

 

Step 1:    a) Sequence the jobs on the first two stages of first flow line by applying 

Shortest Processing Times Rule with processing times ,1 ,2j jp p+ . 

 b) Sequence the jobs of the parallel machining shop by applying SPT 

with processing times ,1jp . 

Step 2: Sequence the jobs on the common stage in an ascending order of their 

completion times (earliest release time) at the previous stage. 

 

The sequencing rule E has the same computational time complexity with the 

sequencing rules A and B, ( )1 1 2 2log logO n n n n+ . In Step 1 of the sequencing 

rule, both type-1 and type-2 jobs have to be sorted. These operations take 
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( )1 1 2 2log logO n n n n+  steps. Furthermore, Step2 can be done in ( )1 2O n n+  

time. Thus, we have ( )1 1 2 2log logO n n n n+ complexity. 

 

Rule F: 

 

Step 1:  a) Sequence the jobs on the first two stages of first flow line by applying 

LPT with processing times ,1 ,2j jp p+ . 

 b) Sequence the jobs of the parallel machining shop by applying LPT 

with processing times ,1jp . 

Step 2: Sequence the jobs on the common stage in an ascending order of their 

completion times (earliest release time) at the previous stage. 

 

The computational time complexity of the sequencing rule F is computed as 

follows. The sorting operation in Step 1 takes ( )1 1 2 2log logO n n n n+  time. 

Furthermore, the time complexity of Step2 is ( )1 2O n n+ . Thus, we have 

( )1 1 2 2log logO n n n n+ complexity. 

 

5.1.2 The Sequencing-rules Based Heuristic  

 

We develop a heuristic algorithm based on the six different sequencing rules to 

schedule jobs on the machines at all stages.  

 

Step 1: Apply sequencing rules through Rule A to Rule F, respectively; and 

calculate their associated makespan value. 

Step 2: Select the rule which gives the minimum makespan value to be 

implemented. 



 43

5.2 The Branch-and-bound Based Heuristic 

 

Branch-and-bound is a well-known algorithm for finding an optimal solution to 

optimization problems. However, the computational effort to obtain an exact 

solution with branch-and-bound algorithm is prohibitive for large scale problem. 

For that reason, we propose a heuristic procedure that is based on the branch-and-

bound algorithm.  

 

In Section 4.2, the proposed branch-and-bound algorithm is explained in detail. In 

order to use this algorithm, the problem is described as a tree and partial solutions 

are arranged at each level of this tree. At each stage of the solution, an allocation 

of an unscheduled job to the sequence is done. A complete schedule is obtained 

when all jobs are scheduled. This is our initial solution. After the computation of 

the initial solution, the backtracking procedure starts.  

 

The branch-and-bound based heuristic does not take into account the backtracking 

part of the branch-and-bound algorithm. The initial solution of the algorithm is 

accepted as a heuristic solution. 

 

A numerical example that illustrates the implementation of the branch-and-bound 

based heuristic is given in APPENDIX B. 

 

5.3 Lower Bounds 

 

In this section, we derive four lower bounds for the makespan of an optimal 

schedule, which will be used in evaluating the performance of the proposed 

heuristic algorithms.  
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5.3.1 Lower Bound 1 

 

First lower bound is obtained by assuming that the job with the minimum 

processing time for the third operation determines the makespan. The expression 

in (5.1) states that the processing of the operations, before the last operation on the 

common machine, for all jobs cannot be completed before total processing time of 

type-1 jobs at second stage plus minimum processing time of type-1 jobs at first 

stage or total processing time of type-1 jobs at first stage plus minimum 

processing time of type-1 jobs at second stage or half of total processing time of 

type-2 jobs at first stage; 

  { } { }
1 1

1 1 2

,1
,2 ,1 ,1 ,2max min , min ,

2
,j

j j j j
j J j Jj J j J j J

p
p p p p

∈ ∈∈ ∈ ∈

+ +
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑    (5.1) 

where ,j ip  is the processing time of j at stage i. Therefore, the makespan of any 

schedule cannot be less than the expression in (5.1) plus the minimum processing 

time for the third operation. Thus, we obtain the first lower bound as 

 

{ } { }

{ }

1 1
1 1 2

,1
,2 ,1 ,1 ,2

,3

1 max min , min ,
2

min

         

         

                                                

∈ ∈∈ ∈ ∈

∈

= + +

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ j

j j j j
j J j Jj J j J j J

j
j J

p
LB p p p p

p
   (5.2) 

5.3.2 Lower Bound 2 

 

We derive the second lower bound by assuming that the third stage operates 

continuously without any idle time between jobs, and the job which satisfies the 

condition,  
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{ } { }
1 2

,1 ,2 ,1min min ,minj j jj J j J
p p p

∈ ∈

⎧ ⎫+⎨ ⎬
⎩ ⎭

       (5.3)  

determines the makespan. The expression in (5.3) gives us the minimum 

processing time of the operations before the last operation is processed on the 

common machine. Thus, the second lower bound can be derived as 

 

{ } { }{ }
1 2

,1 ,2 ,1 ,32 min min , min .
∈ ∈ ∈

= + + ∑j j j j
j J j J j J

LB p p p p     (5.4) 

 

5.3.3 Lower Bound 3 

 

Consider only type-1 jobs. For any sequence, we assume that the job with 

minimum processing time for the third operation determines the makespan.  

Thus, we can establish our third lower bound as 

 

{ }
1

1
3 [ ],1 [ ],2 ,3

1
max min ,

∈∈ = =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑

nj

i i jj Jj J i i j
LB p p p      (5.5) 

 

where ][i  is the job in the thi  position of the sequence and 1n  is the number of 

type-1 jobs. 

 

3LB  can be rewritten by changing the bounds of summation for first term of (5.5) 

as 

{ }
1

1

1

[ ],1 [ ],2 [ ],2 ,3
1 1 1

3 max min
nj j

i i i j
j Jj J i i i

LB p p p p
−

∈∈ = = =

= + − +
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ ∑                      (5.6) 
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        { }
1

1

1

[ ],1 [ ],2 [ ],2 ,3
1 1 1

max min .
−

∈∈ = = =

= − + +
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ ∑

nj j

i i i j
j Jj J i i i

p p p p                          (5.7)         

 

Note that the second term in the equation above is constant and independent from 

the sequence, and the first term, 

  
1

1

[ ],1 [ ],2
1 1

max
j j

i ij J i i
p p

−

∈ = =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

−∑ ∑                          (5.8) 

gives the total idle time at the second stage. The expression in (5.8) has the form, 

which is same one as the Johnson’s with processing times at the first and second 

stages, respectively, and the idle time can be minimized by sequencing job k  

preceding job l  if { } { },1 ,2 ,1 ,2min , min , .≤k l l kp p p p  

 

Therefore,  

( ) { }
1

*
3 max ,1 ,2 ,3, min ,j j jj Jj J

LB C JA p p p
∈∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                       (5.9) 

 

where ( )
1

*
max ,1 ,2,j jj J

C JA p p
∈

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 is the makespan of the two-stage problem, 

which is obtained by Johnson’s Algorithm with processing times ,1jp  and ,2jp . 

 

5.3.4 Lower Bound 4 

 

Another lower bound is obtained by reducing the problem to classical two 

machine flowshop problem by dividing the job processing time at first stage by 

the number of machines, i.e., two identical parallel machines. So, the new 
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processing time of job j  at stage 1 is defined as ,1

2
jp

. Then the problem with 

two-machine, one is at the first stage and the other one is at the third stage, is 

solved by Johnson’s algorithm (Johnson (1954)). Thus, the fourth lower bound 

can be derived as 

2

,1*
4 max ,3,

2
j

j
j J

p
LB C JA p

∈
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                        (5.10) 

 

From the above four lower bounds, it follows that the makespan of an optimal 

schedule *
maxC   cannot be less than the global lower boundGLB . That is, 

{ }*
max

1,...,4
max i

i
C GLB LB

=
≥ =                (5.11) 

 

5.4 A Numerical Example to Illustrate the Lower Bounds and 

Sequencing-rules Based Heuristic 

 

Suppose that we have six jobs with the processing times given in Table 5.1. The 

first three jobs are type-1 jobs; others are type-2 jobs. 

 
 
 

Table 5.1: Processing Times for the Numerical Example 
 

  Processing Times 
Jobs Stage 1 Stage 2 Stage 3 

1 7 1 2 
2 3 3 6 
3 2 6 5 
4 1 0 8 
5 3 0 4 
6 7 0 4 
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5.4.1 Lower Bounds 

 

The lower bounds and global lower bound are computed as follows: 

 

Lower Bound 1:  

{ } { }

{ }

1 1
1 1 2

,1
,2 ,1 ,1 ,2

,3

1 max min , min ,
2

min

         

         

           
                                     

j
j j j j

j J j Jj J j J j J

j
j J

p
LB p p p p

p

∈ ∈∈ ∈ ∈

∈

= + +

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⇒

∑ ∑ ∑

 

( ) ( )1 max ,  ,  1 3 71 3 6 2 7 3 2 1 2 15.
2

LB ⎧ ⎫= ⎨ ⎬
⎩ ⎭

+ ++ + + + + + + =  

 

Lower Bound 2: 

{ } { }{ }
1 2

,1 ,2 ,1 ,32 min min , min

         

j j j j
j J j J j J

LB p p p p
∈ ∈ ∈

= + +

⇒

∑
 

( ){ }2 min ,1 29 30.3 3LB = + =+  

 

Lower Bound 3: 

( ) { }
11

*
3 max ,1 ,2 ,3, min

           

j j jj Jj J
LB C JA p p p

∈∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⇒

 

 
1

3 13 2 15,  where : 3 2 1.

        
i J

LB JA
∈

= + = − −
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Lower Bound 4: 

2

,1*
4 max ,3,

2

          

j
j

j J

p
LB C JA p

∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⇒

 

2
4

        

17,  where : 4 5 6.
i J

LB JA
∈

= − −
 

Therefore, the global lower bound GLB  

 

{ }max 15, 30, 15, 17 30.LB = =  

 

5.4.2 Sequencing Rules 

 

Rule A: 

 

By sequencing the jobs of the two stage of the first flow line by applying Johnson 

Algorithm with processing times ,1jp  and ,2jp , we get 
1

: 3 2 1
i J
JA
∈

− − , and by 

sequencing the jobs of the parallel machining shop by applying SPT with 

processing times ,1jp , we get 
2

: 4 5 6
i J
SPT
∈

− − . The Gantt chart for the schedule 

obtained by sequencing rule A is given in Figure 5.1. 
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M1 3 2 1  

                                        2      5                           12                                        

M2      3 2  1  

                                       2             8               11   12  13                    

M31 4 6  

                               1                 8                

M32 5  

                                                3                

M4  4 5 6 3 2 1 

                                1                    9                      13   17   22    28   30 = maxC = LB  
 

Figure 5.1: Schedule Obtained by Sequencing Rule A 
 
 
 

Rule B: 

 

The sequencing rule B is similar to the sequencing rule A. The sequence of the 

jobs of the two stage of the first flow line is the same with the previous one that is 

determined for rule A, 
1

: 3 2 1
i J
JA
∈

− − , and by sequencing the jobs of the parallel 

machining shop by applying LPT with processing times ,1jp , we get 

2

: 6 5 4
i J
LPT
∈

− − . The related Gantt chart is given in Figure 5.2. 

 
 
 
 
 
 
 
 
 



 51

M1 3 2 1  

                                              2       5                     12                                        

M2      3 2  1  

                                              2              8         11  12  13                    

M31 6  

                                                          7                                

M32 5 4  

                                                3    4              

M4  5 4 6 3 2 1 

                                              3       7                           15        19     24     30      32 = maxC  
 

Figure 5.2: Schedule Obtained by Sequencing Rule B 
 
 
 
 Rule C: 

 

By sequencing the jobs of the two stage of the first flow line by applying Johnson 

Algorithm with processing times ,1jp  and ,3jp , we get 
1

: 3 2 1
i J
JA
∈

− − , and by 

sequencing the jobs of the parallel machining shop by applying SPT with 

processing times ,1jp , we get 
2

: 4 5 6
i J
SPT
∈

− − . The 1
maxC value according to the 

given sequences is 30. 

 

In the second part of the rule, the sequence of the jobs on the first two stages of 

first flow line is determined by applying Johnson Algorithm with processing times 

,1 ,2j jp p+  and ,2 ,3j jp p+ , 
1

: 2 3 1
i J
JA
∈

− − , and the sequence of the jobs of the 

parallel machining shop is the same with the one which is determined in the first 
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part of the heuristic, 
2

: 4 5 6
i J
SPT
∈

− − . And, finally by sequencing the jobs on the 

third stage in an ascending order of their completion times at the previous stage, 

the 2
maxC  value is computed as 32. 

 

Since 1 2
max maxC C< , we select the schedule obtained in first part of the heuristic 

for implementation. The schedule obtained by sequencing rule C is illustrated by 

the Gantt chart in Figure 5.3. 

 
 
 

M1 3 2 1  

                                             2       5                          12                                        

M2      3 2  1  

                                             2             8               11   12  13                    

M31 4 6  

                                         1                 8                

M32 5  

                                                3                

M4  4 5 6 3 2 1 

                                         1                    9                        13  17    22     28  30 = maxC = LB  
 

Figure 5.3: Schedule Obtained by Sequencing Rule C 
 
 
 
Rule D: 

 

The sequence of the jobs for the first two stages of the first flow line is the same 

for the first and second part of the rule with the previous one that is determined 
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for rule C, 
1

: 3 2 1
i J
JA
∈

− −  and
1

: 2 3 1
i J
JA
∈

− − , respectively. The sequence of the jobs 

of the parallel machining shop is determined by applying LPT with processing 

times ,1jp , 
2

: 6 5 4
i J
LPT
∈

− − . Since 1 2
max max32 32C C= = = , we can select either 

of the schedules obtained in the first part of the heuristic or in the second part for 

implementation. The Gantt chart given in Figure 5.4 illustrates the schedule 

obtained by sequencing rule D. 

 
 
 

M1 3 2 1  

                                        2       5                    12                                        

M2      3 2  1  

                                             2             8        11   12  13                    

M31 6  

                                                        7                                

M32 5 4  

                                                3   4              

M4  5 4 6 3 2 1 

                                                3       7                          15      19        24        30   32 = maxC  
 

Figure 5.4: Schedule Obtained by Sequencing Rule D 
 
 
 

Rule E: 

 

The sequence of the jobs of the on the first two stages of first flow line is 

determined by applying Shortest Processing Times Rule with processing times 

,1 ,2j jp p+ , 
1

: 2 3 1
i J
SPT
∈

− − , and by sequencing the jobs of the parallel machining 
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shop by applying Shortest Processing Time List Rule with processing times ,1jp , 

we get 
2

: 4 5 6
i J
SPT
∈

− − . The schedule obtained by sequencing rule E is illustrated 

by the Gantt chart in Figure 5.5. 

 
 
 

M1 2 3 1  

                                                3    5                         12                                        

M2       2 3 1  

                                                3       6                        12  13                    

M31 4 6  

                                         1                 8                

M32 5  

                                               3                

M4  4 5 2 6 3 1 

                                        1                    9                        13  19  23     28     30 = maxC = LB  
 

Figure 5.5: Schedule Obtained by Sequencing Rule E 

 

 

 
Rule F: 

 

The sequence of the jobs of the on the first two stages of first flow line is 

determined by applying LPT with processing times ,1 ,2j jp p+ , 
1

: 3 1 2
i J
LPT
∈

− − , 

and by sequencing the jobs of the parallel machining shop by applying LPT with 

processing times ,1jp , we get 
2

: 6 5 4
i J
LPT
∈

− − . The Gantt chart for the schedule 

obtained by sequencing rule F is given in Figure 5.6. 
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M1 3 1 2  

                                       2                   9         12                                        

M2      3   1  2  

                                             2             8   9   10   12    15                    

M31 6  

                                                        7                                

M32 5 4  

                                               3   4              

M4  5 4 6 3 1 2 

                                                3       7                          15      19       24     26        32 = maxC  
 

Figure 5.6: Schedule Obtained by Sequencing Rule F 
 
 
 
In this problem instance, makespan values for the schedules obtained by 

sequencing rules A, C, and E are equal to the global lower bound value, 30. Thus, 

we can conclude that the optimal makespan value is 30. Sequencing rules B, D, 

and F cannot yield optimal solution for the numerical example. Common part of 

the sequencing rules A, C, and E is the use of the SPT rule in order to sequence 

the jobs in both of the flow lines, unlike to the sequencing rules B, D, and F, 

which are based on the LPT rule. Someone can think that SPT rule is better than 

LPT rule for our problem. However, we cannot generalize this situation; it is true 

only for the problem instances which flowshop environment is dominant to the 

parallel machine environment in point of processing times, such that it is well 

known in the literature that SPT works better than LPT for flowshop environment. 

The sequencing rules B, D, and F, which are based on the LPT rule, can give 

better solutions than the sequencing rules A, C, and E with different data sets. 
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CHAPTER 6 
 
 

COMPUTATIONAL EXPERIMENTS AND RESULTS 
 
 
 

In this chapter, we discuss the results of our computational experiments to 

investigate the performance of our lower bounds on the makespan, proposed 

heuristic algorithms and branch-and-bound algorithm. Also, the effect of the 

certain parameters on the performance of our solution approaches is presented. 

We first explain our data generation scheme; then, the performance measures are 

presented. Finally, we discuss the results of our computational experiments. 

 

6.1 Design of Experiments  

 

The data generation procedures are given in this section. The following 

parameters are employed in the production of our data: 

 

Processing Time: The integer processing times are generated from a discrete 

uniform distribution over [1, 20] in general. However, in order to evaluate the 

performance of our proposed solution approaches when one of the machine or 

production line is dominant to other one in terms of production time, we generate 

the production time from a discrete uniform distribution over various ranges. The 

possible cases and required conditions are given in Table 6.1. 

 

Furthermore, these dominance cases are effective in generation of lower bounds 

for the original problem. Such that, the lower bound 1 is generated by taking the 

case 3 into account, the lower bound 2 is generated by taking the case 2 into 
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account, the lower bound 3 is generated by taking the case 4 into account, the 

lower bound 4 is generated by taking the case 5 into account,  

 

Problem Size: In order to see the effect of the number of type-1 and type-2 jobs, 

we use different number of jobs in our experiments. First of all, we define number 

of type-1 jobs, which are 10, 20, 30 and 50. Then, numbers of type-2 jobs are 

determined depending on these values; we generate number of type-2 jobs 

according to the following ratio:  

{ }Number of Type-2 jobs 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0
Number of Type-1 jobs

=  (6.1) 

Size of the problem instances in our computational study and the related number 

of type-1 and type-2 jobs are given in Table 6.2. 

 
 
 

Table 6.1: Possible Dominance Cases Between Manufacturing Lines/Machines and Needed 
Conditions for These Cases 

 
Case Description Condition 

1 No operation is dominant 
(or dominated) Randomly chosen data 

2 
Common machine 
dominates the other 
machines { }4 1 2 3,1 3,2( )* max ( ), ( ), ( ), ( )p M p M p M p M p M>  

3 
Common machine is 
dominated by the other 
machines { }4 1 2 3,1 3,2( ) min ( ), ( ), ( ), ( )p M p M p M p M p M<  

4 
Flowshop type jobs 
dominate parallel 
machine type jobs 

 
( )3,1 3,2

1

( ) ( )
( )

2
p M p M

p M
+

> ∑∑  

5 
Parallel machine type 
jobs dominate flowshop 
type jobs   ( ) { }3,1 3,2 1 2( ) ( ) 2*max ( ), ( )p M p M p M p M+ >∑

 
* ( )ip M indicates the processing time of a job on Machine i ( iM ) (See Figure 2.1). 
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For each combination of processing times, 10 problem instances are generated. 

The mathematical model is coded in GAMS 22.6 and the problem instances with 

up to 28 jobs are solved by using CPLEX solver under the time limit of one hour. 

 
 
 

Table 6.2: Size of the Problem Instances in the Computational Study 
 

Number of 
Type-1 Jobs 

(n1) 

Number of 
Type-2 Jobs 

(n2) 

Number of 
Type-1 Jobs 

(n1) 

Number of 
Type-2 Jobs 

(n2) 
2 6 
4 12 
6 18 
8 24 

10 30 
12 36 
14 42 
16 48 
18 54 

10 

20 

30 

60 
4 10 
8 20 

12 30 
16 40 
20 50 
24 60 
28 70 
32 80 
36 90 

20 

40 

50 

100 
 
 
 
The proposed heuristic algorithms, lower bounds and branch-and-bound algorithm 

are coded in Visual C++ 6.0, and all computational experiments are conducted on 

Intel Pentium IV 2400 MHz CPU with 256 MB memory PC under Windows XP 

operating system. 
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6.2 Performance Measures 

 

The following performance measures are used to evaluate the performance of our 

solution methods and bounding procedures. 

 

• The performance of global lower bound, GLB, is evaluated by using 

average and maximum value of its percentage deviation from optimal 

value, OPT, which is obtained by our exact solution methods (i.e. 

mathematical model, and branch-and-bound algorithm) is used. Thus, our 

performance measure is 100OPT GLB
OPT
−

×  

 

• The performance of heuristic algorithms is evaluated by using average and 

maximum value of its percentage deviation from optimal value which is 

obtained by our exact solution methods (i.e. mathematical model, and 

branch-and-bound algorithm). For the large size problems, which our 

exact solution approaches do not work, instead of optimal value we use 

global lower bound, GLB. Hence, our performance measure is  

100iH OPT
OPT
−

×   or  100iH GLB
GLB
−

×  

 where iH  is the makespan value obtained by the scheduling rule i. 

 

• Number of times, optimal solution is found in problem instances is another 

performance measure for the heuristic algorithms. 

 

• Computation time is used to evaluate the performance of the branch-and-

bound algorithm. Average and maximum values of computation times in 

CPU seconds are reported.  
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• Average and maximum numbers of nodes generated in the branch-and-

bound tree are reported for each instance as another performance measure 

for our branch-and-bound algorithm. 

 

• Number of unsolved problem instances in one hour is also used to evaluate 

the performance of the branch-and-bound algorithm. 

 

6.3 Discussion of the Results 

 

6.3.1 Global Lower Bound Performance 

 

The average and maximum percent deviations of global lower bound from the 

optimal solution are reported in Table 6.3. As can be observed from the table, the 

problem instances up to the 28 jobs are considered in the experimentation. This is 

because the optimal solution is needed to investigate the global lower bound 

performance, and our exact solution methods are capable to solve problem up to 

with 28 jobs in a given time limit, which is one hour. Our results show that in 

general global lower bound performs better for small n1/n2 ratio. For example, 

when n1=10 and dominance case 4, average deviations from optimal solution are 

0.91% and 1.29% for n1/n2=0.2 and n1/n2=0.4, respectively. As Table 6.3 

indicates, the global lower bound performs well and gives close solutions for all 

combinations of number of type-1, and type-2 jobs and also for every dominance 

cases. For example, when n1=10 and n1/n2=0.4, average deviations from optimal 

solution are 0.94%, 1.29%, and 2.03% for case 3, case 4 and case 5, respectively. 
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Table 6.3: Global Lower Bound Performance- Percent Deviation from Optimum 
 

Case 1 Case 2 
( ) / 100OPT GLB OPT− × ( ) / 100OPT GLB OPT− ×  n1 n2/n1 

Avg Max 
n1 n2/n1 

Avg Max 
0.2 1.2 3.5 0.2 0 0 
0.4 1.52(2)* 5.92 0.4 0(2)* 0 
0.6 0.12(5)* 0.61 0.6 0(4)* 0 
0.8 0(6)* 0 0.8 0(5)* 0 
1.0 0(6)* 0 1.0 0(5)* 0 
1.2 0(7)* 0 1.2 0(8)* 0 
1.4 0(7)* 0 1.4 0(7)* 0 
1.6 0(8)* 0 1.6 0(8)* 0 

10 

1.8 0(9)* 0 

10 

1.8 0(7)* 0 
0.2 0(9)* 0 0.2 0(8)* 0 20 0.4 0(8)* 0 20 0.4 0(6)* 0 

Case 3 Case 4 
( ) / 100OPT GLB OPT− × ( ) / 100OPT GLB OPT− ×  n1 n2/n1 

Avg Max 
n1 n2/n1 

Avg Max 
0.2 0.71 2.29 0.2 0.91 3.06 
0.4 0.94 2.62 0.4 1.29 3.07 
0.6 2.03(5)* 4.18 0.6 1.22 3.46 
0.8 1.42(3)* 2.54 0.8 1.72(2)* 3.47 
1.0 1.14(5)* 3.89 1.0 1.03(2)* 1.84 
1.2 0.43(8)* 0.86 1.2 0.9(1)* 2.18 
1.4 (10)*   1.4 1.16(1)* 2.42 
1.6 (10)*   1.6 0.76(3)* 2.47 

10 

1.8 (10)*   

10 

1.8 0.64 1.67 
0.2 0(8)* 0 0.2 0.8(3)* 1.84 20 0.4 1.2(8)* 1.69 20 0.4 0.92(5)* 1.46 

Case 5 
( ) / 100OPT GLB OPT− ×n1 n2/n1 

Avg Max 
0.2 3.83 10.56 
0.4 2.03 6.71 
0.6 2.81(8)* 4.17 
0.8 (10)*   
1.0 (10)*   
1.2 (10)*   
1.4 (10)*   
1.6 (10)*   

10 

1.8 (10)*   
0.2 (10)*   20 0.4 (10)*     

 
(*)  The numbers in parentheses denote the number of unsolved instances out of ten within one           

hour time limit. 
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6.3.2 Heuristic Algorithms Performances 

 

Average and maximum percent deviations from the optimal and global lower 

bound are reported in Table 6.4 and Table 6.5, respectively. Furthermore, 

numbers of times, our heuristics find optimal solution is reported in Table 6.6.  

 
 

Table 6.4: Heuristic Algorithms Performance – Percent Deviation from Optimum 
 

Case 1 
( ) / 100Heuristic OPT OPT− ×  ( ) / 100Heuristic OPT OPT− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 7.47 7.47 0.86 0.86 7.90 7.90 5.45 21.26 21.26 7.87 7.87 20.28 20.28 14.39 

0.4 5.14(2)* 7.43 0.69 3.70 4.30 7.03 12.17 14.48 14.48 5.52 6.67 19.08 19.08 31.03 

0.6 0.00(5)* 4.46 0.00 2.63 0.00 2.63 2.90 0.00 6.70 0.00 4.04 0.00 4.04 7.58 

0.8 0.00(6)* 5.54 0.00 3.95 0.00 3.95 2.44 0.00 7.30 0.00 5.83 0.00 5.83 6.15 

1.0 0.00(6)* 6.57 0.00 3.41 0.00 3.52 4.38 0.00 8.37 0.00 4.89 0.00 4.89 6.67 

1.2 0.00(7)* 3.30 0.00 2.17 0.00 2.17 4.98 0.00 5.45 0.00 3.18 0.00 3.18 8.33 

1.4 0.00(7)* 4.98 0.00 4.61 0.00 4.23 5.56 0.00 5.68 0.00 5.68 0.00 4.84 14.71 

1.6 0.00(8)* 5.78 0.00 2.29 0.00 2.29 1.88 0.00 7.11 0.00 3.56 0.00 3.56 3.75 

10 

1.8 0.00(9)* 4.67 0.00 0.39 0.00 0.39 42.41 0.00 4.67 0.00 0.39 0.00 0.39 42.41 

0.2 8.84(9)* 8.84 0.00 1.61 0.00 1.61 0.00 8.84 8.84 0.00 1.61 0.00 1.61 0.00 20 
0.4 0.34(8)* 2.46 0.00 1.45 0.17 1.45 0.00 0.68 3.08 0.00 1.53 0.34 1.53 0.00 

Case 2 
( ) / 100Heuristic OPT OPT− ×  ( ) / 100Heuristic OPT OPT− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 0.03 0.03 0.00 0.00 0.00 0.00 1.11 0.28 0.28 0.00 0.00 0.00 0.00 2.81 

0.4 0.00(2)* 1.44 0.00 0.80 0.00 0.80 1.59 0.00 3.33 0.00 1.55 0.00 1.55 3.43 

0.6 0.12(4)* 1.07 0.00 0.45 0.00 0.45 1.58 0.73 2.22 0.00 0.89 0.00 0.89 3.53 

0.8 0.00(5)* 1.11 0.00 0.71 0.00 0.71 0.68 0.00 2.59 0.00 1.23 0.00 1.23 1.64 

1.0 0.00(5)* 1.53 0.00 0.80 0.00 0.80 1.02 0.00 2.25 0.00 2.25 0.00 2.25 2.09 

1.2 0.00(8)* 1.13 0.00 1.13 0.00 1.13 1.48 0.00 1.70 0.00 1.70 0.00 1.70 1.83 

1.4 0.00(7)* 1.22 0.00 0.99 0.00 0.99 0.88 0.00 1.66 0.00 1.41 0.00 1.41 1.28 

1.6 0.00(8)* 1.16 0.00 1.16 0.00 1.16 1.36 0.00 1.97 0.00 1.97 0.00 1.97 1.53 

10 

1.8 0.00(7)* 1.27 0.00 0.55 0.00 0.55 0.79 0.00 2.28 0.00 0.81 0.00 0.81 1.22 

0.2 0.00(8)* 0.20 0.00 0.20 0.00 0.20 0.07 0.00 0.27 0.00 0.27 0.00 0.27 0.13 
20 

0.4 0(6)* 0.70 0.00 0.64 0.00 0.64 0.77 0.00 1.41 0.00 1.17 0.00 1.17 1.56 

 

(*) The numbers in parentheses denote the number of unsolved instances out of ten within one 

hour time limit 
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Table 6.4 (cont.) 

Case 3 
( ) / 100Heuristic OPT OPT− ×  ( ) / 100Heuristic OPT OPT− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 1.35 1.35 1.21 1.21 6.04 6.04 3.67 4.64 4.64 6.09 6.09 8.78 8.78 10.03 

0.4 2.18 2.18 1.69 1.69 4.18 4.18 5.20 5.38 5.38 7.59 7.59 7.80 7.80 15.86 

0.6 1.03(5)* 1.03 0.71 0.71 3.41 3.41 6.38 3.43 3.43 2.69 2.69 7.23 7.23 16.76 

0.8 1.11(3)* 1.11 0.57 0.57 5.97 5.97 7.03 2.40 2.40 2.04 2.04 9.38 9.38 24.86 

1.0 1.37(5)* 1.37 1.95 1.95 4.02 4.02 2.20 3.43 3.43 4.94 4.94 7.55 7.55 11.18 

1.2 2.18(8)* 2.18 0.00 0.00 6.66 6.66 39.52 3.21 3.21 0.00 0.00 7.49 7.49 46.97 

1.4 (10)*                           

1.6 (10)*                           

10 

1.8 (10)*                           

0.2 1.25(8)* 1.25 2.08 2.08 4.62 4.62 3.66 1.54 1.54 4.15 4.15 5.40 5.40 5.56 20 
0.4 0.66(8)* 0.66 0.69 0.69 4.20 4.20 12.46 1.01 1.01 1.38 1.38 5.21 5.21 16.18

Case 4 
( ) / 100Heuristic OPT OPT− ×  ( ) / 100Heuristic OPT OPT− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 1.38 1.38 0.00 0.00 6.80 6.80 1.14 4.80 4.80 0.00 0.00 9.76 9.76 5.10 

0.4 1.01 1.01 0.00 0.00 5.65 5.65 3.98 2.69 2.69 0.00 0.00 8.53 8.53 8.63 

0.6 1.67 1.67 0.00 0.00 6.12 6.12 4.34 3.77 3.77 0.00 0.00 9.54 9.54 8.18 

0.8 1.25(2)* 1.25 0.00 0.00 5.36 5.36 5.64 3.47 3.47 0.00 0.00 8.50 8.50 14.51 

1.0 1.92(2)* 1.92 0.00 0.00 6.03 6.03 4.75 4.53 4.53 0.00 0.00 8.88 8.88 12.35 

1.2 0.37(1)* 0.37 0.00 0.00 4.40 4.40 8.32 2.24 2.24 0.00 0.00 7.43 7.43 14.71 

1.4 0.90(1)* 0.90 0.00 0.00 4.65 4.65 5.09 3.19 3.19 0.00 0.00 6.73 6.73 17.51 

1.6 1.50(3)* 1.50 0.00 0.00 3.89 3.89 8.75 3.46 3.46 0.00 0.00 7.27 7.27 24.04 

10 

1.8 0.25 0.25 0.00 0.00 3.85 3.85 4.85 1.49 1.49 0.00 0.00 6.74 6.74 10.42 

0.2 1.03(3)* 1.03 0.00 0.00 2.76 2.76 1.65 2.47 2.47 0.00 0.00 4.94 4.94 4.91 20 
0.4 0.95(5)* 0.95 0.00 0.00 2.77 2.77 1.86 2.27 2.27 0.00 0.00 4.17 4.17 3.73 

Case 5 
( ) / 100Heuristic OPT OPT− ×  ( ) / 100Heuristic OPT OPT− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 14.14 14.14 1.03 1.03 7.33 7.33 3.73 29.92 29.92 3.31 3.31 17.91 17.91 13.75 

0.4 12.49 12.95 1.25 2.69 4.74 5.01 9.18 26.62 27.70 4.55 7.14 17.53 17.53 28.38 

0.6 4.30(8)* 7.47 1.13 2.16 0.54 2.16 2.16 4.76 7.74 1.79 4.33 0.60 4.33 4.33 

0.8 (10)*                           

1.0 (10)*                           

1.2 (10)*                           

1.4 (10)*                           

1.6 (10)*                           

10 

1.8 (10)*                           

0.2 (10)*                           20 
0.4 (10)*                           
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Since our exact solution methods are not capable to solve problems for all 

combinations of type-1 and type-2 jobs in a given time limit, we investigate the 

performance of the heuristic by examining average and maximum percent 

deviations from the optimal solution and global lower bound. We propose two 

types of heuristic algorithms, sequencing-rules based and branch-and-bound 

based, to solve our problem.  The notation “ iS ” in Table 6.3 and Table 6.4 

symbolize the sequencing rules, which best of them determines the result of 

sequencing-rules based heuristic, and the notation “ &B B ” on Table 6.3 and 

Table 6.4 symbolize branch-and-bound based heuristic. As can be seen from 

Table 6.4, we report the result of the sequencing rules one by one to be able to 

analyze which sequencing rule especially determines the sequencing-rules based 

heuristic. The sequencing rule C, which is denoted by, “ 3S ” is superior to other 

rules under all conditions. For example, when  n1=10, n1/n2=0.4 and dominance 

case=1, average deviations from optimal solution are 5.14%, 7.43%, 0.69%, 

3.70%, 4.30% and 7.03% for sequencing rules A, B, C, D, E, F, respectively. We 

also reveal that in general the sequencing-rules based heuristic algorithm gives 

better results than the branch-and-bound based heuristic algorithm. For example, 

when n1=10, n1/n2=0.2 and dominance case=3, average deviations from optimal 

solution are 1.21% and 3.67% for the best result through sequencing rule A to rule 

F and branch-and-bound based heuristic, respectively. 

 

Table 6.5 shows the summary of the performance of heuristic algorithms under all 

possible combinations of design parameters. The results in Table 6.5 reveal 

similar consequences with Table 6.4. We again observe that the sequencing rule C 

is superior to other rules under all conditions and the sequencing-rules based 

heuristic gives better result than the branch-and-bound based heuristic. Besides, 

we detect that there are some combinations where the sequencing rule C and the 

branch-and-bound based heuristic performs better. For example, when we execute 
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our heuristic on a system which common machine dominates the other machines 

in the system, case 2, average and maximum percentage deviation from the global 

lower bound is too small. 

 

We also try to investigate the effect of number of type-1 and type-2 jobs on the 

heuristic algorithms performance. As can be seen from Table 6.5, the numbers of 

type-1 and type-2 jobs have no specific and significant effect on the performance 

of heuristic algorithms. For example, when n1=50, n2/n1=1.0 and dominance 

case= 1, average deviations from the global lower bound are 0.00% and 0.57% for 

the best result through sequencing rule A to rule F and branch-and-bound based 

heuristic, respectively. However, a little improvement is seen on the performance 

of the sequencing-rules based heuristic when number of type-1 jobs increase 

under dominance case 5. We do not observe similar results for the branch-and-

bound based heuristic.  

 

It is also observed from Table 6.5 that the ratio between number of type-1 and 

type-2 jobs has no significant effect on the performance of the sequencing-rules 

based heuristic algorithm. For example, when n1=30 and dominance case=3, 

average deviations from the global lower bound are 0.77% and 0.76% for the best 

result through sequencing rule A to rule F for n1/n2=0.4 and 2.0, respectively.  

 

Table 6.5 reveals the effect of the related ratio on the branch-and-bound based 

heuristic. Only for dominance case 3, we observed that as the ratio increasing the 

performance of the heuristic decreases. For example, when n1=20 and dominance 

case=3, average deviations from the global lower bound are 2.24% and 16.97% 

for n1/n2=0.2 and 1.4, respectively. 

 
As can be observed from Table 6.5, the sequencing-rules based heuristic 

algorithm performances are satisfactory for all problem combinations. It is 
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capable to solve up to 150 jobs with the overall average deviation less than 5.30% 

and the overall maximum deviation less than 13.1%. These results are the worst-

case performances; better results are obtained in the computational analyses. 

 

As can be seen from Table 6.6, the sequencing rule C is very effective in solving 

1 2 3 max3 | 3, 1, 1, 2 |F k k k T C= = = =  problem. The sequencing-rules based heuristic 

finds optimal solution quite often by using the sequencing rule C. Especially, in 

dominance case 4, our related heuristic finds optimal solutions for every 

comparable instances. 
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Table 6.5: Heuristic Algorithms Performance–% Deviation from Global Lower Bound 
 

Case 1 
( ) / 100Heuristic GLB GLB− ×  ( ) / 100Heuristic GLB GLB− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 8.81 8.81 2.11 2.11 9.28 9.28 6.74 24.19 24.19 10.48 10.48 24.64 24.64 16.91 
0.4 6.03 8.31 2.03 4.71 5.09 7.54 12.34 21.17 21.17 11.68 11.68 26.57 26.57 38.69 
0.6 0.57 4.46 0.50 3.20 1.52 4.22 5.93 5.11 8.02 4.38 6.79 14.60 14.60 27.74 
0.8 1.55 6.98 1.06 4.16 1.69 4.72 6.35 15.49 15.49 10.56 10.56 16.20 16.20 34.51 
1.0 0.00 6.19 0.00 3.71 0.00 3.75 3.19 0.00 8.37 0.00 6.67 0.00 6.15 6.67 
1.2 0.00 3.60 0.00 2.74 0.00 2.74 3.78 0.00 6.50 0.00 5.38 0.00 5.38 8.33 
1.4 0.00 5.47 0.00 4.06 0.00 3.86 10.42 0.00 7.31 0.00 6.07 0.00 5.67 24.62 
1.6 0.00 4.61 0.00 3.36 0.00 3.57 1.83 0.00 7.11 0.00 4.79 0.00 4.79 4.14 
1.8 0.00 3.19 0.00 2.17 0.00 2.17 15.43 0.00 5.80 0.00 4.64 0.00 4.64 42.41 

10 

2.0 0.06 4.16 0.06 3.01 0.06 3.08 3.04 0.57 5.71 0.57 3.87 0.57 4.29 9.04 
0.2 8.98 9.45 0.40 1.69 4.42 5.11 3.46 16.21 16.21 1.91 3.16 12.98 12.98 18.15 
0.4 0.69 3.19 0.04 1.27 1.16 2.36 2.02 4.76 5.30 0.43 3.31 11.26 11.26 5.73 
0.6 0.03 3.04 0.03 2.15 0.03 2.12 2.84 0.29 5.43 0.29 5.08 0.29 4.44 9.34 
0.8 0.00 2.91 0.00 1.66 0.00 1.89 2.01 0.00 4.81 0.00 2.94 0.00 4.28 6.89 
1.0 0.00 2.09 0.00 0.95 0.00 0.95 1.29 0.00 4.39 0.00 1.75 0.00 1.75 3.79 
1.2 0.02 2.81 0.00 1.55 0.00 1.64 1.62 0.23 4.44 0.00 3.01 0.00 3.09 3.82 
1.4 0.00 2.37 0.00 1.18 0.00 1.21 20.02 0.00 3.59 0.00 1.91 0.00 1.91 42.05 
1.6 0.00 2.41 0.00 1.31 0.00 1.38 1.24 0.00 3.35 0.00 2.15 0.00 2.86 2.79 
1.8 0.00 1.69 0.00 1.13 0.00 1.13 27.62 0.00 3.07 0.00 2.57 0.00 2.57 68.41 

20 

2.0 0.02 2.06 0.02 1.04 0.02 1.04 1.66 0.17 3.28 0.17 2.16 0.17 2.11 2.90 
0.2 5.33 6.00 0.02 1.21 1.69 2.46 2.39 15.59 15.59 0.23 2.01 6.04 6.04 5.77 
0.4 0.05 2.25 0.02 0.78 0.02 0.78 1.35 0.23 3.67 0.23 2.07 0.23 2.07 3.72 
0.6 0.02 2.24 0.00 1.05 0.00 0.99 1.10 0.20 3.65 0.00 3.65 0.00 3.00 3.62 
0.8 0.00 2.32 0.00 0.81 0.00 0.78 1.02 0.00 2.84 0.00 1.57 0.00 1.41 2.40 
1.0 0.00 2.11 0.00 0.76 0.00 0.86 1.23 0.00 3.07 0.00 2.07 0.00 2.07 2.59 
1.2 0.00 1.77 0.00 0.88 0.00 0.98 1.48 0.00 2.38 0.00 1.93 0.00 2.08 2.83 
1.4 0.00 1.89 0.00 0.87 0.00 0.90 26.24 0.00 2.52 0.00 1.68 0.00 1.58 52.86 
1.6 0.00 1.51 0.00 0.40 0.00 0.40 1.07 0.00 2.27 0.00 1.11 0.00 1.11 2.17 
1.8 0.00 1.00 0.00 0.51 0.00 0.56 27.34 0.00 1.95 0.00 1.38 0.00 1.38 58.50 

30 

2.0 0.00 1.34 0.00 0.66 0.00 0.64 0.63 0.00 1.88 0.00 1.22 0.00 1.15 1.50 
0.2 1.88 2.57 0.02 0.46 1.08 1.49 1.59 5.00 5.00 0.16 1.29 5.51 5.51 4.94 
0.4 1.00 2.14 0.03 0.45 0.18 0.52 1.35 9.42 9.42 0.27 0.86 1.57 1.57 2.67 
0.6 0.00 1.42 0.00 0.47 0.00 0.47 0.94 0.00 2.02 0.00 0.98 0.00 0.98 2.00 
0.8 0.00 1.19 0.00 0.50 0.00 0.49 0.55 0.00 1.88 0.00 1.44 0.00 1.15 1.00 
1.0 0.00 1.11 0.00 0.33 0.00 0.33 0.57 0.00 1.67 0.00 0.84 0.00 0.84 1.48 
1.2 0.00 1.14 0.00 0.25 0.00 0.27 0.74 0.00 1.70 0.00 0.74 0.00 0.98 1.30 
1.4 0.00 0.96 0.00 0.31 0.00 0.36 28.93 0.00 1.48 0.00 0.80 0.00 1.20 62.96 
1.6 0.00 0.93 0.00 0.23 0.00 0.23 0.40 0.00 1.51 0.00 0.31 0.00 0.31 0.72 
1.8 0.00 0.70 0.00 0.30 0.00 0.30 33.06 0.00 1.07 0.00 0.50 0.00 0.50 70.01 

50 

2.0 0.00 0.75 0.00 0.21 0.00 0.21 0.54 0.00 1.17 0.00 0.66 0.00 0.66 1.27 
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Table 6.5 (cont.) 
 

Case 2 
( ) / 100Heuristic GLB GLB− ×  ( ) / 100Heuristic GLB GLB− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B 
0.2 0.03 0.03 0.00 0.00 0.00 0.00 1.11 0.28 0.28 0.00 0.00 0.00 0.00 2.81 
0.4 0.00 1.38 0.00 0.87 0.00 0.87 1.79 0.00 3.33 0.00 1.57 0.00 1.57 3.43 
0.6 0.07 1.45 0.00 0.73 0.00 0.73 1.14 0.73 3.42 0.00 1.54 0.00 1.54 3.53 
0.8 0.00 1.29 0.00 0.99 0.00 0.99 1.00 0.00 2.59 0.00 2.05 0.00 2.05 2.65 
1.0 0.00 1.94 0.00 1.01 0.00 1.01 1.13 0.00 2.94 0.00 2.25 0.00 2.25 2.09 
1.2 0.00 1.20 0.00 0.95 0.00 0.95 1.38 0.00 2.33 0.00 1.81 0.00 1.81 2.41 
1.4 0.00 1.57 0.00 0.85 0.00 0.85 0.88 0.00 2.28 0.00 1.41 0.00 1.41 1.87 
1.6 0.00 1.51 0.00 0.87 0.00 0.87 0.90 0.00 2.44 0.00 1.97 0.00 1.97 2.29 
1.8 0.00 1.38 0.00 1.00 0.00 1.00 0.67 0.00 2.28 0.00 1.63 0.00 1.63 1.22 

10 

2.0 0.00 1.18 0.00 0.75 0.00 0.75 0.80 0.00 1.87 0.00 1.37 0.00 1.37 1.74 
0.2 0.11 0.58 0.00 0.27 0.00 0.27 0.90 0.70 1.80 0.00 0.91 0.00 0.91 1.95 
0.4 0.00 0.93 0.00 0.47 0.00 0.47 0.86 0.00 1.81 0.00 1.17 0.00 1.17 1.81 
0.6 0.00 1.21 0.00 0.57 0.00 0.57 0.79 0.00 1.90 0.00 1.06 0.00 1.06 1.39 
0.8 0.00 0.80 0.00 0.40 0.00 0.40 0.65 0.00 1.57 0.00 0.70 0.00 0.70 1.48 
1.0 0.00 0.80 0.00 0.40 0.00 0.40 0.53 0.00 1.44 0.00 0.81 0.00 0.81 1.36 
1.2 0.00 0.67 0.00 0.26 0.00 0.26 0.61 0.00 1.15 0.00 0.52 0.00 0.52 1.27 
1.4 0.00 0.82 0.00 0.34 0.00 0.34 0.97 0.00 1.23 0.00 0.66 0.00 0.66 2.67 
1.6 0.00 0.73 0.00 0.39 0.00 0.39 0.61 0.00 1.18 0.00 0.66 0.00 0.66 1.19 
1.8 0.00 0.72 0.00 0.40 0.00 0.40 2.37 0.00 1.02 0.00 0.58 0.00 0.58 9.14 

20 

2.0 0.00 0.70 0.00 0.28 0.00 0.28 0.51 0.00 1.05 0.00 0.77 0.00 0.77 0.99 
0.2 0.01 0.65 0.00 0.35 0.00 0.35 0.61 0.09 1.05 0.00 0.70 0.00 0.70 1.12 
0.4 0.00 0.65 0.00 0.27 0.00 0.27 0.64 0.00 1.43 0.00 0.53 0.00 0.53 1.29 
0.6 0.00 0.81 0.00 0.32 0.00 0.32 0.27 0.00 1.23 0.00 0.66 0.00 0.66 0.84 
0.8 0.00 0.71 0.00 0.23 0.00 0.23 0.47 0.00 1.15 0.00 0.60 0.00 0.60 0.83 
1.0 0.00 0.62 0.00 0.26 0.00 0.26 0.50 0.00 0.89 0.00 0.43 0.00 0.43 0.94 
1.2 0.00 0.57 0.00 0.23 0.00 0.23 0.34 0.00 0.82 0.00 0.38 0.00 0.38 0.90 
1.4 0.00 0.49 0.00 0.18 0.00 0.18 4.33 0.00 0.77 0.00 0.36 0.00 0.36 11.27 
1.6 0.00 0.43 0.00 0.19 0.00 0.19 0.49 0.00 0.72 0.00 0.34 0.00 0.34 0.81 
1.8 0.00 0.47 0.00 0.20 0.00 0.20 5.23 0.00 0.69 0.00 0.40 0.00 0.40 14.02 

30 

2.0 0.00 0.29 0.00 0.14 0.00 0.14 0.26 0.00 0.67 0.00 0.25 0.00 0.25 0.62 
0.2 0.01 0.49 0.00 0.09 0.00 0.09 0.34 0.05 1.02 0.00 0.22 0.00 0.22 0.94 
0.4 0.00 0.55 0.00 0.12 0.00 0.12 0.33 0.00 0.89 0.00 0.23 0.00 0.23 0.62 
0.6 0.00 0.53 0.00 0.10 0.00 0.10 0.31 0.00 0.76 0.00 0.20 0.00 0.20 0.74 
0.8 0.00 0.34 0.00 0.13 0.00 0.13 0.16 0.00 0.67 0.00 0.28 0.00 0.28 0.47 
1.0 0.00 0.21 0.00 0.09 0.00 0.09 0.34 0.00 0.61 0.00 0.22 0.00 0.22 0.61 
1.2 0.00 0.30 0.00 0.10 0.00 0.10 0.14 0.00 0.51 0.00 0.15 0.00 0.15 0.57 
1.4 0.00 0.27 0.00 0.09 0.00 0.09 7.24 0.00 0.44 0.00 0.21 0.00 0.21 17.09 
1.6 0.00 0.26 0.00 0.08 0.00 0.08 0.18 0.00 0.47 0.00 0.18 0.00 0.18 0.40 
1.8 0.00 0.18 0.00 0.09 0.00 0.09 7.79 0.00 0.33 0.00 0.14 0.00 0.14 17.71 

50 

2.0 0.00 0.21 0.00 0.06 0.00 0.06 0.18 0.00 0.41 0.00 0.20 0.00 0.20 0.38 
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Table 6.5 (cont.) 
 

Case 3 
( ) / 100Heuristic GLB GLB− ×  ( ) / 100Heuristic GLB GLB− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B 
0.2 2.08 2.08 1.93 1.93 6.80 6.80 4.42 4.64 4.64 6.09 6.09 9.50 9.50 11.23 
0.4 3.15 3.15 2.66 2.66 5.18 5.18 6.24 5.38 5.38 8.06 8.06 10.47 10.47 18.73 
0.6 2.83 2.83 2.16 2.16 5.64 5.64 9.52 4.62 4.62 7.17 7.17 8.80 8.80 27.54 
0.8 2.22 2.22 2.11 2.11 7.61 7.61 10.35 4.05 4.05 5.52 5.52 11.27 11.27 26.27 
1.0 2.53 2.53 2.55 2.55 5.37 5.37 9.50 4.73 4.73 5.25 5.25 9.20 9.20 37.32 
1.2 3.33 3.33 1.63 1.63 7.51 7.51 17.98 4.76 4.76 5.33 5.33 12.38 12.38 48.26 
1.4 3.26 3.26 1.69 1.69 6.87 6.87 23.86 5.23 5.23 3.14 3.14 10.72 10.72 49.38 
1.6 2.20 4.37 1.47 3.17 7.10 8.04 27.83 4.57 12.10 5.93 7.96 13.69 13.69 65.54 
1.8 2.43 5.33 2.01 3.79 6.71 7.95 35.47 5.70 16.44 4.36 9.23 10.46 10.46 51.00 

10 

2.0 1.97 6.09 1.26 4.13 4.08 6.57 22.29 6.18 15.93 3.24 7.67 10.00 11.50 61.72 
0.2 1.54 1.54 1.22 1.22 4.27 4.27 2.24 2.91 2.91 4.15 4.15 5.81 5.81 7.93 
0.4 1.34 1.34 1.53 1.53 5.72 5.72 5.99 2.46 2.46 3.23 3.23 9.69 9.69 17.03 
0.6 0.97 0.97 0.96 0.96 5.21 5.21 5.02 2.37 2.37 2.28 2.28 8.80 8.80 22.91 
0.8 2.06 2.06 1.41 1.41 4.58 4.58 14.41 2.97 2.97 3.26 3.26 6.17 6.17 29.55 
1.0 1.67 1.67 1.28 1.28 3.95 3.95 19.92 2.88 2.88 2.58 2.58 5.56 5.56 36.41 
1.2 2.05 2.05 1.32 1.32 3.35 3.35 14.72 2.82 2.82 2.39 2.39 6.90 6.90 42.88 
1.4 1.40 1.40 1.30 1.30 4.77 4.77 16.97 2.53 2.53 3.22 3.22 11.16 11.16 41.42 
1.6 1.04 1.60 0.53 0.59 4.00 4.00 24.95 2.64 6.72 1.61 2.08 6.53 6.53 47.06 
1.8 1.15 4.07 0.91 2.13 3.46 4.00 36.25 2.70 10.94 2.66 6.51 5.87 5.87 64.17 

20 

2.0 1.56 7.71 0.51 3.15 2.45 7.07 41.99 3.88 10.95 2.09 4.78 4.35 11.92 66.10 
0.2 0.93 0.93 0.83 0.83 2.22 2.22 3.16 1.82 1.82 2.16 2.16 4.21 4.21 7.21 
0.4 1.02 1.02 0.77 0.77 3.25 3.25 3.02 1.88 1.88 2.10 2.10 6.01 6.01 13.40 
0.6 1.45 1.45 0.61 0.61 2.89 2.89 12.06 2.02 2.02 1.70 1.70 5.41 5.41 21.88 
0.8 0.84 0.84 0.74 0.74 4.40 4.40 6.90 2.04 2.04 2.28 2.28 7.75 7.75 23.23 
1.0 0.95 0.95 0.66 0.66 3.09 3.09 19.48 1.91 1.91 1.81 1.81 5.54 5.54 35.11 
1.2 0.86 0.86 0.72 0.72 3.14 3.14 15.57 1.74 1.74 1.53 1.53 6.09 6.09 47.34 
1.4 0.64 0.64 0.34 0.34 3.53 3.53 23.53 1.80 1.80 1.24 1.24 6.50 6.50 50.77 
1.6 0.80 1.19 0.91 1.12 4.26 4.43 22.42 1.96 4.82 1.72 3.07 9.12 9.12 58.26 
1.8 0.64 2.94 0.54 1.37 2.84 3.20 40.88 1.38 6.46 1.87 3.74 6.31 6.31 57.41 

30 

2.0 1.45 8.59 0.76 2.71 2.20 6.35 31.55 3.68 11.47 1.99 5.84 5.09 10.80 61.23 
0.2 0.63 0.63 0.48 0.48 2.31 2.31 4.10 1.08 1.08 1.41 1.41 4.26 4.26 7.15 
0.4 0.66 0.66 0.51 0.51 1.74 1.74 2.88 1.17 1.17 0.97 0.97 3.93 3.93 13.79 
0.6 0.55 0.55 0.28 0.28 2.38 2.38 9.85 0.98 0.98 1.04 1.04 5.16 5.16 21.30 
0.8 0.46 0.46 0.41 0.41 2.53 2.53 8.02 0.98 0.98 1.35 1.35 5.41 5.41 26.86 
1.0 0.57 0.57 0.26 0.26 2.57 2.57 21.06 1.09 1.09 0.70 0.70 4.18 4.18 37.92 
1.2 0.66 0.66 0.33 0.33 2.48 2.48 13.38 1.22 1.22 0.83 0.83 5.56 5.56 45.83 
1.4 0.80 0.80 0.40 0.40 1.81 1.81 25.07 1.09 1.09 1.22 1.22 4.61 4.61 53.41 
1.6 0.53 0.84 0.27 0.39 2.33 2.59 31.56 1.13 3.16 0.97 1.20 3.63 3.63 60.33 
1.8 0.71 2.90 0.52 0.57 2.24 2.43 42.51 1.24 7.50 1.25 1.25 3.94 4.01 61.40 

50 

2.0 0.62 5.41 0.17 1.26 0.91 3.42 32.77 3.22 9.48 1.01 2.61 3.16 5.80 65.44 
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Case 4 
( ) / 100Heuristic GLB GLB− ×  ( ) / 100Heuristic GLB GLB− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B 
0.2 2.32 2.32 0.92 0.92 7.79 7.79 2.08 5.26 5.26 3.16 3.16 10.77 10.77 8.42 
0.4 2.34 2.34 1.31 1.31 7.04 7.04 5.34 5.28 5.28 3.17 3.17 11.97 11.97 10.03 
0.6 2.94 2.94 1.25 1.25 7.43 7.43 5.65 4.76 4.76 3.58 3.58 11.47 11.47 10.75 
0.8 2.50 2.50 1.47 1.47 7.40 7.40 6.26 7.19 7.19 3.59 3.59 10.38 10.38 18.63 
1.0 2.96 2.96 1.39 1.39 6.50 6.50 6.79 4.78 4.78 3.51 3.51 9.97 9.97 14.37 
1.2 1.16 1.16 0.83 0.83 5.34 5.34 8.41 3.69 3.69 2.23 2.23 7.43 7.43 17.27 
1.4 2.00 2.00 1.18 1.18 5.86 5.86 5.91 4.21 4.21 2.48 2.48 7.54 7.54 18.41 
1.6 2.08 2.08 0.91 0.91 4.98 4.98 9.26 3.92 3.92 2.53 2.53 7.52 7.52 27.19 
1.8 0.90 0.90 0.65 0.65 4.52 4.52 5.54 1.92 1.92 1.69 1.69 7.19 7.19 12.29 

10 

2.0 1.24 1.24 0.46 0.46 4.06 4.06 4.62 2.39 2.39 1.81 1.81 5.74 5.74 17.34 
0.2 1.90 1.90 0.69 0.69 4.15 4.15 1.99 2.79 2.79 1.88 1.88 5.53 5.53 6.88 
0.4 1.66 1.66 0.80 0.80 3.98 3.98 3.63 3.11 3.11 1.48 1.48 5.10 5.10 8.72 
0.6 1.38 1.38 0.58 0.58 4.00 4.00 3.30 2.85 2.85 1.31 1.31 5.07 5.07 12.27 
0.8 1.20 1.20 0.40 0.40 4.55 4.55 1.90 2.92 2.92 0.80 0.80 5.50 5.50 4.55 
1.0 1.51 1.51 0.67 0.67 3.89 3.89 5.34 2.97 2.97 1.56 1.56 5.54 5.54 12.36 
1.2 1.41 1.41 0.52 0.52 3.51 3.51 4.62 2.43 2.43 1.23 1.23 4.51 4.51 13.95 
1.4 1.14 1.14 0.40 0.40 2.60 2.60 1.42 2.21 2.21 0.94 0.94 3.55 3.55 3.29 
1.6 1.30 1.30 0.46 0.46 2.85 2.85 5.35 2.22 2.22 1.07 1.07 4.33 4.33 17.67 
1.8 0.54 0.54 0.23 0.23 2.77 2.77 1.92 1.18 1.18 0.52 0.52 3.44 3.44 9.50 

20 

2.0 0.76 0.76 0.46 0.46 2.35 2.35 6.38 1.53 1.53 0.91 0.91 3.75 3.75 21.60 
0.2 0.94 0.94 0.33 0.33 2.38 2.38 0.69 1.82 1.82 0.62 0.62 3.35 3.35 1.77 
0.4 1.05 1.05 0.32 0.32 3.28 3.28 1.09 1.71 1.71 0.64 0.64 3.76 3.76 4.11 
0.6 1.01 1.01 0.40 0.40 2.78 2.78 2.71 1.96 1.96 0.84 0.84 3.72 3.72 7.01 
0.8 1.28 1.28 0.43 0.43 2.70 2.70 2.20 2.01 2.01 0.62 0.62 3.55 3.55 3.55 
1.0 0.63 0.63 0.11 0.11 2.90 2.90 0.93 1.90 1.90 0.53 0.53 3.74 3.74 3.38 
1.2 0.66 0.66 0.30 0.30 2.53 2.53 2.47 1.29 1.29 0.69 0.69 3.42 3.42 6.34 
1.4 0.82 0.82 0.37 0.37 2.33 2.33 1.29 1.46 1.46 0.73 0.73 3.07 3.07 3.52 
1.6 0.61 0.61 0.27 0.27 2.00 2.00 3.33 1.48 1.48 0.78 0.78 2.68 2.68 11.47 
1.8 0.72 0.72 0.23 0.23 1.86 1.86 2.30 1.35 1.35 0.65 0.65 2.67 2.67 10.74 

30 

2.0 0.56 0.56 0.20 0.20 1.54 1.54 2.99 1.14 1.14 0.47 0.47 2.21 2.21 7.30 
0.2 0.66 0.66 0.21 0.21 1.61 1.61 0.50 1.00 1.00 0.52 0.52 2.13 2.13 1.30 
0.4 0.48 0.48 0.19 0.19 1.83 1.83 0.67 0.94 0.94 0.26 0.26 2.34 2.34 1.79 
0.6 0.76 0.76 0.20 0.20 1.79 1.79 1.19 1.21 1.21 0.44 0.44 2.39 2.39 2.96 
0.8 0.62 0.62 0.21 0.21 1.69 1.69 1.95 0.97 0.97 0.38 0.38 2.44 2.44 5.94 
1.0 0.74 0.74 0.16 0.16 1.82 1.82 1.70 1.16 1.16 0.32 0.32 2.34 2.34 4.40 
1.2 0.66 0.66 0.18 0.18 1.36 1.36 2.46 0.98 0.98 0.38 0.38 1.90 1.90 6.19 
1.4 0.63 0.63 0.18 0.18 1.54 1.54 0.15 0.96 0.96 0.41 0.41 1.89 1.89 7.65 
1.6 0.57 0.57 0.13 0.13 1.22 1.22 2.34 0.88 0.88 0.27 0.27 1.66 1.66 5.79 
1.8 0.57 0.57 0.09 0.09 1.15 1.15 1.78 0.80 0.80 0.20 0.20 1.42 1.42 12.62 

50 

2.0 0.24 0.24 0.09 0.09 0.95 0.95 1.76 0.55 0.55 0.15 0.15 1.45 1.45 3.94 
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Case 5 
( ) / 100Heuristic GLB GLB− ×  ( ) / 100Heuristic GLB GLB− ×  

Average Maximum 
n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 18.98 18.98 5.28 5.28 11.85 11.85 8.02 39.52 39.52 13.04 13.04 24.64 24.64 14.91 
0.4 14.94 15.37 3.41 4.87 7.00 7.27 11.55 29.14 35.00 9.29 12.14 19.87 19.87 35.71 
0.6 9.02 10.90 2.80 3.32 2.93 4.05 8.00 19.88 24.22 12.41 12.41 12.41 14.91 31.06 
0.8 6.95 7.96 2.58 4.05 2.77 3.78 5.62 15.74 13.33 10.59 14.71 8.82 12.94 10.09 
1.0 3.38 5.27 0.69 1.49 0.66 1.92 4.53 7.28 10.68 2.71 5.18 3.63 7.77 7.28 
1.2 2.70 3.43 0.81 1.13 0.67 1.53 3.58 6.28 7.11 3.95 4.39 2.63 6.58 8.26 
1.4 3.12 5.55 1.40 3.40 1.40 3.09 11.38 5.51 9.51 4.94 9.51 4.56 7.06 25.67 
1.6 2.94 4.64 0.75 1.41 0.75 1.79 3.18 5.81 10.70 3.88 8.86 3.88 8.86 8.49 
1.8 1.79 2.84 1.40 1.96 1.42 2.44 15.32 4.64 6.69 4.64 6.69 4.55 7.28 39.79 

10 

2.0 2.88 4.52 2.20 3.45 1.98 3.96 4.45 6.75 6.82 6.75 6.82 6.75 6.82 10.93 
0.2 9.11 10.02 1.98 1.94 4.63 5.43 10.98 18.33 18.33 7.60 7.62 14.34 15.14 52.90 
0.4 4.13 5.39 1.17 1.33 1.08 1.31 3.32 7.03 9.79 6.12 6.12 7.65 7.65 6.14 
0.6 3.39 5.01 0.35 0.45 1.21 2.54 5.60 12.46 12.12 2.36 2.36 8.08 10.54 14.38 
0.8 2.44 3.20 0.59 0.66 0.68 0.99 2.72 4.41 4.66 1.89 1.89 2.16 2.33 5.41 
1.0 2.07 2.86 0.41 0.70 0.39 0.83 2.73 3.60 5.81 2.09 3.49 1.63 4.88 5.76 
1.2 1.37 2.44 0.18 0.33 0.14 0.45 2.48 4.05 7.34 1.01 1.01 0.63 1.52 4.88 
1.4 2.07 2.72 0.49 0.65 0.49 0.65 24.63 3.14 5.23 3.14 3.64 3.14 3.64 50.09 
1.6 1.65 2.61 0.64 0.60 0.75 0.79 2.42 3.78 4.48 3.78 3.38 3.78 3.38 8.55 
1.8 1.86 3.18 1.18 2.38 1.13 2.43 22.97 3.34 6.25 3.34 6.25 3.34 6.25 55.31 

20 

2.0 1.98 2.60 1.31 2.22 1.34 2.28 4.37 3.48 4.18 3.48 4.18 3.48 4.18 6.97 
0.2 10.44 12.85 1.07 2.26 2.76 3.96 15.21 24.73 24.20 6.59 8.31 6.54 13.75 42.38 
0.4 4.28 4.56 0.36 0.36 0.43 0.43 2.73 9.03 11.40 1.13 1.13 1.13 1.13 6.06 
0.6 2.38 3.49 0.14 0.22 0.37 0.70 3.15 5.15 8.40 0.79 0.79 2.92 5.42 7.25 
0.8 2.00 2.76 0.23 0.23 0.37 0.46 2.04 3.08 4.79 1.56 1.56 2.19 3.13 3.60 
1.0 1.65 3.03 0.27 0.38 0.37 0.49 1.70 3.18 6.53 1.90 2.85 1.90 3.01 2.87 
1.2 1.26 1.73 0.30 0.45 0.32 0.62 2.18 2.88 5.12 1.60 3.04 1.12 2.56 4.42 
1.4 1.13 1.98 0.15 0.34 0.15 0.35 26.10 1.78 3.68 1.47 2.05 1.47 2.05 56.46 
1.6 0.79 2.20 0.06 0.55 0.06 0.55 2.86 2.03 4.02 0.63 2.49 0.63 2.49 7.20 
1.8 0.92 1.77 0.59 1.13 0.59 1.13 27.65 2.71 4.53 2.71 4.53 2.71 4.53 58.36 

30 

2.0 1.18 1.81 1.05 1.42 1.13 1.42 3.86 2.60 2.95 2.60 2.95 2.60 2.95 7.45 
0.2 13.48 13.16 0.15 0.45 1.66 1.62 12.91 24.15 22.62 1.20 4.30 8.31 5.93 25.65 
0.4 2.97 3.52 0.03 0.03 0.06 0.06 10.17 8.28 9.01 0.29 0.29 0.59 0.59 21.22 
0.6 1.30 1.81 0.14 0.14 0.16 0.24 1.43 3.00 3.69 1.25 1.25 1.38 2.13 3.52 
0.8 0.98 1.37 0.07 0.07 0.20 0.25 1.19 1.98 2.97 0.38 0.38 0.59 0.99 3.30 
1.0 0.90 1.65 0.09 0.09 0.09 0.19 1.89 1.77 3.00 0.48 0.48 0.48 1.27 2.96 
1.2 0.91 1.35 0.05 0.05 0.12 0.13 1.36 1.64 2.92 0.19 0.19 0.58 0.58 2.60 
1.4 0.78 1.24 0.05 0.05 0.05 0.05 30.84 1.71 2.70 0.32 0.32 0.32 0.32 69.87 
1.6 0.74 1.02 0.04 0.07 0.07 0.10 3.05 1.55 2.13 0.21 0.57 0.37 0.57 7.39 
1.8 0.69 0.99 0.27 0.31 0.27 0.31 29.24 1.54 1.90 1.54 1.65 1.54 1.65 60.70 

50 

2.0 0.80 1.30 0.51 0.82 0.55 0.85 3.38 1.67 2.22 1.67 2.22 1.67 2.22 4.52 
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Table 6.6: Heuristic Algorithms Performance – Number of Times Optimal is Found  
 

Case 1 Case 2 
# of times heuristics find the optimal # of times heuristics find the optimal n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B 
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B 
0.2 4 4 8 8 4 4 3 0.2 9 9 10 10 10 10 3 

0.4 2(2)* 0 7 1 5 0 0 0.4 8(2)* 2 8 2 8 2 0 

0.6 5(5)* 0 5 0 5 0 1 0.6 5(4)* 0 6 2 6 2 0 

0.8 4(6)* 0 4 0 4 0 1 0.8 5(5)* 1 5 1 5 1 2 

1.0 4(6)* 0 4 0 4 0 0 1.0 5(5)* 0 5 0 5 0 2 

1.2 3(7)* 0 3 0 3 0 0 1.2 2(8)* 0 2 0 2 0 0 

1.4 3(7)* 0 3 0 3 0 0 1.4 3(7)* 0 3 0 3 0 0 

1.6 2(8)* 0 2 0 2 0 1 1.6 2(8)* 0 2 0 2 0 0 

10 

1.8 1(9)* 0 1 0 1 0 0 

10 

1.8 3(7)* 0 3 0 3 0 0 

0.2 0(9)* 0 1 0 1 0 1 0.2 2(8)* 0 2 0 2 0 1 
20 

0.4 1(8)* 0 2 0 1 0 2 
20 

0.4 4(6)* 1 4 1 4 1 2 

Case 3 Case 4 
# of times heuristics find the optimal # of times heuristics find the optimal n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B 
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B 
0.2 3 3 6 6 0 0 2 0.2 4 4 10 10 0 0 6 

0.4 1 1 4 4 0 0 3 0.4 5 5 10 10 0 0 1 

0.6 3(5)* 3 3 3 0 0 1 0.6 3 3 10 10 0 0 0 

0.8 2(3)* 2 5 5 0 0 1 0.8 5(2)* 5 8 8 0 0 1 

1.0 3(5)* 3 0 0 1 1 1 1.0 1(2)* 1 8 8 0 0 0 

1.2 0(8)* 0 2 2 0 0 0 1.2 7(1)* 7 9 9 0 0 1 

1.4 0(10)* 0 0 0 0 0 0 1.4 4(1)* 4 9 9 0 0 0 

1.6 0(10)* 0 0 0 0 0 0 1.6 3(3)* 3 7 7 0 0 0 

10 

1.8 0(10)* 0 0 0 0 0 0 

10 

1.8 6 6 10 10 0 0 0 

0.2 0(8)* 0 1 1 0 0 0 0.2 1(3)* 1 7 7 0 0 1 
20 

0.4 0(8)* 0 1 1 0 0 0 
20 

0.4 2(5)* 2 5 5 0 0 0 

Case 5 
# of times heuristics find the optimal n1 n2/n1 

S1 S2 S3 S4 S5 S6 B&B 
0.2 1 1 5 5 2 2 3 

0.4 0 0 6 3 2 2 0 

0.6 0(8)* 0 0 1 0 1 1 

0.8 0(10)* 0 0 0 0 0 0 

1.0 0(10)* 0 0 0 0 0 0 

1.2 0(10)* 0 0 0 0 0 0 

1.4 0(10)* 0 0 0 0 0 0 

1.6 0(10)* 0 0 0 0 0 0 

10 

1.8 0(10)* 0 0 0 0 0 0 

0.2 0(10)* 0 0 0 0 0 0 
20 

0.4 0(10)* 0 0 0 0 0 0   
(*)  The numbers in parentheses denote the number of unsolved instances out of ten within one 

hour time limit. 
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6.3.3 Branch-and-bound Performances 

 

The branch-and-bound performances, i.e., CPU time, number of generated nodes 

and number of unsolved problems within one hour time limit are reported in Table 

6.7.  

 

We denote number of unsolved instances within one hour time limit in 

parentheses in Table 6.7. In calculating the average and maximum number of 

nodes, these unsolved instances are also included. Also, the zero CPU times 

indicate almost negligible computation time. 

 

As can be seen from Table 6.7, there is an inverse relationship between the 

branch-and-bound algorithm’s performance and the number of jobs. For example, 

when n1=10 and dominance case=1, average CPU time is 44.07 seconds and 

2606.16 seconds, for n1/n2= 0.2 and 0.4, respectively similarly the average 

number of generated nodes is 5805015.60 and 4322009570 for n1/n2= 0.2 and 

0.4, respectively. The major reason of this result is that raise in the number of jobs 

causes an exponential increase in the number of alternatives at each level of the 

tree. Another reason is that the performances of the lower bounds get worse as the 

number of jobs increase. 

 

It is observed from Table 6.7 that branch-and-bound algorithm performs better for 

dominance case 3 and 4. For the problems which the common machine is 

dominated by the other machines, our algorithm can solve problem instances up to 

20 jobs. Besides, if our problems are constructed for an environment where 

flowshop type jobs dominate parallel machine type jobs, then the branch-and-

bound algorithm can solve problem instances up to 22 jobs. 
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Table 6.7: Branch-and-bound Performances 
 

Case 1 
CPU Time (Sec.) Number of Nodes n1 n2/n1 
Avg Max Avg Max 

0.2 44.07 98.33 5,805,015.60 21,241,705.00 10 0.4 2,606.16(2)* 3600.00 432,200,957.00 832,710,027.00 
Case 2 

CPU Time (Sec.) Number of Nodes n1 n2/n1 
Avg Max Avg Max 

10 0.2 269.14 273.13 67,753,689.70 68,588,314.00 
Case 3 

CPU Time (Sec.) Number of Nodes n1 n2/n1 
Avg Max Avg Max 

0.2 5.10 5.10 115,115.30 1,150,905.00 
0.4 11.57 11.57 257,970.60 2,579,114.00 
0.6 2,366.34(5)* 3600.00 328,805,015.20 858,241,905.00 
0.8 2,530.58(6)* 3600.00 597,053,659.70 861,587,312.00 

10 

1.0 2,426.16(5)* 3600.00 577,053,659.70 843,247,082.00 
Case 4 

CPU Time (Sec.) Number of Nodes n1 n2/n1 
Avg Max Avg Max 

0.2 0.00 0.00 17.60 35.00 
0.4 0.00 0.00 47.90 102.00 
0.6 51.39 123.11 3,672,105.90 17,211,587.00 
0.8 1,996.57(2)* 3600.00 420,865,339.00 824,458,622.00 
1.0 2,086.30(2)* 3600.00 496,840,321.00 844,913,011.00 

10 

1.2 2,926.16(7)* 3600.00 578,442,431.00 870,513,205.00 
Case 5 

CPU Time (Sec.) Number of Nodes n1 n2/n1 
Avg Max Avg Max 

0.2 1.01 1.01 19,369.10 183,688.00 10 0.4 512.08 2030.31 67,374,528.10 332,159,966.00 
 
(*) The numbers in parentheses denote the number of unsolved instances out of ten within one 
hour time limit. 
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CHAPTER 7 
 
 

CONCLUSION 
 
 
 

In this thesis, we consider a scheduling problem of a manufacturing environment 

in which there are two manufacturing flow lines, where the third stage of the first 

line and the second stage of the second line are common. Each stage in the first 

flow line has a single machine whereas the second flow line contains two identical 

parallel machines in its first stage. Type-1 jobs are processed in the first flow line, 

whereas second flow line is dedicated to type-2 jobs. The last operation, of both 

types of jobs, must be processed on a common machine. The problem is to 

determine the sequence and schedule of all jobs at all stages of the two flow lines 

so that the makespan is minimized. There are many studies in scheduling 

literature that deal with makespan minimization problem in hybrid flowshop 

environment; however, scheduling in a three-stage dedicated hybrid flowshop 

with a common third-stage is reviewed first time in the literature with this work.   

 

We develop a mixed integer program and a branch-and-bound algorithm with 

lower and upper bounding procedures to find optimal solution of the problem. 

Moreover, we propose two heuristic algorithms which are used as initial upper 

bound to our branch-and-bound algorithm and mathematical model. Besides, 

these heuristics provide good quality solutions at little computational effort when 

the computational effort to obtain an exact solution with branch-and-bound 

algorithm or mathematical model is prohibitive. Lower bounds are derived to 

evaluate the effectiveness of the proposed heuristic algorithms. 
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Our computational experiments are designed by generating several problem 

combinations using different parameters, i.e., processing time and problem size. 

The experiments include 5 different cases in terms of production time, and up to 

150 jobs. The results are evaluated by using the following performance measures; 

average and maximum deviations from optimum solution and global lower bound, 

CPU time, the number of generated nodes and the number of unsolved problems. 

 

We observe from our experiments that the sequencing-rules based heuristic 

algorithm performance is satisfactory. Its worst-case overall average deviation 

performance is less than 5.30% and overall maximum deviation performance is 

less than 13.1% for 150 jobs. The results show that for the big size problems, 

good solutions are obtained in reasonable time limit and mostly, sequencing rule 

C determines the result of sequencing-rules based heuristic. 

 

The results of our computational experiments reveal that our branch-and-bound 

algorithm performs better if common machine is dominated by other machines or 

flowshop type jobs dominate parallel machine type jobs in terms of processing 

time. It is observed that the performance of branch-and-bound algorithm 

deteriorates as number of jobs increase. 

 

There are several future extensions of this research. We suggest the following for 

their immediate relevance to the results achieved in this study: 

(i) Development of the worst-case performance bounds for the proposed 

heuristics. 

(ii) Extension of this studies to consider more general versions of the problem; 

e.g., dedicated flow lines with more than three stages. 

(iii)Development of solutions by use of compu-search techniques such as 

Simulated Annealing, Tabu Search, or Genetic Algorithms. 
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(iv) Incorporation of different objectives (such as flow time and due-date related 

performance measures) into the problem studied in this study. 
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APPENDIX A 
 
 

NUMERICAL EXAMPLE ON THE BRANCH AND BOUND 

ALGORITHM  
 
 
 

To illustrate our branch and bound algorithm, suppose that we have six jobs with 

the processing times given in Table A.1. The first three jobs are type-1 jobs; 

others are type-2 jobs. 

 
 
 

Table A.1: Processing Times for the Numerical Example 

 
  Processing Times 

Jobs Stage 1 Stage 2 Stage 3 

1 7 1 2 

2 3 3 6 

3 2 6 5 

4 1 0 8 

5 3 0 4 

6 7 0 4 

 
 
 
Before applying the branch-and-bound algorithm on this example, we first apply 

the sequencing-rules based heuristic and obtain the initial upper bound for our 

branch and bound algorithm. Since the proposed heuristic algorithm and the 

global lower bound value are already calculated in Section 5.4 for the same data, 

we select the makespan of the sequence 4-5-6-3-2-1, which is 30, as the upper 
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bound. In these calculations, we see that the makespan value for the schedule 

obtained by sequencing-rules based heuristic is equal to the global lower bound 

value. Thus, we can conclude that the optimal makespan value for the example is 

30. 

 

We branch from node 0.  

 

LEVEL 1 

 

The lower bounds on node 1 as follows: 

{ }1 2 (6 5) min 3 3,6 2 191LB = + + + + + =  

{ }2 3 (3 6) min 3,2 141LB = + + + =  

3 10 (3 2) 151LB = + + =  

{ }4 2 (8 4 4) min 1,3,7 191LB = + + + + =  

{ }

{ }
{ }

5 max 2,min 0,01

(1 3 7) max 0,max(2,0,0) max(2,min(0,0))
max max 1,3,7 , 9

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 19,  14,  15,  19,  9 191LB = =  

 

The lower bounds on node 2: 
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{ }1 6 (2 5) min 1 7,6 2 212LB = + + + + + =  

{ }2 9 (1 6) min 7,2 182LB = + + + =  

3 12 (7 2) 212LB = + + =  

{ }4 6 (8 4 4) min 1,3,7 232LB = + + + + =  

{ }

{ }
{ }

5 max 6,min 0,02

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 21,  18,  21,  23,  13 232LB = =  

 

The lower bounds on node 3: 

 

{ }1 5 (2 6) min 1 7,3 3 193LB = + + + + + =  

{ }2 11 (1 3) min 7,3 183LB = + + + =  

3 13 (7 3) 233LB = + + =  

{ }4 5 (8 4 4) min 1,3,7 223LB = + + + + =  
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{ }

{ }
{ }

5 max 5,min 0,03

(1 3 7) max 0,max(5,0,0) max(5,min(0,0))
max max 1,3,7 , 12

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 19,  18,  23,  22,  12 233LB = =  

 

The lower bounds on node 4 as follows: 

 

{ }1 8 (2 6 5) min 1 7,3 3,6 2 274LB = + + + + + + + =  

{ }2 8 (1 3 6) min 7,3,2 204LB = + + + + =  

3 8 (7 3 2) 204LB = + + + =  

{ }4 8 (4 4) min 1,3,7 174LB = + + + =  

{ }

{ }
{ }

5 max 8,min 0,04

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 27,  20,  20,  17,  15 274LB = =  

 

The lower bounds on node 5 as follows: 

 

{ }1 4 (2 6 5) min 1 7,3 3,6 2 235LB = + + + + + + + =  
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{ }2 4 (1 3 6) min 7,3,2 165LB = + + + + =  

3 4 (7 3 2) 165LB = + + + =  

{ }4 4 (8 4) min 1,3,7 175LB = + + + =  

{ }

{ }
{ }

5 max 4,min 0,05

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 23,  16,  16,  17,  11 235LB = =  

 

The lower bounds on node 6 as follows: 

 

{ }1 4 (2 6 5) min 1 7,3 3,6 2 236LB = + + + + + + + =  

{ }2 4 (1 3 6) min 7,3,2 166LB = + + + + =  

3 4 (7 3 2) 166LB = + + + =  

{ }4 4 (8 4) min 1,3,7 176LB = + + + =  

{ }

{ }
{ }

5 max 4,min 0,06

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  
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{ }max 23,  16,  16,  17,  11 236LB = =  

 

After the calculation of the lower bounds of the jobs in set uJ , the node with the 

smallest lower bound value is selected to be branched next. 

{ }_  [ ( )] min ,  ,  ...,  1 2Global LB LEVEL i LB LB LBk= where s( uJ ) = k 

So,  

{ }_  [ (1)] min 19,  23,  23,  27, 23, 23 19Global LB LEVEL = = ,  

branch from node 1. 

 

LEVEL 2 

 

The lower bounds on node 1-2: 

 

1 8 5 (6 2) 211 2LB = + + + =−  

2 11 6 2 191 2LB = + + =−  

3 14 2 161 2LB = + =−  

{ }4 8 (8 4 4) min 1,3,7 251 2LB = + + + + =−  

{ }

{ }
{ }

5 max 8,min 0,01 2

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 21,  19,  16,  25,  15 251 2LB = =−  



 A7

The lower bounds on node 1-3: 

 

1 7 6 (3 3) 191 3LB = + + + =−  

2 13 3 3 191 3LB = + + =−  

3 15 3 181 3LB = + =−  

{ }4 7 (8 4 4) min 1,3,7 241 3LB = + + + + =−  

{ }

{ }
{ }

5 max 7,min 0,01 3

(1 3 7) max 0,max(7,0,0) max(7,min(0,0))
max max 1,3,7 , 14

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 19,  19,  18, 24,  14 241 3LB = =−  

 

The lower bounds on node 1-4 as follows: 

 

{ }1 10 (6 5) min 3 3,6 2 271 4LB = + + + + + =−  

{ }2 10 (3 6) min 3,2 211 4LB = + + + =−  

3 10 (3 2) 151 4LB = + + =−  

{ }4 10 (4 4) min 1,3,7 191 4LB = + + + =−  
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{ }

{ }
{ }

5 max 10,min 0,01 4

(1 3 7) max 0,max(10,0,0) max(10,min(0,0))
max max 1,3,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 27,  21,  15,  19,  17 271 4LB = =−  

 

The lower bounds on node 1-5 as follows: 

 

{ }1 6 (6 5) min 3 3,6 2 231 5LB = + + + + + =−  

{ }2 6 (3 6) min 3,2 171 5LB = + + + =−  

3 6 (3 2) 111 5LB = + + =−  

{ }4 6 (8 4) min 1,3,7 191 5LB = + + + =−  

{ }

{ }
{ }

5 max 6,min 0,01 5

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 23,  17,  11,  19,  13 231 5LB = =−  

 

The lower bounds on node 1-6 as follows: 
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{ }1 6 (6 5) min 3 3,6 2 231 6LB = + + + + + =−  

{ }2 6 (3 6) min 3,2 171 6LB = + + + =−  

3 6 (3 2) 111 6LB = + + =−  

{ }4 6 (8 4) min 1,3,7 191 6LB = + + + =−  

{ }

{ }
{ }

5 max 6,min 0,01 6

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 23,  17,  11,  19,  13 231 6LB = =−  

 

{ }_  [ (2)] min 25,  24,  27,  23, 23 23Global LB LEVEL = = , 

branch from node 10 or node 11 since they have the smallest lower bound value; 

choose one of them arbitrary.  

 

LEVEL 3 

 

The lower bounds on node 1-5-2: 

 

1 12 5 (2 6) 251 5 2LB = + + + =− −  

2 15 6 2 231 5 2LB = + + =− −  

3 18 2 201 5 2LB = + =− −  



 A10

{ }4 12 (8 4) min 1,7 251 5 2LB = + + + =− −  

{ }

{ }
{ }

5 max 12,min 9,01 5 2

(1 7) max 0,max(12,9,0) max(12,min(9,0))
max max 1,7 , 19

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 25,  23,  20, 25,  19 251 5 2LB = =− −  

 

The lower bounds on node 1-5-3 as follows: 

1 11 6 (3 3) 231 5 3LB = + + + =− −  

2 17 3 3 231 5 3LB = + + =− −  

3 19 3 221 5 3LB = + =− −  

{ }4 11 (8 4) min 1,7 241 5 3LB = + + + =− −  

{ }

{ }
{ }

5 max 11,min 9,01 5 3

(1 7) max 0,max(11,9,0) max(11,min(9,0))
max max 1,7 , 18

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 23,  23,  22,  24,  18 241 5 3LB = =− −  

 

The lower bounds on node 1-5-4 as follows: 
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{ }1 14 (6 5) min 3 3,6 2 311 5 4LB = + + + + + =− −  

{ }2 14 (3 6) min 3,2 251 5 4LB = + + + =− −  

3 14 (3 2) 191 5 4LB = + + =− −  

{ }4 14 4 min 1,7 191 5 4LB = + + =− −  

{ }

{ }
{ }

5 max 14,min 9,01 5 4

(1 7) max 0,max(14,9,0) max(14,min(9,0))
max max 1,7 , 21

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 31,  25,  19,  19,  21 311 5 4LB = =− −  

 

The lower bounds on node 1-5-6 as follows: 

 

{ }1 10 (6 5) min 3 3,6 2 271 5 6LB = + + + + + =− −  

{ }2 10 (3 6) min 3,2 211 5 6LB = + + + =− −  

3 10 (3 2) 151 5 6LB = + + =− −  

{ }4 10 8 min 1,7 191 5 6LB = + + =− −  
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{ }

{ }
{ }

5 max 10,min 9,01 5 6

(1 7) max 0,max(10,9,0) max(10,min(9,0))
max max 1,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 27,  21,  15,  19,  17 271 5 6LB = =− −  

 

{ }_  [ (3)] min 25,  24,  31,  27 24Global LB LEVEL = = ,  

branch from node 13  

 

LEVEL 4 

 

The lower bounds on node 1-5-3-2 as follows: 

 

1 17 0 0 171 5 3 2LB = + + =− − −  

2 20 0 0 201 5 3 2LB = + + =− − −  

3 23 0 231 5 3 2LB = + =− − −  

{ }4 17 (8 4) min 1,7 301 5 3 2LB = + + + =− − −  

{ }

{ }
{ }

5 max 17,min 9,01 5 3 2

(1 7) max 0,max(17,9,0) max(17,min(9,0))
max max 1,7 , 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  
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{ }max 17,  20,  23,  30,  24 301 5 3 2LB = =− − −  

 

The lower bounds on node 1-5-3-4 as follows: 

 

1 19 6 (3 3) 311 5 3 4LB = + + + =− − −  

2 19 3 3 251 5 3 4LB = + + =− − −  

3 19 3 221 5 3 4LB = + =− − −  

{ }4 19 4 min 1,7 241 5 3 4LB = + + =− − −  

{ }

{ }
{ }

5 max 19,min 9,01 5 3 4

(1 7) max 0,max(19,9,0) max(19,min(9,0))
max max 1,7 , 26

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  

{ }max 31,  25,  22,  24,  26 311 5 3 4LB = =− − −  

 

The lower bounds on node 1-5-3-6 as follows: 

 

1 15 6 (3 3) 271 5 3 6LB = + + + =− − −  

2 15 3 3 211 5 3 6LB = + + =− − −  

3 15 3 181 5 3 6LB = + =− − −  

{ }4 15 8 min 1,7 241 5 3 6LB = + + =− − −  
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{ }

{ }
{ }

5 max 15,min 9,01 5 3 6

(1 7) max 0,max(15,9,0) max(15,min(9,0))
max max 1,7 , 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  

{ }max 27,  21,  18,  24,  22 271 5 3 6LB = =− − −  

 

{ }_  [ (4)] min 30,  31,  27 27Global LB LEVEL = = , 

branch from node 13  

 

LEVEL 5 

 

The lower bounds on node 1-5-3-6-2 as follows: 

 

1 21 0 0 211 5 3 6 2LB = + + =− − − −  

2 24 0 0 241 5 3 6 2LB = + + =− − − −  

3 27 0 271 5 3 6 2LB = + =− − − −  

4 21 8 1 301 5 3 6 2LB = + + =− − − −  

{ }

{ }

5 max 21,min 9,221 5 3 6 2

1 max 0,max(21,9,22) max(21,min(9,22))
max 1, 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=  

{ }max 21,  24,  27,  30,  22 301 5 3 6 2LB = =− − − −  



 A15

The lower bounds on node 1-5-3-6-4 as follows: 

 

1 23 6 (3 3) 351 5 3 6 4LB = + + + =− − − −  

2 23 3 3 291 5 3 6 4LB = + + =− − − −  

3 23 3 261 5 3 6 4LB = + =− − − −  

4 23 0 1 241 5 3 6 4LB = + + =− − − −  

{ }

{ }

5 max 23,min 9,221 5 3 6 4

1 max 0,max(23,9,22) max(23,min(9,22))
max 1, 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=  

{ }max 35,  29,  26,  24,  24 351 5 3 6 4LB = =− − − −  

 

{ }_  [ (5)] min 30,  35 30Global LB LEVEL = = , 

branch from node 19  

 

LEVEL 6 

 

The lower bounds on node 1-5-3-6-2-4 as follows: 

 

1 29 0 0 291 5 3 6 2 4LB = + + =− − − − −  

2 29 0 0 291 5 3 6 2LB = + + =− − − −  

3 29 0 291 5 3 6 2 4LB = + =− − − − −  
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4 29 0 1 301 5 3 6 2 4LB = + + =− − − − −  

{ }

{ }

5 max 29,min 9,221 5 3 6 2 4

1 max 0,max(29,9,22) max(29,min(9,22))
max 1, 30

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − − −

− −
=  

{ }max 29,  29,  29,  30,  30 301 5 3 6 2 4LB = =− − − − −  

 

max 30C =  

 

At last level of the tree, we obtain a complete schedule with the makespan value 

30 that is equal to the optimal one. Hence, we cannot get better result than 30; so 

we can fathom all other unbranched nodes. 

 

Since there is no unfathomed or nonbranched node, we do not backtrack and the 

latest updated upper bound is accepted as the solution of the algorithm, 30. 

 

Branching scheme of the numerical example is given in Figure A.1. 
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Figure A.1: Branching Scheme of the Numerical Example 
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APPENDIX B 
 
 

NUMERICAL EXAMPLE ON THE BRANCH-AND-BOUND 

BASED HEURISTIC  
 
 
 

To illustrate the proposed heuristic algorithm, suppose that we have six jobs with 

the processing times given in Table B.1. The first three jobs are type-1 jobs; 

others are type-2 jobs. 

 
 
 

Table B.1: Processing Times for the Numerical Example 

 
  Processing Times 

Jobs Stage 1 Stage 2 Stage 3 

1 7 1 2 

2 3 3 6 

3 2 6 5 

4 1 0 8 

5 3 0 4 

6 7 0 4 

 
 
 
We branch from node 0.  

 

LEVEL 1 

 

The lower bounds on node 1 as follows: 
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{ }1 2 (6 5) min 3 3,6 2 191LB = + + + + + =  

{ }2 3 (3 6) min 3,2 141LB = + + + =  

3 10 (3 2) 151LB = + + =  

{ }4 2 (8 4 4) min 1,3,7 191LB = + + + + =  

{ }

{ }
{ }

5 max 2,min 0,01

(1 3 7) max 0,max(2,0,0) max(2,min(0,0))
max max 1,3,7 , 9

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 19,  14,  15,  19,  9 191LB = =  

 

The lower bounds on node 2: 

 

{ }1 6 (2 5) min 1 7,6 2 212LB = + + + + + =  

{ }2 9 (1 6) min 7,2 182LB = + + + =  

3 12 (7 2) 212LB = + + =  

{ }4 6 (8 4 4) min 1,3,7 232LB = + + + + =  



 A20

{ }

{ }
{ }

5 max 6,min 0,02

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 21,  18,  21,  23,  13 232LB = =  

 

The lower bounds on node 3: 

 

{ }1 5 (2 6) min 1 7,3 3 193LB = + + + + + =  

{ }2 11 (1 3) min 7,3 183LB = + + + =  

3 13 (7 3) 233LB = + + =  

{ }4 5 (8 4 4) min 1,3,7 223LB = + + + + =  

{ }

{ }
{ }

5 max 5,min 0,03

(1 3 7) max 0,max(5,0,0) max(5,min(0,0))
max max 1,3,7 , 12

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 19,  18,  23,  22,  12 233LB = =  

 

The lower bounds on node 4 as follows: 
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{ }1 8 (2 6 5) min 1 7,3 3,6 2 274LB = + + + + + + + =  

{ }2 8 (1 3 6) min 7,3,2 204LB = + + + + =  

3 8 (7 3 2) 204LB = + + + =  

{ }4 8 (4 4) min 1,3,7 174LB = + + + =  

{ }

{ }
{ }

5 max 8,min 0,04

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 27,  20,  20,  17,  15 274LB = =  

 

The lower bounds on node 5 as follows: 

 

{ }1 4 (2 6 5) min 1 7,3 3,6 2 235LB = + + + + + + + =  

{ }2 4 (1 3 6) min 7,3,2 165LB = + + + + =  

3 4 (7 3 2) 165LB = + + + =  

{ }4 4 (8 4) min 1,3,7 175LB = + + + =  
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{ }

{ }
{ }

5 max 4,min 0,05

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 23,  16,  16,  17,  11 235LB = =  

 

The lower bounds on node 6 as follows: 

 

{ }1 4 (2 6 5) min 1 7,3 3,6 2 236LB = + + + + + + + =  

{ }2 4 (1 3 6) min 7,3,2 166LB = + + + + =  

3 4 (7 3 2) 166LB = + + + =  

{ }4 4 (8 4) min 1,3,7 176LB = + + + =  

{ }

{ }
{ }

5 max 4,min 0,06

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=  

{ }max 23,  16,  16,  17,  11 236LB = =  

 

After the calculation of the lower bounds of the jobs in set uJ , the node with the 

smallest lower bound value is selected to be branched next. 

So,  
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{ }_  [ (1)] min 19,  23,  23,  27, 23, 23 19Global LB LEVEL = = ,  

branch from node 1. 

 

LEVEL 2 

 

The lower bounds on node 1-2: 

 

1 8 5 (6 2) 211 2LB = + + + =−  

2 11 6 2 191 2LB = + + =−  

3 14 2 161 2LB = + =−  

{ }4 8 (8 4 4) min 1,3,7 251 2LB = + + + + =−  

{ }

{ }
{ }

5 max 8,min 0,01 2

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 21,  19,  16,  25,  15 251 2LB = =−  

 

The lower bounds on node 1-3: 

 

1 7 6 (3 3) 191 3LB = + + + =−  

2 13 3 3 191 3LB = + + =−  

3 15 3 181 3LB = + =−  
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{ }4 7 (8 4 4) min 1,3,7 241 3LB = + + + + =−  

{ }

{ }
{ }

5 max 7,min 0,01 3

(1 3 7) max 0,max(7,0,0) max(7,min(0,0))
max max 1,3,7 , 14

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 19,  19,  18, 24,  14 241 3LB = =−  

 

The lower bounds on node 1-4 as follows: 

 

{ }1 10 (6 5) min 3 3,6 2 271 4LB = + + + + + =−  

{ }2 10 (3 6) min 3,2 211 4LB = + + + =−  

3 10 (3 2) 151 4LB = + + =−  

{ }4 10 (4 4) min 1,3,7 191 4LB = + + + =−  

{ }

{ }
{ }

5 max 10,min 0,01 4

(1 3 7) max 0,max(10,0,0) max(10,min(0,0))
max max 1,3,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 27,  21,  15,  19,  17 271 4LB = =−  

 

The lower bounds on node 1-5 as follows: 
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{ }1 6 (6 5) min 3 3,6 2 231 5LB = + + + + + =−  

{ }2 6 (3 6) min 3,2 171 5LB = + + + =−  

3 6 (3 2) 111 5LB = + + =−  

{ }4 6 (8 4) min 1,3,7 191 5LB = + + + =−  

{ }

{ }
{ }

5 max 6,min 0,01 5

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 23,  17,  11,  19,  13 231 5LB = =−  

 

The lower bounds on node 1-6 as follows: 

 

{ }1 6 (6 5) min 3 3,6 2 231 6LB = + + + + + =−  

{ }2 6 (3 6) min 3,2 171 6LB = + + + =−  

3 6 (3 2) 111 6LB = + + =−  

{ }4 6 (8 4) min 1,3,7 191 6LB = + + + =−  
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{ }

{ }
{ }

5 max 6,min 0,01 6

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=  

{ }max 23,  17,  11,  19,  13 231 6LB = =−  

 

{ }_  [ (2)] min 25,  24,  27,  23, 23 23Global LB LEVEL = = , 

branch from node 10 or node 11 since they have the smallest lower bound value; 

choose one of them arbitrary.  

 

LEVEL 3 

 

The lower bounds on node 1-5-2: 

 

1 12 5 (2 6) 251 5 2LB = + + + =− −  

2 15 6 2 231 5 2LB = + + =− −  

3 18 2 201 5 2LB = + =− −  

{ }4 12 (8 4) min 1,7 251 5 2LB = + + + =− −  

{ }

{ }
{ }

5 max 12,min 9,01 5 2

(1 7) max 0,max(12,9,0) max(12,min(9,0))
max max 1,7 , 19

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  
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{ }max 25,  23,  20, 25,  19 251 5 2LB = =− −  

 

The lower bounds on node 1-5-3 as follows: 

 

1 11 6 (3 3) 231 5 3LB = + + + =− −  

2 17 3 3 231 5 3LB = + + =− −  

3 19 3 221 5 3LB = + =− −  

{ }4 11 (8 4) min 1,7 241 5 3LB = + + + =− −  

{ }

{ }
{ }

5 max 11,min 9,01 5 3

(1 7) max 0,max(11,9,0) max(11,min(9,0))
max max 1,7 , 18

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 23,  23,  22,  24,  18 241 5 3LB = =− −  

 

The lower bounds on node 1-5-4 as follows: 

 

{ }1 14 (6 5) min 3 3,6 2 311 5 4LB = + + + + + =− −  

{ }2 14 (3 6) min 3,2 251 5 4LB = + + + =− −  

3 14 (3 2) 191 5 4LB = + + =− −  

{ }4 14 4 min 1,7 191 5 4LB = + + =− −  
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{ }

{ }
{ }

5 max 14,min 9,01 5 4

(1 7) max 0,max(14,9,0) max(14,min(9,0))
max max 1,7 , 21

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 31,  25,  19,  19,  21 311 5 4LB = =− −  

 

The lower bounds on node 1-5-6 as follows: 

 

{ }1 10 (6 5) min 3 3,6 2 271 5 6LB = + + + + + =− −  

{ }2 10 (3 6) min 3,2 211 5 6LB = + + + =− −  

3 10 (3 2) 151 5 6LB = + + =− −  

{ }4 10 8 min 1,7 191 5 6LB = + + =− −  

{ }

{ }
{ }

5 max 10,min 9,01 5 6

(1 7) max 0,max(10,9,0) max(10,min(9,0))
max max 1,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=  

{ }max 27,  21,  15,  19,  17 271 5 6LB = =− −  

 

{ }_  [ (3)] min 25,  24,  31,  27 24Global LB LEVEL = = ,  

branch from node 13  
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LEVEL 4 

 

The lower bounds on node 1-5-3-2 as follows: 

 

1 17 0 0 171 5 3 2LB = + + =− − −  

2 20 0 0 201 5 3 2LB = + + =− − −  

3 23 0 231 5 3 2LB = + =− − −  

{ }4 17 (8 4) min 1,7 301 5 3 2LB = + + + =− − −  

{ }

{ }
{ }

5 max 17,min 9,01 5 3 2

(1 7) max 0,max(17,9,0) max(17,min(9,0))
max max 1,7 , 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  

{ }max 17,  20,  23,  30,  24 301 5 3 2LB = =− − −  

 

The lower bounds on node 1-5-3-4 as follows: 

 

1 19 6 (3 3) 311 5 3 4LB = + + + =− − −  

2 19 3 3 251 5 3 4LB = + + =− − −  

3 19 3 221 5 3 4LB = + =− − −  

{ }4 19 4 min 1,7 241 5 3 4LB = + + =− − −  
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{ }

{ }
{ }

5 max 19,min 9,01 5 3 4

(1 7) max 0,max(19,9,0) max(19,min(9,0))
max max 1,7 , 26

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  

{ }max 31,  25,  22,  24,  26 311 5 3 4LB = =− − −  

 

The lower bounds on node 1-5-3-6 as follows: 

 

1 15 6 (3 3) 271 5 3 6LB = + + + =− − −  

2 15 3 3 211 5 3 6LB = + + =− − −  

3 15 3 181 5 3 6LB = + =− − −  

{ }4 15 8 min 1,7 241 5 3 6LB = + + =− − −  

{ }

{ }
{ }

5 max 15,min 9,01 5 3 6

(1 7) max 0,max(15,9,0) max(15,min(9,0))
max max 1,7 , 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=  

{ }max 27,  21,  18,  24,  22 271 5 3 6LB = =− − −  

 

{ }_  [ (4)] min 30,  31,  27 27Global LB LEVEL = = , 

branch from node 13  
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LEVEL 5 

 

The lower bounds on node 1-5-3-6-2 as follows: 

 

1 21 0 0 211 5 3 6 2LB = + + =− − − −  

2 24 0 0 241 5 3 6 2LB = + + =− − − −  

3 27 0 271 5 3 6 2LB = + =− − − −  

4 21 8 1 301 5 3 6 2LB = + + =− − − −  

{ }

{ }

5 max 21,min 9,221 5 3 6 2

1 max 0,max(21,9,22) max(21,min(9,22))
max 1, 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=  

{ }max 21,  24,  27,  30,  22 301 5 3 6 2LB = =− − − −  

 

The lower bounds on node 1-5-3-6-4 as follows: 

 

1 23 6 (3 3) 351 5 3 6 4LB = + + + =− − − −  

2 23 3 3 291 5 3 6 4LB = + + =− − − −  

3 23 3 261 5 3 6 4LB = + =− − − −  

4 23 0 1 241 5 3 6 4LB = + + =− − − −  
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{ }

{ }

5 max 23,min 9,221 5 3 6 4

1 max 0,max(23,9,22) max(23,min(9,22))
max 1, 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=  

{ }max 35,  29,  26,  24,  24 351 5 3 6 4LB = =− − − −  

 

{ }_  [ (5)] min 30,  35 30Global LB LEVEL = = , 

branch from node 19  

 

LEVEL 6 

 

The lower bounds on node 1-5-3-6-2-4 as follows: 

 

1 29 0 0 291 5 3 6 2 4LB = + + =− − − − −  

2 29 0 0 291 5 3 6 2LB = + + =− − − −  

3 29 0 291 5 3 6 2 4LB = + =− − − − −  

4 29 0 1 301 5 3 6 2 4LB = + + =− − − − −  

{ }

{ }

5 max 29,min 9,221 5 3 6 2 4

1 max 0,max(29,9,22) max(29,min(9,22))
max 1, 30

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − − −

− −
=  

{ }max 29,  29,  29,  30,  30 301 5 3 6 2 4LB = =− − − − −  
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max 30C =  

 

Branching scheme of the numerical example is given in Figure B.1. 
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Figure B.1: Branching Scheme of the Numerical Example 




