PARALLEL PROCESSING BY A MICROCONTROLLER BASED-SY&EM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
CANKAYA UNIVERSITY

BY

SERDAR CETNKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JANUARY , 2009

Title of the Thesis: Paralel Processing By a Microcontroller-Based System
Submitted by Serdar Cetinkaya

Approval of the Graduate School of Natural and Applied Sciences, Cankaya

URBsubs/

Prof. Dr. Yahya K. BAYKAL

University

Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Mehmet R. Tolun
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree Master of Science.

.527/[”7/4/7,1,\

Prof. Dr. Mehmet R. Tolun

Supervisor

Examination Date : 19.01.2009

Examining Committee Members

Assoc. Prof. Ferda Nur ALPASLAN (METU) QUMM@&'\

Prof. Dr. Mehmet R. TOLUN (Cankaya Univ.) M i ;W’—]

Asst. Prof. Dr. Reza HASSANPOUR (Cankaya Univ.) Q J/ﬂ 27 Mt//7

STATEMENT OF NON-PRAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Serdar Cetinkaya
Signature

Date : 19.01.2009

ABSTRACT

PARALLEL PROCESSING BY A MICROCONTROLLER-BASED SY&EM

CETINKAYA, Serdar
M.S.c., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet R. Tolun

JANUARY 2009, 62 pages

In this thesis, a microcontroller-based system whexecutes parallel process is
developed. This system is designed to crack passgetting the most performance.

When system cracks password, system outputs egadirtie.

There are two software systems. One of them wisatumning on master and one
another software system which is running on nodespose the embedded software
system. System architecture is based on MIMD achite. Performance analysis is

based on Amdahl’s Law. Speedup is calculated.

Keywords: Parallel Processing, Embedded Software Development

Oz

MIKRODENETLEYICI TABANLI BIR SSTEMILE PARALEL iSLEM

CETINKAYA, Serdar
Yukseklisans, Bilgisayar MuhendigiiAnabilim Dali
Tez Yoneticisi : Prof. Dr. Mehmet R. Tolun

OCAK 2009, 62 sayfa

Bu tez ¢cagmasinda paraleklem yapan microdenetleyici tabanli gomalu bir siste
gelistirilmi stir. Sistem kullanici tarafindan girilegifreyi en yiiksek performans ile
cbzmek amaciyla tasarlarghr. Sistem kullanicinigifresini ¢6zdigl an harcanan

islem zamanini ¢ikti olarak vermektedir.

iki yazilim sistemi vardir. Master (izerindes&n yazilim ve node’lar iizerinde gem
yazilim olmak uGzere iki gomuali yazilim sistemi gluur. MIMD (Multiple
intruction, multible data) mimari temel alingr. Degisik sayillarda node
kullanillarak performans analizi icin Amdahl's Law temel alinmgtir.

Hizlanma(speedup) ve verimlilik(efficiency) hesaphblari yapilmtir.

Anahtar Kelimeler: Paralelislem, Gomulu Yazilim Gedtirme

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitadkeis supervisor Prof. Dr.
Mehmet Tolun for his guidance, advice, criticisrmceuragements and insight

throughout the research.

Additionally, I want to thank to my father Hasam tbeir support, encouragement and
reliance throughout my life.

Vi

TABLE OF CONTENTS

STATEMENT OF NON-PRAGIARISM.......cooiiiiiiiiiiii e
AB ST R A T .

ACKNOWLEDGMENTS ...ttt it e e e

TABLE OF CONTENT S e e e e

LIST OF FIGURES. ... e e e e e
CHAPTERS :

1. INTRODUCTION. .. ccutit it e e e e e e e e e e

1.1 Theoretical foundations..............ccovviiiiiiiin e,

1.1.1 Parallel Processing........ccoouvuiiiiiiiiiiimaie e

1.1.2 Parallel Hardwares............ccoviieiieiin i e e

1.1.3 Amdahl's Law, Speedup, Efmy................ccenee.

2. CASE TOOLS AND TECHNOLOGICAL ASPECTS................

2.1 Mpasm Library and Software ASPectS ..ueu.vvevvveiiennnne.
2.2 ISIS Simulation System..........cccooiiiiiii i
3. MICROCONTROLLER ARCHITECTURE...........cccoviiine.

3.1 Memory Organization...........ccceerieriieieie e e eaevemes

3.2 Data EEPROM MEMOIY......coviiiiiiiiii e
3.3 O PO S . e
3.4 TIMer MOAUIESo e e,

3.5 Special Features of the CPU...............commmmeevveniennns
4. PARALLEL PROCESSING BY A MICROCONTROLLER-BAD

4.1 Ready State......cccoviiiii it

Vil

ogm_bwl\)l\)

12
16
16
18
22

23
25

28
28

4.2 RUNNING SEALE... .. e e
4.3 Calculating Speedup.......ccvvvieiie it
5. CONCLUSION AND FUTURE WORK......cciiiiiiiie i e,

viii

FIGURES
1.1
1.2
1
2.1
2.2
2.3
3.1
3.2
3.3
4.1
4.2
4.3
4.4

4.5

LIST OF FIGURES

Speedup under Amdahl’'s Law...........ccoovviiiiii i i, 5
Fixed-Size Model.............o o, B
Scaled-Size Model..........coooiiiiii e 6
Simple Assembler Process........ccvovvvvieiie i,
LiNK Process.......ccooviii i i e e 10
Library Build Process..........cccoooviiiiiiiii e, 11
Program Memory Map and Stack 16f84......................... 17
Program Memory Map and Stack 16f877.......................18
Block diagram of the TimerO / WDT Prescaler............... 24
SYSEM DESION. ...ttt et 29
System is Ready State...........ccovvviii i, 30
System is Running State.....................ccceievvevveeenn.. 60
Calculating Speedup using different number ofasoaind
aninputvalue..........c.ooo i e, O
Speedup graph... ... s 61

CHAPTER 1

INTRODUCTION

Multiple CPU system offer the promise of both irasig the throughput of a
computing system as well as decreasing job resptmse through the use of
parallel processing. In such systems, throughputdseased by the addition of
more microcontrollers and, which associated wiik thcreased capacity, which
is reduction in job response time due to decreasugueing delays. Further
reduction in job response time requires exploitragallelism within the job by

simultaneously executing a job’s tasks on multiplerocontrollers.

As initially pointed out by Amdahl [1] there arendamental limitation on
speedup that are obtainable through parallel eix@tuEven under the ideal
assumption that jobs have unbounded parallelisst, associated with managing
the cooperation between a job’s tasks like syndhadion or data sharing put
limitations on possible speedups. An additional cdsychronization arises from
randomness in task execution times.These variatiars arise either from
resource sharing, such as memory conflicts, artsa the inherent randomness of

a computations, or from both effects.

These random variations result in staggering tamkptetion times and have

different effects depending on parallel processirahitecture [2]. An analysis of

how different interconnection structure influentes efficiency. In this thesis, we

focus on the task execution time to determine foretgal limitation of task

sychronization. Our system assumes that all systest associated with
1

syncronization are included in task execution times

1.1.Theoretical foundations

1.1.1. Parallel Processing

Parallel processing is a form of computation in ehhimany instructions are
carried out simultaneously, operating on the ppglecithat large problems can
often be divided into smaller ones, which are tls®tved concurrently ("in

parallel"). There are several different forms ofrgll@l computing: bit-level

parallelism, instruction-level parallelism, datagkelism, and task parallelism. It
has been used for many years, mainly in high-perdoce computing, but
interest in it has grown in recent years due topthgsical constraints preventing
frequency scaling. Parallel computing has beconge dominant paradigm in
computer architecture, mainly in the form of mudtie processors.[3] However, in

recent years, power consumption by parallel commputas become a concern.

Parallel computers can be roughly classified adogrtb the level at which the
hardware supports parallelism with multi-core andltiprocessor computers
having multiple processing elements within a singlachine, while clusters,
MPPs, and grids use multiple computers to work loe $same task. Parallel
computer programs are more difficult to write theequential ones, because
concurrency introduces several new classes of patesoftware bugs, of which
race conditions are the most common. Communicadind synchronization
between the different subtasks is typically onehef greatest barriers to getting
good parallel program performance. The speed-up pfogram as a result of
parallelization is given by Amdahl's law which witle explained further in

section1.1.3.

Task parallelism (also known as function paralfeli@nd control parallelism) is a

form of parallelization of computer code across tipld processors in parallel

2

computing environments. Task parallelism focussesdwstributing execution
processes (threads) across different parallel ctingpnodes. It contrasts to data
parallelism as another form of parallelism.In a tipubcessor system, task
parallelism is achieved when each processor execatalifferent thread (or
process) on the same or different data. The threaas execute the same or
different code. In the general case, different aien threads communicate with
one another as they work. Communication takes placally to pass data from
one thread to the next as part of a workflow.Asimpte example, if we are
running code on a 2-processor system in a paeridronment and we wish to do
tasks "A" and "B", it is possible to tell CPU "' do task "A" and CPU "b" to do
task '‘B" simultaneously, thereby reducing the metiof the execution. The tasks
can be assigned using conditional statements asiloled below. Task parallelism
emphasizes the distributed (parallelized) naturthefprocessing (i.e. threads), as
opposed to the data (data parallelism). Most reagnams fall somewhere on a

continuum between Task parallelism and Data pdisatie

1.1.2. Parallel Hardwares

The four classifications defined by Flynn [dfe based upon the number of
concurrent instruction (or control) and data streawvailable in the architecture:
Single Instruction, Single Data stream (SISD); gusatial computer which
exploits no parallelism in either the instructiandata streams. Examples of SISD
architecture are the traditional uniprocessor nreehilike a PC or old
mainframes. Single Instruction, Multiple Data stnsa(SIMD); a computer which
exploits multiple data streams against a singldérugton stream to perform
operations which may be naturally parallelized. Example, an array processor
or GPU. Multiple Instruction, Single Data streamI8®); multiple instructions
operate on a single data stream. Uncommon archigeethich is generally used
for fault tolerance. Heterogeneous systems openmatthe same data stream and
must agree on the result. Examples include the &&uuttle flight control

computer.

Multiple Instruction, Multiple Data streams (MIMD)multiple autonomous
processors simultaneously executing different utstons on different data.
Distributed systems are generally recognized tavitD architectures; either
exploiting a single shared memory space or a digied memory space. Some
further divide the MIMD category into the followintategories: Single Program,
Multiple Data streams (SPMD): Multiple autonomguecessors simultaneously
executing the same program (but at independentgasther than in the lockstep
that SIMD imposes) on different data. Also referred as 'Single Process,
multiple data'. SPMD is the most common style affp@l programming.Multiple
Program Multiple Data (MPMD) : Multiple autonomougprocessors
simultaneously operating at least 2 independergraros. Typically such systems
pick one node to be the "host" ("the explicit hostle programming model") or
"manager" (the "Manager/Worker" strategy), whichgwne program that farms
out data to all the other nodes which all run aedgrogram. Those other nodes

then return their results directly to the manager.

1.1.3. Amdahl's Law, Speedup, Efficiency

If N is the number of processors,is the amount of time spent (by a serial
processor) on serial parts of a program pnd the amount of time spent (by a
serial processor) on parts of the program that lsandone in parallel, then

Amdahl’s law says that speedup is given below.

SpeedupE (s+p)/(s+p/N)=1/6+p/N) ForN = 1024, this is an

unforgivingly step function of s near= 0 (see Figurel).

Spesd plot
?ﬂ T T T T T T

&ar / -
2048 fish
80 -

1024 fish

—_—

20| .
/ 25¢ fish
///
10- 128 fish .
&4 fish

Spaadup
.
T

o~

o 1 1 1 1 1 1
a 10 20 an 40 a0 an 70

Hum Proens

Figure 1.1: Speedup under Amdahl’'s Law

The expression and graph both contain the implagsumption thatp is
independent o, which is virtually never the cas®ne does not take a fixed-size
problem and run it on various numbers of processrcgpt when doing academic
research; in practicghe problem size scales with the number of procssso
When given a more powerful processor, the problemegnlly expands to make
use of the increased facilities. Users have conbnadr such things as grid
resolution, number of timesteps, difference operatomplexity, and other
parameters that are usually adjusted to allow tlegrpm to be run in some
desired amount of time. Hence, it may be mostsealto assume thatn time
not problem sizeis constant. As a first approximation, we havenbthat it is the
parallel or vector part of a program that scalethwhe problem size. Times for
vector startup, program loading, serial bottleneeksd 1/0O that make up.
Component of the run do not grow with problem si¥¢hen we double the
number of degrees of freedom in a physical simutatwe double the number of
processors. But this means that, as a first appraton, the amount of work that

5

can be done in parallelaries linearly with the number of processoFor the
three applications mentioned above, we found thatparallel portion scaled by
factors of 1023.9969, 1023.9965, and 1023.996@elluse s’ and p’ to represent
serial and parallel time spent on ferallel system, then a serial processor would
require time s’ + p’ X\ to perform the task. This reasoning gives an adtiera to
Amdahl’'s law suggested by E. Barsis at Sandia:

Scaled speedup =(s'+p'XN)/(s+p) =X N=N+(IN) xS

In contrast with Figure 1, this function is simglyine, and one with much more

moderate slope: 1 — N.

It is thus much easier to achieve efficient pafgderformance than is implied by
Amdahl's paradigm. The two approaches, fixed-sizdl scaled-sized, are

contrasted and summarized in Figure 1.2 and 1.3.

‘ Q_Tf”-}e = i — |
n » | Run on serial
- processor

‘ | N
E Run on parallel processor

| —— |
Time=s+p/N

Figure 1.2 : Fixed-Size Model: Speedup = 1/(s + p/N)

v

4 Time ="+ Np’

Hypathetical run on serial processor

S
E P | Run on parallel processor

| ¢—Time=1———|

Figure 1.3: Scaled-Size Model: Speedup=s+Np

The aim of the thesis is to obtain high performamsi@g parallel processing with
a suitable architecture. We want to show that deéijpenon low cost for

estimating execution time.

CHAPTER 2

CASE TOOLS AND TECHNOLOGICAL ASPECTS

2.1. Mpasm Library and Software Aspects

The MPASM assembler is a command-line or WindowselddC application that
provides a platform for developing assembly languende for Microchip's PfC
microcontroller (MCU) families. There are two exthle versions of the
assembler: The windows version (mpasmwin.exe). ltlge version with
MPLAB® IDE, in a stand-alone Windows application, or be tommand line.
This version is available with MPLAB IDE or witheéhregular and demo version
of the MPLAB C18 C compiler. This is the recommesha@ersion. The command-
line version (mpasm.exe). Use this version on thmand line, either from a
command shell or directly on the command line. Maission is available with the
regular and demo version of the MPLAB C18 C compilthe MPASM
assembler supports all PIC MCU devices, as wathasiory and KeeLdgsecure

data products from Microchip Technology Inc.

The MPASM assembler provides a universal solutmndeveloping assembly
code for all of Microchip's PIC MCUs. Notable feads include: MPLAB IDE

Compatibility, Command Line Interface, Windows/Coamd Shell Interfaces,
Rich Directive Language, Flexible Macro Language.

Since the MPASM assembler is a universal assemiearll PIC MCU devices,

application code developed for the PIC16F877A camrénslated into a program
for the PIC18F452. This may require changing the festruction mnemonics
that are not the same between the devices (assuhangegister and peripheral
usage were similar). The rest of the directive amatro language will be the
same. Included with MPLAB IDE are template files &l PIC MCUs. Template
files allow you to quick set up a project in MPLA®Bth a generic file that can be
filled in with code as you develop your applicatidremplate files contain the
basic structure of a source file, provide some gtasfor declaring variable

storage and for setting device configuration bits.

The MPASM assembler can be used in two ways: Tergéa absolute code that
can be executed directly by a microcontroller. Bmerate relocatable code that
can be linked with other separately assembled ompded modules. Relocatable
code can not be executed by a microcontroller uintibs been linked. Absolute
code is the default output from the MPASM assembléiis process is shown

below.

boooooooh

L= o

b= =

B i o

& Ll &

codehex | peogrammer & &
P | 8

o SOLddoop

Figure 2.1: Simple Assembler Process

[3

codaasm

i PAS M
azsarmbler

When a source file is assembled in this manneraglhbles and routines used in
the source file must be defined within that sodiiee or in files that have been
explicitly included by that source file. If assemlipiroceeds without errors, a hex

file will be generated, containing the executablachine code for the target

device. This file can then be used with a debugmézst code execution or with a

device programmer to program the microcontroller.

The MPASM assembler also has the ability to gepeeatrelocatable object
module that can be linked with other modules usiigrochip's MPLINK linker
to form the final executable code. This methodasywseful for creating reusable

modules.

T
I

units. likx

‘-,_______,_p"'

[X
S

WELIE linkoC

THRTLAS WEASM ,
assembier

i oy

a o
o o
o o
o o
Progranmor 2o o
& o
o o
& o

[D [
EEE

Imaore 3sin

AN
#ssenbie

LU LEIL R

Figure 2.2: Link Process

Related modules can be grouped and stored togethdibrary using microchip's
MPLIB librarian. Required libraries can be spedfiat link time, and only the

routines that are needed will be included in thalfexecutable.

10

'\-\. .-"'-_'_H__-"‘-\
\-.,______,_,.-r’

whit1.asm MPASM ™ MPLIE
assembler - librariam

£

i

unitt.o
Uitz ast MPASM ™ MPLIE
agsembler likrariar

unilz_lib

H
.

p

unit2.o

3
i

unitd azm MPASM e
assambia:y’

MPLIE
libraran .~

J
:
(

unfti o

Figure 2.3: Library Build Process

Assembly is a programming language you may useveldp the source code for
your application. The source code file may be ewatsing any ASCII text file
editor or using MPLAB’s Programmer’'s Editor. Youobusce code should
conform to the following basic guidelines. Eachelinf the source file may
contain up to four types of information: labels tads” given to locations in
source code, mnemonics — short names that are dweneach machine
instruction, operands — most mnemonics operatepanands, such as registers,
labels or numbers: directives — special instruciom the assembler, macros —
short cuts for defining commonly used assembly in@st comments — user
notations to the code.

The order and position of these are important. €ase of debugging, it is
recommended that labels start in column one andmangs start in column two

or beyond. Operands follow the mnemonic. Commeray fallow the operands,

11

mnemonics or labels, and can start in any colurhe. aximum column width is

255 characters. Comments can also be on a linkedmygelves.

White space or a colon must separate the labelteadnnemonic, and white
space must separate the mnemonic and the operaMd{ple operands must be
separated by commas. “White space” is one or muaiees or tabs. White space
is used to separate pieces of a source line. Vépiaiee should be used to make
your code easier to read. Unless within characterstants, any white space
means the same as exactly one space. Files assbwdah MPASM are listed
here: source Code (.asm) Default source file extanaput to assembler.

Include File (.inc) Include (header) file.Listingd=(.Ist) Default output extension
for listing files generated by assembler. ErroreHilerr) Output extension from
assembler for error files. Hex File Formats (.hdml, .hxh) Output extension
from assembler for hex files. Cross Reference Eid) Output extension from
assembler for cross reference files. Symbol anduBebBile (.cod) Output
extension for the symbol and debug file. For alisokode, this file will be
generated by the assembler. For relocatable ctde,fite and a file will be
generated by the MPLINK linker. Object File (.0) tput extension from

assembler for object files.

2.2. ISIS Simulation System

Many CAD users dismiss schematic capture as a s&gesvil in the process of
creating PCB layout but we have always disputesl ploint of view. With PCB

layout now offering automation of both componerageiment and track routing,
getting the design into the computer can often e most time consuming
element of the exercise. And if you use circuitdmtion to develop your ideas,

you are going to spend even more time working erstthematic.

ISIS has been created with this in mind. It hadwadover twelve years research
and development and has been proven by thousandseod worldwide. The
12

strength of its architecture has allowed us tograte first conventional graph
based simulation and now - with PROTEUS VSM - iatéive circuit simulation

into the design environment. For the first time reiteis possible to draw a
complete circuit for a micro-controller based sgst@nd then test it interactively,
all from within the same piece of software. MearlehiSIS retains a host of
features aimed at the PCB designer, so that the ssign can be exported for

production with ARES or other PCB layout software.

For the educational user and engineering authdg #kso excels at producing
attractive schematics like you see in the magazihgzrovides total control of
drawing appearance in terms of line widths, fiyles, colours and fonts. In
addition, a system of templates allows you to aefin‘house style’ and to copy

the appearance of one drawing to another.

Other general features include: Runs on WindowAVIeRk/XP and later.
Automatic wire routing and dot placement/removaiwerful tools for selecting
objects and assigning their properties. Total sdpgor buses including
component pins, inter-sheet terminals, module pamt$ wires. Bill of Materials
and Electrical Rules Check reports. Netlist outpatsuit all popular PCB layout

tools.

For the ‘power user’, ISIS incorporates a numbeffeaitures which aid in the
management of large designs. Indeed, a numberrafumiomers have used it to

produce designs containing many thousands of coergen

Hierarchical design with support for parameterizesnponent values on sub-

circuits. Design Global Annotation allowing mulpinstances of a sub-circuit to

have different component references. Automatic Aatnan - the ability to

number the components automatically. ASCIlI Data drhp .this facility

provides the means to automatically bring composértk codes and costs into

ISIS design or library files where they can thenificorporated or even totaled
13

up in the Bill of Materials report.

Users of ARES, or indeed other PCB software vifiifsome of the following
PCB design specific features of interest: Sheeb@&lblet Properties which allow
you to efficiently define a routing strategy fot ede nets on a given sheet (e.g. a
power supply needing POWER width tracks). Physieahinals which provide
the means to have the pins on a connector scatéireder a design. Support for
heterogeneous multi-element devices. For exampielag device can have three
elements called RELAY:A, RELAY:B and RELAY:C. RELAX is the coil
whilst elements B and C are separate contacts. E&hent can be placed
individually wherever on the design is most coneeni

Support for pin-swap and gate-swap. This includeth lihe ability to specify
legal swaps in the ISIS library parts and the gbib back-annotate changes into
a schematic. A visual packaging tool which showes RCB footprint and its pin
numbers alongside the list of pin names for theeswdtic part. This facilitates
easy and error free assignment of pin numbers mongimes. In additional,

multiple packagings may be created for a singlestic part.

ISIS provides the development environment for PROSE VSM, our
revolutionary interactive system level simulatohis product combines mixed
mode circuit simulation, micro-processor models antkractive component
models to allow the simulation of complete micrarvroller based designs. ISIS
provides the means to enter the design in the fieste, the architecture for real
time interactive simulation and a system for mangghe source and object code
associated with each project. In addition, a nunobgraph objects can be placed
on the schematic to enable conventional time,ukeeqy and swept variable

simulation to be performed.

Major features of PROTEUS VSM include: True Mixeddé simulation based

on Berkeley SPICE3F5 with extensions for digitahsiation and true mixed

mode operation. Support for both interactive anabgrbased simulation. CPU
14

Models available for popular microcontrollers sashthe PIC and 8051 series.
Interactive peripheral models include LED and LGCBpthys, a universal matrix
keypad, an RS232 terminal and a whole library otcwes, pots, lamps, LEDs
etc. Virtual Instruments include voltmeters, ammeta dual beam oscilloscope
and a 24 channel logic analyser. On-screen graphitiee graphs are placed
directly on the schematic just like any other obj&raphs can be maximised to a
full screen mode for cursor based measurement andébrsh. Graph Based
Analysis types include transient, frequency, noisstortion, AC and DC sweeps
and fourier transform. An Audio graph allows plagbaf simulated waveforms.
Direct support for analogue component models in C&Plformat. Open
architecture for ‘plug in” component models codedd++ or other languages.
These can be electrical., graphical or a combinatiche two.

Digital simulator includes a BASIC-like programmitgnguage for modelling
and test vector generation. A design created ifoulation can also be used to
generate a netlist for creating a PCB - there ise®x to enter the design a second

time.

15

CHAPTER 3

MICROCONTROLLER ARCHITECTURE

3.1. Memory Organization

There are two memory blocks in the PIC16F84A. Tresethe program memory
and the data memory. Each block has its own buthat@ccess to each block can
occur during the same oscillator cycle. The datanorg can further be broken
down into the general purpose RAM and the Speaiakcion Registers (SFRS).
The operation of the SFRs that control the “cones” described here. The SFRs
used to control the peripheral modules are destiibéhe section discussing each
individual peripheral module. The data memory aadso contains the data
EEPROM memory. This memory is not directly mappeid ithe data memory,
but is indirectly mapped. That is, an indirect aaddrpointer specifies the address
of the data EEPROM memory to read/write. The 64edyf data EEPROM
memory have the address range Oh-3Fh.

16

CALL, RETURN E 13,

RETFIE, ERETLW P
Stack Level 1
Stack Level 8
EY RESET Vector 00COh
Peripheral Interrupt Vector | 0004h
> g
(@]
i
=8
50
oy
=
) 3FFh
1FFFh

Figure 3.1: Program Memory Map and Stack 16184

The PIC16F877A devices have a 13-bit program cowapable of addressing an
8K word x 14 bit program memory space. The PIC1&”8877A devices have
8K words x 14 bits of Flash program memory, whilEF6F873A/874A devices
have 4K words x 14 bits. Accessing a location altbreephysically implemented
address will cause a wraparound. The Reset vextar 90000h and the interrupt

vector is at 0004h.

17

PC=1210=
N
CALL, ERETUEN [' 13 5
EETFIE, EETLW 7
Stack Level 1
Stack Leve] 2
L]
L]
L]
Stack Level 8
Resst Vector 0o0ch
&
* <3:
L J
Interrupt Vector 0004h
1 0005h
Page 0
O7FFh
0800h
Page *
On-Chip OFEER
Program = -
Memory 1000k
Page 2
17FFh
18000
Page 3
1FFFh

Figure 3.2: Program Memory Map and Stack 16f877

3.2. Data EEPROM Memory

The EEPROM data memory is readable and writabléngunormal operation

(full VDD range). This memory is not directly magpm the register file space.

18

Instead it is indirectly addressed through the &p&ainction Registers. There are
four SFRs used to read and write this memory. Thegesters are: EECONL1,
EECON2 (not a physically implemented register),DAEA, EEADR, EEDATA
holds the 8-bit data for read/write, and EEADR Isdite address of the EEPROM
location being accessed. PIC16F84A devices havéysds of data EEPROM
with an address range from Oh to 3Fh. The EEPROfd neemory allows byte
read and write. A byte write automatically erades [bcation and writes the new
data (erase before write). The EEPROM data mensorgted for high erase/write
cycles. The write time is controlled by an on-ctiiper. The writetime will vary
with voltage and temperature as well as from chighip. Please refer to AC
specifications for exact limits. When the devicedgle protected, the CPU may

continue to read and write the data EEPROM memory.

The device programmer can no longer Access this angnifo read a data
memory location, the user must write the addreskddEEADR register and then
set control bit RD (EECON1<0>). The data is avddain the very next cycle, in
the EEDATA register; therefore, it can be readha hext instruction. EEDATA
will hold this value until another read or untilistwritten to by the user (during a

write operation).

To write an EEPROM data location, the user must fivrite the address to the
EEADR register and the data to the EEDATA regisi&en the user must follow

a specific sequence to initiate the write for elayte.
The write will not initiate if the above sequensenbt exactly followed (write 55h

to EECONZ2, write AAh to EECONZ2, then set WR bit) &ach byte. We strongly
recommend that interrupts be disabled during thilecsegment.

19

Additionally, the WREN bit in EECON1 must be set émable write. This
mechanism prevents accidental writes to data EEPRGM to errant
(unexpected) code execution (i.e., lost program$le user should keep the
WREN bit clear at all times, except when updatitePROM. The WREN bit is
not cleared by hardware. After a write sequencebleas initiated, clearing the
WREN bit will not affect this write cycle. The WRithwill be inhibited from
being set unless the WREN bit is set. At the cotigoleof the write cycle, the
WR bit is cleared in hardware and the EE Write CletepInterrupt Flag bit
(EEIF) is set. The user can either enable thigrmpé or poll this bit. EEIF must
be cleared by software.

Depending on the application, good programming tm@anay dictate that the
value written to the Data EEPROM should be verifiedample 3-3) to the
desired value to be written. This should be usedapplications where an
EEPROM bit will be stressed near the specificationit. Generally, the
EEPROM write failure will be a bit which was writtas a '0’, but reads back as

a’l’ (due to leakage off the bit).

The data EEPROM and Flash program memory is readaid writable during
normal operation (over the full VDD range). Thismmay is not directly mapped
in the register file space. Instead, it is indie@ddressed through the Special
Function Registers. There are six SFRs used to asadwrite this memory:
EECON1, EECON2, EEDATA, EEDATH, EEADR, EEADRH.
When interfacing to the data memory block, EEDAT@Ids the 8-bit data for
read/write and EEADR holds the address of the EBRRIOcation being
accessed. These devices have 128 or 256 bytesaoE&&ROM (depending on
the device), with an address range from 00h to EWhdevices with 128 bytes,
addresses from 80h to FFh are unimplemented andwwiparound to the
beginning of data EEPROM memory. When writing tamylemented locations,
the on-chip charge pump will be turned off. Wheneifacing the program
memory block, the EEDATA and EEDATH registers foariwo-byte word that
20

holds the 14-bit data for read/write and the EEA®R EEADRH registers form
a two-byte word that holds the 13-bit address ef phogram memory location
being accessed. These devices have 4 or 8K worgsogram Flash, with an
address range from 0000h to OFFFh for the PIC16AB73IA and 0000h to
1FFFh for the PIC16F876A/877A. Addresses aboverdnge of the respective
device will wraparound to the beginning of prograremory. The EEPROM data
memory allows single-byte read and write. The Flpebgram memory allows
single-word reads and four-word block writes. Pamgrmemory write operations
automatically perform an erase-beforewrite on bsockfour words. A byte write
in data EEPROM memory automatically erases thetimtand writes the new
data (erase-before-write). The write time is cdigtbby an on-chip timer. The
write/erase voltages are generated by an on-chapgehpump, rated to operate
over the voltage range of the device for byte ordvaperations. When the device
is code-protected, the CPU may continue to readvarteé the data EEPROM
memory. Depending on the settings of the writegubbits, the device may or
may not be able to write certain blocks of the paog memory; however, reads of
the program memory are allowed. When code-protet¢teddevice programmer
can no longer access data or program memory; tes NOT inhibit internal

reads or writes.

The EEADRH:EEADR register pair can address uprtmaaimum of 256 bytes of
data EEPROM or up to a maximum of 8K words of paogrEEPROM. When
selecting a data address value, only the LSBytth@faddress is written to the
EEADR register. When selecting a program addre$seydahe MSByte of the
address is written to the EEADRH register and tl@&Byte is written to the
EEADR register. If the device contains less mentban the full address reach of
the address register pair, the Most Significans of the registers are not
implemented. For example, if the device has 12&<dyif data EEPROM, the
Most Significant bit of EEADR is not implemented Ancess to data EEPROM.

3.3. 1/0 Ports
21

Some pins for these I/O ports are multiplexed vaithalternate function for the
peripheral features on the device. In general, wdgrripheral is enabled, that
pin may not be used as a general purpose I/O @RTA is a 5-bit wide, bi-
directional port. The corresponding data directregister is TRISA. Setting a
TRISA bit (= 1) will make the corresponding PORTA @n input (i.e., put the
corresponding output driver in a hi-impedance mo@#å a TRISA bit (= 0)
will make the corresponding PORTA pin an outpuw.(iput the contents of the

output latch on the selected pin).

Reading the PORTA register reads the status gbittee whereas writing to it will
write to the port latch. All write operations aread-modify-write operations.
Therefore, a write to a port implies that the poiris are read. This value is
modified and then written to the port data latcim RA4 is multiplexed with the
Timer0 module clock input to become the RA4/TOCKI.prhe RA4/TOCKI pin
is a Schmitt Trigger input and an open drain outplitother RA port pins have
TTL input levels and full CMOS output drivers. PORTs an 8-bit wide, bi-
directional port. The corresponding data directiegister is TRISB. Setting a
TRISB bit (= 1) will make the corresponding PORTHE jan input (i.e., put the
corresponding output driver in a Hi-Impedance mo@égaring a TRISB bit (= 0)
will make the corresponding PORTB pin an outpu. (iput the contents of the

output latch on the selected pin).

On 16f877, PORTA is a 6-bit wide, bidirectional pofFhe corresponding data
direction register is TRISA. Setting a TRISA bit IFwill make the orresponding
PORTA pin an input (i.e., put the correspondingpattdriver in a High-
Impedance mode). Clearing a TRISA bit (= 0) will keathe corresponding
PORTA pin an output (i.e., put the contents of dlugput latch on the selected
pin). Reading the PORTA register reads the stafttiseopins, whereas writing to
it will write to the port latch. All write operatis are read-modify-write
operations. Therefore, a write to a port implieattthe port pins are read, the
22

value is modified and then written to the port datah. Pin RA4 is multiplexed
with the TimerO module clock input to become the 4ROCKI pin. The

RA4/TOCKI pin is a Schmitt Trigger input and an opdrain output. All other
PORTA pins have TTL input levels and full CMOS auttdrivers.Other PORTA
pins are multiplexed with analog inputs and thel@n&REF input for both the
A/D converters and the comparators. The operatiorach pin is selected by
clearing/setting the appropriate control bits i tADCON1 and/or CMCON

registers.

3.4. Timer Modules

The TimerO module timer/counter has the followiegttires: 8-bit timer/counter,
Readable and writable, Internal or external clselect, Edge select for external
clock, 8-bit software programmable prescaler,ernipt-on-overflow from FFh
to 00h.

An 8-bit counter is available as a prescaler fa¢ Timer0 module, or as a
postscaler for the Watchdog Timer, respectivelgFe 5-2). For simplicity, this

counter is being referred to as “prescaler” thraughthis data sheet. Note that
there is only one prescaler available which is rallyuexclusively shared

between the Timer0 module and the Watchdog TimdrusT a prescaler

assignment for the Timer0 module means that ther@o prescaler for the

Watchdog Timer, and vice-versa. The prescaler tsremdable or writable. The

PSA and PS2:PSO0 bits (OPTION_REG<3:0>) determiagthscaler assignment
and prescale ratio. Clearing bit PSA will assige threscaler to the TimerO
module. When the prescaler is assigned to the Dimerdule, prescale values of
1.2, 1:4, ..., 1:256 are selectable. Setting bisA I assign the prescaler to the
Watchdog Timer (WDT). When the prescaler is assignehe

WDT, prescale values of 1:1, 1:2, ..., 1:128 atecsable. When assigned to the
Timer0 module, all instructions writing to the TMR®@gister (e.g., CLRF 1,

MOVWEF 1, BSF 1,etc.) will clear the prescaler. Whassigned to WDT, a

23

CLRWDT instruction will clear the prescaler alongmthe WDT.

CLKOUT (= Fosc/4)

Data Bus

; / 8
o| 1

RA4ITOCKI e U
o D=)] W i
5 1 0

) - o » TMROreg
‘—’——' Cycles
TOSE T
Tocs

Set Flag bit TOIF
0 i
— 8-bit Prescaler

o=
4

L) — -]

=

on Overflow

Watchdog 1
Timer

8

M
u
X
T 8-1t0-1MUX -+—— PS2:PsS0
S

T PSA
0| 1

WOT Enable bit

MUX |=— pga

Y

wDT
Time-out

Note: TOCS, TOSE, PSA, PS2:P30 are (OPTION_REG=5:0=).

Figure 3.3: Block diagram of the TimerO / WDT Prescaler

The TimerO module timer/counter has the followiegtires: 8-bit timer/counter,
Readable and writable, 8-bit software programmallescaler, Internal or
external clock select, Interrupt on overflow fromkrhFto 00h, Edge select for

external clock.

Figure 5-1 is a block diagram of the Timer0O modarel the prescaler shared with
the WDT. Additional information on the TimerO moduls available in the
PICmicro® Mid-Range MCU Family Reference Manual @3823).

Timer mode is selected by clearing bit TOCS (OPTIBEG<5>). In Timer
mode, the Timer0 module will increment every instian cycle (without

24

prescaler). If the TMRO register is written, therement is inhibited for the
following two instruction cycles. The user can watound this by writing an
adjusted value to the TMRO register. Counter ma&lsealected by setting bit
TOCS (OPTION_REG<5>). In Counter mode, TimerQO wikrement either on
every rising or falling edge of pin RA4/TOCKI. Thecrementing edge is
determined by the TimerO Source Edge Select biISETQOPTION_REG<4>).
Clearing bit TOSE selects the rising edge. Thegales is mutually exclusively
shared between the TimerO module and the WatchduogrT The prescaler is not

readable or writable.

3.5. Special Features of the CPU

What sets a microcontroller apart from other preoesare special circuits to deal
with the needs of real time applications. The PIEBMA has a host of such
features intended to maximize system reliabilityjnimize cost through
elimination of external components, provide powaariisg operating modes

and offer code protection. These features are: S8€ction, RESET, Power-on
Reset (POR), Power-up Timer (PWRT), Oscillator Stgr Timer (OST),
Interrupts, Watchdog Timer (WDT), SLEEP, Codetection, ID Locations,

In-Circuit Serial Programming™ (ICSP™).

The PIC16F84A has a Watchdog Timer which can be-astiuonly through
configuration bits. It runs off its own RC oscithatfor added reliability. There are
two timers that offer necessary delays on powerQupe is the Oscillator Start-up
Timer (OST), intended to keep the chip in RESETiluhe crystal oscillator is
stable.

The other is the Power-up Timer (PWRT), which pded a fixed delay of 72 ms

(nominal) on power-up only. This design keeps teeick in RESET while the

power supply stabilizes. With these two timers bipcmost applications need no

external RESET circuitry. SLEEP mode offers a vieny current power-down
25

mode. The user can wake-up from SLEEP through extéRESET, Watchdog
Timer Time-out or through an interrupt. Severaliltetor options are provided to
allow the part to fit the application. The RC oltidhr option saves system cost
while the LP crystal option saves power. A set affgguration bits are used to
select the various options. The configuration b&s be programmed (read as '0'),
or left unprogrammed (read as '1'), to select waridevice configurations. These
bits are mapped in program memory location 200 ¢dréss 2007h is beyond the
user program memory space and it belongs to theiadptest/configuration
memory space (2000h - 3FFFh). This space can oelya@cessed during

programming.

All PIC16F87XA devices have a host of featuresndexl to maximize system
reliability, minimize cost through elimination oxternal components, provide
power saving operating modes and offer code protect These are:
PIC16F87XA devices have a Watchdog Timer which t&n shut-off only
through configuration bits. It runs off its own RGcillator for added reliability.
There are two timers that offer necessary delayspower-up. One is the
Oscillator Start-up Timer (OST), intended to keée thip in Reset until the
crystal oscillator is stable. The other is the Poug Timer (PWRT), which
provides a fixed delay of 72 ms (nominal) on powprenly. It is designed to
keep the part in Reset while the power supply btaisi With these two timers
on-chip, most applications need no external Reseuity. Sleep mode is
designed to offer a very low current power-down modhe user can wake-up
from Sleep through external Reset, Watchdog Timekeaup or through an
interrupt. Several oscillator options are also maxklable to allow the part to fit
the application. The RC oscillator option savegesyscost while the LP crystal
option saves power. A set of configuration bitased to select various options.

REGISTER 14-1: CONFIGURATION WORD (ADDRESS 2007h)(")

RP1 U0 RP| RP1 RP1 RP1 RP-1 RP1 UD UO RP1 RP1 RP-1 RP-
| cp | — |peBus|wrt1|[wrTo| cPD | LvP [BOREN] — | — |PWRTEN|WDTEN] Fosct | Fosco |
bit 13 bitd

26

bit 13 CP: Flash Program Memory Code Protection bit

1 = Code protection off

0 = All program memory code-protected
bit 12 Unimplemented: Read as ‘1’
bit 11 DEBUG: In-Circuit Debugger Mode bit
1 = In-Circuit Debugger disabled, RB6 and RB7 aeegal purpose 1/O pins
0 = In-Circuit Debugger enabled, RB6 and RB7 adiaed to the debugger
bit 10-9OWRT1:WRTO Flash Program Memory Write Enable bits
11 = Write protection off; all program memory may \ritten to by EECON
control
10 = 0000h to O0FFh write-protected; 0100h to 1FFidy be written to by
EECON control
01 = 0000h to 07FFh write-protected; 0800h to 1FFiay be written to by
EECON control
00 = 0000h to OFFFh write-protected; 1000h to 1FFiey be written to by
EECON control

27

CHAPTER 4

PARALLEL PROCESSING BY A MICROCONTROLLER BASED-
SYSTEM

4.1. Ready State

Digital circuit is designed using ISIS case tooh @e our circuit, there are
microcontrollers, registers, keypad, LCD display,apacitors. Each
microcontroller has own program. There are fouresowhich have got same
program. Master runs different from nodes. Theuiameous usage of more than
one microcontroller's CPU are used to execute sprogram. Ideally, parallel
processing makes a program, running fast becaese #re more CPUs running
it. In practice, it is often difficult to divide program in such a way that separate
CPUs can execute different portions without intémfig with each other. It is
possible to perform parallel processing by conngcthe CPU in a network.
However, this type of parallel processing requivesy sophisticated software
called distributed processing software.

28

: e e TN
4 44 £z | HODEA
= MOOES E g;j RICIBFE44 . - - :
= e 24 e : £ :
E éé PICIBF B4 25
28 | g Bz
A0Hz Time Base e @
CoLTRER AL 58 z 9 : T:: :
bod 5
z . g :
=z o : i
OBE 2 £ : B
e foscrcuan T eeiEanh i ollla Lo, Ml.u,2:
[DECHCLEOLT RAL | | ‘ . . . - . o . - - o . =
RAZ annHE LT ST : ; : i :) : 2 : ;
ERE A i . o © . EBTER|ILK DORT BIT
RATOCK]
i Tl : s P :
RedanT 2 \\ - . C . S TE.
;g; i RHD o
B3 —-— . . i1 oo X - . R
R 10 L : N 5
RES 11 L L E O HRE ENTER SOR.DORT BIT
mes 2 [= : 3 5 [& TERT " ;
RBT = 4
IC16FE48 T T T T T T T
= : £ = 7 T Ao 5 7 S i 2 I=p=i== el
SR G T A il G : i : o o = 3 : i ;
3
B I
o | MASTER 3 : e o S L5 :
N B RDzRSFE (201
ROB/ASPE L2 —
RBZ 21 | T3
i s 0 . RDS/PSPS [.
e I i | RD4PSE4 [27 a1
A e T - RO3/PSES —_ZL— :]
ROZPEPE [
o b RDA/PSP] [0
T R RODARSRD |19
3 e
gscaiclrauT Ret 18 e 6
A st A LT] R o : ; . : 2 :
RCAE00
A8 renanics RC/SDIS0R R3[| R4 [[]RE RE R7
L REliANeATR REMSCKISCL = b . R2 s awr 4T a7 . S A -
’ FREMANSRT RELICER] e T <TE = L= S AT, .
o RECNTIOSHCCRT : 3 : :
Tl Re6iana/SE ROOATOSOAICK
5| gpamici . . . e .
| Raranmes RE7/AGD L
| RAaANIARE REBIAGT 5 e : : : 5 :
3| Ratan res [32 1] o
RAOIAD FiB4 =
1 RBZ/PGI
o] PCLRApp/THY RBZ |20
15| DSCaCLKOUT Ret [31
L nsciicLan RODANT
ICT1BFETT
. R aew |

Figure 4.1: System Design

if ISIS simulation tool runs on initial state, etprograms which is running on
master and node waits a trigger from master. Gndfaite, master reads data from
ports when user enters any key on key pad. Onstezgkeeps data from ports for
mission and in that case a pin reads data from lstéion. Start button initially is
low. After user pushes the first four bits buttoggister record the data from port
and then register waits for second four bits fréva tiser. If start button is high
register data is considered for data from userserlénters 8 bits data. On the
blow, there are assembler code for initial state.

29

50Hz Time Base
SRR AL
- NODE 2 .
i i)
et OSCI/ELKN s
25 DsCa/cLkouT RAT (D Tofe]
3 RAz i plalmlulal Jalal" falalsal" i) 0 T i ey T e e G A s (gl S
14 Fore Rag = rlv\rlv ENTER|LK DORT BIT
: RA4TOCK] 5] e Ea N
REOANT 15 : s S TS
RB! s|@
REZ -
B3 22
RE4 (210
RES (=11 1. ENTER.ZDON DORT BIT
RBG 7% & e
: RET W e e
ORI e e
S STEm:
NOBEA: S S s }
LTl I 1
i |
cicd BN MASTER
mg - I RO7ASA? [l £ z
L] Rogmges | 220 | L1
L e o 8 S S ROSASPS (=8
A T RDAiRSAS (=27 T
RBDANT S ren
i A Rozinsra (=3 A il e e e
. RAHTICK |25 . : ADPeR) (20 Eai e e [R
SR s T,ff:a Rro0:psey | 219
= 05CCLKOUT RAl (218 2 : g it et SRR S
o B 4 REC7ARDT [=20
OSEHCLIN Reo [217 . Rebmick [225 . o IS B
PICIHFE4A iirm RCAS00 (o i
STE P onen omien fuone ° L REMANTTS RCA/SDIS0A [=23 P R e o
- RE1ANBITR RCa/SCRECL [218 w7
aHEE g RENANSRT RC/CCRY (17 STERTS: <TERT
. o RCimsHCCR: (=10 1
1k —fa| RAGIANATEE REOMIOSDMICK (1
S mmenl i e o B psamca SN S e e e e o
X2 3: RASANIAT Razienn | =0 |11
e S LI i rRatyee (32 e e e e L s el e e e e
s D i I Rensaan ros (20 11 N s e i e s B R s e S
u = RAIAND Raa |23 =
4 R T S e RBHPOM e S et R R e
Crgh, == U1 i pTHY Rz [=30
n| InF- Taa] DSCHELKOUT Rat |24
. af | TET . (-2 ascicLan RBO/ANT] (e e R e
. e o = BleleRegR - s oo Ll e s o s e o e o e Sl e s S S i
STEXT» I

Figure 4.2: System is Ready State

4.2. Running State

When the register has the password, it specifiesnbdes which one waits data
from master. Program counter determines numberooies. After this mode,
programs divide register data which is passworthdfnumber of nodes are two,
program divides by two. In this way, program diadey number of nodes. The
program, running on master send signal to nodedtvation of node. After this
sign signal, node waits data from master. Assem&ldroutine of master is

shown on the below.

LIST p=16F877
INCLUDE "P16F877.INC"

30

ranl equ H'OA'

ranm equ H'OB'

ranh equ H'OC'

beat equ H'OD'

regl equ H'OE'

reg2 equ H'OD'
reg_FirstDortBit equ H'OF'
reg_SecondDortBit equ H'1lF
reg_ThirdDortBit equ H'2F'
reg_ExeTimeFirst equ H'FF'
reg_ExeTimeSecond equ H'FF'

cblock 0x20

char,cmd,lcl,lc2;

endc

;org O

goto G_INITIAL

; org 0x04 ; void interrupt(void)
; goto C_inthlr

G_INITIAL

clrwdt ; watchdog timer | temizle

moviw b'10110111"; assign prescaler, internal clioekansi
option
bsf STATUS,RPO

moviw H'00'
movwf TRISA
moviw H'FF'
31

movwf TRISB
moviw H'3F'
movwf TRISC
moviw H'FF'
movwf TRISD
moviw H'00’
movwf TRISE

bcf STATUS,RPO
clrf PORTA

clrf PORTB

clrf PORTC

clrf PORTD

clrf PORTE

clrf regl

clrf reg2

;clrf reg_ExeTimeFirst
moviw H'FF'

movwfreg_ExeTimeFirst

G_ENTER_NUMBER
call C_ENTERKONTROL ;Control enter
btfss reg2,0 ;is any bit set?
call C_SETILKDORTBIT ;get first four bits.
btfsc reg2,0
call C_SETIKINCIDORTBIT ;get second four bits
moviw H'03'
andwf reg2,0
sublw H'03'
btfsc STATUS,Z :ard'@cour bits set?
goto G_NUMBER_ENTERED ;if ok,crack password
goto G_ENTER_NUMBER

32

C_DISPLAY_ENTERED_NUMBER
btfss regl,7
call C _ZERO
btfsc regl,7
call C_ONE
btfss regl,6
call C _ZERO
btfsc regl,6
call C_ONE
btfss regl,5
call C _ZERO
btfsc regl,5
call C_ONE
btfss regl,4
call C_ZERO
btfsc regl,4
call C_ONE
btfss regl,3
call C _ZERO
btfsc regl,3
call C_ONE
btfss regl,2
call C _ZERO
btfsc regl,2
call C_ONE
btfss regl,1
call C _ZERO
btfsc regl,1
call C_ONE
btfss regl,0

33

cal C_ZERO
btfsc regl,0
call C_ONE

return

C_DISPLAY_EXECUTION_TIME
btfss reg_ExeTimeFirst,7
call C _ZERO

btfsc reg_ExeTimeFirst,7
call C_ONE

btfss reg_ExeTimeFirst,6
call C _ZERO

btfsc reg_ExeTimeFirst,6
call C_ONE

btfss reg_ExeTimeFirst,5
call C_ZERO

btfsc reg_ExeTimeFirst,5
call C_ONE

btfss reg_ExeTimeFirst,4
call C _ZERO

btfsc reg_ExeTimeFirst,4
call C_ONE

btfss reg_ ExeTimeFirst,3
call C _ZERO

btfsc reg_ExeTimeFirst,3
call C_ONE

btfss reg_ ExeTimeFirst,2
call C _ZERO

btfsc reg_ExeTimeFirst,2
call C_ONE

btfss reg_ ExeTimeFirst,1

34

cal C_ZERO

btfsc reg_ExeTimeFirst,1
call C_ONE

btfss reg_ExeTimeFirst,0
cal C_ZERO

btfsc reg_ExeTimeFirst,0
call C_ONE

return

C_DISPLAY_RECEIVED _MSJ_NODE2
moviw ‘N’
call G_putc
moviw '0'
call G_putc
moviw ‘d'
call G_putc
moviw ‘e’
call G_putc
moviw '2'
call G_putc
moviw "'
call G_putc
moviw I’
call G_putc
moviw 's'
call G_putc
moviw "'
call G_putc
moviw 'r'
call G_putc
moviw ‘U’
35

call G_putc
moviw 'n'
call G_putc
moviw 'n’
call G_putc
moviw I’
call G_putc
moviw ‘g’
call G_putc
call C_WAIT

return

G_DISPLAY_NODE2_RUNNING
clrw

movwf PORTB

bcf STATUS,RPO
bsf RCSTA,SPEN
bsf RCSTA,CREN
bsf STATUS,RPO
moviw H'00'

clrw

movwf TRISA

movwf TRISB

moviw H'19’

movwf SPBRG
moviw H'A4'

movwf TXSTA

moviw 100

36

call G_delay

call C_DISPLAY_RECEIVED MSJ NODE2

moviw H'0C'
call G_wrcmd
moviw H'0OD’
call G_wrcmd
call G_loop

return

G_DISPLAY_EXECUTION_TIME
clrw

moviw H'00'

movwf PORTB

bcf STATUS,RPO
bsf RCSTA,SPEN
bsf RCSTA,CREN
bsf STATUS,RPO
clrw

moviw H'00'

movwf TRISA

movwf TRISB

moviw H'19'

movwf SPBRG
moviw H'A4'

movwf TXSTA

moviw 100
call G_delay
37

movlw 'E'

call G_putc
call C_WAIT
moviw ‘X'
call G_putc
call C _WAIT
moviw 'E’
call G_putc
call C_WAIT
moviw 'C’
call G_putc
call C_WAIT
moviw ‘U’
call G_putc
call C _WAIT
moviw T
call G_putc
call C_WAIT
moviw I’
call G_putc
call C_WAIT
moviw 'O’
call G_putc
call C _WAIT
moviw ‘N’
call G_putc
call C_WAIT
moviw "'
call G_putc
call C_WAIT

38

call C_DISPLAY_EXECUTION_TIME

moviw 'm'’
call G_putc
call C_WAIT
moviw s’

call G_putc
call C_WAIT

moviw H'0C'
call G_wrcmd
moviw H'0OD'
call G_wrcmd
call G_loop

return

G_loop
call G_getc
movwf char
sublw 0d
btfsc STATUS,Z
goto G_cls
movf char,w
sublw 08
btfsc STATUS,Z
goto G_bspace
movf char,W

39

call G_putc
goto G_loop

G cls
moviw H'0l1'
call G_wrcmd

goto G_loop

G_bspace
moviw H'10'
call G_wrcmd

goto G_loop

G_hang clrwdt
goto G_hang

G_wrcmd movwf cmd
moviw OXFE

call G_putc

movf cmd,W

goto G_putc

G _getc bcf STATUS,RPO

C_getcl btfss PIR1,RCIF
goto C_getcl
movf RCREG,W ;read char
bcf PIR1,RCIF ; clear interrupt flag
return
40

G _putc bcf STATUS,RPO
movwf TXREG

bsf STATUS,RPO

movf TXSTAW

C_putcl btfss TXSTA,1
goto C_putcl

bcf STATUS,RPO

return

C_WAIT:
movlw 5
call G_delay

return

G_delay movwf Ic2
G sw2 moviw H'FF
movwf Icl

C sw3 nop

decfsz Icl,f

goto C_sw3

decfsz Ic2,f

goto G_sw2

return

C_inthlr retfie

C_ENTERKONTROL

moviw H'10'

andwf PORTB,0

sublw H'10'

btfsc STATUS,Z ;are first four bits set?
41

call C_ILKDORTBITGIRILDI
moviw H'20'
andwf PORTB,0
sublw H'20'
btfsc STATUS,Z ;are second four bits set?
call C_SONDORTBITGIRILDI
moviw H'30'
andwf PORTB,0
sublw H'30'
btfsc STATUS,Z
call C_TUMBITLERGIRILDI
;moviw H'CO’
;andwf PORTB,0
;sublw H'CO'
;btfsc STATUS,Z ;is sytem reset?
;goto INITIAL
return
C_ILKDORTBITGIRILDI
bsf reg2,0
return
C_SONDORTBITGIRILDI
bsf reg2,1
return
C_TUMBITLERGIRILDI
moviw H'03'
movwf reg2
return
C_SETILKDORTBIT
moviw H'01'
andwf PORTB,0
sublw H'01'
42

btfsc STATUS,Z
call C_SIFIR

moviw H'02'
andwf PORTB,0
sublw H'02'

btfsc STATUS,Z
call C BIR

moviw H'04'
andwf PORTB,0
sublw H'04'
btfsc STATUS,Z
call C_IKI

moviw H'08'
andwf PORTB,0
sublw H'08'

btfsc STATUS,Z
call C _UC

return

C_SETIKINCIDORTBIT

moviw H'01'
andwf PORTB,0
sublw H'01'
btfsc STATUS,Z
call C DORT
moviw H'02'
andwf PORTB,0

:zero bit is set

first bit is set

;second pin is set

;Third pin is set

:fourth bit is set

43

sublw H'02'
btfsc STATUS,Z
call C _BES fifth bit is set

moviw H'04'

andwf PORTB,0

sublw H'04'

btfsc STATUS,Z

call C_ALTI ;Sixth pin is set

moviw H'08'

andwf PORTB,0

sublw H'08'

btfsc STATUS,Z

call C_YEDI ;seventh pin is set

return

C_SIFIR
bsf regl,0
return
C_BIR
bsf regl,1
return
C_IKI
bsf regl,2
return
Cc_ucC
bsf regl,3
return
C_DORT
bsf regl,4
44

return
C_BES
bsf regl,5
return
C_ALTI
bsf regl,6
return
C_YEDI
bsf regl,7

return

C_ZERO:
moviw ‘0’
call G_putc
call C_WAIT
return
C_ONE:
moviw 1’
call G_putc
call C _WAIT

return

C_HAS_EXECUTION_TIME_RECEIVE_N3

btfss PORTB,6

goto C_HAS EXECUTION_TIME_RECEIVE_NS3
moviw H'3F'

andwf PORTC,0

movwf reg_ExeTimeSecond

return

C_HAS_EXECUTION_TIME_RECEIVE_N2
45

btfss PORTB,7

goto C_HAS EXECUTION_TIME_RECEIVE_N2
moviw H'FF'

andwf PORTD,0

movwf reg_ExeTimeFirst

return

C_HAS_DATA_RECEIVED_FROM_NODE2 ;FROM NODE 2

btfss PORTB,7

goto C_HAS DATA_RECEIVED_FROM_NODE?2 ;Has Node 2awed data
form Node 1

return

C_HAS_DATA_RECEIVED_FROM_NODE3 :FROM NODE 3

btfss PORTB,6

goto C_HAS_DATA_RECEIVED FROM_NODE3 ;Has Node 8ewed data
form Node 1

return

C_SEND_DATA_NODE2
movf reg_FirstDortBit,0 ; w =reg_FirstDortBit
movwf PORTA ; Data send node 2

return

C_SEND_DATA_NODE3
movf reg_SecondDortBit,0 ; w =reg_SecondDdrtBi
movwf PORTA ; Data send node 3

return

G_NUMBER_ENTERED
movlw H'OF'
46

andwf regl,0 ; w = first 4 bit of fdeg
movwf reg_FirstDortBit ; reg_FirstDortBit = w($t 4 bit of reg1)

swapf regl,0 ; W = regl(first 4 bit<second 4 bit)
andlw H'OF' ; W = second 4 bit ofte
movwfreg_SecondDortBit ; reg_SecondDortBit = vesad 4 bit of regl)

moviw H'01'

movwf PORTE ; Nodesset

call C_SEND_DATA_NODE2 ;Send datantale 2

call C_HAS_DATA RECEIVED_FROM_NODE2

moviw H'FE'

andwf PORTE,O

movwf PORTE ;Node 2 is reset
moviw H'00'

movwf PORTA ;Data 0

moviw 2000

call G_delay

moviw H'02'

movwf PORTE ; Node 3 is set

call C_SEND_DATA_NODE3

call C_ HAS DATA RECEIVED_FROM_NODES3 ;Has Nodeeteived data
form Node 1

moviw H'FD'

andwf PORTE,O

movwf PORTE ;Node 3 is reset
moviw H'00'

movwf PORTA ;Data 0

a7

bsf PORTE,O :Node 2 set edildi.
moviw 2000

call G_delay

call C_ HAS EXECUTION _TIME_RECEIVE_N2 ;nodel execution time
bcf PORTE,O ;Node 2 reset
edildi.

;goto G_DISPLAY_EXECUTION_TIME

bsf PORTE,1 ;Node 3 set edildi.
moviw 2000

call G_delay

call C_ HAS EXECUTION_TIME_RECEIVE_N3 ;nodel execution time
bcf PORTE,O ;Node 8ate

goto G_DISPLAY_EXECUTION_TIME

end

Assembler subroutine of nodes is shown on thenoelo

LIST p=16F84A

INCLUDE "P16F84A.INC"

48

lcl equ OxOa

lc2 equ 0x0b
msec equ OxOc
sec equ
min equ
hour equ OxOf
timef equ 0x10
save equ Ox11
reg_number

reg_timeMSecl

0xod
0Ox0e

; tens of milliseconds
; seconds
; minutes
; hours
; register for time flags
; save for ACCU

equ 0x12
equ 0x13

reg_findOutNumber equ 0x14

reg_timeSecl

reg_timeSec2

equ 0x15
equ 0x16

reg_ExecutionTime equ 0x17

; constants

msf equ 0x00
sf equ 0xO01
mf equ 0x02
hf equ 0x03
df equ 0x04
MSD equ 0x4b
PSD equ 0x05
XD equ Ox4b
minf equ 0x02
org O

; millisecond flag
; second flag

; minute flag

; hour flag

; day flag

; crystal divider (75)
; millisecond divider
; crystal divider (75)

; minute flag

49

goto _main

org 0x04 ; void interrupt(void)
_interrupt {

movwf save ; save(ACCU);

bcf INTCON,TOIF ; INTCON,TOIF = 0;
incf msec,F ; msec++;

bsf timef,msf ; msf=1;

movf msec,W ; ACCU = msec;
sublw XD ; if ((ACCU-XD) 1= 0)
btfss STATUS,Z ; return;

retfie ; else{

clrf msec ; msec =0;

bsf timef,sf ; msf=1;

incf sec,F ; Sectt;

movf sec,W ; ACCU = sec;

sublw 0x3c ; If ((ACCU-60) '=0)
btfss STATUS,Z ; return;

retfie ; else{

clrf sec ; sec =0;

bsf timef,minf ; sf=1,

incf min,F ; min++;

movf min,W ; ACCU = min;
sublw 0x3c ; if ((ACCU-60) '=0)
btfss STATUS,Z ; return;

retfie ; else {

clrf min ; min = 0;

bsf timef,hf ; hf = 1;

incf hour,F ; hour++;

movf hour,W ; ACCU = hour;

50

sublw 0x18 ; if ((ACCU-24) I=0)
btfss STATUS,Z ; return;

retfie ; else {

clrf hour ; hour = 0;

bsf timef,df ; df = 1;

movf save W ;. }}}} restore(ACCU);

retfie i}

_initialize

bsf STATUS,RPO; bank 1
moviw H'00'

movwf TRISB

moviw H'1F'

movwf TRISA

movlw 0x7d : RBPU=o0ff, INTEDG=o0ff, TOCS=0sc, PSAMRO0
addlw PSD : PSD = b'101' [64]

OPTION ;

bcf STATUS,RPO ;bankO

;moviw Oxa0 ; enable TMRO interrupt
moviw b'10100000' ;

movwfINTCON ;

clrf msec ; msec = 0;

clrf sec ; sec =0;

clrf min ; min =0;

clrf hour ; hour = 0;

clrf timef ; all flags off;

clf PORTB

clrf PORTA

clrf reg_number
51

clrf reg_timeSecl
moviw H'00'
movwfreg_timeSec2

clrf reg_timeMSecl
clrf reg_findOutNumber
return

C_DELAY

G_delay

moviw H'7F'

movwf Ic2

G sw2 moviw HFF'

movwf Icl
C sw3

nop

decfsz Icl,f
goto C_sw3
decfsz Ic2,f
goto G_sw2
return

ONE

moviw H'01'

movwfreg_ExecutionTime
return

THREE

moviw H'03'
movwfreg_ExecutionTime
return

SEVEN

moviw H'07"'
movwfreg_ExecutionTime

return

52

EIGHT

moviw H'08'
movwfreg_ExecutionTime
return

TEN

moviw H'0A'
movwfreg_ExecutionTime
return

ELEVEN

moviw H'0OB'
movwfreg_ExecutionTime
return

THIRTEEN

moviw H'0D'
movwfreg_ExecutionTime
return

FOURTEEN

moviw H'OE'
movwfreg_ExecutionTime
return

ONE_7

moviw H'17"'
movwfreg_ExecutionTime
return

TWO_A

moviw H'2A'
movwfreg_ExecutionTime
return

TWO_E

moviw H'2E'

movwfreg_ExecutionTime

53

return

THREE_4

moviw H'34'
movwfreg_ExecutionTime
return

THREE_9

moviw H'39'
movwfreg_ExecutionTime
return

THREE_B

moviw H'3B'
movwfreg_ExecutionTime
return

THREE_C

moviw H'3C'
movwfreg_ExecutionTime

return

C_NUMBER_SELECT
ZERO

moviw H'00'

andwf reg_findOutNumber,0
sublw H'00'

btfsc STATUS,Z

call ONE

moviw H'01'

andwf reg_findOutNumber,0
sublw H'01'

btfsc STATUS,Z

cal THREE

54

moviw H'02'

andwf reg_findOutNumber,0
sublw H'02'

btfsc STATUS,Z

call SEVEN

moviw H'03'

andwf reg_findOutNumber,0
sublw H'03'

btfsc STATUS,Z

call SEVEN

moviw H'04'

andwf reg_findOutNumber,0
sublw H'04'

btfsc STATUS,Z

call EIGHT

moviw H'05'

andwf reg_findOutNumber,0
sublw H'05'

btfsc STATUS,Z

cal TEN

moviw H'06'

andwf reg_findOutNumber,0
sublw H'06'

btfsc STATUS,Z

call ELEVEN

55

moviw H'07’

andwf reg_findOutNumber,0
sublw H'07'

btfsc STATUS,Z

call THIRTEEN

moviw H'08'

andwf reg_findOutNumber,0
sublw H'08'

btfsc STATUS,Z

call FOURTEEN

moviw H'09'

andwf reg_findOutNumber,0
sublw H'09'

btfsc STATUS,Z

cal ONE_7

moviw H'0A’

andwf reg_findOutNumber,0
sublw H'OA'

btfsc STATUS,Z

cal TWO_A

moviw H'OB'

andwf reg_findOutNumber,0
sublw H'OB'

btfsc STATUS,Z

cal TWO_E

moviw H'OC'

56

andwf reg_findOutNumber,0
sublw H'0C'

btfsc STATUS,Z

cal THREE_4

moviw H'OD'

andwf reg_findOutNumber,0
sublw H'0OD'

btfsc STATUS,Z

cal THREE_9

moviw H'OE’

andwf reg_findOutNumber,0
sublw H'OE'

btfsc STATUS,Z

cal THREE_B

moviw H'OF'

andwf reg_findOutNumber,0
sublw H'OF'

btfsc STATUS,Z

cal THREE_C

return

C_RECV_DATA FROM NODE1
movf PORTA,O

andlw H'OF' ; W = received 4 Bit data
movwf reg_number ; reg_number =w
return

C GET_TIME1

57

movf sec,0 T W = Sec

movwf reg_timeSecl ;reg_timel =w

return

C_GET_TIME2

movf sec,0 ; W =secC

movwf reg_timeSec2 ;reg_time2 =w
return

_main

call _initialize

C_IS_NODE_INIT

btfss PORTA4 ;Is Node2 set
goto C_IS_NODE_INIT

movf sec,0 ; W = sec

movwf reg_timeSecl ; reg_timel =w

call C_RECV_DATA_FROM_NODE1

moviw H'80'
movwf PORTB

moviw H'00’

movwfreg_findOutNumber

G_FIND_OUT_NUMBER

movf reg_findOutNumber,0

incf reg_findOutNumber,1

subwf reg_number,0

btfss STATUS,Z

goto G_FIND_OUT_NUMBER

decf reg_findOutNumber,1

movf sec,0 ; W = secC
58

movwf reg_timeSec2 ;reg_time2 =w

movf sec,0 ; W = secC

movwf reg_ExecutionTime ;reg_time2 =w

cal C_NUMBER_SELECT

;movf reg timeSecl,0 ;w =reg_timeSecl

;subwf reg_timeSec2,0 ;w =reg_timeSec&eg_timeSecl)AMAN

;movwf reg_ExecutionTime ; reg_ExecutionTime/=

G_IS_NODE_RESET

btfsc PORTA4 ;Is Node2 reset
goto G_IS _NODE_RESET

moviw H'00'

movwf PORTB

cal C_DELAY

C_IS_NODE_SET

btfss PORTA4 ;Is Node2 set
goto C_IS NODE_SET
G_SEND_EXECUTION_TIME

bsf reg_ExecutionTime,7

movf reg_ExecutionTime,0

movwf PORTB

C_IS_NODE_RESET

btfsc PORTA,4 ;Is Node2 reset
goto G_SEND_EXECUTION_TIME

moviw H'00’

movwf PORTB

goto C_IS NODE_RESET

END

When data arrived at node, program on running madte data to own register.
59

Program starts estimation and on the same timejrgmo interrupt is activated.
When it starts to increase program counter by hesiathl number 01, program
check the data. If the generation of this dataaimes of sending data, interrupt is
triggered. After this mode, using interrupt missiexecution time is estimated.
After execution time is known, node send a sigmaigo master for declaration.

This declaration is about execution time on blockide.

............................... = AL
............................... ES | ;rﬂ e E Ex ESF;rEsfn
g |NoDES 9 |t
Koo i
= ° EE
£ L -
. : gegzna 3 5
e T oscic ian mAn |20 Eeoen s Hnd H
e - SRPERERE[2EERE = 2 | R SR
e w3 22 o fi ENTER LK DORT BIT
RALTDCH i I \
5 gl
AEmT 2 1 :) : TEKT:
RE2 |5 \,|
REs 22 -
;:; i i } EMTER S0 DORT BIT
RE6 |21 ~TEXT
RE7 = = N T s
i i e]
o
= ®®
L e
e e &
RO7PSRy [~
RDEPSPE |2
RDSPEPS ﬁ
‘ROUPSPL fig
RDPSPa (222 ‘ o
RDZFSP2 2L e
RD1pSPY =2 e
ROOPSPD |13
= RCURKOT 2 ;
OSCUCLEIN REATHCK _:a o |
" RESE00 (=24 = :
| REZMNTES RCHSDISDA (222 R3 R4 RE
- REISCKACL it R2 - " HH?
REQBNSTT RCZECE] (1L I =TERf
2 REATIDSICCPS |18 Toma o (m
= RASHNOES RCOMTIOSDITICK 11 . i = G i
" | e i " . . i
| RAIMNINVRER RETPGD |4l = o - e
o REGPGC o P S : [
= 1 RES [—
RALAND G e o
i REIPGM =5
- oscchmlT: Aoy [l
= | GsCIC LN REUNT [
o T .
steee B Biis Sm e e Seeeumi shmeainie

Figure 4.3: System is Running State

4.3. Calculating Speedup
In this thesis, we simulates the system othertimalues. We enter values for

different number of nodes on the below. The simmatnables to calculate

speedup and illustrate the speedup graph.

60

Eigth
A Two Four Nodes{approxima
Input Node Nodes Nodes tely) four nodes eight nodes

10 12 0645
msec msec 14 msec 075 speedup speedup

msec msec 14 msec 095 speedup 1.75 speedup 1.5 speedup

14 msec 6.9 speedup 4 9 speedup

Figure 4.4: Calculating Speedup using different number of saated an

input value

12-

104 .
8_
6 ! E Two nodes
4) = [Four nodes
. | H Eight nodes|
0 = . f

Hex Hex Hex Hex Hex Hex Hex
01 02 04 08 10 20 40

Figure 4.5: Speedup graph

61

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have derived a lower bound ftoe efficiency of
executing a task graph. This corresponds to amtiter algorithm executing
parallel on multiple microcontroller (this refers CPU also) and requiring only
partial synchronization. We have found out the mesttable number of

microcontroller for our mission.

We try to calculate execution time using differenmber of CPU and thus
system is saturated when there are four CPUs. W different key at different
number of nodes. Consequently, our sytem is deitab four nodes for most
efficiency password cracker system.

62

REFERENCES

[1] Thompson, Washington D.C. (1967), G.M. Amdahl “Validity of
theSingle Processor Approach to achievihgrge Scale Computing
Capabilities “AFIPS conf. Proc., Thompson, Washington D.(y.483-485.

[2] F. Baccelli and A.M. Makowski (1989),“Queueing Models for Systems
with sychronization ConstrairitsProceeding of the IEEE, 77(1), pp.138-161.

[3] Asanovic, Krste et al. (December 18, 2006)The Landscape of Parallel
Computing Research: A View from Berkéléyniversity of California, Berkeley.

[4] Michael J. Flynn, Jones and Bartlett Publiskers (1995), “Computer
Architecture: Pipelined and Parallel Processoedign”, 1st edition.

[5] Lars Bengtsson, Kenneth Nilsson, Bertil Svesson (May 1994);'a High

- Performance Embedded Massively Parallel Bssing Systeihfroceedings
of MPCS'94: 1'st EUROMICRO International @mence on Massively
Parallel Computing Systems, Ischia, Italy.

[6] Hua Bei, Tang Xinan (May 2006),“High-performance IPv6 Forwarding
Algorithm for Multi-core and Multi-threaded NetworRrocessor§ professor

Hua Bei and USTC schoolfellow Dr. Tang Xinan isswed ACM SIGPLAN

Symposium on Principles and Practice of ParallegRrmming.

R1

