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ABSTRACT

FUZZY REGRESSION MODELING OF DEFECT RATES
IN A METAL CASTING PROCESS

KILIC, Tuna
M. Sc., Department of Industrial Engineering
Supervisor : Inst. Dr. Ozlem TURKER BAYRAK
Co-Supervisor: Prof. Dr. Giilser KOKSAL

September 2009, 77 pages

This study has two purposes. One of them is to develop model of a metal casting
process quality. This model can be used by the company to reduce the number of
defects by identifying the process variables which have the most important effects
on a certain defect type. The second purpose is to test and develop certain fuzzy

regression approaches for the case problem.

In the case study, 36 process variables are observed from the metal casting process.
Initially, stepwise linear regression (LR) method is applied to the data set and 8
independent variables are selected as significant. When the process variables are
examined, it is realized that instead of identifying them as crisp, expressing them
with fuzzy numbers is more appropriate. In the scope of the study, all fuzzy

numbers are assumed to be triangular fuzzy numbers.

v



First the Hojati-Bector-Smimous (HBS2) method developed by Hojati et al. (2005) is
generalized to multi variable modeling and then applied to the data set. In order to
make a comparison between HBS2 and linear regression (LR) approach, the latter is
also applied. Similarly, in order to make a comparison between HBS2 and other
fuzzy methods, Fuzzy Functions (FF) method developed by Turksen and Celikyllmaz
(2006) is used. Furthermore, Non-Parametric Improved Fuzzy Classification
Functions developed by Ozer (2009) is adapted to the case of fuzzy linear
regression. The newly developed method called as Non-Parametric Improved Fuzzy
Functions (NIFF) is applied to the same data set for a comparison with the other

solutions.

Keywords: Fuzzy Regression, HBS2, Fuzzy Functions, Non-Parametric Improved Fuzzy

Functions, Metal Casting



(074

BIR METAL DOKUM SURECINDEKi HATA ORANININ
BULANIK REGRESYON YONTEMI iLE MODELLENMESI

KILIG, Tuna
Ylksek Lisans, Endistri Mihendisligi Anabilim Dal
Tez Yoneticisi : Dr. Ozlem TURKER BAYRAK
Ortak Tez Yoneticisi  : Prof. Dr. Giilser KOKSAL

Eylil 2009, 77 sayfa

Bu calismanin iki amaci bulunmaktadir. Amaclardan birisi, bir dékiim siirecinde
sureg kalitesinin modellenmesidir. Bu model firma tarafindan hatali Griin sayisinin
azaltilmasi amaciyla hata Uzerinde en fazla etkisi olan siirec degiskenlerinin
belirlenmesi igin kullanilabilir. Amaglardan ikincisi metal dékim verisi igin cesitli
bulanik regresyon yaklagimlarinin test edilmesi ve gelistirilmesidir.

Bu calismada metal dékiim siirecinden 36 adet slire¢ degiskeninin degerleri
gozlemlenmistir. Oncelikle veri kiimesine asamali dogrusal regresyon analizi (DR)

uygulanmig ve sekiz adet degisken secilmistir.

Sure¢ degiskenleri incelendiginde, soz konusu degiskenlerin kesin (crisp) sayilar
olarak ifade edilmesi yerine bulanik sayilar olarak ifade edilmesinin daha uygun
olabilecegi sonucuna varilmistir. Calisma kapsaminda kullanilan tim bulanik

sayllarin t¢gensel bulanik sayilar oldugu varsayilmistir.
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ilk olarak Hojati ve dig. (2005) tarafindan 6nerilen Hojati-Bector-Smimous (HBS2)
yontemi, cok degiskenli modelleme yapilabilecek sekilde genellestirilmis ve veriye
uygulanmistir. Elde edilen sonuglarin dogrusal regresyon ile karsilastiriimasi amaci
ile veriye dogrusal regresyon analizi uygulanmistir. Benzer sekilde, HBS2 yéntemi ve
diger bulanik yontemlerin karsilastirlmasi amaci ile Tiirksen ve Celikyilmaz (2006)
tarafindan gelistirilen Bulanik Fonksiyonlar (BF) yéntemi uygulanmistir. Ayrica Ozer
(2009) tarafindan gelistirilen Parametrik Olmayan lyilestiriimis Bulanik Siniflandirma
Fonksiyonlari (POIBSF) yéntemi, bulanik dogrusal regresyon analizine uyarlanmistir.
Gelistirilen bu yéntem Parametrik Olmayan lyilestirilmis Bulanik Fonksiyonlar
(POIBF) ydntemi olarak adlandirimis ve veriye uygulanarak sonuglar

karsilastiriimistir.

Anahtar Kelimeler: Bulanik Regresyon, HBS2, Bulanik Fonksiyonlar, Parametrik

Olmayan lyilestirilmis Bulanik Fonksiyonlar, Dékiim Siireci
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CHAPTER 1

INTRODUCTION

The nature of the uncertainty in a problem is very important that engineers should
ponder prior to their selection of an appropriate method to express the uncertainty
(Ross, 2004). Uncertain information can take on many different forms. There is
uncertainty that arises because of complexity; for example, the complexity in the
reliability network of a nuclear reactor. There is uncertainty that arises from
ignorance, from various classes of randomness, from the inability to perform
adequate measurements, from lack of knowledge, or from vagueness like fuzziness
(Ross, 2004). The idea proposed by Zadeh (1965) suggests that setting membership
is the key to decision. Belman and Zadeh (1970) note that there is a need for
differentiation between randomness and fuzziness. They argue that the premise of
“imprecision can be equated with randomness” is questionable, and that fuzziness

is a major source of imprecision in many decision processes.

In a competitive market place, it is essential to make effective data analysis for
manufacturing companies in order to put themselves one step further from the
competitors. Making effective data analysis improves ability to make right decisions
at critical decision points. Therefore, nowadays, selecting more accurate methods
and techniques to use during data analysis becomes more essential for the
manufacturing companies since these methods help them to make important

decisions.



The aim of this study is to model process quality in order to reduce number of
defects in a metal casting process. Since reducing number of defects directly
decreases the related cost, determining the process variables which have the most
important effects on defect and making decisions regarding the process variables

become important.

In order to reach more accurate conclusions, before selecting the methods, the
nature of the uncertainty is considered in this study. Since the uncertainty type of
the metal casting process is not only randomness, but also imprecision and
vagueness is included and the deviations between observed and estimated
variables are supposed to be due to the indefiniteness of the system structure as
described by Tanaka et al. (1982), fuzzy regression techniques are used for

modeling in the scope of the study.

Fuzzy Linear Regression developed by Tanaka et al. (1982) aims to model the vague
and imprecise phenomena using the fuzzy functions defined by Zadeh (1975). Fuzzy
regression is a non-statistical method where the deviations between observed and
estimated values are assumed to depend on the indefiniteness/vagueness of the
parameters which govern the system structure, not on its measurement errors (Kim
et al. 1996). It gives rise to a possibility distribution that accounts for the imprecise
nature or vagueness of our understanding of a phenomenon. Classical statistical
regression makes rigid assumptions about the statistical properties of the model;
e.g. the normality of error terms. These assumptions are difficult to justify unless a
sufficiently large data set is available. The violation of such basic assumptions could
adversely affect the validity and performance of statistical regression. It has been
stated that fuzzy regression may be more effective than statistical regression when
the assumptions are either violated or cannot be properly employed, for example
crisp and imprecise data is available (Gharpuray et al. 1986).

Unlike statistical methods, fuzzy methods may work with fuzzy data as well as crisp
data. Fuzzy data, the members of which are the fuzzy numbers, can be thought of as

interval numbers, values within which have varying degrees of memberships.



Because of the nature of the metal casting process variables which varied in an
interval with a certain degrees of membership, both dependent and independent

variables are considered as fuzzy numbers during the study.

In this study, a metal casting data set which is decided to be handled as fuzzy data
set is used to model the process quality by HBS2 fuzzy linear regression method
developed by Hojati et al. (2005). In order to apply HBS2 method to the data set,
the method is generalized to multi variable case in scope of this study. Difficulties
that are met during the application of the multi variable HBS2 method are
discussed, and a method is proposed to overcome these difficulties. Performance of
the proposed method and possible reasons behind its low and high performances

are discussed. Possible use of these approaches in other cases is also discussed.

In order to make a comparison between HBS2 and statistical regression techniques
the Multi variable Linear Regression approach is used. And also in order to make a
comparison between HBS2 and other fuzzy methods, Fuzzy Functions (FF) method
which is developed by Tiirksen and Celikyilmaz (2006) is used. Furthermore, Non-
Parametric Improved Fuzzy Classification Functions presented by Ozer (2009), is
adapted to the regression case. The method named as Non-Parametric Improved

Fuzzy Functions is applied to the same data set for comparison of all solutions.

This thesis is organized as seven chapters. In the second chapter, literature survey
and background information about the methods used is described. HBS2 Method,
Fuzzy Functions, Fuzzy C-Means Method and Nonparametric Improved Fuzzy
Classifier Function methods are discussed. Explanations regarding metal casting
data set are given in Chapter 3. Generalization of HBS2 model is given in Chapter 4.
Non-Parametric Improved Fuzzy Functions approach is represented in Chapter 5. In
the sixth chapter, the performances of the models are compared with respect to
comparison criteria. Finally conclusions and future study suggestions can be found
in Chapter 7. In the appendix the comparison criteria which are used for comparison

of the model performances are described.



CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

In regression analysis, dependent variable, y, is a function of the independent

variables and the degree of contribution of each variable to the output is

represented by coefficients of these variables.

A crisp linear regression model is given in Eq.(2.1) :

y=f(x,a) =ay+ayx; +ax; + ...+ agx, (2.1)
where
y: dependent variable
x;: independent variables

a;: coefficients.

In conventional regression techniques, the difference between the observed values
and the values estimated from the model is assumed to be due to the observational
errors and the difference is considered as a random variable (Coppi, 2007). Upper
and lower bounds for the estimated value are established and the probability that
the estimated value will be within these two bounds represents the confidence of

the estimate. In other words, conventional regression analysis is probabilistic.



But in fuzzy regression, the difference between the observed and estimated values
is assumed to be due to the ambiguity inherently present in the system (Kim et al.
1996). The output for a specified input is assumed to be a range of possible values,
i.e., the output can take any of these possible values. Therefore, fuzzy regression is
possibilistic in nature. Moreover, fuzzy regression analyses use fuzzy functions to
represent the coefficients as opposed to crisp coefficients used in conventional

regression analysis.

Equation (2.2) shows a typical fuzzy linear regression model,

? = f(x, ;4—) = Ag + A~1x1 = A'zx:z -+ zea A'kxk (22)

where
Ay k™ fuzzy coefficient

x: independent variables.

Fuzzy regression estimates a range of possible values that are represented by a
possibility distribution (a membership function). Membership functions are formed
by assigning a specific membership value (degree of belonging) to each of the

estimated value.

g 1 3 R

LW

G

Figure 1 A Triangular Membership Function



Membership functions have been commonly formulated with straight lines. Among
them, the simplest is the triangular or trapezoidal membership functions. Triangular
membership functions, shown in Figure 1, allow for the solution to be found via a
linear programming formulation whereas other membership functions for the
coefficients require alternative approaches. In the figure m; is the center and ¢; is

the spread value of the triangular fuzzy number.
The triangular membership function p; is expressed as;

pz(a;)

O T S e < . < i 3
_ )1 ‘. m;—c¢;<x; < m;+c; (2.3)

0 Otherwise.

As an example, Figure 2 shows membership functions of fuzzy sets, “young”,

“middle aged” and “old”.

Membership
1] ‘r Membership function of Membership
function of Middle function of
Young Aged Old

s
>

25 50 75 100 Age
Figure 2 Membership Functions of Fuzzy Sets, “Young”, “Middle Aged” and “Old”

(Source: Ross, 2004)

Horizontal axis of graph in Figure 2 represents “age” in years (the universal set X)

and vertical axis represents the degree to which a person can be labeled as “young”,

6



“middle age” or “old”. Hence, membership graph represents membership function
of a fuzzy set, which represents “the group of people that can be considered

young”, “middle age” and “old”. Further details can be found in Ross (2004).

The fuzzy function 4 is a function of two parameters, m and ¢, known as the middle
value and the spread, respectively. The spread denotes the fuzziness of the

function. Therefore, the output is a revised version of Eq. (2.2)

k
?i = (mg, Co) =} Z(m],cl) Xij i=12..,n (24)
=1

where
n: number of observations
X;;: independent variables
m;:midpoints of coefficients

cj: spread of coefficients.

The output data, the input data, and the coefficients can be either fuzzy or crisp. In
this thesis, because of the reasons explained in the Chapter 3, fuzzy input and fuzzy

output dataset is used for modeling the system.

Similar to fuzzy coefficients, input variables’ midpoints can be represented by Xij,
and spreads of the input variables can be represented by f;;. For the fuzzy input,

fuzzy output case, equation (2.4) can be re-written as follows:

k
?i = (mo, Cg) + Z(ml, Cl) (xU’ﬁ-J) = 1,2, yiy T (25)
=1

where
n: number of observations
x;j:midpoints of independent variables
fij: Spread of independent variables

m;:midpoints of coefficients



¢j: spread of coefficients.

Fuzzy linear regression is proposed by Tanaka et al. (1982) to determine a fuzzy
linear relationship as shown in Eq.(2.2). A simple fuzzy linear relationship (i.e. only
one explanatory variable) can be represented by a band with a centre line as shown

in Figure 3.

v

Xy

Figure 3 A Fuzzy Linear Relationship

Given a symmetric triangular fuzzy number for y; , if we are only interested in that
part of y; which has a membership value of at least H, 0 £ H < 1, we should use the
interval [y; — (1 —H)e;, ¥; + (1 — H)e;], where H represents the minimum
degree of certainty acceptable, and we will refer to this interval as H-certain

observed interval. This interval is the bold line segment in Figure 4.

Membership
value

1.0

r 3 Jr

¥i — (1 —H)e; Fi+ (1 —H)e,

Figure 4 H-Certain Observed Interval



Similarly, the predicted interval corresponding to a specific set of x values having

membership value of at least H is,

[Ejole; — (1 — H)e;)(Ry — (1 - Hfy),

(2.6)
Yico(a; + (1 — H)e;) (% + (1 — H)fyy)]

where ;s denotes the midpoints of the coefficients and ¥;;’s denotes the

observations” midpoints. This interval is referred as H-certain predicted interval.
Fuzzy regression can be separated it into two cases;
Case 1: Independent variables are crisp, and the response variable is fuzzy.

Case 2: Independent variables are fuzzy and the response variable is also fuzzy.

Case 1 studies are initiated by the following model which is developed by Tanaka et

al. (1982).
Tanaka Model:
Minimize cyo+ci+c+ ... +¢, (2.7)
k
(aqj+ (A —H)c)x;j =2y, +(1—He; fori
Subject to ; : B = ‘ (2.8)
= 1,200, 1
k
Z(aj — (1 - H)¢)xy <7 — (1 — H)e; for i
o (2.9)
j=0
=12,..,n,
a;j free ¢g=0 for j=0,.. .,k (2.10)
where

a; : midpoint of coefficient
¢;: spread of coefficient
x;; : independent variable

¥;: midpoint of dependent variable



e; : spread of dependent variable.

The model forces the H-certain predicted intervals (dotted vertical lines in Figure 6)
to include H-certain observed interval (bold vertical lines). And the objective
function of the model minimizes the total spreads of the coefficients. According to
the Tanaka Model, membership value of an observed dependent variable and its
estimated fuzzy dependent variable, H;, must be at least H (Tanaka et al. 1982). H;

value for fuzzy observed dependent variables is illustrated in Figure 5 below.

v

}, 1
«—p ! Z @;X;; y

Figure 5 Illustration of H; value
(Source: Ozer, 2009)

As it can be seen, H; is the maximum membership degree that predicted fuzzy
interval contains the observed fuzzy interval. According to the model, midpoints of
the predicted fuzzy regression coefficients are not affected by the H value,
however, spread values of the predicted fuzzy regression coefficients increase with
the increase in H value (Kim et al. 1996). Since H; value increases when the
midpoints of the predicted and the observed dependent variable get closer, H level
can be seen as the level of credibility or level of confidence desired (Kim et al.
1996). Since it is determined by the user, proper selection of H level is important for
the fuzzy regression model (Wang and Tsaur, 2000). It is suggested to determine H

value according to the sufficiency of the data (Wang and Tsaur, 2000). If the data

10



set collected is sufficiently large and reliable, then H level should be determined as
0 and it should be increased with the decreasing volume of the data set and the

degree of reliability.

J: r

y: te : '

A J

Figure 6 lllustration of the Tanaka Model

There have been a few criticisms of this approach. One shortcoming is that the
solution is x;-scale dependent and many ¢j’s turn out to be zero (Jozsef, 1992). To
overcome this problem, instead of sum of half-width of regression coefficients in
(2.7), sum of half-width of the predicted intervals can be used as the objective

function (Tanaka and Ishibuchi, 1991). Thus the objective function becomes:
Minimize Z?zlzf,-‘:o Gy . (2.171)

Some articles have proposed major changes to Tanaka et al. (1982) approach. Savic
and Pedrycz (1991) suggest first to find the centers, a]-'s, using ordinary least

squares method and then to solve Tanaka Model with these 0y’s.

Tanaka and Ishibuchi (1991) also suggest first to determine the centers ;s using
ordinary least squares method, but then to solve a quadratic programming version

of the Tanaka Model with these aj’s. Celmins (1987) modified the least squares
method to the case where both dependent and independent variables have

11



triangular fuzzy number values in such a way that their joint membership function is

da cone.

Another shortcoming of Tanaka et al. (1982) approach is that each H-certain
predicted interval is required to contain the corresponding H-certain observed
interval. This results in large coefficient half-widths, ¢; , if any response ‘value’ has
large half-width e; or if there is an ‘outlier’ response. Tanaka et al.s (1989)
conjunctive model relaxes this requirement, only requiring that each H-certain

predicted interval intersect the associated H-certain observed interval.

Regarding Case 2 approach, Sakawa and Yano (1992) classify the independent
variables into three groups according to the expected range of values of fuzzy

regression coefficients, 4;, and solve the problem based on these groups.

Peters (1994) developed a model in which predicted intervals are allowed to
intersect observed intervals rather than including them in order to decrease the
sensitivity of the outliers. Ozelkan and Duckstein (2000) proposed a similar
formulation to that of Peter (1994), but have not required the prediction intervals

to intersect the observed intervals.

Hojati et al. (2005) develop a method similar to Ozelkan and Duckstein (2000), but
their method tries to obtain narrower intervals by minimizing the difference
between the observed and the predicted dependent variable when the predicted
dependent variable includes the observed dependent variable. Hojati et al. (2005)
developed two models within this scope; fist they applied the model to crisp input
and fuzzy output data set and called it as HBS1, then they expanded the model for

the fuzzy input and fuzzy output data sets which is called as HBS2.

The performances of the Tanaka’s, Peter’s, Ozelkan’s and Hojati’s first model are
compared by the Hojati et al. (2005) and it is concluded that the Ozelkan’s model
and Hojati’s first model named HBS1 has better performance than the others.
Furthermore regarding case 2 approach Hojati’s second model named HBS2 and

12



Sakawa’s model is compared and found that HBS2 has better performance than the

Sakawa’s model.

In this study, since input and output variables are both fuzzy in the metal casting
data set, the method developed by Hojati et al. (2005) named as HBS2 is used to

model the system.

2.1. HBS2 MODEL

In HBS2 Model, the fuzzy regression coefficients are chosen such that the total
deviation of upper points of predicted and associated observed intervals and
deviation of lower points of predicted and associated observed intervals are
minimized at both lower points (“left”’) and upper points (“right”’) of each of the
independent variable values (except x, ). For simplicity, the following LP is

formulated for the case when there is only one independent variable (in addition to

Xp )
n
diy +dgy +di, +dy + diy, + do, + df
Minimize ;[ iy iy ilL ilL irt iry irL (2‘12)
+ diy ]
1
DM+ A= D6 (Ey - (= B)fi)] + dfy — diy
Subject to: =
=¥+ (Q—H)e fori=12,..,n (2.13)
1
Z[(aj + (1 - H)cj)(ftj + (- H)f)+diy —diyy
j=0
=%+Q—H)e fori=12,..,n. (2.14)
1
[ — (1 = D)) (% — (L — D)fyy)] + dify, — diy,
=0
=y —(1—-H)e fori=12,..,n (2.15)
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1

D@ = (1= M) (& + (1 = i) + df, — i,

j=0
=y —((1=H)e for =1.2,..,n (2.16)
s B, des ey, e @cee dte do. 20
iy “ilu ilL ilL iru iru irL irL (2'17)
for i =12, ..m
a; free, ¢ =0, for j=01 (2.18)

where
d :distance between observations and estimations,
a@; : centers of the coefficients,
¢j : spreads of the coefficients,
X;;: centers of the independent variables,
fij: spreads of the independent variables,
¥, : centers of the dependent variable,

e; : spread of the dependent variable.

The indices “I” refers to the left (lower) point and “r” refers to the right (upper)
point of the independent variable intervals, and “U” refers to the upper points and

“L" refers to the lower points of the predicted interval.

The constraints of the model equalize the observed and estimated dependent
variables. And sum of the distances between observed and estimated dependent
variables are minimized in the objective function. lllustration of the “fuzzy x”case is
given in Figure 7. The rectangle in the figure shows the observed area, and the
parallelogram (in bold lines) shows the predicted area. Specifically, the x
dimension of observed area for observation i ranges from X;; — fi; to %;; + f;1, and
the y dimension of observed area for observation i ranges from ¥, —e; to y, + ¢; .

That is, the observed area is a rectangle.
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Figure 7 lllustration of the Fuzzy x Case

However, the predicted area is a parallelogram with the same x dimension as the
observed area, and y dimension at X;; — fj; ranging from (ay—¢y) + (a; —
¢1) (X1 — fi1) to (ag + cp) + (a1 + ¢1)(Xi1 — fi1), called “left” and y dimension at
Xi1 + fir ranging from (o —co) + (a1 — ) (X1 + fir) to (ap+co) + (ag +
c1)(Xi1 + fi1), called “right” .

HBS2 requires 2! constraints for each observation i (k is the number of
independent variables other than intercept). This is a shortcoming of HBS2 for high
number of independent variable cases. In order to overcome this shortcoming,
Hojati et al. (2005) suggests to eliminate some of the constraints resulting in

unsatisfactory performance.

2.2. FUZZY FUNCTIONS

Fuzzy systems based on Fuzzy Rule Bases (FRB) are successfully used to support
problem-solving and decision making. A classical way to represent the human
knowledge is using “IF..THEN" fuzzy rules. The “IF” part represents the antecedents

(input fuzzy set), and the “THEN” part represents the consequents (output fuzzy
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sets). In these systems, membership values of fuzzy sets represent degree of

belongingness, degree of compatibility, weight of strength of an object.

The fuzzy function approach is initially introduced by Tirrksen (2005). Recently the
algorithm is extended and combined with other soft computing approaches for
performance improvement, faster and more accurate parameter optimization and

uncertainty reduction (Celikyilmaz, 2005; Celikyilmaz et al. 2007).

The standard fuzzy functions are multi variable crisp valued functions. Fuzzy
Functions approaches have emerged from the idea of representing each unique rule
of an FRB system in terms of the ‘fuzzy functions’. One of their prominent feature is
that the degree of belongingness of each sample vector in a fuzzy set has a direct

effect on how the local fuzzy functions of the particular set is defined.

Fuzzy clustering methods are the core methods of the structure identification part
of fuzzy functions systems. Fuzzy c-Means Clustering (FCM) (Bezdek, 1981) is

generally used in fuzzy functions approaches to obtain membership values.

A common way to optimize the parameters of fuzzy systems is to separate the
dataset into several randomly selected training and testing subsets. The training
dataset is used to learn the system structure and optimize the parameters.
Similarly, testing dataset is used to measure the modeling performance. This
process is repeated several times with different random subsets to form training
and testing datasets. Then the overall performance is calculated by the

predetermined methods.

Multi-input, single output problems are the main interest of this thesis. Let
(x5 ={(x% , yD), (x5 , y5), ..., (&% , ¥E)} represent an input-output dataset,
where t denotes the training data set and every datum is composed of (nv + 1)
dimensions of input vectors, xi = (x{)k, ...,xftv,k), k =1,...,n, a total of n vectors,
and an output, y is the same. Z is the (n X (nv + 1)) input-output matrix, n is the

total number of data vectors, i =1,..,c is the cluster identifiers where ¢
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represents the total number of clusters identified, and m is the degree of fuzziness
(i.e. overlapping degree) which are parameters of the FCM clustering method. Let
Ui € [0,1] represent membership value of the k™ datum in cluster i. Therefore the

list of parameters of the training algorithm is

e Number of clusters of the system model, ¢, is a discrete value,
e Degree of fuzziness of the system model m € [1.1, o],

e Type of the system to be modeled, e.g. linear or non-linear.

Algorithm is as follows:
Step 1:
Choose FCM clustering parameters, m>1.1 (degree of fuzziness) and c¢>1

(the number of clusters) and € (a termination threshold)

Step 2:
Execute FCM using Z(x%, y*") to find the cluster centers, and interactive (I/0)

membership values for m and ¢ by;

: s
oY) = [due(x,9)/ ) dye e, )
j=1

(2.19)
Vi<i<c¢l<k<n
where dik(xl Y) = ”(ka J’k) - vi(xl JJ)”
Step 3:
Find membership values of the input space using
2
ik (%) = [dig (x)/ X521 dji () ]=m

Vi<i<cl<k<n (2.20)

where dy, (x) = [lxj — v;(x9)]l.
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Step 4:

For each cluster i
4.1. Membership values of each input data sample, W, and their
transformations is augmented to the original input space to map the
original input matrix.

4.2. Estimate the parameters.

Standard FCM is implemented to training input-output data to generate
membership values u(xf, ¥*) and cluster centers v;(x%, y*),i = 1,...,c. In step 3,
membership values corresponding to input space, u;(x"), and cluster centers of the

given input space, denoted by v;(x) are obtained.

2.3. FUZZY C-MEANS (FCM)

Fuzzy clustering algorithms can map a given dataset into overlapping clusters, while
computing membership values that specify to what degree each object belongs to
these captured clusters. The most commonly used type of fuzzy clustering
algorithm, is FCM clustering algorithm (Bezdek, 1981). In FCM clustering algorithm,
it is assumed that the number of clusters, ¢, is known or at least fixed; i.e., FCM
algorithm partitions a given data set X = {xlr...,xn} into ¢ clusters. Since the
assumption of a known or a previously fixed number of clusters is not realistic for
many data analysis problems, there are techniques such as cluster validity index

(CVI) analysis to determine the number of clusters.
A fuzzy clustering algorithm partitions the given dataset X into ¢ number of

overlapping clusters, forming a fuzzy partition matrix U which is a matrix of degree

of membership of every object x, k=1,...,n in every cluster i,i = 1, ..., c:
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In the fuzzy clustering algorithm, each cluster is represented by a vector called
“cluster center”,V = (vy v, ...,1,). Let each cluster represented by a cluster
prototype, v;. FCM clustering algorithm tries to minimize an objective function with
two pieces of prior information: number of clusters and fuzziness constant as

follows:

min]OGUV) = Y (uu)™d* (e, v)

(221)
where ¢ is the number of clusters, n is the number of objects (observations), and

v;'s are the cluster center.

In equation (2.21), m €(1,°) represents the “degree of fuzziness” of the fuzzy
clustering algorithm and it determines degree of overlapping of the clusters. m=1
means no overlapping which represents a crisp clustering structure. Here d? (x, v;)
is a measure of distance between k" object and /" cluster's center. Squared
distances satisfy that the objective function is non-negative, />0. The objective
function will be 0 when all data objects are cluster centers. When data objects are

far away from cluster centers, the objective function will get larger.

In order to avoid trivial solutions, two constraints are imposed, and the FCM

algorithm can be displayed as follows:

Cc n
min] QG UV) = ) > (u)™d? (a0 (2.22)
i=1 k=1

sit. 0<py <1 Vik, (2.23)

C
Z“"" =1, Vk>0 (2.24)

i=1
0% B0l €10 Yi>o. (2.25)

where
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Uir: membership degrees

d :distance between the observation and the cluster center.

The constraint in (2.24) implies that each row of partition matrix adds up to 1. The
constraint in (2.25) implies that the column total of membership values cannot
exceed the number of data vectors, n, nor it can be zero. This means that there is at
least one member assigned to each cluster. As the distance formula, Euclidean

formula given below is used

nv 1/2
dz (a, b) = \Z(a,— = bi).?.‘ . (226)
i=1

FCM algorithm stops according to a termination criterion, e.g., either after certain
number of iterations, or if magnitude of separation of two nearest clusters is less

than a predetermined value (g), etc.

Cluster centers and membership values are calculated according to the following

formula:

2

(t=1)y T1-m
(0 =y | Foevi) (2.27)
Hik j=1 [d(xk,vij(tul)) 4

.0 = (ZE=1(Hikt)xk)
l (B a)

Yt =10, 0 (2.28)

General FCM algorithm is as follows: Given data vectors X = {Xx;, ..., X,}, number of
clusters, c, degree of fuzziness, m, and termination constant, € (maximum iteration

number), initialize the partition matrix , U, randomly.

Step 1 : Find the initial cluster centers by (2.28) using membership values of the

initial partition matrix as inputs.
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Step 2 : Start iteration t = 1, ..., max iteration number
Step 2.1: Calculate membership values of each input data object k, in cluster
i, (P, using the membership function in (2.27), where x, are input data
objects as vectors and v;(*"" are cluster centers from (t — 1)™ iteration,
Step 2.2 : Calculate the cluster center of each cluster i at iteration t, v;(®)
using the cluster center function in (2.28),
Step 2.3 : Stop if termination condition is satisfied, e.g., |v;(® — v;("D| <e.

Otherwise gotostep 1.

Since parameter m represents the degree of overlap of clusters, as m gets larger,
the results become fuzzier and overlapping becomes wider. As m gets smaller, fuzzy
clustering results become closer to a crisp model. m=1 is the same as the crisp
clustering where there is no overlapping between clusters, and all membership

values are ;. € {0,1}.

Earlier research (Tirksen, 1999) indicates that, m=2 should be used in system
modeling analysis. In a study done by Ozkan and Tirrksen (2004), maximum and
minimum values of m are proven to be within [1.4,2.6] based on Taylor expansion

of the membership function.

Cluster Validity Indexes

Cluster validity indexes are given in the Handbook of Fuzzy Clustering and Data
Analysis Toolbox of MATLAB. Here they are only summarized. Different validity
measures have been proposed in the literature. None of them is perfect by oneself,

therefore, in this study several indexes which are described below are used:

a) Partition Coefficient (PC): Measures the amount of "overlapping" between

clusters. It is defined by Bezdek (1981) as follows:

21



N
1
N Z(#U)z (2.29)

where K is the membership of data point j in cluster i.

b) Classiffication Entropy (CE): It measures the fuzziness of the cluster partition

only, which is similar to the Partition Coefficient:

CE (c) = — % f=1 i tij log( ). (2.30)

c) Partition Index (SC): Is the ratio of the sum of compactness and separation

of the clusters.

o 0 )™ — v
N Yiollvg — w2 -

SC{(c) = (2.31)

For the above mentioned formula v; denotes the cluster centers and N; is

the number of clusters.

d) Xie and Beni's Index (XB): It aims to quantify the ratio of the total variation

within clusters and the separation of clusters:

2
1 X0 (i)™ |% — | | (2.32)

XB =
© Nimin, ; |lv — vi|?

e) Dunn's Index (DI): This index is originally proposed to be used at the

identification of "compact and well separated clusters".
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minxeci,yecj,d(x: y)

MaAXper {maxx,yecd (%, y)}

DI (c) = MiNe, {miniEc,iij{

1 (2.33)

where d(x, y) is the distance between x and y.

f) Alternative Dunn Index (ADI): The aim of modifying the original Dunn's
index was that the calculation becomes more simple, when the dissimilarity
function between two clusters is rated in value from beneath by the

triangle-nonequality
d(x,y) = |d(y,v;) - d(x,v))]

minxiECi,ijCj,ld(yi vj) - d(xi' v])l

Maxge{maxy yecd(x, )}

ADI (c) = minje {minjecixj{

3. (2.34)

As it is mentioned earlier, cluster validity indexes are used to identify the initial
algorithm parameters. During parameter selection, diagrams are drawn using
MATLAB 9.0 and breaking points of the diagrams are chosen as the parameters of
the algorithms. In Table 8 example of the diagrams are given. Since all of them are
hardly decreases or increases at  ¢=3, number of cluster is chosen as 3 in this case.
There is also other common breaking point however less number of partitioning is
suggested in the Handbook of Fuzzy Clustering and Data Analysis Toolbox of

MATLAB. The other parameters are chosen similarly.
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Figure 8 Cluster Validity Index Diagrams
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Figure 8 Cluster Validity Index Diagrams (cont.)

2.4. NONPARAMETRIC IMPROVED FUZZY CLASSIFIER FUNCTION

Nonparametric Improved Fuzzy Classifier Function developed by Ozer (2009) is an
improvement of the Improved Fuzzy Classifier Function (IFCF) approach. In Ozer’s
(2009) study, performance of the NIFCF is compared with another fuzzy
classification method, Fuzzy Classifier Function (FCF) and a statistical classification
method, Logistic Regression (LGR). It is found that NIFCF method gives more

satisfactory results compared with the other methods.

Improved Fuzzy Clustering (IFC) approach has been developed by Celikyilmaz and
Turksen (2008) as an improvement of the FCM method. This proposed algorithm
aims to transform membership values into powerful predictors to be used for
approaches based on fuzzy functions. The prediction power of membership values

are tried to be increased by using a function called interim fuzzy function, which is
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constructed to estimate output variable by using only membership values and their
transformations (Celikyilmaz and Tirksen, 2008). They compare the results of the
FCM and IFC algorithms using an artificial data set. The comparison results indicate
that membership values calculated by the IFC algorithm are better predictors of the
output variable than the membership values calculated by the standard FCM

algorithm.

FCF approach is the adaptation of FF approach to classification problems
(Celikyilmaz et al., 2007). This method is very similar to FF method, but a
classification method is used for building a model for each cluster rather than a
prediction method as in FF approach. IFCF method is the improved version of FCF
method which uses the IFC algorithm rather than the FCM algorithm. Improved
Fuzzy Functions (IFF) approach is developed by Celikyilmaz and Tiirksen (2008). This

approach proposes to use IFC algorithm in the clustering phase of the FF approach.

In Ozer’s (2009) study, during the application of IFC algorithm using Logistic
Regression as a classifier, a fitting problem has been met at the clustering phase of
the algorithm. In order to overcome the fitting problem, a non-parametric method,
MARS, in the clustering phase of the IFC method is proposed to use, which
automates the model formation and selection of transformations of predictors as
well as the selection of variables to find a best model fit. The clustering method,
which proposes to use a nonparametric method, MARS, as a classifier, and the fuzzy
classifier method, which proposes to use this method as a clustering algorithm are
called Nonparametric Improved Fuzzy Clustering (NIFC) and Nonparametric

Improved Fuzzy Classifier Function (NIFCF), respectively (Ozer et al., 2009).

2.5. LINEAR REGRESSION

Regression analysis answers question about the dependence of a response variable
on one or more predictors, including prediction of future values of a response,
discovering which predictors are important, and estimating the impact of changing

a predictor on the value of the response.
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Linear regression was the first type of regression analysis to be studied rigorously
and to be used extensively in practical applications. The reason is that models
depending linearly on their unknown parameters are easier to fit than models
related non-linearly to their parameters, and the statistical properties of the

resulting estimators are easier to determine.

For estimating the unknown parameters in linear regression model, ordinary least
squares (OLS) is used. This method minimizes the sum of squared distances
between the observed responses in a set of data and the fitted responses from the

regression model.

The goal of linear regression is to adjust the values of slope and intercept to find the
line that best predicts Y from X. More precisely, the goal of regression is to minimize
the sum of the squares of the vertical distances of the points from the line. The next
values of the output variable can be estimated using linear regression by multiplying

the observations with coefficients.

Assumptions of Linear Regression are:

e Homoscedasticity — the variance of the error terms is constant for each
value of x. To check this, the residuals are plotted versus the X value(s). This
plot has to be shapeless.

e Linearity — the relationship between each x and vy is linear. To check this,
again the residuals are plotted versus the X value(s). This plot has to be
shapeless.

e Normally Distributed Error Terms — the error terms follow the normal
distribution.

e Independence of Error Terms — successive residuals are not correlated.

For the variable selection stepwise regression is also used. Stepwise regression is a

technique for choosing the variables to include in a multiple regression model.
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Forward stepwise regression starts with no model terms. At each step it adds the
most statistically significant term (the one with the highest F statistic or lowest p-
value) until there are none left. Though there are two other stepwise approaches in

the literature, in this study, forward stepwise regression is used.
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CHAPTER 3

DESCRIPTION OF THE METAL CASTING DATA

A real life data set provided from a manufacturing company from the metal casting
industry, which was studied by Bakir (2007) for the purpose of quality improvement
is used in this study. The data for a particular product, the cylinder head, is studied,
which is seen as an important part because of its effect on the performance of

another part, the internal combustion engine. Figure 9 shows a typical cylinder

head.

Figure 9 A Cylinder Head

(Source: Bakir, 2007)

Casting is the process of making product having complex shapes by pouring molten

material into a mold and breaking out the solidified material from the mold.
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The main reason of using this procedure to make products is the difficulty of other
methods such as cutting from the metal. Other methods can also be not
economical. Metal casting has three main subsequent processes: core making,

molding, and melting.

The company performs batch production. A batch is a group of product produced in
a certain day under the same process settings. Number of products produced in the
batches is different. The company collects data to monitor batches and there is no
way to know under which exact process values the individual items were produced.
For that reason, process values of a batch represents all items belong to that batch.
All of the process values are measured by sampling from products produced.
Frequency of sampling varies among the variables because of the economical
reasons or difficulties. Most of the measurements are taken during the production
so that every batch has its separate value. However, some of them are taken once a
week and considered as the values of batches performed during the following week.
At the end of each batch production, all of the products are inspected for certain
defect types and number of defective items is recorded according to the types of
defect. Another problem arising here is the fact that if any defect type is observed
on a product enough to reject it, no further analysis is performed to see the
existence of other defect types. Only main cause to reject a product is recorded
even more than one defect type are observed on the same product. Consequently,
possible correlations between defect types are not provided by the data.
Differences between frequencies of sampling results in lots of missing data and
uncertain values of individual items forced us to aggregate data to the batch level.
The initial data set is processed by Bakir (2007) and finally 36 process variables for

61 observations were gathered.

Because of the reasons mentioned above, uncertainty in the structure of the system

is obvious. Most widely used conceptual basis for handling uncertainty is probability
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theory. On the other hand, when the systems in which imprecise data exist

fuzziness is the source of uncertainty rather than randomness.

Because of the reasons mentioned above, the deviations between observations and
estimations are supposed to be due to the indefiniteness of the system structure
and fuzzy regression techniques is used for modeling in the scope of the study. In
other words, in order to overcome all the indefiniteness, the fuzzy type of
uncertainty is supposed to exist in the data, and fuzzy regression techniques are

used for modeling.

Since the usage of high number of independent variables in fuzzy methods causes
some shortcomings such as increasing spreads for estimated outputs (Nasrabadi
and Nasrabadi 2004), collinearity between variables and increasing the calculation
time (Wang and Tsaur, 2000), 36 process variables are decided to be reduced by a
variable selection procedure. Using stepwise LR, 8 significant variables are chosen.
During variable selection SPSS 9.0 is used. Variable selection results are given in

appendix B.

Finally eight independent and one dependent variable is identified from the initial
data set using variable selection. Since there is a confidentiality agreement with the
metal casting manufacturing company, the names of the independent variables and
the dependent variable cannot be given in the scope of the study. However,
dependent variable is the defect rate determined by the manufacturing company. It
is important to reduce the number of defects in order to improve the quality of the
product and reduce the cost. And the independent variables are the variables which
are already known as having important effects on the dependent variable such as

oven temperature, humidity, gas permeability, viscosity, combustion loss, etc.

After variable selection procedure is carried out, metal casting data set is
partitioned using a 3-fold and 3-replicate cross validation method in order to

compare the performances of the methods. According to this approach, the data is
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randomly divided into three parts three different times (replicates). For each
replicate, models are developed, each time using two different parts (folds) of the
data, and the models are tested on the third part using several performance
measures. Therefore, for the final representation, mean values of the performance

parameter are calculated and located at the performance parameter tables.

Fuzzy methods may work with fuzzy data as well as crisp data. When the nature of
the process variables is considered, it is realized that they can be thought of as
interval numbers which have varying degrees of memberships. Although the names
of the variables are confidential for the manufacturing company, oven temperature
variable can be given as an example in order to explain the concept. Oven
temperature changes in a certain interval. Even the set value remains the same,
there are lots of factors affecting the current temperature of the oven. For this
reason, there is another kind of indefiniteness which can be handled by possibility
rather than probability. The temperature of the oven can be measured as 1420 ° C,
but it is known that the real temperature of the oven is between 1410 and 1430.
Therefore, instead of identifying the temperature of the oven as crisp such as 1420,
using fuzzy numbers which can be varied between 1410 and 1430 in a certain
membership degree can be more appropriate. The fuzziness of the other variables

can be explained similarly.

For that reason instead of using crisp values, fuzzy input and output observations
are used. In order to provide fuzzy input and output observations, spread values of
the variables are required. Since the data is prepared by taking averages over some
number of daily observations, say n, one could think of using estimates of standard
deviations, Oy, of these averages in the spread determination in the following

manner:
Spread = kO = kO, Vn

Here k could be taken as 2 or 3. However, n is not the same for different days and

variables. After consulting with the process engineers, it has been observed that
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their spread estimates are close to Oj values. Hence, in the study, spreads are

taken as the sample standard deviation of the observations. Yet, a sensitivity

analysis is performed for some other values of them in Section 6.5.

The same data set is used by Bakir (2007) and Ozer (2009). In Bakir’s (2007) study,
logistic regression and decision trees are used for modeling. At the end of the study,
none of the final models were found to be significant. On the other hand,
satisfactory results have been provided by the decision tree approach. Metal casting
data set is also used by Ozer (2009) in order to compare the results of the newly
developed NIFCF model with FCF and Logistic Regression methods. At the end of the
study, it is indicated that NIFCF has better performance than the Logistic

Regression.
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CHAPTER 4

GENERALIZATION OF THE HBS2 MODEL TO THE MULTI

VARIABLE CASE

In this chapter, generalization of HBS2 model developed and expressed for one
independent variable by Hojati et al. (2005) is presented. In order to use the
method for multi variable metal casting data, a generalization is applied to the
model. For simplicity, first, two independent variable generalization is done; then it
is adapted to eight independent variables. If we write the model for two

independent variables, the model is as follows:

-~

Y:AD + Alx['1 + Azxiz [ = 1, ey 61 (41)
HBS2 requires 2¥*1 constraints for each observation (where kis the number of

independent variables other than intercept). Thus for this case, we have 22t1=8

constraints for each observation.

In the original model developed by Hojati et al. (2005), upper and lower point of the
coefficient, and right and left point of the first independent variable are used for the
purpose of determination of the observed fuzzy dependent variable. For current
case, we have one new independent variable which is ¥;; and we have to add two
more points in order to determine new dimension added to the observation area to

provide the minimum deviation.
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Table 1 lllustration of the Model Indices for Two Independent Variable Case

Coefficients and lllustrations of Abbreviations
Variables the points of the points
(ag + (1 —H)cy) Upper of « di‘kthU
(ag — (1 — H)cy) Lower of «a di,kjh,L
(% + (1= H)fi1) Right of x; dij,,
(% — (1 - H)fa) Left of x; Ay,
Ziz + (A —H)f:) Right of x, dik,,
(x — (1 -H)f2) Left of x, dik,,

If we name the two new points as “outside” and “inside” and use the indices given

in Table 1 the new model will be as follows;

HBS2 for two independent variables:

Minimize 61

> i+ di),

i=1
meEM

M = {(klhl k?.hJ o kgh,v)} P hE {r, l},v € {U, L}

Subject to:

2
Z[(aj + (1= 1)) (%) — (1= B)fip)] + iy ey = Qi = ¥ + (1 = Hey
Jj=0

for i=1,.2,..,61
1

Z[(aj + (1= H)g)(%i; — (1 — ) fyy)l + (@ + (1 = H)ep) (i + (1 = H) fi) +

Jj=0

dile, ool — Ak b =Vt [1=H)egg for i=172,..61

2
Z[(“f + (1= H)e;) (& + (L= D) fy)] + Ay, ot = Dikeyybegyu = i + (1 — Heg
j=0

fori=1.2,..61

(4.2)

(4.3)

(4.4)

(4.5)
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1
[(a + (1= H);)(Zij + (1 = H)fiy)] + (@ + (1 = H)ep) (R, — (1 — H)fp) +
=0

dfkmkzbu —di u=Vit(Q—-He for i=12,..,61

(a7 = (1 = H)e;) (Rij — (U = DFip)l + iy eyt = Dyt = Fi — (1 — Hey
=0

fori=12,..,61

D ey = (1= ) (& = (L= Hfy)] + (@ = (1 = D)) (i + (1 = H)fip) +
j=0

diTku.sz,L —dik, ket = Yi — (1= H)g; for i=1.2,..,61

2
1= (= D))y + (= BV )T+ iy sy 1~ Dy e,
=0

=¥ —{1—H)g
for i=1.2,..,61

Al

2 = (1= B)gy) (s + (1 = EDfig)] + (@ = (1 = M) (i = (1= H)fig) +

j=0

d:v_klrrkzbli = digy eyl = ¥i — (1= H)e; for i=1,2;::.,61

All dtand d~ =0 i=12..61
a; free ¢ =0 forj=012

where
d :distance value between observations and estimations,

a; : centers of the coefficients,

Cy spreads of coefficients,
X;j: centers of the independent variables,

fij: spreads of the independent variables,
¥, : centers of the dependent variable,

e; : spread of the dependent variable,

r :right,

[ : left,

U : upper,

L : lower,

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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k;: variable j.

While the original model developed by Hojati et al. (2005) indicates rectangular
observation area, this model indicates a prisma since there is one more dimension
added to the model, which is represented by indices “inside” and “outside”. The

graphical representation of the model can be seen in Figure 10.

7y
drx inryu
1nlU

Xiz

Xi1

Figure 10 A Graphical Representation of HBS2 Model

In order to complete the main modeling problem, the HBS2 model is generalized to
8 independent variables and 61 observations that requires 28*1 =512 constraints for
each observation which is too much to solve and beside a main shortcoming of
HBS2 model. For each independent variable, one new dimension is added to the

model. The new dimensions are named as in Table 2.

Though it is not feasible to write 512 constraints manually, it is possible to write

them accordingly to the index set M as defined in the model.
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Table 2 Illustration of Indices for Eight Independent Variables Case

Coefficients and lllustrations of the | Abbreviations of
Variables points the points
(aog + (1 = H)cy) Upper of a dije,u
(o — (1 — H)cp) Lower of a )
(Xix + (1= H)fu) Right of x, gy
(%1 — (1 —H)f;y) Left of x; diky,
(X + (1 - H)f2) Right of x, dik,,
(%2 — (1= H)f32) Left of x; iy
(X3 + (1 — H)f3) Right of x5 dijes,
(Y3 — (1 —H)fi3) Left of x5 iy,
(Xip + (1 — H)fis) Right of x, dif,,
(Xis — (1 — H)fia) Left of x4 iy,
(%5 + (1 — H)fis) Right of xg diks.
(Xis — (1 —H)f;5) Left of x5 di ke,
(X + (1 — H)fi6) Right of xg ik,
(X6 — (1 — H)f:g) Left of xg Bek.,
(X7 + (1 — H)fi7) Right of x- dik,,
(X7 — (1 — H)fi7) Left of x, di e,
(Xig+ (1= H)fg) Right of xg di kg,
(Xig — (L= H)fig) Left of xg dijeg,

In order to increase the performance of the reduced model some of the constraints

selected randomly are added and the new model is written as follows:

HBS2-V2 (for eight independent variable)

Minimize 61

> @+ di),

i=1
meEM

M = {(klh! kzh, — ksh, 17)} , h € {T, l}, vE {U, L}

(4.12)
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Subject to:

8

Z((Ij + (1 —H)Cj)(fij = (1 = H)fu) -+

7=0
+ = —_ —- — .
di:ku»kzt:kat»ku'ksi-kez-k?z,kaz-U df,ku,kﬂ,k3,,k4,,k5,,k61,k7l_k81,u =¥+ (1—H)e

for & = 1.2, .61
7
Z(aj + (1= H)g) (% — A= Hfyj) + (ag + (1 = H)cg) (Fig + (1 — H) fig) +
Jj=0

+ = s _. —_— -
dirku-"fzr-k3!nk4f-f'f5bkszak7t,kﬂrnU di'kli-kZI'kSI-kt}[,kSLkﬁ[.kﬂ,kar,U =¥+ (1 -He

for i=12,..,61
8
z(aj +(1 - H)g)(F;+ Q- H)fy;) +
J=0

+ 5 — _- —_— .
dinklrrk'Zrlk3rak4rlkSrvkﬁrlkTr,kHTJU dilk1r1k2rlk3rlk4r:k5rrk6r-k?r,kBruU =Yi + (1 H)et
for i=1,2,..,61

7
Z(aj + (1= H)g)(&i; + A= H)fy;) + (@g + (1 — H)eg) (Kig — (1 — H)fig) +
j=0

+ g
B sy keardesrdear KseKer ks ep U~ Qikydeardear ks Kspkorky kg U
=¥+ (1 - H)e
for i=1,2,..,61

8
Z(“j -~ =-H))(xy; - A -H)fy;) +
=0

+ o — _. —_— — .
di~k1z»kzz:k3z:k4bk51akst-k7iﬁat-L di-"fu:kzzxksbku'ksw’fez,k?a,kspb =y —(1—He

for i=12,..,61
7

Z(“j —(1=H)¢)(&ij — L= Hfyy) + (ag — (1 — H)eg)(Zig + (1 — H) fig) +
=0
+ o = V. — —_ ’
di-kll'kZI'k3bk4lnk5.!'k6bk7l,k&r:L - divku'kzzlkspkunksfnkﬁznf'fﬂ,ksri =¥yi—(1-He
fori=1.2,..,61

8
j=0

+ = —_ _v —_— _ .
di:k11"k2r1k3r'fk4rrk5rrk6r'k7r,kSr:L diak1r'k2r:k3rfk4r'k5r:k6r-k7r,kBr-L =i (1 H)el

for i=1.2,..,61
D (e = (1= By + (1= H)fy) + (g = (1 = H)eg) g — (1 — H)fig) +

Jj=0

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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dEl:klrlklrﬂkSrfké—l'*kEr'kﬁr'kTr,kBI'L = Dijery gy Ksrdar sk ke L
=y —(1-He
for i=12,..,61
All ditand d;” =0 for i=12,..,61
a; free, ¢ =0. for j=12,..8

where

d :distance values between observations and estimations,

@; : centers of the coefficients,
Cj: spreads of coefficients,
X;;: centers of the independent variables,

fij: spreads of the independent variables,
¥, : center of the dependent variable,

e; : spread of the dependent variable,

r :right,

[ :left,

U : upper,

L : lower,

k;: variable j.

(4.21)
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CHAPTER 5

NON PARAMETRIC IMPROVED FUZZY FUNCTIONS

Nonparametric Improved Fuzzy Function (NIFF) method proposed and used in this
chapter is inspired by the method developed by Ozer (2009) named as

Nonparametric Improved Fuzzy Classifier Function (NIFCF).

NIFF method is very similar to NIFCF method. In NIFF method, Linear Regression
method is used as prediction method for building model rather than a classification
method as in NIFCF method. The improvement phases of the NIFCF and NIFF is

demonstrated in Figure 11.

NIFC = NIFF
Kilic Improvement
{2009}
NIFC NIFCF
o 'f;\ Ozer Improvement /:\
it ! (2008) :
1]
Improvement ! '
(2009) ' !
' E
IFC P IFCF
N i ] ~
' Celikyilmaz Improvement '
i {2007) ;
' 1
Gelikyilmaz H 1
Improvement E E
(2007) : '
i :
. :
FCM > FCF

Figure 11 Summary of Improvements Involving Fuzzy Functions
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NIFCF algorithm is given in the Ozer’s (2009) study. The steps of the algorithm taken
from the Ozer's (2009) study are shown as follows in order to explain the

differences between NIFCF and NIFF steps:

Steps of training algorithm for NIFCF:

1. Set initial parameter, a, which is the level used for eliminating the points farther

away from the cluster centers.

2. Calculate cluster centers for input-output variables, ¥(XY); and interim fuzzy

functions for each cluster using NIFC algorithm.

V(XY= {v(xi)i, ...,v(xp)i,v(y)[—}

where

v(xj)i :cluster center of the /" independent variable for the /" cluster,

v(y); :cluster center of the dependent variable for the /" cluster,

3. Foreachclusteri =1,...,c

3.1. For each observation numberk =1, ...,n

Using cluster centers for input space, v(X); = {v(xi)i, s v(xp)i}

3.1.1. Calculate membership values for input space, u;.

1 =1
X —v(X)ill2+SE |m—1
u[-k = (Zj{:l S k] )

1Xpe—v(XDj||2+5E j

where
SEjx: squared error term between the actual output and predicted

output value of the k™ observation using interim fuzzy function

calculated for the i cluster at step 2.
3.1.2. Calculate alpha-cut membership values, p;x:
ik = {ug = a}
3.1.3. Calculate normalized membership values,

Hik

'y. = —
Lk Z§:1 #]k
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3.2. Determine the new augmented input matrix for each cluster i, ®;, using
observations selected according to a-cut level. ®; matrix is composed of
input variable matrix, X{*, vector of normalized membership values for
the cluster /, ¥; and the matrix composed of their selected
transformations, y;', such as ¥;*, yff vi", exp(y;), log((1-¥;)/ vi).

;X v) =[X{' vi vil
where
X{ = {x; eX|uplx) 2 a,k=1,..,n}
3.3. Using Logistic Regression, calculate a fuzzy classifier function using new

augmented matrix ®;(X, y;).

At the last step of the algorithm which is 3.3, in NIFCF method, logistic regression is
used for the construction of the model. On the other hand, in NIFF method, linear
regression is used rather than logistic regression for the construction of the model.

This is the main and only difference between NIFF and NIFCF.

The motivation to propose the NIFF method is the same as NIFCF; i.e., in order to be
able to partition data into clusters, a model should be fitted at each iteration. If a
model cannot be formed at any iteration of the loop, the algorithm is terminated
and the data cannot be clustered. Since it may not always be possible to fit a model
(like as metal casting data set), in order to overcome all of these fitting problems, it
is proposed to use a non-parametric method, MARS, in the clustering phase of the

IFC method.
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CHAPTER 6

PERFORMANCE ANALYSIS

In this chapter, the performance analysis of the HBS2, HBS2-V2, FF and NIFF
methods are realized in terms of different variable case solutions which are two and
eight variables. In order to compare the models’ performances comparison criteria

which are explained in Appendix A in detail are used.

6.1. PERFORMANCE ANALYSIS FOR HBS2 MODEL WITH TWO VARIABLES

The solutions obtained from HBS2 model which are gathered from complete
constraints set and two variables are in Table 3. In order to compare the results,
linear regression and Fuzzy Functions also applied to the metal casting data set. As
it is mentioned in Chapter 2, in the first step of the FF algorithm, m and c values are
determined by the user according to the values of the cluster validity indexes. In
this study, all of the models are coded in MATLAB 9.0 using functions from its
optimization toolbox.Also for the determination of the m and ¢ values according to
the breaking points of the cluster validity index lines, MATLAB 9.0 is used and the
selection methodology is explained in detail in Chapter 2. All of the calculations are
made for the H=0.5 value. The solutions obtained are given in Table 3. As it is seen
from the Table 3, results obtained from HBS2, LR and FF are considerably close to
each other. Nonetheless, it can be said that performance parameters of FF is better

than the other models for some of the measures.
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Table 3 Performance Measures for Two Variables

LR HBS2 FF NIFF
Mean Absolute Error 0.029 0.025 0.022 0.020
Mean Square Error 0.003 0.003 0.003 0.003

Root Mean Square Error 0.050 0.050 0.050 0.050

r 0.541 | 0521 | 0.560 | 0.560
R? 0.297 0.279 0.314 | 0314
ADJ R? 0.246 0.226 0.263 0.263
PWI1 0.841 | 0922 | 0999 | 0.999
PWI2 0.967 | 0.955 | 0.999 | 0.999

On the other hand, since these models include only two of the eight variables found
significant for this case, it can be seen that satisfactory results have not been

provided in terms of R* and Adj R* for each model.

In the performance analysis LR is used to compare performance of the HBS2 model
with conventional statistical regression techniques and FF is used to compare with
fuzzy regression techniques. And according to the results, it can be seen that for the
metal casting data set, HBS2 performs considerably close solutions to the
conventional statistical regression. On the other hand performance of the FF

method is superior.

This analysis is just made for seeing the performance of the HBS2 model for full
constraints performance; therefore, further analysis is not realized since the aim of

the study is related with whole casting data set.

6.2. PERFORMANCE ANALYSIS FOR LR, HBS2, HBS2-V2, FF AND NIFF

Since obtaining solutions for HBS2 model with high number of constraints like
casting data is hard, Hojati et al. (2005) discussed elimination of some of the
constraints and they eliminated left upper and right lower constraints for all

independent variables. Similar to that discussion, metal casting data set is modeled
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using the incomplete constraints set as proposed by original study and the results
obtained from average of nine replications are demonstrated at the HBS2 column

of Table 4.

Table 4 Performance Measures of LR, HBS2, HBS2-V2, FF and NIFF

LR HBS2 HBS2-V2 FF NIFF
Mean Absolute Error 0.022 0.049 0.036 0.024 | 0.024
Mean Square Error 0.001 0.005 0.004 0.002 | 0.002
Root Mean Square Error 0.030 0.065 0.057 0.043 | 0.041
r 0.800 0.558 0.607 0.650 0.659
R? 0.645 0.323 0.385 0.429 0.448
ADJ R 0.514 | 0.074 0.122 0.263 | 0.274
PWI1 0.938 0.877 0.895 0.909 0.909
PWiI2 0.989 0.938 0.939 0.971 0.964

As it is expected, the performance of the HBS2 model is considerably inadequate
compared with LR and FF. In order to improve the performance of the HBS2 model
for this case, it is expanded by the addition of new constraints as given in (5.12)-
(5.21) and the performance obtained from the new model is demonstrated at the
HBS2-V2 column of Table 4. Additional constraints which indicate the higher and
lower points of the ™ are chosen randomly. It can be seen from the table that the
performance of the model is improved in terms of performance criteria. The other
methods solutions obtained from eight independent variables are demonstrated in

related columns.

These methods are statistically compared by using One-way ANOVA for each
measure separately in order to see whether there is a statistically significant
difference between them according to the performance measures mentioned
above. One-way ANOVA test is performed using SPSS 9.0. Although, Repeated
ANOVA is more appropriate to use for this hypothesis testing, the results of One-
way ANOVA shown in Table 5 indicate strong significance of the differences among
the methods. Hence, it is chosen to continue with multiple comparison tests using
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Tukey’s approach. Although the independence assumption of One-way ANOVA is

not satisfied, the constant variance and normality assumptions are generally

satisfied for this data.
Table 5 ANOVA Results

ANOVA
Sum of Squares | df | Mean Square F Sig.
Methods 4.49E-03 4 1.12E-03 7.093 0
MAE Error 6.33E-03 40 1.58E-04
Total 1.08E-02 44
Methods 8.55E-05 4 2.14E-05 6.401 0
MSE Error 1.34E-04 40 3.34E-06
Total 2.19E-04 44
Methods 6.93E-03 4 1.73E-03 6.722 0
RMSE | Error 1.03E-02 40 2.58E-04
Total 1.72E-02 44
Methods 0.295 4 7.38E-02 6.183 | 0.001
R Error 0.477 40 1.19€-02
Total 0.773 44
Methods 0.528 4 0.132 6.738 0
R? Error 0.783 40 1.96E-02
Total 1.311 44
Methods 1.063 4 0.266 9.904 0
ADJR* | Error 1.073 40 2.68E-02
Total 2.136 44
Methods 1.84E-02 4 4.59E-03 2,972 | 0.031
PWI1 |Error 6.17E-02 40 1.54E-03
Total 8.01E-02 44
Methods 1.72E-02 4 4.30E-03 5.566 | 0.001
PWI2 | Error 3.09E-02 40 7.73E-04
Total 4.81E-02 44

The results of Tukey’s multiple comparison tests with family error rate 0.05

shown in Table 6.

are
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Table 6 Multiple Comparison Results

HBS2 HBS2-V2 |FF NIFF
LR 0,001 (<) 0,177 0997 0,997
vag | HBS2 0,206 | 0,002 (>)| 0,002 (>)
ImpHBS2 0,327| 0,327
FF 0,999
LR 0,001 (<)| 0,033(<)] 0,794 0,876
g H1BS2 0,629 0,016 (>)| 0,01 (>)
ImpHBS2 0,331 0,249
FF 0,999
LR 0 (<) | 0,009 (<) 0,508 0,611
HBS2 0,801 0,033 (>) 0,021 (>)
RMSE
ImpHBS2 0,321 0,244
FF 0,999
LR 0 (<) [ 0,005 (<) |0,044 (<) 0,068 (<)
. |HBs2 0,049> 0,391 0,29
ImpHBS2 0,919 0,847
FF 0,999
LR 0(<)| 0,003 (<)| 0,018 (<)| 0,036 (<)
w2 |HBS2 0,049 (>)| 0,5505| 0,343
ImpHBS2 0,963| 0,877
FF 0,999
LR 0(<) 0(<)|0,018 (<) [ 0,027 (<)
, |HBS2 0,171| 0,223 0,091
ADJ R
ImpHBS2 0,371 0,297
FF 0,999
LR 0,016 (<) 0,155| 0,526| 0,526
HBS2 08| 0413] 0,413
PWI1
ImpHBS2 0,938| 0,938
FF 0,999
LR 0,003 (<) |0,003 (<) 0,634 0,313
HBS2 1| 0116 0,317
PWI2
ImpHBS2 0,118 0,322
FF 0,982
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Table 6 shows that the LR model performance is better than the HBS2 model
performance with respect to all performance measures at the significance level of
a=0.05. Since the constraints of the HBS2 model are not complete, poor model
performance is not unexpected here. In order to overcome the poor performance
problem, proposed HBS2-V2 model has better performance than HBS2 with respect
to r and R% According to these results, it can be said that adding constraints
increases the performance of the HBS2 model. Since to write all the constraints are
not always practical, the most suitable constraints can be added and the model

performance can be increased.

When compared with other fuzzy models, Table 6 shows that FF and NIFF methods
have significantly better performances than HBS2 according to MAE, MSE and RMSE
for the metal casting data set. However, there is not any significant difference

detected between fuzzy classification methods, FF and NIFF.

6.3. MODEL INTERPRETATION

In the previous section, different fuzzy regression models are constructed and
performances of the models are compared. In order to make necessary
interpretations regarding the relationships between dependent and independent

variables, NIFF and HBS2 models formed are examined in this section.

6.3.1. NIFF Model Interpretation

NIFF model is as follows;

Y = 0.000344 — 0.011595 x; — 0.977558x, + 0.111752 x5
— 0.000554x, — 0.185520x5 + 0.107427x,
—0.011623x, — 0.000125xg + 5.297141x,,

— 18.808484x,, — 0.536847x,,

(4.22)
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As it can be seen from the model, coefficient value of xg is 0.000344 , which means
that when all the independent variables are zero, estimation of defect rate is close
to zero percent. Besides x; has the maximum effect on the dependent variable
compared with the other independent variables. If x, changes one unit and all the

other variables remains the same, the defect rate decreases by 0.977558.

In the model, there are three more variables which are x,,,, x;; and x;, indicating
the normalized membership value and transformations of the independent
variables, respectively. As it can be seen x;; has the most negative effect on the
dependent variable. Also x, has a considerably higher positive effect on the

dependent variable compared with the other independent variables.

When the model is used for the prediction purpose, after observation values are
gathered, values of x,,, x;1 and x;; variables must be calculated for the new
observed data set. The calculation methods of these variables have already been
mentioned in the algorithm in Chapter 5. The main and only difference to

recalculate the variables is to use observed data set for estimation.

6.3.2. HBS2 Model Interpretation

HBS2 model is as follows;

Y = (—0.034,0.000052) + (0.00010987,0.00004 ) x; +(—0.007,0 )x, +
(—0.072,0 )x3 + (0.028,0.0007 )x4 + (—0,000507,0.0003 )xs +

(—0.047,0 )x¢ + (0.114,0.00102 )x7 + (—0.015,0.000014 )xg

In the model the midpoints and the spread values of the coefficients of each
independent variable are shown respectively. As it can be seen from the model,
midpoint of the coefficient value of x, is —0.034 , which means that when all the
independent variables are zero, estimation of defect rate will be that value. The
spread value of x; is 0.000052 meaning that the value of the x, can change

between -0.03405 and -0.033948.
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It can be seen from the model that x; has the maximum effect on the fuzzy
dependent variable compared with the other independent variables. If x; changes
one unit and all the other variables remains the same, the defect rate increases

between 0.11298 and 0.11502.

6.4. PERFORMANCE ANALYSIS FOR DIFFERENT H VALUES OF HBS2 MODEL

In Chapter 2, it is mentioned that, H value is determined by the user and proper
selection of H value is important for the fuzzy regression model. In order to see the
effects of H value selection, HBS2-V2 model is applied for different H values which
are H=0.5 and H =1 and the performance of these models are compared in

terms of the performance measures.

As it is seen from Table 7, HBS2-V2 model performs better when H = 0.5 according
to MAE, r ,R* ,ADJR? , PWI1 and PWI2 and all the performance measure values are
equal for H = 0.5 and H = 0. Although H = 0 produces same results with H = 0.5,
since data set is not reliable we suggest H = 0.5 for this case. Besides when the
spread values of the dependent variable is considered, it can be said that increasing

H value increases the spread of the dependent variable.

Table 7 Performance Measures of HBS2-V2 for Different H Values

HBS2-V2 | HBS2-V2 |HBS2-V2
H=0 H=0.5 H=1
Mean Absolute Error 0.036 0.036 0,038
Mean Square Error 0.004 0.004 0,003
Root Mean Square Error 0.057 0.057 0,054
r 0.607 0.607 0,576
R 0.385 0.385 0,349
ADJ R’ 0.122 0.122 0,109
PWI1 0.895 0.895 0,906
PWI2 0.939 0.939 0,950
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6.5. PERFORMANCE ANALYSIS FOR DIFFERENT SPREAD OF INDEPENDENT
VARIABLES

In Chapter 3, it is mentioned that in order to provide fuzzy observations, the crisp
observations are identified as midpoints of the fuzzy observations and one standard
deviation from the center is identified as the spread of the fuzzy observations. It is
also mentioned that in order to validate the calculated intervals, confirmations are
taken from the experts of the manufacturing processes. The performance of the
models can be affected by this assumption. In order to analyze how model
performance is affected by the spread level, spread of the independent variables is

increased and this new data set is modeled.

Performance results are as shown in Table 8. It can be seen from the table that for
the metal casting data set, model performance is getting worse by the increase of
spread values. This result also supports the appropriateness of the fuzzification

method used in the study.

Table 8 Performance Measures of HBS2 for Different Spread Levels

HBS2 (3) HBS2 (63)
Mean Absolute Error 0.025 0.038
Mean Square Error 0.003 0.003
Root Mean Square Error 0.050 0.058
r 0.521 0.044
R? 0.279 0.20
ADI R® 0.226 0.145
PWI1 0.922 0.876
PWI2 0.955 0.945
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CHAPTER 7

CONCLUSIONS & SUGGESTIONS FOR FURTHER STUDIES

This study has two purposes. One of them is to model a metal casting process
quality in order to reduce the number of defects by identifying the process variables
which have the most important effects on a certain defect type. The second
purpose is to test and develop certain fuzzy regression approaches for the case data

set.

In order to do that, first the nature of the uncertainty in the problem is considered
prior to selection of an appropriate method. It is decided to use Fuzzy regression
methods for the modeling of the casting data. Since both dependent and
independent variables of the casting data are considered fuzzy, HBS2 Fuzzy
regression method is selected. In order to compare the performance of HBS2
method with a conventional statistical method, LR is used and to make comparison

with fuzzy regression methods, FF is used.

Initially, the HBS2 method is applied with complete constraint set for two
independent variables. It is seen that the performance results gathered from LR,
HBS2 and FF are considerably close to each other but HBS2 and FF have better
performance than LR. Moreover, FF is superior for some of the performance
measures. Furthermore, HBS2 method is generalized to multi variable modeling
case. It is concluded that the ease of use of the HBS2 model is closely related with

the number of constraints included.
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As it is expected for the metal casting data set, performance of the model is found
to be inadequate. In order to overcome the performance problem, more constraints
are added and the new version of the model is named as HBS2-V2. It is concluded
that for some performance measures, HBS2-V2 has statistically better performance
than the HBS2 model for the metal casting data. In other words, adding constraints
increases the performance of the HBS2 model. It is obvious that the highest model
performance will be obtained when all constraints are included. Since writing all the
constraints is not efficient, the model performance can be increased by adding
more constraints. Since the selection of the constraints becomes more important,
as a further study, design of experiments methods can be used for the identification
of the optimum constraint set. So maximum performance can be achieved with

minimum number of constraints.

Furthermore, HBS2 method is also compared with fuzzy regression methods. As
fuzzy regression method FF is selected. And it is concluded that for some
performance measures FF method has statistically better performance than the

HBS2 model for the metal casting data.

Finally, another fuzzy regression method which is triggered by the Ozer’s (2009)
study named NIFF is proposed. This method is constructed by using Linear
Regression method as prediction method for building model rather than a
classification method as in NIFCF method. This method is also applied to the casting
data and although the results gathered from performance measures indicates that
the results are better than the FF, there is not any statistically significant difference

detected between them.

As a result, for the metal casting data, it can be said that in case there is less
number of variables and poor model performance which increases the fuzzy type of
indefiniteness of the system, FF and NIFF can be used for modeling in order to
increase the overall performance of the model. The disadvantage of the NIFCF

method is identified as slower running of the program (Approximately 30 minutes
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for each FCM parameter identification). But by increasing the code efficiency, this

disadvantage can be eliminated.

Since all of this analysis is realized in a single data set, it is not possible to conclude
final decisions about the overall performances of the models. In other words,
models may give different results on different data sets. For that reason as further

study, it is useful to make similar analysis with different data sets.
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APPENDIX A

COMPARISON CRITERIA

In order to compare the model performances, comparison criteria discussed below

are used.

a) Mean Absolute Error

The mean absolute error is a quantity used to measure how close forecasts or
predictions are to the eventual outcomes. The mean absolute error (MAE) is given

by

n

1
MAE = - Zleil (6.1)
n .
i=1

As the name suggests, the mean absolute error is an average of the absolute errors.

b) Mean Square Error

The mean square error (MSE) of an estimator is one of many ways to quantify the
amount by which an estimator differs from the true value of the quantity being
estimated. MSE measures the average of the square of the "error” The error is the

amount by which the estimator differs from the quantity to be estimated:

Al



The difference occurs because of randomness or because the estimator doesn't
account for information that could produce a more accurate estimate. The mean

square error is calculated as

1 n
MSE = —Z e;%. (6.3)
n .

¢) Root Mean Square Error

The root mean square error (RMSE) is a frequently-used measure of the differences
between values predicted by a model or an estimator and the values actually
observed from the thing being modeled or estimated. RMSE is a good measure of
accuracy. These individual differences are also called residuals and the RMSE serves

to aggregate them into a single measure of predictive power. It’s calculated as:

RMSE = VMSE (6.4)

d) Correlation Coefficient

Correlation (often measured as a correlation coefficient) indicates the strength and
direction of a linear relationship between two random variables A and B. In general
statistical usage, correlation refers to the departure of two random variables from

independence. And the general formulation of correlation coefficient is

ZmZn( Amn_;f)( an‘"B_)

r =
JZmZn( Amn —-A ) ZEmZn( an -B )

where 4 and B are the variables, and A and B are the corresponding mean values.

- (6.5)

The closer the coefficient is to either -1 or 1, the stronger the correlation between

the variables.
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e) Coefficient of Determination (R?)

The coefficient of determination, R, is a measure of the global fit of the model.
Specifically, R?is an element of [0, 1] and represents the proportion of variability in
Y; that may be attributed to some linear combination of the regressors (explanatory
variables). More simply, R is often interpreted as the proportion of response
variation "explained" by the regressors in the model. Thus, R? = 1 indicates that the
fitted model explains all variability in Y, while R’= 0 indicates no 'linear' relationship
between the response variable and regressors. An interior value such as R?= 0.7
may be interpreted as follows: "Approximately 70% of the variation in the response
variable can be explained by the explanatory variables. The remaining 30% can be

explained by unknown.” It’s calculated as

SSE
2 B 6.6
R : SST 5
(6.7)
where SSE =31 (¥ — %),
SSR =X, 87, (6.8)
SST = SSE + SSR. (6.9)

f) Adjusted R?

When a new variable is added to the model, R? increases. To overcome this feature,
R? is adjusted for the number of explanatory terms in the model. Unlike R?, the
adjusted R?increases only if the new term improves the model more than would be
expected by chance. The adjusted R can be negative, and will always be less than

or equal to R%. The adjusted R” is calculated as

Adjusted R? =1— (1 — R?}) ——— 6.10
juste ( )n—-p—l (6.10)
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where p is the total number of regressors in the linear model (but not counting the

constant term), and n is the sample size.

g) PWI1

It is the ratio between the numbers of error values which are greater than two
standard deviations to the total observation number. When performance of the

model is improved, lower PWI 1 values are obtained.

h) PWI2

It’s similar to PWI1. It’s the ratio between the number of error values which is
greater than 3 standard deviations to the total observation number. Its’

interpretation is exactly the same as PWI1.
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APPENDIX B

VARIABLE SELECTION

Variables Entered/Removed(b)

Variables
Model Variables Entered Removed |Method
1 | X8, X3, X6, X2, X1, X5, X7, X4(a) Enter
Model Summary
Std. Error of the
Model R R Square |Adjusted R Square Estimate
1 ,854(a) [ 0,73 0,632 3,78E-02
ANOVA(b)
Sum of Mean
Moaodel Squares df Square F Sig.
1 Regression 8,51E-02 8 1,06E-02 |7,439 ,000(a)
Residual 3,15E-02 22 1,43E-03
Total 0,117 30

a
Predictors: (Constant), X8, X3, X6, X2, X1, X5, X7, X4

b
Dependent Variable: Y
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Coefficients(a)

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta
(Constant) |[8,594 14,114 2,735
X1 2,95E-04 |0,001 1,076 0,572
X2 -9,85E-03 | 0,006 -2,801 -1,723
X3 -15,184 |5,488 -28,4 -2,767
X4 1,528 0,536 28,345 2,854
X5 -1,35E-04 | 0,001 -0,425 -0,191
X6 -0,296 0,221 -0,158 -1,337
X7 8,33E-02 | 0,092 7,448 0,908
X8 -1,12E-02 | 0,015 -4,913 -0,749
Dependent
Variable: Y




