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ABSTRACT 

 

AN EDGE MATCHING APPROACH FOR TWO DIMENSIONAL 

IRREGULAR SHAPED CUTTING STOCK PROBLEMS 

 

AKBULUT, Derya 

 

M.Sc., Department of Industrial Engineering 

Supervisor: Levent KANDİLLER, Ph.D. 

Co-Supervisor: Engin TOPAN, Ph.D. 

June 2012, 81 pages 

 

In this thesis, a two-dimensional irregular shape cutting stock problem is considered, 

in which a number of irregular shaped pieces are cut out of rectangular stock sheets 

so that waste of stock to be minimized. This is an operational problem commonly 

observed in metal cutting and textile industries. In the literature, there are many 

algorithms proposed to find optimal or suboptimal solutions for the problem. Since 

the problem is NP-hard, heuristic approaches predominate among the solution 

methodologies. In this study, a non-linear mixed integer mathematical model 

formulation is developed and it is tested for small sized problems. For larger scale 

problems, an edge matching approach is proposed to generate cutting patterns. The 

approach is based on positioning of the pieces in such a way that their most fitting 

edges are aligned together or to the borders. In this way, the total scrap and the 

cutting operations are minimized. On the contrary to the most of the solution 
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methodologies in the literature, the method enables rotating pieces by any angle 

during the alignment process and further more it is applicable for irregular shaped 

stock materials. The developed procedure is tested against the traditional cutting 

stock approaches using benchmark test problems reported in the literature. It is found 

that our procedure outperforms for a large portion of these benchmark problems.  

 

Keywords: Irregular shape cutting stock problem, edge matching. 
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ÖZ 

 

İKİ BOYUTLU VE DÜZGÜN OLMAYAN ŞEKİLLİ STOK KESİM 

PROBLEMLERİ İÇİN KENAR EŞLEME YAKLAŞIMI 

 

AKBULUT, Derya 

 

Yüksek Lisans, Endüstri Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Prof. Dr. Levent KANDİLLER 

Yardımcı Tez Yöneticisi: Yrd. Doç. Dr. Engin TOPAN 

Haziran 2012, 81 sayfa 

 

Bu tez kapsamında, iki boyutlu düzgün olmayan şekiller için stok kesim problemi 

çalışılmıştır. Söz konusu problem, metal ve tekstil endüstrisinde yaygın olarak 

karşılaşılan, dikdörtgen şeklindeki bir hammaddeden düzensiz şekildeki parçaları en 

az artık malzemeye yol açacak şekilde  keserek çıkartmaya dayanmaktadır. 

Literatürde, problem için optimal ya da yaklaşık-optimal pek çok çözüm algoritması 

bulunmaktadır. Problemin NP-Zor oluşundan dolayı, sezgisel yöntemler literatürde 

hakim durumdadır. Bu çalışmada, problem doğrusal olmayan karmaşık tamsayılı bir 

formulasyonla modellenerek küçük boyutlu problemler için test edilmiştir. Büyük 

boyutlu problemler içinse, bir kenar eşleme yaklaşımı önerilmiştir. Kesim kalıpları 

oluştururken parçalar kenarları birbirine yaslanacak şekilde konumlandırılmış, 

böylelikle artık malzemenin yanında kesim uzunluğunun, dolayısıyla işleme 
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zamanının, en azlanması hedeflenmiştir. Kenar yaslama işlemi, birçok çözüm 

yönteminin aksine, parçaların istenen açıyla döndürülmesine izin vermekte ve ayrıca 

düzensiz şekilli stok malzemeleri için de kullanılabilmektedir. Geliştirilen yaklaşım, 

literatürde sunulan problem setleri kullanılarak mevcut çözüm yöntemleriyle 

kıyaslanmış ve bir çok problem için daha iyi sonuçlar verdiği görülmüştür.   

 

Anahtar Kelimeler: Düzensiz şekilli stok kesim problemi, kenar eşleme.  
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CHAPTER 1 

INTRODUCTION 

 

In industrial cutting process there exists a large stock material which can be in the 

form of metal sheets, fabric rolls, glass plates, paper rolls, etc. and smaller parts to be 

generated by cutting that stock material into pieces. The objective is to determine a 

cutting pattern for the pieces such that the scrap of the stock material used is 

minimized. A cutting pattern stands for the location information for the pieces on the 

stock material, and shows where to cut each piece. During this placement operation, 

the pieces are tried to be packed on the stock material. Thus, cutting stock problems 

are dually related with the packing problems. 

 

In manufacturing environment, it is not always possible to generate a cutting pattern 

that utilizes the raw material with 100 percent efficiency. This means some portion 

of the raw material is generally scrapped. Sometimes, the cost of these scrap amounts 

reaches up to unacceptable levels. The design of cutting patterns directly affects the 

scrap amount as well as the unit cost of the produced pieces. Hence, determining 

these patterns becomes a critical decision for the manufacturers. The problem is a 

widely studied research topic. The first known formulation for a cutting stock 

problem was developed by Kantorovich (1939). Since then, many researchers have 

worked on several different aspects of the problem.  
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In our study, a mixed integer non-linear programming model formulation is 

presented for the problem, which is one of the first in the literature. The model 

minimizes the stock length for a given width, to maximize the material utilization. 

Furthermore, for larger scale problems, a heuristic approach is proposed since it 

becomes intractable to solve the problem by using non-linear integer programming 

solvers. Our heuristic approach is based on the proper alignment of the edges of 

different pieces together to have higher utilizations.  By using the approach, the 

length of cutting paths obtained by cutting patterns is reduced. Using cutting path 

lengths as a performance measure is also new to the literature. Finally, the cutting 

patterns generated by our approach are tested using the benchmark problems in the 

literature, and the results are presented. The results of the experiments reveal that our 

edge matching heuristic yields quite satisfactory results. 

 

The organization of the manuscript is as follows: Section 2 describes the related 

work about the problem in the literature. In Section 3, the problem is defined and the 

mathematical formulation of the problem is presented. This section includes 

development of optimal solution techniques and lower bound calculations. In Section 

4, the proposed heuristic approach is presented. Section 5 presents the performance 

results obtained by the procedure. Finally, in Section 6, the conclusion and future 

extensions are presented. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this section, a literature review for the cutting and packing problems are presented 

within three main streams. In Section 2.1, based on the typology suggested by 

Dyckhoff (1990), a classification for the cutting and packing problems is presented. 

Using this classification, a discussion about the position of our study in the literature 

is provided. Section 2.2 is devoted to introduce critical decisions of irregular shape 

pattern generation algorithms, to provide a better understanding on the problem. 

Section 2.3 focuses on the solution procedures reported in the literature. These are 

based on different combinations of decisions that are described in Section 2.2 

 

2.1 Classification of the Problem 

The cutting stock problems are classified under the generic title of “Cutting and 

Packing” problems (C&P). The trim loss minimization problem, marker marking 

problem, bin or strip packing problem, pallet or container loading problem, nesting 

problems are all among the special topics that belong to the area of C&P. This 

classification is based on the typology suggested by Dyckhoff (1990). Dyckhoff 

considers the main topic as C&P problem, and positions subclasses with respect to 

geometric combinatorics. He presents a survey on C&P problems and classifies the 

studies as in Figure 1. According to this classification, cutting problems and packing 

problems are dual of each other. Due to this duality, there is a natural connection 

between these two streams of research.  
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Figure 1 Phenomology of C&P problems, (Dyckhoff, 1990) 

Dyckhoff (1990) groups the existing cutting and packing problems in the literature, 

under four main characteristics as follows: 

1. Dimensionality 

(1)  One-dimensional 

(2)  Two-dimensional 

(3)  Three-dimensional 

(N)  N-dimensional with N > 3. 

2. Kind of Assignment 

(B) All large objects and a selection of small items 

(V) A selection of large objects and all small items 

3. Assortment of large objects 

(O) One large object 

(I) Many identical large objects 

(D) Different large objects 

4. Assortment of small items (shapes) 

(F) Few items of (different figures) 

(M) Many items of many different figures 

(R) Many items of relatively few different (non-congruent) figures 

(C) Congruent figures 

 

Duality 
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Later, Wäscher et al (2007) presents an improved typology. Although the main frame 

is based on four characteristics of Dyckhoff (1990), some modifications are made to 

Dyckhoff‟s classification to represent more details about the structure of the 

problem.  They propose a list of abbreviations for the problem types which currently 

used for indexing related papers in database of ESICUP which is a special interest 

group on cutting and packing. These abbreviations are reported in Table 1. 

 

Table 1 C&P problem abbreviations of Wäscher, G. et al (2007) 

Abbreviation Problem Type 

BPP Bin Packing Problem 

IIPP Identical Item Packing Problem 

MBSBPP Multiple Bin Size Bin Packing Problem 

MHKP Multiple Heterogeneous Knapsack Problem  

MHLOPP Multiple Heterogeneous Large Object Placement Problem 

MIKP Multiple Identical Knapsack Problem   

MILOPP Multiple Identical Large Object Placement Problem 

MSSCSP Multiple Stock Size Cutting Stock Problem 

ODP Open Dimension Problem  

RBPP Residual Bin Packing Problem 

RCSP Residual Cutting Stock Problem 

SBSBPP Single Bin Size Bin Packing Problem 

SKP Single Knapsack Problem   

SLOPP Single Large Object Placement Problem 

SSSCSP Single Stock Size Cutting Stock Problem 

 

Note that these abbreviations are not sufficient to completely describe the problems 

since it does not include the information about small items geometry. For example, a 

two-dimensional rectangular object placement problem is represented as “2D 

rectangular SLOPP” by Wäscher et al (2007). For cutting stock problems, 

classification with respect to the small item geometries is illustrated in Figure 2.  
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Figure 2 Classification of the problem with small item's geometry 

 

Following the classification in Figure 2, the problem studied in this thesis is an 

irregular shape two-dimensional cutting stock problem (irregular 2DCSP). The term 

irregular refers to both convex and non-convex polygons. The stock material in this 

thesis is assumed to be in the form of a rectangular shape, having predetermined 

widths. In this situation, the cutting problem reduces to the length minimization of 

the stock, which is classified as a 2D irregular ODP according to the typology of 

Wäscher et al (2007). Therefore, the cutting patterns are generated without using the 

whole length of the stock material. In contrast to most of the studies in the literature, 

the rotation of pieces is completely allowed. Note that in textile industry, there are 

some pattern restrictions such as the importance of texture or fiber direction. 

Therefore, our method is more appropriate for plasma cutting and laser cutting of 

metal pieces in metal cutting industry, which is the main focus of this study.  

 

CSP

1DCSP 2DCSP

Regular

Rectangular

Guillotine

Oriented

Non-
oriented

Non-
Guillotine

Oriented

Non-
oriented

Circular

Irregular

Convex

convex & 
concave

3DCSP
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2.2 Critical Decisions on Pattern Generation 

There are some critical decisions to be made for irregular shape pattern generation, 

which directly affect the quality of the solution. These are placement order decision, 

rotation restriction and overlap prevention.  

2.2.1 Placement Order 

For most of the algorithms reviewed in the literature, a cutting pattern is generated by 

placing each piece on the stock one by one, following a placement order. This 

placement order is vital on the cutting performance. A common approach is to use a 

greedy algorithm operating on the order of the pieces. Although this reduces the size 

of the solution space, it also reduces the quality of the solution as expected. 

Therefore, it is important to select an appropriate ordering criterion to yield patterns 

with high performance. Oliveira et all (2000) propose a range of criteria for ordering 

of pieces. These are as follows:  

 decreasing area 

 decreasing length 

 decreasing width 

 decreasing irregularity 

 increasing irregularity 

 random order 

 

Dowsland and Dowsland (1995) place items under a random ordering policy. Qu and 

Sanders (1987) study the performance of two different ordering policies; first one is 

to sort the pieces by descending order of length and the other is to use the height 

(width) instead of the lengths. Gomes and Oliveira (2002) study alternative criteria to 
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generate the order of items to be placed. They later proposed random weighted 

length, which generates the sequences by selecting the pieces with a probability of 

selecting a piece is proportional to its length (Gomes and Oliveira, 2006).  

 

Apart from studies which practice a random ordering policy, sorting the items in 

descending order of sizes is very common in the literature, since it becomes harder to 

find a room for larger pieces when they are left behind. Besides, considering area as 

a measure yields better results than using a single dimensional measure, e.g. length 

or width. Among all these ordering policies, none of them guarantees dominance in 

terms of solution quality.  

2.2.2 Rotation Restriction and Orientation Decision 

The 2D irregular shape cutting stock problem is more complex than the ones with 

regular shape. To be able to reduce the complexity, rotation of the pieces is generally 

not allowed (Ono and Watanabe 1997), or it is restricted by limited rotation angles 

and/or mirror-reflection poses of the pieces are used. Milenkovic (1999) studies the 

problem in two different directions, in which (i) any rotation angle is allowed, (ii) 

only rotation angles of 22.5
o 

and multipliers are allowed. He shows that the setting 

that allows any rotation angle yields quite better results in comparison with the 

setting that limits the rotation angle (Milenkovic, 1999).  

 

Although there are alternative rotation constraints imposed, 90
o
 or 180

o
 angles are 

common in the literature. Gomes and Oliveira (2002) can be referred as an example 

for studies only allowing a rotation angle of 180
o
. 
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The rotation restrictions can be reasonable in practice depending on the nature of the 

problem. For instance, in textile industry it is not possible to change the position of a 

shirt piece because of the fiber texture. However, for cases where rotation is 

practically possible for the problem, omitting or limiting the rotation angle may yield 

poor results. Furthermore, for the cases which rotation is not allowed, it is also 

critical to decide which orientation of the shape should be assumed as the initial 

pose. On the contrary, when any rotation of the piece is allowed, the resulting cutting 

pattern does not depend on the initial pose of the shape. Since rotation is allowed in 

any angle for our study, resulting cutting is independent of the initial orientations of 

the shapes. 

2.2.3 Overlap Prevention 

Since, it is not possible to have a feasible cutting pattern when two shapes are 

overlapped; overlap prevention becomes critical. Nevertheless, the overlap 

prevention is not an easy issue in case of irregular shapes. As explained in detail in 

the following subsections, one of the main approaches in the literature is No Fit 

Polygons (NFP). The other overlap prevention approaches are based on geometrical 

and trigonometric considerations such as combinations of line intersections and point 

in polygon tests or specialized procedures as polygon clipping. 

No Fit Polygons 

NFP is a common method used for preventing overlaps in irregular shape cutting and 

packing problems. Basically NFP searches for all possible arrangements of two 

polygons such that shapes are in touch but it is not possible to move them closer.  

The NFP method is firstly introduced by Adamowicz and Albano (1976) which is 

based on the “shape envelop” concept that is used in Art (1966). Later, Mahadevan 
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(1984) presents an algorithm to build NFPs. Cunninghame-Green (1989) proposes an 

approach to generate NFPAB by tracing polygon „B‟ around a fixed polygon „A‟. 

Burke and Kendall (1999), Ribeiro et al (1999), Whitwell (2004) and many other 

authors prefer the tracing approach to generate NFPs. NFP of two shapes is 

illustrated in Figure 3.  

 

Figure 3 The no-fit polygon of two shapes A and B (Whitwell, 2004) 

Whitweel (2004) reviews the methods to generate NFP and categorizes them. The 

extended study is later presented by Burke (2005). In general, NFP method 

necessitates fixing up the orientation of the two shapes before creating the NFP of 

two polygons. Therefore, the method is not suitable for a full rotation allowance and 

it is not possible to use in our edge matching approach since the orientations of the 

pieces are fixed. 

Trigonometric Approach 

Trigonometric approaches can detect overlaps by considering the shapes as a 

combination of geometric elements, e.g., line segments. Dowsland et al. (2002) state 

that using trigonometric methods requires extensive computational effort. Whitweel 

(2004) discusses the pros and cons of trigonometric approaches with respect to the 

use of NFP. He states that trigonometric approaches are more robust with respect to 

the NFP, and that the implementation of NFPs is more complex. And he concludes 

that trigonometric approaches are preferred due to implementation ease in software 
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applications although the use of NFPs is quicker than trigonometric calculations. In 

this thesis, trigonometric approach is being used to be able to detect the overlaps 

since it allows rotation in any angle.  

 

2.3 Solution Procedures 

The two-dimensional cutting stock problems are known to be NP-Hard (Garey and 

Johnson, 1979). Therefore, heuristic methods are prevalent in the literature. In this 

section, heuristic methods developed for irregular shape 2DCSP are introduced. And 

a recent study on mathematical modeling formulation of the problem is also 

presented.    

2.3.1 Minimum Enclosing Boundary 

The earliest solution methods for irregular shape 2DCSP are based on determining 

the smallest enclosing boundary rectangle for each irregular shape and then 

generating the final layout by solving a rectangular 2DCSP. Haims (1966) is the first 

researcher who tried to generate a cutting pattern for the irregular shapes using their 

minimum boundary rectangles. Later on, Haims and Freeman (1970) extends the 

method to have more compacted enclosing boundaries. Although the method is 

computationally efficient since it reduces the problem to a regular shape 2DCSP, it 

yields large amounts of scrape accumulated by each enclosing boundary generated. 

Nevertheless, there is a waste for almost all the pieces when the enclosing boundaries 

of the shapes are used, and the total scrap is accumulated in large amounts. 

Therefore, the quality of the solutions generated is generally not satisfactory in terms 

of raw material utilization. Figure 4-a, illustrates five pieces and their enclosing 

boundaries. Figure 4-b depicts a solution generated by using a minimum enclosing 



12 

 

boundary method. Adamowicz and Albano (1976) proposed a treshold to be able 

have a control on the quality of the solutions. They were combining two same pieces 

such that one of them is 180
o 

rotated to have a more regular shape if the treshold is 

not satisfied with the single piece.  

 

 

Figure 4 Illustration of enclosing boundary 

 Apart from rectangular shapes, other geometries are also used for enclosing 

boundaries in the literature. Using a similar method, Dori and Ben-Bassat (1984) 

compute the minimum enclosing hexagons for convex shapes and then tessalete the 

entire stock material with these hexagons.  

2.3.2 Bottom Left Approach 

The bottom left (BL) approach which is also named as the left-most policy relies on 

placing a piece at the left most available position. This method is generally combined 

with other methods to be able to generate more efficient solutions.  Jacobs (1996) 

uses minimum enclosing rectangles for each shape to decide their orientations and 

then places the shapes using a bottom left strategy. Gomes and Oliveira (2002) 

propose a method to generate sequences for placement order of the pieces using 

bottom left approach. Burke et al. (2005) presented an improved BL algorithm using 

hill climbing and tabu search techniques. 



13 

 

2.3.3 Compaction – Separation Algorithms 

Compaction and separation algorithms can be implemented as just compaction, just 

separation or as a hybrid of both. In pure compaction algorithm, the pieces are first 

positioned on the stock sheet without any overlap. The resulting layout is a trivial 

solution. Then this solution is improved by shifting the pieces towards a given 

direction until they hit any other piece. At the end of the shifting process, a compact 

version of the first trivial solution is obtained. Figure 5 illustrates the compaction 

process. 

 

Figure 5 Compaction example (Gomes and Oliveira, 2006) 

In separation, pieces are positioned on the stock sheets by allowing overlaps. The 

resulting layout will be an infeasible cutting pattern. Then, by shifting the pieces 

towards a given direction, the pieces are separated from each other until the overlaps 

are eliminated. The process should continue until a feasible layout with no overlaps 

is obtained. Figure 6 illustrates the separation of pieces. 

 

 

Figure 6 Separation example (Gomes and Oliveira, 2006) 



14 

 

To compact the cutting layout by shifting the pieces is not an easy task. Li and 

Milenkovic (1993) study the complexity of compaction problem and stated that 

compaction problem is NP-Hard. Gomes and Oliveira (2006) presents an LP model 

for the compaction problem. This model is a generalization of the previously studied 

models in the literature (Li and Milenkovic, 1995, Stoyan et al., 1996, Bennell and 

Dowsland, 2001). It minimizes the length of the stock material with respect to the 

given constraints. The reader may refer to Gomes and Oliveira (2006) for detailed 

information about the model.  

 

After implementing separation algorithm, quality of the solution can be further 

improved if the separated layout is compacted again. This hybrid algorithm is an 

iterative and consecutive implementation of compaction and separation algorithms 

(Gomes and Oliveira, 2006).  

2.3.4 Metaheuristics 

Due to the discrete combinatorial structure of irregular shaped 2DCSP, it is a 

common approach in the literature to apply metaheuristic to obtain high quality 

solutions for large problem instances within acceptable time limits. Metaheuristics 

provide an efficient procedure for searching solution space for the problem. This 

section only includes some examples on metaheuristic implementations for the 

problem. 

 

One of the most implemented metaheuristics on this problem is genetic algorithms 

(GA). İsmail and Hon (1995) studies genetic algorithms for 2D nesting. Bounsaythip 

and Maouche (1996) use a genetic approach to solve a cutting stock problem, in 

textile industry. Ono and Watanabe (1997) apply genetic algorithms to obtain an 



15 

 

efficient cutting pattern for a 2DCSP in which all shapes are polygon, either convex 

or concave. Petridis et al. (1998) uses varying fitness functions in the genetic 

optimization.  

 

There are also tabu search (Benell and Downsland, 1999 – 2001; Blazewicz et al., 

2004; Burke et al., 2005) and simulated annealing implementations (Theodoracates 

and Grimsley, 1995; Heckman and Lengauer, 1995; Burke and Kendall, 1999; 

Gomes and Oliveira, 2006) in this problem enviroment.  

 

A common characteristic of studied metaheuristics is that higher computation times 

are required to achieve high quality solutions in terms of raw material utilization.  

2.3.5 Mathematical Programming 

In the literature, heuristic methods have predominance over exact solution 

procedures in solving irregular C&P problems. But still, there is limited number of 

studies to reach optimal solutions, based on exact formulation of the problems. As an 

example for the case, Gomes and Oliveira (2006) use a linear programming model 

formulation in the compaction phase of their study while the main search space is 

traced by simulated annealing algorithm. In a recent study, Chernov et. al. (2010) 

present a mathematical model for packing of irregular objects. Since our study also 

proposes a mathematical model formulation for the problem, the study of Chernov et 

al. is discussed in detail. The main idea of their model is representing the irregular 

pieces as the combinations of primitive geometric shapes such as circles, rectangles 

and regular polygons. They call these combined shapes as phi-objects. In Figure 7, 

there is a phi object represented as the unions and subtractions of basic geometric 

shapes. 
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Figure 7 An example of a composed phi-object  (Chernov et al., 2010) 

Geometric parameters of the phi-objects are specified with respect to the analytical 

equations of those geometric shapes. For example, a circle is defined with its center, 

C, and radius, r, using the analytic equation .  

  

In order to adjust the position and orientation of a piece, a translation vector is 

introduced as v = (v1,v2), and a rotation angle is defined as . Trigonometric 

relations are used to redefine the coordinates after changes in position. 

 

To prevent the overlaps, phi-functions are formulated for couples of primitive shapes 

(e.g., circle-circle, rectangle-rectangle and circle-rectangle). Phi-functions calculate 

the distance between these couples and they are denoted by . In the model, 

lower limits on the distances that prevent the overlaps are used as constraints on the 

phi-functions. In general, the value of a phi-function is positive if there is no 

intersection, zero if pieces are touching, and negative if they are overlapping. It is 

also possible to introduce an offset distance that can be used as lower limit instead of 

zero. In this way, imposing an offset constraint prevents the pieces to get closer than 

a desired distance.  
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In terms of phi-functions and phi-objects, the authors formulate the model as follows,  

Min F(uo) 

Subject to: 

 

 

 

Where item i=0 represents the stock material. Since phi-functions are generally in 

quadratic form the resulted model is non-linear. Therefore, it is required to provide a 

feasible initial layout for the problem to obtain a good starting solution. In this 

model, there is a general representation for the constraint that prevents overlaps. 

However, each phi-function is unique, hence, it is required to construct phi-functions 

of each shape pair before running the model.  

 

By the use of proper phi-functions in mathematical formulation, this model is 

capable of generating solutions for a wide range of objects including non-convex 

and/or curved shapes, with continuous translations and rotations for each object. 

 

In our mathematical model formulation which is presented in Section 3.2, phi-

functions are not used. Instead, vertex coordinates are used to introduce the shapes so 

the constraint equations are standard for all shapes.  
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CHAPTER 3 

PROBLEM DEFINITION AND MATHEMATICAL MODEL 

 

In this section we propose an exact mathematical model formulation for the irregular 

shaped 2DCSP, and a solution procedure to solve this problem. First, the problem is 

defined in Section 3.1. Then, in Section 3.2, a mathematical model formulation is 

presented for the defined problem.  

 

3.1 Problem Definition 

There are N irregular shape polygons each having different number of vertices. The 

problem is to position the pieces on a rectangular stock sheet with a given width such 

that there is no overlap and the stock length used is being minimized. The quality of 

the layout generated which is called cutting pattern is measured by a ratio of total 

area of the shapes to the area of stock sheet used as shown in Equation 1. The ratio 

gives the quality of the solution, that is to say efficiency of the cutting pattern. Since 

the stock width, (W), is constant for the problem, minimizing the length of the stock, 

(L), is equivalent to maximizing the efficiency,  for stock material utilization. A 

sample cutting pattern is illustrated in Figure 8. 

 

 



19 

 

 

Figure 8 Sample cutting pattern 

3.2 The Mathematical Model Formulation 

In this subsection, we propose a mixed integer non-linear programming model for the 

irregular 2DCSP. The model can be described as minimizing the length of the stock 

material ensuring that all pieces are placed on the stock sheet without any overlaps. 

The constraints guarantees positioning of every pieces on the stock while at the same 

time preventing the overlaps.  

3.2.1 Positioning Constraint 

The shapes of the pieces (not necessarily convex) are stated by Cartesian coordinates 

of the vertices in two-dimensional space. Since these coordinates also indicate the 

position of the pieces as well as the shapes, it can be said that there exist initial 

positions for each pieces. To change the position and orientation of a piece, two main 

actions are required, shifting the piece along x and y axis, and rotating the piece.  

Figure 9 illustrates these actions. In the figure, point „O‟ is the reference point for the 

piece which is used as rotation base. For the sake of simplicity, the point „O‟ is taken 

as origin point (0,0). First, the piece is rotated around the point „O‟
 
by α. Then, by 

shifting the piece as Cx and Cy along the x and y axis respectively, the base point O 

is moved to the point (Cx,Cy). 
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Our formulation requires inputting initial (x,y) coordinates for each piece. Let xi and 

yi denote the coordinates for a vertex of piece i. In the case that the origin is taken as 

rotation reference point of the piece, trigonometrically, the final coordinates can be 

computed as, 

           for  all i 

        for all i 

 

where 

Cx: Replacement of the reference point of the piece along x-axis  

Cy: Replacement of the reference point of the piece along y-axis  

α: Rotation angle for piece (around reference point which is origin) 

nXi: Final x coordinate of vertex i for piece 

nYi : Final y coordinate of vertex i for piece 

 

For a rectangular stock material, assuming that lower left corner is the origin, 

following decision variables are introduced to define the maximum x and y 

coordinates. 

 

Figure 9 Defining the placement of a piece 
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Xmax: Maximum of x coordinates of piece 

Ymax: Maximum of y coordinates of piece  

MaxX: Length of stock material 

W: Width of stock material  

 

Then the following inequalities are to ensure that any piece is positioned within the 

stock material boundaries. 

MaxX ≥ Xmax  ≥  nXi  for all i 

W  ≥ Ymax ≥ nYi  for all i  

 

3.2.2 Overlap Prevention Constraint 

The overlaping of two pieces (equivalently shapes) can occur in three different ways 

as it is shown in Figure 10.  

(a) A vertex of a shape falls on the other shape (also called point in polygon), 

but no line intersection occurs. 

(b) The edges intersect, but no point in polygon situation occurs.  

(c) Both line intersections and point in polygon situation occur.  

For each of these three cases it can be said that the two shapes are overlapping.  

 

Figure 10 Overlap position 
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To guarantee that there is no overlap between two shapes, (i) each edge pairs must be 

checked whether there exists a line intersection and (ii) the vertices must be 

controlled for a point in polygon situation as illustrated in Figure 10-a.  

 

Figure 11 Intersection of two line segments 

To determine whether two shapes overlap, one should check the following three 

possible cases for any two line segments: (i) they can be parallel, (ii) they can 

intersect, or (iii) they neither intersect nor are parallel. Let l1 and l2 are two line 

segments as it is illustrated in Figure 11 and let (x1, y1) and (x‟1, y‟1) be end points of 

l1. Similarly, let (x2, y2) and (x‟2, y‟2) are end points of l2. To check whether these 

two line segments intersect, first, one should check whether they are parallel or not 

by using the following equation. 

 

d = (x2 – x’2) (y1 – y’1) - (x1 – x’1) (y2 – y’2)     (2) 

If  d = 0, this implies l1 and l2 are parallel, hence there is no intersection. However, if 

d ≠ 0; then two different p parameters must be calculated using; 
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If 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1; then l1 and l2 intersects on a point along the segments. If 

p = 0 or p = 1; then this implies that the intersection point is on the end point of the 

line segments. Since the intersection on the vertices do not mean overlap for the 

shapes, it can be said that when p ≥ 1 or p ≤ 0 there is no edge intersection which 

causes an overlap (Bildirici, 2003).   

 

Checking possible edge intersection can detect overlaps for the cases shown in 

Figure 10-b and 10-c. Nevertheless, it is not sufficient to conclude that there is no 

overlap for shapes. To guarantee preventing overlaps, the vertices of the shape must 

be considered for point in polygon situation that is illustrated in Figure 10-a. Note 

that, if a vertex of any polygon lays in any another polygon without line intersections 

between the two polygons, all other vertices of the former polygon also lays in the 

latter polygon. Thus, if it is guaranteed that there are no line intersections between 

two polygons, one should still check whether one polygon is inside the other one. 

However, it is sufficient just to check a single vertex from each polygon for point in 

polygon situation, instead of checking all vertices one by one.  

 

Figure 12 Point in the polygon 
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In order to check whether a point is inside a polygon or not, we apply the following 

method. Figure 12 illustrates same convex polygon twice. In the first figure, there is 

a point P1, inside the polygon ABCDE; and in the second one there is a point P2 

outside the polygon ABCDE. For both shapes, the points are connected to the 

vertices of the polygon with lines. Then, for each of the figure the following triangles 

are obtained: ABP1, BCP1, CDP1, DEP1, and EAP1 from the first one and ABP2, 

BCP2, CDP2, DEP2, and EAP2 from the second one. Note that, for a convex 

polygon, the summation of the areas of these triangles must be equal to the area of 

the polygon if point P is inside that polygon. Otherwise, the total area of the triangles 

must exceed the area of the polygon. For P(x1, x2), A(x2, y2), B(x3, y3) the area of 

triangle ABP can be computed as follows; 

A1 = A(ABP) =              (5) 

This area control may not work for non convex polygons. Therefore, the method that 

we propose is valid for non-convex shapes or the concave shapes which cannot be 

positioned as in the case of Figure 10-a. 

3.2.3 Mixed Integer Non linear Model Formulation 

Using the findings in previous, a non linear mathematical formulation is presented in 

this section. For N pieces, each having Vi vertices where i , our decision variables 

and parameters are as follows: 

 

Decision variables: 

αi: Rotation angle for piece i (around origin.)   

Cxi: Shift among x-axis for piece i    
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Cyi: Shift among y-axis for piece i    

Xmaxi: Maximum of x coordinates of piece i   

Ymaxi: Maximum of y coordinates of piece i   

MaxX: global maximum of x coordinates 

nXij: final x coordinate of vertex j for piece i      

nYij: final y coordinate of vertex j for piece i    

P1ijkm: intersection control parameter btw j
th

 edge of piece i and m
th

 edge of piece k

               

P2ijkm: intersection control parameter btw j
th

 edge of piece i and m
th

 edge of piece k

        

Z1ijkm : 0 or 1       

Z2ijkm : 0 or 1       

Z3ijkm : 0 or 1       

Z3ijkm : 0 or 1       

 

Note that, Z variables are also used to check intersections in coordination with P 

values. 

 

Parameters:  

xij : initial x coordinate for j
th

 vertex of piece i            

yij : initial y coordinate for j
th

 vertex of piece i            

Ai : Area of shape i                                                       

W: Stock width 

M: A large number 

Given those decision variables and parameters, the mixed integer non-linear model 

can be formulated as followings. 
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Minimize Z = MaxX                    (6) 

subject to:     

                (7) 

                (8) 

                          (9) 

                        (10) 

                                              (11) 

                         (12) 

                 (13) 

                          (14) 

               (15) 

Xmaxi ≥                              (16) 

Ymaxi ≥                     (17) 

MaxX ≥ Xmaxi                   (18) 

W ≥ Ymaxi                    (19) 

 

≥Ai              (20) 

 

For all the equations above (9) to (20);  
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In the model, Equation (6) stands for the objective function where MaxX denotes the 

used length of the stock material. Value of MaxX is computed in constraint  set (18). 

Equations (7) and (8) are to compute the new coordinates after shift and rotation 

Equations (9) and (10) compute the p parameters which are discussed in Section 

3.2.2. Constraints from (11) to (15) are to prevent edge intersections ensuring that 

there is no line intersection. Constraints (16) and (17) is to find maximum of x and y 

coordinates respectively for the shape i. Inequality (19) ensures that the shapes do 

not exceed the width of the shape. Final constraint (20) checks point in polygon 

condition using Equation (5) and ensure that a vertex of a shape cannot be positioned 

within the boundary of another shape. 

 

3.3 Model Verification and Results 

Our mathematical model is tested for problem sizes up to 7 pieces. For the test data, 

the pieces are selected such that it is not possible to cover a piece with another one as 

in Figure 10-a. This implies that the 20
th

 constraint in the formulation can be omitted. 

For the data set with two pieces, the pieces shown in Figure 13 are used.  

 

Figure 13 Two piece data set 

The initial coordinates of the pieces are given in Tables 2 and 3. The initial values for 

decision variables Cx, Cy and α angle are all taken as zero for the initial positions. 

The model is written on an Excel sheet and it is solved by using Excel Solver.  The 

screenshot of the related sheet can be seen in Figure 13. 



28 

 

Table 2 Initial x coordinates for the pieces 

x(i,j) 1  2  3  4  

1  -140  330  200  -100  

2  0  500  0  -230  

 

Table 3 Initial y coordinates for the pieces 

y(i,j) 1  2  3  4  

1  -300  -130  300  200  

2  -300  350  300  450  

 

As it is illustrated in Figure 14, initial coordinates of the pieces are inserted in the 

sheet. The positioning variables Cx, Cy and α values are also given as a part of the 

initial feasible solution. 

 

 

Figure 14 Excel sheet for the two piece instance 
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By the use of those initial coordinates and positioning variables, lengths and degrees 

of the angles for each edge are computed and finally new x and y coordinates are 

derived using the Equations 7 and 8. The differences between maximum and 

minimum of x and y coordinates are also computed to see stock lengths and widths 

respectively. In the given example, the stock width is limited by 900 units, while 

stock length is minimized as an objective. Within the sheet, the first group illustrated 

as „P1‟ and „P2‟ are computed for each edge pairs using Equation 9 and 10. Second 

„P1‟ and „P2‟ group that include binary values correspond to the equations through 

Equation 11 to Equation 14.  The column „Final‟ is obtained by solving Equation 15 

in our model. This column is the one to be introduced as „constraints’ for the Excel 

Solver and set to be greater than or equal to 1. The resulting solution is feasible if the 

values in this column are greater than zero.  

 

To run the model, the cells that include Cx, Cy and α values are selected as decision 

variables to Excel Solver. All other values e.g new coordinates, P values and the 

column ‘final’ are computed, depending on these decision variables.  

 

When the model is run, it is observed that the model cannot converge to a solution if 

all positioning variables are taken as zero. This is due to the non-linearity of the 

model. Therefore our model requires an initial feasible solution to converge to the 

optimal solution. The solution that the model yields also depends on the initial 

solution since Excel Solver searches for a local optimum solution.  

 

To show the sensitivity of our method to the initial feasible solution, our model is 

tested using three different initial solutions as depicted in Table 4. Given the initial 

positions of the pieces, the respective layouts are obtained as shown in Figure 15. 



30 

 

Among three different initial solutions, minimum stock length has been recorded as 

936.418 units using the initial solution shown in Figure 15-c.  

Table 4 The resulting solutions for the two piece instance 

 
  cx cy alfa cx cy alfa 

Stock 

Length improvement 

a 

Initial 0.0000 0.0000 0.0000 500.0000 0.0000 0.0000 1140.000 
~ %9.8 

Final 0.0005 0.0000 0.0024 387.3111 0.0000 0.0028 1027.287 

b 

Initial 500.0000 -120.0000 0.0000 0.0000 0.0000 0.0000 1060.000 
~ % 9.8 

Final 395.7700 -120.0000 -9 x10-4 0.0004 0.0000 -0.0030 955.745 

c 

Initial 500.0000 -10.0000 -30.0000 0.0000 0.0000 0.0000 1053.205 
~ % 11 

Final 386.5000 -10.0000 -28.8600 0.0005 0.0000 -0.0040 
936.418 

 

 

 Figure 15 Results for three different initial solutions, respectively 

Based on the observations, it is seen that the model is capable of compacting the 

layout under the given constraints. However, it should be noted that, Excel Solver 

stops searching for optimal solution when two pieces touches each other. Thus, 

results are strongly dependent to the initial solution and might be further away from 

the global optimum. However, this situation prevents to have the position in Figure 

10-a for the pieces, so the model can compact the layout for both convex and non-

convex polygons without using the 20
th

 constraint. Moreover, it is not required to 

write edge intersection constraint for each edge pairs and the model is relaxed. For 

example, for the given initial of two pieces which are illustrated in Figure 16, it is 

enough to use edge intersection constraints for the edge pairs [c,1], [b,1], and [d,1].  
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Figure 16 Example for initial positions of two pieces 

 

To verify the model, 5 more instances are considered where the number of pieces 

varies from 3 to 7 pieces. Data sets are generated by adding a new piece to previous 

data set. Properties of these pieces are presented in Appendix A. Figure 17 illustrates 

the given initial cutting patterns and final solutions. Values of the decision variables 

are also reported in Appendix B. 
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Figure 17 Resulting cutting patterns of the mathematical model 
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According to the results, it is seen that the solver compacts the pieces towards to 

center. Thus, the pieces which are positioned around the center of the pattern do not 

move. In general, position changes are caused by the linear motions through x and y 

axis and it stops when the moving piece hit to another piece. Rotation angle slightly 

changes to remove infeasibilities. Since the source of compaction is mainly caused 

by the outer positioned pieces, it is not expected to obtain good solutions for large 

scale problems. As it is illustrated in Table 5, for the tested data sets, the lengths of 

stock materials are shorten 12% on the average 

 

Table 5 Length of initial and final cutting patterns 

INSTANCES INITIAL FINAL % Imp. 

3 shapes 130 117.39 0.10 

4 shapes 320 280.98 0.12 

5 shapes 325 284.33 0.13 

6 shapes 420 362.24 0.14 

7 shapes 420 368.85 0.12 

Average 323 282.76 0.12 
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CHAPTER 4 

PROPOSED SOLUTION METHODOLOGY 

 

The model presented in Chapter 3 becomes intractable in generated solutions for 

large scale problems with acceptable time limits. Thus, we propose a heuristic 

method based on an edge matching approach for the problem, and we test it compare 

to the benchmark results in the literature. In order to provide a comparison tool for 

new introduced data sets, we also propose a method to generate lower bounds.  In 

this chapter, study o n lower bounds is presented in Section 4.1, and our heuristic 

method is presented in Section 4.2.  

4.1 Lower Bounds 

 

As it is mentioned above, our mathematical model formulation is describing the 

problem but it is not possible to employ the methodology directly for generating 

solutions for large scale problems in acceptable time limits. Therefore, it is not 

possible to compare the performance of a heuristic method with the optimal solution 

for real life problems. Thus, the only way to measure the quality of a heuristic 

solution seems to check the efficiency and to compare the result with previously 

reported solution methodologies in terms of the related data sets reported in the 

literature. In this section, lower bounds for irregular shaped 2DCSP are studied to be 

able to have an idea about the quality of the solution, which is measured in terms of 

the gap between the probable best solution and our solution.  
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4.1.1 Generation 

One trivial lower bound for the stock length can be obtained by dividing the total 

area of the shapes to the stock width. This bound is equal to optimal solution only 

when it is possible to locate the pieces on stock material with zero scrap. But since 

this is not generally possible in practice, the gap between actual solution and this LB 

is expected to be high. 

 

Therefore, to obtain a tighter bound, an alternative lower bounding scheme is 

considered. According to this scheme, the irregular shapes are represented by 

triangular and rectangular sub-pieces and then these sub-pieces are fed to the optimal 

solver to generate a cutting pattern that provides the lower bound. The method 

consists of the following steps: 

 

Step 0: List the vertices of the shape. 

Step 1: Select the next most upper vertex and draw a horizontal line. 

Step 2: For that line, determine the most left touching and most right touching points 

to the shape. 

Step 3: If the whole line segment within these two points are inside the shape go to 

Step 4. Else, go back to Step 1. 

Step 4: Draw two vertical lines to the bottom, starting from the most left touching 

and most right touching points. 

Step 5: Check the points where you hit by the vertical lines and select the one which 

has higher y coordinate. 

Step 6: Starting from selected coordinate, draw a horizontal line towards the other 

vertical line. This will create a rectangle within two vertical and two horizontal lines. 
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Step 7:  Compute the area of the rectangle and record. Then go back to Step 1 if 

there are still vertices unprocessed in the list. Go to step 8 if the bottom vertices are 

already processed in Step 1. 

Step 8: Take the rectangle with the largest area. And consider the remaining parts as 

distinct irregular shapes and repeat the process until the shape is completely divided 

into rectangles and triangles.  

 

The obtained largest rectangle and remaining irregular shapes are illustrated in 

Figure 18. According to the figure, P1 is the point on the 4
th

 visit to Step 1. As 

mentioned in Step 2, P2 is the most left coordinate and P3 is the most right 

coordinate for the drawn horizontal line on point P1. From the sketched vertical lines 

P5 is the one which is selected by Step 5. The line segment between P4 and P5 is 

sketched in Step 6. 

 

Figure 18 Making rectangles 

 

After applying the steps of the lower bound algorithm for the remaining parts until 

the entire shape is represented in terms of rectangles and triangles, the shape in 

Figure 19 is obtained. 
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Figure 19 The shape divided in rectangles and triangles 

The main idea of obtaining these rectangular sub-pieces is to use them as data set of 

a 2DCSP. The stock length of obtained cutting pattern yields a lower bound for 

irregular shaped problem for two main reasons:  

1. The triangular parts are trimmed; hence, the area of each shape is reduced.  

2. Splitting the shape into pieces breaks a natural constraint which enforces 

these rectangles to be placed in the same position relative to each other. So it 

becomes a relaxation for the problem. 

 

The effect of the first item can be reduced by adding the total area of the triangle 

shapes to the solution obtained by 2DCSP. If we convert this additional area to a 

rigid rectangle which has the same width with the stock material and include it to the 

problem as a new piece, the lower bound will be improved.  

4.1.2  Verification 

To verify the method, benchmark datasets are used. For each data set, the shapes are 

divided into rectangles as stated above. Solving the cutting stock problems with these 

rectangular shapes, the lower bounds reported on Table 6 are obtained. Since the 

irregular shapes are split into pieces, the size of the problem increases considerably 

in terms of number of pieces. For data sets shapes and shirts, a feasible result is not 

reached within 3 hr run. The column named „unrepresented‟ shows the percentage of 
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the area which belongs to the remaining triangles when the rectangles are trimmed. 

In the table, GAP stands for the relative gap between the best reported length for the 

given data sets, and the lower bounds that is obtained by rectangular 2DCSP. As the 

undefined area gets smaller, the represented area of the shape will increase. Thus, as 

the undefined area becomes larger, GAP also becomes larger. 

 

Table 6 Lower bound test 

 
Number of pieces Resulted 

 
Original Rectangular form % 

Data sets Type Total Type Total Unrepresented  GAP 

Jacobs1 25 25 18 39 0.02% 18.30% 

Mao 9 20 20 40 16.59% 11.28% 

Marques 8 24 12 40 9.72% 6.47% 

Albano 8 24 15 46 11.85% 2.12% 

Shapes 0-1 4 43 8 133 2.00% - 

Blaz 7 28 13 52 24.21% 18.23% 

Dagli 10 30 19 57 20.95% 18.40% 

Fu 12 12 4 6 37.12% 2.40% 

Jacobs2 25 25 15 29 37.71% 10.23% 

Poly1a 15 15 16 16 53.75% 36.93% 

Poly2a 15 30 16 32 53.75% 39.18% 

Shirts 8 99 12 134 16.48% - 

 

When the results are considered, it is seen that the performance of the lower bounds 

strongly depends on the data. According to the results, we can say that higher gaps 

may be observed when 

 the area of the rectangle parts gets smaller 

 the number of the rectangular pieces increases 

 when the represented portion for the shapes increases 

 



38 

 

Thus, higher gaps do not guarantee that the cutting pattern can be that much 

improved. However, lower gaps indicate a lower possibility to improve the generated 

cutting pattern. In other words, lower gaps are much more conclusive for the result.  

 

4.2 Edge Matching Approach 

The proposed methodology to generate a good feasible solution is inspired by a 

puzzle reassembly idea. It is a fact that, the maximum efficiency of a cutting pattern 

is %100 and it can be achieved only if the shapes are placed side by side with 

perfectly matching edges and, hence with no spaces between any two pieces. Figure 

20-b illustrates an example of a cutting pattern which has %100 of efficiency. As it is 

seen in Figure 20-b, the edges for all pieces are completely matching each other. 

Figure 20-a illustrates a contrary case where the edges are not aligned to each other.  

In this case, for the same stock width, a higher length is required in order to position 

all these 5 pieces.  

 

Figure 20 Cutting pattern examples for 5 pieces 

The ideal efficiency of %100 can be achieved only if a perfect match exists between 

pieces. Therefore, it may be possible to state that there is a positive relation between 

edge matches and efficiency. Kopardekar and Mital (1999), make a study on 

extracting and generalizing human intuitive in laying out parts and they reported that 

operators perform higher utilizations when edge matches of pieces are maximized. 
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The result of their study also points out this relation. The solution methodology 

proposed in this thesis relies on generating cutting patterns by considering „edge 

match-efficiency‟ relation observed in theory as well as in practice.   

 

Thus, the cutting patterns are constructed by positioning the pieces like they are 

pieces of an apictorial puzzle. Note that, the pieces do not necessarily form a solid 

with perfect matches as in puzzles in cutting stock problems. There may be some 

spaces between pieces even under the cutting pattern with optimal stock material 

utilization.  

 

Basically, the idea of the edge matching approach is to position the pieces in such a 

way that its highest fitting edges are aligned with a fitting edge of another piece or a 

fitting boundary of the stock material. It is usually required to rotate piece in specific 

angles in order to align them. In a continuous space, it is not easy to determine the 

position which yields the maximum fit. To approximate the continuous rotation and 

formulate the problem as a discrete combinatorial problem, two assumptions are 

made.  

1. The pieces will be positioned one by one and the position remains same to the 

end of the construction phase. 

2. Each piece should be positioned such that at least one vertex of the piece is 

aligned with a boundary vertex or with a vertex of previously inserted piece.   

 

Note that, although each insertion step of algorithm aims at maximizing edge 

matches, the overall objective of the algorithm is still to maximize the efficiency of 

stock material usage. This efficiency is tried to be accomplished by minimizing the 

length of the stock material used, given that the stock width is constant. 
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Based on the assumptions, final position of a piece is determined in each iteration. 

Hence, the inserted piece is assumed to be cut out off the stock material at the end of 

iteration. Then, the remaining part of the stock material becomes the new boundary 

of the stock material to be considered for next iteration. Each of these iterations 

consists of three main steps: „preparation‟, edge matching‟ and „boundary update‟. 

For an N-piece problem, it is expected to end up with N iterations provided that the 

size of the stock material (area of the boundary) is large enough to place all those N 

pieces.  

 

 

Figure 21 Main steps of a single iteration of the algorithm 

Preprocessing

Edge Matching

Boundary Update

Initialization

All shapes are inserted

N

Y

STOP
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As it is illustrated in Figure 21, there is an initialization phase before starting to 

iterate the algorithm. Initialization and iteration phases are explained in the following 

subsections. The summary of the algorithm is presented in Appendix C.  

4.2.1 Initializing Phase 

This phase inputs the stock material and pieces in different types of shapes to be cut 

off. The Cartesian coordinates are used to define the vertices of the pieces and stock 

material. For each shape, the number of vertices and the total number of pieces in the 

form of that shape are also used as input parameters at the initialization phase. The 

calculations of the area, the lengths of edges, and the interior angles of each shape 

type are computed. 

4.2.2 Preprocessing Phase 

This preprocessing phase consists of three main steps: shape smoothing, insertion 

order determination and increment amount determination. The first step is smoothing 

operation for each shape, which is required to reduce the computational effort. Then, 

an insertion order is determined for the pieces followed by the edge matching. 

Finally, a limit on the length increment is determined to control the maximum length 

of stock these three steps are explained further below.  

Smoothing Shapes 

Shape smoothing is considered for two reasons. The first reason is to decrease the 

complexity of the problem. The second reason is to prevent some infeasible 

situations. Thus, we have two types of smoothing operations. For both of the 

smoothing types, the shapes are reformed. In order to have an acceptable reformation 

on the shape, the change in the area of a shape is limited within specified tolerance 

limits (taken as %3 of the actual area). Figure 22 illustrates the result of a smoothing 
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operation of type 1. Vertex 3 of the shape is deleted and the number of vertices is 

reduced to five with an area increment within tolerance limit of 1%  of actual area. 

 

Figure 22 Smooth type 1 – Decreasing the complexity of the shape 

 

If the vertex makes the shape concave, it can safely be deleted without decreasing the 

total area. If it is not concave, the shape will be smaller when the vertex is deleted 

which is not allowed. For convex shapes, it is definitely not possible to make such a 

kind of reduction.  

 

Figure 23 Smooth type 2 – Introducing a new vertex with a proper interior angle. 

Figure 23 illustrates the smoothing operation of type 2. Due to the nature of the 

algorithm, if all interior angles of a shape are greater than the interior angles of the 

boundary, a feasible position cannot be obtained for the shape. In this case, a new 

vertex is introduced to get a smaller angle that fits into the boundary.  Since this is 

done to control infeasibility, the increment on the area of shape is not considered. As 

it is shown in the Figure 23, vertex 5 is created on the intersection points of the 

extensions for edges [5,1] and [4,5], hence, the total number of the vertices is 

increased to six. 
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Insertion Order  

In our algorithm, pieces are positioned one by one and the position is fixed to the end 

of stock material. Thus, the insertion order plays an important role in the 

performance of the overall algorithm. One of the most commonly used insertion 

criteria is the placement of the largest piece first. Using this criterion, the shapes are 

ordered with respect to their areas in descending order, but placing the piece with 

longest perimeter is also employed in this study. As an alternative method, it is also 

tested to merge pieces before inserting them. Since, the pieces get larger when they 

are merged; they are ordered with respect to the areas.  

 

Although, there is only one single stock material at the beginning of the problem, any 

piece insertion at each iteration may split the stock material into different regions as 

it is shown in Figure 24. In this case, more than one region should be considered 

while inserting the next selected piece. In this study, when there is more than one 

region, the boundary of the smallest region is selected first.  

 

 

Figure 24 Two different boundaries emerge after positioning the piece 
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Limiting the Stock Length Increases 

Although the approach provides maximum edge matching, the main focus is still 

minimizing the stock length. Therefore, a limit for the increment of the length is 

considered to hold the pieces on possible left most position on the stock. In the case 

that this limit is exceeded, a shorter edge fit must be preferred to have control on 

stock length.  

 

4.2.3 Edge Matching Phase 

Edge matching is the main step of the algorithm since it determines the position of 

each piece on the stock material. In order to determine the position with the 

maximum edge match, there are many issues to be considered. First of all, a piece 

must remain within the boundaries after being positioned. This will be controlled 

through overlap checks. Therefore, the edge matching phase determines final 

location and orientation of the piece that yields the maximum edge matches.  

Overlap Check 

Overlap control is made using trigonometric computations. When a piece is inserted, 

each edge is checked whether there is an intersection in such a way that none of the 

edge should intersect with the edges of boundary. The method for controlling edge 

intersection was described before. However, point in polygon test is considered in a 

different way than the mathematical model formulation in Chapter 3. For the edge 

matching method, each piece must be positioned inside the boundaries. A position is 

feasible only if there is no overlap between a piece and the boundary. Thus, the 

overlap check is routinely performed during any edge matching iteration to see if the 

resulted position is feasible.   
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Positioning with Edge Match  

Each piece should be positioned in such a way that at least one vertex of the piece 

should be match with a boundary vertex or with the vertices of previously inserted 

pieces. Figure 25 illustrates the positioning procedure with this assumption. First of 

all, the piece is moved onto boundary such that a vertex of that piece is matched with 

a vertex of the boundary as it is shown in Figure 25-a. This is called as a „vertex 

match‟.  Then the piece is rotated clockwise (CW) direction over the matching vertex 

until one of the edge of the piece hits the boundary as in Figure 25-b.  Then an 

alternative position is obtained by rotating the piece in the counter clockwise (CCW) 

direction till the edge of piece hits the boundary as in Figure 25-c. For each rotation 

an „edge fit‟ is observed. 

 

Figure 25 Illustration for positioning a single piece 

 

For both positions in Figure 25-b and 25-c, the overlap check is performed. If there is 

no overlap, the length of fit along edges is calculated and recorded.  In this way, all 

possible vertex match combinations are obtained and edge fit lengths are computed. 

The position which provides the longest length of edge fit is set as the final position 

for that shape. For instance in Figure 25, there are 4 vertices of boundary and 5 

vertices of the piece that yields 4x5 = 20 possible matching combinations. Note that 

some of the matches will not be feasible due to the overlaps. The longest length fit 

for our example is illustrated in Figure 25-b. 
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In order to predetermine some of the infeasible cases before carrying out the 

positioning operations, interior angles for the matching points are computed. If the 

interior angle of the piece is larger than the interior angle of the boundary, there is no 

need for further feasibility check. 

 

Figure 26 Overlap predetermined using interior angles 

Figure 26 illustrates this kind of an overlap. Since the interior angle of the piece is 

118
o
 and it is greater than the interior angle of the boundary which is 90

o
, there is no 

feasible rotation to position the piece over the illustrated point. This means that, there 

is no need for overlap checks or length of edge fit for that point. Smoothing type 2, 

which was mentioned before, is made for any piece which has no vertices in feasible 

angles.  

 

All vertices are numbered in CCW direction. Let i denote the i
th

 vertex of the piece to 

be inserted and j denote the j
th

 vertex of boundary. Our edge matching algorithm can 

be stated as below: 

S1. Let: 

i: vertex of piece   i = 1 to N  

j: vertex of boundary        j = 1 to M 

 

S2. For all i and j 

Set maximum length to zero 

If interior angle on i
th

 vertex is smaller than the interior angle on j
th

 vertex do: 
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i. Move the i
th 

vertex of piece onto j
th

 vertex of boundary 

a. Compute the α angle between the edge |i, i+1| and edge |j, j+1| 

1' Rotate the piece CCW over vertex i, by α. 

2' Check for overlaps. If there is any overlaps go to „b‟. 

3' Compute the length of edge fit between the boundary and the piece 

4' If the length is greater than the maximum length, update the maximum 

length and record the values of α, i and j as maxα, maxi and maxj, 

respectively. 

b. Compute the α angle between the edge |i, i-1| and edge |j, j-1| 

1' Rotate the piece CW over vertex i, by α. 

2' Check for overlaps. If there is any overlap change „j‟‟. 

3' Compute the length of edge fit between the boundary and the piece 

4' If the length is greater than the maximum length, update the maximum 

length and record the values of α, i and j as maxα, maxi and maxj, 

respectively. 

 

S3. Move maxi
th

 vertex of the piece to the maxj
th

 vertex of the boundary and rotate the piece as 

maxα
o
. 

 

When all possible vertex matches are tested, the algorithm returns the rotation angle 

with maxi and maxj values that yields the maximum edge fit.  

 

4.2.4 Boundary Update Phase 

As it is mentioned before, once a piece is inserted within the boundary, the position 

of that piece is preserved throughout the cutting pattern generation. Hence, the 

remaining part of the boundary can be used as a feasible region for the remaining 

pieces. Thus, when a shape is positioned, the vertices of the boundary are updated for 
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the next iteration. In Figure 27, the shaded regions illustrate the area within the 

boundaries before and after insertion of a shape. At the beginning, the vertices of the 

boundary are defined by A-B-C-D-A. As it is seen, after the piece is positioned, the 

vertices of the boundary are updated as A-B-C-D-h-g-f-e-A since only this region is 

feasible to position a new piece. Note that, when an irregular shape is inserted on the 

stock, the boundary also becomes an irregular shape itself. In this way, of the 

algorithm generates solutions also for irregular shaped stock materials.  

  

Figure 27 Boundary update 

To update the boundary, Weiler-Atherton clipping algorithm is used (Weiler and 

Atherton., 1977). According to the algorithm 

- A vertex on the boundary, which is not on the edge of the piece, is selected.  

- Then, the vertices are visited in CCW direction until one of the edges of the pieces is 

hit.  

- The points visited before hitting the piece are updated as vertices of the boundary.  

- After hitting a point on the edge of the piece, switch to the edges on the piece and 

traverse in reverse direction.  

- As soon as hitting an edge, switch to the boundary and continue traversing vertices 

of it in reverse direction. 

As a summary, while traversing vertices of a shape, the algorithm evolves by 

traversing vertices of the piece and boundary in reverse directions until returning to 

the starting point. For Figure 27-b, assuming that starting vertex is C, the steps of 

algorithm will be traced as follows: 
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- Vertex -C- is not on the edge of piece, record it 

- Move to vertex -B- 

o It is not on the edge of piece, record it 

- Move to next vertex -A- 

o It is also on the edge [A,h] of piece 

o Move back to starting point of that edge, i.e „A‟, record it 

o Switch to traversing the piece, change your direction 

- Move to point -e- 

o It is not on the boundary, record it 

- Move to vertex -f- 

o It is not on the boundary, record it 

- Move to  vertex -g- 

o It is not on the boundary, record it 

- Move to vertex -h- 

o It is also on the edge [D,A] of the boundary 

- Move back to starting point of that edge, i.e, -D-, record it 

o Switch the boundary, change your direction. 

- Move to the vertex -C-, record it 

- Since vertex -C- is the starting point, STOP. 

 

The updated boundary is: C-B-A-e-f-g-h-D-C. 

Creating Boundary Generator Lists 

The boundary updating process seems to be a bit complicated in the first glance. It 

requires using two different lists for the boundary and the piece, named as boundary 

generator lists. To create a boundary list, start form a vertex of the boundary and 

record all points that you visit until you reach the starting point. For the piece list, the 

same procedure is carried out. The lists which belong to the situation shown in 

Figure 27 are given as follows: 

 

Boundary list: A - h - D - C- B  

Piece list:       A – h – g – f – e  
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In the algorithm, doubly linked lists are used as data structures to build up and store 

boundary generator lists. Each node of these link lists includes the vertex id, the 

vertex type indicator (to indicate if it belongs to boundary or piece), the address of 

the next node in the list, the address of the previous node in the list, indicator to see if 

there is a link to other list (Vertices „A‟ and „h‟ are links for other lists since they are 

common for both lists), the address of the vertices on the other list (if there is a link 

to other list), and finally an indicator to see if the node is visited or not. The flow 

chart of the algorithm that creates a boundary list is given in Appendix C. 

Traversing Boundary Generator Lists 

The following procedure is used to obtain a loop, which will correspond to a new 

boundary after placing a piece on a stock. The procedure is based on Weiler-

Atherton clipping algorithm, which was just mentioned above. The procedure iterates 

as follows: First start with the first element in boundary list. If the same element also 

exists in the other list, switch to the other list and change your traversing direction 

and continue in the opposite direction. Otherwise, continue with the next element 

until you reach the starting point. The resulting loop corresponds to the new 

boundary.  The boundary loop obtained for the example in Figure 27 is illustrated in 

Figure 28.  

 

Figure 28 Boundary generation using lists 

 

As a result, according to Figure 28, updated boundary is : A-e-f-g-h-D-C-B.  
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When there is a unique boundary loop to be obtained, the algorithm works in this 

way. However, when there is more than one boundary after a piece is positioned, the 

Weiler-Atherton clipping algorithm needs some modifications. These modifications 

require vertex analysis for both boundary and the piece.  

Vertex and Case Analysis 

With the help of boundary generator lists, it is possible to generate the boundaries 

when more than one region emerges after inserting a piece on the stock. For 

example, in Figure 29, the shaded region illustrates the piece. Since the piece splits 

up the boundary into two different regions, two different boundaries will be 

generated for the next iteration. 

 

 

 

Using the methods described before, the boundary generator lists for the situation in 

Figure 29 are constructed and traversed as it is illustrated in Figure 30. 

 

Figure 30 Generation of the first boundary from Figure 28 

Figure 29 A Piece that causes more than one boundary 



52 

 

In Figure 30, vertex A is the start point. Following the arcs, the first boundary is 

determined as A-B-f-e-d-A. When the visited vertices in the list are deleted, the 

remaining vertices are listed as it is shown in Figure 31. When vertex -b- is selected 

as a new starting point, a loop is created with only two different vertices. Since it is 

not possible to generate a closed region using less than three vertices, vertex C is 

used as the new starting point instead of vertex b. 

 

 

Figure 31 Loop with no boundary 

When C is selected as the starting point, the loop shown in Figure 32 is generated. 

Hence, the second boundary becomes C-D-c-b. Since all the elements in the lists are 

visited at the end of this iteration traversing the lists is terminated.  

 

Figure 32 Second boundary generated by the lists 

 

Unfortunately, the method still requires additional modifications to correct the 

boundaries in the case that there are common vertices for two different boundaries. 

Figure 33 illustrates this situation, where point A is a common vertex for both 

boundary 1 and boundary 2. In the first run, the boundary will be generated using the 

lists. Then, vertex A is going to be deleted from the lists since it is visited. 
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However, it is also part of boundary 2, and it is not possible to generate that 

boundary without vertex A. Therefore, to prevent this situation, vertices are analyzed 

for following information. 

 

Figure 33 Common vertex for two different boundaries 

1. Vertex of a piece is positioned on a boundary edge or not. 

2. Vertex of a piece positioned on a boundary vertex or not. 

3. Vertex id, which denotes the boundary edge which the piece vertex belong to, if the 

answers for previous statements are yes. 

The vertices of the boundaries are also analyzed in the same manner. 

 

The characterization of the vertices requires some basic distance comparisons:  

 If a vertex i is positioned on an edge [ j, j+1) then; 

distance between i and j must be equal to the distance between i and j+1 

and 

id for vertex i is j (since it is belong to the edge [ j, j+1). 

 

The flow charts for the vertex analysis can be seen in Appendix C. Using the results 

of the vertex analysis, the case analysis are performed to decide if there exists a 

shared vertex or not. Considering the possible relative positions of boundaries and 

pieces, 9 cases are determined. These cases are illustrated in Figure 34. 
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Figure 34 Possible cases of relative positions 

 

In the figure, bold lines refer to boundary edges and other lines refer to piece edges. 

For the cases 6, 7 and 9, there are shared vertices. This type of vertices should be 

written twice in the boundary generator lists. In this way, when the elements of the 

first boundary are deleted, the vertex still will be remaining to generate second 

boundary.  This analysis for boundary and piece are performed separately, and the 

results of vertex analysis are used as input. Flow charts for the case analysis can be 

seen in Appendix C. 

 

When the case analysis is performed, the boundary creator lists are generated and 

then they are traversed to obtain the updated boundaries. As the boundaries are 

updated, our boundary traversing algorithm terminates. If there are still pieces to be 

positioned, preparations for new iterations are run.   

  

4.3 Computational Study for Edge Matching Approach 

 

In this section, the results of edge matching approach are presented. Our algorithm is 

coded in Visual Basic Studio 10.0 environment, using ANSI C language. A personal 

computer with Intel® Core™ i5 CPU M 520 @ 2.40 GHz processor and 4 GB RAM 

is used to run the algorithm. The algorithm is tested on the data sets that are obtained 
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from ESICUP. Three different insertion order rule is tested for data sets: largest area 

first, longest perimeter first and merged pieces. Performance measures and 

computational results for each insertion order rule is presented in the following 

sections.  

4.3.1 Performance Measures 

In this study, stock material‟s utilization rate of the cutting patterns are taken as a 

performance measure and called as „efficiency type I‟. Higher values for efficiency 

type I, yields smaller scrap amounts for the cutting patterns. Since the raw material 

cost is the main cost item in cutting stock processes, using this performance measure 

is used in the literature. Thus, stock material utilization is the common performance 

measure in the literature.  

 

Besides of the raw material cost, another important performance indicator is the 

machining cost for the cutting stock processes. Machining cost depends on the 

duration spent to cut off the pieces from the stock material. This duration can be 

expressed in terms of cutting path lengths like in the case of Chinese Postman 

problem. Figure 35 illustrates two different cutting patterns each consists of two 

regular hexagons, and their cutting paths respectively. In Figure 35-a, hexagons 

should be fully traced by the cutting tool in order to carve the piece out of the stock 

sheet. In Figure 35-b, there are two matched edges for the hexagons (one between the 

pieces and one with the stock sheet edge). Thus, the cutting tool can carve out the 

pieces from stock sheet just by cutting 10 edges for the case in Figure 35-b where as 

it needs to cut 12 edges in Figure 35-a.  
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Figure 35 Cutting patterns with different cutting paths 

In the edge matching approach, it is tried to position the pieces with matching edges. 

Although the main objective is minimizing the scrap rate, edge matching provides 

shorter cutting paths for the generated patterns. Since shorter cutting paths provides 

higher efficiencies in terms of machining time, another performance measure for this 

study is taken as the cutting path efficiency and called as „efficiency type II‟. This 

performance measure is the ratio of cutting path length to the total perimeter for all 

pieces. Note that, the value of efficiency type II cannot reach to 100% since it is not 

possible to obtain the length of cutting path length as zero.  

Efficiency Type II = 1-           (21) 

During this study, CPU times are not taken as a performance measure and they are 

not used as a comparison tool for benchmarks. The main reason to that is smoothing 

process of the algorithm. Although smoothing process is embedded in the algorithm, 

it is still not automated enough. For some pieces of the data sets, manual pre-

smoothing operations may be required. Addition to that the merging of the piece is 

done manually. Since the duration of these manual adjustments cannot be taken into 

account, it is not thought to be fair to use CPU times for pattern generation runs 

which are all less than 5 min.  
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4.3.2 Data Set 

In order to evaluate the results of the algorithm, generated cutting patterns are to be 

compared with the results of selected benchmark problems with respect to the stated 

performance measures. To the best of our knowledge, the best published results for 

the selected benchmark problems are illustrated in Table 7. 

Table 7 Best published results for selected benchmark problems 

 

 Problem Specifications Best Published (BP) 

  

Total 

# of 

Pieces 

Stock 

width Total Area 

Total 

perimeter Length 

Efficiency 

1 

Length of 

Cutting 

Path 

Efficiency 

2 Source LB 

1-Albano 24 4900 42658241.46 132687.60 9957.40 0.87 105854.50 0.20 a 9746.30 

2-Blaz 28 15 323.97 396.76 25.84 0.84 314.40 0.21 a 21.13 

3-Dağlı 30 60 3005.28 1230.20 58.20 0.86 868.49 0.29 a 47.49 

4-Dighe2 10 100 10000.00 1349.20 100.00 1.00 454.02 0.66 a 100.00 

5-Fu 12 38 1082.95 480.45 31.33 0.91 264.56 0.45 a 30.58 

6-Jacobs1 25 40 391.98 404.63 11.50 0.85 257.65 0.36 b 9.40 

7-Jacobs2 25 70 1331.00 845.81 24.70 0.77 595.33 0.30 b 22.17 

8-Marques 24 104 7196.80 2277.83 78.00 0.89 1753.26 0.23 b 72.95 

9-Shapes0 43 40 1595.80 1588.81 60.00 0.66 1273.61 0.20 a - 

10-Shapes1 43 40 1595.80 1588.81 56.00 0.71 1200.61 0.24 a - 

11-Poly1a 15 40 410.00 357.24 13.3 0.77 310.841 0.13 b 8.39 

12-Poly2a 30 40 820.00 714.48 27.09 0.76 610.8011 0.15 b 16.48 

13-Shirts 99 40 2160.12 1854.38 62.21 0.87 1419.91 0.23 a - 

a) Oliveira and Gomes (2006); b) Burke et. al. (2005) 

     

In Table 7, first five columns illustrate the properties of the data sets such as total 

number of pieces, area of the pieces, width of the stock material and total perimeters 

of the pieces. The remaining columns denote the current best results. As it is seen, 

values for „efficiency type I‟ are close to 1. However, the maximum of „efficiency 

type II‟ is just 0.66.  This is due to the fact that it is not possible to reach 100% 

efficiency for type II since it is almost impossible to have the cutting path length as 

zero.  



58 

 

4.3.3 Largest Area First (LAF) 

As it is mentioned before, insertion order for the pieces has a vital importance on the 

generated cutting pattern since the algorithm is greedy. One approach to order the 

pieces in the data set with respect to their areas such that the largest piece is first to 

be positioned on the stock material. LAF‟s results are illustrated in Table 8.  

 

Table 8 Results of the algorithm - LAF 

  Length Efficiency 1 

Length of 

Cutting Path Efficiency 2 GAP 1 GAP 2 

1-Albano 11000.00 0.79 99188.14 0.25 -0.10 0.06 

2-Blaz 30.59 0.71 315.17 0.21 -0.18 0.00 

3-Dağlı 60.00 0.83 844.04 0.31 -0.03 0.03 

4-Dighe 2 100.00 1.00 454.02 0.66 0.00 0.00 

5-Fu 31.64 0.90 250.10 0.48 -0.01 0.05 

6-Jacobs 1 12.00 0.82 246.31 0.39 -0.04 0.04 

7-Jacobs 2 26.00 0.73 570.84 0.33 -0.05 0.04 

8-Marques 81.00 0.85 1898.39 0.17 -0.04 -0.08 

9-Shapes 0 58.00 0.69 1089.25 0.31 0.03 0.14 

10-Shapes 1 58.00 0.69 1089.25 0.31 -0.04 0.09 

11-Poly1a 13.5 0.76 255.96 0.28 -0.02 0.18 

12-Poly2a 27.78 0.74 523.60 0.27 -0.03 0.14 

13-Shirts 61.00 0.89 1273.69 0.31 0.02 0.10 

 

In Table 8, GAP 1 and GAP 2 denotes the relative differences for efficiency type I 

and efficiency type II, respectively, based on the best published results: 

 

     (22) 

   (23) 
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When the values for efficiency type I are inspected, it is seen that the worst case 

among the data sets has a negative gap of 10% for Albano. The results for Shapes 0 

and Shirts are better than the best published results with positive gaps of 3% and 2% 

respectively. On the average, the stock material utilization for the edge matching 

approach is 4% less with respect to the best published results when the largest piece 

is selected first.  

 

According to the results of GAP 2, it is seen that for all data sets except Marques, 

generated cutting patterns have shorter cutting path lengths with respect to the 

cutting paths lengths of the benchmark results. This means that, edge matching 

approach provides cutting patterns which are more efficient in terms of machining 

times. Resulting cutting patterns are illustrated in Figure 36.  
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Albano, Length: 11000 Blaz, Length: 30.59 

    
Dagli, Length: 60 Dighe2, Length: 100 Fu, Length: 31.64 Marques, Length:81 

    
Jacobs1, Length: 12 Jacobs2, Length: 26 Poly1a, Length: 13.5 Poly2a, Length: 27.78 

  

Shapes 0 – Shapes 1, Length: 58 Shirts, Length: 61 

Figure 36 Generated cutting patterns – LAF 

4.3.4 Longest Perimeter First (LPF) 

In the edge matching approach, the algorithm searches for the position which 

provides maximum length of edge match. A piece that have a long perimeter may 

have chance to maintain a longer match. Thus, as another insertion order rule, the 

pieces are ordered with respect to the length of their perimeters and the one with the 

longest perimeter is selected to be positioned first. In this section the results for the 

insertion rule “longest perimeter first” (LPF) is presented. Table 9 illustrates the 

summary of the results.  
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Table 9 Results of the algorithm - LPF 

 

Length Efficiency 1 

Length of 

Cutting Path Efficiency 2 GAP 1 GAP 2 

1-Albano 11000.00 0.79 109849.83 0.17 -0.10 -0.04 

2-Blaz 30.00 0.72 312.11 0.21 -0.16 0.01 

3-Dağlı 60.00 0.83 805.00 0.35 -0.03 0.07 

4-Dighe 2 100.00 1.00 454.02 0.66 0.00 0.00 

5-Fu 33.00 0.86 255.92 0.47 -0.05 0.03 

6-Jacobs 1 11.28 0.87 211.47 0.48 0.02 0.18 

7-Jacobs 2 25.10 0.76 564.35 0.33 -0.02 0.05 

8-Marques 83.00 0.83 1636.59 0.28 -0.06 0.07 

9-Shapes 0 55.49 0.72 1073.65 0.32 0.08 0.16 

10-Shapes 1 55.49 0.72 1073.65 0.32 0.01 0.11 

11-Poly1a 14 0.73 238.55 0.33 -0.05 0.23 

12-Poly2a 27 0.76 504.29 0.29 0.00 0.17 

13-Shirts 61.00 0.89 1273.69 0.31 0.02 0.10 

 

According to the GAP 1 results, 5 data sets out of 13 are better than the best 

published results. The result for Dighe 2 is the same with the best published result. 

Note that the data set of Dighe 2 is the only data set that reaches the 100% stock 

material utilization, thus it is not possible to improve that solution. The worst result 

in terms of GAP 1 is obtained from the data set of Blaz with a gap of 16%. On the 

average the stock material utilization for generated patterns is 3% less according to 

the best published results.  

 

When GAP 2 is considered, except the data set of Albano, all of the generated 

patterns are better than the patterns of the best published results in terms of cutting 

path length. On the average, the cutting path is 9% sorter in the edge matching 

approach with LPF. Generated cutting patterns are presented in the Figure 37. 



62 

 

  
Albano, Length: 11000 Blaz, Length: 30 

  
Dagli, Length: 60 Dighe2, Length: 100 

  

  

Jacobs1, Length: 11.28 Jacobs2, Length: 25.1 Poly1a, Length: 14 Poly2a, Length: 27 

  
Fu, Length: 33 Marques, Length: 83 

  

Shapes 0 – Shapes 1, Length: 55.49 Shirts, Length: 61 

 

Figure 37 Generated cutting patterns for LPF 
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4.3.5 Computational Result for Merged Pieces 

In this section, effect of merging the pieces is analyzed. Here, the term „merge‟ 

stands for combining two identical pieces to form a new single piece. With this 

merge operation, the total numbers of the pieces decreases and the complexity of the 

problem reduce for the given data set. Briefly, with the help of merging some pieces 

together, a new data set with less but larger pieces can be derived.  

 

There are infinitely many relative positions for two pieces to be merged. In order to 

simplify the process, three main cases for positions are considered to merge two 

identical pieces. These cases can be described as follows; 

1. Fix the initial position for one of the pieces and rotate the other one by 180
o
 

2. Fix the initial positions for both of the pieces 

3. Fix the initial position for one of the pieces and use the mirror reflection of 

the other piece. 

For each case, the pieces are brought together in four different ways. Figure 38 

illustrates these ways for the first case where one of the pieces is rotated by 180
o
. 

 

Figure 38 Alternative combining positions for a sample piece from Albano. 

As it is seen in the Figure 37, the rotated piece is positioned at the left, at the bottom, 

at the top and at the right side of the other pieces respectively. For all these four 

positions, the one which provides the minimum enclosing rectangle is to be selected. 
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After the decision for the position is made for each case, they are compared to 

between each other. Figure 39 illustrates an example for a sample piece from Albano. 

Figure illustrates the 180
o
 rotated case, same positions case and mirror reflection case 

in 39-a, 39-b, and 39-c, respectively. In the case that the area of enclosing rectangle 

for combined shapes is equal to the  summation of the areas for separate enclosing 

areas of these shapes, the merge operation is not done. In other words, enclosing 

rectangles of each piece must be overlapped to approve the position. In Figure 39-b 

and 39-c there is no overlap so only the position in 39-a is a valid position to merge 

the pieces. If there are more than one valid position, than the one with the smallest 

enclosing rectangle is selected.  

 

Figure 39 Three cases for a sample piece from Albano 

Among the selected benchmark problems which are tested, some data sets do not 

include duplications of same piece. Since merge is considered for identical pieces in 

this study, only the data sets of Albano, Blaz, Dagli, Marques, Shapes and Poly 2a is 

are used here.  

 

Table 10 Number of merged pieces in each cases 

 

Albano Blaz Dagli Marques Shapes Poly 2a Total 

180o rotated 5 2 6 5 1 14 33 

Same position 1 0 0 2 0 0 3 

Reflection 0 0 0 0 0 0 0 

None 2 5 2 2 3 1 15 

Total 8 7 8 9 4 15 51 
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In Table 10, amounts of merged piece types are presented for each data set. As it is 

illustrated in the table, there are 8 different shapes of pieces for Albano and 5 of them 

are resulted better when they are positioned as in case 1. Similarly, most of the pieces 

form up preferable new pieces when they are merged as in case 1. For these 7 data 

sets, 15 pieces out of 51 do not constitute a valid position to merge them. For the 

remaining 36 pieces, 33 of them are provided in case 1.   

 

According to these results, the data sets of the selected benchmark problems are 

updated then the algorithm is compiled using LAF. The reason to select the LAF is 

that the areas of the pieces increase as they are combined and it is difficult to find a 

room on the stock sheet for those large pieces.  

 

The results of the runs are summarized in the Table 11. As it is seen, for all the data 

sets except shapes 0, value of efficiency 1 is lower than the results of LAF and LPF. 

On the average, merging the pieces performs 14% worse than BP results in terms of 

efficiency 1 values.   

  

Table 11 Computational results for merged pieces 

 

Types 

of 

Pieces 

Total 

Number of 

Pieces Length 

Efficiency 

1 

Length of 

Cutting 

Path 

Efficiency 

2 GAP 1 GAP 2 

Albano 8 19 11512.98 0.76 106753.60 0.20 -0.16 -0.01 

Blaz 7 24 32.97 0.66 340.78 0.14 -0.28 -0.08 

Dagli 18 22 63.69 0.79 832.49 0.32 -0.09 0.04 

Marques 9 17 83.81 0.83 1875.98 0.18 -0.07 -0.06 

Shapes0 5 29 57.97 0.69 1147.02 0.28 0.03 0.12 

Shapes1 5 29 57.97 0.69 1147.02 0.28 -0.04 0.05 

Poly2a 15 16 36.79 0.56 574.10 0.20 -0.36 0.07 
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As it is mentioned before; „Each piece should be positioned such that at least one 

vertex of the piece should be aligned with a boundary vertex or with a vertex of 

previously inserted piece.’ When the pieces are merged together, this rule is omitted 

for them. Thus, the problem is relaxed in a manner. However, another constraint is 

involved, such that the merged pieces must stay together on the stock material. 

According to the resulting cutting patterns with merged pieces, it is seen that 

relaxation effect of merging the pieces is negligible with respect to the tightening 

effect of it. Generated cutting patterns for merged pieces are illustrated in the 

Appendix D. 

 

4.3.6 Evaluation of Computational Results 

When the results in the previous subsections are analyzed, we have the overall 

picture as summarized in Table 12. Last two columns of the table present the source 

for the best efficiency among the results. According to these results, best 

performance on efficiency 1 and efficiency 2 have the same source for 7 data sets. In 

other words, for 7 data sets, maximum stock material utilization is obtained when 

maximum cutting path efficiency is provided, or vice versa.  

 

Table 13 illustrates the average values of efficiencies and the relative gaps to the best 

published results of the selected benchmark problems. According to the results, 

merging the pieces performs worst with an average efficiency 1 value of 71% and 

average efficiency 2 value of 0.23. LPF performs slightly better than LAF according 

to the average values. On the other hand, LPF performs better than best published 

results for 5 data sets, where LAF can beat just for one data set.  
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Table 12 Summary of efficiencies for cutting patterns 

 

BP LAF LPF Merge Source of Best Result 

  Eff. 1 Eff. 2 Eff. 1 Eff. 2 Eff. 1 Eff. 2 Eff. 1 Eff. 2 Eff. 1 Eff. 2 

1-Albano 0.87 0.20 0.79 0.25 0.79 0.17 0.76 0.20 BP LAF 

2-Blaz 0.84 0.21 0.71 0.21 0.72 0.21 0.66 0.14 BP BP-LAF-LPF 

3-Dağlı 0.86 0.29 0.83 0.31 0.83 0.35 0.79 0.32 BP LPF 

4-Dighe 2 1.00 0.66 1.00 0.66 1.00 0.66  -  - BP-LAF-LPF BP-LAF-LPF 

5-Fu 0.91 0.45 0.90 0.48 0.86 0.47  -  - BP LAF 

6-Jacobs 1 0.85 0.36 0.82 0.39 0.87 0.48  -  - LPF LPF 

7-Jacobs 2 0.77 0.30 0.73 0.33 0.76 0.33  -  - BP LAF-LPF 

8-Marques 0.89 0.23 0.85 0.17 0.83 0.28 0.83 0.18 BP LPF 

9-Shapes 0 0.66 0.20 0.69 0.31 0.72 0.32 0.69 0.28 LPF LPF 

10-Shapes 1 0.71 0.24 0.69 0.31 0.72 0.32 0.69 0.28 LPF LPF 

11-Poly1a 0.77 0.13 0.76 0.28 0.73 0.33  - - BP LPF 

12-Poly2a 0.76 0.15 0.74 0.27 0.76 0.29 0.56 0.20 LPF LPF 

13-Shirts 0.87 0.23 0.89 0.31 0.89 0.31  - - LAF-LPF LAF-LPF 

 

 

Table 13 Average values for the performance measures - I 

 

Average 

Efficiency 

1 

Average 

GAP 1 

Worst 

GAP 1 

Average 

Efficiency 

2 

Average 

GAP 2 

Worst 

GAP 2 

LAF 0.80 -0.04 -0.18 0.33 0.06 -0.08 

LPF 0.81 -0.03 -0.16 0.35 0.09 -0.04 

Merge 0.71 -0.14 -0.36 0.23 0.02 -0.08 

BP 0.83  - - 0.28  - - 

 

 

In order to make a deeper comparison, the respective sources for the best published 

results are analyzed with respect to efficiency I values.  In Table 14, results of LAF 

and LPF are compared to the methods in the literature. As it is seen, all 4 methods 

are slightly differs from each other, in terms of Efficiency 1 measure.  
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Table 14 Average values for the performance measures - II 

 

Average 

Efficiency 

1 

Average 

GAP 1 

Worst 

GAP 1 

LAF 0.80 -0.04 -0.18 

LPF 0.81 -0.03 -0.16 

BP (a) 0.84  -0.02 -0.04 

BP (b) 0.81  -0.02 -0.15 

(a) Oliveira and Gomes (2006); (b) Burke et. al. (2005) 

 

 

Relation between Efficiency I and Efficiency II 

Matching the edges to generate cutting patterns with higher material utilization was 

the main point of this study. Thus we expected to see a positive relationship between 

material utilization and cutting path efficiencies which is provided by edge matches. 

In order to see the relation between Efficiency 1 and Efficiency 2, results are 

compared for total of BP, LAF and LPF. Using these 39 results (13 results from 

each), the plot in Figure 40 is obtained. Pearson correlation coefficient for Efficiency 

1 and Efficiency 2 is obtained as 0.65, indicating that the efficiencies are positively 

related, however this is not a strong relationship.  

 

 

Figure 40 Efficiencies for BP, LAF and LPF 
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Figure 41 Efficiency 1 vs. Efficiency 2 

In Figure 41, the scatter plot also illustrates the positive relation between efficiencies. 

However, according to the R-square coefficient value of 0.4153, the linearity seems 

to be weak. Especially for the efficiency 2 values below 0.3, linearity do not exists 

(R-square value of 0.0032). Figures 42 and 43 illustrate the same plot for the 

efficiency 2 values above 0.25 and for the efficiency 1 values above 0.80, 

respectively. According to the R-square values, linear relationship between 

efficiencies is slightly stronger for higher values.    

 

 

Figure 42 Efficiency 1 vs. Efficiency 2 | efficiency 2 > 0.25 
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Figure 43 Efficiency 1 vs. Efficiency 2 | efficiency 1 > 0.80 

Table 15 illustrates the values of the parameters such as total number of pieces, 

average number of vertices, average length of perimeter and etc. for each data set. 

The effect of these parameters on the correlation of efficiency I and efficiency II 

measures is also analyzed during this study. When the effect of parameters are 

considered separately and the effect of each factor is observed ignoring the other 

factors, it is seen that the results about the relationship between efficiency values and 

any of these parameters are inconclusive. On the other hand, one may expect the 

correlation between efficiency values to be weaker when  the data set is more 

irregular. In order to obtain a numerical measure for the irregularity of a data set, a 

ratio is computed under the given assumptions.  

1. As the number of different pieces and average number of vertices increase, 

the irregularity also increases. 

2. As the total number of pieces and ratio of stock width to the average length of 

perimeter increase, the irregularity decreases.  

Based on the assumptions, the ratio of irregularity (RI) for each data set is computed 

as follows.  
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Table 15 Parameters of data sets 

Data 
Sets  

Stock 
width 

Number 
of 

different 
pieces 

Total 
number 

of 
 pieces 

Average 
number 

 of 
vertices 

Total 
number 

 of 
vertices 

Average 
Length 

 of 
perimeter  

Stock 
width / 
average 

perimeter 
Norm. 

RI 

Albano 4900 8 24 6.83 164 5528.65 0.89 0.38 

Blaz 15 7 28 7.5 210 14.17 1.06 0.25 

Dagli 60 10 30 7.3 219 41.01 1.46 0.23 

Dighe2 100 10 10 4.7 47 134.92 0.74 1.00 

Fu 38 12 12 3.58 43 40.04 0.95 0.58 

Jacobs1 40 25 25 5.16 129 16.19 2.47 0.30 

Jacobs2 70 25 25 5.36 134 33.83 2.07 0.38 

Marques 104 8 24 7.08 170 94.91 1.1 0.31 

Shapes0 40 4 43 8.75 376 36.95 1.08 0.08 

Shapes1 40 4 43 8.75 376 36.95 1.08 0.08 

Poly1a 40 15 15 4.6 69 23.82 1.68 0.41 

Poly2a 40 15 30 4.6 138 23.82 1.68 0.18 

Shirts 40 8 99 6.63 656 18.73 2.14 0.00 

 

For the normalized RI values which are greater than 0.30, the scatter plot for 

Efficiency I and Efficiency II values are illustrated in Figure 44. Based on the 

observations, any strong relationship between the parameters of the data set and 

efficiency values cannot be figured out. Thus, it is not possible to generalize a 

conclusive result about the effect of interaction between those stated parameters on 

the correlation between efficiency values.  

 

Figure 44 Efficiency I vs Efficiency II - RI > 0.30 
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As it is mentioned before, it is not possible to have the efficiency II measure as 100% 

since the length of cutting path cannot be zero. During this study, maximum value 

for efficiency type II is observed as 66% for the data set which also provides 

maximum of efficiency type I value as 100%. Note that, the average efficiency II 

value is 34%. Although this study stands for the irregular shaped pieces, we also 

compute efficiency II measures for three different rectangular 2DCSP benchmark 

problems. 

 

 

Figure 45 Data sets for rectangular 2DCSP and their optimal solutions 

 

As it is seen in Figure 45, the edges of rectangular pieces are all touching each other 

in their optimal cutting patterns.  Due to these edge matches, efficiency II values are 

above the average of efficiency II measures that we compute for irregular 2DCSP 

benchmark problems. Thus, it can be stated that there is also a positive relationship 

between efficiency I and efficiency II measures in rectangular 2CSP.  
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

 

In this thesis, we study an irregular shaped two-dimensional cutting stock problem, 

which is widely observed in practical applications. Our goal is to get cutting patterns 

efficient in terms of material usage for the problem. To achieve this goal, we propose 

a mathematical model, a lower bound and a heuristic method inspired by puzzle 

reassembly idea. The motivating point of the idea is that a cutting pattern yields 

100% efficiency only if all the edges of the shapes are in touch with each other such 

that there is no un-utilized space left on the stock sheet.  

 

Before the implementation of the edge matching approach, the related works for the 

problem is reviewed. During this literature search, it is realized that there is no 

comprehensive study to generate the optimal solution for the problem, due to the 

high complexity of the problem. To form a new method for the evaluation of the 

results for irregular shaped 2DCSP, first, a mixed integer non-linear mathematical 

model is formulated for the problem. Then, for larger scale problems where exact 

formulation becomes intractable, a lower bounding scheme is developed to test the 

performance of the heuristic solutions. Finally, we propose a new heuristic procedure 

based on an „edge matching approach‟. To implement the heuristic, an algorithm is 

developed and coded to generate cutting patterns. The algorithm has the following 

properties.  
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 The shape for the stock material is not restricted except for circular shapes. 

Thus, the algorithm can also be used for scrapped sheets and plates. 

 Rotating the pieces is allowed in any angle, and this angle is not determined 

by searching. Instead, rotation angle is directly computed to align the pieces 

together. Thus, initial orientation of a piece does not affect its final position 

of it. Nevertheless, this also implies that the algorithm is not suitable for the 

problems with rotation angle constraint. 

 Pieces are positioned within the stock material one by one and the place of a 

piece does not change once it is positioned.  

 On the generated cutting pattern, the pieces touch each other. Thus, it is 

generally not possible to compact the layout by shifting the pieces. 

 Positioning the pieces with the edge matching approach reveals a new 

performance measure for the problem. Since the length of the cutting paths is 

also optimized when the pieces are aligned together, generated cutting 

patterns are also expected to be efficient in terms of machining times.  

 

In order to test the performance of the algorithm, some benchmark problems are 

used. Three different methods; „largest piece first‟ (LAF), „longest perimeter first‟ 

(LPF), and „merging the pieces‟ are compared for benchmark problems. LPF 

performed best both in terms of stock material utilization and cutting path 

efficiencies.  

 

There are some further improvements that may be implied to the algorithm in order 

to obtain higher matches. First of all, two pieces are connected to each other by their 

vertices. It may also be allowed to connect the vertex of a piece to the midpoint on 

the edge of another piece. This will increase the range of search space, providing a 

chance to obtain better results.  



75 

 

As it is described before, length increments are limited by the algorithm. However, 

any analysis on alternative increment limitations was not performed during the study. 

It should be wise to consider this issue, and propose a systematic method to 

determine length increment limits, to have a better performance. Addition to that, 

when the same edge fit length is maintained by more than one position, the one with 

minimum x coordinate is selected by the algorithm. The effect of this tie-breaker rule 

may also be analyzed. Also a tie-breaker rule can be studied for the placement order 

of the pieces which have equal areas or equal lengths of perimeter. In our study, the 

last introduced piece is used first in such equality. However it is possible to use the 

largest area first rule for perimeter equalities or longest perimeter first rule for the 

area equalities.  

 

Although some rules are determined for the smoothing process, any analysis on area 

increment tolerances was not performed during the study and it is taken as 3% of 

actual area. However, it is observed that allowing higher amount of area increments 

provides better results for some cases. Addition to that, decreasing the complexity is 

one of the main reasons to smooth the pieces, but the effect on computational time is 

not tested. Thus, smoothing operation on the pieces is another issue to be studied 

further. 

 

For the implementation of the algorithm in the industry, some further issues may be 

required to be considered such that the offset distances between pieces to have valid 

cutting processes. In this study, the pieces are aligned together; assuming that 

diameter of cutting tool is negligible. The offset distances must be added to the area 

of the pieces for real life implementations.  
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There are several future research directions that can be undertaken. The edge 

matching approach provides a cutting pattern with a single construction phase, but no 

improvement is performed on the pattern. The main reason for that is closely 

touching pieces on the layout. As it is mentioned before, it is generally not possible 

to find space to shift the pieces toward the axis. Thus, it is not much possible to 

compact and improve the layout further. However, our mathematical model 

formulation can still be applied to generated patterns, in order to compact them. As a 

future study, it is a very interesting topic to study on the improvement phase by using 

the mathematical model proposed in this work.  

 

As another further extension, the pieces with curved edges may also be included in 

the problem. In current conditions, the inputs for the geometry of a shape are just the 

Cartesian coordinates of the vertices. Curved edges may be considered as arcs, using 

their origin and radius besides the end point coordinates. Line-curve and curve-curve 

intersections must be considered to prevent overlaps for the case. 
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APPENDICES 

APPENDIX A - PIECES USED IN MATHEMATICAL MODEL 

 

Cartesian Coordinates for the Pieces 

 

    Piece 

No 

       1 x -30 70 -10 

   

 

y -70 40 50 

   2 x 35 30 -60 

   

 

y -35 25 -25 

   3 x 9 80 55 

   

 

y -65 5 10 

   4 x -80 40 -110 -70 

  

 

y -82.5 7.5 35.5 -25 

  5 x 0 25 22 -35 

  

 

y 0 30 60 40 

  6 x -30 7 55 55 3 -30 

 

y -30 -10 -30 35 20 -50 

7 x -25 25 50 25 -25 -50 

 

y -43.3013 -43.3013 0 43.3013 43.3013 0 

        

        

 

N shape data set includes the first N pieces given above. 
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APPENDIX B - Results for 3 - 7 shapes  

 

Microsoft Excel 12.0 Answer Report 
 Worksheet: [3 shapes test run.xlsx]set1 
 Target Cell (Min) 

   

 
Cell Name Original Value Final Value 

 
$M$15 obj function: 130 117.3858956 

Adjustable Cells 
   

 
Cell Name Original Value Final Value 

 
$N$11 cx -5 0.34699432 

 
$O$11 cy 0 -0.472700317 

 
$P$11 alfa 0 0.00017407 

 
$N$12 cx 60 54.65300567 

 
$O$12 cy -34 -33.65285914 

 
$P$12 alfa 0 -3.062552585 

 
$N$13 cx 0 0 

 
$O$13 cy 15 10.56979413 

 
$P$13 alfa -20 -20 

     Microsoft Excel 12.0 Answer Report 
 Worksheet: [4shapes test run set1.xlsx]set1 
 Target Cell 

(Min) 
   

 
Cell Name Original Value Final Value 

 
$M$19 obj function: 320 280.9827221 

Adjustable 
Cells 

   

 
Cell Name Original Value Final Value 

 
$T$13 cx 0 0.000624251 

 
$U$13 cy 0 0 

 
$V$13 alfa 0   

 
$T$14 cx 90 80 

 
$U$14 cy 0 0 

 
$V$14 alfa 0 0 

 
$T$15 cx 60 60 

 
$U$15 cy -10 -10 

 
$V$15 alfa -45 -45 

 
$T$16 cx 250 210.9842888 

 
$U$16 cy 5 5 

 
$V$16 alfa 0 8.17145E-05 
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Microsoft Excel 12.0 Answer Report 
 Worksheet: [5shapes test run set1.xlsx]set1 
 Target 

Cell(Min) 
   

 
Cell Name Original Value Final Value 

 
$M$19 obj function: 325 284.3325701 

Adjustable Cells 
   

 
Cell Name Original Value Final Value 

 
$T$13 cx 0 0 

 
$U$13 cy 0 0 

 
$V$13 alfa 0 0 

 
$T$14 cx 80 78.35067555 

 
$U$14 cy 0 0 

 
$V$14 alfa 0 0 

 
$T$15 cx 60 60 

 
$U$15 cy -10 -10 

 
$V$15 alfa -45 -45 

 
$T$16 cx 250 219.7335093 

 
$U$16 cy 5 5 

 
$V$16 alfa 0 8.17142E-05 

 
$T$17 cx 0 0.000624251 

 
$U$17 cy 20 20 

 
$V$17 alfa 0 -0.000435811 

     Microsoft Excel 12.0 Answer Report 
 Worksheet: [6shapes test run set1.xlsx]set1 
 Target 

Cell(Min) 
   

 
Cell Name Original Value Final Value 

 
$M$22 obj function: 420 362.2398246 

Adjustable Cells 
   

 
Cell Name Original Value Final Value 

 
$T$14 cx 0 5 

 
$U$14 cy 0 0 

 
$V$14 alfa 0 0 

 
$T$15 cx 80 80 

 
$U$15 cy 0 0 

 
$V$15 alfa 0 0 

 
$T$16 cx 60 60 

 
$U$16 cy -10 -10 

 
$V$16 alfa -45 -45 

 
$T$17 cx 250 220 

 
$U$17 cy 5 5 

 
$V$17 alfa 0 0 

 
$T$18 cx 0 0.000267606 

 
$U$18 cy 20 20 

 
$V$18 alfa 0 -0.000186824 

 
$T$19 cx 320 262.2301249 

 
$U$19 cy 0 -50 
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$V$19 alfa 0 -0.000160007 

 
Microsoft Excel 12.0 Answer Report 

 Worksheet: [7shapes test run set1.xlsx]set1 
 

     Target Cell 
(Min) 

   

 
Cell Name Original Value Final Value 

 
$M$23 obj function: 420 368.8450236 

     

     Adjustable 
Cells 

   

 
Cell Name Original Value Final Value 

 
$T$15 cx 0 0 

 
$U$15 cy 0 0 

 
$V$15 alfa 0 0 

 
$T$16 cx 80 80 

 
$U$16 cy 0 0 

 
$V$16 alfa 0 0 

 
$T$17 cx 60 60 

 
$U$17 cy -10 -10 

 
$V$17 alfa -45 -45 

 
$T$18 cx 250 217.8787111 

 
$U$18 cy 0 0 

 
$V$18 alfa 0 0 

 
$T$19 cx 0 0.000342118 

 
$U$19 cy 0 0 

 
$V$19 alfa 0 -0.000238843 

 
$T$20 cx 320 268.8454935 

 
$U$20 cy -50 -50 

 
$V$20 alfa 0 -6.37201E-05 

 
$T$21 cx 320 257.592069 

 
$U$21 cy 50 50 

 
$V$21 alfa 0 0 
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APPENDIX C - FLOW CHARTS 

START

Initialize parts and

Compute: Areas,  interior 

angles, edge lengths for all 

pieces & boundaries,

smooth pieces

Total fit = 0

Get Largest Piece 

P

For all Pieces

For all piece vertices j

For all boundary 

vertices i

Area B > Area P

T

F

Angle j > Angle i

Move j to i

Compute angle 1

Rotate as angle 1

Round up

Check line 

intersections

Overlap type I

Check point in 

polygon

Overlap type II

Compute angle 2

Rotate as angle 2

Round up

Check line 

intersections

Overlap type I

Check point in 

polygon

Overlap type II

T

T

Piece vertex analyze

Boundary vertex analyze

Boundary case analyze

Piece Case analyze

Compute length fit

Fit < max fit

Update max fit

Store:

- piece vertex to move

-bondary vertex to move

-rotation angle

T

T

Shape vertex analyze

Boundary vertex analyze

Boundary case analyze

Shape Case analyze

Compute length fit

Fit < max fit

T

Update max fit

Store:

- piece vertex to move

-bondary vertex to move

-rotation angle

Move to stored 

position

Rotate as stored 

angle

Update Boundary

Get Smallest 

Boundary B

DONE

Compute Total Fit

T

 

Chart 1 Flow Chart of Main Algorithm 
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Explanations: 

Item.b;//vertex id from boundary 

Item.s;//vertex id from piece 

Item.type;//1 if there is a link to other list 

 

START

boundary list

For all boundary edges [i,i+1)

Item.b=I

Flag=0

For all shape vertices j

Item.s=j

Item.type=1

Flag=1

Vertex[j].on==1

Vertex[j].id==i

Vertex[j].type==1

or

Vertexb[ı].type ==1

InsertEnd(head,item)

T

T

F

Item.type=1

InsertEnd(head,item)

Vertex[j].id==iF

InsertEnd(head,item)

T

Item.b=NULL

Item.s=j

Item.type=1

insertEnd(head,item)

Vertex[j].type==1

InsertEnd(head,item)

T

F

STOP

Item.b=0

Item.s=0

Item.type=0

InsertEnd(head,item)

F

Item.s=NULL

Item.type=NULL

flag==0

T

InsertEnd(head,item)

F

Item.type=1

T

flag=1

Item.s==0

T

T

Vertex[j].type==1

or

Vertexb[ı].type ==1

F

F

 

Chart 2 Flow Chart for Creating Generator list 
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Vertex.on; //1 if piece vertex is positioned on a boundary vertex 

Vertex.line; 1 if piece vertex is positioned on a boundary edge 

Vertex.id; //id of boundary edge that vertex of piece belongs to 

 

START

For all Boundary 

edge [i,i+1)

Boundary edge [i,i+1)

Shape vertex j

END

For all Shape vertex j

q= (i+1) mod(boundary.nvertex)

L = length(i,j)

L<0.001

Vertex(j).on=1

Vertex(j).line=1

Vertex(j).id=i

T

L+length(j,q)=length(i,q)

F

Vertex(j).line=1

Vertex(j).id=i
T

F

 

Chart 3 Flow Chart of Vertex Analysis for a Piece 
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Vertexb.on; //1 if boundary vertex is positioned on a piece vertex 

Vertexb.line; //1 if boundary vertex is positioned on a piece edge 

Vertexb.id; //id of piece edge that vertex of boundary belongs to 

 

START

For all Shape 

edge [j,i+j)

Shape  edge j,j+1)

boundary vertex i

END

For all boundary vertex i 

m=j+1 mod(shape.nvertex)

L = length(i,j)

L<0.001

Vertexb(i).on=1

Vertexb(i).line=1

Vertexb(i).id=j

T

L+length(i,m)=length(j,m)

F

Vertexb(i).line=1

Vertexb(i).id=j
T

F

 

Chart 4 Flow Chart of Vertex analysis for the Boundary 
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START

Vertex(j).id = i

Vertex(j).on ≠1

For all Boundary 

edge [i,i+1)

Boundary edge [i,i+1)

Shape vertex j

For all Shape 

vertex j

F

T

Vertex(j+1).id ≠i

T

Case 2

F Vertexb(i+1).id ≠j

T

Case 3

F

Case 6

T

Vertex(j+1).id ≠i Case 9T

Vertex(j+1).on ≠1 Case 8T

Case 4

END

Vertex(j+1).id =i+1

Vertex(j+1).on =1

F

Case 4T

Vertex(j-1).id 

≠i-1
T

F

Vertex[j].type=1

Vertex[j].type=1

 

Chart 5 Flow Chart of Case analysis for Boundary
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START

Vertexb(i).id ≠ j

Vertexb(i+1).id=j

For all shape edges 

[j,j+1)

Shape edge [j,j+1)

boundary vertex i

For all 

boundary 

vertex i
T

Vertexb(i+1).on=1

T

Case 1

T

Case 5

Vertexb(i-1).id ≠j Case 7T

END

Vertexb(i).on !=1

T

F

Vertexb[i].type=1

 

Chart 6 Flow Chart of Case analysis for a Piece 
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APPENDIX D – CUTTING PATTERNS FOR MERGED PIECES 

 

 

 

Albano, Length : 11512.98 Dagli, Length: 63.69 

  

Poly 2a, Length: 36.7 Marques, Length: 83.81 

 
 

Blaz, Length: 32.97 Shapes 0-1, Length: 57.97 

 

 

 

 

 

 

 

 

 

 

 

 



93 

 

 

 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

Surname, Name: Akbulut, Derya 

Nationality: Turkish (TC) 

Date and Place of Birth: 10.05.1986 / Vezirköprü 

Martial Status: Single 

Phone: (0312) 2812871 

Email: akbulut@cankaya.edu.tr 

 

EDUCATION 

Degree Institution Year of Graduation 

MS Çankaya University/ Industrial Engineering 2012 

BS Çankaya University/ Industrial Engineering 2009 

High School Samsun Anadolu High School 2004 

 

WORK EXPERIENCE 

Year Place Enrollment 

2009-present Çankaya University/ Dept. of Industrial Engineering Expert 

2008 July TAI Intern Engineering Student 

2007 July MKE Gazi Fişek Fabrikası Intern Engineering Student 

 

FOREIGN LANGUAGES: 

Advanced English 

 

mailto:akbulut@cankaya.edu.tr

