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ABSTRACT

MODELING CONTROL AND SIMULATION OF A DRINKING WATER
TREATMENT PLANT

SABER, Faisel
M.Sc., Department of Electronics and Communication Engineering

Supervisor: Associate Prof. Dr. Klaus Schmidt

September 2012, 78 Pages

Clean water is an important prerequisite for human health. In this thesis, the water
treatment for drinking water production is investigated with a focus on the compact
unit as a specific water treatment plant. First, control problems related to the sub-
processes of clarification and sterilization are identified and discussed. Then, a model
of the sedimentation process is obtained based on real measurement data. In this
thesis, a neural network model is chosen, since the validation of analytical models
did not lead to satisfactory results. Together with the model, a control method for the
sedimentation process is proposed. The control architecture is feedforward control in
combination with feedback control. The feedforward controller is realized as a neural
network, that is obtained from existing measurement data. The feedback controller is

realized as a fuzzy logic controller based on expert knowledge of the sedimentation



process. Simulations of the control system with real input data show that the control
architecture is suitable for the control of the sedimentation process. In addition, our
discussion points out that the only modifications in order to implement the proposed
control method are a water quality sensor and a variable speed pump. With these
modifications, an un-experienced water treatment plant operator can be replaced by

an automatic control system.

Keywords: water treatment plant, clarification and sterilization process,
sedimentation process, neural network, data classification, alum prediction, fuzzy

control.
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MODELLEME KONTROL VE iICME SUYU ARITMA TESISI
SIMULASYONU

SABER, Faisel
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dah
Tez Yoneticisi: Dog. Prof. Dr. Klaus SCHMIDT

Eylul 2012, 78 Sayfa

Temiz su insan saglig i¢in 6nemli bir ihtiyactir. Bu tezde, belirli bir su isleme tesisi
gibi yogunlastirma {initesi ile icme suyu iiretimi icin su islemi ele almmistir. Ik
olarak temizleme ve steril etme islemlerinin alt basamaklarindaki kontrol problemleri
tanimlanmis ve ele alinmustir. Daha sonra gergek Olgiim verilerine dayanilarak
cokelti isleminin modeli elde edilmistir. Bu ¢alismada analitik modellerin gegerliligi
istenen sonuglara uygun olmadigi i¢in yapay sinir ag1 modeli secilmistir. Bu modelle
birlikte ¢okelti isleminin kontrol modeli 6ne siiriilmiistiir. Kontroliin yapis1 ileri
beslemeli kontrolile geri beslemeli kontroliin birlesiminden olusmustur. Ileri
beslemeli kontrolcli var olan 6l¢iim verilerinden saglanan yapay sinir agi ile elde
edilir. Geri beslemeli kontrolcii ise ¢ozelti isleminin temel bilgilerine dayanan
bulanik mantik kontrolciisii ile olusturulur. Gergek giris verileriyle olusturulan
kontrol sisteminin simiilasyonlar1 bu kontrol yapisinin ¢dzelti isleminin kontrolii i¢in

uygun oldugunu gostermektedir. Ek olarak, oOne siiriilen kontrol yo&ntemini

vii



uygulamak icin sadece su kalitesini 6l¢en algilayic1 ve hizi ayarlanabilir pompalar
modifiye edilmelidir. Bu modifikasyonlarla birlikte kullaniimamais su isleme tesisinin

operatorii otomatik kontrol sistemine doniistiiriilebilir.

Anahtar Kelimeler: su isleme tesisi, temizleme ve sterile etme islemleri, ¢okelti

islemi, yapay sinir aglari, veri siniflandirmalari, alum tahmini, bulanik kontrol

viii



TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM. ..ottt 111
ACKNOWLEDGEMENTS. ... \Y%

O e, vii

TABLE OF CONTENTS ..ottt iX

LIST OF FIGURES.......cctiiiiiieece sttt Xi

LIST OF TABLE......o oottt bbb Xiv
CHAPTERS

INTRODUCTION. ..ottt sa e et et resnenneeneanes 1

WATER TREATMENT PROGCESS........ccot ot 3

1.1L.WATER TREATMENT TECHNIQUES........c.ccceoiiiir e 3

1.1.1. Suspended particles in Water............c.ooiviiniiiii e 3

1.1.2. Methods for water treatment............ccooveveeiieerieeie e 4

1.1.2.2.C0aQUIALION. .....eeiiiiiiiice s 5

1.1.2. 2. FIOCCUIALION. ...t 6

1.1.2.3.S0IMENTION. ....c.eiiiiiiieiieiieieiee e 6

11204085 TEST ..t 7

1125 FIIratioN......ooeiiic e 8

1.2.COMPACT UNIT FOR DRINKING WATER TREATMENT........c.cccounue. 9

1.2.1. BaSIC OVEIVIEBW. .. .eciiiiieiiieiieeieciiesieesie e steeae e staesae e e snaesaesneesseenseenes 9

1.2.2. LOW HFE PUMP..ciiiiiiiiie e 10

1.2.3. Components related to clarification..............ccocvvvrieneniienininen 10

1.2.4. Storage tank and high Hft puMpP.......ccooooiiiii 12

12,5, FHEI .o 12

1.2.6. Compact unit feature and usage in Irag.........ccccevvvevieeveeiieciee e 13

1.3.CONTROL PROBLEM.......c.cotitiiiiiieiee e 14



1.3.1. Control problems related to clarification............ccccccoeerveiniiiinnnen. 16

1.3.2. Control problems regarding sterilization.............cccccoocevivereiiennennns 17
MODEL FOR SEDIMENTATION. .....coiiiiiitit e 19
2.1 PREVIOUS WORK ....coiiitiiiitiiititiieieie ettt 19
2.1.1. Variables of the Model .........ccoceeiiiiniii e 19

2.1.2. Problems of previous WOrK ............cccoeiiiiiiniiiieseseseseseeeeeees 22
2.2.NEURAL NETWORK OF THE SEDIMENTATION PROCESS................ 24
2.2.1. Explanation of neural NEtWOrK............ccooeiiiiniiiiiiicie s 25

2.2.2. Training of neural NEIWOIKS...........cccoiiiiiiiieieee e, 27

2.2.3. Data for our neural NEIWOrK...........cccevereriienininisieee e 28

2.2.4. Training and results for our plant neural network..............ccccceevvennene 32
CONTROL METHOD FOR SEDIMENTATION.....ccceoiiiiiiireeeiee e 41
3.1. CONTROL REQUIREMENTS......ccoiitiieieierie et se e 41
3.1.1. Hardware modifiCatioNS..........cccciuerirreiieiieie e 41

3.1.2. DeSired OPratioN.........ccveiveieeiieie e st 42

3.2. CONTROL METHOD.......cciiiiiiiiiieieniese et 43
3.2.1. PrOPEITIES...c.eiieieiteeie ettt ettt ettt e e nneenas 43

3.2.2. Proposed control architeCting...........ccccveveiieiecie s 43

3.2.3. AIUM PrediCtioN.......covcviiiccieee e 44

3.2.4. Fuzzy control with TU measuremrmt...........ccoooevvrirnenenenene s 45

3.2.5. Fuzzy control with TU and PH measurement..........cccccevveeerverinennns 49

3.2.6. RESUILS. ..ot 52
CONCLUSION. ...ttt ettt te e e e e aesrestesresneenaeneas 60
REFERENCES...... .ottt bbb 61
APPENDIX Aottt bbbttt bt reene e 63



LIST OF FIGURES

Figure 1.1  Mixing and flocculation basin that used in compact unit

Figure 1.2  Inside sedimentation basin for compact unit

Figure 1.3 Jar test device

Figure 1.4  Compacts unit with capacity 200 m3/ h used in Iragq-Kirkuk
Figure 1.5 Schematic of the compact unit

Figure 1.6  Low lift pump position for compact unit

Figure 1.7  Clarification basin

Figure 1.8  Chlorine station and storage tank with high lift pump then filter
Figure 1.9  Sequential steps of the water treatment process

Figure 1.10 The sedimentation process

Figure 1.11 The filtration process

Figure 2.1  Sequence of sedimentation process

Figure 2.2 Flocculation process model

Figure 2.3 Flocculation basin model

Figure 2.4  Simulink of analytical model

Figure 2.5 Parameters values for compact unit

Figure 2.6  Output of mixing basin

Figure 2.7 Output of flocculation basin

Figure 2.8 Output of sedimentation basin

Figure 2.9  Single scalar input and scalar output

Figure 2.10 Neuron model with multiple inputs

Xi

13

16

17

20

21

22

22

23

23

24

24

25

26



Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16

Figure 2.17

Figure 2.18
Figure 2.19

Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9

Single layer of a neural network

Input vector with multi-layer neurons

Input vector with multi-layer neurons abbreviated notation
Explanation daily tests

Basin using time and testing time

Plant block diagram

Neural network toolbox to create Simulink for plant

Check our data we choose to create plant Simulink

In command window type (gensim) to generate plant Simulink
Plant Simulink

TU prediction compared with TU target

PH prediction compared with PH target

TSS prediction compared with TSS target

TDS prediction compared with TDS target

EC prediction compared with EC target

Control process schematic

Alum control schematic

Alum prediction plant block diagram

Alum prediction comparison with alum found by control
Fuzzy logic control panel

Membership function for fuzzy control one input TU panel
Membership function output panel

If-then rule panel

26

27

27

30

31

32

35

36
36

37

37

38

38

39

39

42

44

44

45

46

47

48

49

Membership function for fuzzy control with two inputs TU panel 50

Xii



Figure 3.10
Figure 3.11

Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22

Figure 3.23

Membership function for fuzzy control with two inputs PH panel
Output membership function for fuzzy control with two inputs
If-then rule for fuzzy control with two inputs

Simulation for fuzzy control with one input

Simulation for fuzzy control with two inputs

TU prediction comparison with TU target

PH prediction comparison with PH target

TSS prediction comparison with TSS target

TU comparison for fuzzy control with one input

TU comparison for fuzzy control with one input and two inputs
PH comparison for fuzzy control with one input

PH comparison for fuzzy control with one and two inputs
Alum comparison for fuzzy control with one input

Alum comparison for fuzzy control with one and two inputs

Xiii

o1

o1

52

52

53

54

54

55

56

57

57

58

59



Table 1.1
Table 1.2

Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 2.5

Table 2.6

Table 2.7

Table 3.1

LIST OF TABLE

Details of all particles

Worksheet for testing water properties (chemical, physical and
bacteriological)

Real measurements for input data
Real measurements for target data
Min and max real data for input data

Min and max real data for target data

Input normalized data
Target normalized data
Neural network function

Efficient sedimentation process

Xiv

15

32
33
33
34

34

34

35

42



XV



INTRODUCTION

The production of qualitatively good drinking water is a task of utmost importance. It
is usually performed in water treatment plants, whose operation is divided into two

main parts: clarification and sterilization [3].

The clarification process can be defined as the removal of various kinds of suspended
particles from raw water [2]. To complete the clarification process, we need to make
sedimentation process for particles suspended in the raw water in a special basin.
Very small particles that remain after sedimentation are then removed by a filtration
process [2]. The speed of the sedimentation process can be controlled by the addition
of a coagulant material to the raw water. After mixing with the water, this coagulant
material reacts with the suspended particles to form larger particles, which are
sedimented more easily. In current practice, the concentration of the coagulant
material is determined experimentally by so-called jar tests. Such tests have to be
performed on site by a human operator and the application of the result of the jar test

is usually applied to the water treatment plant with considerable delay [5].

The aim of this thesis is the automatic control of the coagulant concentration without
any manual intervention. This task is particularly useful for water treatment plants
such as compact units. These units are used in remote areas without qualified
operators. In this case, automation needs to replace lack of expertise. In the presented
research, first a neural network model of the sedimentation process is obtained based
on real measurement data [12]. It is shown that the model is suitable for a basic
controller design. Then, a new control method for water treatment plants is proposed.
The method combines feedforward control and feedback control. In the feedforward
path, a neural network is used, that predicts the coagulant concentration from the
previous measurement data. If the predicted concentration is inadequate, a fuzzy

logic controller corrects the coagulant concentration. The fuzzy logic controller is



designed based on expert knowledge. Simulation results show that the control
method is suitable for the control of the sedimentation process. The only basic
requirement for its application is the presence of reliable measurement data for the

neural network training .

The control of the water treatment process is discussed in the previous literature. [7]
provides an analytical model of the clarification process. However, from the
validation of this model in this thesis, it seems that the model is not reliable. A
similar control scheme as in this thesis is used in [13]. This work also employs fuzzy
control. However, no neural network training step is used for the prediction of the
coagulant concentration. The work in [14] also uses neural networks for a control
problem related to water treatment. However, they focus on tuning the parameters of
a PID feedback controller and do not use feedforward control at all. [10] gives some
guidelines for building neural network models of drinking water plants. The method
in [11] also uses the combination of feedforward and feedback control based on a

simple linear time-invariant model of the sedimentation process.

The thesis is organized as follows. Chapter | gives a description of the water
treatment process with a focus on the compact unit. In addition, control problems in
the water treatment process are identified and discussed. A neural network model for
the sedimentation process is developed in Chapter Il. The control method proposed
in this thesis is presented in Chapter 11l including simulation experiments. Finally

gives conclusions.



CHAPTER |

WATER TREATMENT PROCESS

This chapter gives an overview of important notions and concepts in the drinking
water production process. First, a general description is given in Section 1.1. Then,
the application of these general ideas for the water treatment in a particular compact

unit is described in Section 1.2.

1.1. WATER TREATMENT TECHNIQUES

1.1.1. Suspended particles in water

The surface water such as rivers and streams, which are used as a source feeder for
drinking water treatment plants usually contains solid objects, which can be divided

into three groups. Suspended particles, colloids and dissolved solids [1].

Suspending particles consist of sand, clay and plants. They are characterized by
particle sizes starting from 10 micro meters. That is, suspended particles are large in
size compared to other types of objects in the water. As a consequence, such particles

can be removed by traditional methods of sedimentation and filtration [1].

Colloids are characterized by very small sizes ranging from 10 nm to 10 micro meter.
There are basically two types of colloids. Hydrophilic colloids form a solution with
water and cannot be easily separated. An example for a hydrophilic colloid is soap.
Hydrophobic colloids do not form a solution with water and can be separated from
water more easily. Examples for such particles are small units of clay or oxides [1].



Dissolved solids come in the form of single atoms or ions and are characterized by

their very small size, ranging between 0.1 nm and 10 nm. Special water treatment

methods are needed to remove such particles [1].

The table below (table 1.1) shows details for different types of particles. The

information includes the time needed for settling particle or solid one meter.

Table 1.1 Details of all particles. [2]

Particle Type Total surface Time required Total number |Mass (mg) per
to settle one
BRasieT of particles area meter of particles particle
10 mm Gravel 3.1419 cm? 1s 1 1386.8
1 mm Sand 31.4193 cm? 10s 1000 1.3868
100 pm Fine Sand 314.1929 cm? 2 min 1E +6 1.3868E -3
10 um Silt ,Clay 0.3140 m? 2 hours 1E +9 1.3868E -6
1 pum Bacteria , Alga 3.1340 m? 8 days 1E +12 1.3868E -9
100 nm | Viruses, colloids 31.7728 m? 2 years 1E +15 1.3868E -12
10 nm Viruses , colloids 2832.7995 m? 20 years 1E +18 1.3868E -15
1nm Viruses , colloids | 288327.995 m? 200 years 1E +21 1.3868E -18

1.1.2. Methods for water treatment

The treatment process of drinking water is characterized by several treatment steps,

that are applied to raw water from a water source. These steps include the addition of

a coagulants dosage in order to remove suspended particles, the addition of chlorine

4



in order to disinfect the water and the filtration in order to remove very small

particles. The main characteristics of these processes are now described.
1.1.2.1. Coagulation

The process of coagulation is to add a chemical to the raw water to reduce the force
that holds the particles in a stable state. The coagulant material has positive charge,
which is opposite to the charge of the particles that are dissolved in water. The effect
of the coagulant addition to the raw water is to cause neutralization of the particle
charge. That is, the added particles and the dissolved particles form larger particles
that can be sedimented and filtrated more easily [3].

The addition of coagulant dosage to the raw water is usually performed in a mixing
basin in order to distribute the coagulant dosage equally. This ensures uniform
reaction of the coagulant dosage with the particles inside the raw water. The mixing
process in the mixing basin takes between 1 and 3 minutes [4]. It is performed by a
mechanical mixer, that spins at high speeds such that homogeneity between the

coagulant and the raw water is achieved. figure 1.1 shows the basic outline.

mixer
over_J
flow
input —
mixing flocculation
basin basin

Figure 1.1 Mixing and flocculation basin that used in compact unit

It is important to note that the amount of coagulant to be added to the raw water
depends on the properties of the raw water. Here, parameters such as turbidity and
PH are important. The usual procedure to determine the appropriate coagulant
dosage is to take a probe of the raw water and perform a so-called jar test as

described below.



1.1.2.2. Flocculation

Flocculation describes the process of forming larger compounds from particles in the
raw water and the coagulants added to the raw water. The process is usually
accompanied by either slow mixing or a zigzag motion of the water as shown in the
flocculation basin in figure 1.1. The aim is to move the particles gently such that
particles collide with each other to form a big floc that can even be viewed with the
naked eye (0.1 to 0.3 mm) [4,5].

1.1.2.3. Sedimentation

Sedimentation is the process of separation of solids from the raw water by gravity.
This process is one of the most important steps in the treatment of raw water [4].

There are different factors affecting the process of sedimentation [5]:

o the size, shape, density and electrostatic charges of the particles

o temperature and wind if sedimentation occurs outdoors

. the nature of the basin where sedimentation is performed and the flow rate in
the basin

Figure 1.2 Inside sedimentation basin for compact unit



In this context, the properties of the suspended can be controlled by adjusting the
amount of coagulants added to the raw water. Regarding the flow rate, it is generally
desired to have a slow flow rate in order to facilitate the sedimentation. However, the
flow rate is usually determined by the user demand with small subject to adjustment.
In principle, the main aim of sedimentation is to reduce the amount of particles as
much as possible in order to reduce the pressure on the filters, that are passed by the

water after the sedimentation process.
1.1.2.4. Jar test

The idea of the jar test is to experimentally determine the most suitable coagulant
dosage by trying different dosages for a sample of the actual raw water. Components

of the testing device and extra equipment and processed needed are as follows
e 4 or 6 numbered glass beakers with 1 liter capacity.
o all beakers have a mixer.
e each mixer can rotate at different speeds by electric motor.

This operation is used as a simulation of the sedimentation process in the actual
water treatment plant. The different mixing speeds represent water in the mixing
basin (high speed) and in the flocculation basin (slow speed). Then, the jar test is

performed in the following steps

e A standard solution is prepared first by using distilled water with a volume

of 1 liter and added to 1 g of material coagulants.
e Take the right amount of raw water and fill the beakers to their final limit.

e Add different amounts of standard solution to each beaker. Record the
number of each beaker and the respective amount of standard solution are

documented.

e Operation and monitoring of the device. The process starts with high-speed
mixing, continues with slow mixing to form a floc. Finally, the device stops
in order to simulate the sedimentation. Generally, the device is programmed

to do all these steps automatically.
7



e After the test, each beaker is evaluated and the “best dosage” is determined
from the beaker that provides the best water quality. This dosage is then

applied in the real water treatment plant.

e |n addition, the test results are documented for future use, since tests for

similar raw water properties are expected to produce similar results.

Figure 1.3 shows a typical device that is used for the jar test.

Figure 1.3 Jar test device. [2]

1.1.2.5. Filtration

The purpose of filtering is to remove suspended solids in water which have not been
sedimented by previous operations such as the clarification process. These are
usually small or microscopic particles. In the filtration process, the water is passed
through permeable filter layers. An example of the materials used in the layers of the
filter is sand or anthracite [5]. Upon passage of water through layers of filters, the
large enough particles remain on the outer surface of the filter bed, because their size

is greater than the spaces between the filters bed grains.

The filters are divided into several classes. In this thesis, we consider the type of
rapid sand filters which are realized as gravity filters and pressure filters. As an effect
of the filtration process, the filters regularly fill with particles that are accumulated
on the top surface of the filter. In that case, the filter is cleaned by reversing the

direction of flow of water. This process is called backwash [5].



1.2. COMPACT UNIT FOR DRINKING WATER TREATMENT

The main subject of this thesis is the study of control problems related to the
treatment of drinking water. We focus on the compact unit as a specific type of water
treatment plant, since it is a very important source of drinking water supply in Irag.

In this chapter, we describe the main components of the compact unit.

1.2.1. Basic overview

The compact unit for drinking water treatment is designed for drinking water
production with small capacity. Its most important role is to supply drinking water
especially in rural areas for small populations. Although the compact unit is small in
size, it performs the classical tasks of water treatment. In particular, it must transform
raw water, that is taken from some water source (for example a river) into drinking
water according to the legal regulations. The figure below shows an overview of a

compact unit.

Figure 1.4 Compacts unit with capacity 200 m*/ h used in Irag-Kirkuk

In addition, figure 1.5 shows a schematic of the compact unit with all the relevant
components. The lines between the boxes indicate pipes for the transport of water.

We next explain the compact unit components in detail.

9
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Figure 1.5 Schematic of the compact unit

1.2.2.Low lift pump

The low lift pump is the initial entry of water to the compact unit. The duty of this

unit is to withdraw raw water from a source (river or canal or well) and move water

to the first component of the compact unit, the mixing basin. In principle, the low lift

pump is located outside the compact unit shown in figure 1.6.

river

inlet|.

low
lift
pump

to

basin

— - clarification

Figure 1.6 Low lift pump position for compact unit

1.2.3.Components related to clarification

Next, the components of the first part of the water treatment process, denoted as

clarification, are described. There are three main components: the mixing basin,

flocculation basin and sedimentation basin. figure 1.7 shows the basic structure.

10
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Figure 1.7 Clarification basin

In the mixing basin, a chemical substance called alum sulphate is added to the water.
The main goal is to speed up the sedimentation of particles in the water as will be
explained in more detail later. In order to dissolve the alum sulphate homogenously
in the water, there is a high-speed mixer in the mixing basin. From the mixing basin,

water is moved to the flocculation basin.

The flocculation process occurs in a separate basin. A slow mixer is used to support
the collision process between turbidity molecules (particles suspended in the raw
water) and the alum sulphate. As a result, flocs (larger particles) are generated that
can be sedimented easier in the sedimentation process. In some units, no mixer is
used but the water follows a zigzag path in order to achieve flocculation. The
flocculation process usually takes up to 30 minutes. From the flocculation basin,

water is pushed to the sedimentation basin.

The water stays in the sedimentation basin for a longer period compared to the
previous phases. The main objective is to remove (sediment) the bulk of colloidal
particles from the previous treatment stages as a first part of the cleaning process. At
the bottom of the sedimentation basin, clay scrapers or vacuum pumps are used to

move away the sedimented material.

In summary, the clarification process relies on the addition of a chemical substance

that is mixed with the water. As a result, large particles are formed and sedimented.

11



That is, the clarification process transforms turbid raw water into water with a
significantly reduced turbidity.

1.2.4.Storage tank and high lift pump

After clarification, the water enters a storage tank, where chlorine is added to the
clarified water for disinfection. The main objective of this step is the sterilization of
the water for the consumer and the protection of the following components in the
treatment process. For example it is important to avoid growth of algae in the filters
of the compact unit. The water is then pumped from the storage tank to the connected

filters using a so-called high-lift pump.
1.2.5. Filter

The clarification as described before removes large colloidal particles from the raw
water. However, small particles are still suspended in the water coming from the
storage tank. It is the task of the filter to deposit small colloidal that remain in the
water after sedimentation. After filtration, the water is supposed to be suitable for

consumption and is fed to the water network.

Ehlon'ne storage . high .
tation tank e “ﬁg > + b + v
pump
| | filter filter
-
coming .
from filter filter
clarification
to
basin +_“

network

outlet

Figure 1.8 Chlorine station and storage tank with high lift pump then filter

The overall water treatment process is summarized in figure 1.9. Raw water from a

source enters the water treatment plant from a low lift pump, and is moved to a

mixing basin, where the coagulant dosage is added to the water. Flocculation and

sedimentation is performed in the following basins in order to reduce the turbidity of

the water. After this clarification process, water is collected in a storage tank, where
12



chlorine is added for the purpose of disinfection. Afterwards, the water enters a
pressure filter from the high-lift pump such that also small particles are removed.

Finally, water is distributed to the consumer network.

. Low Lift i i Flocculation
River —3| Mixing Basin L5
> Pump Basin
High Lift Collection Sedimentation
Pump . Basin ; Basin
3| Pressure Filter To the network

Figure 1.9 Sequential steps of the water treatment process.

1.2.6. Compact unit feature and usage in Iraq

The main features of a compact unit are its small size and composition of modular
components. The components such as the clarification basin, the storage tank, the
filters and pipes are usually manufactured from iron and can be easily assembled and
disassembled. This allows the transfer of the compact unit between different places,

for example in case of crises, accidents and natural disasters.

It has to be noted that the lifetime of a compact unit is usually shorter than that of a
conventional water treatment plant. This is mainly due to the use of iron material,
which is subject to corrosion especially due to the contact with water in open air. As
a consequence, the compact unit requires maintenance cycles, which are however not
subject of this thesis. This thesis rather focuses on the efficient usage of the compact

unit for the production of high-quality water during its lifetime.

This subject is of particular importance in Irag, where compact units are used after
2003 extensively, especially in districts, counties and rural areas to meet the acute
shortage in the amount of drinking water. There are various reasons for this
development. On the one hand, Iraq lacks basic infrastructure in many parts of the
country. In addition, new projects for drinking water production are delayed due to

governmental and security situation in the country.
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The compact unit provides a short term solution to the described problems, since it
can be easily set up in locations with lack of clean drinking water. However, it has to
be noted that the use of compact units also comes with a main disadvantage. The
compact unit as it currently exists requires an operator that performs various manual
control tasks during the daily operation. Unfortunately, such operators usually have a
low educational qualification up to the lack of reading and writing skills. Hence, it is
highly desirable to automate the operation of compact units as much as possible and
to assist the operator with information that is obtained during the automated

operation of the compact unit.

The first aim of this thesis is the identification of processes to be automated during
the operation of the compact unit. Second, the thesis intends to provide solution
approaches to a subset of the automation tasks. Third, suggestions for the

implementation of the solution ideas in the compact unit are given.
1.3. CONTROL PROBLEMS

As discussed before, drinking water treatment plants have two main functions:
clarification and sterilization. The clarification process is performed in two stages,
that is sedimentation and filtration. In this process, coagulant chemicals are used to
help and speedup the process of sedimentation. The sterilization process is performed
by using sterilize chemicals (usually used chlorine) addition to water before or after
sedimentation and the amount of this sterilize chemicals depend on the flow rate,
duration that the water remain in the distribution tank and the length of distribution

network.

There are specific standards for drinking water. Several standards are issued by the
World Health Organization. In addition, each country has its own standards in

accordance with the specifications of water they own and use it.

Table 1.2 shows a working paper for testing the water properties (chemical, physical
and bacteriological) in Irag. It shows the highest tolerable values of each parameter

especially for Iraq.
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Table 1.2 Worksheet for testing water properties (chemical, physical and

bacteriological)

Ministry of Municipalities and Public Work
GDW/Water National Laboratory

Governorate : Kirkuk

Date of Sampling : /

Sampled By :

Physical and Chemical parameters

Sample Location

Parameters in mg/L unless otherwise stated

Sample Location MPL
Turbidity , NTU 5
Temperature C ACC
PH 6.5-8.5
E.C uS/cm 25C

Alkalinity as CaCo, 125 - 200
Hardness as CaCog 500
Calcium as Ca 150
Magnesium as Mg 100
Chloride as ClI 350
Iron as Fe 0.3
Aluminum as Al 0.2
Sulphate as SO, 400
Sodium as Na 200
Potassium as K

T.D.S 1000
T.S.S

Nitrate as NO; 50
Chromium as Cr™ 0.5
BOD 5 days Nil
Fluoride as F 1
Silica as SiO, 5
Remarks :

Name and Signature of Chemists :
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Bacteriological Parameters

Date and Time of Sampling: / /

Sample Location MPL
Residual Chlorine 05-25
MPN Total Coli /100 ml Zero
MPN Fecal Coliform /100 ml Zero
Plate Count /1 ml 100
Remarks :

Name and Signature of Chemists :

All drinking water treatment plants are supposed to apply the defined standards and
stay within the limits of each parameter in order to supply high-quality water to the
consumer.

In the following sections, the main control problems regarding the improvement of
water quality are discussed.

1.3.1. Control problems related to clarification

clarification comprises sedimentation and filtration. As discussed before,
sedimentation is supported by the addition of a coagulant to the raw water. In terms
of control, the plant for the sedimentation process is given by the following block

diagram in figure 1.10.

Raw Water
—_—>

Alum

s Water After
Sedimentation Sedimentation
Temperature

—_— Process -

Flow Rate

Figure 1.10 The Sedimentation Process
It can be seen that the plant input consists of the physical and chemical raw water
properties, the flow and temperature of the raw water and the ALUM (coagulant)
concentration. The plant output is given by the physical and chemical properties of
the water after sedimentation. Considering the plant inputs, the raw water properties

as well as the flow and temperature must be considered as disturbances, since these
16



parameters cannot be directly influenced. They are rather determined by the weather
conditions. However, it is possible to measure these parameters either in the
laboratory or with appropriate sensors. The only control input of the sedimentation
plant is the ALUM concentration, which is added to the raw water at the beginning
of the sedimentation process. Hence, the control task in the sedimentation process is
finding the “best” ALUM concentration depending on the properties of the currently
available water.

In the current practice, this control task is solved manually by using jar test as
described in Section 1.1.2.4. Such tests need laboratories which are only available in
large water treatment plants but not in compact units. That is, in compact units the
added ALUM concentration depends exclusively on the experience of the operator
with a high level of uncertainty. In addition, such jar tests require extra time, and
hence, lead to a delayed application of the control input to the sedimentation plant.

In order to improve the control of the sedimentation process, it is required to
automate finding the best ALUM concentration. A solution for this problem is
proposed in the next chapter.

The plant for the filtration process is shown in the following figure.

Water After Out of
Sedimentation Backwash
—_— —
Filtration Water After
Water Backwash Process Filtration
—_— ——3

Figure 1.11 The filtration process

It can be seen that the input of the filtration plant consists of the water provided after
the sedimentation process, whereas the output is the water provided to the consumer.
The only control input is given by the decision of performing a backwash operation
in order to clean the filter. This operation generally has to be performed manually
and is hence not subject of this thesis.

1.3.2. Control Problems Regarding Sterilization

After the completion of the clarification process comes the stage of sterilization.
There are several ways to perform this operation using ozone, UV or chlorine. In
drinking water treatment plants chlorine is commonly used because it has certain
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advantages compared to other disinfectants. For example, it ensures that water
remains sterile for long periods, since free chlorine in the water is effective against
bacteria and viruses.

The control problem for the sterilization process is finding the “best” chlorine
concentration to be added to the water depending on the current water properties.
Here, it is required to sterilize the water, while guaranteeing that the percentage of
free chlorine residual in the water is 0.5 ppm at the end of the network (as applicable
in Iraq). In large water treatment plants, this control problem is again solved by
laboratory tests. In compact units, the addition of chlorine depends on the experience
of operators and is hence subject to fault. For this reason it is highly desirable to

automate the process of chlorine addition.
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CHAPTER I

MODEL FOR SEDIMENTATION

The main objective of this thesis is the development of automatic control methods for
different processes in water treatment plants including compact units. In order to
develop and evaluate such methods, plant models are required. In this chapter we
find a model that represents the process of sedimentation in drinking water treatment
plants. This model is verified using data from a real drinking water treatment plant
located in Kirkuk, Iraq. In addition, we evaluate an existing analytical modeling

method for simulating the sedimentation process in the compact unit.
2.1. PREVIOUS WORK

The literature research on models for the sedimentation process has shown that there
is limited work on this subject. There is only one analytical modeling approach
proposed in [7] that is in principle suitable to represent the process of sedimentation
in compact units. Since the evaluation of this model is part of this thesis, a brief

description is given in the following.

2.1.1. Variables of the model

The model in [7] follows the sedimentation process with three stages as shown in
figure 2.1. It tries to compute the micelle concentration (concentration of suspended
particles) and the dosage concentration (coagulant dosage) after each stage. The
following variables are introduced in the model (see also figure 2.1).

 Raw water: micelle and dosage concentration X _ (t) and X, (t)

e Same variable after mixing: X, (t) and X, (t)
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e Same variable after flocculation: x, (t) and X, (t)
e Same variable after sedimentation: X (t) and X, (t)

In addition, [7] uses the spin rate of dosage metering n and the water flow g . The

relevant output of the system is the micelle concentration after sedimentation

X, (t)- In addition, several parameters are used such as the volume of the mixing
basin V _, the volume of the flocculation basin V. , the volume of the sedimentation

basin V_ and the maximum flocculation reaction rate r., .

X @O Ve Xfxo © Vf Xﬁfa © Ve X X ()
—> Mixin [ Flocculatio —>{ Sedimentatio }—>
N a > n basin LS n basin S
Xy ) Xfyo ) Xjfva(f) X“yb )

Figure 2.1 Sequence of sedimentation process

The clarification process is performed in three basins, whereby each basins fulfills a
dedicated task. The mixing basin only adds coagulant material to the raw water. The
mixing basin is considered as a continuously stirred tank reactor in [7] The time

evolution of the micelle and coagulant concentrations is modeled as follows.

1
Xty O 100 e OX gy O

for micelle concentration
X O=]a(X g OXg, O
fyo v, ey Ty

for dosage concentration

After the water transfer from mixing basins to the flocculation basins, slow mixing
between micelle and coagulant and creating flocs is performed in the flocculation
basin. That is, both micelle and coagulant concentration are reduced due to the

reaction between both materials. The dynamic equations are written as
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X1, O =L, ©-X,, ©)-2m,n7d]6, Kt

X, K X,
nflzmin( fXiy y fynfl)

X

for micelle concentration
_ q _ _2 2d3 d
Xy, 0= [0, =X, (©0)-5m,nid;G, It
f;

X, K. X,
nfi :min( fXia y fYH)
my

for dosage concentration. A Simulink block diagram of the flocculation model is

shown in figure 2.2.

y L: x © E )
jd ° outt
ut!
Productd Integrator2
min
=g
ain MinMax Products
Gains
int Gain1
min .
".
MinMaxi Pro
>
Ol x i —»(2
'
outz
Products Integrator3

Gaing

X_fyl

Figure 2.2 Flocculation Process Model

We note that the flocculation model is an extension of the mixing basin model. The
difference between them is that the value of the reaction rate in the basin mixing
equal to zero, since no reaction takes place in the mixing basin. A schematic of the
continuously stirred tank reactor, that represents both processes is shown in figure
2.3.
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qX (1) ) « gX ;. (1)

Figure 2.3 Flocculation basin model

With regard to the sedimentation basin model, we only note that it is similar to the

basin flocculation model, with possible changes in parameter values.
2.1.2. Problems of Previous Work

Figure 2.4 shows a Simulink model with the three processes mixing, flocculation and
sedimentation. The content of the flocculation subsystem is already shown in figure
2.2.

T——
B water_treatment_plant = Lﬂ%
File Edit View Simulation Format Tocols Help
O =& & r == 4 | =2 = | » 1000 [ Normal ~ | e B 2=

-

sedimentstion process

s flocculstion process
mixing process

— = In1
H_x ofint Cut1
In1 Cutt
Out1 -
P In2
a Step Lanfinz 1
] in2 -
Out2
= In2

out2 g
Step1 X_oy Out2 | —¢ ol in2 - g
2
in3 Subsystemnz
Subsystem1

Step2 Subsystem

Scopet
Scope

Ready 100% oded5

Figure 2.4 Simulink of analytical model

We use the following parameters values for the compact unit as well as other
parameters values for raw water and dosage. values of basin (mixing, flocculation
and sedimentation) respectively, as well as the value of the flow rate . These values
are taken from Table 1.1 and the average mass of dosage is taken from [7] The

parameter assignment in Matlab is shown in figure 2.5.
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File Edit | Text | Go Cell Tools Debug Desktop Window Help N A X
NSH «RBIC (LD Aesh|[B-20R0-] *0O.-
BrE| -10 |+ | +12 x | ¥ | O
Hi= X _cx=231 ; % micelle concentration for raw water input to the mixing basin % =
2= X cy=7.69 ;% dosage concentration in mixing basin % ‘
3= g=220/3600 ; % m"3 per second input water quantity %
4 - V_c=2%((0.86*%1*2.2)-(0.6*0.31*0.86)) ;: % m™3 volume of mixing basin %
Si= V_£=2*(11*2.2*%0.86) ; % m™3 volume of flocculation basin %
6 - V_s1=2*(11*2.2*1.14);
Fi= m_x=1.3868E-20 ; % average mass of micelle % E
8 - m_y=1.25E-20 ; % average mass of dosage (alum) %
9l K xv=1;
10 - d f=1E-9 ; % average diameter of micelle %
= d sl=d f;
2= G_=50; 3
3= G_s1=G_f;
14 - g x1=(2/3y*m x*(d_£/"3*G_f: -

Figure 2.5 Parameters values for compact unit

We performed a large number of simulations in order to validate the analytical
model. However, reasonable results could not be obtained. For example, after
inserting the values in figure 2.4, the simulation gives the following result as shown
in figure 2.6 to 2.8. The output concentration of both mixing and flocculation basin
remain constant, whereas the output concentrations of the sedimentation basin grow
unbounded. We also note that simulations with slightly modified parameters lead to
negative values of the concentrations.

Bl Scope =HC] =

B @k E%s Da s |

Figure 2.6 Output of mixing basin
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Figure 2.7 Output of flocculation basin
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Figure 2.8 Output of sedimentation basin

For this reason, we decide that the analytical model is not suitable for this thesis and

pursue a different path as described in the next section.
2.2. Neural network of the sedimentation process

As outlined in the previous section, there is no analytical model for the sedimentation
process of drinking water treatment. For this reason, we choose Neural Networks as a

modeling technique that works without an analytical model.

A neural networks realizes a (generally nonlinear) function between a set of input
variables and a set of output variables. This function is obtained by training of the
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neural network with known instances of input and output data. Neural networks are

used in many industrial fields, control applications and signal processing [8].
2.2.1. Explanation of neural network

Anrtificial neural networks try to model the information processing capabilities of the
neural system of a human or animal. Hence, the model tries to follow the structure of
biological neural networks [9]. In principle a neural network consists of neurons, that
are connected. The neurons process information from connected neurons using an
activation function and output information to be processed by other neurons. In the

following, the basics of neural networks are described.

The most simple neuron model is the single scalar input and can be with bias or
without bias as shown in figure 2.9. For this neuron model, the single scalar input p
is transmitted through a connection and its value is multiplied by a scalar weight w to
form the product wp. Then, the so-called transfer function f is applied to wp, which
produces the scalar output a. If required, a fixed bias b is added to the product wp. In

that case, the value of the scalar output is a = f (wp+ b) [8].

Input  Neuron without bias Input  Neuron with bias
N N
P ° W n ’ f o ’ P ° W } Z n ’ f o }
lb
— /' J
a=f(wp) a=f(wp+b)

Figure 2.9 Single scalar input and scalar output [8]

The second type of input into a neuron model is the input vector p. In that case, each
entry of the vector represents an input. The input vector is multiplied with a weight
vector W to produce the weighted input Wp. Again, a bias can be added to the input
as in figure 2.10.
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The neurons can now be combined to form a neural network. We explain the concept
by a single layer of a neural network. It consists of a set of inputs that are directly
connected to a set of neurons as is shown in figure 2.11. Now the input vector p is
connected to each neuron via one row of the weight matrix W to produce weighted
inputs Wp. In addition, a bias vector b is used, where each entry describes the input

bias for one neuron. As before, each neuron computes its scalar output using the

Input Neuron w Vector Input

N\ N

Where

" 4 R = number of
» f » elements in
input vector

/U J
a =f(Wp +b)

Figure 2.10 Neuron model with multiple inputs

transfer function f.

Inputs  Layer of Neurons

P

Finally, we note that multiple layers of neurons can be added back to back, whereby

the output of one layer is considered as the input of the next layer. The basic

) n a
Wi, 1 1

2z f >
l b, Where
1

" a, R = number of
> P/ P elements in
l b input vector

: . S = number of
wo XM/ > neurons in layer

a=f(Wp+h)

Figure 2.11 Single layer of a neural network

structure of a multi-layer neural network is shown in figure 2.12 [8].
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Figure 2.12 Input vector with multi-layer neurons [8]

Manual can be used abbreviated notation to keep all the information and avoid

forgetting it and become as shown below [8].

Input Layer 1 Layer 2 Layer3

§tx1 52 52 §ix1

J \

at = 1 (IWLip+h) a2 = f2(LWarar+hy) a3 =f3 (LWa2a2 +b3)

a3 =f3 (LW22 £2 (LW2ufl IWwLip +b1)+b2)bs = y
Figure 2.13 Input vector with multi-layer neurons abbreviated notation [8]

2.2.2. Training of Neural Networks

The use of the neural network is that it learns the behavior of the system to be
modeled from given pairs of input data and output (target) data. This learning
process is performed in the training phase, whereby the weight and bias parameters
are adjusted to fit the given data. That is, when we want to train our network we

have to define the input data as well as the corresponding output data.
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Based on input and output data, it is then possible to apply any training method in
order to train a neural network, whereby the structure of the network such as number
of layers and number of neurons must be chosen. In this thesis, we use the neural
networks toolbox in MATLAB for training and evaluating neural networks. It allows
choosing neural networks with multiple layers, arbitrary number of neurons, different

transfer functions and offers a variety of training algorithms.
2.2.3.Data for Our Neural Network

As described in Section 1 of this chapter, it is desired to obtain a model of the
sedimentation process of a water treatment plant. The input of the sedimentation
process is raw water with a certain flow and temperature as well as a coagulant
concentration (ALUM), that is added to the raw water in order to speed up the
sedimentation. The output of the sedimentation process is clarified water. Since it
was not possible to use an analytical model of the sedimentation process, we now use

a neural network model .

In principle, we intend to develop a method for the control design of compact units.
That is, we need a model of a compact unit. However, it has to be noted that. there
are currently no laboratories for testing samples of water. Hence, the evaluation of
samples taken from the compact units is done in a Central Laboratory (for example
the Kirkuk Governorate Directorate of Water in Iraq), In addition, it has to be seen
that there are many compact units deployed in rural areas. Because of this reason, the
staff in the central laboratory cannot perform field visits to compact units every day
for sampling and testing. A further problem of samples taken from compact units is
that measurements are taken in an irregular fashion. For example, the sampling of
measurements can be performed within several hours, which leads to incorrect

readings.

In order to avoid the stated problems, we adopt readings from daily tests at the
Kirkuk unified-water treatment plant. This water treatment plant is one of the major
projects in the governorate Kirkuk, and has a laboratory of its own. Moreover, the
experienced staff can collect samples of raw water input to the treatment plant as

well as the samples of the water output after sedimentation and after filtration. This
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process is repeated three times every day, the period between samples for each days

is two hours.

Considering the working hours for the laboratory staff, time for samples is limited

between 8 am and 3 pm.

The information from the laboratory of the Kirkuk unified water treatment plant used
in this thesis starts from the first day of the year 2010 and is collected , for a period

of two years and a half.

This information is in the form of tests for raw water and water output from the
sedimentation basins and water output from filtration. In addition, the amount of
ALUM added to the water per day, and the amount of chlorine used per hour, the
water temperature and flows for each sample are also recorded. figure 2.14 shows a

part of the recorded data in the form of a table.

The amount of alum used per day, was determined by jar test, and the amount of
chlorine used per hour, depends on the amount of water processed for consumers per

hour.

We are interested in 5 parameters of raw water for our study. Turbidity (TU), PH,
Total Suspended Solid (TSS), Total Dissolve Solid (TDS) and Electrical
Conductivity(EC).
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Figure 2.14 Explanation daily tests

In order to build a valid model of the sedimentation process, we need to understand
the relation of the different measurements and the ALUM concentration provided at
the input of the process. ALUM is added to the raw water from one of three basins.
The ALUM concentration in these basins is prepared every day based on
measurements made the day before. In addition, the sedimentation process does not
happen instantaneously. If ALUM is added to the raw water, it takes about 2 hours
until this water exits the sedimentation process. Figure 2.15 shows a timeline of the

events taking place in the water treatment plant.
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Figure 2.15 Basin using time and testing time

According to this timeline, the measurement data are divided into inputs and targets.
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2.2.4. Training and results for our plant neural network

The input parameters of the plant are the raw water parameters (TU, PH, TSS, TDS,
EC), alum amount determined by jar test, temperature and water flow rate is
considered as input data. The output parameters for the plant are the water
parameters ( TU1, PH1, TSS1, TDS1, EC1 ) after sedimentation. figure 2.16
illustrates this explanation

AN
PH
— TUl
Input TSS I > -
Raw 7 7 » i)
W
ater oS _J Plant TSS1 Output Water
EC T e
- ——> | Sedimentation
Alum
EC1
Temperature >
SIEION
Flow
e

Figure 2.16 Plant block diagram

Table 2.1 and 2.2 shows examples of the structure of the real data we used for
training. In total, we have 2022 instances of these data, that were, obtained from
Kirkuk unified water treatment plant. All this instances represent real measurements

for a period of two and half years.

Table 2.1 Real measurements for input data

Input

TU | PH | TSS | TDS| EC | Alum (mg/L) | Temp C° | Flow (L/h)

231 | 76 59 | 362 | 342 7.69 13 13000000
211 | 7.7 51 | 373 | 345 7.69 14 13000000
123 | 7.61 | 44 | 267 | 345 12.8 13 13000000
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Table 2.2 Real measurements for target data

Target
TUl | PH1 | TSS1 | TDS1 | EC1
21 7.6 18 361 345
18 7.6 13 365 349
33.2 7.4 46 200 336

In order to use the data for training, we first normalize the data such that all values

are in the range from -1 to 1. The formula for normalization is as follows :

Xnorm ZL

X =X
Xmax_xmin

min

jz_l

This formula is applied to all input and target parameters. The maximum and

minimum values for the different parameters are shown in the following tables

(Table 2.3, Table 2.4).
Table 2.3 Min and max real data for input data

Input
TU | PH | TSS | TDS| EC Alum Temp C° | Flow (L/h)
max | max | max | max | max | (mg/L)max max max
650 | 8.8 | 372.1 | 466 | 462 19.9 40 13500000
TU | PH | TSS | TDS | EC Alum Temp C° | Flow (L/h)
min | min | min | min | min | (mg/L)min min min
22 7.5 9 145 | 110.1 1 6 10000000
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For illustration, we now apply the normalization to the input data in table 2.1 and the

Table 2.4 Min and max real data for target data

Target
TU1 max | PH1 max| TSS1 max | TDS1 max| EC1 max
129 7.9 167 766 458
TUmin | PHmin | TSSmin | TDSmin | EC min
7 7.3 4 133 169

target data in table 2.2. The result is shown in the following tables.

Table 2.5 Input normalized data

Input
Tu | PH | Tss | Tos | Ec | AY™ | empc | Flow (Lh)
(mg/L)
033 | -084 | 072 | 035 | 031| -0.29 058 0.71
039 | -069 | 0.76 | 042 | 033 | -0.29 052 0.71
067 -083 | 08 | 023 |033| -024 058 0.71

It has to be noted that our neural network model is constructed for the normalized
data. That is if we want to recover the original data values, we can use the following

formula..

Table 2.6 Target normalized data

Target
TUl | PH1 | TSS1 | TDS1 | EC1
-0.77 0 -0.82 | -0.27 | 0.21
-0.81 0 -0.88 | -0.26 | 0.24
-0.57 | -0.66 | -0.48 | -0.78 | 0.15
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X :(WJ(X max _X min)+X min

With the processed input and training data, we use the Matlab Neural Networks
Toolbox to find a neural network model of the sedimentation process. When
applying the toolbox, we choose the following settings shown in Table 2.7.

Table 2.7 Neural network function

Type of network feed-forward back-propagation

Training function TRAINLM

/Adaption learning function [LEARNGDM

Performance function MSE

Number of layers 2

Properties for layer 1 Number of neurons 20 and Transfer Function TANSIG
Properties for layer 2 Transfer Function TANSIG

Figure 2.17 and 2.18 show the related Matlab input.

Create Network or Data = PGS

Network \’ Datari;

Name

Plant
Network Properties ‘
Network Type: Feed-forward backprop - ‘
\
Input data: Plant_Matrixinput ~
Target data: Plant_Matrixtarget
Training function: TRAINLM -
Adaption learning function: LEARNGDM ~
Performance functicn: MSE -
Number of layers: 2

Properties for: Layerl ~

Number of neurons: 20
Transfer Function: TANSIG ~
[ ) View ) [ ¥ Restore Defaults ] |
@D Help [ ¢ Create J [ &P Close J [

Figure 2.17 Neural network toolbox to create Simulink for plant
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Figure 2.18 Check our data we choose to create plant Simulink
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Plant.m (MATLAB Script) ~
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Figure 2.19 In command window type (gensim) to generate plant Simulink

After training, we obtain a Simulink model as in figure 2.20 of the sedimentation
process.
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Figure 2.20 Plant Simulink

In order to validate the model for our research, we now simulate the sedimentation
process with the input data instances used in the training process and compare the
simulation output to the measurement target data. The result is shown for the
different parameters TU, PH, TSS, TDS, EC in the figures 2.21 to 2.25.
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120k — ______ TUtarget
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i 1 1 i
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Figure 2.21 TU prediction compared with TU target
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Figure 2.22 PH prediction compared with PH target
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Figure 2.23 TSS prediction compared with TSS target
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Figure 2.24 TDS prediction compared with TDS target
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Figure 2.25 EC prediction compared with EC target
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It is readily observed from the validation experiment that the model does not
perfectly match the target data. However, since our research is not focused on the
exact control of the Kirkuk water treatment plant but on the proof of concept of a

control method for compact units, we employ this model in the remainder of this

thesis.
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CHAPTER 11

CONTROL METHOD FOR SEDIMENTATION

In this chapter, we study the automatic control of water treatment plants with the
objective of controlling compact units and with data supplied from the Kirkuk water
treatment plant. We propose to use the combination of a feedforward controller, that
is represented by a neural network and a feedback fuzzy controller. First, Section 3.1
states basic requirements for the control system. Then, Section 3.2 elaborates our

control method .

3.1. CONTROL REQUIREMENTS
3.1.1. Hardware modifications

Many operations in a compact unit are performed manually, as described in Chapter
3. In order to realize the automatic control as proposed in this thesis, several

modifications in the sedimentation process are required as follows.

e Sensors : in order to realize feedback control, the input data (raw water
parameters, temperature and flow) as well as the output data (water
parameters after sedimentation) have to be measured. Such sensors are

available for example in [15].

e Variable speed pump : A pump with adjustable speed is needed to change
the concentration of ALUM that is added to the raw water in real time. Such

pump can either be realized as DC or AC pump.

o Digital Controller : The processing of sensor data, evaluation of the control
algorithm and modification of the pump speed requires a digital controller
device. In industrial practice this device is realized by a programmable logic
controller (PLC) such as [16]
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Figure 3.1 Control process schematic

In the remainder of the thesis, we assume that the above items are realized in a

satisfactory form in the water treatment plant. Hence, we focus on the development

of the control method.

3.1.2. Desired operation

To monitor the performance of the designed automation system and knowledge of its
efficiency, we use the following table (Table 3.1) for the classification of water
quality after sedimentation. It can be seen that the most important parameters are the
turbidity (TU) and the PH value of the water, since they have a direct impact on the

consumers’ health.

Table 3.1 Efficient sedimentation process

Turbidity PH Classify
TUL 20 72 < PH < 7.8 Very good
TU < 30 7<PH <8 Good
TU< 35 6.8 < PH < 8.2 Pass
TU< 40 6.5 < PH < 8.5 Acceptable
TU > 40 6.5 > PH > 8.5 Bad

The parameter values were adopted on the basis of
e When the turbidity in the raw water become 25 NTU or less, then it is not
required to add ALUM to the raw water. Hence, this value can be seen as a
good reference point for the performance of the sedimentation process.
e To the allowable limits for pH as shown in Table 1.2, the allowable limits are
6.5 to 8.5. Knowing that the best pH value is 7.5 any deviation of this value

negative effect for the PH.
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3.2.CONTROL METHOD

3.2.1. Properties

Since there is no analytic model for plant to be used for the controller design, we
build a controller based on the measurement data from the sedimentation process. It
is know from the water treatment plant operation that the ALUM concentration has
to be chosen based on the parameters of the raw water. That is, we need a functional
relationship between the raw water parameters and the ALUM concentration to be
added to the raw water. In addition, if the water quality after sedimentation can be
measured, this information can be used to correct the ALUM concentration in case
the water quality is not good enough. Finally, it needs to be taken into account that
there is a time delay in the water treatment plant. It takes about two hours to
complete the sedimentation process.

3.2.2. Proposed control architecting

The control input for the sedimentation process is the ALUM concentration. We
propose to determine the appropriate ALUM concentration using the control
architecture in figure 3.2. The functional relationship between the input parameters
of raw water and the ALUM concentration is used to predict the required ALUM
concentration in a feedforward path. In order to determine this functional
relationship, we suggest training a neural network with the real measurement data
from the Kirkuk water treatment plant. Note that the ALUM concentration in these
data is determined using the jar test. In addition to the ALUM prediction, we use
feedback to correct the ALUM concentration in case the measured water quality is
not suitable. Since no analytical model of the sedimentation process is available, we
use fuzzy logic control to realize this feedback.
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Figure 3.2 Alum control schematic
3.2.3. Alum prediction

For the input parameters of the alum prediction, the raw water parameters TU, PH,
TSS, temperature, water flow rate are considered as input data. The output parameter
for the alum prediction is the alum concentration determined by jar test. figure 3.3

illustrates this explanation.

TU

PH
> Alum

Input Raw TSSo Alum
Water Temp prediction r—l

Flow

Figure 3.3 Alum prediction plant block diagram

For training the alum prediction neural network we follow the same procedure as in
Section 2.2.4 including normalization of data. The result is shown in figure 3.4 by
comparing the predicted ALUM concentration with the target concentration. The
figure shows that the predicted value of the ALUM concentration is always very
close to the target value. In practice, this means that we can use the neural network
model to determine a suitable ALUM concentration. We recall that the neural
network is based on data from jar tests and experience of human operators in the real
water treatment plant. Because of this reason, the neural network model can replace
the human operator in the water treatment plant because it provides the same

decisions. Looking at Figure 3.2, it remains to design the fuzzy control.
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Figure 3.4 Alum prediction comparison with alum found by control
3.2.4. Fuzzy control with TU measurement

Fuzzy logic control is based on the concept of fuzzy logic, where a continuous
valued variable is mapped to the range between 0 and 1 instead of the Boolean values
0 and 1. The inputs of a fuzzy control system are usually processed by a set of such
fuzzy logic rules, denoted as a fuzzy set. The evaluation of the rules is done using so-
called membership functions, and leads to the fuzzified input. It describes the degree
of membership of the input in the members of the fuzzy set. Next, the fuzzified input
is modified using a set of IF THEN rules. These rules describe the dependency of the
fuzzy controller output on the degree of membership in the fuzzified input. Based on
these membership functions, a de-fuzzyfication step is applied to determine a real
value for the output. That is, in principle, fuzzy control requires the design of three
components: Membership functions for the fuzzyfication, IF THEN rules and
membership functions for the de-fuzzyfication. Fuzzy Control consists of three
sections, input section that mean membership function defined as curve show

location input data into input space and between 0 and1.
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We now describe the fuzzy controller used for the ALUM correction. We use the
Fuzzy Control Toolbox in Matlab in order to realize the fuzzy controller. The main

graphical user interface to this toolbox is shown in figure 3.5.

FIS Editor: Untitled | B 5]
File Edit View
Untitied
(mamdani)
input1 output1

FIS Name: Untitled FIS Type: mamdani
And method min == Current Variable
Or method —— | || Name input1

- X
implication . - RINE=ES nput

Range [0 1]
Aggregation X -
Defuzzification centroid - Help Close
Ready

Figure 3.5 Fuzzy logic control panel

Regarding the fuzzyfication, we consider the desired system operation as described
in Table 3.1 for the value of TU. We consider a possible range of TU (after
sedimentation) between 0 and 150. This range is chosen because the maximum value
of TU observed after sedimentation is 129 as shown in Table 2.4. It is desired to
obtain a TU value of about 25 or less. We divide the possible TU values into three
fuzzy sets, that are described by the membership functions mfl, mf2 and mf3. Mfl
represents a low turbidity below 30 which means that the sedimentation process is
very successful. mf2 represents an acceptable turbidity which means that the
sedimentation process is good. mf3 represents a high turbidity which means that the
sedimentation process is not successful. The membership functions are shown in
Figure 3.6. We use a trapezoidal membership function for mf3, since we anticipate
that very large values of the TU value should lead to the same value of the controller

output.
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Figure 3.6 Membership function for fuzzy control one input TU panel

For the de-fuzzyfication, we allow to increase/decrease the ALUM concentration by
a value of 5 as shown in figure 3.7. It is intended to relate mfl from the input to mfl
of the output, mf2 from the input to the mf2 of the output and mf3 from the input to
mf3 of the output. Hence, mfl can be associated with “decrease”, mf2 can be
associated with “no change” and mf3 can be associated with “increase” of the

ALUM concentration. We use mean of maxima (mom) as de-fuzzyfication rule.
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Figure 3.7 Membership function output panel

Finally, we consider the choice of the IF THEN rules. Following the previous
description, three IF THEN rules are used as shown in Figure 3.8. In summary, the
fuzzy controller uses the TU measurement after the sedimentation process as input

and adjusts the ALUM concentration if TU is not satisfactory.
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Figure 3.8 If-then rule panel

3.2.5. Fuzzy control with TU and PH measurement

The previous section explains fuzzy control with a single input TU. We now add the
measurement of PH as an additional value, because PH is the second important
parameter for water quality. Also the PH concentration depends on the ALUM
concentration added to the raw water. As is shown in Table 1.2 and Table 3.1, the
minimum and maximum value for PH is (6.5- 8.5) respectively. Any change in water
component concentration effect directly to the PH value. Figure 3.9 to 3.11 describe
the membership functions for two inputs and one output in the fuzzy logic controller.
Figure 3.12 shows the IF THEN rules.
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Figure 3.12 If-then rule for fuzzy control with two inputs
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3.2.6. Results

We perform simulations of the overall water treatment plant using the control
architecture described in Section 3.2.2. In all our experiments, we apply raw water
instances at the input of the system and measure the quality of the water after
sedimentation . Figure 3.13 and 3.14 show Simulink for 1 input and 2 input

respectively.
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Figure 3.14 Simulation for fuzzy control with two inputs
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In the first set of experiments, we only use the ALUM prediction without fuzzy
control feedback in order to evaluate the result from the prediction. We compare the
result using the prediction and the target data from the real measurement. The

following figures show this evaluation for the parameters TU, pH and TSS .
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Figure 3.15 TU prediction comparison with TU target
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Figure 3.17 TSS prediction comparison with TSS target
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It can be seen from figure 3.15 to 3.17 that there are no large discrepancies between
the predicted value and the target value. Hence, the neural network model is suitable

for the prediction of ALUM in our control architecture.

Next, we close the feedback loop with the fuzzy controller and perform the same
experiment as before. Since we focus on the improvement of the TU value, fFgure
3.18 and 3.19 show the comparison of the TU value in the case of prediction without
feedback control and the case of prediction in combination with feedback control. It
can be seen that the fuzzy control further improves the TU value. In fact, it is now
the case that almost all values are below 50, which is the border for acceptable water
quality. It can further be seen that the feedback control experiment for fuzzy control
with two inputs in Figure 3.19 leads to a very similar result.
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Figure 3.18 TU comparison for fuzzy control with one input
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Figure 3.19 TU comparison for fuzzy control with one input and two inputs

Looking at the PH concentration, there is a slight improvement of the PH value if
fuzzy control is used (Figure 3.20). The values are closer to the most desirable value
7.5. It can also be seen that there is again not much difference between the fuzzy
control with one input and with two inputs (Figure 3.21).
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Figure 3.20 PH comparison for fuzzy control with one input
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Figure 3.21 PH comparison for fuzzy control with one and two inputs
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It is also interesting to compare the ALUM concentration with and without feedback

control. The result is shown in Figure 3.22. It can be seen that feedback control

generally increases the ALUM concentration in order to improve the value of TU.

Only in some cases where the TU concentration is already very good, a decrease of

the ALUM concentration is possible. When comparing fuzzy control with one input

and fuzzy control with two inputs (Figure 3.23), we see that more ALUM is used in

the case with two inputs. A further study of this result is subject of future research.
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Figure 3.22 Alum comparison for fuzzy control with one input
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Figure 3.23 Alum comparison for fuzzy control with one and two inputs

In summary, we can say that the control architecture as proposed in this thesis is
suitable for the automatic control of the sedimentation process. The neural network
for ALUM prediction very well replaces the task of a human operator. In addition,
the fuzzy feedback controller provides an additional improvement of the water
quality . It is important to note that the designed controller incorporates data from
real measurements for the prediction of the ALUM concentration as well as expert
knowledge about the desired system operation for the fuzzy control. Hence, our

controller tries to replace and improve the control action taken by a human operator.
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CONCLUSION

The subject of this thesis is the automatic control of water treatment plants with a
focus on the clarification process. This process is performed in a clarification basin,
and is divided into mixing (with addition of a coagulant material), flocculation
(reaction of coagulant and water particles to form larger particles) and sedimentation
(accumulation of particles on the bottom of the basin). The input to the process is the
coagulant concentration and the output of the process is the water quality, which is

specified by desirable values of various water parameters .

In this thesis, a new control method for the clarification process in water treatment
plants is proposed. It is first shown that such method cannot be easily based on an
analytical model of the water treatment process. Precisely, it is shown that an
analytical model provided in the literature seems to provide incorrect results.
Because of this reason, the control method is based on a neural network model of the
water treatment process, that is obtained from real measurement data. The control
method consists of feedforward control and feedback control. The feedforward path
is again obtained as a neural network, that produces the coagulant dosage as obtained
from the measurement data. The feedback path is realized as a fuzzy controller, that
modifies the coagulant dosage based on expert knowledge of the process. The
propose method is validated using simulations in Matlab/Simulink. From the
simulation results, it is concluded that the proposed method is suitable for the control
of water treatment plants. In particular, using feedback control leads to an additional

improvement of the water quality .

It has to be noted that the results presented in this thesis only focus on the
clarification process. It is an important task for future work to also automatize the
disinfection process and the filtration process of the water treatment plant. In

addition, the management of the different processes is subject of future work.
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