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ABSTRACT

RADIUS OF CURVATURE OF LAGUERRE-GAUSSIAN BEAM
CAY, Saim
M.Sc., Department of Electronic and Communication Engineering
Supervisor: Prof. Dr. Yusuf Z. UMUL
September 2012, 26 pages

In this thesis, the radius of curvature of Laguerre-Gaussian beam is
formulated for turbulent atmosphere and analyzed numerically for various radial and
angular mode numbers, the source size, propagation distance and wavelength in
moderate, high and no turbulence levels. Results have shown that Laguerre-Gaussian
beam approximates to Gaussian beam and radius of curvature of Laguerre-Gaussian
beam reduces with increasing turbulence levels. The results have also shown that the
radius of curvature of Laguerre-Gaussian beam increases with increasing source

sizes and changes slowly with longer wavelengths.

Keywords: Gaussian beam, radius of curvature, Laguerre-Gaussian beam, Gaussian

beam intensity, Gaussian beam width



OZET

LAGUERRE-GAUSSIAN ISIK DEMETI EGRILIK YARICAPI
CAY, Saim
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Yusuf Z. UMUL
Eyliil 2012, 26 sayfa

Tezde, Laguerre-Gaussian 151k demetinin egrilik yarigap tiirbiilansli atmosfer
icin formiile edilmis, ve cesitli radyal ve agisal mod numaralari, kaynak boyutu,
yayilim uzaklig1 i¢in yiiksek ve orta tlirbiilans seviyeleri ile tiirbiilansin olmadigi
durumlarda niimerik olarak incelenmistir. Sonucglar, Laguerre-Gaussian 151k
demetinin, Gaussian 151k demetine yakinsadigini ve artan tiirbiilans seviyeleriyle
Laguerre-Gaussian 151k demetinin egrilik yarigapinin azaldigini gdstermistir. Ayrica,
sonuclar Laguerre-Gaussian 1g1k demetinin egrilik yaricapinin kaynak boyutunun

bliytimesiyle arttigini ve artan dalga boyuyla yavasca degistigini de gostermistir.

Anahtar Kelimeler: Gaussian 151k demeti, egrilik yaricapi, Laguerre-Gaussian 151k

demeti, Gaussian 151k siddeti, Gaussian 151k demeti genigligi
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INTRODUCTION

Since A.G. Bell made free space optical communication using sunlight as an
optical carrier [1], free space optics (FSO) has been an important study subject.
Nowadays, FSO systems have become small size and lightweight. And they use very
narrow beam as an optical carrier which provides a more secure channel. Also, in
these systems, larger bandwidths can be obtained by increasing the carrier frequency
[2]. Furthermore, these systems do not require any license for using of spectrum [3].
FSO systems are separated from other conventional communication systems by these
advantages. Despite these advantages, FSO systems have also some disadvantages.
Since FSO systems transmit highly directed beam, alignment and pointing become
more difficult. Also this beam can be affected by atmospheric factors such as
turbulence, rain, snow and fog [2].

In FSO systems, laser beams are mostly used to transmit data. Lasers consist
of optical resonator, pumping system and laser medium (atoms) and produce
coherent, monochromatic and highly directed beam. Because of the need of sending
data farther with less attenuated signal, characteristics of the laser beam have become
more important.

One of these laser beam characteristics is the beam profile and many of laser
beams have the Gaussian-profile. Hence, optical properties of these laser beams,
such as radius of curvature and scintillation, are studied for understanding how they
are affected by atmospheric turbulence. Some of these studies are about radius of
curvature of hyperbolic, sinusoidal, annular, dark hollow, flat topped Gaussian
beams [4, 5] and scintillation of the Laguerre-Gaussian beam and the lowest order
Bessel-Gaussian beam [6, 7].

The objectives of this study are to obtain a formulation for the radius of
curvature of the Laguerre-Gaussian beam, examine effects of various turbulence

levels on the radius of curvature of the Laguerre-Gaussian beam numerically, show



that the Laguerre-Gaussian beam propagation profile acts as Gaussian propagation
profile and compare the Gaussian beam with the Laguerre-Gaussian beam.

In Chapter I, Laguerre and associated Laguerre functions, Gaussian beam and
its optical properties, which are complex field amplitude, intensity, power, beam
width, beam divergence, depth of focus, phase and the radius of curvature, are
mentioned briefly. So, fundamental information is given about behavior of the
Laguerre-Gaussian beam.

In the first part of Chapter II, the radius of curvature of the Laguerre-
Gaussian beam is developed analytically in turbulent atmosphere. In the second part
of Chapter II, the radius of curvature of the Laguerre-Gaussian beam is analyzed
numerically with the help of Matlab under certain conditions. The obtained figures
are commented. And these figures show that the Laguerre-Gaussian beam follows
trend of the Gaussian beam.

In Conclusion, this thesis is summarized briefly. Also, behavior of the
Laguerre-Gaussian beam is commented on the results. Some useful data is provided

for the application and the design of free space optical communication systems.



CHAPTER
LAGUERRE-GAUSSIAN BEAM

1.1. LAGUERRE FUNCTIONS

Laguerre equation arises in solution of the radial portion of the Schrodinger
equation for one-electron atom as Hydrogen. Laguerre functions and polynomials are
important for studying of behavior of some physical systems in quantum mechanics
[8]. Laguerre function is a solution of Laguerre differential equation which is
expressed by
xy"+ (1 —-x)y' +ny =0. (1.1)
n is a real number. It has singularities at x = 0 and x = oo. For x = 0, it may be

found one solution in the form of Frobenius series. This solution is given in [8] as

n
n!
L = Z 1)k x* 1.2
k=0
For this case, n is a non-negative integer. This solution is a polynomial which has
order n. So, L, (x) is nth Laguerre polynomial. If equation (1.2) is calculated for the

first six Laguerre polynomials, these polynomials will become,

Lo(x) =1 (1.3)
Li(x)=—x+1 (1.4)
L(x) = xz_;—,x” (1.5)
Lo —x3 + 9x2 - 18x + 6 (1.6)
L) = xt — 16x33-.l— 72|x2 — 96x + 24 7
L) = —x5 + 25x* —42'00x3 ;r' 600x2 — 600x + 120 19



L)

2

Figure 1.1 The first six Laguerre polynomials are plotted in Matlab by using equation (1.2)

to show behavior of these Laguerre polynomials vs. x values

1.2. ASSOCIATED LAGUERRE FUNCTIONS

Associated Laguerre equation is given as
xy"+(m+1-x)y' +ny =0. (1.9)
Equation (1.9) has singularities at x = 0 and x = oo. Associated Laguerre function is
any solution of this equation. If n and m are non-negative integers, solution of

equation (1.9) is associated Laguerre polynomials which are given in [8] as

n

1RGO = ) (-1

k=0

(n+m)!
Kl (n—k)l (k+m)! ~

k, (1.10)

From equation (1.10), the first four associated Laguerre Polynomials will become,

L) =1 (1.11)
IP'(x)= —x+m+1 (1.12)
2 _
() _x 2(m+2)x;(m+1)(m+2) w13)
—x3 +3(m + 3)x% —3(m + 2)(m + 3)x
L3 (x) = =
(m+ 1)(m +2)(m + 3) (1.14)
" 3



L'(x)

_ I I
100 1 2 3 4 5 6 7 8 9 10

Figure 1.2 The first four associated Laguerre polynomials are plotted in Matlab by using

equation (1.10) .This figure shows associated Laguerre polynomials vs. x valuesatm = 1

1.3. GAUSSIAN BEAM
One of the most useful solutions of the paraxial Helmholtz equation is the
Gaussian beam. Its intensity distribution is a Gaussian function in any transverse

plane. Its complex field amplitude is given in [9] as

2

a r , L L  kr?
U(r,z) = Aomexp <_a)2—(z)> exp I—] (kL — tan Z) —j ZR(Z)l ,  (L.15)

where r and z are respectively radial and propagation distances, A is wavelength,

k = 2m/A is the wavenumber, w(z) is the beam width. And R(z) is the radius of
curvature. Rayleigh range is defined by zp = ma2/A. ag = \/Azg /T is source size

and A, is the complex envelope.

1.4. OPTICAL PROPERTIES OF THE GAUSSIAN BEAM

Many lasers produce beams which are alike the Gaussian profile. That is, the
beam is characterized by the Gaussian beam parameters. Hence, properties of the
Gaussian beam are important. In the following sections, these properties of a

Gaussian beam are briefly described.



1.4.1. Beam Width And Beam Divergence
For propagation of a Gaussian beam, beam width is known as spread of a beam
from the z propagation axis. From [9], beam width is
Z\2
w(2) = a 1+(—), (1.16)
ZR
where a; is beam waist or source size, which is minimum of the beam width at

z = 0. And 2a; is known as the spot size.

04 T T T
ag=5cm

0.3 —
2=1.55 m

0.2 4

0.1+ ag B

0 i 2ag

-0.1r b

Beam width »(z) inm

-0.2- -

-0.3r b

~ | | | I | I | | |
0'4-20 -15 -10 -5 0 5 10 15 20

Propagation Distance z in km
Figure 1.3 Beam width against propagation distance for a Gaussian beam at fixed

wavelength and source size

Figure 1.3 is plotted by using equation (1.16) in Matlab. Also Figure 1.3
includes —w(z) for the best view of all the terms. As shown in Figure 1.3, the beam
expands for larger z value and so, the beam width increases.

0, is beam divergence, which is illustrated in Figure 1.3. If it is assumed that
Zr K z, angle with z-axis of the Gaussian beam (6,) can be written by using the

paraxial approach as

a A
tan(9,) ~ 0, = = = —, (1.17)

Zp MO

If the wavelength becomes shorter or the beam waist becomes larger, the beam

divergence will become smaller. So, highly directional beam can be obtained.



Depth of focus is 2z long, where the Gaussian beam achieves the best focus.
Center of this length is at the beam waist (z = 0). The depth of focus is illustrated in
Figure 1.3 and expressed by

(1.18)

From equation (1.18), it is clear that the depth of focus is directly proportional with

the area of spot size (mra?) [9] and inversely proportional with the wavelength.

1.4.2. Intensity And Power
Optical intensity can be defined as power per unit area (watt/m?). Optical

intensity of a Gaussian beam is given in [9] by,

I(r,z) = |U(r,2)|*. (1.19)

If equation (1.15) is substituted into equation (1.19), intensity of Gaussian beam will

become

as 12 2r? (1.20)
I(r,z) =1, [a)(z)] exp [— wz_(z)l

where I is the intensity at source. The intensity is a Gaussian function of radial

distance at any z value [9].

Propagation Distance z in km

Figure 1.4 Normalized intensity vs. propagation distance z for a Gaussian beam at fixed

wavelength, source size and r = 0



Figure 1.4 is plotted by using equation (1.6) at r = 0. In Figure 1.4, the
intensity has its maximum value at z = 0 which is I,. And it reaches its half
maximum value at z = +2zy. Finally, it decreases with increasing value of z.

Optical power of a Gaussian beam is integral of the optical intensity over any

transverse plane and its unit is watt. It is expressed by

o)

P(r,z) = f I(r,z)2nrdr. (1.21)
0
So, if equation (1.20) is substituted into equation (1.21), total optical power will be
1
PO :Elo(ﬂ:ag). (1.22)

Equation (1.22) is independent of propagation distance z.

1.4.3. Phase
From equation (1.15), the phase of the Gaussian beam is
o(r,2) = kz — tan™? % + 21:(22). (1.23)
Atr =0,
o(r=0,z) = kz—tan™? %. (1.24)

The first term of equation (1.23) is the phase of plane wave and the latter term is
phase retardation. The latter term also causes the delay of wavefront. Total phase

delay from z = —oo to z = +o0 is m. This phase delay is known as the Gouy effect

[9].



1.4.4. Radius Of Curvature

y-axis
\

6 8 10

x-axis

Figure 1.5 Radii of curvatures of two circles. Ry and R, are radii of these circles (R; > R,)

Radius of curvature is a number which determines curvature of any surface.
In Figure 1.5, if radius of curvature becomes longer, the surface will become more
flat. In the same way, the surface will become more curved for smaller radius of
curvature. For a Gaussian beam, radius of curvature determines curvature of the
wavefronts.

The third term of equation (1.23) is related to the curvature of wavefronts and

the radius of curvature, R(z), of a Gaussian beam is given in [9] as
7o 2

R(z) =z[1+(—R) ] (1.25)
z

When Rayleigh range is substituted into equation (1.25), radius of curvature for a

Gaussian beam can be expressed by

R(z) = 0.25z7 1 (k?al + 4z2). (1.26)



17 4=155,m |

131

Radius of Curvature R(z) in km

" Gaussin Beam

1 2 3 4 5 6 7 8 9 10
Propagation Distance z in km

Figure 1.6 Radius of curvature vs. propagation distance z in free space at fixed wavelength

and source size

Figure 1.6 is plotted by using equation (1.26) in Matlab. At z = 0, the radius of
curvature is infinite. That is, at this point wavefronts are planar. And at z = zp, it
reaches its minimum value. After that point, radius of curvature increases with longer

propagation distance.

1.5. LAGUERRE-GAUSSIAN BEAM

The Laguerre-Gaussian beam is another solution of the paraxial Helmholtz
equation in cylindrical coordinates.
From equation (3) of [6], on receiver plane the complex field amplitude of Laguerre-

Gaussian beam is

m 1—-2jaz)"
w (1, ¢y, 2) = Ac[—V2kar exp(ip,)] " exp(jkz) (1(+ T ‘)",?1

y —kar? [m 2kar? (1.27)
4P 1+ 2jaz) ™ \1+ 4a2z2)

where 7 and ¢, are radial coordinates, z is propagation distance, k = 2m/A is

wavenumber, A, is complex amplitude, @ = 1/ka? is related to the Gaussian source

size, n and m are respectively radial and angular mode numbers, j is V—1, and L7} is

associated (generalized ) Laguerre polynomial.

10



CHAPTER 11
RADIUS OF CURVATURE OF LAGUERRE-GAUSSIAN BEAM

2.1. DEVELOPMENT OF THE FORMULATION
At a distance of z from the source plane on a receiver plane the radius of curvature is

given in equation (1) of [4] as

4
be(2) + (3) 2°T -
R(z) = be(2) + 22T’ @D

where b,.(z)is radial second moment and b,4(z) is radial-angular second moment. T
represents contribution of turbulence, which is an integration over the entire range of

spatial frequencies k of the spectrum function W(k). From equation (2) of [4], T is

T =m? joo‘P(K)K3drc. (2.2)
0

For W(x), modified von Karman spectrum is applied in this thesis. From [2] W (k) is,
I \2
0,033C2exp l— (ﬁ) Kzl

24 (i_j)z]“/ ¢

(k) = (2.3)

where C? is refractive-index structure constant, [, is inner scale and L, is outer scale.
So, equation (2.2) can be written with equation (2.3) under the condition of L, — o

as

T = 0.033nzc,%f

0

) ) lo 2
Kk~ /3exp l— <5 92> Kzl dk. (2.4)

11



Finally, by using equation (3.478.1) of [10] T becomes

Ca
T =1,6393 l;—/3. (2.5)
From (4) of [9], b, (z) and b,4(z) are
b, (z) = b, (0) + 2b,(0)z + by(0)z?, (2.6a)
brg(z) = bre(0) + bg(0)z, (2.6b)

where b,-(0), b,¢(0) and bg(0) are respectively radial, radial-angular and angular
second moments at source. Terms of b,.q(z), which are b,4(0) and bg(0), also exist
in b,(z) as the coefficients of z and z2. Because of this, if b,.(z) is obtained, the
radius of curvature of the Laguerre-Gaussian beam is attained. From equation (7) of

[4], by is

0 (2T 3 *
r>u,.(r,0)u;(r,0)drdo
b,(z) = fomf‘)zﬂ r r . (2.7)
Jo Jy sus(s, ui(s, p)dsde
Complex field amplitude on source plane from equation (1) of [6], its complex
conjugate and complex conjugate of equation (1.27) are respectively expressed in the

following manner:

us(s, o,z = 0) = Ac[—jV2kas exp(—jcps)]m exp(—kas?) L™ (2kas?), (2.8a)

ui(s, g5, z = 0) = As[jV2kas exp(jq.’)s)]m exp(—kas?) LM (2kas?), (2.8b)

uy(r, ¢y, 2) = A[jV2kar exp(—j¢,)]  exp(—jkz) 0= Zjag)ymrrt

y —kar? [m 2kar? (2.9)
exp 1—2jaz) ™ \1+4a2z2)

where s and ¢, are radial coordinates at source, r and ¢, are radial coordinates at
receiver, n and m are respectively radial and angular mode numbers, a = 1/ka? is
related to the Gaussian source size, a, is source size, k = 2 /A is wavenumber and
j is v—1. From equation (2.7), numerator and denominator of b,(z) are

respectively called I,. and I. I, is

12



00 2T
I, = f f r3u,.(r, 0)us(r, 0)drdd. (2.10a)
o Jo

If equations (1.27) and (2.9) are substituted into equation (2.10a), I,- can be written as
® rm 1 —2kar?
I, = J. f r3A.AL(2ka)mr2m exp <—
0 0

(1 + 4a2z2)m+1 P\ 1 [ 2q2,2
[m 2kar? 2 irdo
n\1+4a222 )| T

(2.10b)

X

When integration of I,. with respect to 8 is obtained, I, will become

2m * —2kar?
b= AR (g | o e <1+T>

o | pm 2kar? Zd
"\1+ 4a2z2 "

For the solution of equation (2.10c¢), equation (13) of [11] is used, which is

Cn+t+1)(n+1t)!
- n! '

(2.10¢)

foox”lexp(—x) [LE (x)]?dx (2.11)
0

Parameters, which are used for adaptation of equation (2.10c) to equation (2.11), can
be written as
t=m, (2.12a)

2kar?

_ ' (2.12b)
1+ 4a?z2

X

and the derivative of equation (2.12b) is

dkar

dx = ———_ar.
T 1t 40222

(2.12¢)

When equations (2.12a), (2.12b) and (2.12c) are substituted into equation (2.10c), I,.

will become

13



2T
(1 + 4a2z2)m+1

I = AAL2ka)™ f ™+ exp (=) (LM ()]
0

(2.13)
(1 + 4a?z?)™1(1 + 4a?z?)
Qka)ym+14kar
After some simplifications, finally I, turns out to be
, 2m 2n+m+ 1)(n+m)!
Ir = ACACW (1 + 4(1222) ol . (214)
I, which is denominator of b,.(z), is
0 2T
I, = f f sus(s, p)us(s, p)dsdo. (2.15a)
o Jo
If equations (2.8a) and (2.8b) are substituted into equation (2.15a), I is
0 2T
I, = f f A AL (2ka)Mexp(—2kas?) [LM (2kas?)]?sdsd . (2.15b)
o Jo

In the same way, when integration of I with respect to 8 is obtained, I; will become

o0}

I, = ACAZ(Zka)m2nf s?Mexp(—2kas?)[L(2kas?)]?sds. (2.15¢)

0

Final equation of [12] is applied for the solution of equation (2.15¢), which is

f " exp (=) )™ LT (O] 2dx = w (2.16)

For the adaptation of equation (2.15¢) to (2.16), the following conversion is done:

X = 2kas?, (2.17a)

and the derivative of equation (2.17a) is

4kasds = dx. (2.17b)

If equations (2.17a) and (2.17b) are substituted into equation (2.15¢), I; will become

14



@ x™m dx
I, = ACA’g(Zka)mZEL k)™ exp(—x)[L’,?(Zkasz)]zs4kaS (2.18)
When simplifications are made, I, turns out to be
,2n(n +m)!
I, = A AL —kanl (2.19)

If equations (2.14) and (2.19), which are numerator and denominator of b,.(z), are

replaced into equation (2.7), b,.(z) will be

2,2) 2n+m+ 1)(n + m)!

. 2T
Achc grzgz (1 + 4@ l (220,

)i
br(z) = I_T =

1
s A A 2n(n + m)!

4kan!

b, (z) must be written as coefficients of z and z? to associate b,.(z) with b,.¢(2). So,
equation (2.21a) will turn to (2.21b) as follows:
(1+4a?z>)(2n+m+1)

2ka '

2n+m+1 4a’Qn+m+1)
+ z°.
2ka 2ka

b,(z) = (2.21a)

(2.21b)

b,(z) =

When the terms, which have same coefficients of b,.(z) and b,(z), are obtained
from equation (2.21b), they are replaced in equation (2.6b). So, b,¢(z) becomes

4a’(2n+m+1)
Z.

2.22
2ka ( )

brg (z) =

Finally, when equations (2.21b) and (2.22) are substituted into equation (2.1), the
radius of curvature of Laguerre-Gaussian beam is obtained as

2,2
1+ 4a°z )(2n+m+1)+éZ3T

2ka 3
R(z) = : (2.23)
4a?(2n+m+1) )
ha z+ 2z*T

2.2. NUMERICAL ANALYSIS OF THE FORMULATION
In this section, equation (2.23) is analyzed numerically by using Matlab. During

this analysis, unless specified otherwise, source size and wavelength are respectively

15



taken as 5 cm and 1.55 um, since these values are used commonly in the optical
systems. All the figures in this section are also scaled for the best view of each plot’s
trend. When radial and angular mode numbers are equal to zero, the radii of
curvatures of the Laguerre-Gaussian and the Gaussian beams should be the same.
Because of this, Laguerre-Gaussian beam is mentioned as Gaussian beam at n = 0

and m = 0 in the figures.

Radius of Curvature R(z) in km

n=0,m=0

L | L | | | L | L |
1 2 3 4 5 6 7 8 9 10
Propagation Distance z in km

Figure 2.1 Radii of curvatures vs. propagation distance z at fixed source size, wavelength

and moderate turbulence level

In Figure 2.1, for different radial and angular mode numbers, the radius of
curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation
distance at fixed wavelength, source size and moderate turbulence level (C? =
1075 m~2/3). Figure 2.1 shows that the radius of curvature of the Laguerre-
Gaussian beam is infinite at first, and then the radius of curvature reaches finite value
and decreases with increasing propagation distance. The radius of curvature reaches
its minimum value and after that point increases with longer propagation distance.
For higher radial and angular mode numbers, the radius of curvature will be higher.
In the same way, for smaller radial and angular mode numbers, the radius of

curvature will be lower.
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Figure 2.2 Radii of curvatures vs. propagation distance z under condition of free space at

fixed wavelength and source size

In Figure 2.2, for different radial and angular mode numbers, the radius of
curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation
distance at fixed wavelength, source size and under condition of free space (i.e.
C2 = 0). Figure 2.2 shows that under free space condition, the radius of curvature of
the Laguerre-Gaussian beam acts as independent of radial and angular mode number.
Clearly it is seen that equation (2.23) will become R(z) = 0.25z71(k?ag + 4z?) for
C2 = 0 which is equal to the radius of curvature of a pure Gaussian beam. As a
result, without turbulence, behaviors of the radius of curvature of the Laguerre-

Gaussian beam and the pure Gaussian beam are the same.
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Figure 2.3 Radii of curvatures vs. propagation distance z at fixed wavelength, source size

and high turbulence level

In Figure 2.3, for different radial and angular mode numbers, the radius of
curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation
distance at fixed source size, wavelength and high turbulence level (C2 =
10~* m~2/3). Figure 2.3 shows that the radius of curvature decreases significantly
with increasing turbulence levels for all radial and angular numbers and this increase
in turbulence levels causes to decrease of the differences between radii of curvatures
for all beams.

Obviously, from Figures 2.1, 2.2 and 2.3 it is seen that increasing turbulence
levels decrease the radius of curvature. Also, it is clear that trend of the Laguerre-

Gaussian beam is similar to a Gaussian beam.
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Cinm™” | n m R(z) inkm | zg in km
0 0 4.761 4.132
0 1 5.855 4.725
Lo-15 I 0 6.538 4.997
1 1 7.023 5.141
2 0 7.389 5.220
2 1 7.678 5.265
0 0
0 1
0 1 0 10.134 5.067
1 1
0 0 2.250 2.179
0 1 2.831 2.691
Lo-14 1 0 3.235 3.028
1 1 3.554 3.282
2 0 3.821 3.486
2 1 4.052 3.655

Table 2.1 Radii of curvatures and Rayleigh ranges of Laguerre-Gaussian beam for different

radial and angular mode numbers, under conditions of different turbulence levels

The radius of curvature of the Gaussian beam achieves its minimum value at
z = zg. Because of Laguerre-Gaussian beam also acts similarly to a Gaussian beam,
the Rayleigh ranges of all beams can be obtained from Figures 2.1, 2.2 and 2.3.
These values are shown in Table 2.1. Within one Rayleigh range, the Gaussian beam
carries its 50% of normalized intensity, which is shown in Figure 2.4. Beyond that
distance, the beam spreads more rapidly and loses its focus. From Table 2.1, the
Laguerre-Gaussian beams have longer Rayleigh ranges. Also, their Rayleigh ranges

decrease with strong turbulence.
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Figure 2.4 Radii of curvatures vs. source size at fixed wavelength, propagation distance z

and moderate turbulence level

In Figure 2.4, for different radial and angular mode numbers, the radius of
curvature of the Laguerre-Gaussian beam variations are plotted vs. source size at
fixed wavelength, propagation distance z and moderate turbulence level (C2 =
1075 m~2/3). Figure 2.4 shows that at smaller source size, the radii of curvatures
are around propagation distance and at bigger source size, the radii of curvatures

increase sharply with increasing radial and angular mode numbers.

z=5km //

65 |C2=10"m?2? -
" n Kl

.”, |

6l A =1.55 pm ./, _

Radius of Curvature R(z) in km

1 2 3 4 5 6 7 8 9 10
Source Size ag incm

Figure 2.5 Radii of curvatures vs. source size at fixed wavelength, propagation distance z

and high turbulence level
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In Figure 2.5, for different radial and angular mode numbers, the radius of curvature
of the Laguerre-Gaussian beam variations are plotted vs. source size at fixed
wavelength, propagation distance z and high turbulence level (CZ = 10~* m~2/3).
Figure 2.5 shows that high turbulence levels diminish the radius of curvature as
expected.

From Figures 2.4 and 2.5, it is possible to say that high turbulence decreases
the radius of curvature of the Laguerre-Gaussian beam. As in Figures 2.1, 2.2 and

2.3, the Laguerre-Gaussian beam follows the trend of a Gaussian beam.

Radius of Curvature R(z) in km

GaussianBeam T e e e
n=0,m=0

0.5 1 1.5 2
Wavelength 4 in ym

Figure 2.6 Radii of curvatures vs. wavelength at fixed source size, propagation distance z,

and moderate turbulence level

In Figure 2.6, for different radial and angular mode numbers, the radius of
curvature of the Laguerre-Gaussian beam variations are plotted vs. wavelength at
fixed source size, propagation distance z, and moderate turbulence level (C2Z =
10715 m~2/3). Figure 2.6 shows that the radii of curvatures decrease with increasing
wavelength for all orders of the Laguerre-Gaussian beam except for the Gaussian
beam (n =0, m =0). The Gaussian beam slightly increases with increasing

wavelength.
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CONCLUSION

In this study, analytical formulation for the radius of curvature has been
developed for the Laguerre-Gaussian beam in turbulent atmosphere. When related
terms with “associated Laguerre polynomials” are eliminated, this formula shows
that the radius of curvature of the Laguerre-Gaussian beam is reduced to the radius of
curvature of a pure Gaussian beam. In this point, accuracy of equation (2.23) is
shown by taking n = 0, m = 0 and C2 = 0. That is, equation (2.23) will be reduced
to equation (1.26). This formula is analyzed numerically by using Matlab under
certain conditions. All figures show that the radius of curvature of the Laguerre-
Gaussian beam acts in accordance with radius of curvature of Gaussian beam
(n =0,m = 0) at all radial and angular mode numbers. Also, it is observed that
increasing turbulence levels causes a decrease in radii of curvatures of Laguerre-
Gaussian and Gaussian beams (n = 0, m = 0). That is, increasing turbulence causes
the wavefront to bend as expected. Meanwhile increasing turbulence reduces the
difference between radii of curvatures of Laguerre-Gaussian beams, having different
radial and angular mode numbers.

From Table 2.1, for all radial and angular mode numbers, it is seen that
Laguerre-Gaussian beam has longer Rayleigh range than those for the Gaussian
beam at moderate and high turbulence levels. In the free space, because of Laguerre-
Gaussian beam acts as a Gaussian beam, all the beams have same Rayleigh range.

For different source sizes at a fixed propagation distance, the radius of
curvature of the Laguerre-Gaussian beam follows the trends for the Gaussian beam at
different turbulence levels. Radii of curvatures of the Laguerre-Gaussian and the
Gaussian beams are around the propagation distance for smaller source sizes. With
larger source sizes, radii of curvatures of these beams will increase. Also, the radius
of curvature of the Laguerre-Gaussian beam decreases with increasing wavelength

except lowest radial and angular mode numbers (Gaussian beam).
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Based on this information, beam type can be selected properly for the optical

link’s requirements.
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