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ABSTRACT 

 

 

RADIUS OF CURVATURE OF LAGUERRE-GAUSSIAN BEAM 

ÇAY, Saim 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Prof. Dr. Yusuf Z. UMUL 

September 2012, 26 pages 

 

In this thesis, the radius of curvature of Laguerre-Gaussian beam is 

formulated for turbulent atmosphere and analyzed numerically for various radial and 

angular mode numbers, the source size, propagation distance and wavelength in 

moderate, high and no turbulence levels. Results have shown that Laguerre-Gaussian 

beam approximates to Gaussian beam and radius of curvature of Laguerre-Gaussian 

beam reduces with increasing turbulence levels. The results have also shown that the 

radius of curvature of Laguerre-Gaussian beam increases with increasing source 

sizes and changes slowly with longer wavelengths.  

 

Keywords: Gaussian beam, radius of curvature, Laguerre-Gaussian beam, Gaussian 

beam intensity, Gaussian beam width  
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ÖZET 

 

 

LAGUERRE-GAUSSIAN IŞIK DEMETİ EĞRILIK YARIÇAPI 

ÇAY, Saim 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yusuf Z. UMUL 

Eylül 2012, 26 sayfa 

 

Tezde, Laguerre-Gaussian ışık demetinin eğrilik yarıçapı türbülanslı atmosfer 

için formüle edilmiş, ve çeşitli radyal ve açısal mod numaraları, kaynak boyutu, 

yayılım uzaklığı için yüksek ve orta türbülans seviyeleri ile türbülansın olmadığı 

durumlarda nümerik olarak incelenmiştir. Sonuçlar, Laguerre-Gaussian ışık 

demetinin, Gaussian ışık demetine yakınsadığını ve artan türbülans seviyeleriyle 

Laguerre-Gaussian ışık demetinin eğrilik yarıçapının azaldığını göstermiştir. Ayrıca, 

sonuçlar Laguerre-Gaussian ışık demetinin eğrilik yarıçapının kaynak boyutunun 

büyümesiyle arttığını ve artan dalga boyuyla yavaşça değiştiğini de göstermiştir. 

 

Anahtar Kelimeler: Gaussian ışık demeti, eğrilik yarıçapı, Laguerre-Gaussian ışık 

demeti, Gaussian ışık şiddeti, Gaussian ışık demeti genişliği  
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INTRODUCTION 

 

 

Since A.G. Bell made free space optical communication using sunlight as an 

optical carrier [1], free space optics (FSO) has been an important study subject. 

Nowadays, FSO systems have become small size and lightweight. And they use very 

narrow beam as an optical carrier which provides a more secure channel. Also, in 

these systems, larger bandwidths can be obtained by increasing the carrier frequency 

[2]. Furthermore, these systems do not require any license for using of spectrum [3]. 

FSO systems are separated from other conventional communication systems by these 

advantages. Despite these advantages, FSO systems have also some disadvantages. 

Since FSO systems transmit highly directed beam, alignment and pointing become 

more difficult. Also this beam can be affected by atmospheric factors such as 

turbulence, rain, snow and fog [2]. 

In FSO systems, laser beams are mostly used to transmit data. Lasers consist 

of optical resonator, pumping system and laser medium (atoms) and produce 

coherent, monochromatic and highly directed beam. Because of the need of sending 

data farther with less attenuated signal, characteristics of the laser beam have become 

more important. 

One of these laser beam characteristics is the beam profile and many of laser 

beams have the Gaussian-profile. Hence, optical properties of these laser beams, 

such as radius of curvature and scintillation, are studied for understanding how they 

are affected by atmospheric turbulence. Some of these studies are about radius of 

curvature of hyperbolic, sinusoidal, annular, dark hollow, flat topped Gaussian 

beams [4, 5] and scintillation of the Laguerre-Gaussian beam and the lowest order 

Bessel-Gaussian beam [6, 7]. 

The objectives of this study are to obtain a formulation for the radius of 

curvature of the Laguerre-Gaussian beam, examine effects of various turbulence 

levels on the radius of curvature of the Laguerre-Gaussian beam numerically, show
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that the Laguerre-Gaussian beam propagation profile acts as Gaussian propagation 

profile and compare the Gaussian beam with the Laguerre-Gaussian beam. 

In Chapter I, Laguerre and associated Laguerre functions, Gaussian beam and 

its optical properties, which are complex field amplitude, intensity, power, beam 

width, beam divergence, depth of focus, phase and the radius of curvature, are 

mentioned briefly. So, fundamental information is given about behavior of the 

Laguerre-Gaussian beam. 

In the first part of Chapter II, the radius of curvature of the Laguerre-

Gaussian beam is developed analytically in turbulent atmosphere. In the second part 

of Chapter II, the radius of curvature of the Laguerre-Gaussian beam is analyzed 

numerically with the help of Matlab under certain conditions. The obtained figures 

are commented. And these figures show that the Laguerre-Gaussian beam follows 

trend of the Gaussian beam. 

In Conclusion, this thesis is summarized briefly. Also, behavior of the 

Laguerre-Gaussian beam is commented on the results. Some useful data is provided 

for the application and the design of free space optical communication systems. 
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CHAPTER I 

 

LAGUERRE-GAUSSIAN BEAM 

 

1.1. LAGUERRE FUNCTIONS 

Laguerre equation arises in solution of the radial portion of the Schrödinger 

equation for one-electron atom as Hydrogen. Laguerre functions and polynomials are 

important for studying of behavior of some physical systems in quantum mechanics 

[8]. Laguerre function is a solution of Laguerre differential equation which is 

expressed by 

ᇱᇱݕݔ  ሺ1 െ ᇱݕሻݔ  ݕ݊ ൌ 0. (1.1)

݊ is a real number. It has singularities at ݔ ൌ 0 and ݔ ൌ ∞. For ݔ ൌ 0, it may be 

found one solution in the form of Frobenius series. This solution is given in [8] as 

ሻݔሺܮ ൌ ሺെ1ሻ
݊!

ሺ݇!ሻଶሺ݊ െ ݇ሻ!



ୀ

.ݔ  (1.2)

For this case, ݊ is a non-negative integer. This solution is a polynomial which has 

order ݊. So, ܮሺݔሻ is ݊th Laguerre polynomial. If equation (1.2) is calculated for the 

first six Laguerre polynomials, these polynomials will become, 

ሻݔሺܮ ൌ 1 (1.3)

ሻݔଵሺܮ ൌ െݔ  1 (1.4)

ሻݔଶሺܮ ൌ
ଶݔ െ ݔ4  2

2!
 (1.5)

ሻݔଷሺܮ ൌ
െݔଷ  ଶݔ9 െ ݔ18  6

3!
 (1.6)

ሻݔସሺܮ ൌ
ସݔ െ ଷݔ16  ଶݔ72 െ ݔ96  24

4!
 (1.7)

ሻݔହሺܮ ൌ
െݔହ  ସݔ25 െ ଷݔ200  ଶݔ600 െ ݔ600  120

5!
 (1.8)
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Figure 1.1 The first six Laguerre polynomials are plotted in Matlab by using equation (1.2) 

to show behavior of these Laguerre polynomials vs. ݔ values 

 

1.2. ASSOCIATED LAGUERRE FUNCTIONS 

Associated Laguerre equation is given as 

ᇱᇱݕݔ  ሺ݉  1 െ ᇱݕሻݔ  ݕ݊ ൌ 0. (1.9)

Equation (1.9) has singularities at ݔ ൌ 0 and ݔ ൌ ∞. Associated Laguerre function is 

any solution of this equation. If ݊ and ݉ are non-negative integers, solution of 

equation (1.9) is associated Laguerre polynomials which are given in [8] as  

ሻݔሺܮ ൌ ሺെ1ሻ
ሺ݊  ݉ሻ!

݇! ሺ݊ െ ݇ሻ! ሺ݇  ݉ሻ!



ୀ

.ݔ  (1.10)

From equation (1.10), the first four associated Laguerre Polynomials will become, 

ܮ
ሺݔሻ ൌ 	1 (1.11)

ଵܮ
ሺݔሻ ൌ 	െݔ ݉  1 (1.12)

ଶܮ
ሺݔሻ ൌ

ଶݔ െ 2ሺ݉  2ሻݔ  ሺ݉  1ሻሺ݉  2ሻ
2!

 (1.13)

ଷܮ
ሺݔሻ ൌ

െݔଷ  3ሺ݉  3ሻݔଶ െ 3ሺ݉  2ሻሺ݉  3ሻݔ
3!


ሺ݉  1ሻሺ݉  2ሻሺ݉  3ሻ

3!
 

(1.14)
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Figure 1.2 The first four associated Laguerre polynomials are plotted in Matlab by using 

equation (1.10) .This figure shows associated Laguerre polynomials vs. ݔ values at ݉ ൌ 1 

 

1.3. GAUSSIAN BEAM 

One of the most useful solutions of the paraxial Helmholtz equation is the 

Gaussian beam. Its intensity distribution is a Gaussian function in any transverse 

plane. Its complex field amplitude is given in [9] as 

ܷሺݎ, ሻݖ ൌ ܣ
௦ߙ
߱ሺݖሻ

exp ቆെ
ଶݎ

߱ଶሺݖሻ
ቇ exp ቈെ݆ ൬݇ܮ െ tanିଵ

ܮ
ோݖ
൰ െ ݆

ଶݎ݇

2ܴሺݖሻ
	, (1.15) 

where ݎ and ݖ are respectively radial and propagation distances, ߣ is wavelength, 

݇ ൌ  ሻ is the radius ofݖሻ is the beam width. And ܴሺݖis the wavenumber,  ߱ሺ ߣ/ߨ2

curvature. Rayleigh range is defined by 	ݖோ ൌ ௦ߙ .	ߣ/௦ଶߙߨ ൌ ඥݖߣோ/ߨ		 is source size 

and ܣ is the complex envelope. 

 

1.4. OPTICAL PROPERTIES OF THE GAUSSIAN BEAM 

Many lasers produce beams which are alike the Gaussian profile. That is, the 

beam is characterized by the Gaussian beam parameters. Hence, properties of the 

Gaussian beam are important. In the following sections, these properties of a 

Gaussian beam are briefly described.  
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1.4.1. Beam Width And Beam Divergence 

For propagation of a Gaussian beam, beam width is known as spread of a beam 

from the ݖ propagation axis. From [9], beam width is 

߱ሺݖሻ ൌ ௦ඨ1ߙ  ൬
ݖ
ோݖ
൰
ଶ

, (1.16)

where ߙ௦ is beam waist or source size, which is minimum of the beam width at 

ݖ ൌ 0. And 2ߙ௦ is known as the spot size. 

 
Figure 1.3 Beam width against propagation distance for a Gaussian beam at fixed 

wavelength and source size 

 

Figure 1.3 is plotted by using equation (1.16) in Matlab. Also Figure 1.3 

includes െ߱ሺݖሻ for the best view of all the terms. As shown in Figure 1.3, the beam 

expands for larger ݖ value and so, the beam width increases.  

 ௭ is beam divergence, which is illustrated in Figure 1.3. If it is assumed thatߠ

ோݖ ≪  can be written by using the (௭ߠ) angle with z-axis of the Gaussian beam ,ݖ

paraxial approach as 

௭ሻߠሺ݊ܽݐ ൎ ௭ߠ ൌ
௦ߙ
ோݖ

ൌ
ߣ
௦ߙߨ

. (1.17)

 

If the wavelength becomes shorter or the beam waist becomes larger, the beam 

divergence will become smaller. So, highly directional beam can be obtained. 
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Depth of focus is 2ݖோ long, where the Gaussian beam achieves the best focus. 

Center of this length is at the beam waist (ݖ ൌ 0). The depth of focus is illustrated in 

Figure 1.3 and expressed by 

ோݖ2 ൌ
௦ଶߙߨ2

ߣ
. (1.18)

From equation (1.18), it is clear that the depth of focus is directly proportional with 

the area of spot size (ߙߨ௦ଶ) [9] and inversely proportional with the wavelength. 

 

1.4.2. Intensity And Power 

Optical intensity can be defined as power per unit area (ݐݐܽݓ/݉ଶ). Optical 

intensity of a Gaussian beam is given in [9] by, 

,ݎሺܫ ሻݖ ൌ |ܷሺݎ, ሻ|ଶ. (1.19)ݖ

  
If equation (1.15) is substituted into equation (1.19), intensity of Gaussian beam will 

become 

,ݎሺܫ ሻݖ ൌ ܫ 
௦ߙ
߱ሺݖሻ

൨
ଶ

exp ቈെ
ଶݎ2

߱ଶሺݖሻ
, 

(1.20)

where ܫ is the intensity at source. The intensity is a Gaussian function of radial 

distance at any ݖ value [9]. 

 
Figure 1.4 Normalized intensity vs. propagation distance ݖ for a Gaussian beam at fixed 

wavelength, source size and ݎ ൌ 0 
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Figure 1.4 is plotted by using equation (1.6) at ݎ ൌ 0. In Figure 1.4, the 

intensity has its maximum value at ݖ ൌ 0 which is ܫ. And it reaches its half 

maximum value at ݖ ൌ േݖோ. Finally, it decreases with increasing value of ݖ. 

Optical power of a Gaussian beam is integral of the optical intensity over any 

transverse plane and its unit is ݐݐܽݓ. It is expressed by 

ܲሺݎ, ሻݖ ൌ න ,ݎሺܫ ݎ݀ݎߨሻ2ݖ
ஶ


. (1.21)

So, if equation (1.20) is substituted into equation (1.21), total optical power will be 

ܲ ൌ
1
2
௦ଶሻ. (1.22)ߙߨሺܫ

Equation (1.22) is independent of propagation distance ݖ. 

 

1.4.3. Phase 

From equation (1.15), the phase of the Gaussian beam is 

߮ሺݎ, ሻݖ ൌ ݖ݇ െ tanିଵ
ݖ
ோݖ


ଶݎ݇

2ܴሺݖሻ
. (1.23) 

At ݎ ൌ 0, 

߮ሺݎ ൌ 0, ሻݖ ൌ ݖ݇ െ tanିଵ
ݖ
ோݖ
. (1.24) 

The first term of equation (1.23) is the phase of plane wave and the latter term is 

phase retardation. The latter term also causes the delay of wavefront. Total phase 

delay from ݖ ൌ െ∞ to ݖ ൌ ∞ is ߨ. This phase delay is known as the Gouy effect 

[9]. 
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1.4.4. Radius Of Curvature 

 
Figure 1.5 Radii of curvatures of two circles. ܴଵ and ܴଶ are radii of these circles (ܴଵ > ܴଶ) 

 

Radius of curvature is a number which determines curvature of any surface. 

In Figure 1.5, if radius of curvature becomes longer, the surface will become more 

flat. In the same way, the surface will become more curved for smaller radius of 

curvature. For a Gaussian beam, radius of curvature determines curvature of the 

wavefronts.  

The third term of equation (1.23) is related to the curvature of wavefronts and 

the radius of curvature, ܴሺݖሻ, of a Gaussian beam is given in [9] as 

ܴሺݖሻ ൌ ݖ 1  ቀ
ோݖ
ݖ
ቁ
ଶ
൨. (1.25) 

When Rayleigh range is substituted into equation (1.25), radius of curvature for a 

Gaussian beam can be expressed by 

ܴሺݖሻ ൌ ௦ସߙଵሺ݇ଶିݖ0.25   ଶሻ. (1.26)ݖ4
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Figure 1.6 Radius of curvature vs. propagation distance ݖ in free space at fixed wavelength 

and source size 

 

Figure 1.6 is plotted by using equation (1.26) in Matlab. At ݖ ൌ 0, the radius of 

curvature is infinite. That is, at this point wavefronts are planar. And at ݖ ൌ  ோ, itݖ

reaches its minimum value. After that point, radius of curvature increases with longer 

propagation distance. 

 

1.5. LAGUERRE-GAUSSIAN BEAM 

The Laguerre-Gaussian beam is another solution of the paraxial Helmholtz 

equation in cylindrical coordinates.  

From equation (3) of [6], on receiver plane the complex field amplitude of Laguerre-

Gaussian beam is 

,ݎሺݑ ߶, ሻݖ ൌ ݎߙൣെ݆√2݇ܣ expሺ݆߶ሻ൧

expሺ݆݇ݖሻ

ሺ1 െ ሻݖߙ2݆

ሺ1  ሻାାଵݖߙ2݆

ൈ expቆ
െ݇ݎߙଶ

1  ݖߙ2݆
ቇ ܮ ቆ

ଶݎߙ2݇

1  ଶݖଶߙ4
ቇ, 

(1.27)

 

where  ݎ and ߶ are radial coordinates, ݖ is propagation distance, ݇ ൌ  is ߣ/ߨ2

wavenumber, ܣ is complex amplitude, ߙ ൌ  ௦ଶ is related to the Gaussian sourceߙ݇/1

size, ݊ and ݉ are respectively radial and angular mode numbers,  ݆ is √െ1, and ܮ is 

associated (generalized ) Laguerre polynomial. 
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CHAPTER II 

 

RADIUS OF CURVATURE OF LAGUERRE-GAUSSIAN BEAM 

 

2.1. DEVELOPMENT OF THE FORMULATION 

At a distance of ݖ from the source plane on a receiver plane the radius of curvature is 

given in equation (1) of [4] as 

ܴሺݖሻ ൌ
ܾሺݖሻ  ቀ43ቁ ݖ

ଷܶ

ܾఏሺݖሻ  ଶܶݖ2
,	 (2.1)

 

where ܾሺݖሻis radial second moment and ܾఏሺݖሻ is radial-angular second moment. ܶ 

represents contribution of turbulence, which is an integration over the entire range of 

spatial frequencies ߢ of the spectrum function Ψሺߢሻ. From equation (2) of [4], ܶ is 

ܶ ൌ ଶߨ න Ψሺߢሻߢଷ݀ߢ
ஶ


. (2.2)

 

For Ψሺߢሻ, modified von Kármán spectrum is applied in this thesis. From [2] Ψሺߢሻ is, 

Ψሺߢሻ ൌ
ݔଶ݁ܥ0,033 ቈെ൬

݈
5,92൰

ଶ

ଶߢ

ߢଶ  ቀ2ܮߨ
ቁ
ଶ
൨

ଵଵ
ൗ

, (2.3)

 

where ܥଶ is refractive-index structure constant, ݈ is inner scale and ܮ is outer scale. 

So, equation (2.2) can be written with equation (2.3) under the condition of  ܮ → ∞ 

as 

ܶ ൌ ଶܥଶߨ0.033 න ିߢ
ଶ
ଷൗ ݔ݁ ቈെ ൬

݈
5,92

൰
ଶ

ଶߢ .ߢ݀
ஶ


 (2.4)
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Finally, by using equation (3.478.1) of [10] ܶ becomes 

ܶ ൌ 1,6393
ଶܥ

݈
ଵ
ଷൗ
.	 (2.5)

From (4) of [9], ܾሺݖሻ and ܾఏሺݖሻ are 

ܾሺݖሻ ൌ ܾሺ0ሻ  2ܾఏሺ0ሻݖ  ܾఏሺ0ሻݖଶ, (2.6a)

ܾఏሺݖሻ ൌ ܾఏሺ0ሻ  ܾఏሺ0ሻݖ, (2.6b)
 

where ܾሺ0ሻ, ܾఏሺ0ሻ and ܾఏሺ0ሻ are respectively radial, radial-angular and angular 

second moments at source. Terms of ܾఏሺݖሻ, which are ܾఏሺ0ሻ and ܾఏሺ0ሻ, also exist 

in ܾሺݖሻ as the coefficients of ݖ and ݖଶ. Because of this, if ܾሺݖሻ is obtained, the 

radius of curvature of the Laguerre-Gaussian beam is attained. From equation (7) of 

[4], ܾ is 

ܾሺݖሻ ൌ
  ,ݎሺݑଷݎ ,ݎ∗ሺݑሻߠ ߠ݀ݎሻ݀ߠ

ଶగ


ஶ


  ,ݏ௦ሺݑݏ ߶ሻݑ௦∗ሺݏ, ߶ሻ݀݀ݏ߶
ଶగ


ஶ


. (2.7)

 

Complex field amplitude on source plane from equation (1) of [6], its complex 

conjugate and complex conjugate of equation (1.27) are respectively expressed in the 

following manner: 

,ݏ௦ሺݑ ߶௦, ݖ ൌ 0ሻ ൌ ݏߙൣെ݆√2݇ܣ expሺെ݆߶௦ሻ൧

expሺെ݇ݏߙଶሻ ଶሻ, (2.8a)ݏߙሺ2݇ܮ

 

,ݏ௦∗ሺݑ ߶௦, ݖ ൌ 0ሻ ൌ ݏߙ∗ൣ݆√2݇ܣ expሺ݆߶௦ሻ൧

expሺെ݇ݏߙଶሻ ଶሻ, (2.8b)ݏߙሺ2݇ܮ

 

,ݎ∗ሺݑ ߶, ሻݖ ൌ ݎߙ∗ൣ݆√2݇ܣ expሺെ݆߶ሻ൧

expሺെ݆݇ݖሻ

ሺ1  ሻݖߙ2݆

ሺ1 െ ሻାାଵݖߙ2݆

ൈ expቆ
െ݇ݎߙଶ

1 െ ݖߙ2݆
ቇ ܮ ቆ

ଶݎߙ2݇

1  ଶݖଶߙ4
ቇ,  

(2.9)

 

where ݏ and ߶௦ are radial coordinates at source, ݎ and ߶ are radial coordinates at 

receiver, ݊ and ݉ are respectively radial and angular mode numbers, ߙ ൌ  ௦ଶ isߙ݇/1

related to the Gaussian source size, ܽ௦ is source size, ݇ ൌ  is wavenumber and ߣ/ߨ2

	݆ is  √െ1. From equation (2.7), numerator and denominator of ܾሺݖሻ are 

respectively called ܫ and ܫ௦. ܫ is 
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ܫ ൌ න න ,ݎሺݑଷݎ ,ݎ∗ሺݑሻߠ ߠ݀ݎሻ݀ߠ
ଶగ



ஶ


.  (2.10a)

 

If equations (1.27) and (2.9) are substituted into equation (2.10a), ܫ can be written as 

ܫ ൌ න න ଶݎሻߙ∗ሺ2݇ܣܣଷݎ
1

ሺ1  ଶሻାଵݖଶߙ4 expቆ
െ2݇ݎߙଶ

1  ଶݖଶߙ4
ቇ	

ଶగ



ஶ



ൈ	ቈܮ ቆ
ଶݎߙ2݇

1  ଶݖଶߙ4
ቇ

ଶ

 .ߠ݀ݎ݀

(2.10b)

 

When integration of ܫ with respect to ߠ is obtained, ܫ will become 

ܫ ൌ ሻߙ∗ሺ2݇ܣܣ
ߨ2

ሺ1  ଶሻାଵݖଶߙ4 න ଶାଶݎ
ஶ


expቆݎ

െ2݇ݎߙଶ

1  ଶݖଶߙ4
ቇ

ൈ ቈܮ ቆ
ଶݎߙ2݇

1  ଶݖଶߙ4
ቇ

ଶ

 .ݎ݀

(2.10c)

 

For the solution of equation (2.10c), equation (13) of [11] is used, which is 

න ௧ܮሻሾݔ௧ାଵexpሺെݔ ሺݔሻሿଶ݀ݔ
ஶ


ൌ
ሺ2݊  ݐ  1ሻሺ݊  !ሻݐ

݊!
. (2.11)

 

Parameters, which are used for adaptation of equation (2.10c) to equation (2.11), can 

be written as 

ݐ ൌ ݉, (2.12a)

ݔ ൌ
ଶݎߙ2݇

1  ଶݖଶߙ4
, (2.12b)

 

and the derivative of equation (2.12b) is 

ݔ݀ ൌ
ݎߙ4݇

1  ଶݖଶߙ4
(2.12c) .ݎ݀

 

When equations (2.12a), (2.12b) and (2.12c) are substituted into equation (2.10c), ܫ 

will become 
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ܫ ൌ ሻߙ∗ሺ2݇ܣܣ	
ߨ2

ሺ1  ଶሻାଵݖଶߙ4 න ݎሻሿଶݔሺܮሻሾݔାଵexpሺെݔ
ஶ



ൈ
ሺ1  ଶሻାଵሺ1ݖଶߙ4  ଶሻݖଶߙ4

ሺ2݇ߙሻାଵ4݇ݎߙ
 .ݔ݀

(2.13)

 

After some simplifications, finally ܫ turns out to be 

ܫ ൌ ∗ܣܣ	
ߨ2

8݇ଶߙଶ
ሺ1  ଶሻݖଶߙ4

ሺ2݊  ݉  1ሻሺ݊  ݉ሻ!
݊!

. (2.14)

 

 ሻ, isݖ௦, which is denominator of ܾሺܫ

௦ܫ ൌ න න ,ݏ௦ሺݑݏ ߶ሻݑ௦∗ሺݏ, ߶ሻ݀݀ݏ߶
ଶగ



ஶ


. (2.15a)

 

If equations (2.8a) and (2.8b) are substituted into equation (2.15a), ܫ௦ is 

௦ܫ ൌ 	න න ଶሻݏߙሻexpሺെ2݇ߙଶሺ2݇ݏ∗ܣܣ
ଶగ



ஶ


ሾܮሺ2݇ݏߙଶሻሿଶ݀ݏ݀ݏ߶௦. (2.15b)

 

In the same way, when integration of ܫ௦ with respect to ߠ is obtained, ܫ௦ will become 

௦ܫ ൌ නߨሻ2ߙ∗ሺ2݇ܣܣ ݏ݀ݏଶሻሿଶݏߙሺ2݇ܮଶሻሾݏߙଶexpሺെ2݇ݏ
ஶ


. (2.15c)

 

Final equation of [12] is applied for the solution of equation (2.15c), which is 

න expሺെݔሻሺݔሻሾܮሺݔሻሿଶ݀ݔ ൌ
ሺ݊  ݉ሻ!

݊!

ஶ


. (2.16)

 

For the adaptation of equation (2.15c) to (2.16), the following conversion is done: 

ݔ ൌ ଶ, (2.17a)ݏߙ2݇

 

and the derivative of equation (2.17a) is 

ݏ݀ݏߙ4݇ ൌ (2.17b) .ݔ݀

 

If equations (2.17a) and (2.17b) are substituted into equation (2.15c), ܫ௦ will become 
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௦ܫ ൌ නߨሻ2ߙ∗ሺ2݇ܣܣ
ݔ

ሺ2݇ߙሻ
expሺെݔሻሾܮሺ2݇ݏߙଶሻሿଶݏ

ݔ݀
ݏߙ4݇

ஶ


. (2.18)

 

When simplifications are made, ܫ௦ turns out to be 

௦ܫ ൌ ∗ܣܣ
ሺ݊ߨ2  ݉ሻ!
!݊ߙ4݇

. (2.19)

 

If equations (2.14) and (2.19), which are numerator and denominator of ܾሺݖሻ, are 

replaced into equation (2.7), ܾሺݖሻ will be 

ܾሺݖሻ 	ൌ
ܫ
௦ܫ
ൌ
∗ܣܣ

ߨ2
8݇ଶߙଶ

ሺ1  ଶሻݖଶߙ4
ሺ2݊ ݉  1ሻሺ݊  ݉ሻ!

݊!

∗ܣܣ
ሺ݊ߨ2  ݉ሻ!
!݊ߙ4݇

. (2.20)

 

ܾሺݖሻ  must be written as coefficients of  ݖ and ݖଶ to associate ܾሺݖሻ with ܾఏሺݖሻ. So, 

equation (2.21a) will turn to (2.21b) as follows: 

ܾሺݖሻ ൌ
ሺ1  ଶሻሺ2݊ݖଶߙ4  ݉  1ሻ

ߙ2݇
, (2.21a)

ܾሺݖሻ ൌ
2݊ ݉  1

ߙ2݇

ଶሺ2݊ߙ4  ݉  1ሻ

ߙ2݇
ଶ. (2.21b)ݖ

 

When the terms, which have same coefficients of ܾሺݖሻ and ܾఏሺݖሻ, are obtained 

from equation (2.21b), they are replaced in equation (2.6b). So, ܾఏሺݖሻ becomes 

ܾఏሺݖሻ ൌ
ଶሺ2݊ߙ4 ݉  1ሻ

ߙ2݇
(2.22) .ݖ

 

Finally, when equations (2.21b) and (2.22) are substituted into equation (2.1), the 

radius of curvature of Laguerre-Gaussian beam is obtained as 

ܴሺݖሻ ൌ

ሺ1  ଶሻሺ2݊ݖଶߙ4  ݉  1ሻ
ߙ2݇  4

3 ݖ
ଷܶ

ଶሺ2݊ߙ4  ݉  1ሻ
ߙ2݇ ݖ  ଶܶݖ2

. (2.23)

 

2.2. NUMERICAL ANALYSIS OF THE FORMULATION 

In this section, equation (2.23) is analyzed numerically by using Matlab. During 

this analysis, unless specified otherwise, source size and wavelength are respectively 
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taken as 5 cm and 1.55	݉ߤ, since these values are used commonly in the optical 

systems. All the figures in this section are also scaled for the best view of each plot’s 

trend. When radial and angular mode numbers are equal to zero, the radii of 

curvatures of the Laguerre-Gaussian and the Gaussian beams should be the same. 

Because of this, Laguerre-Gaussian beam is mentioned as Gaussian beam at ݊ ൌ 0 

and ݉ ൌ 0 in the figures.  

 
Figure 2.1 Radii of curvatures vs. propagation distance ݖ at fixed source size, wavelength 

and moderate turbulence level 

 

In Figure 2.1, for different radial and angular mode numbers, the radius of 

curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation 

distance at fixed wavelength, source size and moderate turbulence level (ܥଶ ൌ

10ିଵହ	mିଶ/ଷ). Figure 2.1 shows that the radius of curvature of the Laguerre-

Gaussian beam is infinite at first, and then the radius of curvature reaches finite value 

and decreases with increasing propagation distance. The radius of curvature reaches 

its minimum value and after that point increases with longer propagation distance. 

For higher radial and angular mode numbers, the radius of curvature will be higher. 

In the same way, for smaller radial and angular mode numbers, the radius of 

curvature will be lower. 
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Figure 2.2 Radii of curvatures vs. propagation distance ݖ under condition of free space at 

fixed wavelength and source size 

 

In Figure 2.2, for different radial and angular mode numbers, the radius of 

curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation 

distance at fixed wavelength, source size and under condition of free space (i.e. 

ଶܥ ൌ 0). Figure 2.2 shows that under free space condition, the radius of curvature of 

the Laguerre-Gaussian beam acts as independent of radial and angular mode number. 

Clearly it is seen that equation (2.23) will become ܴሺݖሻ ൌ ௦ସߙଵሺ݇ଶିݖ0.25   ଶሻ forݖ4

ଶܥ ൌ 0 which is equal to the radius of curvature of a pure Gaussian beam. As a 

result, without turbulence, behaviors of the radius of curvature of the Laguerre-

Gaussian beam and the pure Gaussian beam are the same. 
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Figure 2.3 Radii of curvatures vs. propagation distance ݖ at fixed wavelength, source size 

and high turbulence level  

 

In Figure 2.3, for different radial and angular mode numbers, the radius of 

curvature of the Laguerre-Gaussian beam variations are plotted vs. propagation 

distance at fixed source size, wavelength and high turbulence level (ܥଶ ൌ

10ିଵସ		mିଶ/ଷ). Figure 2.3 shows that the radius of curvature decreases significantly 

with increasing turbulence levels for all radial and angular numbers and this increase 

in turbulence levels causes to decrease of the differences between radii of curvatures 

for all beams. 

Obviously, from Figures 2.1, 2.2 and 2.3 it is seen that increasing turbulence 

levels decrease the radius of curvature. Also, it is clear that trend of the Laguerre-

Gaussian beam is similar to a Gaussian beam. 
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  in m-2/3 	  in km ࡾࢠ ሻ in kmࢠሺࡾ 

10ିଵହ 

0 0 4.761 4.132 
0 1 5.855 4.725 
1 0 6.538 4.997 
1 1 7.023 5.141 
2 0 7.389 5.220 
2 1 7.678 5.265 

0 

0 0 

10.134 5.067 
0 1 
1 0 
1 1 

10ିଵସ 

0 0 2.250 2.179 
0 1 2.831 2.691 
1 0 3.235 3.028 
1 1 3.554 3.282 
2 0 3.821 3.486 
2 1 4.052 3.655 

 
Table 2.1 Radii of curvatures and Rayleigh ranges of Laguerre-Gaussian beam for different 

radial and angular mode numbers, under conditions of different turbulence levels 

 

The radius of curvature of the Gaussian beam achieves its minimum value at 

ݖ ൌ  ,ோ. Because of Laguerre-Gaussian beam also acts similarly to a Gaussian beamݖ

the Rayleigh ranges of all beams can be obtained from Figures 2.1, 2.2 and 2.3. 

These values are shown in Table 2.1. Within one Rayleigh range, the Gaussian beam 

carries its 50% of normalized intensity, which is shown in Figure 2.4. Beyond that 

distance, the beam spreads more rapidly and loses its focus. From Table 2.1, the 

Laguerre-Gaussian beams have longer Rayleigh ranges. Also, their Rayleigh ranges 

decrease with strong turbulence. 

 



20 
 

 
Figure 2.4 Radii of curvatures vs. source size at fixed wavelength, propagation distance ݖ 

and moderate turbulence level 

 

In Figure 2.4, for different radial and angular mode numbers, the radius of 

curvature of the Laguerre-Gaussian beam variations are plotted vs. source size at 

fixed wavelength, propagation distance ݖ and moderate turbulence level (ܥଶ ൌ

10ିଵହ	mିଶ/ଷ). Figure 2.4 shows that at smaller source size, the radii of curvatures 

are around propagation distance and at bigger source size, the radii of curvatures 

increase sharply with increasing radial and angular mode numbers. 

 

 
Figure 2.5 Radii of curvatures vs. source size at fixed wavelength, propagation distance ݖ 

and high turbulence level 
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In Figure 2.5, for different radial and angular mode numbers, the radius of curvature 

of the Laguerre-Gaussian beam variations are plotted vs. source size at fixed 

wavelength, propagation distance ݖ and high turbulence level (ܥଶ ൌ 10ିଵସ	mିଶ/ଷ). 

Figure 2.5 shows that high turbulence levels diminish the radius of curvature as 

expected. 

From Figures 2.4 and 2.5, it is possible to say that high turbulence decreases 

the radius of curvature of the Laguerre-Gaussian beam. As in Figures 2.1, 2.2 and 

2.3, the Laguerre-Gaussian beam follows the trend of a Gaussian beam. 

 

 
Figure 2.6 Radii of curvatures vs. wavelength at fixed source size, propagation distance ݖ,  

and moderate turbulence level 

 

In Figure 2.6, for different radial and angular mode numbers, the radius of 

curvature of the Laguerre-Gaussian beam variations are plotted vs. wavelength at 

fixed source size, propagation distance ݖ, and moderate turbulence level (ܥଶ ൌ

10ିଵହ		mିଶ/ଷ). Figure 2.6 shows that the radii of curvatures decrease with increasing 

wavelength for all orders of the Laguerre-Gaussian beam except for the Gaussian 

beam (݊ ൌ 0, ݉ ൌ 0). The Gaussian beam slightly increases with increasing 

wavelength. 
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CONCLUSION 

 

 

In this study, analytical formulation for the radius of curvature has been 

developed for the Laguerre-Gaussian beam in turbulent atmosphere. When related 

terms with “associated Laguerre polynomials” are eliminated, this formula shows 

that the radius of curvature of the Laguerre-Gaussian beam is reduced to the radius of 

curvature of a pure Gaussian beam. In this point, accuracy of equation (2.23) is 

shown by taking ݊ ൌ 0, ݉ ൌ 0 and ܥଶ ൌ 0. That is, equation (2.23) will be reduced 

to equation (1.26). This formula is analyzed numerically by using Matlab under 

certain conditions. All figures show that the radius of curvature of the Laguerre-

Gaussian beam acts in accordance with radius of curvature of Gaussian beam 

(݊ ൌ 0,݉ ൌ 0) at all radial and angular mode numbers. Also, it is observed that 

increasing turbulence levels causes a decrease in radii of curvatures of Laguerre-

Gaussian and Gaussian beams (݊ ൌ 0, ݉ ൌ 0). That is, increasing turbulence causes 

the wavefront to bend as expected. Meanwhile increasing turbulence reduces the 

difference between radii of curvatures of Laguerre-Gaussian beams, having different 

radial and angular mode numbers. 

From Table 2.1, for all radial and angular mode numbers, it is seen that 

Laguerre-Gaussian beam has longer Rayleigh range than those for the Gaussian 

beam at moderate and high turbulence levels. In the free space, because of Laguerre-

Gaussian beam acts as a Gaussian beam, all the beams have same Rayleigh range.  

For different source sizes at a fixed propagation distance, the radius of 

curvature of the Laguerre-Gaussian beam follows the trends for the Gaussian beam at 

different turbulence levels. Radii of curvatures of the Laguerre-Gaussian and the 

Gaussian beams are around the propagation distance for smaller source sizes. With 

larger source sizes, radii of curvatures of these beams will increase. Also, the radius 

of curvature of the Laguerre-Gaussian beam decreases with increasing wavelength 

except lowest radial and angular mode numbers (Gaussian beam).  
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Based on this information, beam type can be selected properly for the optical 

link’s requirements. 
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