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ABSTRACT

ITERATIVE SOLUTION OF SPARSE LINEAR SYSTEMS

ABOSHARB, Laila

M.Sc., Department of Mathematics and Computer Science

Supervisor: Assist. Prof. Dr. Emre Sermutlu

January 2013, 46 pages

Linear systems of equations are encountered frequently in many problems in

science and engineering. In large systems representing complicated problems,

it is vital to make use of the sparsity of the problem. In such systems, using

iterative methods rather than direct methods may decrease the time necessary

for solutions. This theses is a survey of techniques used to obtain the solution

of large sparse linear systems with emphasis on preconditioning. Mainly, we

compare the number of arithmetic operations necessary to solve sparse linear

systems using Gaussian elimination before and after reordering the coefficient

matrix by Cuthill-McKee algorithm to reduce bandwidth.

Keywords: Linear Systems of Equations, Gaussian Elimination, LU Factor-

ization, Cuthill-McKee Ordering, Iterative Methods, Sparse Matrices, Precon-

ditioning
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ÖZ

SEYREK DOĞRUSAL SİSTEMLERİN TEKRARLAMALI ÇÖZÜMLERİ

ABOSHARB, Laila

M.Sc., Matematik–Bilgisayar Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Emre Sermutlu

Ocak 2013, 46 pages

Fen ve mühendislikteki pek çok problemde doğrusal denklem sistemleriyle sıkça

karşılaşılmaktadır. Karmaşık problemleri temsil eden büyük sistemlerde, prob-

lemdeki seyrekliği kullanmak hayati önem taşır. Bu tür sistemlerde, doğrudan

çözümler yerine tekrarlamalı çözüm metodları kullanmak çözüm süresini azalta-

bilir. Bu tez büyük seyrek lineer sistemlerin çözümleri için kullanılan teknikleri

ve özellikle önhazırlama metodlarını incelemektedir. Başlıca sonucu, seyrek

doğrusal sistemler Gauss eleme metodu ile çözümlerinde Cuthill-McKee algo-

ritması ile önhazırlama yapmadan önce ve yaptıktan sonra, gerekli aritmetik

işlem sayılarının karşılaştırılmasıdır.

Anahtar Kelimeler: Doğrusal Denklem Sistemleri, Gauss Eleme Metodu,

LU Çarpanlara Ayırma metodu, Cuthill-McKee Sıralaması, Tekrarlamalı metod-

lar, Seyrek Matrisler, Önhazırlama.
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INTRODUCTION

Solving large linear systems of equations is an important step in many problems

of applied science and engineering. In theory, we can solve any such system

provided it is consistent, but in practice, direct solutions may take an excessive

amount of time.

The matrices representing such systems are usually sparse, that is, most of

the entries are zero. In this theses, we implement on MATLAB and analyze

numerical techniques for the solution of such linear systems. We start with

direct methods and then consider iterative methods of Gauss-Seidel, Jacobi

and SOR.

Preconditioning a matrix can reduce fill-ins and therefore the number of

steps of a solution. Among many different techniques, we investigate Cuthill-

McKee algorithm in depth.
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CHAPTER I

DIRECT METHODS FOR SOLVING SYSTEM OF LINEAR

EQUATIONS

1.1 SYSTEM OF LINEAR EQUATIONS

A system of linear equation is simply a finite set of linear equations.

For example,

x1 + 4x2 + x3 = 1

2x1 + 4x2 + x3 = 9

3x1 + 5x2 − 2x3 = 11

(1.1)

is system of three equations in three variables x1 , x2 and x3.

In order to write a general system of m linear equations in the n variables

x1, x2, ..., xn, we have:

a11x1 + a12x2 + · · · a1nxn = b1

a21x1 + a22x2 + · · · a2nxn = b2
...

...
...

... · · · ... · · · ...

am1x1 + am2x2 + · · · amnxn = bm

(1.2)

or, in compact form system (1.1) can be written

n∑
j=1

aijxji = 1, 2, · · · ,m. (1.3)
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1.2 SOLUTION OF LINEAR SYSTEM

Every system of linear equation has either no solution, exactly one solution, or

infinitely many solution.

A system of equations with no solution is said to be inconsistent and if it

has at least one solution, it is said to be consistent.

1.3 LINEAR SYSTEM IN MATRIX NOTATION

The general simultaneous system of n linear equations in the n unknown vari-

ables in the (1.1) can be written as:
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 a2n · · · ann




x1

x2
...

xn

 =


b1

b2
...

bn

 (1.4)

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 a2n · · · ann

, x =


x1

x2
...

xn

, b =


b1

b2
...

bn

 (1.5)

A the coefficient matrix, x the column matrix of unknown, and b the column

matrix of constants in the system (1.3) can be written compactly as:

Ax = b (1.6)
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1.4 DIRECT METHOD FOR LINEAR SYSTEM

To solve the system of linear equations using numerical methods, there are two

types of methods available. First type are called direct methods or elimination

method. Like (Cramer’s rule, Gaussian elimination method, Gauss-Jordon, and

LU decomposition.) This type of method finds the solution in a finite number

of steps. These methods are guaranteed to succeed and are recommended for

general purposes. Second type are called indirect or iterative methods. Iterative

methods start with an arbitrary first approximation to the unknown solution

x of linear system AX = b.

Jacobi method, Gauss-Seidel method, successive over-relaxation (SOR), and

conjugate method are widely used for solving large systems of equations. In

this chapter we consider just two methods for first type and in next chapters

we will consider the other methods.[2]

1.5 GAUSSIAN ELIMINATION METHOD

This method is one of the most popular and widely used direct methods for

solving linear system of algebraic equations.

The Gaussian elimination procedure start with forward elimination, in which

the first equation in the linear system is used to eliminate the first variable

from the rest of the (n−1) equations. Then the new second equation is used to

eliminate the second variable from the rest of the (n− 2) equations, and so on.

If (n − 1) such elimination is performed,then the resulting system will be the

triangle form. Once this forward elimination is completed, we can determine

whether the system is overdetermined or undetermined or has a unique solution.

If it has a unique solution, then backward substitution is used to solve triangle

system easily and one can find the unknown variables involved in the system.[2]

Example 1.5.1.

Solve the following system using Gaussian elimination method
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4x1 + 12x2 + 8x3 + 4x4 = −4

x1 + 7x2 + 18x3 + 9x4 = −5

2x1 + 9x2 + 20x3 + 20x4 = −25

3x1 + 11x2 + 15x3 + 14x4 = −18

(1.7)

Solution: Write the given system in the augmented form
4 12 8 4

... −4

1 7 18 9
... −5

2 9 20 20
... −25

3 11 15 14
... −18

 (1.8)

Firstly we have

m21 = −a21/a11 = −1/4

m31 = −a31/a11 = −1/4

m41 = −a41/a11 = −3/4

(1.9)

Now multiply the first row by m21 and add the result to the second row

,multiply the first row by m31 and add the result to the third row and multiply

the first row by m41 and add the result to the fourth row

R2 = R1 ∗m21 +R2

R3 = R1 ∗m31 +R3

R4 = R1 ∗m41 +R4

we will get

a21 = 0 ; a22 = 4 ; a23 = 16 ; a24 = 8

a31 = 0 ; a32 = 3 ; a33 = 16 ; a34 = 18

a41 = 0 ; a42 = 2 ; a43 = 9 ; a44 = 11

b2 = −4 ; b3 = −23 ; b4 = −23

(1.10)

Now we will get the first elimination as
4 12 8 4

... −4

0 4 16 8
... −4

0 3 16 18
... −23

0 2 9 11
... −15

 (1.11)
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Secondly we find:

m32 = −a32/a22 = −3/4

m42 = −a42/a22 = −1/4
(1.12)

We do the same thing for the third and forth rows

R3 = R2 ∗m32 +R3

R4 = R2 ∗m42 +R4

We will get

a31 = 0 ; a32 = 0 ; a33 = 4 ; a34 = 12

a41 = 0 ; a42 = 0 ; a43 = 1 ; a44 = 7

b3 = −20 ; b4 = −13

(1.13)

The second elimination is
4 12 8 4

... −4

0 4 16 8
... −4

0 0 4 12
... −20

0 0 1 7
... −13

 (1.14)

Finally

m43 = −a43/a33 = −1/4

R4 = R3 ∗m43 + R4

(1.15)

Now we will get

a41 = 0 ; a42 = 0 ; a43 = 0 ; a44 = 4

b4 = −8
(1.16)

And the last elimination is
4 12 8 4

... −4

0 4 16 8
... −4

0 0 4 12
... −20

0 0 0 4
... −8

 (1.17)

Back substitution

4x4 = −8 ⇒ x4 = −2

4x3 + 12x4 = −20 ⇒ x3 = 1

4x2 + 16x3 + 8x4 = −4 ⇒ x2 = −1

4x1 + 12x2 + 8x3 + 4x4 = −4 ⇒ x1 = 2

(1.18)

6



The vector of solution is X = [−2, 1,−1, 2]T

Algorithm Form for Gaussian Elimination

Integer i, j, k

Input A coefficients matrix n×m
b right-hand side matrix n1×m1

n,m number of rows and column of A

opc = 0 number of the operations

if n 6= m

ERROR

The coefficient matrix must be square

end if

if n1 6= n And m1 6= 1

ERROR

The column vector b must have the same number of rows as A

end if

A← [A b]

for i = 1 to n− 1 do

if A(i, i) = 0

[mxm indis] = max(|(A(i : n, i)|))
A = interchange(A, i, indis+ i− 1)

end if

for j = i+ 1 : min(i+ 3, n) do

C = A(j, i)/A(i, i)

for k = i to n+ 1 do

A(j, k) = A(j, k)− C ∗ A(i, k)

opc = opc+ 1

end for

end for

end for

d = min(|(diag(A)|))
if d < 10−15

7



ERROR

The system does not have unique solution

end if

sol = zeros(n, 1)

sol(n) = A(n, n+ 1)/A(n, n)

for i = n− 1 to −1 to 1

T = 0

for j = i+ 1 to n do

T = T + A(i, j) ∗ sol(j)
end for

sol(i) = (A(i, n+ 1)− T )/A(i, i)

end for

Return

opc counter of operations , sol matrix of solution

End Algorithm

The file for the Matlab program for Gaussian Elimination is given in Appendix

A.

1.6 GAUSSIAN ELIMINATION WITH ROW PIVOTING

This is another direct method to find the solution of a system of linear equa-

tions. Basic Gaussian elimination, as presented in the previous section, fails if

the pivot element at any stage of the elimination process is zero, because divi-

sion by zero not possible. In addition, difficulties that are not as easy to detect

arise if the pivot element is significantly smaller than the coefficients it is being

used to elimination that prevents or alleviates some of these shortcomings of

the basic procedure.[2]

Here we develop an implementation of Gaussian elimination, which try to

solve the problem which discussed above. In using Gaussian elimination by

partial pivoting, the basic approach is to use the largest (in absolute value)

8



element on or below the diagonal in the column of current interest as the

pivotal element for elimination in the rest of that column.

Example 1.6.1.

Consider the following linear system

2x1 + 2x2 − 2x3 = 0

−4x1 − 2x2 + 2x3 = −14

−2x1 + 3x2 + 9x3 = 9

(1.19)

The augmented matrix is
2 2 −2

... 8

−4 −2 2
... −14

−2 3 9
... 9

 (1.20)

For the first elimination step, since −4 the largest absolute coefficient of

first variable x1, the first row and the second row are interchanged, giving us
−4 −2 2

... −14

2 2 −2
... 8

−2 3 9
... 9

 (1.21)

By Gaussian elimination we obtain of the first elimination as
−4 −2 2

... −14

0 1 −1
... 1

0 4 8
... 16

 (1.22)

For the second elimination step, 4 is the largest absolute coefficient of the

second variable x2, the second and the third row are interchanged and after the

elimination we have the second elimination as
−4 −2 2

... −14

0 4 8
... 16

0 0 −3
... −3

 (1.23)

9



Now use backward substitution to get the vector of solution as

X = [3, 2, 1]T (1.24)

10



Integer i, j, k;

Input A coefficients matrix n× n
b right-hand side of equation Ax = b

n,m number of rows and column of A

Initialize M = A ∗ b
for k = 1 to n− 1 do

pivot← |M(k.k)|
p = k

for i = k + 1 to n do

if (|M(i, k)|) > pivot

pivot← |M(i, k)|
p = i

end if

end for

if (p > k)

T ←M(k, :)

M(k, :)←M(p, :)

end if

for i = k + 1 to n do

C ← −M(i, k)÷M(k, k)

M(i, :)←M(i, :) + C ∗M(k, :)

end for

end for

for j = 1 to m do

X(k, j)←M(n, n+ j)/M(n, n)

for k = n− 1 to 1 do

X(k, j)← (M(k, n+ j)−M(k, k + 1 : n) ∗X(k + 1 : n, j))/M(k, k)

end for

end for

Return X matrix of solution

End Algorithm

Table 1.1: Algorithm for Gaussian Elimination With Pivoting

11



CHAPTER II

LU FACTORIZATION

An n × n system of linear equations can be factorized to LU = A where L is

lower triangular matrix and U is upper triangular matrix, i,e.,


`11 0 0 · · · 0

`21 `22 0 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · `nn




u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n
...

...
...

. . .
...

0 0 0 · · · unn

 = A (2.1)

An LU factorization of A can be used to solve linear system of equations

i,e Ax = b.

There are many methods of finding an LU factorization in this chapter we will

cover most of them. LU methods for sparse linear systems are studied in [3, 5].

2.1 DERIVATION OF LU FACTORIZATION

LU factorization of A seeks to find L and U such that A = LU . We will con-

sider in next example and explain the method

Example 2.1.1.

Consider the LU factorization of three-by-three matrix

A =


2 4 0

2 8 2

0 4 4

 (2.2)
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First of all we have:

L =


1 0 0

0 1 0

0 0 1

 , U =


2 4 4

2 8 2

0 4 4

 (2.3)

m21 = −u21/u11 = −2/2 = −1

m31 = −u31/u11 = 0
(2.4)

Now after the first step from Gaussian elimination we have

L =


1 0 0

1 1 0

0 0 1

U =


2 4 0

0 4 2

0 4 4

 (2.5)

finally

m32 = −u32/u22 = −4/4 = −1 (2.6)

L =


1 0 0

1 1 0

0 1 1

U =


2 4 0

0 4 2

0 0 2

 (2.7)

Now multiply L by U we have A


1 0 0

1 1 0

0 1 1

 ∗


2 4 0

0 4 2

0 0 2

 =


2 4 0

2 8 2

0 4 4

 (2.8)
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integer i, j, k, n

input A n by n matrix

L = I where I is n by n identity marrix; U = A

for k = 1 to n− 1 do

for i = k + 1 to n do

m(i, k)← −U(i, k)/U(i, k)

for j = k to n do

U(i, j)← U(i, j) +m(i, k) ∗ U(k, j)

end for

L(i, k)← −m(i, k)

end for

end for

return L;U

Table 2.1: Algorithm for LU factorization using Gaussian Elimination

2.2 LU FACTORIZATION WITH PIVOTING

For problems in which row pivoting must be performed on the coefficient matrix

A during Gaussian elimination, the LU factorization with pivoting of A can

be represented in matrix PA = LU , where P is the permutation matrix that

represents the row interchanges that occurred during the pivoting. We will

explain this method in next example:

Example 2.2.1.

Consider the following matrix

A =


1 4 1

2 4 1

3 5 2

 (2.9)

initialize we have
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L =


1 0 0

0 1 0

0 0 1

 , U =


1 4 1

2 4 1

3 5 2

 , P =


1 0 0

0 1 0

0 0 1

 (2.10)

For the first elimination step, since 3 large than 1 interchange rows 1 and 3

in matrices U and P .

L =


1 0 0

0 1 0

0 0 1

 , U =


3 5 2

2 4 1

1 4 1

 , P =


0 0 1

0 1 0

1 0 0

 (2.11)

The first stage of elimination gives

L =


1 0 0

2/3 1 0

1/3 0 1

 , U =


3 5 2

0 −2/3 −1/3

0 7/3 1/3

 , P =


0 0 1

0 1 0

1 0 0

 (2.12)

The second step of elimination gives

L =


1 0 0

2/3 1 0

1/3 5/6 1

 , U =


3 5 2

0 2/3 −1/3

0 0 −5/6

 , P =


0 0 1

0 1 0

1 0 0

 (2.13)

Now L ∗ U = A


1 0 0

2/3 1 0

1/3 5/6 1

 ∗


3 5 2

0 2/3 −1/3

0 0 9/6

 =


3 5 2

2 4 1

1 4 1

 (2.14)

Now multiply P by A we will get A in (4.3)
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2.3 DOOLITTLE FACTORIZATION

The Doolittle form of LU factorization assume that the diagonal elements of

matrix L are ones. Thus for three-by-three matrix A, the problem is to find

matrices L and U so that LU = A:
1 0 0

`21 1 0

`32 `32 1

 ∗

u11 u12 u13

0 u22 u23

0 0 u33

 =


a11 a12 a13

a1 a22 a23

a31 a32 a33

 (2.15)

Example 2.3.1.

To find LU factorization for

A =


1 2 3

2 20 26

3 26 70

 (2.16)

by Doolittle’s method,we write the matrix A as following form:
1 0 0

`21 1 0

`32 `32 1

 ∗

u11 u12 u13

0 u22 u23

0 0 u33

 =


1 2 3

2 20 26

3 26 70

 (2.17)

(1)u11 = a11 = 1⇒ u11 = 1

(1)u12 = a12 = 2⇒ u12 = 2

(1)u13 = a13 = 3⇒ u13 = 3

`21u11 = a31 = 2⇒ `21 = 2

`31u11 = a21 = 3⇒ `31 = 5

(2.18)

By using these values we can find the second row of U and the second row

of U :


1 0 0

2 1 0

3 `32 1

 ∗


1 2 3

0 u22 u23

0 0 u33

 =


1 2 3

2 20 26

3 26 70

 (2.19)
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(2)(2) + u22 = a22 = 20⇒ u22 = 20− 4 = 16

(2)(3) + u23 = a23 = 26⇒ u23 = 26− 6 = 20

(3)(2) + `32u22 = a32 = 26⇒ `32 = (26− 6)/16 = 5/4

(2.20)

finally,


1 0 0

2 1 0

3 5/4 1

 ∗


1 2 3

0 16 20

0 0 u33

 =


1 2 3

2 20 26

3 26 70

 (2.21)

(3)(3) + (5/4)(20) + u33 = 70⇒ u33 = 36 (2.22)

The factorization is:


1 0 0

2 1 0

3 5/4 1

 ∗


1 2 3

0 16 20

0 0 36

 =


1 2 3

2 20 26

3 26 70

 (2.23)

2.4 CHOLESKY LU FACTORIZATION

For the symmetric positive definite matrix the general form, for three by three

linear system, the problem is to find matrices L and U so LU = A; as following:


x11 0 0

`21 x22 0

`31 `32 x33

 ∗

x11 u12 u13

0 x22 u23

0 0 x33

 =


a11 a12 a13

a21 a22 a23

a31 a31 a33

 (2.24)
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Example 2.4.1.

To solve last example by Cholesky method we write the matrix A as (4.5)


x11 0 0

`21 x22 0

`31 `32 x33

 ∗

x11 u12 u13

0 x22 u23

0 0 x33

 =


1 2 3

2 20 26

3 26 70

 (2.25)

The first stage of calculation is:

x11x11 = a11 = 1⇒ x11 = 1

x11u12 = a12 = 2⇒ u12 = 2

x11u13 = a13 = 3⇒ u13 = 3

`21x11 = a21 = 2⇒ `21 = 2

`31x11 = a31 = 3⇒ `31 = 3

(2.26)

Next, from the values computed in the first stage, the product is:


1 0 0

2 x22 0

3 `32 x33

 ∗


1 2 3

0 x22 u23

0 0 x33

 =


1 2 3

2 20 26

3 26 70

 (2.27)

We thus compute:

(2)(2) + (x22)(x22) = 20⇒ x22 = (20− 4)1/2 = 4

(2)(3) + (x22)(u23) = 26⇒ u23 = (26− 6)/4 = 5

(3)(2) + (`32)(x22) = 26⇒ `32 = (26− 6)/4 = 5

(2.28)

Now we find the unknown:


1 0 0

2 4 0

3 5 x33

 ∗


1 2 3

0 4 5

0 0 x33

 =


1 2 3

2 20 26

3 26 70

 (2.29)
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(3)(3) + (5)(5) + (x33)(x33) = 70

x233 = (70− 9− 25) = 36

⇒ x33 = 9

(2.30)

Finally LU factorization is:

L


1 0 0

2 4 0

3 5 6

 ∗ U


1 2 3

0 4 5

0 0 6

 = A


1 2 3

2 20 26

3 26 70

 (2.31)
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integer i, j, k, n

input A n by n matrix

L = I where I is n by n identity matrix U = A

P = I

for k = 1 to n− 1 do

piv = abs(U(k, k))

p = k

fori = k + 1 to n do

ifabs(U(i, k)) do

piv = abs(U(i, k))

p = i

end if

end for

if (p > k)

rch1 = U(k, :) ; U(k, :) = U(p, :)

(p, :) = rch1 ; rch2 = P (k, :)

P (k, :) = P (p, :) ; P (k, :) = rch2

for j = 1 to k − 1

rch3 = L(k, j)

L(k, j) = L(p, j)

L(p, j) = rch3

end for

end if

for i = to n

s = −U(i, k)/U(k, k)

U(i, :) = U(i, k) + s ∗ U(k, :)

L = (i, k) = −s
end for

end for

return L;U

Table 2.2: Algorithm Form for LU factorization with pivoting
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integer i, j, k

n is size of A

input A n by n symmetric matrix

L = I(n) where I is n by n identity matrix

U = 0(n)

for k = 1 to n do

for i = k + 1 to n do

U(k, k)← A(k, k)− L(k, 1 : k − 1) ∗ U(1 : k − 1, k)

for j = k + 1to n do

U(k, j)← A(k, j)− L(k, 1 : k − 1) ∗ U(1 : k − 1, j)

L(j, k)← A(j, k)− L(j, 1 : k − 1) ∗ U(1 : k − 1, k)/U(k, k)

end for

end for

end for

return L;U

Table 2.3: Algorithm for LU factorization using Doolittle method
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integer i, j, k

n is size of A

input A n by n symmetric matrix

for k = 1 to n do

a(k, k) =
√
a(k, k)

for i = k + 1 to n do

a(i, k) = a(i, k)/a(k, k)

end for

for j = k + 1 to n do

for i = j to n do

a(i, j) = a(i, j)− a(i, k) ∗ a(j, k)

end for

end for

end for

Output A is an n by n matrix

Table 2.4: Algorithm for Cholesky LU factorization Method
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CHAPTER III

ITERATIVE METHODS

The iterative methods strategy produces a sequence approximate solution vec-

tors x(0), x(1), . . . for system Ax = b [7]. The numerical procedure is designed

so that, in principle, the sequence of vectors converges to the actual solution.

The process can be stopped when sufficient precision has been attained. The

iterative methods to solve system of linear equation start with an approxima-

tion x(0) ∈ R to the solution x of Ax = b, and general a sequence of vectors{
x(k)
}∞
k=0

that converge to x. Reliable and efficient iterative methods are stud-

ied further in [8]. In a typical iterative method, we start with the system

Ax = b and convert it into the equivalent system x = Cx + d. After that, we

generate successive approximations x(0), x(1), . . ., where

x(k) = Cx(k−1) + d (3.1)

In this chapter we consider three common iterative techniques for solving linear

system. The Jacobi, Gauss-Seidel, and SOR methods. The basic idea is to solve

the ith equation in the system for ith variables, in order to convert the given

system (using a three by three system for illustration):

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(3.2)

into the system

x
(k+1)
1 = −a12/a11x(k)2 −a13/a11x(k)3 + b1/a11

x
(k+1)
2 = −a21/a22x(k)1 −a23/a22x(k)3 + b2/a22

x
(k+1)
3 = −a31/a33x(k)1 −a32/a33x(k)2 + b3/a33

(3.3)
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3.1 JACOBI METHOD

In Jacobi method the linear system Ax = b is converted into the system x =

Cx+ d. Here, the matrix C has zeros on the diagonal. Then, at each step, the

vector x is updated by using all the components of x of the previous step.

Example 3.1.1.

Consider the system of equations

9x1 + x2 + x3 = 10

2x1 + 10x2 + 3x3 = 19

3x1 + 4x2 + 11x3 = 0

(3.4)

which are converted to

x
(1)
1 =

1

9
(−x(0)2 − x

(0)
3 + 10)

x
(1)
2 =

1

10
(−2x

(0)
1 − x

(0)
3 + 19)

x
(1)
3 =

1

11
(−3x

(0)
1 − 4x

(0)
2 )

(3.5)

In the matrix notation, the original system, Ax = b, i.e.,
9 1 1

2 10 3

3 4 11



x1

x2

x3

 =


10

9

0

 (3.6)

has been transformed to


x
(k)
1

x
(k)
2

x
(k)
3

 =


0 −1/9 −1/9

−1/5 0 1/10

−3/11 −4/11 0



x
(k−1)
1

x
(k−1)
2

x
(k−1)
3

+


10/9

19/10

0

 (3.7)

where the iteration counter is indicated by a superscript starting with x(0) =

(0, 0, 0) we find
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
x
(2)
1

x
(2)
2

x
(2)
3

 =


0 −1/9 −1/9

−1/5 0 1/10

−3/11 −4/11 0




0

0

0

+


10/9

19/10

0

 =


10/9

19/10

0

 (3.8)

for the second iteration, we have
x
(1)
1

x
(1)
2

x
(1)
3

 =


0 −1/9 −1/9

−1/5 0 1/10

−3/11 −4/11 0




10/9

19/10

0

+


10/9

19/10

0

 =


0.9

1.6778

−0.9939


(3.9)

The Jacobi method converges in 30 iterations to the x(k) = (1, 2,−1). In

the next table number of steps for Jacobi method is given:

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.0000 0.0000 0.0000

1 1.1111 1.9000 0.0000

2 0.9000 1.6778 -0.9939
...

...
...

...

30 1.0000 2.0000 -1.000

3.2 GAUSS-SEIDEL METHOD

This iterative method is a modification of the Jacobi iterative method and gives

us recently calculated values. In this method each component of the vector x

on the right hand side of the transformed equation is updated immediately as

each iteration proses.

Example 3.2.1.

Consider the last example in Jacobi method we found the solution after 30

iteration and here we found it after just 14 iteration.In the next table number

of steps for Gauss-Seidel method. We listed the solution below.
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k x
(k)
1 x

(k)
1 x

(k)
3

0 0.0000 0.0000 0.0000

1 1.0000 0.7143 01.0317

2 1.0397 1.014 -0.9895
...

...
...

...

14 1.0000 2.0000 -1.000

In the previous example it easy to see that Gauss-Seidel method converges

faster than the Jacobi method.

3.3 SUCCESSIVE OVER-RELAXATION METHOD (SOR)

It is possible to modify the Gauss-Seidel method by introducing an additional

parameter ω(omega),that may accelerate the convergence of the iteration. The

idea is to take a combination of the previous value of xand the current update

(from the last method). The parameter ω controls the proportion of the up-

date that comes from the previous solution and proportion that comes from

the current calculation. For 0 < ω < 1, the method is called successive under

relaxation; For 1 < ω < 2, the method is called successive over relaxation

(SOR). In order convert the given system (3.1) into the system

x
(k+1)
1 = (1− ω)x

(k)
1 + ω/a11

(
b1 − a12x(k)2 − a13x

(k)
3

)
x
(k+1)
2 = (1− ω)x

(k)
2 + ω/a22

(
b2 − a21x(k+1)

1 − a23x(k)3

)
x
(k+1)
3 = (1− ω)x

(k)
3 + ω/a33

(
b3 − a31x(k+1)

1 − a32x(k+1)
2

) (3.10)

Example 3.3.1.

We will consider the same example in Jacobi and Gauss-Seidel methods
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SOR. We start with initial X(0) = [0, 0, 0](T ) and with the best ω = 0.9

x
(1)
1 = (1− ω)x

(0)
1 + ω/9

(
10− x(0)2 − x

(0)
3

)
= 1.1111

x
(1)
2 = (1− ω)x

(0)
2 + ω/10

(
19− 2x

(0)
1 − 3x

(0)
3

)
= 1.6778

x
(1)
3 = (1− ω)x

(0)
3 + ω/0

(
0− 3x

(0)
1 − 4x

(0)
2

)
= −0.9131

(3.11)

The first and subsequent iterations are listed below.

k x
(k)
1 x

(k)
1 x

(k)
3

0 0.0000 0.0000 0.0000

1 1.1111 1.6778 -0.9131

2 1.0262 1.9687 -0.9958
...

...
...

...

7 1.0000 2.0000 -1.0000
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Integer i, j, k

Input A is an n by m nonsingular matrix

b is an n by 1 matrix

xold is an n by 1 matrix the initial guess

maxits is the maximum number of iterations

ε is the tolerance for xold Initialize n = length(b)

for k = 1 to maxits do

for i = 1 to n do

sum = 0

for j = 1 to n do

sum = sum+ a[i, j]× xold[j]

end for

xnew[i] = xold[i] + (b[i]− sum)/a[i, i]

end for

if ‖xnew − xold‖ ≤ ε

then return xnew

end if

for i = 1 to n do

xold[i] = xnew[i]

end for

end for

Output xold is an n x 1 matrix the Jacobi approximation to the solution of Ax = b

Table 3.1: Algorithm for Jacobi Iteration Method
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Integer i, j, k

Input A is an n by m nonsingular matrix

b is an n by 1 matrix

x0 is an n by 1 matrix the initial guess

maxits is the maximum number of iterations

ε is the tolerance for xold Initialize n = length(b) ; x = zeros(n, 1)

Y = zeros(n, 1) ;Y = x0

for k = 1 to maxit+ 1 do

for i = 1 to n do

S ← 0

for j = 1 to i− 1 do

S ← S + A(i, j) ∗ x(j)

end for

for j = i+ 1 to n do

S = S + A(i, j) ∗ x0(j)

end for

if A(i, i) == 0

break

end if

x(i)← (−S + b(i))/A(i, i)

end for

error ← ‖(norm(x− x0))‖
rerr = error/(norm(x) + eps)

x0← x

Y ← [Y x]

if rerr < ε

break

end if

end for

output x

end algorithm

Table 3.2: Algorithm for Gauss-Seidel Iteration Method.
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Integer i, j, k

Input A is an n by m nonsingular matrix

b is an n by 1 matrix

x0 is an n by 1 matrix the initial guess

maxits is the maximum number of iterations

ε is the tolerance for xold

ω is the relaxation scalar, between 0 and 2

for i = 1 to n do

C(i, i)← 0

end for

for i = 1 to n do

C(i, 1 : n)← C(i, 1 : n)/A(i, i)

r(i, 1)← b(i)/A(i, i)

end for

while (i <= maxitr) do

xold← x

for k = 1 to n do

x(k)← (1− w) ∗ xold(k) + w ∗ (C(k, :) ∗ x+ r(k))

end for

if norm(xold− x) <= ε

output SOR method is converged

return x the vector of solution

end if

i← i+ 1

end while

Output SOR method did not converged

x the vector of solution

End algorithm

Table 3.3: Algorithm for SOR Iteration Method.
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CHAPTER IV

SPARSE MATRICES

A sparse matrix is a matrix handled by special techniques making use of the

large number of zero entries. This definition will helps to define how many

zeros a matrix needs in order to be sparse. The answer is that it depends on

the structure of the matrix, and how we can use it. In many applications it is

common to deal with very large matrices where only a few coefficients are not

zero. In such cases, memory requirements can be decreased and performance

increased by using a specialized representation storing only those coefficients.

In next equation there is (matrix A) which shown a small example for sparse

matrix.

A =



a11 0 0 0 0 0 a17 0

0 a22 0 0 a24 0 0 0

0 0 a33 0 0 0 0 a38

0 0 0 a44 0 0 0 0

0 a52 0 0 a55 0 0 0

a61 0 0 0 0 a66 0 0

0 0 a73 0 0 0 a77 0

0 0 0 a84 0 a86 0 a88


(4.1)

4.1 STORAGE SCHEME FOR SPARSE MATRIX

There are different storage schemes for sparse matrices. The main goal from

these storage is to represent only the nonzero elements, and do the matrix

multiplications with fewer arithmetic operations.
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4.2 COORDINATE FORMAT STORAGE

This method of storage is the simplest storage scheme method. It is also flexible.

It is often the most basic format in sparse matrix applications. Here we have

three arrays:

1. AA is a real array values of the nonzero elements of A in any order.

2. SR is an integer array containing there row indices.

3. SC is the second integer array containing their column indices.

The length of each array is equal to the number of nonzero elements.

Example 4.2.1.

The matrix

A =



1 0 0 0 0 0 0 11

0 4 0 0 13 0 0 0

22 0 3 0 0 0 0 0

5 0 0 18 2 0 0 0

0 9 0 0 12 0 0 0

0 0 15 0 14 8 0 0

20 0 0 0 0 0 7 0

0 6 0 0 0 0 0 19


(4.2)

by coordinate format method all three arrays are of length Nz and will be

storage as

AA = 19 6 20 14 8 18 12 7 3 2 5 11 13 1 15 3 4 2

SR = 8 8 7 6 6 4 5 7 3 4 4 1 2 1 6 3 2 4

SC = 8 2 1 5 6 4 5 7 3 5 1 8 5 1 3 3 2 5

(4.3)
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4.3 COMPRESSED SPARSE ROW (CSR) FORMAT

This format is used very frequently for storing general sparse matrices.

For typical computations, it is better than the coordinate format. We again

construct three arrays: [7]

1. A real array AA contains the real values aij stored row by row, from row

1 to n.

2. An integer array JA contains the column indices of the elements aij as

stored in array AA.

3. An integer array IA contains the pointers to the beginning of the each

row in the arrays AA and JA.

The length of AA and JA are Nz while the length of IA is n+1 with IA((n+1).

Thus, the above matrix may be stored as follows:

AA = 1 11 4 13 22 3 5 18 2 9 12 15 14 8 20 7 6 19

JA = 1 8 2 5 1 3 1 4 5 2 5 3 5 6 1 7 2 8

IA = 1 3 5 7 10 12 15 17 19

(4.4)

There are a number of variations for the (CSR) format. The most obvious

variation is storage the columns instead of the rows.

4.4 MODIFIED SPARSE ROW (MSR) FORMAT

Many sparse matrices have nonzero diagonals. Also, these elements are accessed

more frequently. Therefore it may be advantageous to store them separately.

The (MSR) format has just two arrays:

1. AA is a real array.
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2. JA an integer array.

The first n positions in AA contain the diagonal elements of the matrix in

order. The unused last position of the array AA may hold information about

the matrix.

Starting at position n + 2, the nonzero entries of AA, except the diagonal

elements, are stored by row. For each element AA(k), the integer JA(k) rep-

resents its column index on the matrix. The n+ 1 first positions of JA contain

the pointer to the beginning of each row in AA and JA. The arrays for the

above above example will be:[7]

AA = 1 4 3 18 12 8 7 18 ∗ 11 13 22 5 2 9 15 8 20 6

JA = 10 14 18 25 28 33 41 44 44 8 5 1 1 5 2 3 6 2

(4.5)

4.5 SPARSE MATRICES MULTIPLICATION

In this section we will show how can the storage sparse matrix formats helps

in sparse matrices multiplication.

When we multiply two sparse matrices normally, we perform many unneces-

sary operations. There are a lot of multiplications and additions by zero which

do not contribute to the result but nevertheless take time and occupy space in

memory. But if the matrices are kept in sparse format, these operations are

eliminated.

The disadvantage of sparse format is increased time for indexing and search-

ing.
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integer i, j

input A n by m sparse matrix

Initialize empty vectors AA, JA

counter=1

for i = 1 to n do

for j = 1 to m and if i, j 6= 0 do

compute AA← [AA aij]

compute JA← [JA j]

counter=counter+1

end for

IA(i+1)=counter

end for

Table 4.1: Algorithm Form for CSR format
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Integer i, j, k

Input

AA the real values aij stored row by row, from row 1 to n

JA the column indices of the elements aij as stored in array AA

IA contains the pointers to the beginning of the each row in the arrays AA and JA

AB the real values bij stored row by row, from row 1 to n

JB the column indices of the elements bij

IB contains the pointers to the beginning of the each row in the arrays AB and JB

Let n← size(IA, 2)− 1

Initialize C ← zeros(n)

for i = 1 to n do

k ← IA(i) to IA(i+ 1)− 1 ; m← size(k, 2)

r ← AA(k) ; c← JA(k)

for j = 1 to n do

z ← zeros(1,m)

for p = 1 to m do

for q = IB(c(p)) to IB(c(p) + 1)− 1 do

if JB(q) == j

z(p)← AB(q)

end if

end for

end for

C(i, j)← sum(r. ∗ z)

end for

end for

output C sparse matrix result

Table 4.2: Algorithm Form for MSR format
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CHAPTER V

SPARSE MATRIX REORDERING

In this section, we will describe some important concepts in matrix ordering.

Then, we will present and discuss the implementation of one of the most com-

monly used ordering algorithms known as Cuthill-McKee Ordering. Bandwidth

reduction is presented for a variety of practical problems in [6].

5.1 FILL-IN

Consider the matrix A where

A =



8 3 0 0 0 0 0 0

3 20 3 8 0 0 0 0

0 3 7 0 0 0 0 0

0 8 0 15 0 0 0 0

0 0 0 0 9 4 0 0

0 0 0 0 4 17 0 0

0 0 0 0 0 0 10 5

0 0 0 0 0 0 5 11


(5.1)

LU factorization gives:

L =



1 0 0 0 0 0 0 0

0.3750 1 0 0 0 0 0 0

0 0.1589 1 0 0 0 0 0

0 0.4238 −0.1949 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0.4444 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0.5 1.0000


(5.2)

37



U =



8 3 0 0 0 0 0 0

0 18.8750 3 8 0 0 0 0

0 0 6.5232 −1.2715 0 0 0 0

0 0 0 11.3614 0 0 0 0

0 0 0 0 9 4 0 0

0 0 0 0 0 15.2222 0 0

0 0 0 0 0 0 10 5

0 0 0 0 0 0 0 8.5


(5.3)

After reordering the matrix A and doing factorization we will obtain L and

U as:

L =



1 0 0 0 0 0 0 0

0.375 1 0 0 0 0 0 0

0 0.1589 1 0 0 0 0 0

0 0.4238 −0.1949 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0.4444 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0.5 1


(5.4)

U =



8 3 0 0 0 0 0 0

0 18.8750 3 8 0 0 0 0

0 0 6.5232 −1.2715 0 0 0 0

0 0 0 11.3614 0 0 0 0

0 0 0 0 9 4 0 0

0 0 0 0 15.2222 0 0

0 0 0 0 0 0 10 5

0 0 0 0 0 0 0 8.5


(5.5)
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5.2 SYMMETRIC REORDERING

If we reorder the variables and equations of a linear system, it is still the same

system. But this type of reordering may make the system easier to solve in the

sense of doing fewer operations for solution.

For example

3x1 + 2x2 − x3 = 1

x1 + 5x2 + 4x3 = −4

6x1 − 4x2 + 7x3 = 10

(5.6)

can be rewritten as

7y1 + 6y2 − 4y3 = 10

−y1 + 3y2 + 2y3 = 1

4y1 + y2 + 5y3 = −4

(5.7)

where


y1

y2

y3

 =


x3

x1

x2

 (5.8)

In general, we can express this symmetric reordering as follows: Let P be

a permutation matrix of appropriate order and P T its transpose. Then for an

n× n linear system

Ax = c (5.9)

PAP T Px = Pc (5.10)
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By = d (5.11)

where B = PAP T , y = Px and d = Pc.

5.3 CUTHILL-MCKEE ORDERING

Cuthill-McKee Ordering is one of the most common reordering algorithms. [1]

The algorithm works on sparse symmetric matrices. We consider the matrix

as the adjacency matrix of a graph and relabel the vertices. The result is a

matrix with reduced bandwidth.

We start with the linear system

Ax = b (5.12)

where A is an N by N sparse symmetric, positive definite matrix

Example 5.3.1.

A =



x 0 0 0 x 0 0 x

0 x 0 0 0 0 0 x

0 0 x 0 0 x 0 0

0 0 0 x 0 0 0 0

x 0 0 0 x 0 0 0

0 0 x 0 0 x x 0

0 0 0 0 0 x x 0

x x 0 0 0 0 0 x


(5.13)

The bandwidth in this example is large we will try to decrease it.

Now we will find the relation between the rows, we will lock to the nodes

which lies between every row with the other rows. In the next table there is

the relation between N(R), row number and and N(C), the column numbers

where it has a nonzero entry.
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N(R) N(C)

1 5,8

2 8

3 6

4 0

5 1

6 7,3

7 6

8 1,2

Table 5.1: The relation nodes

N(R) 1 2 3 4 5 6 7 8

C(R) 4 5 1 8 2 3 6 7

Table 5.2: Rows with changing rows

After that we generate the permutation matrix P as follows: Take the row

with minimum number of connections and make it the first row. Then, among

its neighbors, again choose the row with minimum number and make it the

second. Then we repeat this step until getting of the P matrix. The next table

shows the rows from 1 to 8 and the changing rows

Now the P matrix will be as following:

P =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


(5.14)

Now we make the operation PAP T we get the matrix
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PAP T =



x 0 0 0 0 0 0 0

0 x x 0 0 0 0 0

0 x x x 0 0 0 0

0 0 x x x 0 0 0

0 0 0 x x 0 0 0

0 0 0 0 0 x x 0

0 0 0 0 0 x x x

0 0 0 0 0 0 x x


(5.15)

If we see the bandwidth in (5,13) and the bandwidth in (5,15) after this oper-

ation we will see clearly it is decreased.

The Cuthill-Mckee method take advantage from the zeros in large sparse

matrices and make them easy to solve in the other systems.

We count the multiplication operations to reduce the sparse symmetric ma-

trix A to diagonal from using Gaussian Elimination.

The ratio of the number of operations after Cuthill-Mckee reordering and

before that are given below.

The numbers less than 1 indicate the after Cuthill-Mckee we did fever op-

erations.

Each case is tested with random matrices 1000 times and average values

are obtained.

Test matrices were produced by our special program using MATLAB’s ran-

dom number generator.

The results clearly show that Cuthill-McKee reordering is advantageous

only in certain cases.

In the table, N is the size of matrix and r denotes the ratio of nonzero

elements
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Integer i, j

input A n by m sparse matrix

Initialize the matrix B =zeros(m)

for i = 1 to n do

connected← 0

for j = 1 to m

if i 6= j

if A(i, j) 6= 0

connected← connected+ 1

B(i, connected)← j

end if

end if

end for

B(i,m)← connected

end for

Let level = −1 ; cnter = 0 ; memo = []

nodelevel← info× ones(1,m)

neighbors← B(:,m)

while cnter < m

[nodesindex]← min(neighbors)

nodelevel(index)← level + 1

memo← [memoindex]

while size(memo, 2) > 0

index← memo(1)

for i = 1 to B(index,m)

level← nodelevel(index) + 1

num← B(index, i)

if nodelevel(num) > level

nodelevel(num)← level

memo← [memonum]

end if

end for

Table 5.3: Algorithm Form for Cuthill-Mckee Reordering - Part I
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memo(1)← [ ]

neighbors(index)←
cntr ← cntr + 1

end while

end while

Table 5.4: Algorithm Form for Cuthill-Mckee Reordering - Part II

N \ r 1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

16 1.00 1.14 0.89 0.67 0.58 0.78 0.90 0.96 0.99 0.99

32 1.02 1.13 1.40 1.31 0.63 0.46 0.57 0.73 0.84 0.97

64 1.01 1.08 1.24 1.66 1.94 0.61 0.37 0.34 0.50 0.72

128 1.00 1.04 1.12 1.33 1.92 2.54 0.78 0.33 0.24 0.28

256 1.00 1.02 1.06 1.17 1.39 2.08 3.67 0.92 0.31 0.20

Table 5.5: Improvement After Cuthill-Mckee Reordering

Integer i

Input N the Matrix size

r is the ratio of zero elements of the symmetric sparse matrix

m is the number of times operation is repeated

Initializev = zeros(m, 1)

for i = 1 to m do

A1 = TestSparseMatrix(N, r)

A2 = (A1 + A1T )/2

c1 = GaussElim3(A2)

A3 = cuthill(A2)

c2 = GaussElim3(A3)

v(i) = c2/c1

end for

return ratio = sum(v)/m

Table 5.6: Algorithm Form for ratio of operations
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Integer i, j

Input A = zeros(N)

for i = 1 to N do

for j = 1 to N do

r = rand(1)

if r < cut

A(i, j) = r

end if

end for

end for

for i = 1 to N do

A(i, i) = 1

end for

Return A random sparse matrix

Table 5.7: Algorithm Form for finding random sparse matrix
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CHAPTER VI

PRECONDITIONING

Preconditioning is a technique consisting in preconditioning the system that

we want to solve, and in our case is Ax = b, so that the new system has better

properties (e.g. faster convergence to the solution of numerical methods, less

cost of computation,...). The solution to the original problem can be easily

constructed from the solution of the preconditioned problem. Usually the main

aim of preconditioning is to reduce the condition number of the problem.

M−1Ax = M−1b (6.1)

The preconditioner M is chosen in such a way that the iterative method we are

using converges rapidly. Incomplete matrix factorizations can be used if there

are no natural preconditioners[7].

6.1 ITERATIVE METHODS PRECONDITIONER

Starting by the linear system

Ax = b (6.2)

The main idea is to modify components of an approximate vector solution to

improve the accuracy of iterations. One example is to annihilate some compo-

nent(s) of the residual vector b− Ax [7]. We begin with the decomposition

A = D − E − F
where D is diagonal of A, −E its strict lower part, and −F its strict upper

part

we can find −E and −F by the following algorithm:
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integer i, j

input A real matrix n by m size

initialize the matrix E = A

for i = 1 to n

for j = i to n

E(i, j)← 0

end for

end for

for i = 1 to m do

for j = 1 to i do

F (i, j)← 0

end for

end for

return F ← −F
return E ← −E

Table 6.1: Algorithm to find the matrices E and F

Here we will consider the most common preconditioner used for solving a

large sparse matrices and compares their performance.

For solving a linear system Ax = b a fixed point iteration takes the form

xk+1 = M−1Nxk +M−1b (6.3)

where M and N are splitting of A into

A = M −N (6.4)

6.2 PRECONDITION AND ITERATION MATRICES

The local form of Jacobi and Gauss-Seidel iterations will be as:

xk+1 = Gxk + f (6.5)
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which

GJA(A) = I −D−1A (6.6)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the

matrix splitting in (6,4) which can be defined by the relation:

xk+1 = M−1Nxk +M−1b (6.7)

and it has the form (6,4) with

G = M−1N = M−1(M − A) = I −M−1A, f = M−1b. (6.8)

This iteration, GJA(A) = I −D−1A can be shown as at a technique for solving

the system

(I −G)x = f (6.9)

Since G has the form G = I −M−1A, this system can be rewritten as

M−1Ax = M−1b (6.10)

The system M−1Ax = M−1b has the same solution as the original system and

it is called a preconditioned system and M is the preconditioning matrix or

preconditioner. In other words, a relaxation scheme and a fixed-point iteration

on a preconditioned system are equivalent. Comparison of various precondi-

tioning schemes can be found in [4, 9].

6.3 JACOBI PRECONDITIONER

The Jacobi preconditioner is simply the diagonal of A

MJA = D (6.11)

The next Algorithm will show the Jacobi precondition for solving vector x as:

xk+1 = M−1Nxk +M−1b (6.12)
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integer i ; max maximum number of iterations ;tol Real error tolerance

input A is the coefficient sparse matrix

input b is the right-hand side column vector

input x0 initial vector with zeros

M = diag(A) = D

N = M − A
invm = inverse(M)

G = invm ∗N
f = invm ∗ b
for i = 1 to max do

xnew ← G ∗ x0 + f

if norm(xnew − xold) < tol

break

end if

x0← xnew

end for

return x

Table 6.2: Algorithm Form for Jacobi precondition method
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6.4 GAUSS-SEIDEL PRECONDITION

The Gauss-Seidel preconditioner is the lower triangular part of A

MGS = D − E (6.13)

integer i ; max maximum number of iterations ;tol Real error tolerance

input A is the coefficient sparse matrix

input b is the right-hand side column vector

input x0 initial vector with zeros

input E the strict Lower of (A)

input F the strict upper of (A)

compute D = A+ E + F ; M = D − E ; N = M − A
let invm=inverse of (M)

compute G← invm ∗N
compute f = invm ∗ b

for i = 1 to max

xnew ← G ∗ x0 + f

if norm(xnew − x0) < tol

break

end if

x0← xnew

end for

return x0

Table 6.3: Algorithm for Jacobi Precondition Method
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CONCLUSION

In this thesis we have made an analysis of iterative methods of solution for linear

systems. We have implemented the well-known algorithms using MATLAB.

These implementations are given in the appendix.

In particular, sparse linear systems deserve special attention. We have

considered how Cuthill-McKee algorithm reduces the bandwidth of a sparse

matrix by obtaining a suitable permutation matrix. Preconditioning a sparse

system reduces memory and time requirements of the solution process.

The number of operations required by the Method of Gaussian Elimination

before and after using reordering by Cuthill-McKee are given in table 5.5. This

comparison shows that the advantage of reordering is dependent on matrix size

and also the ratio of nonzero elements.

We wish to continue further work in the direction of solution of large, sparse

systems on parallel multiprocessors.
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APPENDIX A

MATLAB CODES

Gaussian Elimination

function cozum = GaussElim(A,b)

%This program solves a linear system of equations using

%the method of Gaussian elimination with back substitution

%Usage: GaussElim(A,b) where A is an nxn coefficient matrix.

[n n2]=size(A);

if n~=n2

error(’The coefficient matrix must be square’)

end

[n3 n4]=size(b);

if n3~=n || n4~=1

error(’The column vector b must have the same number of rows as A’)

end

A=[A b];

operationcount=0;

for i=1:n-1

if A(i,i)==0

[mxm indis]=max(abs(A(i:n,i)));

A=interchange(A,i,indis+i-1);

end

%for j=i+1:n

for j=i+1:min(i+3,n)

carpan=A(j,i)/A(i,i);

for k=i:n+1

A(j,k)=A(j,k)-carpan*A(i,k);
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operationcount=operationcount+1;

end

end

end

operationcount

d=min(abs(diag(A)));

if d<10^-15

error(’The system does not have unique solution’)

end

cozum=zeros(n,1);

cozum(n)=A(n,n+1)/A(n,n);

for i=n-1:-1:1

topla=0;

for j=i+1:n

topla=topla+A(i,j)*cozum(j);

end

cozum(i)=(A(i,n+1)-topla)/A(i,i);

end
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LU Factorization Using Gaussian Elimination

function [L,U]=lu_factor(A)

[row,col]=size(A);

U=A;

L=eye(row);

for j=1:row

for i=j+1:row

L(i,j)=U(i,j)/U(j,j);

U(i,:)=U(i,:)-L(i,j)*U(j,:);

end

end
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Cuthill-McKee

function P=cuthill(A)

[m,n]=size(A);

if m~=n

error(’Input must be a square matrix’)

end

B=zeros(m);

for i=1:m

connected=0;

for j=1:m

if i~=j

if A(i,j)~=0

connected=connected+1;

B(i,connected)=j;

end

end

end

B(i,m)=connected;

end

level=-1;

cntr=0;

nodelevel=inf*ones(1,m);

memo=[];

neighbors=B(:,m);

while cntr<m

[nodes index]=min(neighbors);

nodelevel(index)=level+1;

memo=[memo index];

while size(memo,2)>0

index=memo(1);

for i=1:B(index,m);
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level=nodelevel(index)+1;

num=B(index,i);

if nodelevel(num)>level;

nodelevel(num)=level;

memo=[memo num];

end

end

memo(1)=[];

neighbors(index)=inf;

cntr=cntr+1;

end

end

P=zeros(m);

for i=1:m

[a k]=min(nodelevel);

nodelevel(k)=inf;

P(i,k)=1;

end

end
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CSR Format

function CSR(A)

[n,n]=size(A);

IA=(zeros);

for i=1:n

k1=IA(i);

k2=IA(i+1);

y(i)=dot(A(k1:k2),x(jA(k1:k2)));

end
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Jacobi Precondition Method

function sol=Amn(A,b,xold,max,tol)

[row,col]=size(A);

M=diag(diag(A));

N=M-A;

invm=inv(M);

G=invm*N;

f=invm*b;

for i=1:max

xnew=G*xold+f;

i

if norm(xnew-xold)<tol

break

end

xold=xnew;

end

sol=xnew;

end
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