

ÇANKAYA UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

MASTER THESIS

DEVELOPING A GIS BASED CRIME ANALYSIS SYSTEM

MUSTAFA ÖZÇETİN

FEBRUARY 2013

iv

ABSTRACT

DEVELOPING A GIS BASED CRIME ANALYSIS SYSTEM

Özçetin, Mustafa

M.S.c., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. H. Hakan Maraş

February 2013, 74 pages

Geographic Information Systems (GIS) have a lot of applications that are getting

more and more importance in our daily life. One of the hot and crucial application

areas of GIS is crime mapping. Nowadays, crime rates tend to increase and thus

analyzing the crime trends and taking preventive precautions are very important.

Often, crimes display spatial or temporal patterns. For instance, some crime types

are committed in some areas with a relatively higher density rate. Some others may

occur in particular time ranges in a day. Adding geographic support to crime

analysis methods can provide extremely valuable and exclusive benefits which

tabular or statistical analyses cannot provide. For example, seeing the spatial

distribution of a particular crime type or comparing different types of crimes on the

map can give critical and important decision making tips for managers. Hence,

adding spatial dimension to crime analysis techniques help provide great

contributions to police departments.

In this study, after doing some researches about crime mapping, a GIS-based crime

analysis system, namely Crime Analyzer, has been developed from scratch. Crime

Analyzer not only provides various spatial and temporal analysis tools but also

presents a flexible method to extract data from various sources such as database

systems to solve crime mapping problems.

Keywords: GIS Based Crime Analysis, Crime Mapping Software

v

ÖZ

CBS TABANLI SUÇ ANALİZİ YAZILIMI GELİŞTİRME

Özçetin, Mustafa

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Doç. Dr. H. Hakan Maraş

Şubat 2013, 74 sayfa

Coğrafi Bilgi Sistemleri (CBS) günlük hayatımızda önemi sürekli olarak artan

uygulamalara sahiptir. CBS’nin popüler ve kritik uygulama alanlarından biri de

mekansal suç analizidir. Günümüzde suç oranları artış göstermekte ve bu yüzden

suç eğilimlerini analiz etmek ve suçu önleyici tedbirler almak büyük önem arz

etmektedir. Suçlar çoğu zaman mekansal ve zamansal modeller göstermektedir.

Örneğin, bazı suç türleri bazı lokasyonlarda nispeten yüksek oranlarda

işlenebilmektedir. Bazıları ise gün içinde belli saat aralıklarında yüksek oranlarda

olabilmektedir. Klasik suç analiz yöntemlerine coğrafi destek eklemek, tablosal veya

istatistiksel metotların sunamayacağı son derece önemli ve müstesna faydalar

sağlayabilir. Örneğin, belli bir suç türünün mekansal dağılımını görmek veya farklı

suç türlerinin lokasyonlarını harita üzerinde karşılaştırmak, karar verme

pozisyonundaki yöneticilere kritik ve önemli ipuçları verebilir. Bu yüzden, suç analiz

yöntemlerine mekansal boyut katmak emniyet birimlerindeki çalışmalara önemli bir

destek sağlamaktadır.

Bu çalışmada, suçların haritalanması konusunda gerekli araştırmalar yapıldıktan

sonra Crime Analyzer adlı bir CBS tabanlı suç analizi yazılımı geliştirilmiştir. Crime

Analyzer, suç analizinde karşılaşılan problemleri çözmede muhtelif mekansal ve

zamansal analiz araçları sunmanın yanı sıra, veritabanı sistemleri gibi çeşitli veri

kaynaklarından veri alma konusunda esnek bir yöntem sağlar.

Anahtar Kelimeler: CBS Tabanlı Suç Analizi, Suç Haritalama Yazılımı

vi

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc. Prof.

Dr. H. Hakan Maraş for his guidance, advice, criticism, encouragements and insight

throughout the research.

Also, I would like to thank to my wife Emel for her love and morale support.

vii

To my tiny son, Yusuf

viii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM …..………………………………………...…… iii

ABSTRACT ………………………………………….……………………….………….... iv

ÖZ …..………………………………………..………. v

ACKNOWLEDGEMENTS ……..……………………………………….....................…. vi

LIST OF TABLES …………..……………………………………….....................…….. xii

LIST OF FIGURES ...…………..………………………………………........................ xiii

LIST OF ABBREVIATIONS ….……………………………….................................... xvi

INTRODUCTION ……………………………... 1

The Purpose and Scope of the Study ………….. 1

Roadmap….. 1

Organization of the Thesis ………...…….. 1

CHAPTERS ..……………………………………….. 2

1. GIS AND CRIME ANALYSIS .……….. 2

1.1. INTRODUCTION TO GIS ... 2

1.2. BENEFITS OF GIS ..….. 3

1.3. APPLICATION AREAS OF GIS .. 4

1.4. CRIME ANALYSIS ……... 4

1.5. CRIME MAPPING ……………... 5

2. EXISTING STUDIES …………………….. 7

ix

2.1. CRIMEANALYST FOR ARCGIS ……... 7

2.2. MAPINFO CRIME PROFILER ……... 9

2.3. CRIMESTAT ... 10

3. FEATURES OF THE SYSTEM ……………………….. 11

3.1. GENERAL UI FEATURES .. 11

3.2. MAPPING COMPONENT ... 13

3.3. PULLING DATA FROM A DATABASE ... 14

3.4. ANALYSIS MODULES .. 15

 3.4.1. Thematic Analyses .. 15

 3.4.1.1. Ranged Theme …….. 15

 3.4.1.1.1. Ranged Theme Directly From a MapInfo Table 16

 3.4.1.1.2. Ranged Theme by Joining with a Database Table ……. 18

 3.4.1.1.3. Distribution Methods …………………………………....... 20

 3.4.1.1.4. Point and Linear Ranged Thematics ….…..................... 21

 3.4.1.2. Graduated Symbols .. 21

 3.4.1.3. Individual Values …... 23

 3.4.1.4. Bar Chart ………….…... 23

 3.4.1.5. Pie Chart ………….….. 25

 3.4.2. Direction Analyses ……... 26

 3.4.2.1. Car Theft-Finding ….. 26

 3.4.2.2. Moving Direction …... 28

 3.4.3. Density Analyses …... 29

 3.4.3.1. Dot Density ………………….. 29

 3.4.3.2. Thematic Grid …………... 31

x

 3.4.3.3. Linear Hotspot ……….. 32

 3.4.4. Temporal Analyses .. 33

 3.4.4.1. Temporal Distribution .. 33

 3.4.4.2. Creating Animation ….. 34

 3.4.4.3. Data Calendar ... 35

 3.4.4.4. Data Clock ……... 39

 3.4.5. Chart Analyses .. 41

 3.4.5.1. Bar Chart .. 41

 3.4.5.2. Pie Chart ... 43

4. ARCHITECTURE ……………………………………….. 44

4.1. DEVELOPMENT ENVIRONMENT AND FRAMEWORK 44

4.2. PROJECT COMPONENTS .. 44

4.3. CRIMEANALYZER PROJECT COMPONENTS 45

4.4. MAPINFOX PROJECT COMPONENTS ……... 46

5. DEVELOPMENT OF THE SYSTEM ……..........………………………….............. 49

5.1. MAPPING FRAMEWORK ... 49

5.2. INTEGRATED MAPPING ... 49

 5.2.1. Elements of Integrated Mapping ... 51

 5.2.2. Steps to Write Integrated Mapping Applications 51

 5.2.3. Controlling MapInfo ... 52

 5.2.4. Querying Data from MapInfo ... 53

 5.2.5. Inspecting the Hello (Map of) World Application 53

5.3. IMPLEMENTATION OF THE MAPINFOX PROJECT 54

 5.3.1. Features and Benefits of MapInfoX ... 55

xi

 5.3.2. Implementing the Map Component ... 56

 5.3.2.1. Layers Collection .. 57

 5.3.2.2. Tools ... 59

 5.3.2.3. Catalog ... 59

 5.3.2.4. Selection ... 60

 5.3.3. Implementing the Map Toolbar .. 61

 5.3.4. Implementing the Data Access Layer .. 62

 5.3.5. Implementing the Thematic Analyses ... 63

 5.3.6. Implementing the Temporal Analyses ... 65

5.4. DESIGN PATTERNS USED IN MAPINFOX ... 67

SUMMARY AND CONLUSION ………………………..……..………………............. 70

REFERENCES ………………………………………... 71

CV ……………..………………………………………... 74

xii

LIST OF TABLES

Table 1: Getting the row count of a table with and without MapInfoX ……………... 55

Table 2: Getting the columns of a table with and without MapInfoX ………………. 56

xiii

LIST OF FIGURES

Figure 1: A linear hot spot analysis in CrimeAnalyst ………………………………….. 8

Figure 2: A weekly data clock analysis in CrimeAnalyst ……………………………… 8

Figure 3: MapInfo Crime Profiler overview …………………………………………… 10

Figure 4: Crime Analyzer overview ………………………………………...………….. 11

Figure 5: Components of Crime Analyzer main window ……………………………. 12

Figure 6: Map toolbar buttons ..………………………………………………………… 12

Figure 7: Map statusbar ………..………………………………….……………………. 13

Figure 8: Connecting to an Access database ………………………………………… 14

Figure 9: Connecting to an Oracle database .………………………………………… 15

Figure 10: Selecting a theme data source ….………………………………………… 16

Figure 11: Selecting the region table to shade and thematic column ……………… 16

Figure 12: Attribute data of the District table and column………………….…… 17

Figure 13: Specifying the ranged thematic options ………………………………….. 17

Figure 14: Ranged thematic with a MapInfo table as the data source ..…………… 18

Figure 15: Join with Database Table dialog ..………………………………………… 18

Figure 16: Query Builder dialog .……………………………………………………..… 19

Figure 17: Ranged thematic with a database table as the data source …..……….. 20

Figure 18: Graduated symbol options ………………………………………………… 22

xiv

Figure 19: Graduated symbols showing the crimes ….……………………………… 22

Figure 20: Individual values displaying different types of crimes ...………………… 23

Figure 21: Setting the table and thematic columns of a bar chart …………………. 24

Figure 22: Bar chart thematic map showing the robbery, burglary and car thefts .. 25

Figure 23: Pie chart thematic map showing the robbery, burglary and car thefts ... 26

Figure 24: Theft-Finding Analysis dialog .…………………………………………..… 27

Figure 25: Car finding locations ……………………………………………………….. 27

Figure 26: Selecting the crime table and date column ..…………………………….. 28

Figure 27: Determining the moving direction of the offender …………………….… 28

Figure 28: Displaying raw crime data …………………………………………………. 29

Figure 29: Dot density settings ………………………………………………………… 30

Figure 30: Representing each 100 crimes with 1 dot in a dot density map …….… 30

Figure 31: Thematic grid depicting hot spots ………………………………………… 31

Figure 32: Linear hot spots along streets .……………………………………………. 32

Figure 33: Specifying the tables for temporal distribution .…………………….…… 33

Figure 34: Incident animation displaying successive months’ crimes .……………. 34

Figure 35: Image Export Options dialog ……………………………………………… 35

Figure 36: Selecting the files to create animation ……………………………….…… 35

Figure 37: Data Calendar Options dialog. ……………………………………………. 36

Figure 38: Data calendar .………………………………………………………………. 36

Figure 39: Data calendars comparing the crime times of four successive years … 38

Figure 40: Data Clock Options dialog…………………………………………….. 39

Figure 41: Data clock …………………..…………………………………………..…… 40

Figure 42: Data clocks comparing the crime times of four successive weeks. …… 41

xv

Figure 43: Generating a bar chart ..……………………………………………….…… 42

Figure 44: Setting the chart title ...………………………………………….………….. 42

Figure 45: Bar chart displaying the rates of unresolved robberies by county ..…… 42

Figure 46: Pie chart displaying the rates of unresolved robberies by county ..…… 43

Figure 47: Project dependencies ….…………………………………………………… 45

Figure 48: CrimeAnalyzer project items .……………………………………………… 46

Figure 49: MapInfoX project items …………………………………………………….. 47

Figure 50: A Hello (Map of) World application with integrated mapping ..…….…… 50

Figure 51: Elements of an integrated mapping application ….……………………… 51

Figure 52: Adding MapInfo to the project references ...……………………………… 52

Figure 53: Class diagram for the MapControl, Map and IMap ..……………….…… 57

Figure 54: Layers class members ...…………………………………………………… 58

Figure 55: Tools class members ………………………………………………….…… 59

Figure 56: Catalog class members .…………………………………………………… 60

Figure 57: Selection class members ..………………………………………………… 61

Figure 58: Inheritance hierarchy of BaseCommand and BaseTool classes ..…….. 61

Figure 59: DAL components ..………………………………………………………..… 63

Figure 60: AbstractTheme base class and two implementing classes ………….… 64

Figure 61: IThematicLegend interface members ..…………………………………… 64

Figure 62: DataCalendar and DataClock class diagrams ...………………………… 66

xvi

LIST OF ABBREVIATIONS

ADT Abstract Data Type

API Application Programming Interface

CAD Computer Aided Design (also Computer Aided Drafting)

COM Component Object Model

CompStat Computer Statistics (also Comparative Statistics)

DAL Data Access Layer

DB Database

DDE Dynamic Data Exchange

DLL Dynamic Link Library

ERP Enterprise Resource Planning

GIS Geographic Information System

IPC Inter-Process Communication

MDI Multiple Document Interface
MS Microsoft

OLE Object Linking and Embedding

SID System ID (for an Oracle DB)

SQL Structured Query Language

UI User Interface

VS Visual Studio

xvii

1

INTRODUCTION

The Purpose and Scope of the Study

The purpose of this study is to develop viable and usable spatial crime analysis

system from scratch, to perform various analyses on some imaginary crime data

and to be able to interpret the analysis results.

Currently there are lots of crime mapping techniques in accordance with the purpose

of the analysis. This study aims to implement the widely used and practical analysis

methods.

Roadmap

This study mainly consists of three parts: First, some theory will be provided about

GIS, crime analysis and crime mapping. Then, features of the system together with

some crime scenarios will be explained. Finally, architecture and implementation of

the system will be explored.

Organization of the Thesis

Chapter 1 makes a general introduction to GIS, crime analysis and crime mapping.

The needs for making crime analyses on maps are also discussed.

Chapter 2 mentions the existing crime mapping software on the market. Main

features of commonly used three programs are explained.

Chapter 3 explains the features of the system in detail. This includes the

capabilities, analysis tools and screenshots of the software developed.

Chapter 4 explores the high-level design and architecture of the system developed.

Development environment and the mapping framework on which the system is

constructed are specified.

Chapter 5 expresses the development and the technical features of the system.

Implementation details with class diagrams are discussed in some detail.

Chapter 6, finally, provides the summary and conclusion of the study.

2

CHAPTER I

GIS AND CRIME ANALYSIS

Before entering the actual topic, namely crime mapping, it will be useful to give

some introductory information about GIS. This will make sense because crime

mapping is one of the huge application areas of GIS.

1.1. INTRODUCTION TO GIS

Although there are various definitions of GIS, one of them may be given as

“GIS is a system designed to capture, store, manipulate, analyze, manage, and

present all types of geographical data. In the simplest terms, GIS is the merging of

cartography, statistical analysis, and database technology.

In a general sense, the term describes any information system that integrates,

stores, edits, analyzes, shares, and displays geographic information for informing

decision making. GIS applications are tools that allow users to create interactive

queries (user-created searches), analyze spatial information, edit data in maps, and

present the results of all these operations [1].”

According to Maras’ comprehensive definition, ''a Geographic Information System is

an integration of computer hardware, software, personnel, data and methods, which

enables to capture, store, integrate, manipulate, manage, analyze, portray and to

graphically render spatially referenced information so as to meet the user

requirements [2].”

One can think that GIS is like Computer Aided Design (CAD) but there are important

differences between them. CAD programs are basically graphics programs and

drawing objects such as lines, cubes etc. are important themselves. But GIS objects

are actually representations of the real world entities and they have attribute data

that are stored in a database tied with them. Hence these objects are sometimes

called smart. Another difference is that all geographic data in a GIS has a

3

geographic reference defined with a coordinate system and a projection and thus

they all correspond to some location on the Earth.

Basic components of spatial data are points, lines and polygons. These components

constitute layers when they serve common characteristics. A layer is “the visual

representation of a geographic dataset in any digital map environment.

Conceptually, a layer is a slice or stratum of the geographic reality in a particular

area, and is more or less equivalent to a legend item on a paper map. On a road

map, for example, roads, national parks, political boundaries, and rivers might be

considered different layers [3].” Layers are building blocks of maps. Apart from being

references to specific data sources, layers can also be associated with cartographic

symbols. Layers generally follow a logical z-order in which region layers are placed

at the bottom, line layers are top of the region layers and point layers are topmost.

A significant operation in GIS is called geoprocessing. Geoprocessing takes some

input features, perform some operations with these features and returns the

resulting features. Geoprocessing is commonly used in real-world analyses. For

example, using geoprocessing tools risk analyses such as flood analysis can be

easily made around a river. This involves creating a buffer region around the river

and performing a geographic overlay between the buffer and the buildings.

1.2. BENEFITS OF GIS

GIS provides concrete benefits to both organizations and individuals in daily life. It

not only relates with enterprise or desktop applications in computers but also

provides extremely useful applications with navigation devices and mobile phones.

Actually any citizen may directly or indirectly get the benefits of GIS even he/she

does not involve any of the technological devices like computers or mobile phones.

For instance, some municipalities plan bus routes after performing some line

optimization analyses. These may include inspecting the population density or

residence of old people.

Utilizing a GIS, managers will have a solid and scientific decision support system by

performing valuable analyses. Organizations may reduce their expenses with

optimized and more efficient planning by applying solutions like shortest path or

travelling salesman. Customer services can be improved with analyzing the

addresses of nearby customers. Natural resources can be managed more

effectively. Setting up a fully integrated infrastructure between organizations, serious

4

industrial accidents like breaking fiber cable lines in excavations can be prevented.

Storing tabular and spatial data together in a central system greatly contributes to

secure, consistent and updated data. Performing analyses for under-served

population locations, public services may be refined. Enterprise Resource Planning

(ERP) applications may be greatly supported and enhanced with spatial data.

1.3. APPLICATION AREAS OF GIS

GIS has a broad range of application areas. Rather than mentioning all of them, it

will be appropriate to give some important ones:

• Urban planning and management

• Land cadastral system and record management

• Emergency management (automatic address locating from an incoming

phone call etc.)

• Public infrastructure management (electricity, water, communication lines

etc.)

• Public safety (fire prevention and handling etc.)

• Vehicle routing and navigation (shortest or optimal path etc.)

• Network analysis (finding the valves to be closed in case of natural gas leak

etc.)

• Military, defense and intelligence

• Election result analysis according to geographic locations

• Environmental risk monitoring

• Agriculture (soil analysis, yield estimation etc.)

• Natural resource research and management (water, petroleum, mining etc.)

• Civil engineering (deciding the underground construction locations, designing

highways etc.)

• Demographic analysis for public services

• Transportation and logistics (vehicle tracking etc.)

1.4. CRIME ANALYSIS

“Crime analysis is a law enforcement function that involves systematic analysis for

identifying and analyzing patterns and trends in crime and disorder. Information on

patterns can help law enforcement agencies deploy resources in a more effective

manner, and assist detectives in identifying and apprehending suspects. Crime

5

analysis also plays a role in devising solutions to crime problems, and formulating

crime prevention strategies. Quantitative social science data analysis methods are

part of the crime analysis process; though qualitative methods such as examining

police report narratives also play a role [4].”

“Crime analysis can occur at various levels, including tactical, operational, and

strategic. Crime analysts study crime reports, arrests reports, and police calls for

service to identify emerging patterns, series, and trends as quickly as possible. They

analyze these phenomena for all relevant factors, sometimes predict or forecast

future occurrences, and issue bulletins, reports, and alerts to their agencies. They

then work with their police agencies to develop effective strategies and tactics to

address crime and disorder. Other duties of crime analysts may include preparing

statistics, data queries, or maps on demand; analyzing beat and shift configurations;

preparing information for community or court presentations; answering questions

from the public and the press; and providing data and information support for a

police department's CompStat (Computer Statistics) process [5].”

Sociodemographics, along with spatial and temporal information, are all aspects that

crime analysts look at to understand what's going on in their jurisdiction [6]. “Crime

analysis employs data mining, crime mapping, statistics, research methods, desktop

publishing, charting, presentation skills, critical thinking, and a solid understanding of

criminal behavior. In this sense, a crime analyst serves as a combination of an

information systems specialist, a statistician, a researcher, a criminologist, a

journalist, and a planner for a local police department [7].”

1.5. CRIME MAPPING

“Crime mapping is used by analysts in law enforcement agencies to map, visualize,

and analyze crime incident patterns. It is a key component of crime analysis and the

CompStat policing strategy. Mapping crime, using Geographic Information Systems

(GIS), allows crime analysts to identify crime hot spots, along with other trends and

patterns [8].”

With a high-level and informal phrase, crime mapping tries to answer the questions

“Which crime happens where, when and why?” Using classical statistical methods

only may not be sufficient to make in-depth analyses to understand the crime

patterns since crimes often have spatial dimension. In other words, some particular

crime types may be committed in some particular locations. For example, according

6

to a formal study, robberies generally concentrate on the central locations of

settlements [9].

Some studies have demonstrated that offenders tend to commit their crimes

between their home, workplace and facilities they attend. Hence, even these

particular examples show that it is essential to inspect the crime data

geographically.

7

CHAPTER II

EXISTING STUDIES

Currently there is not so much crime mapping software on the market. ESRI and

MapInfo (actually Pitney Bowes Software now) have commercial crime mapping

solutions and they are the most commonly used programs. Since ArcGIS Desktop

programs (ArcView / ArcEditor / ArcInfo) and MapInfo Professional are general-

purpose desktop mapping programs, they do not provide crime mapping tools as

built-in. This is reasonable since crime mapping is a specific area and thus they

present the crime mapping solution in the form of extensions. ESRI’s solution is

called CrimeAnalyst and MapInfo’s is called Crime Profiler. These extensions add

new tools and capabilities to the existing program that can be used to perform

spatial crime analyses.

Also there is a free spatial statistics application, namely CrimeStat, developed under

a grant from the National Institute of Justice of the USA. Although it is not GIS

software, it can read files which are geocoded by other GIS software, like ArcGIS

and MapInfo, and can export its results into formats that those programs can read.

2.1. CRIMEANALYST FOR ARCGIS

According to the vendor’s description, “CrimeAnalyst allows making smarter use of

the intelligence at disposal – and this, in turn, can help simultaneously reduce both

crime and costs [10].”

“First launched in 2005, CrimeAnalyst has become well established in the public

safety community and is used in police forces, crime prevention partnerships and

intelligence groups across the UK and around the world. The latest version,

CrimeAnalyst 2.1, builds on the proven capabilities of the solution. Responding to

the needs of end users, it has been enhanced with a range of new capabilities that

make it even easier and quicker to develop National Intelligence Model (NIM)

compliant analytical products [10].”

8

Features of CrimeAnalyst include:

• “Crime hot spot / density maps.

• Temporal crime analysis / aoristic data clocks.

• Spatial distribution and analysis.

• Identifications of repeat victims of crime.

• Identifying connections between related locations in a crime.

• Calculating spatial statistics [11].”

The map in Figure 1 displays the hot spots identifying good places for detection

cameras.

Figure 1: A linear hot spot analysis in CrimeAnalyst.

Not all analysis types in CrimeAnalyst involve maps and layers. There are also

temporal analysis tools like data clocks. Data clock analysis can easily spot the

dense crime hours in a weekly period as shown in Figure 2.

Figure 2: A weekly data clock analysis in CrimeAnalyst.

9

2.2. MAPINFO CRIME PROFILER

With the vendor’s description, “MapInfo Crime Profiler is a sophisticated crime

mapping and analysis solution from Pitney Bowes Software. Crime Profiler has been

designed to help organizations find the best tactics and strategies for dealing with

crime and incidents of all types. By providing deeper layers of criminal intelligence it

enables law enforcement agencies to manage and more effectively deploy police

resources and address key policing challenges within volume crime such as

burglary, car theft and antisocial behavior, and serious organized crime such as

fraud, drug trafficking and metal theft [12].”

Main capabilities of MapInfo Crime Profiler are:

• Interactive hot spot map creation.

• Various kinds of charts and graphs that are linked with the map data.

• Working with subsets of specific crime data, by series, type, time, locale or

other characteristics.

• Proximity analysis (distance or journey based analysis) of crimes to known

offenders.

• Mapping functionality that allows working with map data in a wide variety of

formats and types including aerial photography, street maps, demographics,

segmentation maps and more.

• The ability to define force boundaries such as beats and patrol areas.

• Ability to provide maps, charts, graphs and reports as a printout or in a

variety of other formats for sharing with all levels of the organization [13].

Using MapInfo Crime Profiler, different data visualization types can easily be

created. For example, Figure 3 shows a data clock, an individual values thematic, a

chart and a table of crime data in a single screen.

10

Figure 3: MapInfo Crime Profiler overview.

2.3. CRIMESTAT

“CrimeStat is a spatial statistics program for the analysis of crime incident locations,

developed by Ned Levine & Associates under the direction of Ned Levine, PhD, that

was funded by grants from the National Institute of Justice. The purpose is to

provide supplemental statistical tools to aid law enforcement agencies and criminal

justice researchers in their crime mapping efforts. CrimeStat is being used by many

police departments around the country as well as by criminal justice and other

researchers [14].”

“The program inputs incident locations (e.g., robbery locations) in 'dbf', 'shp', ASCII

or ODBC-compliant formats using either spherical or projected coordinates. It

calculates various spatial statistics and writes graphical objects to ArcGIS®,

MapInfo®, Surfer for Windows®, and other GIS packages [14].”

11

CHAPTER III

FEATURES OF THE SYSTEM

3.1. GENERAL UI FEATURES

The name of the software that has been developed is Crime Analyzer. One of the

remarkable features of Crime Analyzer is Multiple Document Interface (MDI)

support. Actually this is essential for analysis software since the analyst may want to

see multiple analysis results on a single screen. Typically, the analyst creates

different data visualizations of some crime data and these visualizations in fact may

be related to each other. Hence, rather than creating separate analysis outputs one

by one and combining them by hand, the analyst can get a single screenshot of all

the output or print the screen easily.

Figure 4 shows a screenshot of Crime Analyzer after creating 4 different analyses:

Figure 4: Crime Analyzer overview.

12

The parent, or main, window of Crime Analyzer consists of the following parts:

• Main menu

• Map toolbar

• Navigation bar

• Map statusbar

Figure 5 depicts the main components of Crime Analyzer main window.

Figure 5: Components of Crime Analyzer main window.

Map toolbar consists of buttons to be used for map operations such as zooming,

panning and selecting, as shown in Figure 6.

Figure 6: Map toolbar buttons.

There are two types of buttons:

Command buttons: When clicked, immediately perform an action such as

unselecting all objects or displaying the full extent of a layer.

13

Tool buttons: These are similar to command buttons but they require some

interaction with the map such as zooming or panning. When the user clicks a zoom

in tool, for instance, he/she is supposed to draw a rectangle to be zoomed on the

map. After that, the map display is updated to reflect the user’s rectangle.

Navigation bar is the panel on the left hosting the links to the main modules of the

application. It consists of horizontal light blue bands except for the selected band,

which is shown as orange. Each band holds, or groups, related analysis modules in

it. For example Thematic Analyses is the top band in the navigation bar and it holds

the five thematic analysis types Ranged Theme, Graduated Symbols, Individual

Values, Bar Chart and Pie Chart.

Map statusbar is the statusbar at the bottom of the main window. Its function is to

display the various properties of the active map window such as the current scale.

Figure 7 displays the close up of the map statusbar slots:

Figure 7: Map statusbar.

The first slot displays the current cursor coordinates of the map, which is common to

all mapping software. While the user moves the mouse pointer over the map, the

exact coordinates of the pointer are instantly displayed here. The second slot

specifies the currently edited layer and the third one depicts the currently selected

layer. The fourth slot shows the current width of the map and the fifth slot denotes

the current map scale.

3.2. MAPPING COMPONENT

Crime Analyzer uses MapInfo Professional as the mapping component. Thanks to

the integrated mapping support, it is possible to fully control and manipulate MapInfo

Professional from a client application written with a COM compliant platform such as

.NET. In an integrated mapping application, a MapInfo map is re-parented, or

displayed, by the client application’s user interface (UI), such as in a panel or picture

box. Every UI component in Crime Analyzer, except for the map, such as menus,

child windows or buttons belongs to Crime Analyzer, which is a .NET application.

14

3.3. PULLING DATA FROM A DATABASE

While performing crime analyses, Crime Analyzer naturally needs some crime data,

such as crime count for a particular crime type. This information may reside in a

MapInfo table already as a numerical column. This is the simplest case with

respects to data pulling to make analyses. But in a corporate environment, the main

data sources for the crimes usually exist in relational databases like Microsoft

Access or Oracle. The crime analyst (will be called just analyst from now on) often

needs last-minute information to be able to get up to date analysis results.

Therefore, if the analysis software does not provide a mechanism to automatically

pull the required data from the corporate database and join it with a MapInfo table,

then the analyst will have to accomplish these time consuming operations by hand.

Undoubtedly, such software will not be practical and efficient. To prevent this

situation, Crime Analyzer lets the analyst to connect to a corporate database, to list

tables and columns, to perform flexible queries and to join the result data set with a

MapInfo table that will be displayed in the analysis, such as a district or

neighborhood table.

Before pulling data from a database, first the analyst has to connect to that

database. This can be done with clicking the Database > Connect… menu. Then the

Database Connection dialog in Figure 8 will pop up:

Figure 8: Connecting to an Access database.

Currently two database types, namely Microsoft Access and Oracle, are supported

as the corporate data sources. Figure 8 shows how to connect to an Access

database. Figure 9 shows how to connect to an Oracle database. It requires

entering the user name, password and SID (Oracle System ID) information.

15

Figure 9: Connecting to an Oracle database.

After connecting to a database, the database tables will be available for Crime

Analyzer and it will be able to perform automatic joins that MapInfo tables will need.

3.4. ANALYSIS MODULES

3.4.1. Thematic Analyses

A thematic map is a type of map or chart especially designed to show a particular

theme connected with a specific geographic area. These maps can portray physical,

social, political, cultural, economic, sociological, agricultural, or any other aspects of

a city, state, region, nation, or continent [15]. Creating a thematic map typically

involves applying a theme to a table according to the values of a numerical column.

For example, in a map, cities with a high population density can be displayed by

darker colors.

The column used in generating a thematic map is sometimes referred to as thematic

variable. In fact, this thematic variable is not essentially a column. It can also be an

expression of two or more columns such as average of two columns.

Thematic maps can present valuable and exclusive information since they can give

various visualizations of geographic data that tabular data can never provide.

Moreover interpreting a thematic map can generally be achieved at a first look. For

these reasons, dealing with thematic maps is important in crime mapping.

3.4.1.1. Ranged Theme

One of the most commonly used thematic types is ranged thematic. Ranged

thematic typically shades or colors a predefined regional layer, based on the

16

numerical values of a column. This regional layer may be a country, city or district

layer. If the regional layer has one or more numerical columns such as population or

crime counts in its attribute table, then it is possible to create a thematic layer based

on these column values. For instance, districts with higher crime rates may appear

darker in the thematic map. Ranged thematic is also called choropleth mapping.

Ranged thematic is appropriate for crime mapping and thus it is one of the thematic

types that Crime Analyzer implements.

The first step in creating a ranged thematic is to specify the data source. Crime

Analyzer asks the thematic data source with the Theme Data Source dialog shown

in Figure 10:

Figure 10: Selecting a theme data source.

It will be suitable to inspect these two cases separately.

3.4.1.1.1. Ranged Theme Directly From a MapInfo Table

The first option in Figure 10 is appropriate if the region table to shade already has

the numerical column and the column is filled with the values. This way is relatively

easy to create a thematic map. After selecting this option and then clicking the OK

button, the Thematic Table and Column dialog in Figure 11 is shown to specify the

region table and the thematic column.

Figure 11: Selecting the region table to shade and thematic column.

17

The selected column in Figure 11, namely ROBBERY, is a numerical column storing

the robbery count in each district. Therefore, the thematic map to be displayed will

be based on the number of robberies. The attributes of the DISTRICT table in

MapInfo may look like in Figure 12:

Figure 12: Attribute data of the District table and column.

The last step creating the thematic map directly from a MapInfo table is to select the

thematic options via Ranges of Values Options dialog in Figure 13.

Figure 13: Specifying the ranged thematic options.

In the Ranges of Values Options dialog, range count, color theme and distribution

method can be set. Also there is an option to specify whether the records having

zero or blank value will be ignored or not. Distribution methods will be explained in

the section 4.4.1.1.3.

Clicking the OK button will finish the thematic map and display it on the current map

window as in Figure 14.

18

Figure 14: Ranged thematic with a MapInfo table as the data source.

3.4.1.1.2. Ranged Theme by Joining with a Database Table

The second option in Figure 10 allows the analyst to pull data automatically from a

corporate database to use as the thematic data. This is a powerful and flexible

method to be able to use the last minute information to generate up to date analysis

results. This is performed by first populating a dataset from the database according

to the query criteria specified by the analyst, and then joining this dataset with the

MapInfo table to shade. To achieve this, Join with Database Table dialog is used

as in Figure 15.

Figure 15: Join with Database Table dialog.

19

The join operation requires two matching columns from the MapInfo table and the

database table. Using the text area at the bottom, query expressions can be

specified against the database table. This is an extremely useful feature for the

analyst since he/she can filter the data with any filters like crime type, status or time

interval. Although it is possible to write the query by hand, a more suitable method is

to use the Query Builder dialog. For that, the analyst uses the Query… button in

Figure 15. When clicked, it opens up the Query Builder dialog in Figure 16:

Figure 16: Query Builder dialog.

Query Builder dialog lists the columns of the table which is selected in the Database

Table field in the Join with Database Table dialog in Figure 15. To generate the

query within the text area at the bottom, the analyst first selects the column to filter.

Selecting a column automatically lists its unique values in the list at the middle.

Double clicking the selected column appends it in the query text area. To insert an

operator such as equals (=), the analyst clicks the = button on the middle left.

Finally, double clicking an item in the values list will append the item to the query

text area. In this way, the analyst can generate flexible filters against the database

table. Clicking the OK button in the Query Builder dialog closes the dialog and

transfers the query text to the text area in Join with Database Table in Figure 15.

20

The next step to generate the thematic map with joining with a database table is the

same as the step in 4.4.1.1.1. That is, it involves setting the thematic options. The

result is displayed in Figure 17:

Figure 17: Ranged thematic with a database table as the data source.

Unlike the thematic map in the section 4.4.1.1.1., this time the thematic map

displays the distribution of the crimes that are robbery and are unresolved.

Moreover, Query Builder allows the analyst to create much more complex filter

expressions.

As one can easily comprehend from the legend, districts with a higher crime count

are displayed with darker colors. This way, it is easy to spot the districts having high

robbery crimes.

3.4.1.1.3. Distribution Methods

When creating ranged thematic maps, there is a Distribution Method field in the

Ranges of Values Options dialog in Figure 13. By this field it is possible to use

different distribution methods, namely equal count, equal ranges and natural break.

Using different methods may result in slight differences in shading.

Equal Count "has the same number of records in each range. To group 100

records into 4 ranges using Equal Count, the ranges are computed so that

approximately 25 records fall into each range, depending on the rounding factor

which is set. When using Equal Count (or any other range method), it’s important to

21

watch out for any extreme data values that might affect your thematic map (in

statistics, these values are referred to as outliers) [16]."

Equal Ranges "divides records across ranges of equal size. For example, if a

column has data values ranging from 1 to 100, when creating a thematic map with

four equal size ranges, the ranges 1–25, 25–50, 50–75, and 75–100 are produced

[16]."

Natural Break "creates ranges according to an algorithm that uses the average of

each range to distribute the data more evenly across the ranges. It distributes the

values so that the average of each range is as close as possible to each of the

range values in that range. This ensures that the ranges are well-represented by

their averages, and that data values within each of the ranges are fairly close

together. MapInfo bases its Natural Break on the Jenks-Caspall Algorithm [16] [17]."

3.4.1.1.4. Point and Linear Ranged Thematics

In addition to the ranged thematic maps with regional layers, it is also possible to

create point and line based ranged thematic maps. For point layers, a thematic map

showing points with different colors or varying sizes can be generated. Likewise, for

line layers a thematic map displaying lines with different colors or varying widths can

be created. The latter has already been implemented in section 4.4.3.3 (Linear

Hotspot).

3.4.1.2. Graduated Symbols

Another type of a thematic map that Crime Analyzer implements is graduated

symbols. With graduated symbols, data typically is depicted as proportionally sized

symbols according to the values of a numerical column. Hence graduated symbols

are sometimes called proportional symbols.

A good example for graduated symbols may be a map displaying the population

density of cities. This thematic map may display the city centers with high population

by big red circles, while displaying the ones with low population by small red circles.

At a first glance, one can think that graduated symbols can be used only for point

layers. But this is not the case. They can be used for layers including any type of

objects such as lines or regions.

22

The steps to produce a graduated symbols map in Crime Analyzer are the same

except for the thematic options dialog. In other words, the analyst first selects the

thematic data source, and then continues. Regardless of the theme data source

which is selected, the last step is to set the graduated symbol options, which is done

by means of the Graduated Symbol Options dialog in Figure 18.

Figure 18: Graduated symbol options.

There are two options to set in this dialog: Symbol size and symbol color. Symbol

style will be a filled circle. Clicking the OK button will create and display the

graduated symbols map as in Figure 19.

Figure 19: Graduated symbols showing the crimes.

The map displays clearly that crimes are mostly committed at the central locations of

the city.

23

3.4.1.3. Individual Values

Individual values are the third thematic type in Crime Analyzer. In an individual

values thematic map, the unique values in the thematic column are determined and

each object on the map is displayed with particular colors or symbols based on

these unique values. For instance, showing different crime types with different colors

would be a good example of individual values theme. Both numerical and nominal

values can be used as individual values. Figure 20 depicts four different crimes.

Figure 20: Individual values displaying different types of crimes.

Using the thematic map in Figure 20, it is possible to determine the theft locations

since there are some clusters with blue points, which spot the theft locations. Also

the map says that malicious injuries and sexual offences are widely spread across

the city.

3.4.1.4. Bar Chart

The previous thematic types, namely ranged thematic, graduated symbols and

individual values all have single thematic variable. Hence they are also called one-

variable thematic maps. Sometimes it may be useful to be able inspect more than

one thematic variable per map object at a time. Bar chart thematic maps allow the

analyst to achieve this. When a bar chart thematic is created, for each map object

24

bars with the number of thematic variables are created at the centroid of the map

objects. This not only allows the analyst to compare the heights of the bars in a

single object but also allows inspecting the same variable among all the charts

belonging to other map objects. Therefore, bar charts are called multi-variable

thematic maps.

The symbols of the bars may be in different styles such as multi-bar chart or stacked

bar chart. Crime Analyzer uses stacked bar charts as default.

To produce a bar chart thematic map in Crime Analyzer, the analyst should specify

the MapInfo table and the thematic variables, or thematic columns, in the Thematic
Table and Columns dialog in Figure 21.

Figure 21: Setting the table and thematic columns of a bar chart.

In the Thematic Table and Columns dialog, selecting the MapInfo table from the

Table field lists the columns of the table in the Table Fields list. Then the analyst

should decide and select the thematic columns and then transfer them to the right,

that is, Pie/Bar Chart Fields list. Clicking the OK button will create the thematic map

in Figure 22.

25

Figure 22: Bar chart thematic map showing the robbery, burglary and car thefts.

As the map suggests, the bar chart theme has the capability to display 3 thematic

variables, namely robbery, burglary and car theft, at the same time.

3.4.1.5. Pie Chart

Pie chart thematic is much like the bar chart thematic. It is a multi-variable thematic

map, too. Instead of displaying bar charts, it shows pie charts at the map objects’

centroid, allowing making comparisons between the slices of the pie. In other words,

pie charts present a way to compare the pieces of a whole.

Creating a pie chart thematic in Crime Analyzer is also the same as creating bar

charts. Hence the full steps will not be repeated here. It involves selecting a table

and thematic columns. A typical pie chart thematic map may appear as in Figure 23.

26

Figure 23: Pie chart thematic map showing the robbery, burglary and car thefts.

As the map suggests again, the pie chart theme has the capability to display 3

thematic variables, namely robbery, burglary and car theft, at the same time.

3.4.2. Direction Analyses

3.4.2.1. Car Theft-Finding

Since car theft is one of the common crimes types, there is a dedicated module in

Crime Analyzer for that crime type. It gets the required coordinate values from a

data source and then draws arrows from theft locations to finding locations. In this

way, it can be possible to determine the probable locations of criminal organizations

that steal and break cars into pieces.

Using the Theft-Finding Analysis dialog in Figure 24, the analyst can display the

theft and finding locations on the map.

27

Figure 24: Theft-Finding Analysis dialog.

In the Theft-Finding Analysis dialog, the analyst first selects the data source and

the table including the coordinates. When the table is selected, the columns of the

table are listed in the four fields in the Coordinate Columns group. Selecting the right

columns and then pressing the OK button displays the analysis result as in Figure

25:

Figure 25: Car finding locations.

28

The analysis result in Figure 25 can suggest a strong probability that there are at

least two crime organizations within the blue circles since there are apparent car

collection locations there.

3.4.2.2. Moving Direction

Sometimes it may be important to be able to see spatial shifts in serial or organized

crimes. To display these shifts Crime Analyzer has a module. It expects a point

MapInfo table and a date column in this table as shown in Figure 26.

Figure 26: Selecting the crime table and date column.

Then Crime Analyzer orders the crime points by date and draws lines between the

points by joining them. The result is a map in Figure 27.

Figure 27: Determining the moving direction of the offender.

29

As Figure 27 offers, it is not difficult to comprehend that the serial crimes are shifting

to the north over time. This way, it can be possible to narrow and estimate the

potential new crime area.

3.4.3. Density Analyses

3.4.3.1. Dot Density

In dot density maps, dots are used to represent the data value related with a region.

Dot density maps are especially useful for displaying data where a single dot

represents a large number of a quantity such as population or manholes. The total

number of dots is reduced to a fraction of the actual point count. For example, each

100 points on a table may be represented as 1 dot. This produces a much cleaner

map.

Dot density maps are also useful for crime mapping since they can clearly spot the

regions with a high crime density with raw crime data. To demonstrate this, one can

consider the raw crime data in Figure 28.

Figure 28: Displaying raw crime data.

As the map in Figure 28 suggests clearly, displaying raw crime data alone does not

help the analyst too much because of the crowded points. Right at this point, dot

density maps come into play.

30

Creating dot density maps in Crime Analyzer is the same as creating a ranged

thematic. The only difference is setting the options in the Dot Density Settings

dialog in Figure 29.

Figure 29: Dot density settings.

In the Dot Density Settings dialog, one can specify the unit count that each dot will

represent, the dot shape, the dot size and the color. Hitting the OK button will

generate the dot density map in Figure 30.

Figure 30: Representing each 100 crimes with 1 dot in a dot density map.

As the map suggests, dot density maps are particularly useful in showing the raw

data in a wide area such as a city. It is easy to determine the regions of robbery with

a high density at a first look.

31

3.4.3.2. Thematic Grid

Thematic grid maps are different from the other thematic types in that the others are

based on vector layers. Thematic grids, on the other hand, are created using an

interpolation point data from a source table. To do this, first a grid file is created from

the interpolated data and then this file is shown as a raster layer in the map. The

result is typically a raster image with continuous color transition.

Good examples of thematic grids are displaying rainfall amounts or climate changes

in weather forecasts. Thematic grids are also suitable to hot spot the peak crime

locations on the map. So they are implemented in Crime Analyzer.

Steps to generate thematic grids in Crime Analyzer are the same as to generate a

ranged thematic. The thematic values can be pulled from a database table or simply

a numerical MapInfo table column can be used as thematic variable. A thematic grid

may appear as in Figure 31.

Figure 31: Thematic grid depicting hot spots.

As can be comprehended from the legend in Figure 31, the red spots highlight the

peak crime areas in the city. The areas with cold colors like blue and green show the

minimal crime locations. Another point is that, the result is not a vector layer, but a

continuous raster image as mentioned above.

32

3.4.3.3. Linear Hotspot

Linear hot spot is a slightly different thematic type since rather than points or

regions, they involve line objects. In other words, it “measures the risk distribution of

crime along a linear network by calculating the rate of crimes per section of road

[18].” The crimes can be, for instance, car thefts or incidents occurring in bus trips

along a street. Considering and inspecting the possible relation between crimes and

linear networks can give an exclusive point of view that other thematic types cannot

provide.

Linear hot spots are actually a kind of ranged thematic since the objects are colored

according to a column such as incident count of a street.

The steps to generate a linear hotspot map is exactly the same as to generate a

ranged thematic and involves specifying first the data source and thematic column

and then the ranged thematic options. A typical linear hot spot map can appear as in

Figure 32.

Figure 32: Linear hot spots along streets.

As the legend in Figure 32 points out, the streets with red represent the top crime

lines. If the crime here is assumed to be car theft, then it can be inferred that the

streets with red lines certainly requires more security measures by means of

additional police forces or cameras.

33

3.4.4. Temporal Analyses

Besides the spatial analysis tools like thematic or direction analyses, Crime Analyzer

also presents non-spatial tools. Temporal analyses let the analyst to investigate and

compare particular crimes at particular time intervals. They are superior for spotting

the date or hour intervals including peak crime rates.

3.4.4.1. Temporal Distribution

Analyzing only some snapshots of time may not be sufficient for a crime analyst to

determine the crime patterns or future trends. Sometimes it is necessary to see the

crime distribution or change trend by inspecting the crime data in different time

points. For example, displaying the locations of a particular crime for each six

months may spot the changes in the distribution of the crime with time. Temporal

distribution first requires that the analyst select the tables with the Animation
Layers dialog, as in Figure 33.

Figure 33: Specifying the tables for temporal distribution.

Hitting the OK button in the Animation Layers dialog will open the Incident
Animation form in Figure 34.

34

Figure 34: Incident animation displaying successive months’ crimes.

Incident Animation form provides next and previous buttons that provide the

functionality to display the next or previous month’s crimes on the map. While

moving with the months, the position of the track bar on the right is updated

accordingly. This way, the analyst can easily see the crime distribution with time and

can compare the crimes belonging different months.

3.4.4.2. Creating Animation

It is possible to create animations from a collection of map images. This will make

sharing the temporal analysis results much easier. Another benefit is that the

animated gif images can be displayed in a web page, for example.

Here it will be suitable to note that Crime Analyzer has the capability to save a map

as an image. To do this, Export Map Image button on the map toolbar with icon

can be used. When clicked, this button pops up the Image Export Options dialog in

Figure 35.

35

Figure 35: Image Export Options dialog.

Clicking the OK button in the Image Export Options dialog saves the current map

window as image with the selected options.

To create an animation file, it is sufficient to browse and select the input images as

shown in Figure 36.

Figure 36: Selecting the files to create animation.

Hitting the OK button in Figure 36 creates and opens the animated gif file. While

implementing this module, an open source library from the CodeProject site has

been used [19].

3.4.4.3. Data Calendar

As well as presenting various map tools, Crime Analyzer provides non-spatial

analysis types like data calendar and data clock. The reason is that temporal

analyses are also important in crime analysis; relating the time domain with the

spatial domain can give exclusive and well directed clues for crime trends and

patterns. For example, the analyst can perform a thematic analysis on the map, and

36

then see the same crime records in a data calendar or data clock to determine the

peak dates and hours of the crimes.

In some resources data calendar is called “data clock” but it will be more appropriate

to call it “data calendar” since its output is much like a yearly calendar as shown in

the Figure 38.

Generating a data calendar requires connecting to the database, specifying the

source incident table, the date column in the table, the report year and optionally the

report title as in the Data Calendar Options dialog in Figure37.

Figure 37: Data Calendar Options dialog.

Hitting the OK button in the Data Calendar Options dialog will display the data

calendar with specified options as in Figure 38.

Figure 38: Data calendar.

37

Data calendar is a powerful data visualization tool that can summarize the crime

distribution for the whole year in a single picture.

Determining the peak time intervals of particular crimes is crucial in crime analysis.

Generating and inspecting a data calendar can greatly contribute this purpose since

it can spot the dense time of particular crimes as can be seen with the red clusters

in Figure 39. For example, as the last three data calendars in Figure 39 suggest,

there is a stable robbery trend in December. There are also a few red clusters in the

last data calendar belonging to the months June, July and December. These are the

times that probably must be carefully examined.

38

Figure 39: Data calendars comparing the crime times of four successive years.

39

Since data calendar is a 2-dimensional chart, distribution of crimes can be inspected

in both vertical and horizontal axes. Inspecting the data calendar vertically means

searching in which months there are crimes above the average. Inspecting

horizontally means, on the other hand, looking at the days of months for the crimes,

which may have a result that a particular crime may steadily be committed in the

middle of all the months, for example. This may be relevant with the corporate salary

payment days of the state, for the robbery crimes for instance. In situations like

those, data calendars point out that there are some dates that require special

attention.

The data calendars can also display the increases or decreases of the crimes over

time. For instance, the regular and stable increase in robbery incidents between

2002 and 2005 can be seen from Figure 39.

3.4.4.4. Data Clock

Data clocks are much like data calendars in that they display the crime distribution

over a time interval. However, rather than showing the months, they display the

days and hours of crimes over a particular week. In other words, they present the

crime distribution in the time domain in a narrower interval. This means they can

denote the peak days and hours of a specific crime.

Figure 40: Data Clock Options dialog.

Generating a data clock in Crime Analyzer is very similar to generating a data

calendar. The only difference is that data clock requires additional information,

namely the hour column of the incident table as in Figure 40. Clicking the OK button

will generate and display the data clock as in Figure 41.

40

Figure 41: Data clock.

Data clocks are much the same as regular clocks. The sole difference is that data

clocks divide a circle into 24 pieces rather than 12. Each slice corresponds to a

single hour. The hours start from 00:00 at the top and increases clockwise, as in

Figure 41. On the other hand, the nested 7 rings represent the 7 days of a week, the

most inner ring being Monday.

Like data calendars, data clocks allow 2-dimensional analyses. The clockwise

sweeping represents hours of a day and going from the inner to the outer rings

represents the days of a week. This means data clock has the capability to show the

crime distribution with respect to days or hours.

Generating multiple data clocks and comparing the crime distributions can also give

superior results. For example, Figure 42 suggests that the burglaries in a successive

four week period are regularly and steadily committed between 22.00 and 04:00 AM.

With this information, the analyst may conclude that there must be more patrol

forces during this time interval. With regard to day dimension, the clock in Figure

says that there are no particular days that contain peak crimes.

41

Figure 42: Data clocks comparing the crime times of four successive weeks.

3.4.5. Chart Analyses

3.4.5.1. Bar Chart

Another non-spatial analysis type is bar chart. Since using charts is a common way

to visualize data, Crime Analyzer allows the analyst to generate bar charts.

Generating a bar chart first requires connecting to a database and then selecting the

source table and name column. Like the previous analysis types, chart analyses can

utilize the Query Builder dialog in Figure 16 to create flexible queries against the

source table. In this way, the analyst can generate various filters as in Figure 43.

42

Figure 43: Generating a bar chart.

The Query Builder dialog in Figure 16 can be opened by clicking the Query…

button in Figure 43. After specifying the source table, name column and the filter

clause, clicking the OK button will pop up the Bar Chart dialog in Figure 44 to

specify the chart title:

Figure 44: Setting the chart title.

Hitting the OK button in Figure 44 generates and displays the bar chart as in Figure

45:

Figure 45: Bar chart displaying the rates of unresolved robberies by county.

43

In this way, bar charts can be generated with various flexible filters.

3.4.5.2. Pie Chart

Generating pie charts in Crime Analyzer is exactly the same as generating bar

charts, that is, it involves specifying the source table, the name column, the query

clause and then the chart title. A typical pie chart may be as in Figure 46:

Figure 46: Pie chart displaying the rates of unresolved robberies by county.

44

CHAPTER IV

ARCHITECTURE

This chapter gives the high level design features such as development environment

and framework, projects making up the system, project dependencies and

functionalities of the project packages.

4.1. DEVELOPMENT ENVIRONMENT AND FRAMEWORK

Crime Analyzer has been developed using Microsoft Visual Studio (VS) 2010 and

the .NET Framework 4.0. VS 2010 is a powerful development environment for

enterprise, desktop or mobile projects. The programming language used in Crime

Analyzer is C#. It is a modern, object-oriented, type safe and general purpose

language created by Microsoft.

One alternative technology could be Java Swing but Java does not provide built-in

Component Object Model (COM) support. Although it possible to use some bridge

libraries for Java-COM interaction, it is not a practical and comfortable method

compared with .NET. COM support is required to be able to display and control

MapInfo maps within the application. As a result, C# and the .NET Framework

seemed to be the best choice for developing spatial crime analysis software with

MapInfo.

4.2. PROJECT COMPONENTS

Crime Analyzer is a desktop application consisting of two projects. The descriptions

of the projects are as follows:

CrimeAnalyzer: This is the main project and is of type Windows Forms Application.

It mainly consists of the UI components of the application. Examples of these

components are the main program window, menus, navigation links and child

windows hosting maps, tables and charts.

45

MapInfoX: This is a class library which provides all of the core functionality. With

this library, it is possible to display maps, add layers to maps, create thematic or

temporal analyses or pull data from a supported database.

There are also two external libraries, that is, DLL (Dynamic Link Library) files that

are used by the CrimeAnalyzer project. These two DLL files are ready-to-use

libraries from CodeProject as a MS Outlook-style navigation bar component [20].

This navigation bar appears on the left of the main window of Crime Analyzer.

Project dependencies for Crime Analyzer can be depicted as in Figure 47:

Figure 47: Project dependencies.

The components of the two projects will be examined in separate sections.

4.3. CRIMEANALYZER PROJECT COMPONENTS

Although being the main project in the solution, CrimeAnalyzer does not contain too

much items in it. Its main function is being the entry point of the program (via the

Program class) and hosting the main UI components like the main window, menus

and child windows. It heavily depends on the MapInfoX project.

Figure 48 displays the CrimeAnalyzer project items in VS solution explorer:

46

Figure 48: CrimeAnalyzer project items.

The main window is called FrmMain and it is an MDI parent form containing all of

the child windows, menus and other UI items. Main folders, i.e. packages, of the

project can be listed as follows:

• Gui folder under the project includes the child windows such as map

windows, the chart components such as bar charts and the link button

control that appears in the navigation bar.

• Resources folder contains the required resource files such as icons.

• Util folder includes the classes with utility methods performing common

operations like logging.

4.4. MAPINFOX PROJECT COMPONENTS

MapInfoX is the core project providing the actual functionalities such as mapping,

connecting to a database and performing both spatial and non-spatial analyses.

The name MapInfoX comes from the combination of the two product names of

Pitney Bowes Software, namely MapInfo and MapX. MapInfo is a desktop GIS

program and MapX is an object oriented mapping component. MapInfoX is a

wrapper library that combines the power of MapInfo and the practicability of MapX

and thus the project name was determined as MapInfoX.

Figure 49 displays the MapInfoX project items in VS solution explorer:

47

Figure 49: MapInfoX project items.

The project folders and their functionalities are listed below:

• Analysis: Contains some special analysis implementations.

• Animation: Contains the classes for generating animation files.

• Controls: One of the most important folders. Contains the map control, map

toolbar, map statusbar, map tool buttons etc.

• Data: Provides the data access layer and connection classes for relational

databases. Also contains catalog, table enumerator, table info and column

info classes for spatial tables.

• Geometries: Contains the abstract base class for all geometry objects and

the concrete implementing classes like point and rectangle. Also includes the

distance structure and distance unit enumeration.

• MapInfo: Contains the low-level internal classes communicating directly with

MapInfo. This communication involves the OLE (Object Linking and

Embedding) callbacks to get map information such as current cursor

coordinates and manipulating the map by sending commands to MapInfo.

• Mapping: Stands at the heart of MapInfoX. Includes the map class, different

layer types, layers collection, map selection etc. Also contains the classes

doing the actual work in generating the thematic analyses.

• Resources: Contains the required resource files such as icons.

• TemporalAnalysis: Contains the classes performing non-spatial time

analyses such as data calendar and data clock.

• Util: Exposes utility classes such as color utilities and temporary file

generator.

48

In addition to providing the main functionalities, MapInfoX converts the cumbersome

MapBasic commands into map object methods. This will be detailed in the next

chapter.

49

CHAPTER V

DEVELOPMENT OF THE SYSTEM

This chapter explores how the system has been implemented.

5.1. MAPPING FRAMEWORK

The system at first needs a powerful mapping framework in order to display maps

and perform spatial analyses. MapInfo is full-featured desktop mapping software

which is commonly used around the world. Hence it is suitable to utilize it in a crime

analysis and mapping application.

MapInfo is currently produced by Pitney Bowes Software (Formerly MapInfo Corp.)

The actual name of the product is MapInfo Professional but it is commonly referred

to as just MapInfo. We also use this convention and MapInfo means MapInfo

Professional in this study.

For the most part, MapInfo is used for mapping and spatial analysis. MapInfo makes

it possible to create, store, manipulate, visualize, analyze, interpret and output both

spatial and non-spatial data.

Also there is a Visual Basic-like programming language, namely MapBasic, to

customize MapInfo. Using MapBasic, it is possible to write custom applications

running inside MapInfo. Another benefit of MapBasic is the capability to automate

repetitive tasks such as batch geoprocessing operations. Two examples of these

operations can be large data conversions or geodatabase compaction. MapBasic

also allows developers to programmatically control MapInfo through integrated

mapping, which is the next and important topic to focus.

5.2. INTEGRATED MAPPING

Integrated mapping allows a client application to programmatically control and

manipulate MapInfo using MapBasic commands. In fact, it is a type of IPC (Inter-

50

Process Communication). This communication is performed via either OLE

automation or DDE (Dynamic Data Exchange). DDE is a relatively old technology

and has some restrictions compared with OLE automation. OLE automation, on the

other hand, is a newer and more stable technology and it is the recommended way

for integrated mapping by the vendor. Hence, MapInfoX uses this method when

implementing integrated mapping.

Integrated mapping applications are written with external programming languages,

i.e. languages other than MapBasic. These languages must provide COM support

since the MapInfo process will be added as a COM reference to the application. The

most commonly used languages for integrated mapping are Visual Basic, Delphi,

C++, C# and Visual Basic .NET.

In an integrated mapping application, every UI component except for the map itself

belongs to the client application. For example, in Figure 50, the window, the toolbar

and the buttons all belong to the client (C#) application. The map with the white

background, however, is a MapInfo map which is re-parented by a window of the C#

application. One exception to this rule is that some MapInfo dialogs such as Layer

Control may be displayed within the application.

Figure 50: A Hello (Map of) World application with integrated mapping.

Typically the map is hosted within a container .NET component such as panel or

picture box. When the application starts, a new MapInfo process is created silently

in the background and the map is shown in the container component as mentioned

above. In other words, MapInfo splash screen does not appear at all. The map

displayed is an original, live and interactive MapInfo map and it is not an image or

51

any type of snapshot. In other words, the user of the application can change the

map by zooming, panning, selecting etc. and even add new layers to the map.

Controlling MapInfo from the client application takes place in the form of MapBasic

commands. In other words, the client application sends MapBasic commands to

MapInfo as strings and MapInfo runs these incoming commands and manipulates

the map accordingly.

5.2.1 Elements of Integrated Mapping

Integrated mapping basically consists of a client program, MapInfo and optionally

one or more compiled MapBasic programs as shown in Figure 51 [21].

Figure 51: Elements of an integrated mapping application [21].

The optional element, namely compiled MapBasic program, is produced by the

MapBasic compiler and has the .mbx extension. MBX files are executable programs

but they are not standalone executables, i.e. only MapInfo can execute them. It can

be a good alternative to use existing MapBasic programs within an integrated

mapping application instead of writing the functionality from scratch.

5.2.2 Steps to Write Integrated Mapping Applications

Writing an integrated mapping application with Visual Studio roughly involves the

following steps:

• Creating a Windows Application in VS.

• Adding a container component such as a panel or picture box to the form in

order to host a map.

52

• Adding a toolbar to the form in order to host the map tool buttons for zooming

and panning.

• Adding the MapInfo reference to the project. (Figure 52)

• Writing code to display the map on the form.

• Writing code to function the toolbar buttons.

To add the MapInfo reference to the project, Add Reference dialog of VS in Figure

52 is used.

Figure 52: Adding MapInfo to the project references.

In the COM tab of the Add Reference dialog, there is an entry with name MapInfo

X.X OLE Automation Type Library, where X.X denotes the MapInfo version installed

on the machine. This component will provide the required classes to control MapInfo

from the client application.

5.2.3 Controlling MapInfo

After displaying the map within the client application, the next step is to add new

mapping features to the application by controlling MapInfo. This is done with

sending MapBasic commands in the form of strings to MapInfo.

MapInfo exposes a public Do() method to accept MapBasic commands. It also

exports a RunMenuCommand() method to run its menu commands. Controlling

MapInfo is often a matter of calling the Do() method of the MapInfo object using a

string parameter holding a MapBasic command. For example, if we define a variable

53

with name mi of type MapInfo application, adding a layer to the map can be

achieved in C# with

mi.Do(“Add Map Layer CITY”);

This statement sends the command between the quotes and then MapInfo executes

the command

Add Map Layer CITY

and adds the CITY layer to the map.

5.2.4 Querying Data from MapInfo

Sometimes it is necessary to get information about MapInfo objects like tables. For

example, it is a common operation to loop through the records of a MapInfo table.

For this, one must first get the row count of the table. The client application cannot

know this information directly and it has to ask this information to MapInfo. Thanks

to the MapInfo’s public Eval() method, it is possible to get this type of information.

For instance, the following expression returns the number of countries in the World

table:

mi.Eval("TableInfo(\"World\", 8)")

Here TableInfo() is a MapBasic function returning information about an open

MapInfo table.

5.2.5 Inspecting the Hello (Map of) World Application

The important parts of the Hello (Map of) World application are given in the following

code:

54

This can give a concrete idea to see what integrating mapping applications look like.

On line 9, the MapInfo object is declared as of type MapInfoApplication.

MapInfoApplication is an interface standing in the MapInfo assembly that is defined

with the COM reference in Figure 52.

Between the lines 15 and 22 the actual works are achieved. Line 16 creates a new

instance of MapInfo. Then the MapInfo map that has just been created is re-

parented in the application on lines 17 and 18. Line 19 opens the World.tab table

and loads it into the physical memory. Line 20 displays the map of the World table.

Finally the map is switched to the pan mode as if we clicked the pan button on the

toolbar of MapInfo.

There is also another method on line 24 that switches to the zoom in tool.

RunMenuCommand() method activates a MapInfo menu command with a given

integer parameter. The parameter 1705 here corresponds to the zoom in menu in

MapInfo.

5.3. IMPLEMENTATION OF THE MAPINFOX PROJECT

In order to construct crime mapping software, it is vital to have a practical and

usable mapping framework. Integrating mapping provides a powerful way since it

allows controlling all aspects of MapInfo. This means that using integrated mapping

it is possible to achieve everything that MapInfo can do. But the problem with

integrated mapping is that it is not a practical and reusable way of constructing

software. Moreover, sending MapBasic commands to MapInfo often requires

generating and concatenating cumbersome strings. Even worse, when generating

55

these strings it is necessary to use nested quotes, which requires escape characters

etc. This trouble also increases the probability of run-time errors caused by simple

syntax errors since these strings are executed at run-time by MapInfo.

These issues proved the need for developing a better mapping framework.

MapInfoX provides this framework and it has been developed as an object oriented

and reusable class library, i.e. DLL project.

5.3.1 Features and Benefits of MapInfoX

The most significant feature of MapInfoX is that it transforms the integrated mapping

into an easy to use map component like MapInfo MapX or ESRI ArcObjects.

MapInfoX achieves this by wrapping the low-level and complicated integrated

mapping implementations as ready to use objects.

One of the benefits is that it sets a type-safe environment to use the MapBasic

commands. This greatly prevents the possible run-time errors triggered by

incorrectly generated command strings.

Using MapInfoX as the map component also offers a better and easier debugging

experience.

Code using the MapInfoX library will be much more readable and cleaner since it

provides a concise syntax by means of objects. Integrating mapping, on the other

hand, typically requires generating long strings. Comparing the following usages of

the two in Table 1 demonstrates the difference.

Table 1: Getting the row count of a table with and without MapInfoX.

Without MapInfoX

int rowCount = int.Parse(mi.Eval(string.Format(@"TableInfo(""{0}"", 8)", “City”)));

With MapInfoX

Table table = map.Catalog[“City”];
int rowCount = table.RowCount;

As Table 1 suggests, using MapInfoX to get the row count of a table is much easier

and has a safer syntax. The difference is even more obvious with relatively

complicated operations like getting the columns of a table as in Table 2:

56

Table 2: Getting the columns of a table with and without MapInfoX.

Without MapInfoX

List<string> columnNames = new List<string>();
MapInfoApplication mi = MapContext.GetMap().MapInfoApplication;
int columnCount = int.Parse(mi.Eval("NumCols(" + “City” + ")"));
for (int i = 0; i < columnCount; i++) {
string columnName = mi.Eval(string.Format(@"ColumnInfo(""{0}"", ""{1}"", 1)", “City
”, "Col" + (i + 1)));
columnNames.Add(columnName);
}

With MapInfoX

Table table = map.Catalog[“City”];
string[] columnNames = table.ColumnNames;

To present these benefits, MapInfoX handles the complex implementation details in

internal classes, which are accessible to only the classes in the same assembly.

Then it exposes the handy public APIs (Application Programming Interface) to the

external world.

Development of the MapInfoX library is the most crucial and time-consuming part of

this study.

5.3.2 Implementing the Map Component

Two of the most important classes in MapInfoX are MapControl and Map classes.

The MapControl class extends System.Windows.Forms.PictureBox and it is a visual

component that can be dropped into a form surface from the VS toolbox.

The Map class is a high level abstraction of the MapInfo application and provides

the necessary properties and methods to access and manipulate various map

elements such as layer collection, tools, catalog and selection.

The Map class implements the IMap interface. This interface based design has been

constructed to provide flexibility. For instance, if another mapping framework is to be

used instead of MapInfo, the existing framework can be replaced with a new one

without breaking the existing design.

Key elements of the Map class will be examined in the next sub sections.

57

Figure 53 depicts the expanded class diagrams of the MapControl and Map classes

and the IMap interface.

Figure 53: Class diagram for MapControl, Map and IMap.

5.3.2.1 Layers Collection

Layers class represents a collection of layers in a map and provides methods to

perform standard operations such as enumerating, adding, removing and moving

layers. It also implements some standard list ADT (Abstract Data Type) methods like

Count and RemoveAt. Layers class extends the CollectionBase class and

implements the IList and ICollection interfaces.

58

Layers class also has a property CosmeticLayer and this property returns the

cosmetic layer of a map. Cosmetic layer is a special layer in MapInfo and it is

something like a scratch paper for the map. It is commonly used for temporary

display operations.

Figure 54 displays the members of the Layers class.

Figure 54: Layers class members.

One of the most used properties of the Layers class is the indexer that returns a

map layer according to the layer name. Its signature is

public IMapLayer this[string name]

Also there is an overload of this property that returns a map layer according to its

index, i.e. layer order, as follows:

public IMapLayer this[int index]

These two properties are important since they allow accessing a map layer easily

and then perform subsequent operations like creating themes on that layer.

59

5.3.2.2 Tools

Tools class has the essential methods to function the map toolbar buttons like zoom

in and pan. In fact, it delegates the map toolbar functions to the MapInfoApplication

class, which does the actual work by activating the commands and tools. A typical

method in the Tools class is the ZoomInTool() method below:

public void ZoomInTool() {
 mi.ZoomIn();
}

The members of the Tools class are given in Figure 55:

Figure 55: Tools class members.

5.3.2.3 Catalog

Catalog class provides access to the currently open MapInfo tables. It presents

methods to create a new table or to open, close, enumerate and join the tables in a

MapInfo session.

The catalog concept here in fact is similar to a database in that it encapsulates

MapInfo tables in a MapInfo session. But there is a difference between them. In a

typical relational database, all database objects such as tables or views are

60

available to making queries or updates once connected. MapInfo tables, on the

other hand, are not available until they are opened.

Catalog class members are shown in Figure 56:

Figure 56: Catalog class members.

5.3.2.4 Selection

Selection class represents a query result set from a table or a collection of the

selected objects on the map and essentially is a temporary MapInfo table. The table

on which a query is executed is called the base table. Selection class has three

properties returning the base table name, row count and temporary table name. It

also has methods to iterate through the records of a query result.

The members of the Selection class are provided in Figure 57.

61

Figure 57: Selection class members.

5.3.3 Implementing the Map Toolbar

The map toolbar includes the map tools such as zoom in and pan to manipulate and

interact with the map. The name of the underlying class is also MapToolBar and it

extends System.Windows.Forms.ToolStrip.

All map toolbar buttons extend the MapTool abstract class, which extends

System.Windows.Forms.ToolStripButton. BaseCommand and BaseTool classes are

the base classes of the command and tool buttons, respectively. For example,

UnselectCommand button extends BaseCommand and ZoomInTool button extends

BaseTool, as in Figure 58.

Figure 58: Inheritance hierarchy of BaseCommand and BaseTool classes.

Adding buttons to the MapToolBar is done in the MapToolBar constructor with a

code like

Items.Add(new ZoomInTool());

62

Creating a new toolbar button is a matter of writing a static constructor and

overriding the OnClick() method from the base class as in the following code:

 internal class UnselectCommand : BaseCommand {

 static UnselectCommand() {
 icon = Resources.Unselect as Image;
 caption = "";
 tooltip = strings.UnselectTool;
 }

 public override void OnClick(object sender, EventArgs e) {
 if (MapControl != null) {
 MapControl.Map.Tools.UnselectCommand();
 }
 }
 }

Here MapControl is a protected property from the base class MapTool which returns

the current map window’s map control object.

5.3.4 Implementing the Data Access Layer

A Data Access Layer (DAL) is a software layer providing convenient and simplified

access to persistent data sources such as databases. DAL is typically implemented

with data access components for different data sources. “These components

abstract the logic required to access the underlying data stores. They centralize

common data access functionality in order to make the application easier to

configure and maintain. Some data access frameworks may require the developer to

identify and implement common data access logic in separate reusable helper or

utility data access components [22].”

Crime Analyzer has a DAL that implements access to two databases: MS Access

and Oracle. In this implementation, there are two concrete classes, namely

MSAccessConnection and OraConnection, extending an abstract base class

DataBaseConnection as in Figure 59:

63

Figure 59: DAL components.

MSAccessConnection and OraConnection classes both implement the abstract

methods in the DataBaseConnection class. MS Access and Oracle both are

relational databases and they implement data query and manipulation via SQL

(Structured Query Language). But they differ in some points such as connection

strings and SQL syntax. Thus, separate implementation classes

(MSAccessConnection and OraConnection) are given for each database. These two

classes implement the standard operations in a typical database such as opening

and closing the connection, enumerating database tables, returning a result set from

an SQL clause etc. There is also a MapInfo-specific method, namely

DownloadDBTableAsMITable() with signature

public abstract bool DownloadDBTableAsMITable(string table, string path);

which downloads a database table as a MapInfo table. This method is required for

pulling data from a corporate database and joining it with a MapInfo table; for

generating thematic maps for example.

5.3.5 Implementing the Thematic Analyses

Generating a thematic map basically requires a MapInfo table and a thematic

column. In other words, there is a common operation with different implementations.

Hence it is suitable to abstract out all thematic map types with an abstract class,

namely AbstractTheme. This abstract class also implements the ITheme interface,

which gives three methods to implement:

64

• FeatureLayer: Represents the MapInfo layer upon which the thematic map

will be generated.

• Expression: Typically represents the thematic column name. It can also be

an expression from two or more columns.

• Legend: Represents the thematic legend object displaying the legend items.

Class diagram of the AbstractTheme class together with the two of the implementing

classes and the ITheme interface are shown in Figure 60.

Figure 60: AbstractTheme base class and two implementing classes.

The IThematicLegend interface offers two properties Title and SubTitle to implement

as shown in Figure 61:

Figure 61: IThematicLegend interface members.

AbstractTheme class also provides a default implementation for creating legend by

means of the protected CreateLegend() method.

65

After completing the implementations of the thematic analysis classes such as

RangedTheme and IndividualValueTheme, generating thematic maps are trivial. A

typical code to create a thematic (IndividualValueTheme) map can be as follows:

IndividualValueTheme theme = new IndividualValueTheme(fLayer, expr, true);
theme.Legend.Title = string.Format("{0}:", strings.IndividualValues);
theme.Legend.SubTitle = expr;
fLayer.ApplyTheme(theme);

where fLayer is the FeatureLayer object to apply the thematic, expr is the column

expression and the third parameter (namely, the true value) specifies that zeroes or

blanks will be ignored.

5.3.6 Implementing the Temporal Analyses

There are two temporal chart types in the system, namely data calendar and data

clock. They are implemented in the DataCalendar and DataClock classes,

respectively. These classes extend a common base class TemporalChart. This base

class provides both protected constants and methods to be used in deriving classes.

Examples of the protected constants are TOP_MARGIN, LEFT_MARGIN and

TITLE_FONT. The protected methods are CopyToClipboard() and SaveAsImage().

These common methods are called from the context menus of DataCalendar and

DataClock when they are right clicked. While the protected constants ensure format

consistency, the protected methods give reusability.

The class diagrams of the three classes mentioned are depicted in Figure 62:

66

Figure 62: DataCalendar and DataClock class diagrams.

As shown in Figure 62, the TemporalChart (and thus DataCalendar and DataClock)

extends System.Windows.Forms.PictureBox control to easily perform the drawing

operations. These operations utilize the classes in the System.Drawing namespace

such as Graphics, Rectangle, Pen and Brush.

67

Drawing a data calendar is relatively simple since it mainly involves creating

adjacent rectangles. This has been achieved using the Graphics.DrawRectangle()

and Graphics.FillRectangle() methods. Other stuff like legend texts and month

names has been handled with the Graphics.DrawString() method.

Drawing a data clock, on the other hand, is a more complex operation because of its

non-standard cell shape. Unlike a data calendar cell, which is a rectangle, a data

clock cell does not have a pre-defined shape in the .NET drawing classes. Hence, it

has been implemented using the System.Drawing.Drawing2D.GraphicsPath class

representing a series of connected lines and curves.

5.4. DESIGN PATTERNS USED IN MAPINFOX

In software engineering, a design pattern is a general reusable solution to a

commonly occurring problem within a given context in software design. A design

pattern is not a finished design that can be transformed directly into source or

machine code. It is a description or template for how to solve a problem that can be

used in many different situations. Patterns are formalized best practices that the

programmer must implement themselves in the application [23].

With another definition, a design pattern is a general technique used to solve a class

of related problems. It isn’t a specific solution to the problem. Probably every

architect who came up with an observably pleasant room brought light into that room

in a different way, and probably every programmer implemented their solution

differently. The pattern is the general structure of the solution—a “metasolution” if

you will—not the solution itself [24].

Design patterns make it easier to reuse successful designs and architectures.

Expressing proven techniques as design patterns makes them more accessible to

developers of new systems. Design patterns help you choose design alternatives

that make a system reusable and avoid alternatives that compromise reusability.

Design patterns can even improve the documentation and maintenance of existing

systems by furnishing an explicit specification of class and object interactions and

their underlying intent. Put simply, design patterns help a designer get a design right

faster [25].

A design pattern has four elements: Pattern name, problem, solution and

consequences. Design patterns help construct better and flexible software. Not only

constructing but also maintaining software is a hard task. Hence, the design of

68

software should allow the developers to add new features easily and to modify the

system without breaking any existing functionality. Design patterns, for instance,

encourage designing to interfaces rather than initially focusing on implementation.

They also stimulate loose coupling and high cohesion about objects. Encapsulation

is another important concept to be implemented in object-oriented software

development. Encapsulating, or hiding, implementation details, object data or

classes can greatly contribute to flexible software.

MapInfoX has some design and implementation features that use a few design

patterns. An example pattern that has been used is the Observer Pattern. “Observer

pattern defines a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically [26].”

When implementing the callback messages coming from MapInfo such as current

cursor coordinates, MapInfoX uses delegates and events to notify the map statusbar

and update its contents accordingly.

A second pattern that has been applied is the Template Method Pattern. According

to this pattern, “we define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses redefine certain steps

of an algorithm without changing the algorithm's structure [27].” This pattern is

clearly suitable in implementing the DAL since although there are different methods

for connecting and querying MS Access and Oracle databases, they share the same

conceptual process. “The Template Method gives us a way to capture this common

ground in an abstract class while encapsulating the differences in derived classes

[28].” Here the abstract class is DataBaseConnection and the derived classes are

MSAccessConnection and OraConnection. An important advantage of the Template

Method is that it simplifies adding new features to the system without touching the

existing classes. For example, it will be both easy and safe to implement a new

database such as MS SQL Server in MapInfoX since this will involve creating a new

class (MSSqlServerConnection e.g.) and then extending it from the DataBaseConnection

abstract base class.

The Facade Pattern is another example. “It provides a unified interface to a set of

interfaces in a subsystem. Facade defines a higher-level interface that makes the

subsystem easier to use [29].” The IMap interface exposes a high level interface to

the external world and the Map class simplifies the complexities of the integrated

mapping operations such as callbacks by implementing the IMap interface.

69

Another implemented pattern is the Iterator Pattern. “It provides a way to access the

elements of an aggregate object sequentially without exposing its underlying

representation [30].” Enumerating the open tables in a map is a common operation

in MapInfoX and this can be done easily using the TableEnumerator class, which

implements the Iterator Pattern.

“The Abstract Factory Pattern provides an interface for creating families of related or

dependent objects without specifying their concrete classes [31].” This pattern is

useful when coordinating the instantiation of the right chart type such as bar chart or

pie chart.

70

SUMMARY AND CONCLUSION

This study has both theoretical studies and a software development from scratch.

Theoretical researches cover GIS in general and its applications, the relation

between GIS and crime analysis, and crime mapping. The software development

part involves first designing and implementing a mapping framework in the form of a

class library, and then implementing the crime mapping modules using this mapping

framework. The significant feature of the framework is that it has been designed as

a reusable library and it can be easily used for any integrated mapping application

developed with MapInfo. It not only provides crime mapping modules but also

presents general purpose functionality such as ready to use map controls, table

catalog or data access.

By providing 15 different spatial, temporal and graphical analysis tools, Crime

Analyzer provides a practical solution for crime mapping and crime prevention. It is

beneficial for organizations that fight with crime since it allows a crime analyst to

display the crime data in various visualizations and to infer results from analyses.

Managers can also use Crime Analyzer to deploy the field forces at right locations.

Moreover, after making temporal analyses and seeing the top crime hours in a

location, a manager can direct patrol cars in right hours.

Another major characteristic of Crime Analyzer is that it is not dependent with a

particular database or a table structure. It has been designed and implemented to

work with any MS Access or Oracle database. Pulling the instant information from a

corporate database and performing the required joins with spatial tables are done

automatically. Therefore, the software may be used in any police or crime research

department.

71

REFERENCES

1. http://en.wikipedia.org/wiki/Geographic_information_system

2. MARAŞ, H.H. (1999), An Application and Design of a Geographic
Information System for Updating of a Geographic Database, PHd. Thesis,
Istanbul Technical University, Istanbul. (in Turkish)

3. ESRI GIS Dictionary at:
http://support.esri.com/es/knowledgebase/GISDictionary/term/layer

4. BOBA, R. (2005), Crime Analysis and Crime Mapping, Sage Publications.

5. http://en.wikipedia.org/wiki/Crime_analysis

6. BOBA, R. (2005), Crime Analysis and Crime Mapping, Sage Publications.

7. http://en.wikipedia.org/wiki/Crime_analysis

8. http://en.wikipedia.org/wiki/Crime_mapping

9. KARAKAŞ, E. (2004), Burglary Crime Distribution and its Characteristics in
Elazığ City, Elazığ.

10. ESRI UK CrimeAnalyst site at:
http://www.esriuk.com/software/arcgis/crimeanalyst

11. http://en.wikipedia.org/wiki/CrimeAnalyst

12. MapInfo Crime Profiler data sheet at:
http://www.pb.com/docs/US/pdf/Products-Services/Software/Data-Mining-
and-Modeling/Geographic-Data-Mining-Tools/Crime-Profiler/mapinfo-crime-
profiler-data-sheet-2012.pdf

13. MapInfo Crime Profiler data sheet at:

http://www.pbsoftware.eu/uk/files/download/products/location-
intelligence/UK_Crime_Profiler_Datasheet_v1-1_LoRes.pdf

14. CrimeStat site at:

http://www.icpsr.umich.edu/CrimeStat/about.html

http://en.wikipedia.org/wiki/Geographic_information_system�
http://support.esri.com/es/knowledgebase/GISDictionary/term/layer�
http://en.wikipedia.org/wiki/Crime_analysis�
http://en.wikipedia.org/wiki/Crime_analysis�
http://en.wikipedia.org/wiki/Crime_mapping�
http://www.esriuk.com/software/arcgis/crimeanalyst�
http://en.wikipedia.org/wiki/CrimeAnalyst�
http://www.pb.com/docs/US/pdf/Products-Services/Software/Data-Mining-and-Modeling/Geographic-Data-Mining-Tools/Crime-Profiler/mapinfo-crime-profiler-data-sheet-2012.pdf�
http://www.pb.com/docs/US/pdf/Products-Services/Software/Data-Mining-and-Modeling/Geographic-Data-Mining-Tools/Crime-Profiler/mapinfo-crime-profiler-data-sheet-2012.pdf�
http://www.pb.com/docs/US/pdf/Products-Services/Software/Data-Mining-and-Modeling/Geographic-Data-Mining-Tools/Crime-Profiler/mapinfo-crime-profiler-data-sheet-2012.pdf�
http://www.pbsoftware.eu/uk/files/download/products/location-intelligence/UK_Crime_Profiler_Datasheet_v1-1_LoRes.pdf�
http://www.pbsoftware.eu/uk/files/download/products/location-intelligence/UK_Crime_Profiler_Datasheet_v1-1_LoRes.pdf�
http://www.icpsr.umich.edu/CrimeStat/about.html�

72

15. Thematic Maps Map Collection & Cartographic Information Services Unit.
University Library, University of Washington. (2009)

16. MapInfo User Guide:
http://reference.mapinfo.com/software/mapinfo_pro/english/10/MapInfoProfe
ssionalUserGuide.pdf

17. JENKS, G. F., CASPALL, F. C. (1971), Error on Choroplethic Maps:
Definition, Measurement, Reduction from the Annals of American
Geographers.

18. TOMPSON, L., PARTRIDGE, H., SHEPHERD, N. Hot Routes: Developing a
New Technique for the Spatial Analysis of Crime, London.

19. http://www.codeproject.com/Articles/11505/NGif-Animated-GIF-Encoder-for-

NET

20. http://www.codeproject.com/Articles/43181/A-Serious-Outlook-Style-

Navigation-Pane-Control

21. MapBasic User Guide:
http://reference.mapinfo.com/software/mapbasic/english/9.5/MapBasicUserG
uide.pdf

22. MSDN Article, Data Layer Guidelines, at:
http://msdn.microsoft.com/en-us/library/ee658127.aspx

23. http://en.wikipedia.org/wiki/Software_design_pattern

24. HOLUB, A. (2004), Learning Design Patterns By Looking At Code, Apress.

25. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

26. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

27. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

28. SHALLOWAY, A., TROTT, J.R. (2002), Design Patterns Explained,
Addison-Wesley.

29. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

http://reference.mapinfo.com/software/mapinfo_pro/english/10/MapInfoProfessionalUserGuide.pdf�
http://reference.mapinfo.com/software/mapinfo_pro/english/10/MapInfoProfessionalUserGuide.pdf�
http://www.codeproject.com/Articles/11505/NGif-Animated-GIF-Encoder-for-NET�
http://www.codeproject.com/Articles/11505/NGif-Animated-GIF-Encoder-for-NET�
http://www.codeproject.com/Articles/43181/A-Serious-Outlook-Style-Navigation-Pane-Control�
http://www.codeproject.com/Articles/43181/A-Serious-Outlook-Style-Navigation-Pane-Control�
http://reference.mapinfo.com/software/mapbasic/english/9.5/MapBasicUserGuide.pdf�
http://reference.mapinfo.com/software/mapbasic/english/9.5/MapBasicUserGuide.pdf�
http://msdn.microsoft.com/en-us/library/ee658127.aspx�
http://en.wikipedia.org/wiki/Software_design_pattern�

73

30. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

31. GAMMA, E. et. al. (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

74

CV

PERSONAL INFORMATION
Surname, Name : ÖZÇETİN, Mustafa
Nationality : T.C.
Birth Date & Location : 30 / 06 /1976, Kırklareli
Marital Status : Married
Phone Number : 0506 672 08 22
e-Mail : mustafaozcetin76@yahoo.com

EDUCATION

Degree School Graduation Year
Bachelor of Science METU 1998
High School Alpullu High School 1993

PROFESSIONAL EXPERIENCE

Year Company Position
2001 Docuart Computers & Communications Software Developer
2004 Alfabim Computer Systems Project Team Leader
2006-Now TÜBİTAK Senior Researcher

FOREIGN LANGUAGES

English – Good (METU Proficiency Exam Score: 82)

HOBBIES

Chess, internet, playing football, reading books

	ÇANKAYA UNIVERSITY
	THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
	COMPUTER ENGINEERING
	MASTER THESIS
	DEVELOPING A GIS BASED CRIME ANALYSIS SYSTEM
	MUSTAFA ÖZÇETİN
	FEBRUARY 2013

