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ABSTRACT

FIXED POINT THEOREMS FOR CYCLIC CONTRACTION MAPPINGS

BALPETEK, Giizin
M.Sc., Department of Mathematics and Computer Science
Supervisor: Prof. Dr. Kenan Tas

FEBRUARY 2013, 44 pages

In this thesis we do a survey about cyclic contractions on some special metric

spaces and also we examine fixed point theorems for the cyclic contraction map-

pings.

Keywords: Cyclic Mappings, Fixed Point, Contraction Mappings, Proximity
Point.
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INTRODUCTION

Let’s start with the fixed point problem Tx = x .We are looking for the solutions
of this equation. If a solution exists then it is called a ”fixed point” of T. One
of the most important results in fixed point theory is the Banach Contraction

Mapping Principle.

Definition 0.1. Let (X,d) be a metric space. A function T : X — X is called
contraction if there exists a number k € R with 0 < k < 1 such that Va,y € X
the following inequality

d(T'(x).T(y)) < kd(z,y).

holds. The smallest value of k is called Lipschitz constant of T'. If the above
condition 1is instead satisfied for k < 1, then the mapping is said to be a non-

expansive map.

Theorem 0.2 (Banach Contraction mapping principle). Let (X, d) be com-
plete and T : X — X be a contraction mapping . Then 3 a unique point x in X
such that T'(x) = x.

In this thesis we do a survey about some types of cyclic contractions on some
special metric spaces and also we examine fixed point theorems for these various

types of cyclic contraction mappings.

Some good references are Sh. Rezapour, M. Derafshpour and N. Shahzad
[11, 14], Ralph De Marr [19], S. Karpagam and Sushama Agrawal [1], W.A. Kirk
and P.S. Srinavasan and P. Veeramani [2], A.A. Eldered and P. Veeramani [3, 4],
G.Petrushel [5], M.A.Al-Thafai and N.Shahzad [6].

The organization of this thesis is as follows.

In chapter I, we will give some results on fixed point theory of cyclic contraction

mappings which are generalization of contraction mappings.

In chapter II, we give some results on cyclic contractions mappings and fixed

point theorems on Reflexive Banach spaces.



In chapter III, we will give some important results on existence of the best
proximity point of cyclic ¢-contractions in ordered metric spaces and we will

introduce partially ordered metric spaces.

In chapter IV, we will give some important recently developments on best

proximity theorems about KT- type cyclic orbital contraction mappings.

In chapter V, we give existence and convergence results for best proximity
points considering different contractive type conditions for cyclical contractive

operators.

We should note that the existence and convergence results for best proximity
points of different cyclic contractive mappings for probabilistic and partial metric

spaces are still open and they can be studied.



CHAPTER 1

CYCLIC CONTRACTION MAPPINGS AND FIXED POINT
THEOREMS.

In this chapter we will give several new results on fixed point theory of cyclic
contraction mappings which are generalization of contraction mappings. The fun-
damental reference is [2]. Throughout this article, Rt denotes the set of all non-
negative numbers, and N is the set of all natural numbers. Let us define the

following sets that we need in the following.

Definition 1.1. Let (X,d) be a metric space and let A, B C X. Then we define

the following notations.
dist(A, B) = inf{d(z,y) : x € A,y € B},

Definition 1.2. Let X be a metric space and A C X and B C X. A map
T:AUB — AU B is called cyclic contraction map if it satisfies the following

conditions

(1) T(A) C B and T(B) C A

(2) For some k € (0,1), we have d(Tx,Ty) < kd(z,y) + (1 — k)dist(A, B),
Ve A,ye B .

If ANB # 0, then dist(A, B) =0 and T is a contraction on AN B and hence from
the Banach contraction principle we can obtain the fized point. So it is interesting
to study when dist(A, B) > 0. In this case, the cyclical contraction map defined
above does not induce AN B # ().

Definition 1.3. Let (X, d) be a metric space, and A and B be nonempty subsets
of X, and ¢ € . Assume thatT : AUB — AU B is a cyclic map such that, for
some x € A, and for each ¢ > 0, there exists a § > 0 such that

H(R(T* 1z, y)) < ¢(d(A,B)) +=+4

1.1
implies ¢(d(T?"x,Ty)) < ¢(d(A,B)) +e,n e N,y € A 1)

3



where R(T*" 'z,y) = %[d(TQ"_lsc,y) + d(T*x, T ') + d(Ty,y)]. Then T is

said to be a ¢-type orbital Meir-Keeler cyclic contraction.

Proposition 1. Let A and B be nonempty and closed subsets of a metric space
XandT : AUB — AU B is a ¢-type orbital Meir-Keeler cyclic contraction. If
x € A satisfies condition (1.1) then d(T"x, T"x) — d(A, B), as n — oo.

Proof. Suppose T is a ¢-type orbital Meir-Keeler cyclic contraction. Take x € A
for which (1.1) is satisfied. Since either n or n + 1 is even, then for each x € A,
we have 3[d(T"z, T" ') + d(T"a, Trx) + d(T"x, T '2)] > d(A, B).

Consider the case
1
R(T"x, T '2) = g[d(T%, T ) +d(T" i, T ) +d(T"x, T" ' 2)] = d(A, B).
So, ¢(R(T™x, T" 'z)) = ¢(d(A, B)). Then due to (1.1) we have
n+1 n 1 n n—1 n+1 n n n—1
o(d(T" " x, T x)) = (s [d(T" e, T x)+d(T" 2, T"x)+d(T"x, T" " x)]). (1.2)

3
Set d,, = d(T"z, T"'z) for each n € N. Then, (1.2) turns into

H(dni1) = ¢(%[2dn + dpia])

Since ¢ is a strictly increasing function, d,, = d,,.1. Hence, we have
a1 = O(dni1) = ¢(dn) = an

Now, consider the other case:
R(T"2. T"2) — %[an +dp] > d(A, B).

Since ¢ is a strictly increasing function, we have
BR(T"2, T"0)) = 63 2 + dyia]) > BLd(A, B))

Set &1 = ¢(3[2dn + dnya]) — ¢(d(A, B)) > 0. Du to (1.1), for this e, there exists
a ¢ such that
1

b(dnsr) = Od(T" 'z, T"x)) < $(d(A, B)) +e1 = 6(3

2d,, + dpi1]).

Hence, ¢(dpy1) < ¢(5[2dy + dpia]) for all n € N. Regarding ¢ is a strictly

increasing function, we have d,, .1 < d,.



Hence {d,} is a non-increasing sequence which is bounded below by d(A, B).
Therefore {d,} converges to some d with d > d(A, B).

We assert that d = d(A, B). Suppose not, that is, d > d(A, B) and hence
o(d) > ¢(d(A, B)). Set € = ¢(d) — ¢(d(A, B)) > 0. Thus, there exists a 6 > 0
which satisfies (1.1). Regarding {d(T" "'z, T"x)} — d, there exists ny € N such
that

o(d) < p([d(Tra, T ') 4+ d(T" 22, T ) + d(T™ e, T )]
< &(d)+0=c+¢(d(A B))+6, Yn>n.

Thus,
o(d(T" 22, T"'x)) < ¢(d(A, B)) + ¢ = ¢(d), Vn > ng
which is a contradiction. Hence d = d(A, B) O

Proposition 1.4. Let A and B be nonempty and closed subsets of a metric space
X andT : AUB — AU B is a ¢-type orbital Meir-Keeler cyclic contraction.
Suppose d(A, B) = 0. Then, for each e > 0, there exist ny € N and a 6 > 0 such
that

¢(d(TPz, T %)) < e+0d implies that ¢(d(TP 'z, T 'z)) < ¢ (1.3)
where p and q are opposite parity, with p,q > n;.
Proof. Take x € X for which (1.1) is satisfied. Since T' is a ¢-type orbital Meir-

Keeler cyclic contraction, for a given € > 0, there exists a 6 > 0 satisfies (1.1).
That is,

(b(%[d(TQnill',y) + d(T2n$,T2n71$) + d(Ty,y)]) <46

1.4
implies ¢(d(T*"z,Ty)) <e,ne N,y e A (14)

Without loss of generality we can choose
) <e. (1.5)

Regarding that d(A, B) = 0, ¢ is strictly increasing and Proposition 1, one can

choose n; € N in a way that

)
H(d(T"z, T" 1)) < 2 for each n > n;. (1.6)

We claim that ¢(d(T?x, Tx)) < € + 4 implies that ¢(d(TP x, T 1)) < e.

)



Fix n > n;. Take p,q € N which are opposite parity with p,q > n;. Suppose
that ¢(d(TPx, T)) < € + 0. Without loss of generality we may assume TPz € A
and T9¢ € B with p = 2n and ¢ = 2m — 1. Otherwise, revise the indices

respectively.

Thus we have ¢(d(TPx, T92)) = ¢(d(T?"x, T?*"'z)) < e+, for m > n. Then,
regarding (1.6) we get

¢(d(T2n$, T2m711’)) ¢(%[d(T2m71$, Tan) + d(Tle’, Tmelx) + d(T’2n+1x7 Tan)])

[e+d+2+12]
(1.7)

Consider (1.4) under the assumption y = T?"z, the inequality (1.7) yields that

H(d(T*" L, T?2)) = ¢(d(TP 2, T 7)) < ¢

Thus, we observe that for a given € > 0, there exist n; € N and a § > 0 such
that

¢(d(TPz, Tx)) < e+ J implies that ¢(d(T? 'z, T z)) < ¢ (1.8)
where p and ¢ are opposite parity, with p, g > n;.
O

Lemma 1.5. Let X be a complete metric space, A and B mon-empty, closed
subsets of X such that d(A, B) = 0. Suppose T': AUB — AUB be a ¢ Type
orbital Meir-Keeler cyclic contraction and d(A, B) = 0. Then

ATz, Ty)) < $(R(T* 'z, y)) if T 'w#y. (1.9)

Proof. To get (1.9), it is sufficient to show that (1.1) is equivalent to the following

condition: For each € > 0 there exists § such that

e < P(R(T*™ x,y)) <e+4

(1.10)
implies ¢(d(T*"z,Ty)) <e,n €N,y € A

where R(T*" ta,y) = 3[d(T*" ‘x,y) +d(T?x, T>'x)+d(Ty.y)] and recall that
d(A. B) = 0.



It is clear that (1.1) implies (1.10). Now, suppose (1.10) holds. Fix T?" 1z, y €
AUB and € > 0. If o(R(T?"'z,y)) < ¢, since (1.10) we have ¢(d(T*"z, Ty)) <
O(R(T* 'z, y)) and consequently ¢(d(T?"z,Ty)) < . If p(R(T*"'z,y)) > &,
then immediately (1.1) holds. Thus, (1.10) and (1.1) are equivalent under the
condition d(A, B) = 0.

We show now if (1.10) holds then we have ¢(d(T?"z, Ty)) < ¢(R(T*" 'z, y)).
If p(R(T?"'z,y)) = 0 then T*" 'z = y. Thus ¢(d(T*"z, Ty)) < ¢(R(T*" "'z, y)).
Suppose ¢(R(T*"x,y)) # 0 and fix ¢ < ¢(R(T?""'z,y)). Choose a § > 0 such
that (1.10) holds. Notice that if ¢(R(T*'z,y)) < ¢(d(T*"z,Ty)), we get a
contradiction with (1.10). O

Theorem 1.6. Let X be a complete metric space, A and B non-empty, closed
subsets of X such that d(A, B) = 0. Suppose T : AUB — AUB be a ¢ Type orbital
Meir-Keeler cyclic contraction. Then, there exists a fized point, say z € AN B,

such that for each x € A satisfying (1.1), the sequence {T?"x} converges to z.

Proof. Take tNA. We show that {T™x} is a Cauchy sequence. Suppose not. Then
there exists an ¢ > 0 and a subsequence in {T"®} of {1z} with

(T Dz, TV )Y > 2. (1.11)
For this e, there exists ¢ > 0 such that
H(R(T* . y)) < e+ 0§ implies that ¢(d(T*x, Ty)) < € (1.12)

where ¢(R(T*"'z,y)) = ¢(5d(T*" " w,y) +d(T*"x, T**'x) + d(Ty. y)]). Set r =
min{e, 6} and d,,, = d
such that

(T™x, T™ " x). Due to Proposition 1, one can choose ng € N

S(d™) = (d(T™z, T 1)) < 2, for m > n. (1.13)

Let n(i) > N. Suppose ¢(d(T" Dz, T+ D=1z)) < e+ L. Then triangle inequality
implies that

¢(d(T”(i)x, Tn(iJrl)x)) < (ﬁ(d(Tn(i):I}, Tn(i)flx) + d(Tn(iJrl)flx’Tn(z#l)x))

(1.14)
€+ g + dn(i—i—l)—l < 2¢

which contradict the assumption (1.11). Thus, there are values of & with n(i) <
k < n(i + 1) such that ¢(d(T"®, T*z)) > =+ £.opposite parity. Assume that
G(d(T" g, T+ g)) > e + L. Then

W) = STV, T ) > e + g >7+ g > ;1



which is a contradiction with (1.13). Hence, there are values of k£ with n(i) < k <
n(i+ 1) such that ¢(d(T"", T*z)) < ¢ + £ where k and n(i) are opposite parity.
Choose smallest integer k with & > n(i) such that ¢(d(T"Vz,T*z)) > ¢ + £.

Therefore,

MﬂTMLT”%»<€+g. (1.15)

Thus,
H(d(T" Dz, T* 1)) < ¢(d(T" D, TF L) +d(TF e, TFx)) < e+2+1—l = €+SZ
(1.16)

Then there exists an integer k satisfying n(i) < k < n(i + 1) such that

< QAT Thg)) < &+ 2. (1.17)

= 4

l\.'JIﬁ

Due to the facts
n(i) k 3r i
o(d(T :L',Tx))<€+z<€—|—'r

MﬂTMLTW”%»:¢MWQ<£<s+r
BT, TH1a)) = 9ld) < 7 < +7

we have

P(R(T" Dz, TFz)) = ¢(3[d(T" Dz, T*2) + d(T" Dz, T z) + d(T* 'z, T 2)])
<ledr+etrtetr]=c+r
(1.18)

which implies ¢(d(T"®+, TF+1z)¢(< . But,

H(d(Tr O g TFg)) > ¢(d(T" D, TFx) — d(T" Dz, TMOH 2) — d(TF2, TF+ 1))

which contradicts the preceding inequality.

Hence {T™z} is a Cauchy sequence. Thus {T™z} to some z € A. Consider

now
0 < ¢(d(T* a,2)) << (d(T* 'z, T*x) + d(T*z, 2)) (1.19)
which tends to zero as well. Thus

lim ¢(d(T*" 'z,2)) = 0. (1.20)

n—oo



Since {T?""'z} is a sequence in B, it converges to z € B. Taking into account

both A and B are closed, we get z € AN B.
Let us show Tz = z.

Taking account into Lemma 1.5
&(d(Tz,2)) =lim, o0 ¢(d(T?2,T2)) < ¢(R(T*" ', 2)).
limy, o0 ¢(3[d(T*" 2, 2) + d(T?" %, T*'z) + d(T'z, 2)))

which implies that
1
$(d(T'z, 2)) < 30(d(T'%, 2)).

This is a contradiction and hence Tz = z.

Lastly, we show z is a unique fixed point of T. Suppose not, so there exists a

point w € AN B such that z # w and Tw = w. Due to Lemma 1.5

o(d(w, 2)) = ¢(d(Tw, 2)) = limy, 0 (d(T?*"x, Tw)) < limy, 00 ¢(R(T* 'z, w))
< limyy o0 ¢(3[d(T? 2, w) + d(T?"2, T* ' 2) + d(Tw, w)))
< 6(3ld(z,w) + d(z. 2) + d(Tw, w)]) = 6(d(. w))
which is a contradiction. Hence, z = w. O
t*  if v€[0,1)

Example 1.7. Let X = [-2,2] and A = B = [0, 1]. Suppose ¢(t) =
Int if zell,o00)

and Tx = {

Since (1.1) is equivalent to (1.10), it is enough to show if T satisfies (1.10) we

if ©el0.4)
if xel5,1]

o= O

[

have the result.

Fixx =0¢€ A, Then Te = T0 =0 and T"0 = 0 for all n € N. Thus,
7?0 — T?"=10| =0

0 €[0,3 f yelo !
Moreover, | T*"~10—y| = { 1 if y [1 2) and |Ty—y| = { ’311| Zf y [1, 2)
8 Zf y€[§717 ’y—§| Zf yE[i,l].

Notice also that |T*"0 — Ty| = {

Thus, R(T*" 1z, y) =



if yel0,3)
if yeli 1.

d(T?x, Ty) = {

xl= O

Case (i) y € [0,3). Take an arbitrarye > 0. Then for any § > 0, ¢(R(T*" 'z, y))

6(L) = L < e+ 6 implies that d(T?z,Ty) =0 < <.

Case (ii) y € [3,1]. Take an arbitrary ¢ > 0 which satisfies the condition

(1.10). Choose 6 = min{%,1 — 2=}

2
e < §(R(T™ 'a,y)) = (L) = % <e46

. 1 . . 1 2 1 . .
Since 3 <y < 1 implies that 55 < % < 5. Thus one of the following case holds:

1 1
55 <€ or 5 <e&. In any case

1

2

Yy

Y _5<e.
619 °°°

BT, Ty) = 6(5) =

IN

Example 1.8. Let X = Nand A = B = {1,2}U{5,6,7,---}. Suppose () = /3L

1 ] 1.2
and Tx = i reil2)
2 if x>5

Since (1.1) is equivalent to (1.10), it is enough to show if T satisfies (1.10) we

have the result.

Fizx=1. ThenTx =T1 =1 and T"1 =1 for alln € N. Thus, |T*"1 —

7?11 = 0. Moreover,

1-—- ] e{l,2
’{l'?nfll_y| _ | y| Zf Yy { ’ }
2—yl if >5

and |[Ty—y| = {

0 if ye{l,2}

Notice also that |T*"0 — Ty| =
1 if 2>5

2(y=1 ;

A1) €{1,2
Thus, R(T2"1x,y)—{ K 4 >y5{ )

—_— x_

3
0 if ye{l,2}

d(T*x, Ty) =
( ) {1 if ©>5

Case (i) y € {1,2}. Take an arbitrarye > 0. Then for anyd > 0, ¢(R(T*" 'z, y))

qﬁ(@) = 2y — 2 < £ + 0 implies that ¢(d(T?"z, Ty)) = $(0) = /0 =0 < =.

Case (ii) y > 5. Take an arbitrary ¢ > 0 which satisfies the condition (1.10).

10
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Choose 0 = ¢, 5
2y — 3

3 )=V2y—3<e+9d

Since y > 5 then 7 <2y — 3 < 0o and thus ¢ > 7.

STz, Ty)) =d(1) =vV1=1<+2y—3 -0 <e.

S(R(T*" ', y)) = o(

Indeed, for any = > 0 which satisfies the condition (1.10), Theorem is satisfied for
any 6 > 0.
Proposition 1.9. Let X be a metric space and A C X and B C X. Choose

T : AUB — AUB as a cyclic contraction map. Then starting with any xo € AUB
we have d(x,,, Tx,) — dist(A, B) where x,,1 = Txp,, n=0,1,2,....

Proof. Now we have

IN

kd(zy_1,2,) + (1 — k)dist(A, B)
k(d(zp-1,xn2) + (1 = k)dist(A, B)) + (1 — k)dist(A, B)
= kd(zp_1,Tn_2) + (1 — k*)dist(A, B).

d(xm xn+1)

VAN

By induction on n, we have
d(xp, Tpyr) < k"d(x1,20) + (1 — k™) dist(A, B).

Thus d(z,,, Tni1) — dist(A, B). O

Now we are ready to give the existence theorem for a best proximity point.

Proposition 1.10. Let X be a metric space and A C X and B C X and T :
AUB — AU B is a cyclic contraction map, let g € A and define x, 1 = Tx,.
Suppose o, has a convergent subsequence in A. Then 3 an element x in A s.t.
d(z,Tx) = disl(A, B).

Proof. Let {xs,, } be a subsequence of {z2,} convergent to  in A. By definition
of distance between two sets and triangle inequality, we have
dist(A, B) < d(x,xon, 1) < d(z, 2on,) + d(Ton, , Tan,—1)-
Thus d(z, x2,,-1) converges to dist(A, B). Since
dist(A, B) < d(xaep,, Tr) < d(xe,—1,x),

11



d(z,Tz) = dist(A, B).
|

Theorem 1.11. Let X be a metric space and A C X and B C X be closed.
Suppose T : AUB — AU B be a cyclic contraction map. If one of the A or B is
boundedly compact then 3 an element v € AU B with d(z,Tx) = dist(A, B).

Corollary 1.12. Let A and B be closed subsets of a normed space X. Suppose
T: AUB — AUB be a cyclic contraction map. If the space generated by either A
or B is a finite dimensional subspace of X, then there exists an element v € AUB
with d(z,Tx) = dist(A, B).

Example 1.13. Given k in (0,1), let A, B C(? with 1 < p < oo, defined by
A={((1+Kk")eg,) :n €N} and B={((1+k" Yegn_1)m € N}.
Suppose
T((1+ kQ”)egn) =(1+ k2”+1)egn+1 and T((1+ k2m71)€2m_1) =(1+ ka)egm.
Then T is a cyclic contraction on AU B.
Note that the sets A is no best proximity point.

Now we can give the existence,uniqueness and convergence result of this section.

Lemma 1.14. Given A C X a closed and convexr subset and B C X a closed
subset and X be a uniformly convex Banach space . Let {x,} € A, {z,} € A and
{yn} € B satisfies the conditions.

(1) [|zn — ynl| = dist(A, B)
(2) Ve > 0 3 an integer Ny > 0 s.t. Ym >n > Ny, ||xm —ynl| < dist(A, B)+e.
Then, Ye > 0 3 a positive integer Ny such that for all m >n > Ny,

|xm — znl| <e.

Similarly, we can give the following lemma.

Lemma 1.15. Given A C X a closed and convez subset , B C X a closed subset
and X be a uniformly convex Banach space. Let {x,} and {z,} be sequences in

A and y, be a sequence in B satisfying the following conditions.
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(1) llwn — ynl| — dist(A, B).
(2) [|zn — ynll = dist(A, B).
Then ||z, — z,|| = 0 .

Corollary 1.16. Given A C X a closed and convex subset , B C X a closed
subset and X be a uniformly convexr Banach space. Let {x,} be a sequence in A
and yo € B such that ||x, —yo|| — dist(A, B). Then x, converges to Pa(yo) where
’4 is the closest point of A to yg.

Proof. Since dist(A, B) < |lyo — Pa(yo)|l < llyo — wall, we have [[yo — Pa(yo)|| =
dist(A, B). Now put y,, = yo and z, = Pa(yo) in lemma 1.15. O

Theorem 1.17. Given A C X a closed and convexr subset , B C X a closed
subset and X be a uniformly conver Banach space.Suppose T : AUB — AUB is

a cyclic contraction map, then 3 a unique best proximity point x in A.

If we delete the convexity condition from the assumption of Theorem 1.17,
then both the convergence and uniqueness are not guaranteed even in a finite

dimensional space.
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CHAPTER 2

CYCLIC CONTRACTION MAPPINGS AND FIXED POINT
THEOREMS ON REFLEXIVE BANACH SPACES.

In this chapter we give some results on Cyclic Contractions Mappings and fixed

point theorems on Reflexive Banach spaces. The fundamental reference is [11].

Let (X, d) be a complete metric space. If a function 7" : X — X is continuous,

satisfying inequality
d(T(x), T*(x)) < kd(z,T(v)) Vo € X, wherek € (0,1),

then T has a fixed point in X. From the condition on 17" we may conclude that
the sequence {T"(z)} is Cauchy Vz € X.

Theorem 2.1. Let (X.d) complete metric space, A C X and B C X be two
closed subsets. Suppose T : X — X satisfies (1) and (2) above. Then T has a
unique fized point in AN B.

Definition 2.2. Let (X,d) complete metric space, A C X and B C X be two
closed subsets. Let ¢ : [0,00) — [0,00) be a strictly increasing map. Then T :
AUB — AU B is called a cyclic ¢g-contraction map if it satisfies the following

conditions.

(1) T(A) C B and T(B) C A

(2) d(Tz,Ty) < d(z,y) — o(d(z,y)) + ¢(d(A, B)),

forallx € A,y € B.

Also x € AU B is called a best proximity point if d(z, Tx) = d(A, B). As
a special case, when ¢(t) = (1 — a)t,in which a € (0,1) is a constant, T is called

cyclic contraction.
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As an extension of Proposition 77 for cyclic ¢-contraction map we can give

the following result.

Theorem 2.3. Given ¢ : [0,00) — [0,00) as a strictly increasing map. Let
A, B C X subsets of a metric space (X,d), T : AUB — AU B a cyclic ¢-
contraction map, toNAU B, and x,+1 = Txy, for all n > 0. Then, {z2,} and

{Zan+1} are bounded.

Now by using this important result, we provide the main result which give

positive answer to the question. Their proofs are basically due to Al-Thagafi and
Shahzad in [6].

Now we need the following definitions about weak topology.

2.1 WEAK TOPOLOGY

The fundamental reference is [16] for this section.

One may call subsets of a topological vector space weakly closed if they are

closed with respect to the weak topology.

Let K be either the field of complex numbers or the field of real numbers with
the usual topologies. Let X be a topological vector space over K. We may define

a possibly different topology on X using the continuous dual space X*.

Definition 2.4. Let V' be a vector space over K.

A subset C'in'V is said to be convex if V x and y € C,tx + (1 —t)y € C for

every t wn the unit interval.
A subset C in'V is said to be circled if Vo € C, Az is in C if |\| = 1.
A subset C' in 'V is called cone if Vo € C' and 0 < A < 1, Ax is in C.
A subset C in 'V is called balanced if for all x € C, Az is in C if |\ < 1.
From definition, a balanced set is a circled cone.

A subset C' in'V s called absolutely convex if it is both balanced and conver.

We need the following concept which was known as the Hahn-Banach theorem.
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Definition 2.5. Suppose that X is a normed space and X** is the second dual
space of X. The canonical map x — & defined by &(f) = f(z),Ve € X, [ € X*
gives an isometric linear isomorphism from X — X**. The space X 1is called

reflexive if this map is surjective.

We know that, all finite-dimensional normed spaces and Hilbert spaces are

reflexive.

Theorem 2.6. Suppose X be a reflexive Banach space, ¢ : [0,00) — [0,00)
is strictly increasing and A C X , B C X be weakly closed subsets of X and
T:AUB — AU B a cyclic p-contraction map. Then 3 a pair (z,y) € A X B s.t.
o= yll = d(4, B).

Definition 2.7. Let A, B C X be on a normed space X, T : AUB — AU B,
T(A) C B, and T(B) C A. We say that T satisfies the proximal property if

T, > x€AUB, |x,—Tx,| — d(A,B) = ||z — Tx| = d(A, B).

Theorem 2.8. Let ¢ : [0,00) — [0, 00) be a strictly increasing map. Let A, B C X
be subsets of a reflexive Banach space X s.t. A is weakly closed and T : AUB —
AUB a cyclic ¢-contraction map. Then,3 x € A s.t. x € A such that ||z —Tx| =
d(A, B) provided that one of the following conditions is satisfied

(1) T is weakly continuous on A.

(2) T satisfies the proxzimal property.
Proof. 1t d(A, B) = 0, the result follows from Theorem 1 in [6]. So we assume
that d(A, B) > 0. For xy € A, define x,,,1 = Tz, for all n > 1. By Theorem 2.3,

the sequence {zs,} is bounded. Since X is reflexive and A is weakly closed, the

sequence {y,} has a subsequence {xs,, } s.t. z2,, > € A as k — 0.

(1) Since T is weakly continuous on A and T'(A) C B, we have xg,, .1 — Tz € B
as k — oo. Thus z9,, — Zon,+1 — © — T2 # 0 as k — oo. The rest of the

proof is similar to the proof of the last theorem.
(2) By Theorem 3 in [6], we have
[@on,, = Tan, || = |20, — Ton, 41l = d(A, B)
as k — oo.
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Since T satisfies the proximal property, we have ||z — Tz| = d(A, B). |

For the next theorem we need definitions of strictly convex set and strictly

convex spaces.

Definition 2.9. A set S in a vector space V is called strictly convex if ax +

(1 — )y € Interior(S) for every x,y € S with x #y and o € (0, 1).

A strictly convex space is a normed topological vector space (V) ||||) whose

the unit ball is a strictly convex set.

Theorem 2.10. Let X be reflexive and strictly conver Banach space and ¢ :
[0,00) — [0,00) be a strictly increasing map. Suppose A, B C X be closed and
conver on X. and T : AUB — AU B a cyclic — contraction map. If (A— A)N
(B — B) ={0}, then 3 a unique x € A s.t. T?x =z and ||z — Tz|| = d(A, B).

Theorem 2.11. Let X be a reflexive and strictly conver Banach space , and
¢ : [0,00) — [0,00) be a strictly increasing map. Suppose A, B C X are closed
and convex on X. If T : AUB — AU B a cyclic — contraction map. Then 3
a unique x € A s.t. T?x = x and ||x — Tx|| = d(A, B) provided that one of the

following conditions is satisfied

(1) T is weakly continuous on A.

(2) T satisfies the prozimal property.

Proof. 1t d(A, B) = 0, the result follows from Theorem 1 in [6]. So we assume
that d(A, B) > 0. Since A is closed and convex, it is weakly closed. By Theorem
2.8, there exists an element z € A with ||z — Tz|| = d(A, B). Thus, Tz = z.
Indeed, if we assume that T2z — Tz # x — T'x, then from the convexity of A and

the strict convexity of X, we have

T?x—Tx x—Tx
Tl = |+ S < d(ALB).

T’z +
2

which is a contradiction. The uniqueness of x follows as in the proof of Theorem
8 in [6]. O
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CHAPTER 3

ON EXISTENCE OF BEST PROXIMITY POINTS OF CYCLIC
CONTRACTIONS IN ORDERED METRIC SPACES

In this chapter we will give some important results on existence of the best prox-
imity point of cyclic ¢-contractions in ordered metric spaces. The fundamental

reference is [14].

3.1 PARTIALLY ORDERED METRIC SPACES

In this section we will introduce partially ordered metric spaces. The fundamental

reference for this section is [19].

In a partially ordered space it is possible to introduce a notion of convergence
which is similar to that defined for real numbers. This convergence is called
order convergence. On the other hand every metric space can be embedded in
a partially ordered space so that convergence in the metric space can be obtained
from order convergence. Also a standard fixed point theorem in complete metric
spaces can be obtained as a special case of a fixed point theorem in partially

ordered spaces.

Definition 3.1. A partially ordered space is an abstract set X with a binary
relation <,

xSz foralx e X;
r<yandy<z = < zVuayzeX;

called a partial order, which satisfies three conditions:

Jrsyandy<zr — x=yVayelX;

If M is a nonempty subset of X , then inf M denotes the infumum or greatest
lower bound of M and sup M denotes the supremum or least upper bound of M.
Thus, inf M is defined to be that element v € X such that v < x for all z € M
and if w < 2 for all x € M, then w < v. Similarly, sup M is defined to be that
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element v € X such that + < u for all z € M and if z < w for all x € M, then
u < w. We know that sup M and inf M are unique if they exist.

A sequence {z,} of elements from X is said to be convergence to x € X if there
exist two sequences {y,} and {z,} such that y; Sy < ... Sz = ... < 2 < 2y,
Yn < x, £ 2z, and sup{y,} = & = inf{z,}. Convergence defined in this way is
called order convergence and it is denoted by o-convergence. If the sequence
{z,} o-converges to x, we will write o — limz,, = z. For example if we take X as
the set of real numbers with the usual order <, then o — convergence is the same

as the usual convergence for real numbers.

Theorem 3.2. Let {p,} be a sequence in S and let {x,}, where z,, = (pn,0), be

(
the corresponding sequence in X. Thenlimp, =p € S iff o—limz, =z = (p,0).

We will now show that a fixed point theorem in complete metric spaces can
be obtained as a special case of a fixed point theorem in partially ordered spaces,
but first we need some preliminaries. If X is a partially ordered space, then a

chain L is a nonempty subset of X such that if z,y € L, then x < y or y < .

Lemma 3.3. Let S be a complete metric space and let X be the partially ordered
space constructed from S. If L is a chain in X and is bounded above, then sup L

exists.

Definition 3.4. If X is a partially ordered space, then a mapping F': X — X is
said to be isotone if F(x) < F(y) whenever x < y.

Now let S be any metric space and let X be the partially ordered space con-
structed from S. If f : S — S is a map such that d(f(p), f(q)) < ad(p,q) for
all p,q € S, then f determines an isotone mapping ' : X — X as follows: if
z = (p,\) € X, then F(z) = (f(p),w\). We note that if the mapping F' has a
fixed point, then so does f. In case S is a complete metric space and o < 1, then

it is well known that f has a fixed point.

Theorem 3.5. Let S be a complete metric space and let X be the partially ordered
space constructed from S. Let F': X — X be isotone. If there exist xo,x1 € X
such that xg £ F(x¢) £ F(x1) £ @1, then F has a fized point.
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3.2 EXISTENCE OF BEST PROXIMITY POINTS OF CYCLIC
CONTRACTIONS.

In this section we will give some results about best proximity points of cyclic

¢-contractions in ordered metric spaces. Main reference of this section is [15].

Let X be a nonempty set and T" be a self map on X. We denote the set of all
nonempty subsets of X by 2% and the set of all invariant subsets of X by [(T),
that is [(T) = {Y € 2¥ : T(Y) C Y}. For each pair of sets X and Y and self
maps T : X = X and S: Y — Y, we define the self map Tx .S : X XY — X xY
by T'x S(z,y) = (Tx,Sy) = (Tx,Sy). If (X, <) is a partially ordered set, then
we define

Xc={(z,y) e X xX:z<y or y<uzx}

Let (X,d, <) be an ordered metric space and T': X — X a self map on X.
For each nonempty subset C of X and zx € X, we define

Ep,C(x*) ={x € C: lim T*"z = 2*}.

n—oo

We say that X has a property (C') whenever for each monotone sequence {z,} in
X with z,, — z for some € X, 3 a subsequence {z,, } of {z,} such that every
element of a self map 1" : X — X is called ”orbitally continuous” whenever
for each = € {n(i)}i>1 with 7"z — a for some a € X,we have T"O+! — Tq.
Here, 7™+ = T(T™).

Theorem 3.6. Let (X,d, <) be an ordered metric space, A, B € 2% and T a
decreasing self map on AU B on AU B such that T(A) C B and T(B) C A.
Suppose that 3 xo € A such that vo < T?zo < Txy and

d(T'z, Ty) < d(z,y) — ¢(d(z,y)) + ¢(d(A, B))
for all x € A and y € B with x < y, where ¢ : [0,00) — [0,00) is strictly

increasing. If x4 = Tx, and d,, = d(xy41,,) for alln >0, then d,, — d(A, B).

Proof. First note that we have

for all n > 1. Thus we get
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for all n > 1.So, the sequence {d,} is decreasing and bounded from below. If
dy, = 0 for some ng, then d,, — d(A, B) = 0. Suppose that d, > 0 Vn > 1 and
d,, — to for some ty > d(A, B). Since

Cb(d(Av B)) S (ﬁ(dn - dn—i—l + ¢(d(Av B))

, we have ¢(d,) — ¢(d(A, B)). This implies that ¢(tg) = ¢(d(A, B)). So tg =
d(A, B) because ¢ is strictly increasing. O

Theorem 3.7. Let (X,d,<) be an ordered metric space, B € 2% A a closed
subset of X and T be a decreasing self map on AU B such that T(A) C B and
T(B) C A. Suppose 3 xg € A such that zo < T?*x¢ < Txy and

d(Tz,Ty) < d(z,y) — $(d(z, ) + H(d(A, B))

VreAandy € AUB with x < y.If T is orbitally continuous or X has a property
(C), then 3 an element x € A such that d(z, Tx) = d(A, B).

The following is another example for a cyclic ¢-contraction. Note that we
should improve Example 3 in [6] because T" is not a cyclic ¢-contraction in this
-1

example. For seeing this, it is sufficient that we put z = - and y = % Then

2 — (T2, Tg) > d(e,) — o(d(x,0)) + G(d(A B)) = 5.

Now for improving, it is sufficient to replace the function ¢ by ¢(t) = 2(1t—it)

Example 3.8. Consider the Fuclidian ordered metric space X = R with the usual
norm. Suppose that A = [—1,0], B=0,1] and T : AUB — AU B is defined by
Te == Ve e AUB. If ¢ : [0,00) — [0,00) is defined by ¢(t) = 5, then ¢ is

strictly increasing and T is a cyclic ¢-contraction map.

Theorem 3.9. Let (X,d, <) be an ordered metric space, A, B € 2% and T :
AUB — AU B be a map such that T(A) C B, T(B) C A and ((A x B) U (B x
A))NX<c e (T xT). Suppose that Ixy € A such that xy, Txy € X< and

d(Tx, Ty) < d(z,y) — ¢(d(x,y)) + o(d(A, B))

forallx € A and y € B with (z,y) € NX<, where ¢ : [0,Nfty) — [0,Nfty) is a

strictly increasing map. If x,1 = Ta, and d,, = d(x,41, 2,) for all n >0, then

d, — d(A, B).
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Proof. First note the inequality
d(T* g, T o) < d(T* g) — G(d(T* w0, T o)) + ¢(d(A, B))

for all n > 1. Thus, we obtain

for all n > 1. Hence, the sequence {d,} is decreasing and bounded from below. If
dy, = 0 for some ng, then d,, — d(A, B) = 0. Suppose that d,, > 0 for all n > 1
and d,, — ty for some ty > d(A, B). Since

gb(d(A, B)) < ¢(dn) < dn - dn+1 + ¢(d(Av B))v

we have ¢(d,) — ¢(d(A,B)). From this we obtain ¢(ty) = ¢(d(A, B)). So
to = d(A, B) because ¢ is strictly increasing. |

Theorem 3.10. Let (X, d, <) be an ordered metric space, A, BN2X and T a self
map on AUB such that T(A) = B,T(B) C A and (Ax B)U(Bx A))NX<NI(T x
T). Assume that for each x,yNA 3 2NA such that (z, z), (y, 2)NX<. Suppose that
there exist xg, 2*NA s.t. xgNErp 4(zo, Tvo)NX< and

for all xkNA and yNB with (z,y)NX<, where ¢ : [0,Nfty) — [0,Nfty) is a
strictly increasing map. Suppose that yNA, (z,y)NX< and eNEp o(x*) imply that
yNE7 4(2*). Then, Ep a(x*) = A and the following statement holds.

Erp(Tz*) =B andd(z*,Tz*) =d(A,B) < T

1s orbitally continuous.

The following example shows that the assumption
d(Tx, Ty) < d(z,y) — ¢(d(x,y)) + ¢(d(A, B))
for all xtNA and yNB with (z,y)NX<, does not imply the following assumption:

yNA, (z, y)NX<, aNEp o(x*) = yNE 4(x*).
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Example 3.11. Consider the subsets A = {z1 = (6,3),22 = (1,3)} and B =
{11 = (2,0), 92 = (0,4)} of R? wvia the following order:

(a,b) < (c,d) = a<c and b<d.

Define T : AUB — AUB by Taxy = yo, Txg = 1, Ty1 = x2,Tys = 1. Note
that xo < x1 and y; < x1, and other elements are not comparable. We have
d(Txy, Txy) = d(z9,y2) = d(A, B) = /2 and d(z1,y,) = v/25. Consider the map
¢ : [0.Nfty) = [0,Nfty) by ¢(x) = 5. Then we have

d(Txy, Tyr) < d(z1,91) — ¢(d(21,y1)) + ¢(d(A, B)),

while T?"xy — x1 and T?"xy — 15.
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CHAPTER 4

RECENT DEVELOPMENTS ON BEST PROXIMITY THEOREMS;
KT- TYPE CYCLIC ORBITAL CONTRACTION MAPPINGS

If there is no exact solution to the fixed point equation Tx = x for a non-self
mapping T : A — B, then it is desirable to find an approximate solution x such

that d(x, T'z) is minimum.

Let A and B be non-empty subsets of a metric space X. Amap T : AUB —
AU B is called cyclic map if T(A) C B and T'(B) C A. From [2] we have the

following result.

Theorem 4.1. Let X be a complete metric space. Let A C X and B C X be
closed and T be a cyclic map. Suppose that 3 0 < o < 1 such that

d(Tz, Ty) < ad(z,y),r € A,y € B.

Then T has a unique fized point in AN B.

In [3] Eldred et al. modified this condition for the case AN B = () as follows:
d(Tz,Ty) < ad(z,y) + (1 — a)dist(A, B),Vx € A,y € B.

A self mapping 1" on AU B is said to be a cyclic contraction if
a) T is cyclic and

b) it satisfies the following condition

< a<;d(Te, Ty) < ad(z,y)+ (1 — a)dist(A,B),z € A,y € B.

Note that this condition does not entail that A N B # (). Therefore it makes
no sense to ask for a fixed point of 1T'. However we may ask a best proximity
point, that is, a point « € AU B such that d(xz, Tx) = dist(A, B). The notion of
cyclic mapping and best proximity points are studied by many authors, such as,
S. Karpagam and Sushama Agrawal [1], W.A. Kirk and P.S. Srinavasan and P.
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Veeramani [2], A.A. Eldered and P. Veeramani [3, 4], G.Petrushe [5], M.A.Al-
Thafai and N.Shahzad [6].

In 2011, M. Gabeleh and A. Abkar [10], give a generalization of the cyclic

contraction, which is called semi-cyclic contraction pair.

Definition 4.2. Let (X, d) be a complete metric space, A C X and B C X be
closed . Suppose that S,T : AUB — AU B be maps satisfying the conditions;
o) S(4) C B.T(B)C A,

b) Ja € (0,1) s.t.

d(Sz, Ty) < ad(z,y) + (1 — a)dist(A, B),z € A,y € B

Then (S,T) is called a semi-cyclic contraction pair.

Note that in the case S = T,a semi-cyclic contraction pair reduces to a cyclic

contraction.

They give the following theorem under semi-cyclic contraction condition:

Theorem 4.3. Let X be a uniformly convex Banach space and A C X and B C X
be closed and convex. Suppose that (S,T) is a semi-cyclic contraction pair.
a) If dist(A, B) =0, then S, T have a unique common fized point in AN B
b) If dist(A, B) > 0, then each mapping has a unique best proximity point.
Moreover either of fized point or best proximity points can be approximated by

some iterative sequences.

Note that if the space X is not uniformly convex, then the uniqueness of best

proximity point may fail.

Example 4.4. Let X = R and for all (z,y) € R? define ||(x,y)|| = max{|z|, |y|}.

Let A={(z,y) eR?:1/2< 2z <1,y =0}

B={(z,y) eR?:2=0,1<y<2}.

Clearly A and B are closed and dist(A, B) = 1. Define S,T: AUB — AUB by
0,1), if(x,y) €A

S(z,y) =
(x,y), if(z.y) € B
5 f (v,y) € B
I CX R TE
(z,y), if (z,y) €A
Obviously S(A) C B,T(B) C A. Note also that neither S nor T is cyclic. On the
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other hand, if b = (0,y) € B and a = (x,0) € A then ||Tb — Sa|| = ||T(0,y) —
S(z,0)]| = [|(4, V)| = 1. Similarly ||a — b|| = max{z,y} =y. Therefore
17(b) = S(a)|l = L < (3)lyl + 3 = GIIb = all + (3)dist(A, B).

Recently, Al-Tagafi and Shahzad in [6] introduced the notion of cyclic ¢
-contractions and S.N. Mishra et al in extend this to the (¢, )- weakly con-

tractions and obtained some existence results for this new class of mappings.

Let ¢ be the family of functions ¢ : [0,00) — [0, 00) such that :
a) ¢ is continuous and nondecreasing,
b) ¢(t) =0iff t =0

This function is called an altering distance function.

Definition 4.5. Let X be a metric space, A, B C X and T a cyclic mapping. T
is called a cyclic (p,1))- weakly contraction if

V(d(Tz,Ty)) < ¢(d(z,y)) — o(d(z,y)) + ¢(d(A, B))
forallx € Ay € B.

Remark 2. a) A cyclic contraction is cyclic (¢,)- weakly contraction with
() =t,0(t) = (1= Nt fort >0,A € (0,1).

b) A cyclic ¢- contraction is a cyclic (¢,1)- weakly contraction with ¥ (t) =t for
t>0.

Theorem 4.6. Let X be a uniformly convexr Banach space and A C X and
B C X with A is closed. Let T be a cyclic (¢,v)- weakly contraction mapping.
For zy € A, define 41 = Ta,. If d(A,B) =0, then T has a unique fized point
z€ AN B.

Here if we let ¢(t) =t we get theorem 6 of M. A. Al-Thagafi and N. Shahzad
(2009) in [6].

Very recently Karpagam and Agrawal [1] introduced the definition.

Definition 4.7. Let (X,d) be a metric space, A C X and B C X . And T :
AUB — AU B be cyclic. If for some x € A there exists a k, € (0,1) such that

d(T?z, Ty) < ked(T* '2,9), neN, ye A (4.1)

then T is called a cyclic orbital contraction.
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In 2012 | E.Karapinar, G. Petrushel and K.Tas generalized the above definition

in the following ways.

Definition 4.8. | Let (X, d) be a metric space, A C X and B C X . If for some
x € A there exists a k, € (0,3) such that

A(T?"x, Ty) < k[d(T*" ', ) + d(Ty,y)];n € Ny € A (4.2)

then the cyclic map T : AUB — AUB is called a Kannan type cyclic orbital

contraction

Now let us look at the theorem given by Karpagam and Agrawal in [1] for

cyclic orbital contractions.

Theorem 4.9. Let (X,d) be a metric space, A C X and B C X . Suppose that
T:AUB — AU B is a cyclic orbital contraction. Then AN B is non empty and
T has a unique fized point.

E.Karapinar, G. Petrushel and K.Tas give a generalization of this Theorem

and Kirk’s theorem for Kannan type cyclic orbital contractions.

Theorem 4.10. Let (X, d) be a metric space, AC X and B C X andT : AUB —
AU B be a Kannan type cyclic orbital contraction. Then AN B is non-empty and
T has a unique fized point.

Corollary 4.11. Let T' be a self map on a complete metric space (X, d). If for

some v € X, there exists a k, € (0,3) such that

AT, Ty) < k(T 2, 2) + d(Ty.y)ln € Niy € A (4.3)

then, T has a unique fixed point.

Example 4.12. Let A = [—1,0] and B = [0, 1] on (R,d), where d(z,y) = |z —y|.
Define

T(x) = —x if x€A
a ~-5 if r€B

Then T(A) C B and T(B) C A. On the other hand, T*"x = % and T*" 1x =

2"1
—5n, for every x € A.  Therefore, for every y € [-1,0],Ty = —y. Thus,
d(T*x,Ty) = |3& +y| and d(T*" 'z,y) = | — & — y| = d(T*"x,Ty). There
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is no a k, € (0,1). Thus, Theorem 2.2 in [?] is not applicable. But, we have
d(T* e, x) = |3 + x|, d(Ty,y) = 2y|, therefore the Kannan type cyclic orbital
contraction condition d(T*"x,Ty) < k,[d(T*"'z,z) + d(Ty,y)];¥Vn € N;Vy €
[0,1] satisfies for k, = 1. So, T has a unique fized point, that is x = 0.

Remark 3. Note that the statement of Equation (1) in the Definition of Cyclic

Orbital Contraction could not be generalized to the following condition:
d(T*"x, Ty) < k[d(T*z,y) + d(Ty,z)]);n € N;y € A. (4.4)

since both T?"x and y lies in A, the above statement fails to be cyclic. To avoid
such cases, we define and use the notion ”opposite parity”: We say that p,q,n € N

are opposite parity if either T?Px € A, T € B or TPx € B, T9x € A holds.

Definition 4.13. Let A and B be non-empty subsets of a metric space (X,d). A
cyclic map T : AUB — AU B is said to be a Chatterjee type cyclic orbital

contraction if for some x € A there exists a k, € (0,3) such that

d(T?"z, Ty) < k[d(T*" 'z, y) + d(x, Ty)];n € N;y € A. (4.5)

We prove a similar theorem for Chatterjee type cyclic orbital contractions.

Theorem 4.14. Let (X,d) be a metric space, A C X and B C X and T :
AUB — AUB be a Chatterjee type cyclic orbital contraction. Then ANB

s non-empty and T has a unique fized point.

Corollary 4.15. Let (X,d) be a complete metric space and T : X — X . If for

some v € A 3k, € (0,3) such that

d(T?z, Ty) < k[d(T*" 'z, y) + d(x, Ty);n € Njy € A (4.6)
then, T has a unique fixed point.

Similarly, we can give the following definition.

Definition 4.16. Let (X, d) be a metric space, A C X and B C X. A cyclic map
T:AUB — AU B is called a Reich type cyclic orbital contraction if for

some x € A3 ak, €(0,3) such that ¥n e N,y € A

d(T*"x, Ty) < k[d(T*" 'z, y) + d(T*"z, T** '2) + d(Ty, )], (4.7)
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We obtain a similar theorem for Reich type cyclic orbital contractions.

Theorem 4.17. Let (X, d) be a metric space, A C X and B C X andT : AUB —
AU B be a Reich type cyclic orbital contraction. Then AN B is non empty

and T has a unique fized point.

Corollary 4.18. Let (X, d) be a complete metric space , T : X — X be given. If
for somex € Ak, € (0,%) s.t. neN,ye A

3
d(T*"x, Ty) < k[d(T*" 2, y) + d(T*"z, T*" 'z) + d(Ty, y)] (4.8)

then, T has a unique fixed point.
On the other hand, Meir and Keeler proved their well known fixed point the-

oreml.

Theorem 4.19. Let (X, d) be a complete metric space and T : X — X any map.
Suppose that the following condition is satisfied. Ye > 0,36 > 0 s.t. Yo,y € X,

c<d(z,y) <ec+0 = d(Tx,Ty) <c
. Then T has a unique fized point z € X andVr € X, T"x — z.

Later on, Jachymski presented several modifications of this condition and get

interesting variants of the theorem.

Very recently, E. Karapinar, S. Romeguera and K.Tas (2013) introduced a

very general notion which is called cyclic orbital generalized contraction.

Definition 4.20. Let (X,d) be a metric space, A C X and B C X and T :
AUB — AUB a cyclic map. If 3 zo € A and a function ¢ : [0,00) — [0, 00)
such that ¢(t) <t ¥t >0, and

d(T* 2o, Ty) < $(M(T*" '0,y))

for ally € A andn € N, then T is called a COG (cyclic orbital generalized

contraction) for xy and ¢, where
1
Mz, y) = max{d(z,y), d(z,Tx),d(y, Ty), 5 [d(w, Ty) + d(T, y)]}
E. Karapinar, S. Romeguera and K.Tas (2013) give a fixed point theorem which

generalizes both the Boyd and Wong’s fixed point theorem and Matkowski’s fixed

point theorem.
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Theorem 4.21. Let (X, d) be a metric space, A C X and B C X andT : AUB —
AU B be a COG-contraction for an xg € A and ¢ : [0,00) — [0,00). If ¢ salisfies
the condition:

Ve >036>0
e<t<e+d = o) <e

Then T has a fized point z € AN B such that T"xy — z.
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CHAPTER 5

BEST PROXIMITY POINTS FOR CYCLICAL CONTRACTIVE
OPERATORS

In this section our aim is to obtain existence and convergence results for best
proximity points considering different contractive type conditions. Kirk, Srini-
vasan and Veeramani in [2], introduced the notion of contractions under cyclic
conditions. Actually in this case the problem is solved under the hypothesis that
the intersection of the sets involved in the cyclic contraction is nonempty, that is
AN B # (). Moreover, the fixed points are situated in the intersection set. In the
case ANDB = (), it is natural to try to find an approximative solution for the fixed

point problem, that is a best proximity point.

The best proximity point theorems are obtained in the framework of a uni-
formly convex Banach space, and the contractive condition imposed to the oper-
ator is weakened. Basically, we are speaking about weak cyclic Kannan contrac-
tions, weak cyclic Chatterjea contractions and weak cyclic Reich-Rus contractions.
Let us mention that an operator is said to be nonexpansive if d(Tz, Ty) < d(x,y)

for all z,y € X.

Now we will introduce a new class of contraction, called weak cyclic Kannan
contraction,and we will give convergence and existence results for best proximity
points. For the details see [17].

Definition 5.1. Let (X, d) be a metric space, A C X and B C X . Then a
cyclic mapping T : AUB — AU B is a weak cyclic Kannan contraction if

it satisfies the condition
d(T, Ty) < ald(x, Tx) + d(y, Ty)] + (1 = 2a)d(A, B)
forallz e Ay e Bael0,3).

Example 5.2. Let X =°,1 <p < oo and k € (0,1). Define A = {(1+ k*")eq, :
n €N} and B={(1+k*" Y)eyn_1:m eN}. DefineT: AUB — AUB by

T(]. -+ an)CQn = (1 -+ l{72n+1)62n+1
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and
T(1+ K" eyt = (1 4+ E*™)egn.
Then d(A, B) = 2Y? and T is a cyclic contraction. Also T is a weak cyclic Kannan

contraction.

Example 5.3. Let A = B = R be two subsets of X = R with the usual norm,
and T : R — R defined by

ﬂ@:{o if ©<2

1 .
5 if x>2

Then d(A, B) = 0 and hence T is not a cyclic contraction but T is a weak cyclic

Kannan contraction.

The following result gives a necessary condition for the existence of a best

proximity point, for weak cyclic Kannan contractions.

Theorem 5.4. Let (X,d) be a uniformly convex Banach space and A C X and
B C X Suppose T : AUB — AU B is a weak cyclic Kannan contraction. Then
a) T has a best proximity point z in A and this point is unique.

b) The sequence {T*"x} converges to z for any starting point v € A

c) z is the unique fized point of T?.

d) Tz is a best proximity point of T in B.

From [18] we have the following definitions.

Definition 5.5. Given non-empty subsets A, B and C of a metric space (X, d),
an element r* € A is called a common best proximity point of the non-self

mappings if S: A — B and T : A — B if it satisfies the condition
d(z*,Sz*) =d(z", Tx") = d(A, B).
A common best proximity point is an element at which both real valued func-

tions x — d(x,Sx) and & — d(z, Tx) attain global minimum, since d(x, Sx) >
d(A, B) and d(z, Tx) > d(A, B) for all .

Definition 5.6. Let S: A — B and T : A — B be given maps. The pair (S,T) is

called a contractive pair iff
d(S(L’l, T{Eg) < d((lil, $2)
whenever x; and x9 are in A.
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If T is a contractive map, then (7',7T") is a contractive pair. On the other hand,
even if S and T are contractive mappings, the pair (S,T) is not necessarily a

contractive pair.

Definition 5.7. Given mappings S : A — B and ' : B — A, the pair (S, F) is

called a cyclic contractive pair iff
d(Sz, Fy) < d(z,y)

whenever x € A and x € B satisfy the condition that d(x,y) > d(A, B).

By this definition of S. Basha et al, if the self-maps are defined on the same

set, then the notion of cyclic contractive pair reduces to that of contractive pair.

Theorem 5.8. Let (X,d) be a metric space and A C X and B C X. Suppose
S:A—-B,T:A—Band F: B — A, G: B — A are contractive mappings
satisfying the conditions:

a) (FS,GT) and (SF,TG) are contractive pairs.

b) (S, F) and (T, G) are cyclic contractive pairs.

Then, S and T have a common best proximity point x* and F and G have a

common best prozimity point y* such that d(z*,y*) = d(A, B).

If S and T are identical, and I and (i are identical, then the preceding theorem
gives rise to the following result as a corollary.
Example 5.9. Consider R. Let A = [1,2] and B = [—2, —1]. Define the map-
pings S: A—> B, T:A—=Band F: B— A, G: B — A be defined as follows.

1

1
T:I::Z(l—:l:)—l
1
Fyzé(—y—l)—i-l

1
Gyzg(—y—l)—i-l

It can be easily shown that all conditions of the Theorem are satisfied. And x =1
is a common best proximity point of S and T, and y = —1 4s a common best

proximity point of I and G.
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We should note that the condition (a) of the Theorem 5.8 is essential. Consider

the following example about this idea.

Example 5.10. Consider the space R%. Let A = {(0,y) : 0 < y < 1} and
B ={(l,y) : 0 <y < 1}. Suppose the mappings S : A — B, T : A — B and
F:B—A,G:B— A are defined as follows.

S(0,9) = (1,555), T(0,y) = (1, %)

F(Ly) = (0,535), G(Ly) = (0,%).

Then S, T, F and G are contractive and (S, F) and (T,G) are cyclic contractive
pairs. But the condition (a) of Theorem 5.8 does not hold. Further, it can be seen
that S and T have no common best proximity point; nor do the mappings F' and

G have a common best proximity point.
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