
ÇANKAYA UNIVERSITY 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

COMPUTER ENGINEERING 

 

 

MASTER THESIS 

 

 

 

AN APPLICATION OF DATA MINING AND KNOWLEDGE 
DISCOVERY PROCESS IN THE FIELD OF NATURAL GAS 

EXPLORATION  

 

 

 

 
 

 

MEHMET AKİF ACAR 

 
 
 

FEBRUARY 2014 







!

! iv!

!

!

 

ABSTRACT 

 

AN APPLICATION OF DATA MINING AND KNOWLEDGE DISCOVERY 

PROCESS IN THE FIELD OF NATURAL GAS EXPLORATION 

 

ACAR, Mehmet Akif 

       M.S.C, Department of Computer Engineering 

       Supervisor: Prof. Dr. Mehmet R. TOLUN 

       Co-Supervisor: Assoc. Prof. Dr. Ersin ELBAŞI 

 

February 2014, 138 pages 

 

This thesis analyzes the process of data mining and knowledge discovery (DM&KD) 

in the area of natural gas exploration. The process consists of five steps: Problem 

Definition, Collecting the Data, Data Pre-Processing, Application of the Main 

DM&KD Algorithms, and Interpretation of the Results of the DM&KD Process. The 

problem is to identify the DM & KD algorithm among a set of algorithms that 

extracts the highest number of useful valid rules targeted to find natural gas deposits 

in sandstone rock type of Osmancik formation in Degirmenkoy natural gas field of 

Turkey. The data is collected along five wells from the gas field. In the Pre-

Processing phase, outliers and erroneous data are removed. Then these data is 

transformed into Well Log SQL database and necessary connections are made 

between the database and Weka Data Mining Tool. Non-Nested Generalized 

Exemplar (NNGE), Predictive Apriori (PA) and PART algorithm are applied using 

Weka’s toolset. In the gaseous sandstone zones of all Wells, at total best results in 

terms of valid useful rule amount is attained by NNGE algorithm. PA algorithm 

presents better performance than PART algorithm in the analyzed zones. For 

nongaseous zones, same ranking is achieved as in the gaseous sandstone zones. In 



!

! v!

addition to these results, interesting findings related with some of the extracted rules’ 

explanatory power are determined. 

 

Keywords: Data Mining, Natural Gas Exploration, Knowledge Discovery, Oil & Gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! vi!

 

 

 

ÖZ 

 

VERİ MADENCİLİĞİ VE BİLGİ KEŞFİ SÜRECİNİN DOĞAL GAZ ARAMA 

ALANINDA BİR UYGULAMASI 

 

ACAR, Mehmet Akif 

    Bilgisayar Mühendisliği Bölümü Tezli Yüksek Lisans 

                           Danışman: Prof. Dr. Mehmet R. TOLUN 

                           Yrd. Danışman: Doç. Dr. Ersin ELBAŞI 

 

Şubat 2014, 138 sayfa 

 

Bu tez doğal gaz arama alanında veri madenciliği ve bilgi keşfi (VM ve BK) 

sürecinin analizini içerir. Süreç; Problem Tanımı, Veri Toplama, Veri Önişleme, Ana 

VM ve BK Veri Madenciliği Algoritmalarının Tatbiki ve Sonuçların Yorumlanması 

şeklinde beş basamaktan oluşur. Problem; Türkiye Değirmenköy sahası Osmancık 

Formasyonu içerisindeki kumtaşlarının doğal gaz birikimlerini bulma hedefli 

kullanışlı ve geçerli kuralları adet olarak en çok özütleyen, VM ve BK algoritmasını 

bir algoritma kümesi içinden tespitidir. İlgili veriler doğal gaz sahasındaki beş 

kuyudan toplanmıştır. Veri önişleme aşamasında, hatalı ve aykırı veriler 

temizlenmiştir. Daha sonra bu veriler Kuyu Log SQL veri tabanına aktarılmış ve 

Weka veri madenciliği aracı ile veri tabanı arasında gerekli bağlantılar yapılmıştır. 

Non-Nested Generalized Exemplar (NNGE), Predictive Apriori (PA) ve PART 

algoritmaları, Weka kullanılarak uygulanmıştır. Tüm kuyuların gazlı kumtaşı 

alanlarında, toplamda en iyi sonuçlara NNGE algoritmasıyla ulaşılmıştır. PA 

algoritması PART algoritmasından daha iyi performans göstermiştir. Gazsız 

alanlarda, algoritmaların başarı sıralarında değişiklik olmamıştır. Bu sonuçlara ek 

olarak, özütlenen kuralların açıklayıcılığıyla ilgili ilginç bulgular tespit edilmiştir. 

 



!

! vii!

Anahtar Kelimeler: Veri Madenciliği, Doğalgaz Arama, Bilgi Keşfi, Petrol ve Gaz.



!

! viii!

 

!

!
ACKNOWLEDGMENT 

 
 

The author wishes to express his deepest gratitude to his supervisor Prof. Dr. 

Mehmet R. TOLUN and co-supervisor Assoc. Prof. Dr. Ersin ELBAŞI for their 

guidance, advice, criticism, encouragements and insight throughout the research. 

 

The author would also like to thank Assoc. Prof. Dr. Ahmet Sami DERMAN who 

passed away recently, for his suggestions and comments. 

 

The technical assistance of Mr. Aytekin MURATHAN (Expert Engineer) and the 

administrative assistance of Mr. Ömer ŞAHİNTÜRK (Former Head of Research 

Department) and Mr. Muzaffer SİYAKO (Advisor) from Turkish Petroleum 

Corporation are gratefully acknowledged. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! ix!

 

 

 

TABLE OF CONTENTS 

 

STATEMENT OF NONPLAGIARISM…………………………..……………......iii 

ABSTRACT………………………………………………………….……………...iv 

ÖZ…………………………………………………………………………..……......vi 

ACKNOWLEDGMENT..…………………………………………..……………...viii 

TABLE OF CONTENTS………………………………….………………………...ix 

LIST OF FIGURES………………………….……..………………………….……xii 

LIST OF TABLES………………………………………………………………….xiv 

LIST OF CHARTS………………………………………………………………...xvii 

LIST OF SYMBOLS AND ABBREVATIONS……………………….…………xviii 

INTRODUCTION……………………………………………………………………1 

CHAPTERS 

1. DATA MINING CONCEPTS AND DM&KD PROCESS……………….….4 

1.1. Data Mining, Machine Learning and Knowledge Discovery……...…….4  

1.2. DM&KD Process……………………………………………….………..5 

1.3. Instances and Attributes………………………………………….………8 

1.3.1. Nominal Attributes……………………...…………………………9 

1.3.2. Ordinal Attributes……………………………...…………………..9 

1.3.3. Binary Attributes………………………………..………………..10 

1.3.4. Numeric Attributes………………………………...……………..10 

1.3.5. Discrete versus Continuous Attributes…………………...………11 

1.3.6. Missing, Unique and Distinct Attributes………...……………….11 

1.4. Classification...…………………………………………………………12 

1.4.1. Decision Tree Induction………….………………………………14 

1.4.1.1. The ID3 Algorithm and Information Gain Measure……….18 

1.4.1.2. C4.5 Algorithm……………..……………………………...22 

1.4.1.3. PART Algorithm…………………….…….…………….…23 

1.4.1.4. Advantages and Disadvantages of Decision Trees………...26 



!

! x!

1.4.2. The k-Nearest Neighbor (k-NN) Algorithm………………….…..27 

1.4.2.1. Distance Function…………………….……………………29 

1.4.2.2. Advantages and Disadvantages of the k-NN Algorithm…..33 

1.4.3. The Non-Nested Generalized Exemplars (NNGE) Algorithm…..34 

1.5. Association…………………………..…………………………………38 

1.5.1. Frequent Itemset Generation……………………………..………42 

1.5.2. Rule Generation……………………….………………………….44 

1.5.3. Apriori Algorithm…………………………..…………………….46 

1.5.3.1. Frequent Itemset & Rule Generation in Apriori 

Algoritm……………………………………………………46 

1.5.3.2. Advantages and Disadvantages of Apriori Algorithm……..48 

1.5.4. Predictive Apriori Algorithm…………………………………….49 

1.6. Data Mining Tools………………….………………………………….53 

 

2. NATURAL GAS EXPLORATION CONCEPTS AND FIELD 

INFORMATION…………………………………………………………....56 

2.1. Natural Gas..……………………………………………………………56 

2.2. Porosity and Permeability………………….…………………………...59 

2.3. Well Logs………………………………………………………………60 

2.3.1. Gamma Logs………………………….………………………….61 

2.3.2. Neutron Logs…………………………...………………………...62 

2.3.3. Sonic Logs………………………………………………………..63 

2.3.4. Density Logs……………………..……………………………….64 

2.4. Thrace Basin……………………………………………………………64 

2.5. Degirmenkoy Gas Field………………………………..……………….66 

 

3. APPLICATION OF DM&KD PROCESS, ASSESSMENT AND 

IMPLICATIONS………………...………………………………………….68 

3.1. Problem Definition…………………………...………………………...68 

3.2. Collecting Data…………………………………………………………68 

3.3. Data Pre-Processing……………………………….……………………68 

3.3.1. Well Log Database……………………………….………………72 



!

! xi!

3.3.2. Connection to Well Log Database………………………...….…..72 

3.4. Application of the main DM&KD Algorithms………………………...75 

3.4.1. Application of NNGE Algorithm………………………………...77 

3.4.2. Application of PART Algorithm…………………………………81 

3.4.3. Application of PA Algorithm…………...………………………..86 

3.4.4. Assessing Rule Usefulness……………...………………………..88 

3.4.5. Finding Common Rules and Validation……………..…………...89 

3.5. Interpretation of the result of the DM&KD Process……...…………….96 

3.6. Significant Implications……...………………………………………..105 

 

CONCLUSION…………………...………………………………………………..110 

 

REFERENCES………………………...…………………………………………..116 

 

CURRICULUM VITAE..........................................................................................120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! xii!

 

 

 

LIST OF FIGURES 

 

Figure 1. The essential steps of the data mining and knowledge discovery process... 6 

Figure 2. Classification as a task of mapping an input attribute set x into its class   

                label y………………………………………...………………...…………12 

Figure 3. A sample decision tree for overall oil production model…………………15 

Figure 4. Test conditions for binary and nominal attributes………………….……..17 

Figure 5. Test conditions for continuous attributes……………………...………….18 

Figure 6. An example of building a partial tree, PART algorithm………………….25 

Figure 7. Training set for k-NN and two-dimensional representation of the set……28 

Figure 8. Euclidean Distance…………………………………...…………………...30 

Figure 9. Illustration of splitting criterion…………………………………………..38 

Figure 10. Venn diagram of values used in rule interestingness measures………....40 

Figure 11. An itemset lattice……………………………………………..…….……43 

Figure 12. An illustration of downward closure principle…………………….….…44 

Figure 13. An anticlinal reservoir containing oil and associated natural gas…….…56 

Figure 14. An anticlinal reservoir containing natural gas…………………….….….57 

Figure 15. An example of structural traps. Simple anticlinal trap……………..……58 

Figure 16. Simplified GR and NPHI log response to different lithologies…….……62 

Figure 17. Tectonic settings of the Thrace Basin……………………………...……65 

Figure 18. Map of the gas and gas condensate fields in the Thrace Basin……..…...66 

Figure 19. Schematic cross section showing geology of Degirmenkoy gas field…..66 

Figure 20. Degirmenkoy gas field well log database schema……………….……....71 

Figure 21. MS-SQL Server DSN data source configuration menu………...……….73 

Figure 22. MS-SQL Server DSN authentication configuration menu……………....74 

Figure 23. Weka’s connection method to Well log database…………………...…..75 

Figure 24. Weka root interface window………………………………...…………..75 

Figure 25. SQL Viewer menu of Weka……………………………………...……...77 

Figure 26. Data preprocessing operation in Weka…………………………..………78 



!

! xiii!

Figure 27. Text outcome of J.48 applied to Degirmenkoy Well-1 in Weka…….….81 

Figure 28. Visual outcome of J.48 applied to Degirmenkoy Well-1 in Weka……...82 

Figure 29. Choosing PART algorithm in Weka…………………………………….82 

Figure 30. Choosing association algorithm as PA and application of discretization  

                 in Weka……………………….......……………………………..….……86 

Figure 31. Configuration of PA algorithm parameters in Weka………….…………87 

Figure 32. Validation of a rule in Degirmenkoy well log report……………………91 

Figure 33. Part of log report of Well-1 showing three rules targeted to nongaseous  

                 sandstone zones………………….…………………………………...…105 

Figure 34. Part of log report of Well-4 showing one of the NNGE’s rule on  

                 indistinguishable zones…………………………………………………106 

Figure 35. Part of log report of Well-4 showing one of the NNGE’s rule in which  

                 gas density is about to be zero……………...……………….………….107 

Figure 36. Part of log report of Well-5 showing one of the PART’s rule in which  

                 gas density is about to be zero……………………….…...…………….107 

Figure 37. Part of log report of Well-5 showing one of the PA’s rule in which gas  

                 density is about to be zero………………………………………..…….108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! xiv!

 

 

 

LIST OF TABLES 

 

Table 1.    Confusion matrix for a 2-class problem………………………….….…..13 

Table 2.    Contingency table showing the instances of an attribute A and           

                 corresponding target attribute value………………………………….….22 

Table 3.    The instances with unnormalised continuous attributes……….…..…….30 

Table 4.    Some of Thrace Basin formations and their lithology……………….…..65 

Table 5.    Number of attributes and instances count in the well log database…...…69 

Table 6.    Number of distinct, missing and unique GR attribute in the well log   

                 database………………………………..………...……………………….69 

Table 7.   Max. Min. values, Mean and StdDev of GR attribute in the well log   

                database…………………..……………………………………………….69 

Table 8.   Number of distinct, missing and unique DT attribute in the well log  

                database………………………...…...…………………………………….69 

Table 9.   Max. Min. values, Mean and StdDev of DT attribute in the well log  

                database………………………...……………...………………………….69 

Table 10. Number of distinct, missing and unique NPHI attribute in the well log  

                database………………………...……………………………...………….70 

Table 11. Max. Min. values, Mean and StdDev of NPHI attribute in the well log  

                database………………………………...………...……………………….70 

Table 12. Number of distinct, missing and unique RHOB attribute in the well log  

                database………………………………..………………………………….70 

Table 13. Max. Min. values, Mean and StdDev of RHOB attribute in the well log  

                database………………………………………………..………………….70 

Table 14. LITHOLOGY attribute type distribution in the well log database…..…...70 

Table 15. MAYI attribute type distribution in the well log database…………...…..71 

Table 16. Detailed result of NNGE algorithm targeted gaseous sandstone zones  

                applied to Well log database……………………………………..……….79 

Table 17. Detailed result of NNGE algorithm targeted nongaseous sandstone   



!

! xv!

                zones applied to Well log database………………………….………..…..80 

Table 18. Detailed result of PART algorithm targeted gaseous sandstone zones      

                applied to well log database……………………………….…………..….83 

Table 19. Detailed result of PART algorithm targeted nongaseous sandstone     

                zones applied to well log database……………..………….…………..….83 

Table 20. Changed LITHOLOGY attribute type distribution in the well log  

                database………………………………………….……………………..…85 

Table 21. Combined result of PART algorithm targeted to sandstone zones  

                Applied to well log database…………………………….…………..……86 

Table 22. Discretization interval lengths of gaseous sandstone zones………..…….87 

Table 23. Discretization interval lengths of nongaseous sandstone zones……….…87 

Table 24. Detailed output of PA algorithm targeted to gaseous sandstone  

                zones…………………………………………………..….………………88 

Table 25. Detailed output of PA algorithm targeted to nongaseous sandstone  

                zones………………………………………..….…………………………88 

Table 26. Amount of rules used to find common rules targeted to gaseous    

                zones..……………….……………………………………………………89 

Table 27. Amount of rules used to find common rules targeted to nongaseous   

                zones…………………………………………………...…………………89 

Table 28. The rule sets obtained by taking intersection of extracted NNGE   

              rules derived from well log database……………………………………..92 

Table 29. The rule sets obtained by taking intersection of extracted PART rules  

                derived from well log database…………………………………………...94 

Table 30. The rule sets obtained by taking intersection of extracted PA rules   

                derived from well log database…………………………………………...95 

Table 31. Comparison of algorithms with respect to rule amount and usefulness   

                of gaseous sandstone zones in Well-1…………………...……………….97 

Table 32. Comparison of algorithms with respect to rule amount and usefulness   

                of gaseous sandstone zones in Well-2……………………………………97 

Table 33. Comparison of algorithms with respect to rule amount and usefulness   

                of gaseous sandstone zones in Well-4……………………………………98 

Table 34. Comparison of algorithms with respect to rule amount and usefulness   



!

! xvi!

                of gaseous sandstone zones in Well-5………………..…………..………98 

Table 35. Comparison of algorithms with respect to rule amount and usefulness   

                of nongaseous sandstone zones in Well-1………………….…….….…...99 

Table 36. Comparison of algorithms with respect to rule amount and usefulness   

                of nongaseous sandstone zones in Well-2……………….….…….…….100 

Table 37. Comparison of algorithms with respect to rule amount and usefulness   

                of nongaseous sandstone zones in Well-3…………..……….………….100 

Table 38. Comparison of algorithms with respect to rule amount and usefulness   

                of nongaseous sandstone zones in Well-4………………….……..…….101 

Table 39. Comparison of algorithms with respect to rule amount and usefulness   

                of nongaseous sandstone zones in Well-5…………………..….……….101 

Table 40. Comparison of algorithms with respect to rule amount, usefulness and   

                rule sets of gaseous sandstone zones in all Wells……………………….102 

Table 41. Comparison of algorithms with respect to rule amount, usefulness and  

                rule sets of nongaseous sandstone zones in all Wells……………...……104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! xvii!

 

 

 

LIST OF CHARTS 

 

Chart 1. Overall comparison of NNGE, PA & PART w.r.t amount of common   

              valid rule and rules with 100% usefulness in which rules targeted to      

gaseous  sandstone zones considering individual Wells……………….......99 

Chart 2. Overall comparison of NNGE, PA & PART w.r.t amount of common  

              valid rule and rules with 100% usefulness in which rules targeted  

              to nongaseous sandstone zones considering individual Wells………...….102 

Chart 3. Overall comparison of NNGE, PA & PART w.r.t amount of rule sets,  

              valid rules and rules with 100% usefulness  in which rules targeted to  

              gaseous sandstone zones considering all Wells…………………….…….103 

Chart 4. Overall comparison of NNGE, PA & PART w.r.t amount of rule sets,  

              valid rules and rules with 100% usefulness  in which rules targeted to  

              nongaseous sandstone zones considering all Wells………………………104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! xviii!

 

 

 

LIST OF SYMBOLS AND ABBREVATIONS 

 

ARM   : Association Rule Mining 

Car   : Class Association Rules 

D                      : Darcy 

DM & KM       : Data Mining and Knowledge Discovery 

DSN                 : Data Source Name 

DT   : Interval Transit Time, Sonic Log 

et al.              : and others 

GR   : Gamma Ray Log 

K        : Permeability 

k-NN  : k-Nearest Neighbor 

MAYI  : Petroleum System Element 

MS-SQL : Microsoft SQL Server 

NGE  : Nested Generalized Exemplar 

NNGE  : Non-Nested Generalized Exemplar 

NPHI  : Neutron Log 

PA  : Predictive Apriori 

RHOB  : Bulk Rock Density, Density Log 

StdDev : Standard Deviation 

Weka  : The Waikato Environment for Knowledge Analysis 

w.r.t  : With Respect To 

ODBC  : Open Database Connectivity 

!   : Porosity 

!

!



!

! 1!

!

!

!

INTRODUCTION 

 

Natural gas exploration has been shifting significantly in the last decades with the 

progression of new ingenious technologies. In the early days of the industry, there is 

limited amount of way of locating underground natural gas deposits, which generally 

includes searching for surface evidence of such deposits. Since low proportions of 

natural gas deposits actually seep through porous underground structures to the 

surface, using this method requires examining large surface areas, which results in 

very cumbersome and economically inefficient way. As the demand for fossil fuel 

energy has increased over the past years, more accurate methods were developed and 

applied successfully. However, such processes generates large amount of data sets 

and many more produced continuously with the development of new devices to track 

natural gas deposits.  

Handling large data sets creates problems such as analyzing the data in a reasonable 

period of time, determining the representatives and deciding whether an evident 

relationship is occurred by chance or not. The main challenge here is to analyze large 

amount of data in a way that the outcome is more comprehensible. In order to 

achieve this, the concept called data mining should be used. 

Data mining is the drawing of tacit and possibly helpful information from data by 

assistance of computer programs working on databases containing real say raw data 

to seek patterns. But raw data is imperfect and need to be worked upon. Such 

programs use data mining algorithms so as to cope with imperfect data and to extract 

patterns. Machine learning provides technical framework of this pattern extraction 

operation whereas knowledge discovery represents whole process not tools and 

techniques. The discovery of patterns could be achieved by following general Data 

Mining and Knowledge Discovery (DM & KM) procedure that consists of several 

steps: 

• Problem Definition 

• Collecting the Data 



!

! 2!

• Data Preprocessing 

• Application of the Main DM & KM Algorithms 

• Interpretation of the Results of the DM & KM Process 

In this research, the problem is to identify the DM & KD algorithm among a set of 

algorithms that extracts the highest number of useful rules targeted to find natural 

gas deposits in sandstone rock type of Osmancik formation in Degirmenkoy natural 

gas field of Turkey. Well logs that includes large amount of data captured by devices 

to track natural gas deposits, acquired from five gas producing wells from 

Degirmenkoy field. In order to apply of data mining algorithms, raw data need to be 

preprocessed. So Well log’s raw data was cleaned by removal of outliers and 

erroneous data. And its attributes scaled and selected for proper implementation of 

algorithms. 

In the application phase, two classification and one association data mining 

algorithms was used. One of classification algorithm is Non-nested generalized 

exemplar (NNGE), which is an advanced version of k-nearest neighbor algorithm 

and the other one is PART that is a kind of decision tree algorithm. For association 

algorithm, Predictive Apriori (PA), which is an advance form of Apriori algorithm, 

was applied. 

The interpretation of the results of DM & KD process is analyzed on individual Well 

and overall basis. In addition, some important implications are examined in detail. 

Our research consists of three chapters. In Chapter 1, definition of data mining, 

knowledge discovery is given. Then the key steps of the DM&KD process are 

described in detail. Basic concepts of data mining such as instance & attributes and 

type of attributes are also analyzed. In addition, applied classification algorithms; 

NNGE and PART are discussed extensively along with the association algorithm PA. 

A brief summary of Data Mining Tools is given at the end of the chapter. 

In Chapter 2, concepts, definitions and descriptions related with natural gas 

exploration is explained. The formation of natural gas deposits, their internal 

structure’s key concepts such as porosity and permeability is discussed. Type of Well 

logs: Gamma, Neutron, Sonic and Density are important topics of this chapter. At the 

end, Degirmenkoy gas field that resides in Thrace Basin is analyzed with its 

formations, which includes sandstone zones of Osmancik Formation. 



!

! 3!

In Chapter 3, application of DM& KD process to the Well Log database is analyzed 

step by step. At the end of chapter, output of the process is presented in tables and 

the results of these tables are compared using charts. Also, some significant 

implications of the results are examined in detail. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! 4!

 

 

 

CHAPTER 1 
DATA MINING CONCEPTS AND DM&KD PROCESS 

 

In this Chapter, we will analyze the definition of Data Mining, Machine Learning 

and Knowledge Discovery. Fundamental concepts of Data Mining such as instances 

and attributes and types of attributes will be explained in detail. With understanding 

the basics, the key steps of the DM&KD process are discussed step by step. Then 

application of classification algorithms; NNGE and PART are covered extensively 

along with the association algorithm PA. At the end of the chapter, brief summaries 

of Data Mining Tools are given. 

 

1.1. Data Mining, Machine Learning and Knowledge Discovery 

“Data mining is the analysis of (often large) observational data sets to find 

unsuspected relationships and to summarize the data in novel ways that are both 

understandable and useful to the data owner.” [14, pp. 1]. 

The relationships and summarized data using a data mining exercise are often 

referred to as models or patterns. Some examples of these are rules, clusters, graphs 

and tree diagrams. 

The “observational data” as opposed to “experimental data” is used in the definition 

above since a person who carries out data mining process interest in previously 

collected data for purposes that do not include data mining. For example; they may 

had been collected in order to determine natural gas ratios for some depths in an oil-

gas field.  

The definition also emphasizes the great extent of examined data size in data mining. 

Dealing with small data sets could be a classical exploratory data analysis as 

practiced by statisticians. Facing with large data sets yields problems such as   

analyzing the data in a reasonable period of time, determining the representativeness 

of the data and decide if an explicit relationship occurs only by chance irrelevant to 

current practice. Generally, the available data contains only a fraction of the total, so 

the aim may be to generalize from the given. To illustrate, we may want to predict 



!

! 5!

the natural gas amount at a given depth that is not reached physically by machinery 

in the oil-gas field using the nearby gas field data’s. In some other occasions, we 

may want to analyze large amount of data in a way that the outcome is more. For 

example, extracting all rules targeting crude oil amount in a wellbore (a hole 

generally vertically dug out the earth crust in order to reach oil and gas [6]) data.  

By saying novel in the definition, the relationships and derived data within a set of 

data have to be new, original and worth finding. Specially, the discovered 

relationships also have to be comprehensible in order to use further processes easily 

such as expert systems [14]. 

In more technical terms, data mining is the drawing of tacit and possibly helpful 

information from data by assistance of computer programs that works automatically 

on databases containing real data in order to seek regularities or patterns. However 

real data is imperfect so anything derived from these will be inexact. Algorithms that 

constitutes core basis of computer programs should be powerful enough to deal with 

incomplete data and to discover imprecise regularities. 

Machine learning deals with the technical side of data mining methods having an aim 

of extracting useful information from databases. In other words, with the aim of 

discovering and analyzing models and patterns of real data, machine learning 

supplies methods and tools for usage in data mining practice [36]. If we talk about 

the process itself not the tools and techniques, Knowledge Discovery should be the 

main topic and it is defined as the significant process of determining possibly handy, 

novel, valid and comprehensible patterns in data [34].  

 

1.2. DM & KD Process 

The discovery of patterns and models could be achieved by following the general 

Data Mining and Knowledge Discovery (DM&KD) procedure that consists of 

several steps: 

 

1. Problem Definition 

The initial and essential step of the DM&KD process starts with definition of 

problem. The main concern, the purpose and aim of the analysis, the data that is 

relevant to this analysis and the way of collecting this data is addressed in the 



!

! 6!

problem definition part. As more information and experience are collected, a flexible 

approach and revision of any previous belief gains importance. To illustrate, there 

could be situation in further steps that the data analyst understands more data fields 

are needed in order to express classes more precisely so such data should be 

collected [34]. 

!

!

2. Collecting the data 

In this step, the data is generated and collected in two kinds of way: Designed 

Experiment and Observation. In the Designed approach, data is generated under the 

control of expert where as in the Observational approach; the expert cannot influence 

Figure 1. The Essential Steps of the Data Mining and Knowledge Discovery 
Process [34]. 



!

! 7!

the data-generation process.  In most data-mining applications, data are generated 

randomly and the distribution of sample is fully unidentified after collection, or it is 

given partially in the step of data collection. The data utilized for model estimation 

and the data used further for testing and application of a model should originated 

from the same unidentified sampling distribution. If not the estimated model cannot 

be utilized for last application of the results. 

 

3. Data Preprocessing 

Data preprocessing includes at least two common tasks:  

a) Outlier elimination: Outliers are uncommon values of data, which are 

inconsistent with most observations. And usually formed as a result of 

coding, measurement and recording errors. To illustrate, if a multifinger 

caliper (measures diameter at a specific chord across the wellbore [10]) tool’s 

measure has a value of -999.25, then this indicate that the tool couldn’t take 

any measurement at that time and gives alert. Such value could be considered 

as outlier. There are two methods to overcome outlier problem: Detection and 

removal of outliers, and developing outlier sensitive modeling methods. 

 

b) Scaling, encoding and selecting attributes: Real data consist of data objects, 

which have certain attributes. Scaling of the attributes and different type of 

coding gain importance at data preprocessing phase. To illustrate, feature 

with the range [0, 1] has not the same weight as the other having range of 

[−100, 1000] in the utilized method. And data-mining final outcome varies. 

In order to avoid such problems, both features should be scaled for future 

analysis. In addition, supply of fewer amounts of illuminative attributes 

provides reduction in dimension by application of specific encoding 

techniques for successive data mining task. For example, for analyzing 

natural gas in a well logs (variety of records of characteristics of rock 

formations (i.e, layers of rocks capable of being mapped by geological 

methods [6]) traversed by a measurement device in the well bore [8]) that 

consists of different type of logs such as electric, radioactivity and sonic; one 

can chose a specific set of logs for a data mining task [19]. 



!

! 8!

4. Application of the Main DM&KD Algorithms 

The main task of the data mining process is to examine the data with the application 

of suitable algorithm(s) and discover any patterns implied by the data. However, 

there are confusions taking place in use of such techniques due to diversity of 

employed algorithms. One of the ways is extraction of patterns in the form of 

classification rules. Such rules are kinds of logical statements that have form of IF X, 

THEN Y. X clause shows some conditions are taken place and Y clause describes 

the particular class of new examination. Then, such rules can be easily confirmed 

and used by domain experts who have no firm background in mathematics or 

computer science. 

 

5. Interpretation of the Results of the DM&KD Process 

This step is the “moment of truth” since from collected and analyzed data the models 

have been deduced and their performance is assessed with some test data. Here it is 

important to view deduced model as a list of logical if statements so that new 

acquired knowledge could be interpreted in a comprehensible way and this makes 

decision-making phase in an easy manner. The outcome of acquired knowledge 

should be verified and analyzed the validity by data mining analyst and domain 

experts. The newly gained knowledge may shed light on previously complicated 

issues. The interpretation step is not the end of whole process since with the new 

insights are accumulated revision may become indispensible. This is presented in 

Figure 1 in which each step is linked with each other through the feedback system 

[34]. 

 

1.3. Instances and Attributes 

Real data sets on which data mining tools used are made up of data objects. A data 

object symbolizes an entity in an annual sales database.  The objects in the database 

may be sale amount, the kind of store items and customer choices; in an oil and gas 

database, the objects may be sandstones (a type of rocks in which conventional oil 

and gas production generally takes place [1]) and its gas potentials.  Data objects can 

also be referred to as instances. Instances are typically described by attributes. If the 

instances are stored in a database, they are in the form of data tuples. Each row in the 



!

! 9!

database corresponds to the instances, and the columns of it coincide with the 

attributes. 

An attribute is a data field that represents a feature of an instance. Attributes 

describing an instance can include, for example customer ID, name and address. The 

set of values determines the type of an attribute that could be numeric, binary or 

nominal [13]. 

 

1.3.1. Nominal Attributes 

An attribute used to put instances into categories, such as the name or color of an 

object. It expresses instances, which lack the characteristic of scale, order and 

measurable distance between each other. To illustrate, the study of general physical 

properties of rocks, including mineral composition, color, structure and arrangement 

of its components which is called lithology [6] could be represented as an attribute 

named “Lithology” and it may take six types of nominal attributes that are sandstone, 

coal, shale, limestone, clay stone, siltstone. It is important to stay out of the scale in 

nominal attributes because if category is represented by a series of integers, then 

erroneous outcome may be attained by the application of a numeric algorithm. To 

illustrate, if we symbolize the type of a house attribute with the integers ranging from 

1 to 3 where 1 means semidetached, 2 is detached and 3 is townhome. Then the 

algorithm may indeliberately sum up 1 and 2 and that leads to the erroneous 

statement of semidetached plus detached equals to Townhome. Therefore, storing 

nominal attributes in software applications as strings force the application to interpret 

them as nominal attributes [5]. 

 

1.3.2. Ordinal Attributes 

Ordinal attributes put instances into categories in a different way that nominal 

attributes do. Their values have a numerical ordering. So such attributes are ordered 

categorical [24]. To illustrate, permeability of a rock, which is an interpretation of 

how easy fluids flow through the rock and expressed in Darcy could be taken as an 

ordinal attribute. Considering permeability properties of kinds of rocks, sandstones 

whose permeability values over 1 Darcy (D) or between values of 100 and 1,000 mD 

treated as having extremely good permeability. Also 10–100 mD are considered to 



!

! 10!

be acceptable values for reservoir rocks; i.e. a subsurface volume of rock that has 

sufficient porosity and permeability to permit the migration and accumulation of 

petroleum [6]. Rocks having 1–10 mD permeability are typical example of dense 

sandstones and limestones (a sedimentary rock composed primarily of calcium 

carbonate [6]), so-called tight reservoirs (a permeable and porous subsurface 

sedimentary rock formation in which natural gas accumulates [6]). Claystones and 

shales (a fine-grained sedimentary rock that is created by the consolidation of mud or 

clay and other various materials like feldspars [6]) attain very low permeability 

values and so it could be near the edge of completely tight [3]. So if we take into 

account the permeability values in Darcy interval scales, one may rephrases the 

permeability as an ordinal attribute taking values: very high, high, low and very low 

permeability. 

 

1.3.3. Binary Attributes 

A binary attribute is a special case of a nominal attribute that takes only two possible 

values: true or false, 1 or 0. For example, natural gas existence in a sandstone 

formation could be described as a binary attribute named “Gas Existence” and 

having values: gas exist or no gas exist [4]. 

 

1.3.4. Numeric Attributes 

 A numeric attribute is quantitative; that it is a measurable and gets real values. 

Numeric attributes can be classified as ratio or interval scaled. Attributes that has 

interval-scaled values are measured on a equal unit size scale. The values of this type 

could be ordered and can have any sign or neutral. By using interval-scaled attributes 

one can compare and calculate the difference between values [13]. To illustrate, 

gamma ray logs (a kind of radioactivity log and measures the natural emission of 

gamma rays from rocks in a wellbore [3]) could be represented as an interval-scaled 

numeric attribute since it takes real number values. Any increase or decrease at 

gamma ray values can be calculated at different depths. 

Ratio-scaled attribute can take numeric values and these are being a multiple of 

another value and ratio of each could be taken. Moreover, the difference of values 

can be calculated and so that they have ordered values [13]. For example, neutron log 



!

! 11!

could be represented as a ratio-scaled numeric attribute. Since the neutron log is a 

measure of the porosity of the rock and porosity is an expression of the ratio of 

volume of fluids over the total rock volume [3]. 

Ratio quantities are numerical attributes for which the measurement scheme 

inherently defines zero point. Here inherently means, defined zero point depends on 

the subject area. According to the previous example, neutron log’s zero point is the 

zero volume of fluids with respect to total rock volume, which is zero percent.  If we 

consider temperature and take kelvin as a unit, the zero point is -273.15 degree 

Celsius [37]. 

 

1.3.5. Discrete versus Continuous Attributes 

Attribute types could be organized in many ways. One of the separations used by 

classification algorithms developed from the field of machine learning treats 

attributes as discrete or continuous. A discrete attribute has a finite or countably 

infinite set of values. The each attribute of human blood type and rock type in a 

wellbore has finite number of values, and therefore these attributes are discrete. 

Numeric values also may be seen in discrete attributes. To illustrate, if human age is 

considered as an attribute, then it could take values between 0 and 100. And this 

attribute constitutes a finite set of 101 elements. An attribute is said to be countably 

infinite if it takes infinitely many values that could be matched with natural numbers 

in a one-to-one correspondence. For example, the attribute ID of customers is 

countably infinite since there could be many customers but they can be countable 

with the construction of one-to-one correspondence between its values and integers. 

If an attribute is not discrete, it is continuous. Continuous attributes are typically 

represented as floating-point instances. As an example consider gamma ray logs, 

which takes values generally between 40 and 150 and has five significant decimal 

digits such as 79.11459 [13]. 

 

1.3.6. Missing, Unique and Distinct Attributes 

Many real life data sets are incomplete, i.e., some attribute values are missing. There 

is variety of reasons why data sets are affected by missing attribute values. Some 

attribute values are not recorded because they are irrelevant. In some other cases, the 



!

! 12!

attribute value was not placed into the dataset because it was forgotten or it was 

placed into the dataset but later on was mistakenly erased. Such a missing value will 

be called lost. To illustrate, one can forget to include or deliberately chose to not 

include a specific type of log in well log (a graphical record that includes the 

measured physical properties of a subsurface rock section as confronted in a oil and 

gas well [6]) since there could be fourteen types of logs in a well log [25]). The 

number of dissimilar values contained for a selected attribute is called distinct. To 

illustrate, a lithology nominal attribute having six rock types has six distinct values. 

The number and percentage of instances having a value for the attribute that no other 

instances have is called unique. Considering a dataset that has 100 instances and 

includes the lithology attribute which has 55 claystones, 15 limestone, 29 sandstones 

and one coal value. In this case we have one unique value namely coal and have a 

percentage of 1% in the lithology attribute [2]. 

 

1.4. Classification 

Classification is the exercise of attaching objects to one of distinct predefined 

categories. The input data for such task is a collection of instances that are 

characterized by a tuble(x,y). Her x symbolizes the attribute set and y is the class 

label (also known as target or category attribute). Attribute sets could be continuous 

or discrete whereas class label must be discrete. Considering the tuble approach, 

classification (Figure 2) could be defined as “a task of learning a target function f 

that maps each attribute set x to one of the predefined class labels y” [26, pp.146]. 

The target function commonly is known as a classification model. 

!

!!

!
!

Classification model is useful for description and prediction. For description 

purposes such model can be used as an explanatory tool to separate objects of 

different classes. In addition this type of model can also be used to foresee the class 

Figure 2. Classification as a task of mapping an input attribute set x into its class label y 
[26]. 



!

! 13!

label of unidentified instances. Classification techniques are generally well suited for 

description and prediction data sets with nominal or binary class labels whereas they 

are insufficient for ordinal class labels since they don’t recognize the tacit order 

among the class labels. 

A classification technique say classifier is a systematic approach to construction of 

classification models where an input data set is given. Examples for these classifiers 

are rule-based classifiers, neural networks and decision trees. For the identification 

of a model that creates the best relationship between the attribute set and class label, 

each classifier uses a learning algorithm. 

A general approach for solving classification problems is starting with gathering a 

training set consisting of instances whose class labels are known. Then this set is 

used to build a classification model that could be used for the following purposes; 

Prediction of unknown class labels of a test set or extracting useful generalization 

rules from the noisy and large training sets. 

In order to evaluate the performance of a classification model, correctly and 

incorrectly described test instances are counted by the model. Then these counts are 

listed in a table known as a confusion matrix. 

Table 1 shows the confusion matrix for a binary classification problem. Each entry fij 

in the table denotes the amount of instances from class i predicted to be 
                     Table 1.Confusion matrix for a 2-class problem [26] 

CONFUSION MATRIX Predicted Class 

Class: 1 Class: 0 

Actual Class Class: 1 f11 f10 

Class: 0 f01 f00 

!

of class j. To illustrate, f10 is the amount of instances of class 1 that are incorrectly 

predicted as class 0. Thinking the whole entries, the total number of correctly 

classified instances is f11+f00 and the incorrectly classified ones’ in total is f01+f10. In 

order to summarize the performance of a model, accuracy (performance metric) and 

error rate concepts are used and these are calculated as: 

!""#$%"& = !!"#$%&!!"!!"##$!%!!"#$%&'%()*!"#$%!!"#$%&!!"!!"#$%&'%()* = !!! + !!!
!!! + !!" + !!" + !!!

![26].!



!

! 14!

!

!""#"!!"#$ = !"#$%&!!"!!"#$%%&#'!!"#$%&'%()*
!"#$%!!"#$%&!!"!!"#$%&'%()* = !!" + !!"

!!! + !!" + !!" + !!!
![26].!

Most classification algorithms’ main aim is to attain the highest accuracy and the 

lowest error rate. 

 

1.4.1. Decision Tree Induction 

One of the widely used classification technique is Decision Tree classifier. It starts 

with asking questions from a series of carefully designed list of attributes of the test 

instance. As the answer is received from each question, a follow up question is asked 

until a conclusion reached about the class label of the instance. This list of questions 

with the answers can be organized in a form of decision tree that has a hierarchy 

composed of nodes and directed edges. The tree has three types of nodes:  

a) A root node is the starting point so it has zero or more outgoing edges but   

     no incoming edges. 

   b) Internal nodes has exactly one incoming edge and two or more outgoing  

        edges.  

   c) Leaf or terminal nodes has no outgoing edge but, each of it has exactly one  

        incoming edge. 

In a decision tree, each leaf node has class label and the nodes that are not leaf 

includes test conditions of attributes to distinguish instances that have different 

properties. 

In order to classify a test instance, starting from the root node, the test condition is 

checked against to the instance and according to the output of the test appropriate 

branch is followed. While iterating in the same way, if an internal node is reached, 

then different kind of test condition is applied. If a leaf reached instead of internal, 

the class label of the leaf node is assigned to the instance [26]. To illustrate; in the 

Figure 3, a sample decision tree is shown created using an overall oil production 

model. 

The model is developed using three geoscience parameters of permeability, porosity     

and first shut-in pressure (the surface force per unit area exerted at the top of a 

wellbore when it is closed [11]). 



!

! 15!

These parameters constitute the attribute set and Oil Production expressed in terms of 

High and Low is the class label. The root node shown in figure 3 uses the attribute 

Porosity. If its value is less than 11.738, then a new test condition for Permeability is 

applied. If the value is below 4.6188, then a new internal 

!

!

!

!

!

!

!

!

!

!

!

node namely Pressure is reached. And if the pressure value is less or equal to 14893, 

then a leaf node is reached having class label “low”. One could express the path by a 

classification rule [40]. 
IF Porosity <= 11.7348 (Unit: Percent), THEN 

IF Permeability <= 4.6188 (Unit: Millidarcy) THEN 

IF Pressure <= 14893 (Unit: MPa) THEN 

   Oil Production = Low (2000, 97767) (Unit: m2)  

Rules are an alternative to decision trees in order to create a relationship between the 

class label and the set of attributes of inputted data. The precondition of a rule is a 

series of tests that are same as the tests at nodes in decision trees, while the 

consequent identifies class label that apply to instances covered by that rule. In 

general, the statements of preconditions are combined with AND operator, and if the 

rule successfully is to fire, all the tests preconditions are passed. 

If the size of decision tree is not large in terms of amount of internal nodes, it is 

possible to track and read a set of classification rules directly off a decision tree. For 

each leaf, one rule is created. The precondition of the rule includes a condition for 

every single node from the root to that leaf in the path, and the consequent of the rule 

Figure 3. A sample decision tree for overall oil production model [40]. 



!

! 16!

is the class label, which is assigned by the leaf. This procedure produces rules that 

are unambiguous in that the order in which they are executed is irrelevant. However, 

in general, rules that are read straightly from a decision tree are complex than 

necessary, and so rules derived from decision trees are generally pruned for removal 

of redundant tests [36]. 

 

Constructing a Decision Tree 

As a major approach to classification, decision tree induction has received a great 

amount of attention from researchers over the last two decades, which causes the 

development of a number of decision tree induction algorithms. These algorithms 

share a similar procedural framework that can be outlined as follows: 

1. If the training set is empty, create a leaf node and label it as NULL since 

currently no instances exists in the training set to determine the class 

outcome. 

2. If all instances in the current training set are of the same class, create a leaf 

node and label it with class label; meaning the class for those instances 

determined by the label of the leaf node. 

3. If the instances in the current training set are of different classes, the 

following operations need to be performed: 

a) Select an attribute to be the root of the current tree; 

b) Partition the current training set into subsets according to the values of the 

chosen attributes; 

c) Construct a subtree for each subset; 

d) Create a link from the root of the current tree to the root of each subtree, 

and label the link with appropriate value of the root attribute that 

separates one subset from the others.  

The key step of the entire framework is step 3.a, which is about selecting an attribute. 

In order to determine which attribute is the most suitable to be used as the root of the 

current tree; a formal measure known as the attribute selection measure is used in 

this step. A number of different selection measures (such as information gain) have 

been developed to efficient decision trees. If we select attributes randomly, the 

outcome will be more complex decision tree with more branches and more levels. 



!

! 17!

Moreover, more memory resources are required to maintaining the tree and more 

tests are needed in the classification stage and hence a longer time is needed before a 

classification decision is made. Another more serious problem is that decision trees 

with complex structures more likely to over fit that causes errors and needed to be 

pruned (removed) later [7]. 

Beside the attribute selection problem, a method should be provided for expressing a 

test condition of attribute along with its outcomes for different kinds of attributes. 

Considering binary attributes, the test condition generates two potential outcomes. 

To illustrate, gas existence in a rock formation could expresses as a binary attribute, 

which has a test condition consisting of two-way split as gas or no gas (Figure 4-A). 

For nominal attributes, their test condition could be expressed as a multi-way split in 

which the amount of outcomes relies on the number of distinct values for 

corresponding attribute. 

For example, if Lithology attribute has six distinct values (clay stone, limestone, 

shale, sandstone, siltstone, coal), then its test condition will yield a six-way split 

(Figure 4-B). 

“For continuous attributes, the test condition can be expressed as a comparison test 

(A < v) or (A ≥ v) with binary outcomes, or a range query with outcomes of the form 

vi ≤ A < vi+1, for i=1,2…k.” [26, pp.156] For the binary case, all possible split!

positions of v is taken into account by the decision tree induction and then the one 

that creates the best partition is selected. For the multi-way split, all possible ranges 

of continuous values must be considered. To illustrate, if neutron log is taken into 

Figure 4. Test conditions for binary and nominal attributes (constructed based on 
figures about test conditions and attributes [26]). 

A! B!

!
!



!

! 18!

account as a continuous attribute, its test condition could be expressed as a six-way 

split after discretization (Figure 5) [26].  

Deciding on the way of expressing test conditions is not enough. Decision tree 

algorithms represent supervised learning, meaning that there should be a particular 

pre-specified target attribute and the algorithm have to be given many instances may 

learn target attribute values and its associations with values of the attribute set. Also 

the target attribute classes must be discrete. 

!

!

!

!

!

!

!

!

That is decision tree algorithm cannot be applied to a continuous target attribute. 

Rather, it must take on values that are clearly limited by boundaries as either 

belonging to a particular class or not belonging [23]. 

 

1.4.1.1. The ID3 Algorithm and Information Gain Measure 

One of the well-established decision tree algorithms is ID3, which is developed by 

Ross Quinlan in 1986. It follows the exact steps of the general framework outlined 

earlier and uses information gain concept for which attribute is selected for the root 

of the current tree. The pseudo-code of the algorithm is presented as follows: 

 

algorithm constructTreeID3 (C: training set): decision tree; 

begin 

     Tree := Ø;  //empty the tree initially 

          if (C is empty) then 

 Tree := a leaf node labeled NULL; 

 Return(Tree) 

          else 

Figure 5. Test conditions for continuous attributes (constructed 
based on figures about test conditions and attributes [26]). 



!

! 19!

              if (C contains instances of one class) then 

                  Tree := a leaf node labeled by the Class tag 

              else  

      for (every attribute Ai (1 ≤ i ≤ p)) do 

             Calculate information gain Gain(Ai) 

                   endfor; 

                   Select attribute A where   

                   Gain(A)=max(Gain(A1),Gain(A2)…..,Gain(Ap)); 

        Partition C into subsets C1,C2, ……, Cw  by values of A; 

      for (each Ci (1 ≤ i ≤ w)) do 

             ti := constructTreeID3(Ci); 

             Tree := a tree where node A as root and t1, t2, ….., tw as subtrees; 

             Label the links from A to the roots of the subtrees with values of A 

      endfor; 

              endif; 

       endif; 

       Return(Tree); 

end; [7]. 

 

Firstly, the ID3 selects the attribute having the highest information gain as the root of 

the entire tree and then builds a subtree for each subset of the original training set 

partitioned by the values of the selected attribute. After the completion of the 

subtrees, a link with the partitioning attribute value is created as the label and 

connected to the root of each subtree. By using the gain splitting criteria, the 

algorithm terminates growing if best information gain is negative or all instances 

refer to a single value of a target feature. 

The concept of information gain originates in probability and information theory 

where the purpose is to quantify and measure the amount of information when 

random events occur. In information theory, an information system S is a system 

consisting of sample space which has subsets of events E1, E2, .…, En with associated 

probabilities of event occurrences P(E1), P(E2), …., P(En). Suppose S has M elements 

and the event Ek has Nk elements, then the probability of Ek is calculated as!! !! =



!

! 20!

!! !! and the amount of self-information of an event Ek (1≤ k ≤n) of S is defined as 

!(!!) = !"#!(1 !(!!)) = −!"#!!(!!) when P(Ek)=0, I(Ek) is set to 0. The base q 

of the logarithm in the definition represents the unit of measure for the amount of 

information. The amount has a measure in bits if base 2 is used in calculations. If 

base 10 is used, the amount is measured in digits. The definition of self-information 

states that if event Ek always happens, then P(Ek)=1 and I(Ek)=0; meaning 

occurrence of an event which always happens gives no information. If Ek frequently 

happens, P(Ek) is close to 1 and I(Ek) is close to 0, i.e. the occurrence of a frequently 

occurring event conveys very little information. If Ek hardly happens, P(Ek) is close 

to 0 and I(Ek) is very large, which means that the actual occurrence of the event 

conveys a large amount of information. If Ek never happens, the amount of 

information should be infinite. In order to avoid this useless situation, the self-

information is forced to zero [7]. 

Based on self-information of individual events, the average information H(S), also 

known as entropy, of the whole information system S is defined as the weighted sum 

of self-information of all events in S in which the weights are the probabilities of the 

events of S. 

! ! = ! !! . ! !! = − ! !! . !"#!!(!!)
!

!!!

!

!!!
!

The entropy of an information system S of N events indicates the degree of 

uncertainty. If there is an absolute certainty that one event in S always occurs, the 

probability of that event is 1 and the probabilities of all other mutually exclusive N-1 

events ought to be 0. Then each term in the entropy expression equals 0 and hence 

H(S)=0. On the other hand, when every event of S has equal probability 1/N, the 

system is most uncertain and H(S)= logN, the maximum. Therefore 0≤ H(S) ≤ logN. 

Given two information systems S1 and S2, the conditional self-information of event 

Ek of S1 given that event Fj of S2 has occurred, is defined as 

"!! !! !! = !"#!
1

! !! !!
= −!"#!! !! !! = −!"#!

!(!! !!"#!!!)
!(!!)

"![7,!!. 156]!

The average conditional information, also known as the expected information, of 

system S1 of n event at the presence of system S2 of m events is the weighted sum of 

the conditional self-information over all pairs of events in S1 and S2: 



!

! 21!

"!!(!!|!!) = ! !! !!"#!!!
!

!!!
. !(!!|!!)

!

!!!

= − ! !! !!"#!!! . !"#!
!(!! !!"#!!!)

!(!!)

!

!!!

!

!!!
!"![7,!!. 156]!

For a training set of instances, suppose each attribute is an information system. And 

A is an attribute from attribute set and Class as the target attribute. During the 

construction of a decision tree, two information systems are present: attribute A and 

the attribute Class. H(Class) represents the average information of Class system 

before the attribute A is considered as the root of the decision tree, while H(Class|A) 

represents the expected information of Class system after the attribute A is chosen as 

the root. The information gain over the attribute A, denoted as G(A), is the difference 

between H(Class) and H(Class|A); i.e. 

! ! = ! !"#$$ − !(!"#$$|!)!
!

Remembering H(S) signifies a degree of uncertainty, H(Class) and H(Class|A) 

reflects respectively the degrees of uncertainty before and after attribute A is 

selected. So information gain G(A) represents a reduction of uncertainty over the 

choice of A. The attribute having the highest information gain is the one that reduces 

uncertainty degree the most. Therefore, ID3 algorithm selects the attribute whose 

values influence the outcome of the class most, ensuring the classification of as many 

instances as close to the root of the tree as possible [7]. 

To show the calculation of the information gain in a set of training instances, 

suppose that there are p positive and n negative instances, and there are pi  positive 

and ni negative instances whose attribute A has the value ai . Then p + n is the total 

number of instances and pi + ni  is the total number of instances having the attribute 

value ai. The figures are listed in contingency table (Table2). 

!
!!

!

!



!

! 22!

!

!

!

!

!

!

!

!

!

So the entropy;!!

"!! !"#$$ = − !
! + ! !"#

!
! + ! −

!
! + ! !"#

!
! + ! !!"#; !"!

"!! !"#$$ ! = − !!
! + ! log

!!
!! + !!

− !!
! + ! log

!!
!! + !!

!

!!!
!"!

!!!!!!!!!!!!!!!!!!!!!!!"! = !! + !!
! + ! (− !!

!! + !!
log !!

!! + !!
− !!
!! + !!

log !!
!! + !!

)
!

!!!
"!

!!!!!!!!!!!!!!!!!!!!!!!!" = !! + !!
! + !

!

!!!
.! !"#$$ ! = !! "![7,pp. 157]!

!

where (!! + !!)/(!! + !) is the probability of attribute A taking the value ai and 

H(Class | A = aj) is the average information of Class when the value of attribute A of 

the instances equal to aj [7]. 

!

1.4.1.2. C4.5 Algorithm 

Although ID3 algorithm able to classify instances in a way that reduces the degree of 

uncertainty using the information gain criteria, it couldn’t handle numeric attributes 

or missing attribute values. So in 1993, Quinlan presents a new decision tree 

algorithm called C4.5, which could handle numeric and missing values. It uses gain 

ratio instead of information gain for splitting criteria. The splitting of decision tree 

Attribute(A(

Classes((Target(Attribute)(

Total(Positive( Negative(

a1( p1( n1( p1+n1(

a2( p2( n2( p2+n2(

.(

.(

.(

.(

.(

.(

.(

.(

.(

.(

.(

.(

av( pv( nv( pv+nv(

Total( p( n( p+n(

Table 2 Contingency Table showing the instances of an attribute A and 
corresponding target attribute value [7]. 



!

! 23!

ceases when the amount of instances that has to be split is not pass a certain 

threshold [28].  

The gain ratio is defined as the ratio of the information gain over attribute A against 

the average information of the attribute, i.e. 

!"#$!!"#$%! ! = !"#$(!)
!(!)  

The gain ratio normalizes uncertainty across different attributes to avoid bias towards 

attributes with more distinct values. Experimental studies have shown that the gain 

ratio has marginally better performance than the information gain in terms of 

classification accuracy of the resulting tree [7].  

After building a decision tree, a tree-pruning step can be performed to lower the size 

of the decision tree since they could be too large so they are sensitive to a incident 

knows as over fitting. It describes a condition where training data fits a data mining 

model “too well” so that the model describes the sample nearly perfectly, but is too 

rigid to fit any other sample. The generalization potential of decision trees is 

improved by pruning operation that trims the branches of the initial tree [26]. C4.5 

applies error-based pruning whereas ID3 doesn’t apply any pruning procedure [28]. 

 

1.4.1.3. PART Algorithm 

After the creation of decision tree, the tree is transformed into a list of rules by 

creating one rule for each path from the root to a leaf. Although most such rule sets 

can be clarified without loss of predictive accuracy, they are pointlessly complicated 

since the implied disjunctions could not easily be expressed clearly. 

During the rule set obtain process; firstly C4.5 extract a set of rules from an 

unpruned decision tree. Then each rule is handled individually by deleting conditions 

for the aim of obtaining good subsets of rules. As a next step the subsets are ranked 

for the different classes with respect to each other. Finally, rules are removed from 

the total set one by one as long as the rule set’s error decreases. Overall, this global 

optimized process consisting of five separate stages results in complex and time-

consuming rule extraction methodology [9]. 

In 1998, Eibe Frank and Ian Witten present a new rule extractor algorithm called 

PART, which overcomes problems of C4.5. Main advantage of PART is its 

simplicity comparing with C4.5 since in order to create accurate rule sets there is no 



!

! 24!

obligation for global optimization. In addition, it follows the strategy of separate and 

conquer that starts with building a rule, then continue with the removal of instances it 

covers. And then it creates rules recursively for the remaining instances till nothing 

left. It diverges from the standard approach of rule creation of separate-and-conquer 

strategy. Essentially, for the creation of a single rule, from the current set of 

instances a pruned decision tree is built, the leaf having largest coverage is converted 

into a rule, and the tree is neglected. Instead of incremental construction by adding 

conjunctions one at a time use of pruned tree for the extraction of rules prevents the 

over-pruning problem of the basic separate-and-conquer strategy.  

The key idea behind the PART is the building of a “partial” decision tree, which 

contains branches to undefined subtrees, instead of a fully explored one. For 

generation of the partial tree, pruning and construction operations are applied to 

discover a stable subtree lack of further simplifications. After the discovery of this 

subtree, tree-building ceases and a single rule is read off. 

 

The tree-building algorithm of PART presented as follows: 

             “ Expand-subset (S): 

                    do  Choose a test T and use it to split of given set of instances into  

  subsets 

               Sort subsets into increasing order of average entropy 

  while (there is a subset X that has not yet been expanded and 

               all subsets expanded so far are leaves) 

               endwhile 

 Expand-subset(X) 

 if  (all the subsets expanded are leaves and 

      estimated error for subtree ≥ estimated error for node) then  

      Undo expansion into subsets and make node a leaf  

 endif  “[37, pp. 208].  

 

The algorithm splits an instance set recursively into a partial tree. As a first step, a 

test (entropy comparison in PART) is chosen and the instances are divided by the 

information-gain heuristic into subsets accordingly. Then the subsets are expanded 



!

! 25!

Figure 6. An example of building a partial tree, PART algorithm [37]. 

according to the order of their average entropy by starting with the smallest entropy. 

Because subsequent subsets will most probably not finished up being expanded, and 

the low average entropy subsets is more likely ends up a small subtree producing a 

more general rule. The expansion of subsets continues recursively till a leaf is 

created from a subset, and it continues further by backtracking. However, if an 

internal node appeared whose all of children’s are expanded into leaves, the 

algorithm controls whether a single leaf better replaces that node by comparing 

estimated error for the node and the subtree. The replacement procedure is called 

subtree replacement. If replacement operation is occurred then the algorithm 

backtracks in order to explore the siblings of the newly replaced node. While 

backtracking a node, if a node whose all of children expanded so far are not leaves is 

encountered, then the remaining subsets are left untouched and the corresponding 

subtrees becomes undefined. As a result this event automatically terminates tree 

generation due to the recursive nature of the algorithm. 

!

!

!

!

!

!

!

!

!

!

!

In the Figure 6, the tree-building algorithm is shown step by step. Gray elliptical 

nodes are the nodes that are not yet expanded whereas white ones are expanded 

ones’. Rectangular nodes are leaves. As a first step, lowest-entropy is chosen as the 

test for expansion. Between stages (a) and (b), tree building continues as a recursive 

manner in the usual way except that node 3 is chosen for expansion since it has 

lowest-entropy. Then from stage (b) to (c), a leaf is reached which has lower entropy 

than its sibling, node 5. So backtracking starts which means the algorithm goes back 



!

! 26!

and chooses node 5 is for expansion. After expansion of node 5, it has all its children 

expanded into leaves. So subtree replacement for node 5 is considered and accepted. 

Then node 5 is replaced as seen in stage (d). Now node 3 turns to a node that has all 

its children expanded into leaves. As a result, subtree replacement takes place and 

node 3 is replaced with the leaf that could be seen in stage (e). But as node 2 has 

lower entropy than its siblings since it is a leaf, backtracking occurs. So node 4 that 

has lower entropy than node 2 is expanded and results in two children, which are 

leaves. Suppose replacement of subtree doesn’t occur. Here, the process ends with a 

partial tree having three leaf of stage (e) [37]. 

When a partial tree has been constructed, a single rule is extracted from it according 

to a criterion stated as choosing of the leaf having the greatest number of instances. 

Hence, the most general rule is obtained among leaves of partial tree [9]. 

  

1.4.1.4. Advantages and Disadvantages of Decision Trees 

Some advantages of the decision tree as a classification tool could be summarized as 

follows: 

1. Decision trees are self-explanatory and because of their compactness they are 

easy to follow. For non-professional users, decision tree could be grasped if it 

has a reasonable number of leaves. In addition, since they can be transformed 

to a set of rules, this representation increases comprehension. 

2. Decision trees can handle nominal and numeric type of input attributes. 

3. Decision tree rich representation allows representing any discrete value 

classifier. 

4. Decision tree classifier can handle datasets that may have missing values or 

errors [28]. 

5. Developed techniques for building decision trees computation cost is cheap 

so models could be constructed fast even in the case of very big data sets. 

6. Decision tree algorithms are quite sturdy to the presence of noise (any data 

that cannot be understood and interpreted correctly), especially when 

methods for avoiding overfitting [26]. 

 

Among the disadvantages of decision trees are: 



!

! 27!

1. Many decision tree algorithms (like C4.5 and ID3) require that the target 

attribute should have only discrete values. 

2. As decision trees use the “separate-and-conquer” strategy, they have a 

tendency to perform well in the existence of a few highly relevant attributes. 

However it performs less in the presence of many complex interactions. 

3. Decision trees over sensitive to the training set, irrelevant attributes and to 

noise and this makes them unstable since a minor change in one split close to 

the root causes a change in the whole sub tree below. Because of small 

variations in the training set, the algorithm may choose an attribute that is not 

truly the best one [28]. 

4. The greedy characteristic (splitting the instances based on an attribute test 

that optimizes certain criterion) of decision trees leads to another important 

disadvantage. During decision tree construction, each branch confronts less 

training instances as the result of branching. Therefore, the reliability of 

lower branches turns to be worse than upper branches due to the smaller size 

of training instances. This problem is known as fragmentation. As a result, 

redundant tests carried out for a single tree and this may not result in a good 

knowledge model [17]. 

5. In order to handle missing values, decision tree algorithms performs a lot of 

effort, which is considered as a drawback in terms of computation cost. If a 

test of feature is missing, the right branch to take is unknown, and the 

algorithm has to employ special techniques to handle missing values. To 

illustrate, in order to lower the occurrences of tests related with missing 

values, C4.5 charges the information gain by the proportion of unknown 

instances and then breaks these instances into subtrees [28]. 

 

1.4.2. The k-Nearest Neighbor (k-NN) Algorithm 

Other than decision trees, there is a classification algorithm named k-Nearest 

Neighbor (k-NN), which is commonly used when all attribute values are continuous. 

The idea behind k-NN is to estimate the class/class label of an unseen instance using 

the class of the instance or instances that are closest to it according to some defined 

metrics [4].  



!

! 28!

There are key elements of k-NN approach: 

i. “The set of labeled instances to be used for evaluating a test instance’s class, 

ii. A distance or similarity metric that can be used to compute the closeness of 

instances, 

iii. The value of k, the number of nearest neighbors, and 

iv. The method used to determine the class of the target instance based on the 

class and distances of the k nearest neighbors”[39, pp.152]. 

“To sum up in simplest form, k-NN can involve assigning an instance, the class of its 

nearest neighbor or of the majority of its nearest neighbors” [39, pp.152]. 

If an instance that is described by n attributes in a training data set is considered as a 

tuple of n, then it represents a point in n-dimensional space. So one could say that 

when given an unknown tuple, k-NN classifier seeks to find the k training tuples that 

are closest to the unknown tuple [13]. To illustrate, Figure 7 illustrates a training set 

with 20 instances, each giving the values of two attributes and an associated classes. 

In graph part of the figure, points on a two-dimensional graph with values of first and 

second attributes measured along the horizontal and vertical axes, respectively, 

represent the instances.  The points labeled (+) or (–) symbol to indicate their classes. 

Given an unseen instance X where the first and second attributes are 9.1 and 11.0, 

respectively. Then suppose k=1 for k-NN, X would be classified according to 

whichever single (one) observation it was close to. In this case, X would be classified 

as (–) since that is the classification of the point closest to the point labeled (–) as 

seen!

Figure 7. Training Set for k-NN and two-dimensional Representation of the set [4]. 



!

! 29!

in the inner region of the bold circle in the Figure 7. If k=5 for k-NN, X would be 

classified with respect to five observation it was close to. In this case we have three 

(+)’s and two (-)’s closest to X by counting instances inside the dashed circle. Given 

one point for each, a classification based on voting would therefore choose (+) label 

for X if all points were weighted equally. If the points are not weighted equally, then 

vote-weighting problem arises. 

Now consider the case k=2, then we have one (+) and one (-) closest to X in which 

voting would not help since there is one vote for each of two classification. So 

another method such as distance measurement is needed to assigning a class label to 

X. 

 

1.4.2.1. The Distance Function 

For a new instance, the k-NN algorithm assigns the classification of the most similar 

instance or instances. One of the ways to define similarity is to define distance 

metrics. “A distance metric or distance function is a real-valued function d, such that 

for any coordinates x, y and z:  

i. !(!,!) !≥ !0!,!"#!!(!,!) != 0!!"!!"#!!"#$!!"!! = ! 

ii. !(!,!) = !(!, !) 
iii. !(!, !) ≤ !!(!,!)+ !(!, !) “ [23, pp.99] 

Property (i) guarantees that distance is always nonnegative and if it is zero, then the 

coordinates have to be the same. Property (ii) indicates commutativity so that the 

distance from the point A to B is equal to the distance from B to A. Finally; property 

(iii) is the triangle inequality that states that introducing a third point can never 

shorten the distance between the other points. The equality only happens if y is on 

the direct route between x and z. 

The most common distance function is Euclidean distance, which is defined as 

follows: 

"!!!"#$%&'()(!,!) = (!! − !!)!
!

!"![23,pp. 99]!

where ! = (!!, !!, !!… , !!)!!"#!! = (!!,!!,!!… ,!!)  represents the n attribute 

values of two instances [23]. For example, in Figure 7 the Euclidean distance 



!

! 30!

between the unseen instance X=(9.1, 11.0) and Y=(9.2, 11.6) of class label (-) 

instance can be computed by: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'()(!, !) = (9.1 − 9.2)! + (11.0 − 11.6)! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!= 0.01! + 0.36 = 0.37 ≈ 0.61 

                                                               and as shown in Figure 8. 

!

!

!!

!

A major problem of Euclidean distance is that big values often swamp the small 

values. Assume that two row of instances are presented as follows for some 

classification problem with (+) or (-) class labels in Table 3. 
Table 3. The instances with unnormalised continuous attributes[4]. 

Attribute-1 Attribute-2 Attribute-3 Class Label 
18.457 2 12 + 
26.292 4 3 - 

!

When the distance of these instances from a random instance is calculated, the 

Attribute-1 will have a possibility to contribute a value of thousands squared, to the 

sum of squares at total but the Attribute-2 and Attribute-3 will probably contribute a 

value less than 10. So the Attribute-1 dominates other during the decision of which 

neighbors is the nearest using the Euclidean formula. 

To overcome this problem a process called normalization applied to the values of 

each attribute that are converted in a way that each runs from 0 to 1. In general if the 

minimum value of attribute Q is min and the maximum value is max, each value, say 

q, of Q is converted to (! −!"#)!/!(!"# −!"#).!Suppose that for Attribute-1, the 

minimum value found in the training data is 2.104 and the maximum is 94.313. Then 

the value of Attribute-1 in the first instance at table 2 is converted to (18.457–2.1) / 

(94.313–2.104) = 0.17. So by applying normalization to all values of Attribute-1, 

meaningful results from Euclidean distance could be obtained [4]. 

Another problem related with measurement of distance between two points is the 

weighting of the contributions of the different attributes. Data analyst may decide to 

apply weighted voting, where closer neighbors have a larger measure in the 

Figure 8. Euclidean Distance 
[23]. 



!

! 31!

classification decision than do more far neighbors. Also such approach makes it 

much less likely for deuce (Figure 7 for condition k=2) to arise.  

In weighted voting, the effect of a particular record is inversely proportional to the 

distance between the instance and the new instance to be classified. To illustrate, in 

the figure 7 for k=3 there are three neighbors which is closest to the unseen instance 

X=(9.1,11.0). These are A=(9.2,11.6) of class label (−), B=(8.8,9.8) of class label (+) 

and C(10.8,9.6) of (+). Then the distances of instances A, B and C from the instance 

X are listed as: 

!(!,!) = (9.2− 9.1)! + (11.6− 11.0)! ≈ 0.61!
!(!,!) = (8.8− 9.1)! + (9.8− 11.0)! ≈ 1.23!
!(!,!) = (10.8− 9.1)! + (9.6− 11.0)! ≈ 2.20!
The votes of the listed instances are weighted with respect to the inverse square of 

their distances as follows: 

!"#$%(−) = 1
!(!,!)! =

1
(0.61)! ≈ 2.68!

!"#$%(+) != ! 1
!(!,!)! !+ !

1
!(!,!)! !=

1
(1.23)! +

1
(2.20)! ≈ 0.20+ 0.66 = 0.86!

Therefore, by preferring total of 2.68 instead of 0.86, the procedure would choose (−) 

as the classification for the new instance X. However, for the unweighted k=3 case, 

since all instances are treated as having equal votes, the classification of X will be 

(+). Reason for that we have one vote for (−) from A and two votes for (+) from B 

and C.  

If the distance happens to be zero, the inverse would be undefined. In this case, the 

k-NN should choose the majority classification of all instances whose distances is 

zero from the new instance [23]. 

A high-level summary of the k-NN algorithm is presented as follows: 

 

algorithm k-NearestNeighbor (D: training set , k: integer); 

begin 

for  each test instance ! = (!′,!′)!do 

        Compute !(!′, !), the distance between z and every instance, (!,!) ∈ !. 
        Select !! ⊆ !, the set of k closest training instances to z. 



!

! 32!

        !′ = !"#$!%!!! !! !(! = !!)(!!,!!)∈!!  

endfor 

end [26]. 

Before the running of k-NN algorithm, the number of records (the value of k), which 

have a voice in classifying, is decided. Then the algorithm computes the distance 

between, say ! = (!′,!′) where !′ is its unknown class label, and all the training 

instances (!,!) ∈ !, where y is the class label of x, in order to determine its nearest-

neighbor list !! . Such computation could be costly if the number of training 

instances is large. However, efficient indexing techniques are available to reduce the 

amount of computations needed to find the nearest neighbors of a test instance.  

Once the nearest-neighbor list is obtained, the test instance is classified based on the 

majority class of its nearest neighbors: 

!

"!!"#$%&'(!!"#$%&:!!′ = !"#$!%!!! !! !(! = !!)
(!!,!!)∈!!

!"[26,!!. 225]!

where !! is the class label of one of the nearest neighbors, v is the a class label and 

I(.)  is an indicator function which returns the value 1 in the case of true argument  

and returns 0 for false case. In addition, argmax is the set of points of the given 

argument for which the given function attains its maximum value. 

To illustrate, suppose k=3 and D is the training set in the figure 7. Then !! consists 

of three instances with their class label: A((9.2,11.6),−), B((8.8,9.8),+) and 

C((10.8,9.6),+) since the shortest Euclidean distances between !((9.1,11.0),!′) and 

every element in D are A, B and C where !(!,!) = 0.61 , !(!,!)=1.23 and 

!(!,!) = 2.20 respectively.  

!"#!! = (+), !(! = !!)
(!!,!!)∈!!

= 0+ 1+ 1 = 2!!!

!"#!! = (−), !(! = !!)
(!!,!!)∈!!

= 1+ 0+ 0 = 1!

!"!2 > 1!⟹ !!′ = !"#$!%!!!!(!) = {+}!!which says that the class label of the new 

instance z is assigned as (+). 

If one considers using weighted voting to reduce the impact of k, then the following 

formula could be used to vote for the instance z: 

 



!

! 33!

!"#$%&'( −!"#$ℎ!"#!!"#$%&:!!

!′ = !"#$!%!!! !! !! !×!!(! = !!)!!!!!!!!!!!ℎ!"!!!! = 1/!(!′, !!)
(!!,!!)∈!!

!

!"#!! = (+), !! !×!!(! = !!)
(!!,!!)∈!!

!!

= 1
(0.61)! !×!!0+

1
(1.23)! !×!!1+

1
(2.20)! !×!1 = 0.86!

!"#!! = (−), !! !×!!(! = !!)
(!!,!!)∈!!

!

= 1
(0.61)! !×!!1+

1
(1.23)! !×!!0+

1
(2.20)! !×!0 = 2.68!

!"!2.68 > !0.86!⟹ !!′ = !"#$!%!!!!(!) = {−}! that means the class label of the 

new instance z is assigned as (−) [26]. 

!

1.4.2.2. Advantages and Disadvantages of the k-NN algorithm 

There are several advantages of the k-NN as a classification tool could be 

summarized as follows: 

1. The k-NN are simple to use since it classifies the new instance x in a way that 

the instance is assigned by the label that is represented most frequently 

among the K nearest instances through an algorithm that consists of few 

steps. 

2. The k-NN is robust to noisy training data, especially if the inverse square of 

weighted distance is used as the “distance” measure. 

3. It is effective if the training data is large. 

 

Among the disadvantages of the Nearest Neighbor algorithms are: 

1. Computation cost of the k-NN is quite high since it needs to calculate 

distance between each queried instance and all training instances. 

2. For the implementation of the k-NN, large memory is needed in proportion 

with the size of training set since the database retaining the instances on 

which distance calculation is applied should be loaded up to memory. 

3.  It is hard to determine which attributes are better to use producing the best 

results. Shall the data analyst use all attributes or certain attributes? [27]. 



!

! 34!

4. There is a demand for determining the value of k, the amount of nearest 

neighbors. If one chooses a small value of k, then it is a possibility that the 

classification may be affected by noise such as unusual observations or 

outliers. If the parameter k is small, then the k-NN algorithm will easily 

return the target value of the nearest observation. This process may cause the 

algorithm to memorize the training data set for the sake of generality. On the 

contrary, if the value of k is chosen too large, locally interesting behavior will 

be ignored. The data analyst should balance these considerations when decide 

on the value of k [23]. 

5. The k-NN algorithm is an instance based classifier means it relies on using 

directly the instances from the training set as concept models. So the absence 

of an associated compact explicit model limits their readability [42]. 

 

1.4.3. The Non-Nested Generalized Exemplars (NNGE) Algorithm: 

The k-NN algorithm’s some disadvantages’ such as limited readability enforces the 

creation of the new hybrid algorithms based on the concept of generalized exemplars 

that are sets of instances, which can be interpreted as rules and which allow 

decreasing the model size and to increase the robustness to noise of instance based 

classifiers. The basic idea behind this hybrid variants is combining the idea of 

distance based classification with the one that of best matching comprehensible rule. 

One of the important contributions to this type of hybrid instance based learning is 

the Nested Generalized Exemplar (NGE) theory, which is proposed by Salzberg in 

1991. It uses both generalized exemplars and simple instances represented as 

hyperrectangles that parallel to axes in order to model the concepts. In the NGE, the 

training instances are generalized in an incremental manner and this leads finally to a 

set of generalized exemplars and possibly a set of non-generalized exemplars 

(hyperrectangles constitute of a single training instance). In the initial versions of 

NGE the generalized exemplars can overlap and be nested (matching rules with 

exceptions). However, the overlapping and/or nesting could decrease the 

classification performance of classifiers based on generalized exemplars in further 

investigations. This would lead to the evolution of NGE algorithm to the Non-nested 

Generalized Exemplars (NNGE) algorithm that is proposed by Martin in 1995 [43]. 



!

! 35!

He evaluated three motivations for using generalized exemplars in NNGE: better 

classification performance, the ability to more easily induce rules and faster speed of 

classification. Generalized exemplars improve the performance of nearest neighbor 

algorithm by improving the representation of large disjuncts. Exclusive generalized 

exemplars produce a useful set of rules that may be compared with those produced 

by other rule methods. Generalizing exemplars reduces classification time without 

sacrificing accuracy since less exemplar needs to be examined [38]. The NNGE 

algorithm is presented as follows: 

 

algorithm NNGE (D: training set); 

begin 

   for each instance !! in the training set D do 

      find the hyperrectangle !!, which is closest to !!           /*Classification Step*/ 

      if  !(!! ,!!) = 0!then 

                if !"#$$(!!) ≠ !"#$$(!!) then !"#$%(!! ,!!)       /*Adjustment Step*/ 

                endif          

      else !′≔ !"#$%&(!! ,!!)                                              /*Generalization Step*/ 

                if !′ overlaps with conflicting hyperrectangles then add !!as a non    

                 generalized exemplar 
                else  !! ≔ !! 

                endif 

      endif 

  endfor 

end [42]. 

 

For illustration of the NNGE algorithm’ learning process, suppose a set of L training 

instances (!!,!!,…… ,!!), such that each !! contains the values of N attributes 

(!!,!!,…… ,!!). The aim of this process is construction of a set ! of generalized 

examplers; i.e. hyperrectangles, ! = {!!,!!,…… ,!!}. A hyperrectangle generally 

includes a set of instances referring to the same class and a range of values specifies 

each of its dimensions.  In the particular case when a hyperrectangle covers just one 

instance it is considered to be a non-generalized exemplar. During the process, if a 



!

! 36!

hyperrectangle corresponding to a given class that covers a training instance 

belonging to different class, then this instance is regarded as a conflicting instance. 

The NNGE Algorithm is incremental, for each instance !!, the following three main 

steps being applied: 

I. Classification: The closest hyperrectangle !! to !! is determined by using a 

criterion that uses distance-based approach. 

II. Adjustment: If the !! covers a conflicting instance, then it is split. 

III. Generalization: If the generalized variant does not cover/overlap a conflicting 

instance/hyperrectangle, the !! is extended in order to cover !! [43]. 

 

I. Classification Step 

The classification step is based on the computation of the distance !(!,!) between 

an instance ! = (!!,!!,…… ,!!)  that consist of n attribute values and a 

hyperrectangle H  as given as follows: 

"!!(!,!) = (!! !
!(!! ,!!)

!!!"# − !!!"#
)!

!

!!!
…… .!!!"(1)!"![42,!!. 22]!

In Eq(1), !!!"#  and !!!"# define the range of values over the training set which 

correspond to attribute i . !! is the interval [!!!"#,!!!"#]. The distance between the 

attributes values and the corresponding hyperrectangle “side” is computed depending 

on the attribute type as described in Eq(2). 

"!!(!! ,!!) =
!!!!!!!!!!!!!!!0,!!!!!!!!!!!!!!!"# !≤ !! ≤ !!!"#
!!!!" − !! , !!!!!!!!!!!!!!!!!! < !!!"#
!! − !!!"# ,!!!!!!!!!!!!!!!!! > !!!"#

…… .!"(2) !"![42,!!. 22]!

The parameters !! represents weights corresponding to attributes and are calculated 

based on the mutual information between the class and the attribute [42]. 

!

II. Adjustment Step 

The adjustment step is applied when an already constructed hyperrectangle covers an 

instance belonging to a different class. In order to avert from the nested 

hyperrectangles generation, the algorithm adjusts the current hyperrectangle in a way 



!

! 37!

that the conflicting instance is excluded. This is carried out by splitting the 

hyperrectangle into a few hyperrectangles and potentially some isolated ones. 

The splitting process excludes the conflicting instance by changing one of the 

dimensions of the hyperrectangle. The choice of the dimension to be changed and the 

changing approach transforms the initial hyperrectangle in a few hyperrectangles and 

several non-generalized exemplars. Importantly, the number of hyperrectangles 

(especially non-generalized ones) should be limited as much as possible when 

choosing the splitting attribute criteria. In order to describe these criteria let H is the 

hyperrectangle to be split, !∗ is the conflicting instance, T(H) is the set of training 

instances covered by H, A is a subset of {1,2,3,…..n} and A denotes the set of 

analyzed attributes, !∗ denotes the selected splitting attribute. The selection criterion 

in Eq(3) constitute of picking up the attribute in a way that the distance between 

corresponding value of the conflicting attribute and the margin of the covering 

hyperrectangle is the closest. 

!∗ = !"#$%&! !!!∈!
! ,!!!!!!! = !"#{!!∗ − !!!"#,!!!"# − !!∗}!!!!!!"(3).!

In the case of a tie, the attribute that leads to the largest amount of training instances 

included in one of the splitting hyperrectangles is picked up (leading to an 

unbalanced split). This selection criterion is determined by analyzing the size of free 

space between the resulting hyperrectangles since it is expressed by the sum between 

!!! and !!!defined as follows: 

!!! = !"#{!!∗ − !!! !; !!"!!(!),!!! < !!∗!}, !!!!!! = !"#{!!! !−!!!∗!; !!"!!(!),!!! > !!∗!}!
The choice of the attribute !∗  is made in a way that !!∗! + !!∗!  is minimal. After 

application of the criteria, the initial hyperrectangle (Fig 9a) is divided into at least 

two hyperrectangles. One of this is for the instances that have value of the splitting 

attribute strictly higher than the value of the conflicting instance (!! in Figs. 9b, 9c) 

and the other one contains instances corresponding to strictly smaller values (!! in 

Figs 9b, 9c).  
The instances that have the same value of splitting attribute as the conflicting 

instance will either join !! or !!, will make a different hyperrectangle or will remain 

as non-generalized exemplars (as is illustrated in Figs 9b, 9c). When the attributes 

are mixed, the problem of choosing the winning attributes appears. 

 



!

! 38!

Figure 9. Illustration of splitting criterion (a) Initially all instances (filled circles) 
belong the same hyperrectangle(H)/class. The instance of a different class is 
represented as a black square (b) Effect of splitting by the second attribute. (c) Effect 
of splitting by the first attribute [42].  

!

!

!

!

!

!

!

!

The solution is choosing a hyperrectangle, that includes the attribute leading to the 

highest number of instances [42]. 

 

III. Generalization Step 

The generalization step of the NNGE algorithm consists of changing the “border” of 

the closest hyperrectangle having the same class as the training instance in order to 

cover it. The extension is accepted only if overlapping not occurred between the new 

hyperrectangle and hyperrectangles having a different class. If there is an overlap the 

training instance is added to the classification model as a non-generalized exemplar 

[42]. 

 

1.5. Association 

Many of the pattern finding algorithms such as classification rule induction has been 

created in the machine learning research community. Frequent pattern and 

association rule mining, which is developed initially for market basket analysis is 

one of the few exceptions to this tradition. In the market basket analysis, the goal is 

to discover the common customer purchase behavior items in a store. Association 

rule mining includes many features of classification rule induction. Both approach 

utilize rules to characterize regularities within a set of data. However, these two rule 

mining paradigms differ substantially in intent. Because the aim of association rule 

mining is to discover and classify unexpected interrelations between data elements, 

whereas classification rule induction focuses on predicting the value of categorical 

attribute having particular importance. These substantial differences reflect on 

methods and techniques within two paradigms. Classification rule induction typically 



!

! 39!

searches heuristically in order to find small amount of rules, which jointly cover the 

majority of the training data. In contrast, Association rule mining utilizes complete 

search to find large amount of rules without regard to cover all training data. Since 

the main focus is finding small rule sets, classification rule induction generally make 

decisions among alternative rules with similar performance. On the contrary, 

association rule mining systems outputs all rules satisfying user specified constraints 

that allows the data analyst to identify which specific rules have the greatest value 

[41]. 

The association rules could be expressed as IF…THEN statements, which have a 

conjunction of, attributes with theirs assigned values on both sides. 

If we have a well log dataset, one of the extracted rules could be as follows: 
IF Gamma_Ray=High AND Neutron_Log=Low, THEN 

Lithology=Sandstone AND Gas_Existence=Gas. 

The attributes of Gamma Ray and Neutron Log are associated with the ones of 

Lithology and Gas Existence. All attribute types don’t have to be of categorical type 

as in the example rule. Continuous attributes could be used after global application of 

discretization before the rule extraction operation. 

The process of extraction of such rules from a given dataset is called association rule 

mining (ARM). The term generalized rule induction is also used with ARM. For a 

given dataset, generally a confidence value is associated with each rule since there 

are likely to be a few exact association rules. The confidence value is defined as the 

proportion of instances matched by its left and right hand sides combined as a 

proportion of the number of instances matched by the left-hand side on its own. 

ARM algorithms are required to be able to generate rules having confidence values 

less than one. However, the amount of possible association rules for a dataset is 

usually very large and many rules are usually of little value. For example, for a 

financial dataset, the rules would include the following  
IF is_Mortgage_Taken=yes AND Status_of_Bank_Account 

=In_credit THEN Status_of_Job=Unemployed. 

The stated rule’s confidence will certainly be very and has no any practical value. 

Therefore there should a measure to distinguish the valuable rules from others. In 

order to achieve this, rule interestingness measures should be used.  



!

! 40!

For explanation of such measures suppose a rule is written in the form of If LEFT 

then RIGHT. The following four numerical values are, which can be determined for 

any rule simply by counting: 

“!!"#$:  Number of instances matching LEFT 

!!"#$%: Number of instances matching RIGHT 

!!"#$:  Number of instances matching LEFT and RIGHT 

!!"!#$: Total number of instances.” [4, pp. 189] 

The concepts at above could be depicted as a Venn diagram in the Figure 10. The 

outer box can be conceived as containing all !!"!#$ instances under  

!

!
!!!!!!!!!!!!!

!

!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

consideration. The left and right hand circles includes the !!"#$ instances that match 

LEFT and the !!"#$% instances that match RIGHT, respectively. The dashed area 

where the circles intersect contains the !!"#$ instances that match LEFT and 

RIGHT. 

“The outer box can be conceived as containing all !!"!#$  instances under 

consideration. The left- and right-hand circles contain the !!"#$ instances that match 

LEFT and the !!"#$% instances that match RIGHT, respectively. The dashed area 

where the circles intersect contains the !!"#$ instances that match LEFT and 

RIGHT” [4, pp. 189]. 

After the introduction of the numerical values, three commonly used measures in 

ARM could be stated as follows: 

• !"#$%&'#(' = !!"#$
!!"#$

    The proportion of right-hand sides predicted by the 

rule which are predicted right. Therefore, confidence determines prediction 

potential of the rule. If the confidence of the rule is too low, then it cannot be 

Figure 10. Venn diagram of values used in rule 
interestingness measures [4]. 



!

! 41!

reliably inferred or predicted RIGHT from LEFT. A rule with low 

predictability has limited use. 

• !"##$%& = !!"#$
!!"!#$

  The proportion of the training set correctly predicted by 

the rule. Support is a handy tool since if it is too low, the rule may just occur 

due to chance. In addition, a rule that covers too few cases may not be useful, 

as it doesn’t make sense to act on such a rule if the context area is business. 

• !"#$%&'&(&)) = !!"#$
!!"#$%

  The proportion of the matching right hand sides 

that are correctly predicted by the rule. 

To illustrate, consider the well log dataset rule given earlier: 
IF Gamma_Ray=High AND Neutron_Log=Low, THEN 

Lithology=Sandstone AND Gas_Existence=Gas. 

!

Assume that by counting the following values are obtained: 

!!"#$ = 66, !!"#$% = 53, !!"#$ = 50 and !!"!#$ = 100 

 

Then 

!"#$%&'#(' = !!"#$
!!"#$

= 50
66 = 0.75 

!"##$%& = !!"#$
!!"!#$

= 50
100 = 0.5 

!"#$%&'&(&)) = !!"#$
!!"#$%

= 50
53 = 0.98 

The confidence of the rule is 75% and it is not high but it correctly predicts 98% of 

the instances matching right hand side of the rule and the true predictions apply to as 

much as 50% of the dataset. So the rule can be considered as valuable [4].  

“The problem of mining association rules could be stated as follows: Assume 

! = {!!, !!,… . , !!} be a set of items. Let ! = (!!, !!,… . , !!) be a set of transactions, 

where each transaction !! is a set of items such that !! ⊆ !. An association rule is an 

implication of the form, 

! → !,!ℎ!"!!! ⊂ !,! ⊂ !!!"#!!!⋂!! = ∅.!
X (or Y) is a set of instances, called an itemset” [24, pp.17-18]. 



!

! 42!

A transaction !! ∈ ! is said to contain an itemset X if X is a subset of !!. The support 

count of X in T is the number of transactions in T that contain X. Then the support 

and confidence could be stated again as follows under the new assumptions: 

Let n be the number of transactions in T. Then the support of the rule ! → ! is 

computed as follows: 

!"##$%& = (! ∪ !). !"#$%
! !!!!!!!!!!!!!"#$%&'#!' = (! ∪ !). !"#$%

!. !"#$% !

!

For a transaction set T, the problem of mining association rules could be defined as 

discovering all association rules in T that have confidence and support greater than or 

equal to minimum confidence (minconf) and the user-specified minimum support 

(minsup). Having the same objective, a large number of ARM algorithms are created 

in the literature that has different efficiencies. However the resulting rule sets are all 

alike according to the definition of association rules. In other words, for a given 

transaction T, minsup, minconf and the set of association rules are uniquely 

determined. Therefore any algorithm should output the same set of rules although 

their memory requirements and computational cost may be different [24]. In order to 

achieve the stated objective, a common strategy adopted by many ARM algorithms 

is to decompose the problem into two major subtasks: Frequent Itemset Generation 

and Rule Generation. 

 

1.5.1. Frequent Itemset Generation 

The objective of Frequent Itemset Generation is to discover all the itemset satisfying 

the minsup threshold. These itemsets are called frequent itemsets. The following 

example explains the itemset generation. Suppose the itemset ! = {!, !, !,!, !}. Then 

a lattice structure shown in Figure 11 can be used to enumerate the list of all possible 

itemsets. 

For finding frequent itemsets, a brute-force approach is used for determination of the 

support count for every candidate itemset in the lattice structure. In order to achieve 

this, the support of candidate itemsets is counted for comparison of each candidate 

against every transaction. If the transaction includes the candidate, its support will be 

incremented. Such an approach could have large cost in terms of computation. 

!



!

! 43!

!

!

!

!

!

!

!

!

!

!

!

!

!

In order to reduce the computational complexity of frequent itemset generation, some 

of the candidate itemsets are eliminated without counting their support values. This 

is achieved by application of the Downward Closure principal to the itemset lattice. 

The principle states, “if an itemset is frequent, then all of its non-empty subsets must 

also be frequent” [26, pp. 334]. In other words, if an itemset has minsup, then every 

non-empty subsets of this itemset also has minsup. For example, considering the 

itemset in the Figure 11, assume that a frequent itemset is {!,!, !}. Clearly, any 

transaction containing the itemset {!,!, !}!have to be contain its subsets; namely 

{!}, {!}, {!}, {!,!}, {!, !}, {!, !}. Therefore, if {!,!, !} is frequent, then all subsets 

of it (i.e., itemset that resides in the shaded region in the Figure 12) must also be 

frequent. 

Conversely, if an itemset is infrequent, all of its supersets have to be infrequent too. 

So the entire subgraph containing the supersets of infrequent itemset can be pruned. 

This strategy is called support-based pruning that trims the exponential search space 

based on the support measure. Such a strategy achieves success based on a key 

property of the support measure. It states the support of an itemset never exceeds the 

support of its subsets. This property is known as anti-monotone property. Any 

measure having this property can be incorporated directly into the ARM algorithm to 

Figure 11. An itemset lattice [26]. 



!

! 44!

effectively prune the exponential search space of candidate items so that the cost of 

computation is reduced. 

 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

The computational complexity of frequent itemset generation also could be avoided 

by reducing the numbers of comparisons by using more advanced data structures 

such as either to store the candidate itemsets or to compress the dataset instead of 

matching each candidate itemset against every transaction [26]. 

!

1.5.2. Rule Generation 

The objective of Rule Generation is to generate association rules satisfying the 

confidence conditions from the discovered frequent itemsets. An association rule can 

be extracted by partitioning each frequent itemset Y into two non-empty subsets, X 

and ! − !, such that ! → !! − ! satisfies the confidence threshold. In particular, the 

support threshold had already met by all such rules since they are generated from a 

frequent itemset. For instance, consider the frequent itemset ! = {!,!, !} in Figure 

11.  There are six candidate association rules that can be generated from X: 

{!} → {!,!}, {!} → {!, !}, {!, !} → {!}, {!,!} → {!} , {!, !} → {!} , {!} → {!, !}  

Figure 12. An illustration of Downward Closure Principle [26]. 



!

! 45!

As each of their support is identical to the support of Y, the rules must satisfy the 

support threshold. Here computation of the confidence of an association rule does 

not require additional scans of the dataset. The reason could be explained by the 

following example. Consider the rule {!,!} → {!} , that is generated from the 

frequent itemset Y. Then confidence for the rule is {!,!, !}. !"#$%! !{!,!}. !"#$%. 
The anti-monotone property ensures that {!,!} must be frequent since {!,!, !} is 

frequent. Since during the frequent itemset generation the support counts for both 

itemsets were already found, so there is no need to read the entire dataset again. 

Confidence measure also could be used to prune the association rules if the 

comparison of the generated rules from the same frequent itemset Y since the 

confidence does not have any monotone property. The pruning operation is carried 

upon the theorem which states that if a rule ! → !! − !  doesn’t satisfy the 

confidence threshold, then any rule !′ → !! − !′, such that !′ is a subset of X, must 

not satisfy the confidence as well [26]. 

 

Handling Continuous Variables in ARM algorithms: 

Association rules including continuous attributes are known as quantitative 

association rules. The most common approach for handling continuous attributes is 

discretization. The approach groups the adjacent values of a continuous attribute into 

a finite number of intervals. To illustrate, consider a neutron log (NPHI) log as a 

continuous attribute in a well log. NPHI takes generally values between -0.15 and 

0.45. So NPHI attribute could be divided into the following intervals: 

!"#$!!![−0.15,−0.10),!"#$!!![−0.10,−0.05),………… . .!"#$!!![0.40, 0.45]!! 
where [x,y) representation of an interval that includes x but not y. Discretization can 

be performed using the techniques equal interval width and equal frequency.  The 

frequency technique divides the range into N intervals in which each containing 

approximately same number of samples. The discrete intervals are then mapped into 

asymmetric binary attributes (outcomes not equally important) so that existing ARM 

algorithms can be applied. 

A key parameter in attribute discretization is the number of intervals used to partition 

each attribute. This parameter is typically provided by the data analysts and can be 

expressed in terms of interval width for the equal interval width approach and the 



!

! 46!

average number of transactions per interval for the equal frequency approach [26]. 

However, discretization could be end in a dilemma. If intervals are too small, some 

rules will not be found because of lack of support. If intervals are too large, certain 

rules may not be found due lack of confidence. So one of the solutions to this 

problem is to use the concept of partial-completeness, which is based on measures of 

confidence among rules with small intervals and their larger extended intervals in 

order to determine the number of partitions needed and then to apply the equal-

frequency partitioning method [7].  

 

1.5.3. Apriori Algorithm 

The best-known ARM algorithm in the literature is the Apriori algorithm that was 

proposed by Rakesh Agrawal and Ramakrishnan Srikant in 1994. The algorithm 

works in two steps: Generating all frequent itemsets and generating all confident 

association rules from the frequent itemsets.  

 

1.5.3.1. Frequent Itemset  & Rule Generation in Apriori Algorithm 

Frequent Itemset Generation in Apriori Algorithm relies on the downward closure 

principal. This principal with the minsup threshold provides the algorithm to prune a 

large number of itemsets that cannot be frequent. The frequent itemset generation of 

the Apriori algorithm is presented as follows: 

“Let the number of items in an itemset is called as size, and an itemset of size k as a 

k-itemset. 

algorithm Apriori (T: itemset); 

begin 

  !! ← init-pass(T)                                            // the first pass over T 

  !! ← ! {!|!!"!!!, !. !"#$%/! ≥ !"#$%&}      // n is the number of transactions in T 

  for (! = 2; !!!!! ≠ ∅; !!++) do              // subsequent passes over T 

         !! ← candidate-gen(!!!!) 

         for each transaction !!!!! do                  // scan the data once 

                for each transaction !!!!!! do 

            if c is contained in t  then 

              c.count++ 



!

! 47!

          endif 

   endfor 

         endfor 

         !! ← ! {!!!!!!! , !. !"#$%/! ≥ !"#$%&} 
   endfor 

  return  F!!← !!!   

end “ [24, pp. 22] 

The algorithm for frequent itemset generation is based on level-wise search. It lists 

all frequent itemsets by iteration of multiple passes over the data. In the first pass, it 

counts the support of individual items and then determines whether each of them is 

frequent or not. After the creation of !! which is the set of frequent 1-itemsets, there 

are three steps for each subsequent pass k: 

1. The algorithm starts with the seed set of itemsets !!!!!found to be frequent in 

the (k-1)th pass. Then this seed set used for generation of candidate itemsets 

!!, which have a potential to be frequent itemsets. This is done using the 

candidate-gen() function.  

2. The transaction database is scanned and the actual support of each candidate 

itemset c in !! is counted. At this point, there is no necessity to load the 

whole data into memory before processing. Instead, at any time, only one 

transaction resides in memory. This makes the algorithm scalable to datasets 

that are so big thus not loadable into memory. 

3. At the end of the pass, the algorithm makes its decision on which of the 

candidate itemsets are actually frequent [24]. 

  

The final outcome of the Apriori algorithm is the set F of all frequent itemsets.  

The candidate generation function consists of two steps: the join and pruning step 

and presented as follows: 

 

“Function candidate-gen(!!!!) 
Begin 

!! ← ∅                                                        // initialize the set of candidates 

foreach !!, !!!!!!!                                     // find all pairs of frequent itemsets 



!

! 48!

            with !! = {!!,… , !!!!, !!!!}           // that differ only in the last item 

            and !!! = {!!,… , !!!!, !!!!! }!,      
            and  !!!! < !!!!!  do                       // according to the total order  

                    ! ← {!!,… , !!!!, !!!!! }           // join the two itemsets !! and !! 

                    !! ← !! ∪ !{!}                      // add the new itemset c to the candidates 

       for each (k-1)-subset s of c do 

                if (! ∉ !!!!) then 

                                delete c from !!        // delete c from the candidates 

  endif 

       endfor 

endforeach 

return !!                                                    // return the generated candidates 

End “ [24, pp. 23]. 

In join step, two frequent (k-1)-itemsets are joined in order to produce a possible 

candidate c. Two frequent itemsets !! and !! have exactly the same items except the 

last item. At the end of step, c is added to the set of candidates’ !! . 
In pruning step, there is a possibility that a join step candidate c may not be a final 

candidate. So this step decides on whether all the k-1 subsets of c are in !!!!. If any 

of them is not in !!!!, c cannot be frequent according to the downward closure 

property and is thus deleted from !! [24]. 

The Rule Generation process in Apriori Algorithm consists of two steps: 

1. First, all subsets of !! !is generated. 

2. Then, let !!! represent a nonempty subset of !!. Consider the association rule 

R: !!! → (!! − !!!) where (!! − !!!) indicates the set !! !and !!!. The rule 

R is generated and outputted if R fulfills the minimum confidence 

requirement. This process is done for every subset !!! of !! [26]. 

 

1.5.3.2. Advantages and Disadvantages of Apriori Algorithm 

There are several key advantages of the Apriori Algorithm as an association tool and 

could be stated as follows: 



!

! 49!

1. The Apriori Algorithm has easy implementation procedure since basically it 

consists of two-phase processes, which are find all frequent itemsets having 

minimum support and generate strong rules. 

2. The algorithm could be easily parallelized which means it could be adapted to 

distributed and multithreaded algorithms for counting occurrences of frequent 

itemsets within a database for reducing the computational cost [21]. 

 

Some disadvantages exist for usage of Apriori Algorithm. 

1. The Apriori algorithm does generation and testing of candidate item sets 

iteratively. This process may scan database multiple times so computational 

cost rises [33]. 

2. The algorithm often generates too many itemsets that makes review process 

difficult for domain experts. In addition, many itemsets do not provide 

sufficient information for further investigation. One way to overcome this 

problem is itemset reduction. 

3. There could be situations that itemsets that can be part of another itemset 

could be generated. To illustrate, if an itemset is generated, its subsets are 

also generated as frequent itemsets. But there is a possibility that domain 

expert need only the larger itemset as it resides more information [15]. 

4. There is a trade-off exists between confidence and support. High confidence 

rules may support few records. Whereas rules with large support may have 

low confidence. Therefore data analyst has to configure minsup and minconf 

according to the desired goal, which could be resulted in daunting task [30]. 

 

1.5.4. Predictive Apriori Algorithm 

During decision of which rules to return, ARM algorithms should consider 

confidence and support. There could be some rules having high confidence but 

support of few records. On the contrary, some rules have large support but low 

confidence. The Apriori algorithm outcomes all rules satisfying confidence and 

support thresholds. However, the interestingness of these rules has to be evaluated 

and provide the user with a reasonable amount of interesting rules. Specialty of rules 

for the data analyst depends on the problem, the goal and hopes the rules to be 



!

! 50!

helpful for. The data analysts will be concerned discovering items possesses 

connections to the underlying reality. Items that truly correlate will most likely 

correlate in future data. At this point, the amount of observation plays crucial role. If 

a rule has large support, then the observed confidence gets closer to the expected 

confidence. This is one reason why association rules having small support are 

considered less interesting. Therefore, there is a trade-off between support and 

confidence in which the chance of correct predictions on unseen data maximizes.  

Tobias Scheffer proposed a fast algorithm (2001) named Predictive Apriori (PA) 

algorithm that finds the n best association rules with respect to the utility criterion 

that has an aim of maximizing the expected predictive accuracy. The PA is differs 

from the Apriori algorithm since it doesn’t have fixed confidence and support 

threshold. Instead, its main aim is to find the n most predictive association rules [30]. 

The PA algorithm is stated as follows: 

algorithm PredictiveApriori(! = {!!,!!,… .!!}; n: desired number of association 

rules); 

“ Begin 

     Let ! = 1 

     for (! = 1; !!! ≤ !!!; !!++) do 

        Draw a number of association rules ( ! → !!) with ! items random. 

        Measure their confidence (provided !. !"#$% > 0!). 
        Let !!(!) be the distribution of confidences. 

     endfor 

     foreach c, do  
!!(!) !

! (!!!!)
!
!!!

!
! (!!!!)!

!!!
 (let this proportion be !(!)!)  

     endforeach 

     Let !! = {∅}; let !! = {{!!},… , {!!}} be all itemsets with one single element. 

         for (! = 1; !!! ≤ !!!; !!++) do while (! = 1!!"!!!!! ≠ ∅) 

               if  i > 1 then 

                   Determine the set of candidate itemsets of length i as  

                   !! = {!! ∪ !!!|!!, !′!!!!!!!, |!! ∪ !′| = !}. (Generation of !! can be  

                   optimized by considering only itemsets x and !′!!!!!!! that differ only  

                   in the element with highest item index).  



!

! 51!

                   Eliminate double occurences of itemsets in !!.  
               endif 

               Run a database pass and determine the support of the generated  

               itemsets.     

               Eliminate itemsets with support less than ! from !!.       

         foreach !!!!!!!!, Call RuleGen(x) endforeach 

         if best has been changed, then 

               Increase ! to be the smallest number such that  

!(!|1, !) > !(!(!"#$[!])|!(!"#$[!]), !(!"#$[!])) 
         endif      

         if ! > database size, then Exitloop endif 

         If ! has been increased, then 

             Eliminate all itemsets from !!, which have support below !. 

         endif 

     endfor 

     Return !"#$[1], !"#$[2],… . , !"#$[!], the list of the n best association rules. 

End “ [30, pp. 6]. 

 

As a first step the PA algorithm estimates the prior !(!). Then frequent itemsets are 

generated, the hypothesis space is pruned by dynamic adjusting the minsup 

threshold, association rules are generated and redundant association rules are 

removed. 

The estimation of !(!) depends on the length of rules since there are many more 

long rules than there are short ones. If the rules had drawn at random, short rules 

couldn’t been get and the estimation of !(!) for short rules would be insufficient. In 

order to prevention of such problem, the algorithm run a loop over the length of the 

rule and given that length, a fixed number of rules had drawn. The items and the split 

that splits the rule into body (the left hand side of the rule) and head (the right hand 

side of the rule) by drawing at random are determined. As a result of previous 

procedure, many rules had drawn equally for each size although the uniform 

distribution requires preferring long rules. If the database consists of k items, then 

there are !
!  item sets of size i.  Given i items, there are 2! − 1 distinct association 



!

! 52!

rules (each item can be located on the left or right hand side of the rule but the right 

hand side of the rule must be nonempty). Hence the stated equation at below 

calculates the probability that exactly i items occur in a rule, which is drawn at 

random under, uniform distribution from the space of all association rules over k 

items. 

!(!!!"#$%) =
!
! (2! − 1)!

!
! (2! − 1)!

!!!
!

The proportion !(!)!estimates the prior over all association rules in a way that 

accounts for the number of rules with a specific length that exist by weighting each 

prior for rule length i by the probability of a rule length of i. 

Similar to the Apriori algorithm, the PA algorithm creates frequent itemsets, but it 

uses a dynamically increasing minsup threshold !. It should be noticed that the size 

starts with zero (only the empty itemset is contained in !!). !! includes all itemsets 

with one element. Given !!!!, the PA calculates !! just like the same way of Apriori. 

!! could be generated by only joining those elements of !!!! which differ exactly in 

the last (the highest item index) element since an itemset can only be frequent when 

all its subsets are frequent. In detail, the subsets that result from removing the last, or 

the last but one element must be in !!!! since all subsets of an element of !! must be 

in !!!!. After a database pass and measuing of the support of each element of !!, all 

the candidates that failed to reach the required support of ! could be removed. Then 

the RuleGen procedure could be invoked to generate all rules over body x, for each 

! ∈ !!! .  The RuleGen procedure alters our array best[1…n] which saves the best 

rules found so far [30]. 

In the equation “ !(!(!"#$[!])|!(!"#$[!]), !(!"#$[!]))"![30,pp. 4]!,  best[n] 

symbolizes the n.th best rule found so far. Here suppose !"#$[!] is represented as 

! ⇒y. Then the equation could be states as  

"!(!([! ⇒ !])|![! ⇒ !]), !(!))

= !"[!, !(!)](!([! ⇒ !]))!(!)!"
![!, !(!)](!([! ⇒ !]))!(!)!" ,!". (∗)"![30,!!. 4]!

Here for a given accuracy c, the confidence !  is governed by the binomial 

distribution which could be written as ![!, !](!). The Eq.(∗)! quantifies the expected 

confidence of the n.th best rule with confidence ! whose body x has support s(x). 



!

! 53!

Shortly, it quantifies the degree of correction of the confidence of a rule under the 

given support of that rule. Notice here that the Eq.(∗) depends on prior !(!) which is 

the histogram of accuracies of all association rules over the given items for the given 

database. 

The inequality "!!(!|1, !) > !(!(!"#$[!])|!(!"#$[!]), !(!"#![!]))"![30,!!. 6] 
used in the algorithm is to decide on the least support that the body of a rule with 

perfect confidence have to be possess to exceed the predictive accuracy of the 

currently n.th best rule. If that required support exceeds the size of database, then the 

algorithm exits as such rule is nonexistent. Then all itemsets are deleted which lie 

below that new τ. The discussion of rule generation part of the PA algorithm is 

skipped for the sake of simplicity. 

In summary, the PA algorithm returns the n rules which maximizes the expected 

predictive accuracy. The data analyst has only to specify how many rules he or she 

wants to be presented. Obviously, the algorithm has more natural parameter than 

minsup and minconf that are required by the Apriori algorithm [30]. 

 

1.6. Data Mining Tools 

In order to apply DM&KD algorithms, a data-mining tool should be used. There is a 

lot of commercial and open source software available today for carrying data mining 

tasks. Since commercial applications for data mining are very expensive and as such 

inaccessible to many institutions and researchers, open-source programs that allow 

high quality statistical analysis and data mining is used in academic world. In 

addition to the low cost, their quick development cycle is another key advantage over 

commercial programs. A common example is R (R Development Core Team, 2011), 

consisting of more than fifty thousand procedures for analysis and visualization 

purposes. Many statistical software vendors are failed to follow development cycle 

of R, so that they have added option of calling R to their products such as SPSS. 

The common open source data mining software’s used today could be listed as 

follows: 

1) R is a software environment for statistical computing and data visualization. The 

development of R (the first letter of its initial authors: Robert Gentleman and Ross 

Ihaka) was started by a group of statisticians at the University of Auckland in 1995. 



!

! 54!

And its popularity continues to expand ever since. Researchers working in applied 

statistics have adopted R for analysis and software development in an extent that R is 

now de facto standard among statisticians for statistics software development. There 

are a lot of area of use such as bioinformatics, medical health applications and 

econometrics. The worldwide success of R is due to its superb data visualization and 

extensibility. With over two thousand packages, the functionality of R extends 

enormously. However, managing procedures of package contents is difficult for even 

advanced users. In addition, command-line orientation of R presents a significant 

problem. Graphical user interfaces such as Rattle were developed to overcome this 

difficulty but most of them except Rattle have immature and low usability menu-

driven functionality. 

2) ORANGE is open-source data mining and visualization software. Through its 

visual programming interface, data analysis process can be designed. ORANGE 

presents variety of visualizations options such as bar charts, scatter plots, trees, and 

networks. Most major algorithms for data mining are represented. Orange gives an 

option of usage of Python as scripting language for repetitive tasks. 

3) TANAGRA is open-source software combining techniques of data mining with 

statistical learning. TANAGRA first starts with the SIPINA project that is developed 

especially visual and interactive construction of decision trees along with 

implementation of various supervised learning algorithms. Then TANAGRA 

becomes powerful with integration of factorial analysis, clustering, association rule, 

feature selection and parametric and nonparametric statistics etc [20]. 

4) WEKA (The Waikato Environment for Knowledge Analysis) is a machine 

learning toolkit developed at the University of Waikato in Hamilton, New Zealand. 

The software provides many machine-learning, statistics and other data mining 

solutions for various types of data mining task, such as classification, cluster 

detection, association rule discovery and attribute selection. The software is also 

equipped with data pre-processing and post-processing tools and visualization tools 

so that complete data mining projects can be conducted via a number of different 

styles of user interface. The toolkit is written in Java programming language so that 

it can run on various platforms, such as Linux, Windows and Macintosh [7].  



!

! 55!

WEKA is no doubt the most successful open source data mining software. It inspires 

many data mining software’s that has better visualization methods such as KNIME 

(Konstanz Information Miner) and RapidMiner [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! 56!

 

 

 

CHAPTER 2 

NATURAL GAS EXPLORATION CONCEPTS AND FIELD INFORMATION 

 

In this chapter, definitions and descriptions related with natural gas exploration is 

explained. The formation of natural gas deposits along with their internal structure’s 

key concepts such as porosity and permeability is discussed. Well Logs of Gamma, 

Neutron, Sonic and Density are analyzed in detail. At the end, data source of 

Degirmenkoy Natural Gas Field, which resides in Thrace Basin, is analyzed along 

with its formations including sandstone zones of Osmancik Formation. 

 

2.1. Natural Gas 

Natural gas is a type of fossil fuel that is gaseous and found in natural gas and oil 

fields and coal beds. It is a vital component of the world’s energy supply since 

Natural Gas is one of the safest, cleanest and useful sources of energy. 

Natural gas is the result of decay of plant and animal remains, which is called 

organic debris. The formation of natural gas has occurred over millions of years. 

Overtime, the soil and mud covering the organic debris transformed to rock and 

trapped the debris beneath the  

!

!

!

!

!

!

!

!

!
Figure 13. An anticlinal reservoir containing oil and associated natural gas [32]. 

!



!

! 57!

Figure 14. An anticlinal reservoir containing natural gas [32]. 

freshly formed rock sediments. Heat and pressure force some organic material 

change into oil (petroleum) or natural gas or coal. 

Natural gas, say gas shortly, is usually found underneath the surface of the earth. 

Once formed, gas migrates through the underground sediments through fissures and 

faults until the gas enters a geological formation (reservoir) that retains or traps it. 

Reservoirs generally comprise a geological formation that is made of layers of 

porous, sedimentary rock, such as sandstone, in which the gas can collect. However 

for retention of the gas each trap must have an impermeable base and cap rock to 

prevent further movement. Such formations vary in size and can retain varying 

amount of gas [32]. 

Natural gas reservoirs exist in many forms such as the dome (syncline-anticline) 

structure (Figure 13) with water below or a dome of gas with a crude oil rim and 

water below the oil. Many of these type of reservoirs contain oil, gas and water 

together that are segregated according to density, with gas (lowest density) being on 

top, then oil (median density), then water (highest density) on the bottom. However, 

other parameters such as solubility and rock obstruct complete gravitational 

separation, and each layer may be a mixture of typically gas, oil and water with each 

being more predominant in its own particular level. 

The dome shape of rock forms in several ways. To illustrate, faults are generally 

typical location for existence of natural gas and oil deposits. A fault is occurred!

!

!

!

!

!

!

!

!

!

!

!



!

! 58!

due to the splits in the normal sedimentary rock layers, which are formed by 

deposition of sediments. If the normal sedimentary layers split vertically, 

impermeable rock shifts down and this causes natural gas trap in more permeable 

rock layers such as sandstone or limestone. Principally, the geological formation 

layers impermeable rock over more porous, natural gas and oil rich sediment has the 

potential to form a reservoir as shown in Figure 14 [32].  

Sandstones make up 20-25 percent of all sedimentary rocks. They are common rocks 

in geologic systems of all ages, and they are distributed throughout the continents of 

Earth. Sandstones consist mainly of silicate grains ranging in size from 1/16 to 2 

mm. These particles make up the framework fraction of the sandstones. Sandstones 

may also contain various amounts of cement and very fine size (<-0.03mm) material 

called matrix, which are present within interstitial pore space among the framework 

grains. Because of their coarse size (relative to the sizes of particles in shale’s), the 

framework mineralogy of sandstones can generally be determined with reasonable 

accuracy with specific tools [29]. 

There are variety of theories about the origins of natural gas and petroleum. The 

most generally accepted theory is that gas is formed during the compression of 

organic matter under the earth, at very high pressure for a quite long time. Millions 

of years ago, plant and animal remains decayed and accumulated and built up thick 

layers. Over time, as sediment, mud with other debris piled on top of organic matter, 

metamorphosis occurred and the sediment, mud and other debris were  

!

!

!

!

!

!

!

 

 

 

Figure 15. An example of structural traps. Simple anticlinal trap [3]. 



!

! 59!

changed to rock, causing pressure to be put on the organic matter. The increasing 

pressure compressed the organic matter and combined with other subterranean 

effects, decomposed the individual constituents into gas and petroleum. The deep-

lying source rock that contains precursors is often referred to as the kitchen. In 

theory, the deeper and hotter the kitchen, the more likelihood of gas being produced. 

Gas and petroleum have migrated from the kitchen, sideways and upwards, until they 

are trapped in reservoirs in the subsurface formations as shown in 3D in Figure 15. 

Thus, a field may have a series of layers of crude oil/gas and gas reservoirs over a 

thousand meters subsurface [32]. 

 
2.2. Porosity and Permeability: 

In the existence of petroleum source, structure and tight cap rock, rocks having 

sufficiently high porosity and permeability may serve as a reservoir rock. Sediments 

which are the main composition element of sedimentary rocks like sandstones, 

consists of solid grains and of fluids which for the most part are water but may be oil 

and gas. 

“Porosity (!) is an expression of the percentage (or fraction) of fluids by volume 

(!!) compared to the total rock volume with fluids (!!) so that ! = !! !!” [3, 

pp.18]. Porosity is often expressed as a percentage, but for the sake of easiness, it is 

expressed as a fraction. To illustrate, 0.2 is used instead of 20% porosity. 

“The void ratio (VR) is the ratio between pore volume (!) and the volume of the 

grains (1− !). So !" = ! (1− !) “[3, pp.18]. 

Assume that the density of the mineral grains are known, then the porosity can be 

computed by measuring the density of a known volume of the sediment. The density 

of the sediments (!!) is the sum of the density of the grains, which are mostly 

minerals (!!), and the density of the fluids (!!) and could be stated as follows: 

!! = !.!! + !!. (1− !) 
Rounded well sorted sand grains have almost spherical shape and sandstones that 

include these grains have porosities, which lie typically between 40% and 42%. 

Poorly sorted sand may have lower primary porosity and this will also compact more 

at moderate burial depths. 



!

! 60!

“Permeability (K) is an expression of the ease, which fluids flow through rock. It will 

depend on the size of the pore spaces in the rocks, and in particular the connections 

between the pore spaces” [3, pp. 18]. 

Permeability of a rock can be measured by applying pressure in order to let a gas or 

flow through a cylindrical rock sample. Suppose the pressure difference !! − !! 

between bottom and top ends of a horizontal cylinder is ∆!, the cylinder length L, A 

is the cross section and the flow rate of fluid through cylinder is Q(cm3/s) and ! the 

viscosity of the fluid. 

!"!! = !.!.∆!
!. ! !"[3,!!. 19] 

where K is the permeability and it is expressed in Darcy. 

If sandstone has a well-sorted structure, then its permeability may exceed 1 Darcy. 

Moreover, in case of permeability values lying between one hundred and one 

thousand milli Darcy, these sandstones are considered to be remarkably good. The 

range of 10-100 mD is also accepted as good for reservoir rocks.  

Nearly fifty percent of all reservoirs in the world made up of sandstones. Therefore it 

is necessary to analyze the physical properties of these rocks. 

The most important aspects of reservoir rocks include: 

1. “The external geometry such as the thickness and extent of the reservoir rock 

in all directions”. 

2. “The average porosity, pore size and pore geometry”. 

3. “The distribution of permeability in the reservoirs, particularly high 

permeability conduits and low permeability barriers to fluid flow”. 

4. “Mineralogy and wettability of the pore network “ [3, pp. 19]. 

 

2.3. Well Logs 

In order to record physical properties of the rocks penetrated by a well, logging is 

utilized. It started with simple electric logs that measure electrical conductivity of 

rocks. Today this simplicity is taken place with more technically advanced and 

sophisticated method.   

After the drilling tool is pulled up from the well,  a probe is send with measuring 

instruments in order to start logging of wellbore. The instruments take measurement 



!

! 61!

digitally at intervals of form three to fifteen centimeters. And then the accumulated 

data is processed near the well on land or on the platform in case of offshore wells. 

Apart from radioactivity logs, many type of have to be in direct contact with the rock 

via the walls of the well. Before each stage of steel casing is installed in the well, the 

logging instruments have to be run after successive intervals of the drilling. 

Qualitative and quantitative utilization is common practice for Well Logs. For 

qualitative purposes, identification of sedimentary facies, which has recognizably 

different sediments from adjacent sediment, and the characteristic reactions of 

different types of rocks are used for correlation and etc. For quantitative purposes, 

well logs is used for determination of porosity and, if relevant, the oil and water 

saturation of the rock. Shortly, it can be said that well logs forms important basis for 

evaluation of properties of reservoir rocks and their fluid content for production 

purposes [3]. The following are the some of the most important types of log: 

 

2.3.1. Gamma Logs 

It is important to measure the natural radioactivity produced in the rock since 

sedimentary rocks emits radioactivity relative to its structure. Gamma Ray (GR) 

Logs utilized for measuring this radioactivity.  

The elements causing the emission of gamma radiation significantly in ordinary 

sedimentary rocks are uranium, potassium and thorium. Shale rock type normally 

contains most of these elements so that gamma radiation of shales is always higher 

than that of sandstones. Although the potassium content of clay minerals varies in a 

great extent and potassium is contained in sandstones, GR log will give readings 

based on functions of the sand/shale ratio. One of the benefits of GR log is utilization 

of it to recognize content of sandstones because if they include high content of mica 

and feldspar, then gamma intensity will be proportionately greater than the 

sandstones containing purer, quartzose. 

The measurement unit of Gamma radiation is API ranging from 1 to 200 and the 

scale can be calibrated using standard radiation intensity that has base unit 

micrograms of radium per tonne [3]. 

 

 



!

! 62!

Figure 16. Simplified GR and NPHI log 
response to different lithologies [3].  

2.3.2. Neutron Logs 

In the neutron logging (NPHI) technique, basically a probe emitting neutrons at high 

velocity is used. The neutron rays then absorbed by rock and specially the water in 

the rock since the neutrons are absorbed according to the hydrogen atom 

concentrations and the absorption is a function of this concentration. So at specified 

distance from the source of neutron, the reduction in neutron radiation could be 

measured. Since most of the hydrogen in rocks is in the form of water, neutron logs 

reveals the water content in some manner and thereby the porosity of sediment.  

Neutron logs could be used to detect gas and distinguish it from oil. The reason for 

that natural gas has lower density and fewer hydrogen atoms per unit volume than oil 

and water has. Rocks having low water content so having low porosity will absorb 

less of the radiation correspondingly. Therefore they show a strong response on the 

neutron log. On the other hand, porous sandstones produce little response. When the 

pores are filled with gas and oil, calculation of porosity based on neutron logs 

(neutron porosity) results in very low porosity values as gas and oil contain less 

hydrogen per unit volume compared to water.!This phenomenon is called the gas!!

effect. Sandstone and shales that have 

high clay content cause neutron logs  

to record higher porosity since  

hydrogen is also present as a solid  

phase in the clay minerals. This is  

called shale effect.   

Organic matter such as coal has a high 

hydrogen index.  Sandstones’ and  

limestones’ hydrogen index  could  

be converted into neutron porosity 

units.  

 

Therefore it can be said that neutron logs are the best logging tool for the 

determination of the porosities of reservoir rocks. Neutron porosity may be presented 

as NPHI, PHIN, or !! [3]. 



!

! 63!

In the Figure 16, simplified GR and NPHI log response to different lithologies are 

shown. Specifically for complete sandstone zone, as the gas saturation increases, the 

GR decreases and NPHI increase. However as the water saturation increases in 

sandstone, the NPHI decreases suddenly but nearly no change in GR value. In the 

Sandstone with oil zone, there is a slight increase in NPHI, and low amplitude wave 

behavior is observed for GR. 

 

2.3.3. Sonic Logs 

The usage of acoustic in logging associated with sonic logging. In this method, 

acoustic pulses is sent by a probe and sound waves travel through the rock 

surrounding the well to the other end of the logging tool. Then the velocity of the 

waves in the rock is recorded. “The velocity is usually presented as the time ∆! a 

signal takes to travel a certain distance, which is the inverse of the velocity 

(slowness)” [3, pp.364]. This is known as “interval transit time” and also symbolized 

as DT. It has a scale of 40-140 !"/!" where !" = 10!!!. For instance, 100 !"/!" 
corresponds to 3048 m/s. The sonic transit velocity (v) is the reciprocal of the 

interval transit time (t). The measured velocity will be more or less inversely 

proportional to the porosity of rocks since the velocity of sound waves in water in 

pore is considerably lower than the one in minerals. The velocity is also dependent 

on the nature of the cementing minerals and the pore distribution. 

The Wylli’s equation explains the relationship between porosity and velocity of 

sound: 
1
!!
= 1− !

!!
+ !
!!

 

such that !! is the measured velocity recorded on the log, !! is the velocity in the 

rock at zero porosity and !! the velocity in pore fluid such as gas, oil or water and ! 

is the porosity.  Using the interval transit time formula (! = 1 !), the above equation 

could be stated as follows: !! = (1− !). !! + !. !! and by taking the porosity (!) 
out of the equation we get  ! = (!! − !!) (!! − !!). 
From this equation, the porosity (!) can be computed using the log velocity (!!) if 
the reliable values for interval transit time for the rock matrix !! and the interval 

time !! of the pore fluid are existed. However, the velocity measured by logging is 



!

! 64!

not a direct function of the porosity. Especially in sandstones, little amounts of 

cement may produce a grain framework with high stiffness and velocity in spite of 

relatively high porosity. So additional log methods such as, shear-wave velocities are 

also often recorded for the correct interpretation of rock properties and fluid 

saturation [3]. 

 

2.3.4. Density Logs 

In Density Log method, the density of the rocks and fluids in the pores is measured 

by measuring the electro density of a rock. In this technique, a detector measures the 

attenuation of gamma rays due to collision with electrons. These gamma rays are 

emitted from cesium or cobalt on the formation. Density logs yield significant 

information for identification of different lithology’s as a function of their densities 

because the measured electron density is firmly related to the rock density expressed 

in !/!"!. 

Suppose that the density of the minerals (!!), the bulk rock density (!!) that is also 

symbolized as RHOB and the fluid density (!!) are known, the porosity can be 

calculated: 

!"#"$%&'(!) = !! − !!
!! − !!

 

The bulk density of a rock also depends on density of gas upon the calculation of 

porosity if the zone is natural gas reserve and the fluids in pore. Moreover, the oil & 

gas or water & gas contact could be discovered if there is a change observed in bulk 

density in a homogeneous part of the reservoir rock [3]. 

 

2.4. Thrace Basin  

“In the crust of the Earth depressions formed due to plate tectonic activity and 

subsidence. If sediments are accumulated in these depressions, such structures are 

called sedimentary basin, shortly basin. If rich hydrocarbon source rocks occur in 

combination with appropriate depth and duration of burial, then a petroleum system 

can develop within the basin” [12].  

!



!

! 65!

!

!

!

!

!

!

!

!

!

There are seven onshore basins in Turkey. The onshore ones are called Anatolia 

Basin, Thrace Basin, Adana Basin, Tuz Golu Basin and East Anatolia Basin. The 

Thrace basin as shown in Figure 17 that is situated in the northwestern corner of 

Turkey is currently the most productive gas field in the country. Basin exploration 

started in early 1960s and continues ever since.  Plentiful studies in the fields of 

petroleum geology and sedimentology led to discovery of many gas fields such as 

Kuzey Marmara, Degirmenkoy, Karacali, Hamitabat and Karacaoglan, Hayranbolu 

and Tekirdag fields which are of sizes varying between 3 and 50 million m3. 

 
Table 4. Some of Thrace Basin formations and their lithology (Modified from [16,31]) 

Formation Lithology Petroleum System 
Elements 

Danismen Shale, siltstone, sandstone, limestone,lignite. Gas 
Osmancik Sandstone, siltstone, shale. Gas and Oil 
Mezardere Shale, siltstone, sandstone, tuffite. Oil 
Sogucak Limestone, Sandstone. Gas and Oil 

Hamitabat Sandstone, shale, conglomerate. --- 
 

The Thrace basin includes three formations, which contains reservoir rocks and 

reservoir. These formations are named as Danismen, Osmancik, Mezardere and 

Sogucak. In addition, the basin includes Hamitabat formation that is considered as 

source rock for natural gas and oil [16].  Table 4 shows the formations’ lithology. 

Figure 17. Tectonic settings of the Thrace Basin [18]. 



!

! 66!

!

!

!

!

!

!

!

!

!

!

!

!

!

2.5. Degirmenkoy Gas Field 

The Degirmenkoy gas field is located within the same drainage area to the north of 

the Kuzey Marmara Field as shown in Figure 18. Gas production in this field occurs 

from three different reservoirs, namely from the Sogucak, Osmancik and Danismen 

formations. In the Figure 19, the geology of Degirmenkoy field and some production 

wells are shown [16]. 

!

!

!

!

!

!

!

The Sogucak Formation has thickness of 40-400m consisting of sandstone and 

limestone. The reservoir rock porosity varies between 10% and 30%. The 

permeability is 1 to 80 mD. 

Figure 18. Map of the gas and gas condansate fields in the Thrace 
Basin. Shaded area show the extension of the Basin [16]. 

Figure 19. Schematic cross section showing geology of Degirmenkoy gas field [16]. 



!

! 67!

The Osmancik Formation has thickness of 400-800m and its lithology is mainly 

consists of sandstone, shale. The reservoir rock has a porosity of 10-25% and 

permeability of 0,1-10 mD. 

The Danismen Formation has thickness of 300 to 1000m and has a porosity of 10-

23% and permeability of 0,2-10 mD [31]. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



!

! 68!

!

!

 

CHAPTER 3 

APPLICATION OF DM&KD PROCESS, ASSESSMENT AND IMPLICATIONS 

 

In this chapter, the application process to the Well Log database is analyzed step by 

step along with assessment procedure. At the end, output of the process is presented 

in tables and the results of these tables are compared using charts. Moreover, some 

significant implications of these results are examined in detail. 

 

3.1. Problem Definition 

Main goal of this research is to identify the DM&KD algorithm among a set of 

algorithms that extracts the highest number of common useful validated rules 

targeted to find gaseous and nongaseous zones in sandstones of Osmancik Formation 

in the Degirmenkoy gas field. The set of algorithms consists of three algorithms 

namely, PART, PredictiveApriori (PA) and The Non-Nested Generalized Exemplars 

(NNGE) algorithm. In order to validate rules, well log reports were used. Here it is 

important to find the common rules if any exist among the well logs database. 

 

3.2. Collecting Data 

The data used to feed the three DM&KD algorithms was generated from well logs 

that were collected from five producing gas wells from Degirmenkoy field. Domain 

expert created the well logs using log data and proprietary software such as Techlog. 

 

3.3. Data Pre-Processing 

Raw data provided by domain expert consists of five excel sheets. Each raw excel 

sheets consist of sixteen well log attributes namely; DEPTH, GR, DT, NPHI, RHOB, 

MSFL, LLS, LLD, SP, CAL, PIGE, PIHT, SUWI, VCL, LITHOLOGY, MAYI 

(Petroleum System Elements). There is an exception related with the raw excel sheet 

of Well-4 since it doesn’t include DT attribute. To align with the main goal, 

attributes related with porosity namely, GR, DT, NPHI, RHOB, LITHOLOGY and 



!

! 69!

MAYI are selected. The detailed information about these attributes relative to the 

wells is listed as follows: 

 
Table 5. Number of attributes and instances count in the well log database. 

Total Number of  Well 1 Well 2 Well 3 Well 4 Well 5 
Attributes count 15 161                            16 16 17 17 
Instances count 6489 2058 10340 6513 901 

 

1) Gamma Ray (GR) is a numerical interval scaled attribute.  

 
Table 6. Number of Distinct, Missing and Unique GR Attribute in the well log 
database. 

GR Well 1 Well 2 Well 3 Well 4 Well 5 
Distinct 3096 2017 10238 6513 899 
Missing 3388 (52%) 38 (2%) 60 (1%) 0 0 
Unique 3091 (48%) 2014 (98%) 10221 (99%) 6319 (97%) 897(100%) 

 

Table 7. Max. Min. Values, Mean and StdDev of GR Attribute in the well log database 

GR Well 1 Well 2 Well 3 Well 4 Well 5 
Min. Value 55.257 43.682 0.001 28.871 49.16 
Max. Value 131.763 137.912 143.195 125.646 116.138 
Mean 88.528 105.548 74.86 70.749 81.788 
StdDev 21.67 13.138 16.56 13.971 13.735 

 

2) Interval Transit Time (DT) is a numerical interval-scaled attribute. 

 

Table 8. Number of Distinct, Missing and Unique DT Attribute in the well log database 

DT Well 1 Well 2 Well 3 Well 4 Well 5 
Distinct 3034 2022 10165 - 900 
Missing 3397 (52%) 35 (2%) 168 (2%) - 0 
Unique 2991 (46%) 2021 (98%) 10158 (98%) - 899(100%) 

 

Table 9. Max. Min. Values, Mean and StdDev of DT Attribute in the well log database 

DT Well 1 Well 2 Well 3 Well 4 Well 5 
Min. Value 76.483 63.263 19.349 - 61.1 
Max. Value 145.359 163.343 190.296 - 140.2 
Mean 110.75 108.676 118.008 - 97.191 
StdDev 21.162 12.728 23.037 - 13.393 

 

From Table 8 & 9, DT attribute absence in Well-4 should be noticed. 



!

! 70!

3) Neutron Log (NPHI) is a numerical ratio-scaled attribute. 

Table 10. Number of Distinct, Missing and Unique NPHI Attribute in the well  
log database 

 NPHI Well 1 Well 2 Well 3 Well 4 Well 5 
Distinct 474 317 594 466 272 
Missing 99 (2%) 383 (19%) 3964 (38%) 254 (4%) 0 
Unique 64 (1%) 67 (3%) 93 (1%) 69(1%) 96 (11%) 

 

Table 11. Max. Min. Values, Mean and StdDev of NPHI Attribute in the well log 
database 

  NPHI Well 1 Well 2 Well 3 Well 4 Well 5 
Min. Value -0.059 0.121 0.082 0.08 0.102 
Max. Value 0.693 0.579 0.805 0.614 0.459 
Mean 0.365 0.299 0.357 0.354 0.272 
StdDev 0.087 0.072 0.103 0.075 0.066 

 

4) Bulk Rock Density Log (RHOB) is a numerical interval-scaled attribute. 
Table 12. Number of Distinct, Missing and Unique RHOB Attribute in the well  
log database 

 RHOB Well 1 Well 2 Well 3 Well 4 Well 5 
Distinct 645 377 762 794 358 
Missing 35 (1%) 381 (19%) 3924 (38%) 254 (4%) 0 
Unique 122 (2%) 99 (5%) 214(2%) 217(3%) 125(14%) 

 

Table 13. Max. Min. Values, Mean and StdDev of RHOB Attribute in the well log 
database 

  RHOB Well 1 Well 2 Well 3 Well 4 Well 5 
Min. Value 1.389 1.594 1.54 1.451 1.799 
Max. Value 2.539 2.572 2.704 2.673 2.635 
Mean 2.246 2.392 2.345 2.301 2.356 
StdDev 0.133 0.108 0.147 0.171 0.114 

 

5) LITHOLOGY is a nominal attribute. 
Table 14. LITHOLOGY attribute type distribution in the well log database 

LITHOLOGY Well 1 Well 2 Well 3 Well 4 Well 5 
Sandstone 1023 532 733 1001 431 
Clay Stone 1446 0 0 670 0 
SiltStone 233 282 887 844 234 
Shale 635 848 2501 1447 236 
Coal 0 20 18 18 0 
None of the above 3152 376 6201 2533 0 

 

 



!

! 71!

Figure 20. Degirmenkoy Gas Field Well Log Database Schema 

6) Petroleum System Elements (MAYI) is a nominal attribute. 

Table 15. MAYI attribute type distribution in the well log database 

MAYI Well 1 Well 2 Well 3 Well 4 Well 5 
Gas  763 362 0 408 357 
Water  0 0 0 9 28 
Wet Gas 0 0 0 37 0 
None of the above 5726 1696 10340 6059 516 

 

In Table 15, it should be noticed that Well-3 has no gaseous instances and all other 

Wells has some gaseous zones. The common outliers in all fields except DEPTH of 

the raw excel sheets are the value -999.25. This value occurs if the measurement tool 

couldn’t take any measurement at that time and gives alert. So this outlier deleted if 

it existed in the sheets. There were some negative values of attributes GR, RHOB 

and DT other than the outlier value -999.25 in the raw excels sheets. These values 

were deleted after transformation of sheets to SQL database. NPHI attributes’ 

negative values was left!untouched since this field could get negative values ranging 

from -0.15 to 1.!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



!

! 72!

3.3.1. Well Log Database 

Microsoft SQL Server 2008 R2 (MS-SQL) (a relational database management 

system developed by Microsoft Inc.) was used to build well log database. The 

database consists of five tables where each has 15, 16 or 17 columns. Schema of the 

database is shown on Figure 20. The porosity logs GR, DT, NPHI and RHOB are 

highlighted as bold. It should be noticed that DegirmenkoyWell-4 has no DT column 

and all columns’ of each table value type is floating point variable except Lithology 

and MAYI whose type is variable character field of 50-character length. The process 

of importing excel sheets to database was consisted of several steps: 

1. The database tables created by entering columns’ names and type according to the 

columns’ name and type. At the end of operation, the tables’ columns name is 

exactly the same as column names in the excel sheets. In addition, the type of 

columns was aligned with the ones in the sheets. To illustrate a real number valued 

GR named column in the sheets is represented as float type GR named column in the 

database tables. This is important if a name or type mismatches, then data import will 

be failed. 

2. All rows in the excel sheet was first selected and then copied to temporary 

memory location by left clicking mouse and choose copy from the file operation 

menu. Then at the SQL Server Management Interface, the target database table was 

chosen and by paste operation, the table was populated with the desired data. This 

procedure was applied to the five well log tables in order to finish the database 

population operation. 

 

3.3.2. Connection to Well Log Database  

After importing the excel sheets to the well log database, a data mining tool should 

be used in order to apply the desired DM&KD Algorithms. In our research, we used 

Weka (version 3.6) as data-mining tool and it was installed on machine, which has 

3GB Ram, one CPU and Microsoft Windows 7 Professional operating system. In 

addition, the Degirmenkoy Well Log Database resides on MS-SQL Server that was 

installed on the same machine as Windows installed. 



!

! 73!

To mine Well Log Data, Weka needs to access the data. So database connection has 

to be created between Weka and MS-SQL Server. Following steps describes 

database connection creation procedure: 

1.  We need to add new Data Source Name (DSN) that provides connectivity to a 

database through an ODBC (Open Database Connectivity) driver. The DSN contains 

database name, directory, database driver, login ID, password and other information. 

Once a DSN is created for a particular database, we can use the DSN in an 

application to call information from database.  

To achieve adding new DSN in Windows, we follow the path: Control Panel ! 

Administrative Tools ! Data Sources (ODBC) !User DSN tab. Then we choose 

Add. From the opened menu, we select SQL Server as a driver and click Finish 

button. At the new opened menu (Figure 21), we enter data source Name, 

Description. And select the database server we are connecting to from the Server 

combo box.  

  

 

 

 

 

 

 

 

 

 

 

Then at the next menu (Figure 22), for the verification of the authenticity of the login 

ID, we choose With SQL Server, and then check Connect to SQL Server to obtain 

default settings. Then we enter Login ID and password of the database server. 

And then we click on Next button until it changes into Finish. And hit Finish to 

finalize the DSN creation. If the procedure is succeeded, then we should able to see 

our DSN (in our case it is DegirmenkoySQL) in the User Data Sources list.  

 

Figure 21. MS-SQL Server DSN Data Source 
Configuration Menu 



!

! 74!

 

 

 

 

 

 

 

 

 

 

 

 

2. We need to configure DatabaseUtils.props file in the Weka side in order to make 

it to know the details of the DSN. The file already exists under the path 

/weka/experiment in the weka.jar file which is part of the Weka download. So we 

find the file whose type is MS-SQLServer2005 in the weka.jar and copy it to the 

installation directory of Weka (in our case c:\programfiles\weka). This is important 

because the file needs to be recognized when Weka Explorer starts. After the copy 

operation, when we open the file, the following red lines should be existed: 

# JDBC driver (comma-separated list) 
jdbcDriver=com.microsoft.sqlserver.jdbc.SQLServerDriver 

The JDBC driver line above is for telling Weka that the DSN’s database driver is 

SQL Server Driver. We live as it is. If it is not exist, this line should be added. 

# database URL 
jdbcURL=jdbc:sqlserver://localhost;databaseName=blahblah 

The database URL line above should be changed as  

jdbcURL=jdbc:odbc:DSNNAME;user=LOGINID;password=****** 

The database URL line is used to tell Weka, database connection type, the DSN 

name and authentication information of the database server. Here in our case 

DSNNAME is DegirmenKoySQL and LOGINID is sa and ****** is the password of 

the database server.  

Figure 22. MS-SQL Server DSN Authentication 
Configuration Menu 



!

! 75!

At the end of this two-step operation, Weka can connect to the Well Log database so 

as to apply data mining algorithms. In the Figure 23, Weka connection method is 

shown according to our research environment. 

 

 

 

 

 

 

 

 

 

 

 

3.4. Application of the main DM&KD Algorithms 

In application step we use Weka Explorer to apply PART, PA and NNGE mining 

algorithms to Well Log Database. Figure 24 shows the root interface window of the 

Weka version 3.6. The software offers four application routes for accessing  

 
                                        Figure 24. Weka root interface window     

its tool set. We select The Explorer route that provides an interactive way of 

performing a data mining investigation. Through this route we could input data set 

and observe and understand its features via controls on the Preprocessing and 

Visualize tab pages. Moreover, a mining task can be performed by selecting a mining 

solution and setting the relevant parameters. The discovered patterns and the 

evaluation results are displayed and some patterns can be visualized [7]. 

Figure 23. Weka’s connection method to 
Well Log Database 



!

! 76!

In order to apply any data-mining algorithm, firstly we have to input Select Query 

and run it on Weka SQL-Viewer menu so as to load instances to Weka. To achieve 

this we opened SQL-Viewer menu of Weka by clicking Open DB button in 

Preprocess tab in Weka Explorer menu. 

The SQL-Viewer menu consists of four fields: URL, Query, Result and Info (Figure 

25). 

• The URL field is automatically filled with the info. at the database URL line 

in DatabaseUtils.props file if the line is configured successfully. 

• Query field is used to enter SQL query that will send to database. The select 

SQL query should be first created in MS-SQL Management Studio by Script 

Table as and SELECT to command on selected table. Then the created select 

SQL query should be copied and pasted onto the query field of Weka. Any 

changes should be made on query field after copy-paste operation if 

necessary. 

• Result field is used to show the SQL query result with limited number of 

rows. 

• Info field is for showing Weka command logs. 

In query field we entered following select statement targeted gaseous sandstone 

according to Wells’ instance amount and name.The red highlighted X was changed 

relative to Wells’ name and #### was changed relative to instance amount in Query 

1 & 2. To illustrate, for Degirmenkoy Well1, we have 6489 rows so that #### 

becomes 6489. And X is replaced with 1. 
 

SELECT TOP #### [DEPTH], [GR], [DT], [NPH], [RHOB], [MSFL], [LLS], [LLD], [SP], [CAL], [PIGE], 

[PIHT], [SUWI], [VCL], [LITHOLOGY], [MAYI] FROM [Degirmenkoy].[dbo].[WellX] WHERE 

([LITHOLOGY]='sandstone' AND [MAYI]='gas') OR ([LITHOLOGY]='') OR ([LITHOLOGY]='siltstone') 

OR ([LITHOLOGY]='shale') OR ([LITHOLOGY]='claystone') OR ([LITHOLOGY]='coal')   (Query!1)!
!

For nongaseous sandstone zones we used: 
SELECT TOP #### [DEPTH], [GR], [DT], [NPH], [RHOB], [MSFL], [LLS], [LLD], [SP], [CAL], [PIGE], 

[PIHT], [SUWI], [VCL], [LITHOLOGY], [MAYI] FROM [Degirmenkoy].[dbo].[WellX] WHERE 

([LITHOLOGY]='sandstone' AND [MAYI]='') OR ([LITHOLOGY]='') OR ([LITHOLOGY]='siltstone') OR 

([LITHOLOGY]='shale') OR ([LITHOLOGY]='claystone') OR ([LITHOLOGY]='coal')!!!!!(Query!2)!
!



!

! 77!

Notice here that blank [MAYI] (highlighted with green) attribute means no gas 

existed at that depth.  

After filling the query filled, we start data fetching operation by clicking Connect 

button. If ODBC connection is succeeded, we should see the line starting with 

‘connecting to:’ statement is equal to TRUE in Info field. Then we hit Execute button 

in order to run Select Query. If the operation is succeeded, we should see the first 

100 rows of result of the query in Result field and ‘numbers of rows displayed 

message’ in Info field. After clicking ‘OK’ button, Weka start to read data from Well 

Log database and we are returned to Weka Explorer menu again. 

We finish data preprocessing with the attribute selection operation. To do this we 

uncheck all attributes except GR, DT, NPHI, RHOB, LITHOLOGY. And click 

Remove button in preprocess tab as shown in Figure 26. 

 

 3.4.1. Application of NNGE Algorithm 

We started classification procedure with application of Non-nested Generalized 

Exemplars (NNGE). In order to extract rules related with gaseous sandstone 

Figure 25. SQL Viewer menu of Weka 



!

! 78!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zones, we followed listed steps below: 

1. We preprocessed data with the Query 1 to get gaseous Sandstone Rules. 

2. We opened Classify tab in Weka Explorer Menu and click Choose button. 

3. From Opening Menu, we chose NNge and leave target attribute as LITHOLOGY 

and Cross-Validation Folds as 10. 

4. We started operation by clicking Start button. 

The detailed output of NNGE algorithm targeted gaseous sandstone zones is given in 

Table 16. 

In Table 16, number of exemplars targeted to Gaseous Sandstones instances is given. 

Since exemplars are interpreted as rules in NNGE terminology, this column can be 

considered as number of Sandstone rules above the threshold. 

From the confusion matrixes obtained from Well-2 and Well-5, we got 346 correctly 

predicted and 16 incorrectly predicted instances of Sandstone zones for Well-2 that is 

95.58%. 

Figure 26. Data preprocessing operation in Weka. 



!

! 79!

Table 16. Detailed result of NNGE Algorithm targeted Gaseous Sandstone Zones 
applied to Well Log Database. 

 
Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Kappa 
Statistic 

Number of Exemplars 
with Gaseous 
Sandstones 

Time 
Taken 

(seconds) 

Total 
number of 

rules 
extracted 

Well-1 6229 
(100%) 

0 
 - 

170 
(68 HyperRec. + 102 

Singles) 
0.91 1144 

Well-2 1517 
(80.34%) 

371 
(19.66%) 0.7125 

29 
(22 HyperRec. + 7 

Singles) 
0.38 528 

Well-3 - - - - - - 

Well-4 5920 
(100%) 0 - 

53 
(28 HyperRec + 25 

Singles) 
1.99 2447 

Well-5 650 
(82.70%) 

136 
(17.30%) 0.7369 

58 
(40 HyperRec + 18 

Singles) 
0.03 148 

 

And 279 correctly predicted and 37 incorrectly predicted instances of Sandstone 

zones for Well-5 that is 88.30%. Both percentages are above the threshold 85% so 

that we assumed all resultant exemplars of gaseous sandstone zones are above 

threshold. However, from Table 16 we observed that Well-2 has 80.34% and Well-5 

has 82.70% correctly classified instances overall that is below the threshold but this 

result includes all lithology zones of sandstone, clay, shale, silt stone and coal. Here 

it should be noticed that we favor not to take into account non-generalized 

exemplars, which is named as singles in Table 16 when we started to find common 

rules. The reason of that is non-generalized exemplars are the hyperrectangles 

consisting of a single training instance and the obtained rules have attributes having 

specific values not a range of values. For example from Well-5 one of the extracted 

rules is: 
IF GR=79.29401 AND DT=101.0845 AND NPHI=0.264 AND RHOB=2.359, 

THEN LITHOLOGY=SANDSTONE AND MAYI=GAS (1) 

As previously described the same four-step operation is applied with Query 2 in 

order to obtain rules related with nongaseous sandstone zone. However we couldn’t 

succeed in passing the threshold with default configuration consisting of parameter 

Cross-Validation Folds as 10, numAttemptsOfGeneOption (sets the number of 

attempts of generalization) as 5 and numFoldersMIOption (sets number of folder for 

computing the mutual information) as 5. Thus we tried different combinations of 



!

! 80!

these options. Alteration of numAttemptsOfGeneOption parameter has no effect on 

overall accuracy rate of classification model and the number of correctly predicted 

sandstone instances in confusion matrix but Cross-validation folds and 

numFoldersMIOption parameter has.  

 

Table 17. Detailed result of NNGE Algorithm targeted Nongaseous Sandstone Zones 
applied to Well Log Database. 

 Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Kappa 
Statistics 

Number of 
Exemplars with 

Nongaseous 
Sandstones 

Time 
Taken 

(seconds) 

Total 
Number of 

Rules 
Extracted 

Cross-Validation 
Folds & 

numFoldersMIOpt
ion configuration 

Well-1 4792 
(83.68%) 

934 
(16.32%) 0.7465 

41 
(31 HyperRec 
+ 10 Singles) 

2.72 565 10  & 50 

Well-2 1318 
(77.71%) 

378 
(22.29%) 0.6528 

50 
(27 HyperRec 
+ 23 Singles) 

2.45 418 5 & 600 

Well-3 10340 
(100%) 0 - 

129 
(85 HyperRec 
+ 44 Singles) 

2.25 2013 10  & 5 

Well-4 6059 
(100%) 0 - 

186 
(99 HyperRec 
+ 87 Singles) 

6.59 2526 10 & 600 

Well-5 480 
(82.05%) 

105 
(17.95%) 0.7182 

34 
(20 HyperRec 
+ 14 Singles) 

0.83 112 14 & 600 

 

In NNGE algorithm, the input parameter numFoldersMIOption is used for 

calculating weights that are computed based on the mutual information between the 

attribute and the class label. Then the weights are used to calculate the distance 

between an instance and a hyperrectangle. 

In Table 17, the detailed result of NNGE Algorithm that aims to find nongaseous 

sandstone zones is shown. Several combinations of Cross-Validation folds and 

numFoldersMIOption parameter were tried and the best of overall correctly 

classified instances was chosen.  

From the confusion matrixes obtained from Well-1, Well-2 and Well-5, we got 239 

correctly predicted and 21 incorrectly predicted instances of sandstone zones for 

Well-1 that is 91.92%. And 108 correctly predicted and 62 incorrectly predicted 

instances of sandstone zones for Well-2 that is 63.52%. And 82 correctly predicted 

and 33 incorrectly predicted instances of sandstone zones for Well-5 that is 71.30%. 

The percentage for Well-1 is above the threshold but Well-2 and Well-5 are failed to 



!

! 81!

Figure!27.!Text!outcome!of!!J.48!applied!!to!
Degirmenkoy!Well>1!in!Weka.!

pass. Therefore we assumed all resultant exemplars of nongaseous sandstone zones 

of Well-1 are above threshold and should be considered during the discovery of the 

common nongaseous sandstone rules like Well-3 & Well-4. However, we do not take 

into account Well-2 and Well-5 for the mentioned procedure. In addition, we favored 

not to take into account non-generalized exemplars for Well-1, which is named as 

singles in Table 17. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

3.4.2. Application of PART Algorithm 

We continued the classification procedure with decision trees but the outcome was a 

complex decision tree with a lot of branches and levels that is hard to understand. In 

addition it was difficult to extract rules from the resultant tree. In the Figure 27, the 

text outcome of J.48 algorithm, which is an open source implementation of the C4.5 

algorithm, is shown. As can be easily seen, rule extraction is cumbersome procedure 

so we visualized the tree as shown in Figure 28. But again we confronted a huge and 

complex structure. Thus we decided to apply another decision tree algorithm namely 

PART that extracts classification rules in a more comprehensible way. 

!



!

! 82!

Figure 29. Choosing PART algorithm in Weka. 

!

!

!

!

!

!

!

!

!

!

!

 

To apply PART algorithm, we followed listed steps below: 

1. We preprocessed data with the Query 1 to get gaseous Sandstone Rules. 

2. We opened Classify tab in Weka Explorer Menu and click Choose button. 

3. From Opening Menu, we chose PART and left target attribute as 

LITHOLOGY, Cross-Validation Folds and Confidence Factor as 0.25 as 10 

as shown in Figure 29. 

4. We started operation by clicking Start button. 

 

!

 

 

 

 

 

 

 

 

 

 

Figure 28. Visual outcome of J.48 applied to Degirmenkoy Well-1 in 
Weka. 



!

! 83!

The same four-step operation is applied with Query 2 so as to extract rules related 

with nongaseous sandstone zone. The detailed Weka output of PART!algorithm!that!

is targeted to extract gaseous sandstone zones is listed in Table 18 and the ones that 

is targeted nongaseous sandstone zones is listed in Table 19. We assume rule 

accuracy threshold is %85. Any rule below this threshold is eliminated. 

Table 18. Detailed result of PART Algorithm targeted Gaseous Sandstone Zones 

applied to Well Log Database 

!
Correctly!
Classified!
Instances!

Incorrectly!
Classified!
Instances!

Kappa!
Statistics!

Number!of!
Gaseous!

Sandstone!Rules!
above!threshold!

Time!Taken!
(seconds)!

Total!
number!
of!rules!
extracted!

WellP1! 4687!
(75.25%)!

1542!
(24.75%)! 0.6164! 9! 0.7! 92!

WellP2! 1296!
(68.64%)!

592!
(31.36%)! 0.5294! 6! 0.09! 37!

WellP3! P! P! P! P! P! P!

WellP4! 3744!
(63.24%)!

2176!
(36.76%)! 0.4752! 5! 1.03! 151!

WellP5! 622!
(79.14%)!

164!
(20.86%)! 0.6821! 5! 0.02! 15!

!

Table 19. Detailed result of PART Algorithm targeted Nongaseous Sandstone Zones 
applied to Well Log Database 

!
Correctly!
Classified!
Instances!

Incorrectly!
Classified!
Instances!

Kappa!
Statistics!

Number!of!
Nongaseous!

Sandstone!Rules!
above!threshold!

Time!Taken!
(seconds)!

Total!
number!
of!rules!
extracted!

WellP1! 4474!
(78.13%)!

1252!
(21.87%)! 0.6332! 7! 0.5! 64!

WellP2! 1060!
(62.5%)!

636!
(37.5%)! 0.397! 3! 0.14! 48!

WellP3! 8828!
(85.38%)!

1512!
(14.62%)! 0.7445! 12! 1.09! 124!

WellP4! 3591!
(59.27%)!

2468!
(40.73%)! 0.4335! 6! 1.42! 193!

WellP5! 459!
(78.46%)!

126!
(21.54)! 0.6604! 2! 0.02! 12!

!

Although overall accuracy rate of classification model (correctly classified instances) 

is generally below 85% threshold in Table 18 and 19, we have some rules having 

accuracy above the threshold. To illustrate, one of the gaseous sandstone rule of 

Well-1 that was outputted by Weka is:  
IF GR<=85.96 AND -0.035<NPHI<=0.21 AND RHOB<=2.335 AND 

80.139<DT<=108.369, THEN LITHOLOGY=SANDSTONE AND MAYI=GAS 

(35.13/4.13) 



!

! 84!

Here the interpretation of numbers in parenthesis is total weight of training instances 

covered by the rule is divided by total weight of training instances misclassified by 

the rule). So accuracy of the rule is !".!"
!".!"!!.!" = 0.894!(89%) which is greater than 

85% threshold. Thus in Table 18 and 19, the columns names that is including 

“Number of Gaseous Rules” and “Number of Nongaseous Rules” specifies number 

of rules that has accuracy above the threshold. 

One of the other measures listed in both tables is Kappa statistic. It can be defined as 

measuring degree of agreement between two sets of categorized data. Kappa result 

varies between 0 to 1 intervals. Higher the value of Kappa means stronger the 

agreement/bonding. If Kappa=1, then there is perfect agreement. If Kappa=0, then 

there is no agreement. If values of Kappa statistics are varying in the range of 0.4 to 

0.59 considered as moderate, 0.6 to 0.79 considered as substantial and above 0.8 

considered as outstanding [22]. In data mining area, kappa statistics includes 

measures of class accuracy within an overall measurement of classifier accuracy. 

And this makes it a better measure of classifier accuracy than overall accuracy 

because it considers inter-class agreement. For our classification model the target 

attribute/class is Lithology so kappa statistics shows statistical relation between 

Lithology attribute and other instances (GR, NPHI, RHOB and DT).  Kappa statistics 

shows that the relationship is at moderate level in Table 18 for Well-2 & Well-4 and 

substantial for Well-1 and Well-5. In Table 19, the relationship is substantial for 

Well-1, Well-3 and Well-5 and moderate for Well-4. 

In k-fold cross validation, the initial data are randomly partitioned into k mutually 

exclusive folds, D1, D2, ... Dk, each of approximately equal size. Training and testing 

is performed k times. In iteration i, partition Di is reserved as the test set, and the 

remaining partitions are collectively used to train the model. That is, in the first 

iteration, subsets D2, ... Dk collectively serve as the training set in order to obtain a 

first model, which is tested on D1; the second iteration is trained on subsets D1, D3, ... 

Dk and tested on D2; and so on. Each sample is used the same number of times for 

training and once for testing. As a last step, the performance of the k classifiers 

produced from k equal sized folds is averaged. For classification, the accuracy 

estimate is the overall number of correct classifications from the k iterations, divided 

by the total number of tuples in the initial data. In general 10-fold cross validation is 



!

! 85!

recommended for estimating accuracy [13]. In application of PART algorithm we 

chose 10-fold cross validation which means partitioning the dataset randomly into 10 

subsets or folds and using 90% of data for training and 10% for testing. We tried 

different cross validation folds such as 5, 10, and 20 but could succeed in neither 

increasing the amount of correctly classified instances nor number of rules above 

threshold. 

The extracted rules related with sandstone zones are low in numbers: At total, 25 

rules for gaseous zone and 30 rules for nongaseous zones from all wells. Therefore 

we tried to increase the number of rules that are above threshold by combining 

LITHOLOGY & MAYI attribute. To illustrate, the value “Sandstone” of 

LITHOLOGY and the value “gas” of MAYI is combined as “Gaseous Sandstone” 

and replaced with the value “Sandstone”. In Table 20, the detailed info about the new 

attribute values of LITHOLOGY is given.  

Table 20. Changed LITHOLOGY attribute type distribution in the well log database 

LITHOLOGY Well 1 Well 2 Well 3 Well 4 Well 5 
Gaseous Sandstone 763 362 0 408 316 

Nongaseous Sandstone 260 170 761 547 115 
Clay stone 1446 0 0 670 0 

Gaseous Siltsone 0 0 0 0 41 
Nongaseous Siltstone 233 282 918 844 193 

Shale 635 848 2503 1447 236 
Coal 0 20 18 18 0 

None of the above 3152 376 6301 2548 0 
       

As the target attribute structure was changed, we needed to update SQL Queries as 

follows: 
SELECT TOP #### [DEPTH], [GR], [DT], [NPH], [RHOB], [MSFL], [LLS], [LLD], [SP], [CAL], [PIGE], 

[PIHT], [SUWI], [VCL], [LITHOLOGY], [MAYI] FROM [Degirmenkoy].[dbo].[WellX]  (Query 3)!

!

In Query 3, the red highlighted X was changed relative to the Wells’ name and #### 

was changed relative to instance amount as we did in Query 1 & 2. The Query 3 is 

applied to the database without changing except Well-4. Because DT attribute 

doesn’t exist in this Well log table so DT attribute omitted from the Query. 

The output of application of PART algorithm to LITHOLOGHY attribute changed 

Well log database is shown in Table 21. 

There are 61 gaseous sandstone rules and 79 nongaseous sandstone rules were 

extracted at total. If we compared this result with the one at Table 18 and 19, there is 



!

! 86!

a 152.5% increase in the number of rules targeted to gaseous zones and 263.3% 

increase for nongaseous zones. 
Table 21. Combined result of PART Algorithm targeted to Sandstone Zones applied to 
Well Log Database. 

!
Correctly!
Classified!
Instances!

Incorrectly!
Classified!
Instances!

Kappa!
Statistics!

Number!of!
Gaseous!
Sandstone!
Rules!above!
threshold!

Number!of!
Nongaseous!
Sandstone!
Rules!above!
threshold!

Time!
Taken!

(seconds)!

Total!
number!of!
rules!

extracted!

WellP1! 4837!
(74.54%)!

1652!
(25.46%)! 0.6181! 22! 10! 1.47! 113!

WellP2! 1321!
(64.19%)!

737!
(35.81%)! 0.4968! 11! 10! 0.41! 65!

WellP3! 8935!
(85.09%)!

1566!
(14.91%)! 0.7395! P! 15! 1.92! 127!

WellP4! 3820!
(58.52%)!

2708!
(41.48%)! 0.4496! 14! 33! 2.28! 257!

WellP5! 657!
(72.92%)!

244!
(27.08%)! 0.6329! 14! 11! 0.06! 46!

The kappa statistics in Table 21 shows that the relationship is at moderate level for 

Well-2 and Well-3 and substantial for rest. 

!

3.4.3. Application of PA Algorithm 

We finished the classification procedure with application of Predictive Apriori (PA) 

algorithm. To extract rules related with gaseous sandstone zones, we followed listed 

steps below: 

1. We preprocessed data with the Query 1 to get gaseous Sandstone and Query 2 to 

get nongaseous sandstone classification association rules. 

2. We opened Associate tab in Weka Explorer Menu and click Choose button. 

3. From opening menu, we chose FilteredAssociator. 

4. We right clicked on the text box near the Choose button and chose Show 

Properties from the opening menu as shown at the left side of Figure 30. 

Figure 30. Choosing Association algorithm as PA and application of discretization 
in Weka. 



!

! 87!

5. We chose PredictiveApriori for the associator with clicking Choose button at top 

of menu that is shown at right side of Figure 30. Then we clicked Choose button at 

the bottom of the menu and followed the path filters ! unsupervised ! attribute and 

finally chose Discretize. Because if there is an intention to apply 

 

 

 

 

 

 

 

association rule mining algorithm to a continuous attribute set, then before the rule 

extraction operation global application of discretization should be made. 

6.  From previously opened menu we right clicked on the text box near the Choose 

button and chose Show Properties from the opening menu as shown at the left side of 

Figure 31. Then from opening menu as shown at right side of Figure 31, we set Car 

(class association rules) parameter as true since we wanted to mine class association 

rules instead of general association rules. In addition we left classIndex paramater as 

-1 because the last attribute in our case is lithology, which would be taken as the 

target attribute. For the number of best rules to find, we configured numRules 

parameter according to the accuracy threshold (%85). As numRules value increases, 

the accuracy of extracted rules decreases so we increased the value of numRules until 

accuracies of rules dropped to a value that is near of the threshold but not below of it. 
Table 22. Discretization Interval Lengths of          Table 23. Discretization Interval Lengths of  
Gaseous sandstone zones                                          nongaseous sandstone zones 

Interval 
Lenghts for 

Gaseous 
Zones 

GR DT NPHI RHO
B 

 Interval 
Lengths for 
Nongaseous 

Zones 

GR DT NPHI RHO
B 

Well-1 7.179 6.889 0.030 0.059 Well-1 7.651 6.533 0.030 0.059 
Well-2 9.423 10.010 0.046 0.098 Well-2 9.423 9.265 0.045 0.098 
Well-3 - - - - Well-3 14.319 17.095 0.072 0.116 
Well-4 9.677 - 0.051 0.115 Well-4 9.678 - 0.053 0.117 
Well-5 6.698 7.910 0.036 0.084 Well-5 6.504 7.501 0.036 0.078 

 

Figure 31. Configuration of PA algorithm parameters in Weka. 



!

! 88!

Since we first applied discretization as a filter, we listed detailed output of the 

operation for gaseous sandstone zones in Table 22. And for nongaseous sandstone 

zones in Table 23. 

AttributeIndices (specify range of attributes), Bins (sets the number of intervals that 

the range is divided) and DesiredWeightOfInstances (sets the desired weight of 

instances per interval for equal-frequency binding) parameters were left at their 

default values that are first-last, 10 and -1.0 respectively. 

The detailed result of PA algorithm that is targeted to gaseous sandstone zones is 

listed in Table24. And the output related with nongaseous sandstone zones is listed in 

Table 25. In the column named “Total number of rules extracted (n best rules)” of 

Table 25, we configured numRules parameter as 180 for Well-1 and 160 for Well-3 

since if we use the default value, the accuracy of rules are in a value that is far above 

the threshold. The time taken for application is listed as integers since Weka PA 

algorithm doesn’t output time so we used Weka log menu to get the algorithm 

application start time and finish time. And we got the difference of these time values 

in order to get the total run time.  

            Table 24. Detailed output of PA algorithm targeted to gaseous sandstone zones 

 Number of Gaseous 
Sandstone Rules 
above threshold 

Total number of rules 
extracted (n best rules) 

Time Taken 
(seconds) 

Well-1 43 99 3 
Well-2 37 99 1 
Well-3 - - - 
Well-4 12 99 2 
Well-5 51 99 1 

            
            Table 25. Detailed output of PA algorithm targeted to nongaseous sandstone    
            zones 

 
 

Number of 
Nongaseous 

Sandstone Rules 
above threshold 

Total number of rules 
extracted (n best rules) 

Time Taken 
(seconds) 

Well-1 40 179 3 
Well-2 16 99 1 
Well-3 27 159 5 
Well-4 12 99 2 
Well-5 19 99 1 

                  

3.4.4. Assessing Rule Usefulness 

After rule extraction procedure, we have a set of rules showing different 

characteristics. Some of them have only GR and DT attributes in precondition and 



!

! 89!

some has attributes whose values are in an interval or equal to a value.  So we need 

criteria to assess rules’ usefulness apart from its accuracy. In this research we used a 

criteria formed under supervision of the domain expert. The criteria state, “Any 

extracted rule’s precondition should have GR, DT, NPHI and RHOB attributes 

which are in a form of range of values that has upper and lower bounds, i.e. an 

interval”. 

We designed a scoring system so as to define rule quality in terms of numbers. The 

scoring system assigns 1/2 point to rule for its each precondition attribute’s lower or 

upper bounds. To illustrate; 
IF 78.68<GR<=79.17838 AND 104.1409<DT<=122.8700 AND 

0.263<NPHI<=0.283 AND 2.213<RHOB<=2.439, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS!

The above rule has 4 attributes and each has upper and lower bounds so it scores 

(1/2) x 2 x 4 = 4 points.  

If we look at another deficient rule in terms of attributes such as, 
IF 85.20548<GR<=94.00459 AND NPHI<=0.2, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS!

Then this scores (1/2 x 2) + (1/2) =1.5 points because GR attribute has upper and 

lower bounds whereas NPHI has only one bound. 

After calculation of individual rule usefulness with our scoring system, we got 

average of all scores relative to the applied algorithm and well log used to. 

!

3.4.5. Finding Common Rules and Validation 

By the extraction operation ended, we need to find common rules among well log 

data. For this procedure, we used rules that have accuracy above the threshold. The 

amount of these rules listed relative to wells and algorithms is shown in the 

following tables. 
Table 26. Amount of rules used to find                 Table 27. Amount of rules used to find 
common rules targeted to gaseous zones.              common rules targeted to nongaseous zones. 

Gaseous!zones! NNGE! PART! PA! ! NonGaseous!
Zones! NNGE! PART! PA!

WellP1! 68! 22! 43! ! WellP1! 31! 10! 40!
WellP2! 22! 11! 37! ! WellP2! 0! 10! 16!
WellP3! 0! 0! 0! ! WellP3! 85! 15! 27!
WellP4! 28! 14! 12! ! WellP4! 99! 33! 12!
WellP5! 40! 14! 51! ! WellP5! 0! 11! 19!



!

! 90!

!

The intersection operation could be explained through these two rules obtained by 

NNGE. 

• IF 76.68462<GR<=79.14927 AND 94.16997<DT<=104.29543 AND 

0.195<NPHI<=0.244 AND 2.274<RHOB<=2.374, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS. (Well-1) 

• IF 78.59249<GR<=79.021 AND 97.81349<DT<=106.329 AND 

0.234<NPHI<=0.243 AND 2.249<RHOB<=2.285, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS. (Well-5) 

 

The intersection of GR, DT, NPHI and RHOB intervals of above rule 1 and 2 is 

nonempty since 76.68462<78.59249<GR<79.021<79.14927 and 94.16997< 

97.81349<DT<104.29543<106.329 and 0.195<0.234<NPHI<0.243<0.244 and 

2.249<2.274<RHOB<2.285<2.374 so we could take these rules as common and put 

them in a same set. Here it should be noticed that we accepted rules as common if at 

least intersection of three of four attributes’ interval is nonempty. To illustrate if we 

look at the following two rules, intersection of GR, NPHI and RHOB interval is 

nonempty except DT. 

• IF 88.986<GR<=92.76363 AND 107.54516<DT<=114.58817 AND 

0.227<NPHI<=0.229 AND 2.342<RHOB<=2.421, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS. (Well-2) 

• IF 90.986<GR<=93.50893 AND 104.55631<DT<=107.20876 AND 

0.291<NPHI<=0.2409 AND 2.409<RHOB<=2.431, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS. (Well-1) 

 

But the lower bound (107.54516) of DT interval of Well-2 rule is so close to the 

upper bound (107.20876) of DT interval of the rule of Well-1. So we accepted these 

two rules as common since there is a slight difference in the values of bounds and 

intersection of three attributes interval is nonempty.  

After taking intersection of all rules obtained by application of NNGE, PART and 

PA algorithm to Well log database, each discovered common rule was validated 

using log reports of each well. For example, for the validation of the rule (named 

Rule-1); 



!

! 91!

IF 90.986<GR<=93.50893 AND 104.55631<DT<=107.20876 AND 

0.291<NPHI<=0.2409 AND 2.409<RHOB<=2.431, THEN 

LITHOLOGY=SANDSTONE AND MAYI=GAS. 

we mark GR and NPHI interval with green bar, DT with blue bar and RHOB with 

orange bar according to the intervals in the rule. Then we try to draw a line through 

the intersection points of bar and attribute graph curve. In our case since we have 

four-attribute interval in the rule, we need to find four intersection points. If we 

couldn’t find such points, we accept rule as invalid.  

Then we should look at whether the line passes through red shaded areas of most 

right column of the report or not, because red shaded areas symbolizes gas intensity 

and the rule’s target attribute shows gas existence. In the Figure 32, one of candidate 

intersection points is I1, I2, I3 and I4. In addition, the right end of line passes through 

red shaded areas, which is a sing of gas existence so we can say that our rule is 

validated. In this manner, we checked validity of all rules. 

In following Table 28, 29 & 30, we present rule sets obtained by taking intersection 

of NNGE, PART and PA rules from wells. The first column shows the set of 

common rules, second represents well number and GR, DT, NPHI and RHOB shows 

rule attributes’ intervals. The seventh column represents amount of correctly 

classified instances that supports rule. The column eight shows value of MAYI 

attribute showing gas existence. The last column shows validity of rule. As a 

reminder, rule’s consequent part includes LITHOLOGY attribute that has 

SANDSTONE as a value since the main aim of this research is! discovering rules 

Figure 32. Validation of a rule in Degirmenkoy part of Well Log Report. Informations 
releated with depth and location is removed [35]. 



!

! 92!

targeted to find gaseous and nongaseous zones in sandstones of Osmancik Formation 

in Degirmenkoy gas field. 

!
Table 28. The rule sets obtained by taking intersection of extracted NNGE rules derived            
from Well log database. 

NNGE ALGORITHM RULE SETS 

S!
E!
T!

W
e
l
l!

GR! DT! NPHI! RHOB!

Instan!
ce!

Amou!
nt!!
!

MAYI! Valid?!

A1# 5# [79.11749,80.61903]# [80.902,102.39649]# [0.166,0.237]# [2.232,2.456]# 5# gas# Y#
A2# 1# [79.38723,86.82738]# [95.601,#108.37392]# [0.199,0.286]# [2.257,2.419]# 55# gas# Y#
A3# 2# [77.1841,90.36081]# [99.76614,110.52914# [0.197,0.238]# [2.2,2.224]# 17# gas# Y#
B1# 1# [74.64798,75.50512]# [87.29771,123.17999]# [0.206,0.283]# [2.204,2.367]# 22# gas# Y#
B2# 5# [74.7905,75.812]# [88.74549,106.2905]# [0.202,0.241]# [2.191,2.324]# 6# gas# Y#
B3# 2# [73.1791,78.60958]# [98.57417,99.39918]# [0.227,0.23]# [2.449,2.457]# 3# gas# Y#
C1# 1# [78.68,79.17838]# [104.1409,122.87005]# [0.263,0.283]# #[2.213,2.439]# 5# gas# Y#
C2# 5# #[74.211,91.774]# [108.539,111.81]# [0.21,0.296]# [2.189,2.333]# 16# gas# Y#
C3# 2# [78.94954,91.41059]# [96.96484,133.02817]# [0.23,0.238]# [2.339,2.436]# 10# gas# Y#
D1# 5# [65.597,68.9245]# [88.44252,110.016]# [0.244,0.303]# [2.204,2.398]## 13# gas# Y#
D2# 4# [67.44313,70.30848]# # [0.278,0.289]# [2.268,2.289]# 4# gas# Y#
D3# 1# #[60.66176,65.86725]# #[84.55177,108.8113]# [0.292,0.34]# [2.221,2.393]# 11# gas# Y#
E1# 1# [76.68462,79.14927]# [94.16997,104.29543]# [0.195,0.244]# [2.274,2.374]# 7# gas# Y#
E2# 5# [78.59249,79.021]# [97.81349,106.329]# [0.234,0.243]# [2.249,2.285]# 3# gas# Y#
E3# 2# #[71.13282,100.05811]# [95.96622,118.16422]# [0.163,0.253]# [2.225,2.337]# 135# gas# Y#
F1# 2# #[88.986,92.76363]# [107.54516,114.5881]## [0.227,0.229]# [2.342,2.421]# 3# gas# Y#
F2# 1# [90.40823,93.50893]# [104.55631,107.2087]# [0.276,0.291]# [2.409,2.431]# 3# gas# Y#
F3# 1# [88.00148,88.42351]# [106.01282,106.9922]# [0.293,0.296]# #[2.307,2.338]# 2# gas# Y#
G1# 1# [87.13348,88.09976]# [98.46172,107.86494]# #[0.265,0.287]# [2.309,2.39]# 6# gas# Y#
G2# 2# [88.986,92.76363]# [107.54516,114.5881]## [0.227,0.229]# [2.342,2.421]# 3# gas# Y#
H1# 1# #[61.55193,74.40454]# [76.48357,128.86789]# [0.177,0.291]# [2.199,2.409]# 201# gas# Y#
H2# 4# [60.14262,65.42324]# # [0.256,0.31]# [2.281,2.285]# 6# gas# Y#
H3# 4# [62.05626,65.22267]# # [0.25,0.28]# [2.287,2.301]# 6# gas# Y#
I1# 5# [69.93452,72.202]# [74.3415,103.3]# [0.17,0.241]# [2.204,2.427]# 24# gas# Y#
I2# 1# [61.45861,71.75909]# [80.01232,82.48878]# [0.189,0.208]# [2.421,2.468]# 4# gas# Y#
J1# 5# [79.29401,90.669]# [100.854,101.084]# [0.264,0.286]## [2.332,2.359]# 3# gas# Y#
J2# 2# [81.153,96.29164]# [92.5703,107.54315]# [0.242,0.252]# [2.34,2.365]# 5# gas# Y#
J3# 1# [79.68616,83.711]# [107.02802,108.2921]# [0.278,0.286]# [2.25,2.36]# 3# gas# Y#
K1# 5# [71.58201,77.71301]# #[100.54951,107.898]# [0.243,0.283]# [2.174,2.329]## 22# gas# Y#
K2# 1# [75.56709,76.58699]# [90.61942,125.56696]# [0.19,0.287]# #[2.206,2.353]# 20# gas# Y#
K3# 2# [73.57393,93.84624]# [69.47171,131.18217]# [0.142,0.225]# [2.342,2.513]# 72# gas# Y#
L1# 2# [77.27947,94.00459]# [84.76929,127.93243]# [0.254,0.364]# [2.251,2.401]# 45# gas# Y#
L2# 1# [92.35176,96.93049]# [102.08469,104.1812]# [0.269,0.272]# [2.38,2.401]# 3# gas# Y#
M1# 5# [65.06,68.55]# [83.74,96.37]# [0.17,0.21]# [2.246,2.31# 5# gas# Y#
M2# 1# [66.22575,71.36059]# [91.42158,95.87588]# [0.35,0.36]# [2.262,2.314]## 3# gas# N#
N1# 2# [97.2896,100.525]# [84.86266,105.82748]# [0.265,0.29]# [2.312,2.327]# 4# gas# Y#
N2# 5# [81.305,85.592]# [100.986,101.009]# [0.264,0.278]# [2.386,2.388]# 3# gas# Y#
N3# 1# [90.43022,91.18237]# [100.80227,103.5975]# [0.259,0.277]# [2.361,2.373]# 3# gas# Y#
O1# 5# [69.502,69.786]# [77.304,103.2105]# [0.16,0.237]# [2.257,2.405]# 5# gas# Y#
O2# 1# [59.96999,63.192]# [77.21339,90.00762]# [0.161,0.176]# [2.337,2.431]# 5# gas# Y#
O3# 2# [95.04769,100.52133]# [63.2625,107.63795]# [0.121,0.199]# [2.353,2.549]# 13# gas# Y#
P1# 1# #[62.46428,70.71999]# [85.14697,98.23163]# [0.247,0.277]# [2.446,2.473]# 3# nogas# Y#
P2# 3# [65.34502,67.73692]# [93.74442,95.59781]# [0.296,0.299]## [2.331,2.347]# 3# nogas# N#
P3# 4# [58.37555,59.08787]# # [0.244,0.291]# [2.271,2.387]# 5# nogas# Y#



!

! 93!

R1# 4# #[38.06847,51.02046]# # [0.165,0.31]# [2.185,2.424]# 54# nogas# Y#
R2# 3# [48.04737,#63.72358]# [72.69125,#106.2523]# [0.176,#0.254]# [2.28,#2.371]## 42# nogas# Y#
S1# 1# [66.84254,67.82151]# [92.0436,100.58634]# [0.187,0.336]# [2.188,2.291]# 7# nogas# Y#
S2# 4# #[66.38145,67.00144]# # [0.321,0.334]# [2.381,2.387]# 4# nogas# Y#
S3# 3# [63.93539,#67.46035]# [88.52242,#91.73853]# [0.232,#0.247]# [2.351,#2.393]# 10# nogas# Y#
§1# 3# [55.45141,#65.73253]# [104.50196,#107.607]# [0.339,#0.355]# [2.257,#2.306]# 6# nogas# Y#
§2# 1# [58.93679,61.07471]# [109.81962,111.2262]# [0.331,0.343]# [2.205,2.224]# 5# nogas# N#
§3# 4# [57.86982,59.5503]# ## [0.316,0.327]# [2.252,2.253]## 3# nogas# Y#
T1# 1# [65.29787,71.00124]# [109.36526,115.2347]# [0.254,0.318]# [2.211,2.411]# 21# nogas# Y#
T2# 4# [65.93447,68.22116]# ## [0.34,0.354# [2.291,2.294]# 4# nogas# Y#
U1# 1# [62.3361,64.77885]# [110.04441,115.6985]# [0.328,0.331]# [2.188,2.26]# 9# nogas# N#
U2# 4# [62.58147,64.02872]# ## [0.335,0.341]# [2.254,2.262]# 3# nogas# Y#
∂1# 1# [60.30081,63.14571]# #[93.15928,100.3726]# [0.315,0.323]# #[2.301,2.325]## 4# nogas# Y#
∂2# 3# [60.18861,#61.98175]# [101.37111,#103.298]# [0.316,#0.333]# [2.261,#2.309]# 4# nogas# Y#
∂3# 4# [62.05348,62.18615]# # [0.314,0.317]# [2.303,2.309]# 3# nogas# Y#
W1# 1# [61.40418,74.32041]# [80.02545,108.31759]# [0.165,0.309]# [2.39,2.419]# 11# nogas# Y#
W2# 3# #[64.04465,69.34485]# [76.87278,80.5029]# [0.236,0.243]# #[2.364,2.428]# 13# nogas# Y#
W3# 4# [58.46593,62.07602]# # [0.299,0.321]## [2.312,2.328]## 6# nogas# Y#
Q1# 3# [63.73499,69.81893]# [103.95518,106.1654]# [0.341,0.349]# [2.317,2.326]## 3# nogas# Y#
Q2# 4# #[66.38145,67.00144]# # [0.321,0.334]# [2.381,2.387]# 4# nogas# Y#
Z1# 4# [60.34298,64.80905]# # [0.346,0.359]# [2.24,2.252]## 6# nogas# Y#
Z2# 3# [55.45141,65.73253]# [104.50196,107.6078]# [0.339,0.355]# [2.257,2.306]# 6# nogas# Y#
X1# 1# [60.74475,66.31124]# #[83.23244,109.0728]# [0.172,0.313]# [2.231,2.344]# 17# nogas# Y#
X2# 3# #[63.60062,64.391]# ##[71.75481,74.733]# #[0.256,0.261]# [2.301,2.319]# 4# nogas# Y#
X3# 4# [58.16946,63.53818]# # [0.257,0.268]# [2.252,2.267]# 4# nogas# Y#
Ω1# 4# [62.39628,63.9787]# # [0.322,0.341]# [2.337,2.344]# 5# nogas# Y#
Ω2# 3# #[65.72874,72.99778]# [98.50359,100.27386]# [0.303,0.309]# #[2.283,2.311]# 4# nogas# Y#
Ω3# 1# [65.45605,65.59575]# [99.93826,101.00137]# [0.322,0.323]# [2.297,2.31]# 2# nogas# Y#
¥1# 4# [61.1502,63.93961]# # [0.348,0.363]# 2.315# 3# nogas# Y#
¥2# 1# [55.2571,62.56939]# [112.37683,113.8319]# [0.319,0.331]# [2.296,2.409]# 6# nogas# N#
µ1# 1# #[62.46428,70.71999]# [85.14697,98.23163]# [0.247,0.277]# [2.446,2.473]# 3# nogas# Y#
µ2# 3# #[67.0107,#76.19153]# #[80.99114,85.82436]# [0.25,0.265]# 2.427# 2# nogas# Y#

!

In Table 28, the rule sets obtained by application of NNGE algorithm are listed. In 

detail, the table includes 29 sets of rules, which have at least two correctly classified 

instances. The total average rule usefulness of all rules in the table is 3.76 (94.08%). 

There are 5 invalid and 71 valid common rules. Also we have 41 rules, whose target 

attribute is gas and 35 rules, whose target attribute is no gas. It should be noticed that 

absence of DT intervals in rules of Well-4 is due to log data of the well. Also, all 

attributes of rules are in the desired form (bounded by intervals), which owes to 

hyperrectangle nature of NNGE algorithm. There are 60 rules whose usefulness is 

100%. 

 

 

 

 



!

! 94!

Table 29. The rule sets obtained by taking intersection of extracted PART rules derived 
from Well Log Database 

PART ALGORITHM RULE SETS 

S
E
T!

W
e
l
l!

GR! NPHI! RHOB! DT!
Instan
ce!
Amou
nt!

MAYI! Valid?!

A1# 1# 81]# (0.226,0.261]# 2.187]# # 94# gas# Y#
A2# 2# 94]# 0.293]# # (111# 13# gas# Y#
A3# 4# (48.46,61.54]# 0.257]# 2.285]# # 172# gas# Y#
A4# 4# 62,38]# 0.283]# 2.261]# # 65# gas# Y#
A5# 4# (52.89,62.24]# 0.393]# 2.163]# # 19# gas# Y#
A6# 4# 57.2]# 0.239]# 2.419]# # 10# gas# Y#
A7# 5# 78.46]# # 2.275]# (96.33599# 95# gas# Y#
A8# 5# # # 2.289]# (101.501# 12# gas# Y#
A9# 5# # # # (100.17# 14# gas# Y#
A10# 5# # 0.267]# 2.302]# # 6# gas# Y#
A11# 5# 75.93]# # # # 4# gas# Y#
B1# 1# 67.74628]# (0.189,0.21]# (2.187,2.366]# # 41# gas# Y#
B2# 1# 68.235]# (0.174,0.213]# # # 9# gas# Y#
B3# 2# 94.06087]# # 2.342]# (95.89625# 189# gas# Y#
B4# 2# 94.00459]# 0.225]# # (95.276# 56# gas# Y#
B5# 2# (84.9761,94.00459]# 0.224]# 2.454]# # 19# gas# Y#
B6# 2# (85.20548,94.00459]# 0.2]# # # 9# gas# Y#
B7# 2# 105.985]# 0.288]# (2.243,2.348]# (105.64822# 38# gas# Y#
B8# 2# 90.73291]# (0.166# 2.459]# (88.09081# 19# gas# Y#
B9# 2# (85.20548# 0.2]# # # 21# gas# Y#
B10# 4# (62.80853# 0.27]# (2.24,2.299]# # 8# gas# Y#
B11# 4# (58.9129# 0.269]# 2.29]# # 10# gas# Y#
B12# 4# # 0.312]# (2.264,2.286]# # 5# gas# Y#
B13# 5# (86.582# # 2.336]# (100.049# 7# gas# Y#
B14# 5# 86.06001]# # (2.231,2.289]# # 8# gas# Y#
C1# 1# 86.9127]# (0.21,0.261]# (2.187,2.226]# # 82# gas# Y#
C2# 1# 86.9127]# (0.235,0.24]# 2.343]# # 15# gas# Y#
C3# 1# 85.49633]# (0.207,0.264]# # (104.35006# 10# gas# Y#
D1# 1# (78.809,89.67203]# (0.262,0.296]# (2.281,2.399]# 108.33315]# 31# gas# Y#
D2# 2# 93.2203]# (0.248# (2.384# 101.712]# 4# gas# Y#
E1# 2# # (0.266# 2.331]# 87.6609]# 5# gas# Y#
E2# 5# (55.076,66.434]# # 2.46]# 81.77451]# 15# gas# Y#
E3# 5# # # 2.389]# 83.85848]# 7# gas# Y#
F1# 1# 71.75909]# (0.303# (2.171,2.224]# (108.41064# 42# nogas# N#
F2# 4# (52.89748,#62.24844]# (0.334,#0.41]# (2.196,#2.205]# # 10# nogas# N#
G1# 1# # 0.289]# (2.403,2.422]# 97.3552]# 4# nogas# Y#
G2# 3# (67.87884# (0.241,#0.294]# (2.303,#2.354]# 101.75359]# 16# nogas# Y#
G3# 1# # (0.246,0.277]# # 98.94186]# 13# nogas# Y#
H1# 4# (56.9826,57.17693]# # 2.427]# # 9# nogas# Y#
H2# 4# (56.16299,#56.60031]# (0.225,#0.324]# # # 8# nogas# Y#
I1# 5# 67.417]# (0.185,#0.211]# # # 5# nogas# Y#
I2# 3# (57.606,#67.37376]# 0.249]# # (74.87306,91.5704]# 141# nogas# Y#
J1# 3# (53.043,#59.26531]# # (2.103,#2.358]# # 123# nogas# Y#
J2# 4# (52.15578,#55.21114]# (0.238# (2.263# # 9# nogas# Y#
J3# 5# 74.474]# (0.286# # # 18# nogas# Y#
J4# 5# (74.073,#77.03649]# (0.272# (2.331# # 7# nogas# Y#
K1# 3# [52.79207,62.19391]# 0.242]# # 95.48479]# 142# nogas# Y#
K2# 4# (62.24844# (0.321,#0.369]# (2.336,#2.343]# # 4# nogas# Y#
K3# 5# 97.165]# (0.296# # # 7# nogas# Y#
K4# 5# # (0.275# # 95.67702]# 3# nogas# Y#



!

! 95!

!

In Table 29, the rule sets obtained by application of PART algorithm are listed. In 

detail, the table includes 15 sets of rules, which have at least three correctly classified 

instances. The total average rule usefulness of all rules in the table is 1.78 (44.5%). 

There are 2 invalid and 53 valid common rules. Also we have 33 rules, whose target 

attribute is gas and 22 rules, whose target attribute is no gas. Due to scarcity of rules, 

we included rule sets having one element namely, N1, P1 and R1. Moreover, we have 

no rules having 100% usefulness.  
Table 30. The rule sets obtained by taking intersection of extracted PA rules derived from 
Well log database 

PA ALGORITHM RULE SETS 

SET! W!ell! GR! NPHI! RHOB! DT!
Insta
nce!
Amo!
unt!

MAYI! Valid?!

A1# 2# (62.528,71.951]# (0.1668,0.2126]# # # 4# gas# Y#
A2# 2# (62.528,71.951]# (0.1668,0.2126]# (2.2786,2.3764]# (103.294846,113.302925]# 3# gas# Y#
A3# 5# (69.2534,75.9512]# (0.1742,0.2098]# (2.3006,2.3842]# # 6# gas# Y#
A4# 2# # (0.1668,0.2126]# # (103.294846,113.302925]# 33# gas# Y#
A5# 4# # (0.1577,0.2084]# (2.256,2.371]# # 14# gas# Y#
A6# 1# (67.149337,74.32868]# (0.1913,0.2216]# # # 64# gas# Y#
B1# 2# (90.797,100.22]# (0.2126,0.2584]# (2.2786,2.3764]# (103.294846,113.302925]# 31# gas# Y#
B2# 1# # (0.2216,0.2519]# (2.1826,2.242]# (104.033698,110.92123]# 15# gas# Y#
C1# 5# (55.8578,62.5556]# (0.1742,0.2098]# # (69.01,76.92]# 2# gas# Y#
C2# 5# (55.8578,62.5556]# (0.1742,0.2098]# (2.3842,2.4678]# # 2# gas# Y#
C3# 1# #67.149337]# # (2.3608,2.4202]# # 12# gas# Y#
D1# 5# (75.9512,82.649]# (0.2454,0.281]# (2.217,2.3006]# (92.74,100.65]# 9# gas# Y#
D2# 2# (71.951,81.374]# # # (83.278688,93.286767]# 3# gas# Y#
D3# 5# # (0.2454,0.281]# (2.217,2.3006]# (84.83,92.74]# 7# gas# Y#
D4# 1# (74.328684,81.50803]# (0.2216,0.2519]# (2.1826,2.242]# # 14# gas# Y#
E1# 5# (62.5556,69.2534]# (0.1386,0.1742]# (2.3006,#2.3842]# (69.01,76.92]# 3# gas# Y#
E2# 1# 67.149337]# 0.1913]# # # 15# gas# Y#
F1# 5# # (0.1386,#0.1742]# (2.3842,#2.4678]# (69.01,76.92]# 4# gas# Y#
F2# 1# #67.149337]# # # 83.371102]# 7# gas# Y#
G1# 2# (62.528,71.951]# (0.1668,0.2126]# # # 4# gas# Y#
G2# 5# (62.5556,69.2534]# (0.1742,0.2098]# # (76.92,84.83]# 6# gas# Y#
G3# 5# (62.5556,69.2534]# # (2.3006,2.3842]# (76.92,84.83]# 12# gas# Y#
H1# 2# (71.951,81.374]# (0.1668,0.2126]# (2.3764,2.4742]# (123.311004,133.319083]# 2# gas# Y#
H2# 5# (69.2534,75.9512]# (0.1386,0.1742]# (2.3842,2.4678]# # 2# gas# Y#
H3# 1# (74.328684,81.50803]# # # (131.583826,138.471358]# 3# gas# Y#
I1# 2# (81.374,90.797]# # (2.3764,2.4742]# # 33# gas# Y#
I2# 5# (82.649,89.3468]# # (2.3842,2.4678]# (100.65,108.56]# 2# gas# Y#
J1# 2# # # (2.3764,2.4742]# (73.270609,83.278688]# 4# gas# Y#
J2# 5# (69.2534,75.9512]# # (2.3006,2.3842]# (76.92,84.83]# 9# gas# Y#
J3# 5# (62.5556,69.2534]# (0.2098,0.2454]# (2.3006,2.3842]# # 12# gas# Y#
K1# 5# # (0.2098,0.2454]# (2.217,2.3006]# (100.65,108.56]# 30# gas# Y#

M1# 5# (65.94151,#71.25098]# 0.258]# # (83.786# 10# nogas# Y#
M2# 3# (63.413,#68.2229]# 0.245]# (2.494,#2.547]# 106.2523]# 30# nogas# Y#
N1# 3# 68.08919]# 0.21]# # 68.47308]# 21# nogas# Y#
P1# 3# # 0.257]# # (100.9553,105.7583]# 4# nogas## Y#
R1# 3# (68.73621,#70.066]# [0.308# # # 3# nogas# Y#



!

! 96!

K2# 4# (48.225802,57.90330]# (0.2084,0.2591]# (2.256,2.371]# # 38# gas# Y#
K3# 1# # (0.2216,0.2519]# (2.1826,2.242]# (110.92123,117.808762]# 30# gas# Y#
L1# 5# # (0.281,0.3166]# (2.217,2.3006]# (100.65,108.56]# 2# gas# Y#
L2# 4# (48.225802,57.90330]# (0.2591,0.3098]# (2.141,2.256]# # 14# gas# Y#
L3# 1# # (0.2519,0.2822]# (2.242,2.3014]# # 39# gas# Y#
M1# 2# (81.374,90.797]# (0.2222,0.2668]# (2.3764,2.4742]# # 14# nogas# Y#
M2# 5# (83.620245,90.12379]# # (2.3464,2.4246]# (102.6965,110.1972]# 2# nogas# Y#
M3# 1# (78.209008,85.85964]# (0.2248,0.2547]# (2.3014,2.3608]# # 7# nogas# Y#
N1# 4# # (0.1868,0.2402]# (2.2693,2.3862]# # 3# nogas# Y#
N2# 3# (57.278608,71.59801]# (0.2266,0.2989]# (2.2384,2.3548]# (70.633314,87.727962]# 11# nogas# Y#
N3# 1# (62.907736,70.55837]# (0.2846,0.3145]# (2.3014,2.3608]# # 14# nogas# Y#
O1# 2# (71.951,81.374]# # (2.2786,2.3764]# # 2# nogas# Y#
O2# 5# (70.613143,77.11669]# (0.2805,0.3162]# (2.3464,2.4246]# # 8# nogas# Y#
O3# 2# (71.951,81.374]# # (2.3764,2.4742]# (79.962334,89.226888]# 2# nogas# Y#
O4# 1# # (0.2846,0.3145]# # 86.558794]# 3# nogas# N#
P1# 5# (70.613143,77.11669]# (0.2448,0.2805]# # (80.1944,87.6951]# 5# nogas# Y#
P2# 2# (71.951,81.374]# (0.2222,0.2668]# # # 9# nogas# Y#
P3# 1# (70.558372,78.20900]# (0.2248,0.2547]# (2.3014,2.3608]# # 4# nogas# Y#
R1# 2# (81.374,90.797]# (0.3114,0.356]# # # 9# nogas# Y#
R2# 5# (83.620245,90.12379]# (0.3162,0.3519]# # (102.6965,110.1972]# 3# nogas# Y#
S1# 4# (38.548301,48.22580]# # (2.3862,2.5031]# # 18# nogas# Y#
S2# 3# (42.959206,57.27860]# (0.1543,0.2266]# (2.4712,2.5876]# (70.633314,87.727962]# 6# nogas# Y#
S3# 4# # (0.1334,0.1868]# (2.3862,2.5031]# # 10# nogas# Y#
S4# 1# # (0.1949,0.2248]# (2.3608,2.4202]# # 6# nogas# Y#
§1# 5# (64.109592,70.61314]# (0.2448,0.2805]# (2.3464,2.4246]# # 2# nogas# Y#
§2# 3# (57.278608,71.59801]# (0.2266,0.2989]# (2.2384,2.3548]# (70.633314,87.727962]# 11# nogas# Y#
§3# 1# (62.907736,70.55837]# (0.2547,0.2846]# (2.242,2.3014]# # 3# nogas# Y#
T1# 5# (70.613143,77.11669]# # (2.3464,2.4246]# (95.1958,102.6965]# 3# nogas# Y#
T2# 1# (70.558372,78.20900]# (0.2248,0.2547]# # (99.625482,106.158826]# 2# nogas# Y#
U1# 2# (81.374,90.797]# # (2.3764,2.4742]# (79.962334,89.226888]# 10# nogas# Y#
U2# 1# # # (2.3608,2.4202]# 86.558794]# 7# nogas# Y#
∂1# 4# (48.225802,57.90330]# (0.2402,0.2936]# (2.1524,2.2693]# # 4# nogas# Y#
∂2# 3# (42.959206,57.27860]# (0.1543,0.2266]# ## (87.727962,104.82261]# 10# nogas# Y#
∂3# 1# ## ## (2.242,2.3014]# (86.558794,93.092138]# 4# nogas# Y#
Y1# 5# (64.109592,70.61314]# (0.2448,0.2805]# (2.3464,2.4246]# # 2# nogas# N#
Y2# 1# (62.907736,70.55837]# # (2.3014,2.3608]# (99.625482,106.158826]# 8# nogas# Y#
W1# 5# (57.606041,64.10959]# (0.1734,0.2091]# (2.4246,2.5028]# # 3# nogas# Y#
W2# 3# (42.959206,57.27860]# (0.1543,0.2266]# (2.4712,2.5876]# ## 16# nogas# Y#

!

In Table 30, the rule sets obtained by application of PA algorithm are listed. In detail, 

the table includes 24 sets of rules, which have at least two correctly classified 

instances. The total average rule usefulness of all rules in the table is 2.68 (67.21%). 

There are 2 invalid and 67 valid common rules. Also we have 36 rules, whose target 

attribute is gas and 33 rules, whose target attribute is no gas. It should be mentioned 

we have 7 rules whose usefulness is 100%.  

 

3.5. Interpretation of the result of the DM&KD Process 

We start interpretation of Tables 28,29 and 30 by analyzing Table 31 that compares 

rule sets obtained by application of NNGE, PART and PA algorithms to!Well-1 log 



!

! 97!

data. Here any rule of these rule sets has target attributes such that 

LITHOLOGY=sandstone and MAYI=gas so such rules are targeted to gaseous 

sandstone zones.  
Table 31.Comparison of algorithms with respect to rule amount and usefulness of 
gaseous sandstone zones in Well-1 

Gaseous Zones 
Well-1             
(6229 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 15 1 16 100 93.75 
PART 7 0 0 57.14 100 
PA 9 0 0 51.4 100 
!

NNGE shows the best performance since it produced highest number (15) of valid 

rules whose rule usefulness is 100%. Although NNGE’s rule success rate is the 

lowest of all, the average rule usefulness is greater than that of PART and PA. 

Because NNGE’s rule sets includes one invalid rules so rule success rate becomes 

(15/16) * 100 = 93.75.  

PART shows the lowest performance as it creates seven rules whose rule usefulness 

is below 100% and has an average of 57.14%. Most of the rules’ attribute intervals 

consist of lower or upper bound but not both. However, many PA’s rules of Well-1 

have attributes intervals bounded by upper and lower bounds. 

We continued interpretation step by describing Table 32. The table shows the 

comparison of the set of algorithms targeted to gaseous sandstone zones of Well-2 in 

terms of valid-invalid rule amount, rule usefulness and success rate. 

The best performance is achieved by NNGE algorithm again that has 11 valid rules 

whose usefulness is 100%. Then PART is in the second place with 10 valid rules but 

none of them has in the desired form and average rule usefulness of PART (42.5%) 

is less than PA’s (66.67%). 
Table 32. Comparison of algorithms with respect to rule amount and usefulness of 
gaseous sandstone zones in Well-2 

Gaseous Zones 
Well-2             
(1888 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 11 0 11 100 100 
PART 10 0 0 42.5 100 
PA 9 0 3 66.67 100 
!



!

! 98!

As in accordance with our aim, we should assume that PA shows better performance 

than PART in Well-2 since we not only look at valid rule amount but also take into 

account average rule usefulness. This assumption also supported by the amount of 

rules with 100% usefulness. We have 3 out of 9 valid rules with 100% usefulness 

extracted by PA, which is the desired form for domain experts. However, we 

couldn’t get any rules in such form by PART. 
Table 33. Comparison of algorithms with respect to rule amount and usefulness of 
gaseous sandstone zones in Well-4 

Gaseous Zones 
Well-4             
(5920 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 3 0 0 56.25 100 
PART 7 0 0 42.86 100 
PA 3 0 0 66.67 100 
!

If we look at the comparison matrix in Table 33, we see that PART algorithm 

achieved best performance since it produces seven valid rules, which is greater than 

that of NNGE and PART do (3 valid rules). But in terms of average rule usefulness, 

PART shows the worst performance. Specifically, PA achieves 66.67% success that 

is the highest score of all. Number of rules with 100% usefulness is zero for the set 

of algorithms since Well-4 log data set lacks DT attribute. So for NNGE, if we have 

DT attribute in the dataset, we will have 3 rules with 100% usefulness because of 

hyperrectangle nature of the algorithm. So NNGE will show the top achievement in 

terms of number of rules with 100% usefulness. 

In Table 34, the highest number of valid rules is attained with PA although the 

number of rules with 100% usefulness is less than NNGE’s. And that means 

2/14=14% of valid rules of PA has in the desired form. 

Table 34. Comparison of algorithms with respect to rule amount and usefulness of 
gaseous sandstone zones in Well-5 

Gaseous Zones 
Well-5               
(786 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule 
Success 
Rate(%) 

NNGE 11 0 11 100 100 
PART 9 0 0 29.17 100 
PA 14 0 2 83.93 100 
!



!

! 99!

So we could assume that since NNGE has highest number of rules with 100% 

usefulness, it shows the best performance among others. PART has lowest number of 

valid rules of all and no rules with 100% usefulness. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

In Chart-1, we summarize information of the previous Tables and present overall 

comparison of the set of algorithms in terms of extracted common rule amount and 

the amount of rules with 100% usefulness among Wells. The rules have gas and 

sandstone value in their target attribute, which means they are targeted to gaseous 

sandstone zones. The columns show number of valid rules that are extracted by 

NNGE, PA and PART. The bold colored part (left side) of main columns shows 

amount of rules with 100% usefulness. We continue interpretation of the results of 

nongaseous sandstone zones of Well-1 of Degirmenkoy field with Table 35. 
Table 35. Comparison of algorithms with respect to rule amount and usefulness of 
nongaseous sandstone zones in Well-1 

Nongaseous 
Zones Well-1            
(5726 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 8 3 11 100 72.73 
PART 2 1 0 50 66.67 
PA 9 1 0 62.5 90 
!

Chart 1. Overall comparison of NNGE, PA & PART w.r.t amount of common 
valid rule and rules with 100% usefulness in which rules targeted to gaseous 
sandstone zones considering individual Wells. 



!

! 100!

Although PA attains the highest number of valid rules, it fails to produce rules with 

100% usefulness. If we analyze in terms of valid rule amount of NNGE, it extracts 

an amount (8 rules) that is one rule less than PA’s (9 rules). Moreover, these 

NNGE’s valid rules are all in the desired form so we could assume that NNGE 

shows the best performance in Well-1. PART produces the lowest amount of valid 

rules targeted to nongaseous zones but if we look at Table 31, PART shows better 

performance than the current situation since it produces seven valid rules targeted to 

gaseous zones. 
Table 36. Comparison of algorithms with respect to rule amount and usefulness of 
nongaseous sandstone zones in Well-2 

Nongaseous 
Zones Well-2 
(1696 instance) 

Number of 
Valid 
Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 0 0 0 0 0 
PART 0 0 0 0 0 
PA 6 0 0 50 100 
!

In comparison matrix of Table 36, only with PA algorithm we able to find common 

valid rules but none of them are in the desired form. The reason for that, all resultant 

exemplars of nongaseous sandstone zones of Well-2 are below threshold so the rules 

extracted by NNGE weren’t taken into account during the discovery of the common 

nongaseous sandstone rules. Moreover, although there are 10 valid rules targeted to 

nongaseous zones extracted by PART (Table 21), none of them has common 

attribute intervals with other rule sets of rest of Wells. 

In Table 37, the comparison matrix of extracted rule amount of the algorithms from 

Well-3 is given. Well-3 has the highest amount of instance among well log datasets. 
Table 37. Comparison of algorithms with respect to rule amount and usefulness of 
nongaseous sandstone zones in Well-3 

Nongaseous Zones 
Well-3 
(10340 instance) 

Number of 
Valid Rules 

Number of 
Invalid Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule 
Success 
Rate(%) 

NNGE 10 1 11 97.73 90.9 
PART 8 0 0 53.13 100 
PA 5 0 3 90 100 
!

NNGE shows the best performance in terms of number of valid rules and rules with 

100% usefulness. Then PART follows it with eight valid rules but none of them is in 

the desired from. PA created the lowest amount of valid rules!however it has three 



!

! 101!

rules with 100% usefulness. NNGE’s rule success rate is 10/11=90.9% that is the 

lowest of all but its amount of valid rules compensates this deficiency. 
Table 38. Comparison of algorithms with respect to rule amount and usefulness of 
nongaseous sandstone zones in Well-4 

Nongaseous 
Zones Well-4 
(6059 instance) 

Number of 
Valid Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 13 0 0 73.08 100 
PART 4 1 0 55 80 
PA 4 0 0 56.25 100 
!

If we continue with Table 38, NNGE algorithm yields the highest number of 

common valid rules again but fails to produce rules with 100% usefulness. Because 

Well-4 logs data set lacks DT attribute. It should be noticed that NNGE produces 3 

valid common rules in gaseous zones (Table 33) and 13 valid rules in nongaseous 

zones. There is a deuce for PART and PA in terms of valid rule amount but PA’s 

average rule usefulness (56.25%) is greater than PART’s (55%). So it could be said 

that PA performs well than PART in nongaseous sandstone zones of Well-4.  

In Table 39, PA attains the highest number of common valid rules and has the 

greatest average rule usefulness.  
Table 39. Comparison of algorithms with respect to rule amount and usefulness of 
nongaseous sandstone zones in Well-5 

Nongaseous 
Zones Well-5 
(585 instance) 

Number of 
Valid 
Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule Success 
Rate(%) 

NNGE 0 0 0 0 0 
PART 6 0 0 35.42 100 
PA 7 1 0 75 87.5 
!

NNGE has no valid common rules since all resultant exemplars of nongaseous 

sandstone zones of Well-5 are below threshold so the rules extracted by NNGE 

weren’t taken into account during the discovery of the common nongaseous 

sandstone rules. PART creates six valid rules on nongaseous zones, which is less 

than the performance shown (9 valid rules) on gaseous zones (Table 34). 

In Chart-2, the information of the previous Tables is summarized and it presents 

overall comparison of the set of algorithms in terms of extracted common rule 

amount and the amount of rules with 100% usefulness among Wells.!

!



!

! 102!

!

!

!

!

!

!

!

!

!

!

!

The rules have no-gas and sandstone value in their target attribute, which means they 

are targeted to nongaseous sandstone zones. The columns show number of valid 

rules that are extracted by NNGE, PA and PART. The bold colored part (left side) of 

main columns shows amount of rules with 100% usefulness. 

Final total result of success of NNGE, PART and PA algorithms on gaseous 

sandstone zones on all Wells in terms of amount of rule sets, valid & invalid rules, 

rules with 100% usefulness, average rule usefulness and success rate are presented in 

Table 40. Best results are obtained by NNGE overall. In terms of rule sets, NNGE 

creates 15 rule sets that are slightly higher than PA’s output (12 rule sets). PART has 

the lowest amount of rule sets. 

NNGE yields the highest number of valid rules with 40 valid rules. With 36 valid 

rules, PA follows the lead of the NNGE. PART creates the lowest amount again. 

Table 40. Comparison of algorithms with respect to rule amount, usefulness and rule sets   
of gaseous sandstone zones in all wells. 

Gaseous Zones    
All Wells            
(14823 instance) 

Number 
of Rule 

Sets 

Number 
of Valid 

Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule 
Success 
Rate(%) 

NNGE 15 40 1 38 98.17 97.56 
PART 5 33 0 0 42.05 100 
PA 12 36 0 5 67.71 100 
!

Chart 2. Overall comparison of NNGE, PA & PART w.r.t amount of common 
valid rule and rules with 100% usefulness in which rules targeted to nongaseous 
sandstone zones considering individual Wells. 



!

! 103!

When it comes to the amount of rules with 100% usefulness, NNGE is undisputed 

leader since it has 38 rules in the desired form whereas PA produces 5 only and 

PART couldn’t create any. In terms of average rule usefulness, with 98.17% 

percentage NNGE achieves well than PA and PART. PA algorithm’s average rule 

usefulness is greater than PART. Therefore, from the data mining and domain expert 

perspective, we can say that NNGE algorithm able to extract the highest number of 

common useful validated rules targeted to find gaseous zones in sandstones of 

Osmancik Formation in the Degirmenkoy gas field. Thus, it may be the first 

candidate for future data mining and knowledge discovery operations. If we consider 

an alternative, then the second choice should be PA since it shows better 

performance than PART in every aspect. As a last resort, PART can be chosen for 

the rule extraction operation. In Chart 3, we present Table 40’s three columns, 

namely amount of rule sets, valid rules and rules with 100% usefulness in a graph in 

order to represent total results in more comprehensible way. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

If we consider nongaseous sandstone zones considering all wells (Table 41), in terms 

of number of rule sets NNGE attains the highest amount with 14 rule sets. PA 

follows this with 12 rule sets. 

 

Chart 3. Overall comparison of NNGE, PA & PART algorithms w.r.t 
amount of rule sets, valid rules and rules with 100% usefulness in 
which rules targeted to gaseous sandstone zones considering all Wells. 



!

! 104!

Table 41. Comparison of algorithms with respect to rule amount, usefulness and rule 
sets of nongaseous sandstone zones in all wells. 

Nongaseous Zones 
All Wells  
(24406 instance) 

Number 
of Rule 

Sets 

Number 
of Valid 

Rules 

Number of 
Invalid 
Rules 

Number of Rules 
with 100% 
Usefulness 

Average Rule 
Usefulness(%) 

Rule 
Success 
Rate(%) 

NNGE 14 31 4 22 89.29 88.57 
PART 10 20 2 0 48.30 90.91 
PA 12 31 2 3 66.67 93.94 
!

PART creates the lowest of all. Considering number of valid rules, NNGE and PA 

extract same number of valid rules but NNGE produces 22 rules with 100% 

usefulness whereas PA creates only 3 so we can say that NNGE algorithm able to 

extract the highest number of common useful validated rules targeted to find 

nongaseous zones in sandstones of Osmancik Formation in the Degirmenkoy gas 

field. So it may be chosen for future data mining and knowledge discovery 

operations in Well log data for extracting such rules. If it fails to produce the rules 

above determined threshold, the second choice should be PA since it beats PART in 

every aspect. As a last resort, PART can be chosen for such operation. In Chart 4, the 

overall result is presented in a graphical chart. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Chart 4. Overall comparison of NNGE, PA & PART algorithms w.r.t 
amount of rule sets, valid rules and rules with 100% usefulness in 
which rules targeted to nongaseous sandstone zones considering all 
Wells. 

!



!

! 105!

3.6. Significant Implications 

During the analysis of the results, couple of significant implications is marked as 

follows: 

1) By observing nongaseous sandstone zones of log reports (Figure 33), we couldn’t 

determine how many instances of log dataset correspond to these zones. However, if 

we look at the first of stated rules at below that is extracted by PA, we have 2 

instances with the GR, DT and NPHI intervals. We also have 21 instances extracted 

by NNGE from the second rule and 4 instances by PART from the third rule. So we 

understand that total of 27 instances of the dataset corresponds to the nongaseous 

sandstone zone of the log reports. Here notice that red areas in the second column 

from right of Figure 33 shows intensity of gas. Absence of red areas means there is 

no gas exists at that zone and barely we can’t determine how many instance 

correspond these types of areas by just looking into the figure. 
IF 70.5583<GR<=78.2090 AND 0.2248<NPHI<=0.2547 AND 

99.6255<DT<=106.1588, THEN LITHOLOGY=SANDSTONE AND MAYI=NOGAS. 

(WELL-1) T2(PA) NUMBER_OF_INSTANCE=2 

 

IF 65.2978<=GR<=71.0012 AND 0.254<=NPHI<=0.318 AND 

109.3653<=DT<=115.2347 AND 2.211<=RHOB<=2.411, THEN 

LITHOLOGY=SANDSTONE AND MAYI=NOGAS.                                    

(WELL-1) T1(NNGE) NUMBER_OF_INSTANCE=21 

 

IF NPHI<=0.289 AND DT<=97.3552 AND 2.403<RHOB<=2.422, THEN 

LITHOLOGY=SANDSTONE AND MAYI=NOGAS.                             

(WELL-1) G1(PART) NUMBER_OF_INSTANCE=4   !

!

!

!

!

!

!

!

!

Figure 33. Part of log report of Well-1 showing three rules targeted to nongaseous 
sandstone zones. Informations releated with depth and location is removed [35]. 



!

! 106!

In Figure 33, orange colored line shows the first rule stated, green colored line 

represents the second rule and blue colored belongs to the third rule. The intersection 

of these lines with the second column from right of the figure doesn’t include red 

area thus there is no gas exists at that zone. From the rules we can say that at least we 

have 20 instances corresponds to the zone. 

Apart from the discussed rules on Well-1, we confronted similar situation in some 

nongaseous sandstone zones in other wells. Hence we could say that resultant of the 

data mining process, i.e. extracted rules may be more explanatory than log reports in 

some sense. 

2) If we look at Figure 34, there is a green line passing through indistinguishable 

zone, which is in the right most column of the figure. In detail, at the intersection 

field of the line and column, the zone is too narrow, as we couldn’t understand 

whether the line passes through red or brown area. Red areas symbolize gas zones 

whereas brown areas represent moved hydrocarbon zones. 

!

The!green!colored!line!represents!NNGE!rule!Z1!from!Table!28.!The!rule!content!

is:!
IF 60.3429<=GR<=64.8090 AND 0.346<=NPHI<=0.359 AND 2.24<RHOB<=2.252, 

THEN LITHOLOGY=SANDSTONE AND MAYI=NOGAS.                             

(WELL-4) Z1(NNGE) NUMBER_OF_INSTANCE=6   !

We may deduce from the rule content, the indistinguishable zone consist of moved 

hydrocarbon, not gas. Because the rule has MAYI attribute that has value of NOGAS 

and we have six-instance supports this.  

3) There are couples of situations in which the extracted rules correspond to zones 

where gas density is about to be zero. To start with Figure 35, the NNEG!rule Q2 of 

Figure 34. Part of log report of Well-4 showing one of the NNGE’s rules on 
indistinguishable zones. Informations releated with depth and location is removed [35]. 



!

! 107!

Table 28 intersects the gas zone of most right columns of the figure when gas density 

becomes zero. The rule of Well-4 is presented as follows: 
IF 66.3814<=GR<=67.0014 AND 0.321<=NPHI<=0.334 AND 

2.381<=RHOB<=2.387, THEN LITHOLOGY=SANDSTONE AND MAYI=NOGAS. 

(WELL-4) Q2(NNGE) NUMBER_OF_INSTANCE=4    

 

Same situation could be observed in PART’s rules at Figure 36. The rule I1 of Table 

29 is presented as blue line in the figure as follows: 
IF GR<=67.417 AND 0.185<NPHI<=0.211, THEN LITHOLOGY=SANDSTONE AND 

MAYI=NOGAS. (WELL-5) I1(PART) NUMBER_OF_INSTANCE=5  

 

It should be noticed that the blue colored line tangent to red area curve when gas 

density becomes zero. We came across the same incident among some rules of PA 

algorithm. To illustrate, in Figure 37, the orange colored line symbolizes the rules 

attribute intervals. It intersects the right most column of the figure at the point where 

gas density becomes zero. The PA’s rule P1 of Table 30 is listed as follows: 

Figure 36. Part of log report of Well-5 showing one of the PART’s rule in which gas 
density is about to be zero. Informations releated with depth and location is removed 
[35]. 

Figure 35. Part of log report of Well-4 showing one of the NNGE’s rule in which gas 
density is about to be zero. Informations releated with depth and location is removed 
[35]. 



!

! 108!

Figure 37. Part of log report of Well-5 showing one of the PA’s rule in which gas 
density is about to be zero. Informations releated with depth and location is removed 
[35]. 

IF 70.6131<GR<=77.1166 AND 0.244<NPHI<=0.280 AND 

80.1944<DT<=87.6951, THEN LITHOLOGY=SANDSTONE AND MAYI=NOGAS.  

(WELL-5) P1(PA) NUMBER_OF_INSTANCE=5   !

!

!

!

!

!

!

!

!

In summary, the discussed rules highlights critical points of gas concentration where 

it is almost zero.  

4) The set of algorithms; namely, NNGE, PART and PA is somewhat sensitive to 

erroneous data at different levels. During the data-preprocessing phase of our 

research, deletion of some negative values of GR, RHOB and DT attributes 

somehow is ended unsuccessfully before the transformation of excels sheets to SQL 

database. We were able to understand this occasion when we found all common rules 

targeted to nongaseous sandstone zones of Well-3 are invalid. So, we checked the 

well log database with SQL queries and ended up with 163 instances containing 

negative values either in GR or DT attributes. This causes 11 invalid common rules. 

We cleaned the problematic data and applied NNGE again. The result is promising 

since we have 10 valid and one invalid common rule extracted from Well-3. So there 

is a %90.9 decrease in the amount of invalid rules.  

The sensitivity to erroneous data increases when we consider PA algorithm since the 

negative values effects discretization that is applied before the application of 

algorithm. To illustrate, in Well-3 if negative values of GR attribute aren’t deleted, 

then the interval length becomes 107 units, which is very large, compared to the 

length of 14 units, which occurs after cleaning negative values. We presented three 

intervals before and after the cleaning operation as follows in order to explain the 

consequence of discretization on erroneous data. Some of GR discrete intervals 

before the cleaning operation: 



!

! 109!

(−∞, −827.8268], (−827.8268, −719.9355], (−719.9355, −612.044]                

(Interval length: 107.8913)  

After the operation:  

(−∞, 14.3204], (14.3204, 28.6398], (28.6398, 42.9592]              

(Interval length: 14.3194) 

Shortly, the attribute intervals are affected even at the data-preprocessing phase, so 

we may say that PA is more sensitive than NNGE to erroneous data. 

If we observe the situation with respect to PART algorithm, there are 6 invalid and 

one valid rule targeted to nongaseous sandstone zones in Well-3 before the cleaning 

operation. There are 8 valid rules and zero invalid rules after deleting negative values 

from GR and DT. This means %100 decrease in the amount of invalid rules so we 

may say that PART is more sensitive to erroneous data than NNGE but less sensitive 

than PA. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



!

! 110!

!

!

!

CONCLUSION 

 

The application of five-step DM&KD procedure to Degirmenkoy Well log database 

starts with the problem definition, which consists of identification of the algorithm 

among the set of algorithms (NNGE, PART & PA) that extracts the highest number 

of common useful validated rules targeted to find gaseous and nongaseous sandstone 

zones of Osmancik Formation in the Degirmenkoy gas field. The data used to find 

common rules was generated from Well logs that were collected from five producing 

gas wells. The data initially in the form of excel sheets consisting of several well log 

attributes. In order to align with the defined goal, attributes related with porosity 

namely, GR, DT, NPHI, RHOB, LITHOLOGY & MAYI were selected to feed the 

set of algorithms. All well data includes instances having gas value in MAYI 

attribute except Well-3. In addition, Well-4 has no DT attribute. There are outliers 

and erroneous data exist in the raw data, that were cleaned and then these excel 

sheets imported to the well log database in order to apply the set of algorithms using 

Weka data mining tool. The data pre-processing phase ends up with the setup of 

Weka’s ODBC connection to the database through MS-SQL server.  

Application of the main DM&KD algorithms step begins with the (Non-nested 

generalized exemplar) NNEG implementation. For gaseous sandstone zones of Well-

1 & Well-4, the procedure is straightforward so we do not need to alter default 

configuration parameters as we got 100% correctly classified instances for 

mentioned Wells. Although overall correctly classified instances of Well-2 & Well-5 

are slightly below the predetermined threshold value, the percentage of correctly 

classified instances of these wells passed the threshold value in terms of instances 

related with gaseous sandstone zones so that we were able to extract rules having 

accuracy above threshold for Well-2 & Well-5. 

For the nongaseous zones, the application of (NNGE is successful for Well-3 & 

Well-4 but failed to pass the threshold value for others. After trying out different 

combinations of the parameters, amount of correctly classified instances for Well-1 



!

! 111!

was able to pass the threshold but failed at Well-2 & Well-5 so these wells log data 

were not taken into account during the discovery of the common nongaseous 

sandstone rules among Wells. 

Application procedure of the set of algorithm continued with PART that extracts 

classification rules in a more comprehensible way than other decision tree algorithms 

like J.48. The implementation of PART to gaseous and nongaseous zones results in 

failure to pass threshold in terms of overall accuracy. Although we have some rules 

targeted to sandstone zones having accuracy above the threshold, there are few in 

number. Therefore, the number of rules were tried to increase by combining 

LITHOLOGY & MAYI attribute in the well log database. We also update search 

queries in order to align with the new combined fields. After application of the 

algorithm again, there is a 152.5% increase in the amount of rules targeted to gaseous 

zones and 263.3% increase for nongaseous zones that have accuracy above the 

threshold compared to the previous situation. 

The last algorithm applied to Well Log database is (Predictive Apriori) PA. Since it 

is an association algorithm we need to discretize the data before implementation. 

Therefore, global application of discretization is applied to the data using Weka’s 

filter tools. Apart from that, in order to mine class association rules instead of general 

association rule, we changed one of the default parameter. In addition, as number of 

rules that limits the amount of best rules created by PA increases, the accuracy of 

extracted rules decreases. So, the related parameter modified accordingly until 

accuracies of rules dropped to a value that is near of the threshold but not below. As 

a result we have at least twelve rules targeted to gaseous sandstone zones for each 

well except Well-3 and at least twelve rules targeted to nongaseous zone for each 

well. 

After rule extraction procedure, we assessed rules’ usefulness according to the 

criteria formed under supervision of the domain expert. The criteria state, “Any 

extracted rule’s precondition should have GR, DT, NPHI and RHOB attributes 

presented in an interval”. A scoring system is designed so as to assess to which 

degree rules’ mentioned attribute values are accordance with the desired form stated 

in the criteria. After calculation of individual rule usefulness with the scoring system, 

average of all scores relative to the applied algorithm was taken. To align with the 



!

! 112!

main goal of this research, the common rules among well data should be found. In 

order to find common rules, rules attribute intervals compared with each other and if 

any intersection exist, they were grouped under rule sets. Then, each discovered 

common rule was validated using log reports of each well provided by domain 

expert. 

The amount of rule sets obtained by application of NNGE is 29 that have at least two 

correctly classified instances. The total average usefulness is 94.08%. There are 71 

valid and invalid common rules. In addition, 41 rules are targeted to gaseous zone 

whereas 35 rules are targeted to nongaseous zones. All elements of the rule sets are 

in the desired form due to hyperrectangle nature of NNGE. There are 60 out of 71 

rules has its usefulness is 100% since absence of DT attribute of Well-4 effects rule 

usefulness. 

Continue with the PA algorithm, there is 24 sets of rules, which have at least two 

correctly, classified instances. The total average usefulness is 67.21%. There are 67 

valid and 2 invalid common rules. Moreover, 36 rules’ target attribute is gas and 33 

rules’ has no gas in the attribute. PA’s rule sets includes 7 rules having 100% 

usefulness. 

With the application of PART algorithm, we have 15 sets of rules, which have at 

least three correctly classified instances. The total average rule usefulness is 44.5%. 

There are 53 valid and 2 invalid common rules. In addition, there are 33 rules 

targeted to gaseous zones and 22 rules are targeted to nongaseous zones. Due to 

scarcity of rules, rule sets having only one rule is included. There is no rule having 

100% usefulness. 

The interpretation of the result of the DM&KD process was analyzed on firstly on 

individual Wells basis and secondly at total. In gaseous sandstone zones of Well-1, 

NNGE presents best performance among the set of applied algorithm since it 

produced highest number of valid rules having 100% usefulness. PART shows the 

lowest performance as it creates seven rules having 100% usefulness and has an 

average of 57.14%, which is less than the PA’s (67.21%) and far less than NNGE’s 

(94.08%). 

For gaseous zone of Well-2, the best performer is NNGE again that has 11 valid 

rules whose usefulness is 100%. Then in terms of validity PART is in the second 



!

! 113!

place with 10 valid rules but none of them has in the desired form and average rule 

usefulness is less than PA’s. As in accordance with the goal, we assume that PA 

shows better performance than PART as we need to look at average rule usefulness 

beside valid rule amount. Since PA algorithm creates 3 rules having 100% usefulness 

whereas PART produces any rule with the desired usefulness. 

Continue with the gaseous zones of Well-4, PART attains highest number of valid 

rules (7 rules). However in terms of average rule usefulness, PART shows the worst 

performance with 42.86%. And PA’s average rule usefulness (66.67%) is greatest of 

all. Number of rules with 100% usefulness is zero for the set of algorithm since 

Well-4’s data set lacks DT attribute. 

Considering gaseous zones of Well-5, PA produced the highest number of valid rules 

whereas number of rules with 100% usefulness extracted by the algorithm (2 rules) is 

less than NNEG’s (11 rules). Thus, NNEG presents the best performance among 

others. PART has lowest number of valid rules and has no rule with 100% 

usefulness. 

If we look at gaseous sandstone zones of all Wells, at total best results achieved by 

NNGE. In terms of rule sets and valid rule amount, NNGE creates 15 common rule 

sets with 40 valid rules that are slightly higher than PA’s output (12 rule sets with 36 

valid rules). PART has 5 rule sets with 33 valid rules, which is the lowest numbers. 

In terms of amount of rules with 100% usefulness, NNGE attains the highest number 

with 38 rules whereas PA produces 5 and PART couldn’t create any. Considering 

average rule usefulness, with 98.17% percentage NNGE presents best performance, 

then PA attains the second place with 67.71% and PART attains the last place with 

42.05%. In summary, NNGE algorithm able to extract the highest number of 

common useful validated rules targeted to find gaseous zones in sandstones of 

Osmancik Formation in the Degirmenkoy gas field. Therefore, it may be the first 

candidate for future data mining and knowledge discovery operations. If we consider 

an alternative, then PA should be chosen instead of PART. 

For nongaseous sandstone zones, our interpretation of the result of the DM&KD 

process starts with Well-1. PA algorithm attained the highest number of valid rules 

but fails to produce rules with 100% usefulness. NNGE presents best performance 

among the set of applied algorithm since it produces highest number of valid rules 



!

! 114!

having 100% usefulness. PART produces the lowest amount of valid rules that are 

not in the desired form. 

For nongaseous zones of Well-2, only with PA, we able to discover common valid 

rules but none of them has 100% usefulness. Since all resultant exemplars of NNGE 

are below threshold so the extracted rules of NNGE were not taken into account 

during discovery of common rules. Same situation hold for PART since although 

there are 10 valid rules targeted to nongaseous zones extracted by PART, none of 

them has common attribute intervals with other rules sets of rest of Wells. Thus we 

could say that PA shows the best performance in nongaseous sandstone zones of 

Well-2. 

In the nongaseous sandstone zones of Well-3 having the highest amount of instance 

among well log dataset, NNGE is the best performer in terms of number of valid 

rules and rules with 100% usefulness. PART has eight valid rules where none of 

them has 100% usefulness whereas PA has five rules where three of them are in the 

desired form. Thus we could assume PA shows better performance than PART. 

Continue with the interpretation of result of Well-4’s nongaseous sandstone zones, 

NNGE yields the highest number of common valid rules but fails to produce rules 

with 100% usefulness since Well-4 log data lacks DT attribute. There is a deuce for 

PA & PART in terms of valid rule amount and none of the mentioned algorithm 

produce rules with 100% usefulness so we should look at average rule usefulness, 

NNGE has 73.08%, PA has 56.25% and PART has 55%. Therefore NNGE presents 

the best performance, PA wins the second place and PART is in the last.  

For nongaseous sandstone zones of Well-5, PA creates the highest number of valid 

rules and has the greatest average rule usefulness comparing with PART. NNGE has 

no valid common rules since all resultant exemplars of nongaseous zones of Well-5 

are below the threshold so the extracted rules of NNGE were not taken into account 

during the discovery of common valid rules. So PA shows the best performance in 

Well-5’s nongaseous zones. PART presents better performance than NNGE. 

Considering all Wells and nongaseous sandstone zones, in terms of number of rule 

sets, NNGE attains the highest amount with 14 rule sets. PA has 12 rule sets and 

PART produces 10 rule sets. In terms of number of valid rules, NNGE and PA 

extract same number rules but NNGE produces 22 rules with 100% usefulness 



!

! 115!

whereas PA creates only 3 so NNGE algorithm able to extract the highest number of 

common useful validated rules targeted to find nongaseous sandstone zones of 

Osmancik Formation in Degirmenkoy gas field. So NNGE should be chosen for 

future data mining and knowledge discovery operations. If an alternative is 

considered instead of NNGE, PA may be a good choice rather than PART. 

There are situations that extracted rules may be more explanatory than graphical log 

reports in some sense. By observing nongaseous zones in log reports, we couldn’t 

understand the amount of instances that corresponds to these zones but rules which 

are extracted by the mentioned set of algorithms gives information about the amount 

of instances corresponds to these nongaseous zones. Also there are indistinguishable 

zones in the log reports such that narrowness of graphical representation causes 

confusion in understanding whether that zone has hydrocarbon or gas. But 

fortunately, we could realize from rule content such zones having gas or other form. 

One other thing worth to mention is that some of the rules extracted by NNGE, PA 

and PART highlights critical points of gas concentration where it is almost zero. 

As a last important implication we observe that the applied set of algorithms is 

somewhat sensitive to erroneous data at different levels. PA is the most sensitive of 

the set of algorithm since negative values effects attribute intervals in a way that too 

large discrete intervals formed causing meaningless content in created rules. For 

PART & NNGE, we compared the amount of extracted invalid rules with or without 

erroneous data and determined that PART is more sensitive to such data than NNGE. 

!

!!

!

!

!

!

!

!

!

!

!



!

! 116!

!

!

!

REFERENCES 

 

[1] AL-MEGREN H. A. ed. (2012), Advances in Natural Gas Technology, InTech, 
Croatia. 
 

[2] BHAGAT S., TANEJA V (2011), Data Analysis of Drug Datasets Project - 
Weka Tutorials I, 
https://wiki.auckland.ac.nz/display/BeSTGRID/WEKA+Tutorials+I, 8 Oct 2013. 
 

[3] BJORLYKKE K. (2010), Petroleum Geoscience From Sedimentary 
Environments to Rock Physics, Springer, Oslo. 
 

[4] BRAMER MAX. (2007), Principles of Data Mining, Springer, Portsmouth.  
 

[5] CHAKRABATI S., et al. (2009), Data Mining Know It All, Elsevier-Morgan 
Kaufmann, Burlington. 
 

[6] CLEVELAND J. C., MORRIS C. (2009), Dictionary of Energy: Expanded 
Edition, Elsevier, Boston. 
 

[7] DU HONGBO (2010), Data Mining Techniques and Applications: An 
Introduction, Course Technology Cengage Learning, United Kingdom. 
 

[8] ELLIS D., SINGER J. (2008), Well Logging for Earth Scientists, Springer, 
Ridgefield. 
 

[9] FRANK E. & WITTEN I. (1998), Generating Accurate Rule Sets Without 
Global Optimization, The University of Waikato Department of Computer 
Science Working Paper Series, 2/98, New Zealand. 
 

[10] GILLIS GRETCHEN (1998), Schlumberger The OilField Glossary, 
http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&fil
ter=caliper, 24 Oct 2013. 
 

[11] GILLIS GRETCHEN (1998), Schlumberger The OilField Glossary, 
http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&fil
ter=shut-in%20pressure, 25 April 2013. 
 

[12] GILLIS GRETCHEN (1998), Schlumberger The OilField Glossary, 
http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&fil
ter=basin, 8 Oct 2013. 
 



!

! 117!

[13] HAN J., KAMBER M., PEI J. (2012), Data Mining Concepts and Techniques 
(3rd ed.), Elsevier-Morgan Kaufmann, Illinois. 
 

[14] HAND D., MANNILA H., SMYTH P. (2001), Principles of Data Mining, The 
MIT Press, London. 
 

[15] HORI S., TAKI H, WASHIO T, MOTODA H. (2002), Electrical Engineering 
in Japan, 140 (2), 1289-1295, August. 
 

[16] HOŞGÖRMEZ H. & YALÇIN M. (2005), Gas source rock correlation in 
Thrace Basin, Turkey, Marine and Petroleum Geology 22, 901–916, April. 
 

[17] HUG HYONTAI (2006), Generating Decision Trees with Boughs, Proceedings 
of the 2006 International Conference on Artificial Intelligence, 2, 545-550, June. 
 

[18] ISLAMOGLU Y., HARZHAUSER M, GROSS M., MORENO G., CORIC 
S, KROH A., RÖGL FRED, MADE J., (2010), From Tethys to Eastern 
Paratethys: Oligocene depositional environments, paleoecology and 
paleobiogeography of the Thrace Basin (NW Turkey), International Journal of 
Science (Geol Rundsch), 99, 183-20, Nov. 
 

[19] KANTARDZIC MEHMED (2011), Data Mining Concepts, Models, Methods 
and Algorithms (2nd ed.) IEEE, Louisville. 
 

[20] KONJEVEDA P & ŠTAMBUK N. (2012), Theoretical and Methodological 
Approaches to Social Sciences and Knowledge Management, InTech. 
 

[21] KUMAR B, RUKMANI K (2010), Implementation of Web Usage Mining 
Using Apriori and FP Growth Algorithms, Int. J. of Advanced Networking and 
Applications, 1 (6), 400-404, April. 
 

[22] KUMAR Y, SAHOO G. (2012), Analysis of Parametric & Non Parametric 
Classifiers for Classification Technique using WEKA, I.J. Information 
Technology and Computer Science, 7, 43-49, July. 
 

[23] LAROSE DANIEL (2005), Discovering Knowledge in Data: An Introduction 
in Data Mining, Wiley, New Jersey. 
 

[24] LIU BING. (2011), Web Data Mining (2nd. ed.) Springer, Chicago. 
 

[25] MAIMON O., ROKACH L. (2010), Data Mining and Knowledge Discovery 
Handbook (2nd ed.), Springer, Israel. 
 

[26] PANG-NING T., STEINBACH M., KUMAR V. (2006), Introduction to Data 
Mining, Pearson Addison Wesley, New York. 
 



!

! 118!

[27] PARVIN H., ALIZADEH H. & MINAEI-BIDGOLI B. (2008), MKNN: 
Modified K-Nearest Neighbor, Proceedings of the World Congress on 
Engineering and Computer Science, 1, October. 
 

[28] ROKACH L., MAIMON O. (2008), Data Mining with Decision Trees: Theory 
and Applications, World Scientific, London. 
 

[29] SAM BOGGS (2006), Principles of Sedimentology and Stratigraphy, Prentice 
Hall. 
 

[30] SCHEFFER TOBIAS (2001), Finding Association Rules that Trade Support 
Optimally Against Confidence, Proceedings of the European Conference on 
Principles and Practice of Knowledge Discovery in Databases, September. 
 

[31] SİYAKO M., HUVAZ O. (2007), Eocene stratigraphic evolution of the Thrace 
Basin, Turkey, Sedimentary Geology, 198, 75-91. 
 

[32] SPEIGHT JAMES (2007), Natural Gas A basic Handbook, University of 
Trinidad and Tobago, Gulf Publishing Company, Houstan Texas. 
 

[33] SUMAN M., ANUHADRA T., RAMAKRISHNA A. (2011), A frequent 
Pattern Mining Algorithm on FP-Tree Structure and Apriori Algorithm, 
Research Journal of Computer Systems Engineering, 2 (5), 275-277, October-
December. 
 

[34] TRIANTAPHYLLOU E. (2011), Data Mining and Knowledge Discovery via 
Logic-Based Methods, Springer, Louisiana. 
 

[35] TURKISH PETROLEUM CORPORATION (2006), DegirmenkoyO1-O2-
O3-O4-O5 Well Log Reports, Osmancik Formation, November, Research 
Department. 
 

[36] WITTEN I.H, FRANK E. (2005), Data Mining: Practical Machine Learning 
Tools and Techniques (2nd ed.), Elsevier, San Francisco. 
 

[37] WITTEN I.H, FRANK E (2011), Data Mining: Practical Machine Learning 
Tools and Techniques (3nd ed.), Elsevier-Morgan Kaufmann, San Francisco. 
 

[38] WONG ALEXANDER (2005) Supervisor Dr. Brent Martin, Investigating 
Noise Tolerance in Generalized Nearest Neighbor Learning, Technical Reports, 
Department of Computer Science University of Canterbury, 
http://www.cosc.canterbury.ac.nz/research/reports/HonsReps/abstracts/0509_abs
.html,  16 June 2013. 
 

[39] WU X., VIPIN K (2009), The Top Ten Algorithms in Data Mining, Chapman 
& Hall /CRC, New York. 
 



!

! 119!

[40] XIONGMIN L., CHRISTINE W. (2010), Application of an enhanced decision 
tree learning approach for prediction of petroleum production, Engineering 
Applications of Artificial Intelligence, Elsevier, 23 (1), 102–109, Feb. 
 

[41] YE NONG (2003), The Handbook of Data Mining, Lawrence Erlbaum 
Associates, New Jersey. 
 

[42] ZAHARIE D., PERIAN L., NEGRU V (2011), A view Inside the 
Classification with Non-Nested Generalized Exemplars, IADIS European 
Conference Data Mining, 19-26, July. 
 

[43] ZAHARIE D., PERIAN L., NEGRU V., ZAMFIRACHE F. (2011), 
Evolutionary Pruning of Non-Nested Generalized Exemplars, 6th IEEE 
International Symposium on Applied Computational Intelligence and 
Informatics, 57-62, May. 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

! 120!

 

 

 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

 

Surname, Name              : ACAR, Mehmet Akif 

Nationality                      : Turkish (TC) 

Date and Place of Birth  : 1979, Ankara 

Marital Status                 : Married 

Phone                              : +905336304079 

Email                              : mehmetakifacar@gmail.com 

 

EDUCATION 

Degree Institution Year of Graduation 

MS with thesis Çankaya Univ. Computer 

Engineering 

2014 

MS with thesis Gazi Univ. 

Business Administration 

2010 

BS Middle East Technicial 

Univ.  Mathematics 

2004 

 

WORK EXPERIENCE 

Year Place Enrollment 

2008 – Present  T.P.A.O Mobile App. Developer 

 

FOREIGN LANGUAGES 

English. 

 

HOBBIES  

Tennis, Mobile Technology research. 


