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ABSTRACT

A NEW CUSTOMER ORDER SCHEDULING PROBLEM ON

A SINGLE-MACHINE WITH JOB SETUP TIMES

AKKOCAOGLU, Hale

M.Sc., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Ferda Can CETINKAYA
Co-Supervisor: Assist. Prof. Dr. Abdiil Kadir GORUR

February 2014, 72 pages

In this study, we consider a relatively new class of the customer order scheduling
(COS) problem where each order consists of one or more individual jobs. All jobs in
the same customer order are processed successively and delivered at the same time to
the customer. Thus, the completion time of the last job processed in each customer
order defines the completion time of the order. A sequence independent setup is
required before the processing of each job in a customer order. However, no setup is
necessary before the processing of the first job of a customer order if this first job is
the same as the last job of the immediately preceding customer order. We investigate
the single-machine problem for two cases in which the makespan, which is the time
to complete all customer orders, is minimized in the first case while the total
completion time, which is the sum of the completion time of the orders, is minimized
in the second case. For some special cases of both problems, we derive the properties
of the optimal solution, which can be obtained by priority rules. We show that the
makespan problem is polynomially solvable. For the total completion time problem,

we develop a mixed integer programming model capable of solving small-sized



problem instances optimally and propose a constructive heuristic algorithm that
obtains optimal and near-optimal solutions for medium and large sized problem
instances. Computational experiments are done to evaluate the performance of our
solution approaches in terms of both quality and time. The results show that the
mixed integer linear programming model does not seem to be a useful alternative,
especially for large-sized problem instances. However, the proposed heuristic

algorithms find near-optimal solutions in very short time.

Keywords: Scheduling, Customer Order Scheduling, Group Scheduling, Makespan,

Total Completion Time



0z
HAZIRLIK SURESI GEREKTIREN TEK BiR MAKINEDE YENI BIR

“MUSTERI SIPARISLERI CiZELGELEMESI” PROBLEMI

AKKOCAOGLU, Hale

Yiiksek Lisans, Endiistri Miithendisligi Anabilim Dali
Tez Yoneticisi: Dog. Dr. Ferda Can CETINKAYA
Ortak Tez Yoneticisi: Yrd. Dog. Dr. Abdiil Kadir GORUR

Subat 2014, 72 sayfa

Bu ¢aligmada, miisteri siparis problemlerine yakinlik gdsteren yeni bir problem ele
alinmistir. Her miisteri siparisi bir ya da birden fazla isten olusmaktadir. Bir
siparisteki biitliin isler ardisik islenmeli ve miisteriye birlikte gonderilmelidir. Bu
sebeple herhangi bir siparisteki son isin tamamlanma siiresi, ayn1 zamanda o siparigin
tamamlamana siliresine esittir. Bir miisteri siparisindeki her bir isin islenmesinden
once is sirasindan bagimsiz bir hazirlik zaman1 gerekmektedir. Fakat eger birbirini
takip eden iki miisteri siparisindeki son ve ilk isler ayniysa, siralamada sonra gelen
miisteri sipariginin ilk isinden 6nce hazirlik gerekmez. Bu g¢alismada, tek makineli
problem iki farkli durum i¢in irdelenmistir. Birinci durumda amag, tiim siparislerin
bitirilme stiresinin en kiigiiklenmesi; ikinci durumda ise amag, siparislerin
tamamlanma siireleri toplaminin en kiigiiklenmesidir. Her iki problem i¢in baz1 6zel
durumlar dikkate alinmis ve bu durumlarda en iyi ¢6ziimiin 6ncelik kurallariyla elde
edilmesini saglayan 6zellikleri belirlenmistir. Tiim siparislerin bitirilme siiresinin en
kiigliklenmesi probleminin polinom zamanda ¢oziilebildigi gosterilmistir. Siparislerin

tamamlanma siireleri toplaminin en kii¢iiklenmesi problemi i¢in de kiiciik Slgekli

Vi



problemleri ¢6zebilen matematiksel model gelistirilmis ve orta ve biiyiik 6l¢ekli
problemlerin eniyi ya da eniyiye yakin coziilebilmesi icin sezgisel algoritmalar
gelistirilmistir. Gelistirilen bu algoritmalarin performansini ¢6zliim kalitesi ve siiresi
acisindan incelemek igin sayisal deney setleri tasarlanmistir. Matematiksel model
cok uzun ¢oziim siirelerine ihtiya¢ duyarken algoritmalar saniyeler iginde iyi
sonuclar verdigi icin zaman karsilagtirmasi anlamli bulunmamistir. Bu nedenle
algoritmalarin, 6zellikle biiyiik Ol¢ekli problemler i¢in, matematiksel modele gore

daha iyi performans sergiledikleri gézlemlenmistir.

Anahtar Kelimeler: Cizelgeleme, Misteri Siparis Cizelgelemesi, Grup
Cizelgelemesi, Tiim Siparislerin Bitirilme Siiresi, Siparislerin Tamamlanma Siireleri

Toplami1

vii



ACKNOWLEDGEMENTS

First, 1 would like to thank my advisors Assoc. Prof. Dr. Ferda Can CETINKAYA
and Assist. Prof. Dr. Abdiil Kadir GORUR, for their endless support, motivating

guidance and especially their trust and patience during this study.

I would also like to thank my examining committee members, Assoc. Prof. Dr. Sedef
MERAL, Assist. Prof. Dr. Hakan OZAKTAS and Assist. Prof. Dr. Sakine BATUN

for their precious opinions and contributions to this study.

| am grateful to my parents Handan AKKOCAOGLU and Aslan AKKOCAOGLU
for their support in my whole life. I am especially grateful to my sister Hande
AKKOCAOGLU for being my first teacher and advisor.

I would like to thank my colleagues at the IE department for sharing my stress and

supporting during the all stages of my thesis.

I would also like to thank all my professors at the IE department for their motivation

and tolerance.

Finally, 1 am grateful to all my friends for their faithfulness, technical and morale

support whenever | need.

viii



TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ............. Hata! Yer isareti tanimlanmamus.
ABSTRACT ..ttt ne e iv
OZ oo vi
ACKNOWLEDGEMENTS ...ttt Vil
TABLE OF CONTENTS ..ot IX
LIST OF TABLES ... oot Xi
LIST OF FIGURES ... Xiii
CHAPTERS:
1. INTRODUCTION ..ottt st sttt esnbeennee s 1
2. PROBLEM DEFINITION AND PRELIMINARY RESULTS ......cccoiiiiiiiiieies 4
2.1 Problem STatement ..........ccoeiiiiiiee e 4
2.2 SOME ODSEIVALIONS......c.viiiiiiiiiiieeiieie ettt 6
2.3 Some Structural Properties of the Optimal Schedules .............cccooiiiinnnn 6
3. LITERATURE REVIEW ... 11
3.1 Group SCREAUIING .....oiveeiieiiieieeie e 12
3.2 Customer Order SChedUliNg ........cocvviiieiiiiiiie e 13
4. MAKESPAN MINIMIZATION PROBLEM ......ccccoiiiiiiiiieicie e 16
4.1 Shortest Path NEtWOIK..........ccooviiiiiiii e 16
4.2 Some Special Cases Solvable by Priority RUIES ..........ccoevvveiiiiiieiieci, 19
5. TOTAL COMPLETION TIME MINIMIZATION PROBLEM..........cccevirnnnene. 22
5.1 Mathematical MOdEl..............coooiiiiii e 22
5.2 Lower and Upper Bounds on the Total Completion Time...........ccccceevenen. 25



5.3 Some Special Cases Solvable by Priority RUIES ...........ccoovervniiiieniiinnnn, 26

5.4 HeuristiC AIGOItNMS ......ooviiiiiceeee e 29

6. COMPUTATIONAL EXPERIMENTS .....ooiiiiiiiiiie e 45

6.1 Computational Setting for Test Problems ..., 45

6.2 Performance MEASUIES ..........cecvuieieiieeieiieseesie e se e sra e ra e neesreas 46

6.3 Discussion Of the RESUILS ........ccecveiieii e 48

6.3.1 Performance of the MILP Model.........ccccooiiiiiiiiniec e, 48

6.3.2 Performance of the Heuristic AlQorithms............cccooceiiinininiiicen, 50

7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS .......cccoeiiiinnene 60

REFERENCGES ... ..ottt sttt nne e ne e s e 62
APPENDICES:

A. COMPARISON TABLES ...t e 65

B. AVERAGE PERCENT DEVIATIONS FROM THE OPTIMAL WHEN K=15 67
C. AVERAGE PERCENT DEVIATIONS FROM THE OPTIMAL WHEN K=20 68
D. AVERAGE PERCENT DEVIATIONS CALCULATED FOR K=5, 10, 15, 20.69

E. CURRICULUM VITAE. ..o 72



LIST OF TABLES

Table 2.1 Setup and Processing times of jobs in Example 1.........cccccoiiiiiiiienen, 5
Table 4.1 Flow costs between intermediate nodes of the network for the problem

considered in Example 1 when kequals 1 Or 2........cccccevveveiiieineiccienen, 18
Table 5.1 Jobs and initial total times of the customer orders in Example 2.............. 33
Table 5.2 Setup and processing times for all jobs in Example 2............ccoovevviinnen. 33

Table 5.3 Sequence o7t = {01, O5, 04, O3} obtained for the set 0" UOR in

Table 5.6 Final sequence o of all customer orders and jobs in Example 2 ........... 36
Table 5.7 Sequence {O;, 04,03, 05} obtained for the set 0" U O} in Step 2......... 39

Table 5.8 Sequence {O;,0,,0,, 03} obtained for the set O" U Oy in Step 3.......... 41

Table 5.9 Final sequence o of all customer orders and jobs in Example 4 ........... 42
Table 6.1 Performance of the MILP model...........ccooovoviiiiienee e 48
Table 6.2 Number of optimally solved problems by the MILP model ..................... 49

Table 6.3 Number of optimally solved problems by the MILP model and heuristic

AIGOTTTNMS L. e 50
Table 6.4 Average percent deviation of Algorithm 4 from the optimal solution for

VARIABLE CASE .....oviiiiiiiie ettt 51
Table 6.5 Average Percent deviation of Algorithm 4 from optimal solutions for

CONSTANT CASE ...teeiiieiie ittt eiee st stee ettt e et sreesbeesreeeeee e 53

Xi


file:///C:/Users/Hale/Desktop/TEZ/yazım/TEZ10032014.docx%23_Toc382259004

Table 6.6 Average percent deviation of Algorithm 4 from the best integer solutions

TOr CONSTANT CASE ...veevviiiieiiienie st sie ettt e sbe e sreas 53
Table 6.7 Average percent deviation of Algorithms 1, 2 and 3 for VARIABLE

(072 TP PR PPR TSP 58
Table 6.8 Average percent deviation of Algorithms 1, 2 and 3 for CONSTANT

(07 KT U PR PPPTTUPPTPPRPPIS 58

xii



LIST OF FIGURES

Figure 2.1 A feasible schedule of customer orders and jobs within the orders........... 5
Figure 4.1 Shortest path network for the problem considered in Example 1............ 17
Figure 5.1 Flowchart Diagram for the Heuristic Algorithms 1,2 and 3.................... 43
Figure 6.1 Difference between the average percent deviations .............cccceevveinenn, 52
Figure 6.2 Percent deviation of Algorithm 4 with respect to K =20........cc.ccecvevnee. 54
Figure 6.3 Percent deviations from the optimal for K=5 ..........cccooiiiiiiiicince 55
Figure 6.4 Percent deviations from the optimal for K=10 .........c..cccevvevriveinenenn 56

Figure 6.5 General average percent deviations for K =5, K =10, K =15 and K =20 57
Figure 6.6 General average percent deviations of each algorithm for K =5, K = 10,
K=15aN0 K Z 20 i 59

Xiii



CHAPTER 1

INTRODUCTION

Scheduling is the allocation of resources to complete a given set of tasks over time.
In production systems, resources and tasks are usually referred to as machines and
jobs, respectively. Scheduling is an important issue, because determining the
sequence of jobs on a machine is affected by a lot of factors such as processing
times, setup times, due dates, precedence relations among jobs, etc. Generally, these
factors cannot be handled without a systematic approach. Researchers investigate
scheduling problems to satisfy the need of a systematic approach since 1950s.
Scheduling problems vary with the concern of increasing efficiency in different
manufacturing and service systems. This concern also leads to an increase in studies
with setup time considerations. Setup activity may include obtaining tools,
positioning, work-in-process material, returning tools, cleaning up, setting the
required jigs and fixtures, adjusting tools and inspecting material (Allahverdi and
Soroush, 2008). A setup can be a sequence independent activity depending only on
the job to be processed, or it can be a sequence dependent one depending on both the
job to be processed and the immediately preceding job. Setup times are ignored or
considered as a part of process times in some studies. However, setup times are
treated separately from processing times because in this case operations can be
performed simultaneously which lead to an increase in resource utilization.
Therefore, reducing the effect of setup times or costs has been investigated by many
researches with different objectives and various shop structures. Some of the
researches take into account only one objective or shop structure, while some take
into account more than one objectives or shop structures. Setup time is one of the

most important factors that affect the efficiency and utilization of resources. Hence,



most of the studies in the literature have focused on reducing the impact of setup

time.

Customer order scheduling (COS) problem, is a kind of scheduling problem which
considers order-based production environments. COS problems are widely studied
problems in which there are K customer orders, each of which consists of a different
number of jobs from N different job families. The setup time required depends on
the family to be processed immediately after it. Therefore, grouping jobs in each
customer order which are from the same family and processing these jobs
successively have an advantage to reduce the setup time. The COS and the group
(batch) scheduling (GS) problems are two closely related problems. Within the
context of GS problems, a customer order and a product ordered by a customer may

correspond to a group (string of jobs) and a job in the group, respectively.

In this study, we address a relatively new variant of the customer order scheduling
problem, which differs from the other studies in the literature, because all jobs in
each customer order are processed together (group technology assumption) and
delivered at the same time to the customer (i.e., the completion time of the last job
processed in each order defines the completion time of the order), and no setup time
is necessary before the processing of the first job of a customer order if this first job
is same as the last job of immediately preceding customer order. We investigate the
problem for two scheduling criteria. Makespan (the time to complete all customer
orders) is minimized in the first case, while the total completion time (the sum of the
completion times of the customer orders) is minimized in the second case. The first
case, which is equivalent to minimizing total required setup time, is focused on
improving resource utilization and productivity whereas the second one, which is
equivalent to minimizing total work-in-process inventory, is focused on increasing
customer satisfaction. We show that the makespan can be solved in polynomial time.
For the total completion time problem, we develop a mathematical model that
obtains optimal solutions for small-sized problem instances and constructive
heuristic algorithms that obtain near-optimal solutions for medium and large-sized

instances, respectively.

The motivation for this type of customer order scheduling problem comes from

several environments such as metal processing, food processing, and data processing.



An application can be found in any kind of manufacturing system, especially in
manufacturing cells, in which there is a multi-purpose machine or a Computer
Numerical Control (CNC) machine capable of processing several jobs. Suppose that
the machine has a turret holding various machine tools. Each job uses some tools in
performing an operation (e.g., drilling, turning, punching, etc.). Each tool change
takes a different time in general to setup the machine for processing a job. If two
consecutive jobs scheduled on the machine are the same, then there is no need to
make a tool change and the setup time before the next job is zero or negligibly small.
Another application can be observed in a printing company that receives orders from

several customers with each order consisting of several printing jobs.

To the best of our knowledge, there is no study that deals with this variant of the
COS problem. We wish that our study will provide a new starting point for future
research in customer order scheduling since the setup time consideration of ours is

different from the studies in the literature.

The remainder of this study is organized as follows. In Chapter 2, we define the
problems under consideration, and then investigate some structural properties of the
optimal schedules for both makespan and total completion time minimization
problems. Chapter 3 presents a literature review on customer order scheduling and
group scheduling problems. Chapter 4 is devoted to the makespan minimization
problem, and proposes a network flow model that can be solved in polynomial time.
Chapter 5 investigates the total completion time minimization problem, and proposes
a mixed-integer linear programming model and four heuristic algorithms. The
computational tests to evaluate the performance of the mathematical model and the
proposed heuristic algorithms are presented in Chapter 6. Finally, our main findings

and several directions for future research are discussed in Chapter 7.



CHAPTER 2

PROBLEM DEFINITION AND PRELIMINARY RESULTS

In this chapter, we first define our problem under consideration and then investigate
some structural properties of the optimal schedules for both makespan and total

completion time minimization problems.

2.1 Problem Statement
There isa set O = {01,02,...,OK} of K customer orders to be processed on a single
machine, which is ready at time zero. Each order consists of one or more jobs from a

set J ={J1,J2,...,JN} of N jobs ready for processing at time zero, and each job

requires a sequence independent setup before processing. In contrast with existing
studies on customer order scheduling, this study regards group technology
assumption. In other words, all jobs in a customer order should be processed
successively rather than scheduling the same jobs from different customer orders
together. All jobs in a customer order are delivered at the same time to the customer
and hence the completion time of the last job in a customer order is also the

completion time of that order. Each job J; has a constant processing time p; and a
constant setup time s;. The setup time required before processing the job is

inevitable inside a customer order, however no setup is required before the first job
of a customer order if this job is the same as the last job of the immediately
preceding customer order. Moreover, only one job can be processed on a machine at
a time and preemption is not allowed, i.e., the processing or setup of any job cannot
be interrupted at any time and resumed at a later time. In our study, we assume that
each customer order consists of several different jobs but each job occurs only once

in an order, i.e., multiple identical jobs do not exist in a customer order.



Before we proceed with our analysis, it seems appropriate to illustrate the problem

by the following numerical example.

Example 1 Consider a simple instance of the problem in which there are three
customer orders. Order 1 has jobs 1 and 3, Order 2 has jobs 1, 2 and 4, and Order 3
has only job 3. Setup and processing times of all jobs are given in the following
table.

Table 2.1 Setup and Processing times of jobs in Example 1

Job 1 2 3 4
Setup time 3 2 4 1
Processing time 3 4 7 5

A feasible schedule of these three orders and four types of jobs is
0,(J,-J,-3,)-0,(J, - J,)-0,(J;), and the makespan value is 39 time units, as

shown in Figure 2.1, and the total completion time of the customer orders is 18 + 32
+ 39 = 60. As it is illustrated in Figure 2.1, there is no need for a setup for job 1 in
Order 1 since the last job of the previous order (Order 2) is the same as the first job
of Order 1. Similarly, there is no need for a setup for job 3 in Order 3, since the last

job of the previous order (Order 1) is job 3.

! Order 2 ! Order 1 ' Order 3 !
7 F 7 7,

o, Z 7, /A Jo| //A J, J,

01 6 8 12 15 18 21 25 32 39

Figure 2.1 A feasible schedule of customer orders and jobs within the orders



2.2 Some Observations
Let us now give some preliminary definitions before discussing our some

observations.

Definition 1 Total time (TT,) of a customer order O, is the sum of setup and

processing times of all jobs in this customer order, i.e. TT, = >’ (sj + pj).
J; €0,
Definition 2 The shortest total time (STT) sequence is a sequence in which the

customer orders are sequenced in non-decreasing order of their total time.

When the setup times are omitted, we observe that the problem reduces to the
scheduling of K customer orders (groups) with several common and uncommon
jobs in each group. In this reduced problem, the makespan minimization problem
becomes trivial since any sequence of customer orders gives the same objective
value. On the other hand, processing the customer orders in STT sequence minimizes
the total completion time of the customer orders, where the total time of a customer
order is only the sum of the processing times of the jobs in this customer order since
the setup times are omitted. However, the structure of the problem changes
dramatically when the setup times are introduced. Depending on the composition of
the customer orders, the makespan minimization problem is not straightforward as in
the case of no-setup times, and the shortest total time rule may or may not perform

well in the total completion time minimization problem.

2.3 Some Structural Properties of the Optimal Schedules
We now give some structural properties of the optimal schedules, which will be used
in the development of the solution procedures for both makespan and total

completion time minimization problems.

Property 1 For both makespan and total completion time minimization problems,

there exists an optimal schedule without inserted idle time.

Proof If an idle time exists on the machine, then subsequent customer orders along
with their jobs may be shifted left on the machine without increasing the objective of

the current schedule. [J



The set of customer orders O can be divided into two disjoint sets O’ and O”
(O=0'u0” and O'O" =) where the set O’ is composed of customer orders
having no common job with other customer orders, and its complement set O” is

composed of remaining customer orders.

Property 2 There exists at least one optimal schedule of the makespan minimization
problem in which the customer orders in the set O" are not intermingled with the
customer orders in the set O". That is, the customer orders in the set O' are
processed consecutively in any order before or after the optimal sequence of the

customer orders in the set O”.

Proof Suppose that O; is a customer order in the set O’. Furthermore, suppose that
O, and O, are two customer orders in the set O". It is obvious that processing the
customer order O; between O, and O, may prevent the earlier completion of the
customer order O, if the customer orders O, and O, have a common job that may
reduce the makespan. Thus, the customer order O; in the set O" should not be

intermingled with the customer orders in the set O". [

Definition 3 Let

o, ={oi |TT, < min {TT, —max{sj}}},

0,e0" J;€0,

o, ={oi | min {TT, —max{sj}}<TTi < max{TT,}}, and

0,e0" J,€0, 0,e0"

o} ={oi |max{TT|}sTTi}

0,e0"

be three disjoint subsets of the set O"which is composed of customer orders having

no common job with other customer orders.



Property 3 For the total completion time minimization problem, there is an optimal
schedule with the following properties:

(a) The customer orders of the subset O precede all other customer orders, and
the customer orders of the subset O} succeed all other customer orders.
(b) The customer orders in the subsets O; and O, are scheduled in STT

sequence.
That is,

o1 (Og) — {Optimal schedule of 0" WO, } — o1 (0}).

Proof Without loss of generality, we assume o={0,,0,,...,0,,,0,,0,,,,...,0,} is
any sequence of all customer orders. Suppose that a customer order O is the first
customer order of type Og in the sequence o. That is, all the customer orders
preceding the customer order O; are the members of the other sets O”, Of and O,.
Let C; and TC(o) be the completion time of the customer order i in the sequence

o , and the total completion time of the sequence o, respectively. Then, we have
TC(o)=C,+C,+..+C_,+C,+C , +...4+C,

=C,+C,+..+C_+(C_,+TT)+C, +..+C,

i+1
>C,+C,+..+C_,+(-DTT. +TT. +C,, +...+C,

>C,+C,+..+C_+ixTT,+C,, +...+C,,

i+1

by Definition 3. Moving the job O, to the beginning of all the customer orders in the
sets O", Oy and O}, currently preceding the job O, in the sequence o and shifting
backward all these customer orders in the sets O”, O and O), currently preceding
the job O, yields a new sequence ¢’ ={0,,0,,0,,..,0,,,0, ,,....0,}. Let TC(c") be

the total completion time of the sequence o’. Then, we have



TC(o) =TT +(C,+TT)+(C,+TT)+...+(C_,+TT.)+C, +..+C,
=C,+C,+.+C_ +(-DTT,+TT,+C,, +..+C,

=C, +C,+..+C, +iIxTT+C_, +..+C,.

i+1
Thus, it is clear that the total completion time of the current sequence o is improved
by this change since TC(J)>TC(6’). Repetition of this argument for all remaining

customer orders in the subset Oy shows that customer orders of the subset Og

precede all other customer orders.

Suppose that a customer order O, is the last customer order of type O} in the
sequence o . That is, all the customer orders succeeding the customer order O, are

the members of the other sets O, O” and O . Then, we have
TC(o)=C,+C,+...+C_,+C, +C,,+...4+C,

=C,+C,+..+C_,+(C_,+TT)+C,,,+..+C,

i+1
>C,+C,+..+4C_,+(-DTT. +TT. +C,, +...+C,
>C,+C,+..+4C_,+ixTT.+C,,+...+C,,

by Definition 3. Moving the job O, to the end of all the customer orders in the sets
Oy, O" and Of currently succeeding the job O, in the sequence o and shifting
forward all these customer orders in the sets O;, O" and O currently succeeding
the job O, yields a new sequence o’ ={0;,0,....,0;_1,0;.1,....0n,O;}. Then, we

have

TC(o)=C,+C,+..+4C,+(C,,-TT) +..+(C,-TT,) +C,

i+1

=C,+C,+..+C_+C,,+..+C —(n-1)TT, +C,

i+1
=C,+C,+..+C_+C,, +..+C —nxTT, +ixTT, +C_

<C+C,+..+C_,+C,

+..+C, —nxTT +ixTT, +nxTT,



<C+C,+..+C_+C +..+C +ixTT.

Thus, it is clear that the total completion time of the current sequence o is improved
by this change since TC(G)>TC(G’). Repetition of this argument for all remaining
customer orders in the subset O}, shows that customer orders of the subset O}

succeed all other customer orders.

The proof of the Property 3(b) follows from the result by Smith (1956), who showed
that processing the jobs in SPT-order minimizes the total completion time for the
classical one-machine problem in which there are n jobs. In our problem it is clear
that the customer orders in the subsets O, and Og may each be treated as pseudo-
jobs in the classical one-machine problem, yielding an optimal sequence
characterized by a customer order-based version of SPT, which we refer to as the

STT sequence in which the customer orders in the subsets O, and O are

sequenced in non-decreasing order of their total time TT,. [

10



CHAPTER 3

LITERATURE REVIEW

Scheduling problems in production environments are classified according to shop
structures, job characteristics and performance measures. Several shop structures are
considered in scheduling studies, but generally single machine, parallel machine, job
shop and flow shop environments are studied extensively in the literature.
Performance measures considered in these studies diversify depending on the shop
structure. For instance, there is an increasing number of studies considering job shop
environment that aim to minimize makespan, total completion time, maximum
lateness, maximum tardiness, total tardiness, number of tardy jobs and so on.
Therefore, different characteristics and performance measures are taken into account

according to observations of real life applications in production systems.

Variety of the problems leads to an increase in the number of studies mostly in recent
years. Those studies show that setup time is considered frequently in scheduling
studies. Until mid-1960s, benefits of incorporating setup times have been mentioned
by many researchers for different manufacturing and service systems. A review of
studies on scheduling problems considering setup times or costs is given first by
Allahverdi et al (1999). This review was expanded with the growth of interest in
reducing the effect of setup times or costs in Allahverdi et al (2008). In this survey,
studies are classified with respect to shop type, shop characteristic, setup information
(i.e. whether the setup time is sequence dependent or independent) and performance
measure. Single machine, parallel machine and flow shop problems with setup
consideration have dominance over the other shop structures. In order to reduce the
effect of setup times or setup costs, several scheduling policies have been developed

by the researchers. Whether the setup time is sequence dependent or not, processing
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jobs in the same family as a batch is one of the way to avoid setup times. Therefore,
there has been significant interest in scheduling problems involving batching issue.
Studies with setup times or costs clearly indicate the advantage of batching and

group technology assumption.

The problem under consideration can be associated with group scheduling and
customer order scheduling. In this chapter, we briefly review the most relevant work
to our study on group scheduling and customer order scheduling, especially for

single machine problems.

3.1 Group Scheduling

In this section, we will give a review of studies on group scheduling, but definition of
group technology should be given first. Janiak et al (2005) defines group technology
as an approach to manufacturing and engineering management that seeks to achieve
the efficiency of high-volume production by exploiting similarities of different
products and activities in their production or execution. In this article, single machine
problem to minimize total weighted resource consumption is studied with sequence
independent setup times which precede processing of each group, and it is assumed
that two external resources can be used to compress setup and processing times by
each resource, respectively. Wang et al (2012) considers single machine problem
with fixed group setup times, release dates and changeable processing times. It is
shown that total completion time minimization problem can be solved in polynomial
time for a special case only. Fixed group setup times considered by Wang et al
(2012) can be regarded as job setup times and groups as customer orders in our
study. The difference is that processing times are constant and ready times are not
considered in our study. A similar problem is presented by He and Sun (2012) who
consider the single machine group scheduling with deterioration without ready times.
The aim of their study is to minimize the sum of completion times and they show
that their problem can be polynomially solvable only under some conditions. In the
case of jointly compressible setup and processing times, a polynomial time algorithm
to find the optimal solution is presented in Ng et al. (2004). The objective of this
problem is minimizing total job completion time on a single machine. Furthermore, a
real life application of group technology is studied in PCB manufacturing (Sabouni

and Logendram, 2013). This paper considers the problem of minimizing the
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makespan on a single machine with carryover sequence dependent setup times. They
propose a branch-and-bound algorithm and lower bound for their problem. A branch-
and-bound procedure is described in Azizoglu and Webster (2001) in order to solve
minimizing total weighted completion times problem on a batch processing machine
with incompatible job families. Another study which proposes a branch-and-bound
algorithm for solving minimizing flow times is proposed by Mazdeh et al. (2007).
Single machine with batch delivery problem is defined and structural properties of
the problem are investigated. Also these properties are used to devise a branch-and-
bound solution scheme. Computational experiments show significant improvements

over an existing dynamic programming approach.

Gupta and Chantaravarapan (2008) considers single machine group scheduling
problem with family setups. A MILP is proposed and heuristic algorithms are
developed in order to minimize total tardiness. Greedy algorithm, swap algorithm,
simulated annealing are used to solve this problem. Performance of proposed

algorithms is presented for small, medium and large size problems.

A different approach to group scheduling problem is investigated in Gerodimos et al.
(1999). In this study there are jobs each requiring multiple operations. According to
group technology terminology, jobs are referred to as groups and operations are
referred to as jobs in the groups. All operations should be processed successively,
and also all jobs in a group should also be processed together. Minimizing the sum of
completion times, minimizing maximum lateness and minimizing the weighted
number of late jobs are examined separately. Complexity of each type of problem is
analyzed and a dynamic programming approach, which requires pseudo-polynomial
running time, is presented to minimize the number of late jobs. A similar algorithm is

also used to minimize the sum of completion time.

3.2 Customer Order Scheduling
Customer order scheduling is another closely related area to our problem

environment under consideration.

Gupta et al. (1997) consider single machine scheduling problems to minimize
makespan and total carrying cost of the customer orders where jobs are from

different classes with sequence independent class setup times and there are customer
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orders consisting of at least one job from each of the classes. They propose
constructive polynomial time algorithms for the two hierarchical scheduling

problems.

Customer order scheduling with family setup times that is required whenever
production switches from one family to another is considered by Erel and Ghosh
(2007). Their study considers a situation where C customers order various quantities
of products from P different families, which can be produced on a continuously
available machine in any sequence. The time from the start to completion of a
customer order is called the order lead time and they consider total customer order
lead time as the performance measure to be minimized. They show for the first time
that the problem is strongly NP-hard and propose dynamic programming based exact
solution algorithms for the general problem and a special case where number of
customer orders is fixed. Solution of the special case shows that the problem can be
solvable in polynomial time where number of customers is fixed and they expect to
solve problem instances with number of jobs up to 30 or up to 200 when number of
customers is less than 5 and the number of job families is less than 500.

Hazir (2008) considers customer order scheduling problem which is defined as to
determining the sequence of tasks to satisfy the demand of customers who order
several types of products produced on a single machine. In their study, setup is
required whenever a product type is launched and the objective is to minimize the
average customer order flow time. They propose four major metaheuristics and
compare the performance of these heuristics which are simulated annealing, genetic
algorithms, tabu search and ant colony optimization. They generate a set of problem
and compare the solution quality and computational efforts of these heuristics and
show that tabu search and ant colony perform better for large-sized problems

whereas simulated annealing performs best in small-sized problems.

Gupta and Sivakumar (2005) considers single machine environment with two job
families and more than one objective such as cycle time, machine utilization and
due-date accuracy. Pareto optimal solution is obtained combining analytically
optimal and conjunctive simulated scheduling approach, and results are compared
with the solutions obtained by common dispatching rules (EDD and SPT).

Improvements in percentage are given in the computational results of this article.
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Minimizing the maximum job lateness on a single machine with job families are also
investigated (Baker and Magazine, 2000). A heuristic based on EDD is proposed in
this paper and computational results are presented. Similar problem is taken into
account by Chen (2008). The only difference is the objective of the problem being
minimization of maximum tardiness. A heuristic is presented in order to solve large-
sized problems. A branch-and-bound algorithm utilizing several theorems is also
proposed to find the optimal schedules for the problem. Computational results are

provided to demonstrate the effectiveness of the heuristic.

In the literature, there are several studies considering group scheduling and customer
order scheduling. However, to the best of our knowledge, the customer order
scheduling problem, in which all jobs in a customer order should be processed

successively, is studied for the first time.
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CHAPTER 4

MAKESPAN MINIMIZATION PROBLEM

In this chapter, we analyze our customer order scheduling problem for minimizing
the makespan problem, describe a shortest path formulation by constructing a

network, and show that the problem can be solved in polynomial time.

It is clear that the application of Property 2 given in Section 2.3 will reduce the size
of the problem by dropping the customer orders in the set O’ from the problem
before applying the shortest path network approach to the customer orders in the set
o".

4.1 Shortest Path Network
The shortest path network consists of a set of nodes and a set of arcs connecting
certain pairs of the nodes, as shown in Figure 4.1. The node set in the network

includes:

e adummy beginning (source) node (0),
e adummy ending (sink) node (K +1),
e node (k,0;,J;), k=1..,K, i=1..,K, vJ; €O;: Each such node represents

that customer order O; is assigned to position k of the sequence of the
customer orders and job J; in order O; is assigned to the last position of this

customer order.
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Figure 4.1 Shortest path network for the problem considered in Example 1

For each position, which corresponds to a stage in the shortest path network, in the

K
sequence of customer orders, we create N, => N, nodes, where N, is the total

i=1

number of jobs in all customer orders and N, is the number of jobs in the customer

order i. The directed arc set is generated as follows:

An arc from the beginning node (0) to node (1,0;,J,) with flow cost

Z(SJ + p,—).

Jje0;
An arc from node (k,0;,J.) to node (k+1,0,,J.) with flow cost

Z(sj+pj), where k=1..,K-1, i=l, and J, is a common job in
Jje0,

customer orders O; and O.
An arc from node (k,0,,J,) to node (k+1,0,,J,) with flow cost

Zsj+ ij,where k=1..,K-1,i=h, r=v.
Jj €0 J; €0
j=r

An arc from node (K,GQ;,J,) to the ending node (K +1) with flow cost of
zero.
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It is clear that the maximum possible number of nodes based on K and N; is
(K><NT )+2.

The flow costs between intermediate nodes of the network for the problem

considered in Example 1 are given in Table 4.1.

Table 4.1 Flow costs between intermediate nodes of the network for the problem considered

in Example 1 when k equals 1 or 2

O kL0 [ 10,3y [ K410, 3, [ 410, 3, [ kL0, 0, [ k41033,
rom

k,0,,J; - - 18 15 15 11
k,O, J; - - 18 18 18 7
k,0,,J; 17 14 - - - 11
k,0,,J, 17 17 - - - 11
k,0,,J, 17 17 - - - 11
k,O3,J3 13 17 18 18 18 -

Thus, the following pure-integer linear programming model needs to be solved to
find the shortest path in the network.

(SP) Minimize > > cq Xq
fot
1 if f=0
Subjectto D> Xy - > X, =40 if f=0or K+1
f ‘ -1 if f=K+1

c{01} Vit

where c,, is the cost flow from node f to node t, and x,, is the amount of flow on

the arc (f ,t).

It is known that the node-arc incidence matrix associated with the conservation
equations given above is totally unimodular. Hence, there exists at least one optimal
solution to the linear programming (LP) relaxation of the above model in which all

decision variables are integer, i.e., X, =0 or 1. Such a solution can be found by
replacing x, {01} by x, >0 and solving the resulting LP. However, the solution

can be determined even more efficiently by Dijkstra’s algorithm.
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4.2 Some Special Cases Solvable by Priority Rules
The following theorems give the properties of an optimal schedule for some special

cases of the makespan minimization problem which are solvable by priority rules.
Special Case 1: Each customer order has only one job, and all jobs are distinct.

Theorem 1 If each customer order has only one job and all jobs are distinct, then

any sequence of the customer orders is optimal.

Proof If each customer order has only one job, and all jobs are distinct, then a setup
is required before processing each job. Thus, all sequences of the customer orders

give the same minimum makespan value which is equivalent to C..= >, (sj + pj)

j€d

This completes the proof. [

Special Case 2: Each customer order has only one job, and some jobs are common.

Theorem 2 If each customer order has only one job and some jobs are common,
then

e the customer orders having a common job are processed consecutively, and
e the blocks of the customer orders and the customer orders having no common

job are processed in any sequence
in the optimal schedule.

Proof Suppose that K, customer orders have job J,, K, customer orders have job
J,, etc. Processing K; customer orders having job J, consecutively requires only
one setup. Similarly, processing K, customer orders having job J, consecutively

requires only one setup. Making such blocks of customer orders having a common
job reduces the number of setups to a minimum value. It is clear that any sequence of
the blocks of customer orders along with the customer orders having no common job

gives the same minimum makespan value. This completes the proof. [

Special Case 3: Each customer order has two distinct jobs, which exist in all

customer orders.
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Theorem 3 If each customer order has two distinct jobs, say jobs J, and J,, which

exist in all customer orders, then the job with long (short) setup time is processed as
the second job of the customer orders in each odd-numbered (even-numbered)

position in the optimal schedule.

Proof In this case, the sequence of the customer orders are not important since all

customer orders have common two jobs. Thus, we need to determine whether job J,
or job J, is processed in the first position within each position of customer orders. If
the first job in the first customer order is job J,, then the first job in the second
customer order should be job J, to get the advantage of no-setup when job J, is the

last and the first job of the first and second customer orders, respectively. Similarly,

the first job in the third customer order should be job J, to get the advantage of no-
setup when job J, is the last and the first job of the second and third customer

orders, respectively. Repeating this process for the remaining positions of the

customer orders, we obtain the minimum makespan schedule when job J, is selected

as the first job in the first customer order. The resulting schedule is as follows:

On the other hand, if the first job in the first customer order is job J,, then the first
job in the second customer order should be job J; to get the advantage of no-setup
when job J, is the last and the first job of the first and second customer orders,
respectively. Similarly, the first job in the third customer order should be job J, to
get the advantage of no-setup when job J, is the last and the first job of the second

and third customer orders, respectively. Repeating this process for the remaining
positions of the customer orders, we obtain the minimum makespan schedule when

job J, is selected as the first job in the first customer order. The resulting schedule is

as follows:

It is obvious that Schedules 1 and 2 have an equal makespan value if there are odd-

numbered of customer orders. However, the makespan value is different when there
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are even-numbered of customer orders. In this case, the schedule having the job with
long setup time in the second position of the first customer order will give the larger
reduction in makespan. For example, if job J, has greater setup time (i.e., s, >s,),
then the makespan of Schedule 1 is s, —s; smaller than that of Schedule 2. The
reverse is true when job J; has greater setup time (i.e., s >s,). That is, the
makespan of Schedule 2 is s, —s, smaller than that of Schedule 1. Therefore, the job

with long (short) setup time is processed as the second job of the customer order in
each odd-numbered (even-numbered) position in the optimal sequence. This

completes the proof. [
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CHAPTER 5

TOTAL COMPLETION TIME MINIMIZATION PROBLEM

In this chapter, the single-machine customer order scheduling problem is studied for
minimizing the total completion time of the customer orders. The decision is to
determine the sequence of the customer orders as well as the first and last jobs
processed in each customer order. The complexity of this problem is open; but it is
most likely NP-hard. We first develop a mixed integer linear programming (MILP)
model, and then give the optimal solutions of some polynomial-time solvable cases
of the problem. Finally, we close this chapter by proposing several heuristic
algorithms.

5.1 Mathematical Model
The following indices, sets, parameters and variables are used in this model.

Parameters, indices and sets
K Number of customer orders

[ Index for customer orders (i =12,...,K)

] Index for jobs (j=12,...,N)

k Index for position of customer orders in the sequence (k =1,2,...,K)
D, D, =1 if customer order O; has job J;; otherwise, D; =0

P, Processing time for job J,

S, Setup time for job J,
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N,  Set of different jobs in customer O,

A Set of customer orders having more than one job to be processed

Using p; and s;, we compute the total (sum of setup and processing) time of all jobs

in the customer order O; and the setup time between two successive jobs as

TT.  Total (sum of setup and processing) time of all jobs in customer order O;,

where TT, = >’ (sj + pj)

J; €0,

ST,; Setup time between jobs J, and J; if job J; immediately follows job J,,

where ST, =s; if j=h; otherwise, ST, =0
Decision variables

1 if customer order O, is assigned to positionk
0 otherwise

o 1 if job J; is thefirst job in customer order O; assigned to positionk
10 otherwise

_ |1 if job J;is thelast job in customer order O; assigned to positionk
W10 otherwise

1 if both Ly and F; ,; areequal tol(i.e, last job of a customer order and

Yhijie = thefirst job of theimmediately following customer order are not same.)
0 otherwise

RT, =Realized total (sum of setup and processing) time of customer orders O,

assigned to position k

TC = Total completion time of customer orders
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MILP model

K K
Minimize ~ TC =) (K-k+1)> RT, 1)
k=1 i=1
K
Subjectto > X; =1 for k=12,...,K (2
i=1
K -
> Xy =1 for1=12,.,K )
k=1
K
DD Fu=1 for k=12,...,K 4)
jeN; i=1
K
DLy =1 for k=12,..,K (5)
jeN; i=1
Fii < Dy X for jeN,;;i=12.,K; k=12,...,K (6)
L < Dy X for jeN,;i=12,.,K; k=12,.,K (7

=12, K:1=12,.K: l2i: k=12,..K(8)
Fjlk +le Sl fOf' jEA, i:LZ,..,K, k=l,2,...,K (9)

J

K
RTy =TT X, — D 8 Fu + D0, > ST Y for i=12,,K; k>2(11)

jeN; heN; jeN; 1=1
RT, =0 for Vi, k (12)
Xir Fiic» L Yo € {0,1} for Wh,i, j,k,| (13)

In the above MILP model, the objective in (1) is to minimize the total completion
time. Constraint sets (2) and (3) ensure that each position in the sequence of
customer orders is occupied by one customer only and each customer order is
assigned to one position only, respectively. Constraint sets (4) and (5) guarantee only
one job in each customer order can be processed as the first or last job in its customer
order, respectively. Constraint sets (6) and (7) ensure that a job cannot be the first or
last job of a customer order assigned to a position if this customer order does not
include the job. Constraint set (8) satisfies the condition that no setup time is

necessary before the processing of the first job of a customer order if this first job is
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same as the last job of the immediately preceding customer order. Constraint set (9)
guarantees that each job in a customer order can be the first, immediate or last job of
this customer order. Constraint sets (10) and (11) define the realized total (sum of
setup and processing) time of the customer orders assigned to the first and other
positions, respectively. Constraint sets (12) and (13) impose non-negativity and
binary restrictions on the decision variables, respectively.

5.2 Lower and Upper Bounds on the Total Completion Time
To improve efficiency of the MILP model we introduce a lower bound on the total

completion time value. A lower bound LB is found by assuming that

o the job with the longest setup time in each customer order is assigned to the
first position of its group,

e setup time of the job with the longest setup time in each customer order is
canceled by assuming that this job is same as the one in the last position of
the previous customer orders, and

e all customer orders are sequenced in non-decreasing order of their revised

total time TT, — max {sj }

JEI

Then we add the constraint LB <TC to the mathematical model.

Instead of assuming an initial upper bound on the total completion time as infinity,
the total completion time value obtained sequencing all customer orders in non-

decreasing order of their total time TT, can be used as an upper bound UB. Let
TTsrr(c) be the total time of the customer order in the k th position of the sequence in

which customer orders are sequenced in non-decreasing order of their total time (i.e.,

K
shortest total time rule). Then, the total completion time 3 (K —k+1)TTgrrpg
k=1

K
becomes the upper bound, i.e., UB =Y (K —k +1)TTsr(, . Therefore, we add the
k=1

constraint TC <UB to the mathematical model.

In the MILP model including the lower and upper bounds on the total completion

time, one set of the decision variables is a continuous variable, and other
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K
K?[L+ N, (K + 2)]decision variables, where N, = z N, , are 0-1 type. On the other

i=1
hand, the MILP model has 4K + K2[1+|A|+ N; (N, (K-1)-K +1)]+2 constraints. It

is expected that the MILP model cannot be solved for large-sized problem instances

so that we will propose heuristic solution procedures.

5.3 Some Special Cases Solvable by Priority Rules
The following theorems give the properties of an optimal schedule for some special
cases of the total completion time minimization problem which are solvable by

priority rules.
Special Case 1: Each customer order has only one job, and all jobs are distinct.

Theorems 4 If each customer order has only one job and all jobs are distinct, then

the customer orders are processed in STT sequence in an optimal schedule.

Proof If each customer order has only one job and all jobs are distinct, then the
problem reduces to the traditional single-machine scheduling problem, where the

minimum total completion time is obtained by sequencing the customer orders in

non-decreasing order of TT,= > (sj+pj) time (i.e, in STT sequence). This

i €Y

completes the proof. [

Special Case 2: Each customer order has two distinct jobs, which exist in all

customer orders.

Theorem 5 If each customer order has two distinct jobs, say jobs J, and J,, which

exist in all customer orders, then the job with long (short) setup time is processed as
the second job of the customer orders in each odd-numbered (even-numbered)

position in the optimal sequence.

Proof As it is stated in Theorem 3, the following two schedules need to be

considered again:

schedule 2: O,(J, — ;) —0,(J; — J,) —Oy(J, — J,) =0, (J; — J,) —...
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Now, let TT =(s,+p,)+(s,+p,) be the total time of a customer order.
Furthermore, let TC( K) and TC(2|K) be the total completion times of Schedules 1

and 2, respectively, given K customer orders. Then we have,

TC{UK =1)=TT TC(UK =1)=TT
TC{IK =2)=3TT —s, TC(UK =2)=3TT -5,
TC(IK =3)=6TT —s, - 25, TC(IK =3)=6TT —25, -5,

TC(UK =4)=10TT - 2s, - 4s, TC(UK =4)=10TT —4s, - 2,
TC(lK =5)=15TT —4s,—6s,  TC(K =5)=15TT —6s, —4s,

TC(IK =6)=21TT —65,-95,  TC(K =6)=21TT —9s, - 65,

It is obvious that TC(K)<TC(2K) if s, >s,. Thus, the schedule having the job
with long setup time in the second position of the first customer order will give the
larger reduction in total completion time. For example, if job J, has greater setup
time (i.e., s, >s,), then the total completion time of Schedule 1 is smaller than that
of Schedule 2. The reverse is true when job J, has greater setup time (i.e., s, >s,).

That is, the total completion time of Schedule 2 is smaller than that of Schedule 1.
Therefore, the job with long (short) setup time is processed as the second job of the
customer order in each odd-numbered (even-numbered) position in the optimal

sequence. This completes the proof. [
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Special Case 3: There are two customer orders only.

Theorem 6 If there are two customer orders only, say customer orders O; and O,,

and TT, <TT, , then

e the customer order O, is processed earlier in the optimal schedule, and
e the common job, if any, which has the longest setup time, should be assigned

to the last and first positions of the customer orders O, and O, , respectively.

Proof We use the method of pair-wise interchange of adjacent customer orders.
Suppose that S is a schedule in which the customer orders O, and O, are processed
in the first and second positions, respectively. Furthermore, assume that they have a

common job J. having the longest setup time. Now construct a new schedule S’ in
which the customer orders O, and O, are interchanged in sequence. That is, O, and
O, are processed in the first and second positions, respectively. It is obvious that
assigning the common job J, having the longest setup time to the last and first

positions of the first and second customer orders, respectively, will reduce the
completion time of the second customer order in any sequence of customer orders.

Sequences Sand S’ are represented as:

Schedule S: Oy(---=J.) -0, (I, —-7)
Schedule S": O,(---—J.)—0,(J. —-°)

Let C,(S) and C,(S) be the completion times of the customer orders O, and O,,

respectively, in Schedule S. It is clear that

cl(s):TT1=Jzo (s;+p;) C,(S)=TT, +TT, —s,

where s, is the setup time of the common job J. having the longest setup time.

Similarly, let C,(S') and C,(S’) be the completion times of the customer orders O,

and O,, respectively, in Schedule S’. It is clear that
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C,(s")=TT, -z (s;+p;) C,(S)=TT, +TT, -5,
Let TC(S) and TC(S') be the total completion times of Schedules S and S',

respectively. Then, we have

TC(S)=Cy(S)+Cy(S) =TT, +TT, +TT, -5, =2TT, +TT, -5,
and

TC(S')=C,(S")+Cy(S") =TT, +TT, +TT, —s, = 2TT, + TT, —s,.
The difference between TC(S) and TC(S') is

TC(S)-TC(S")=2TT,+TT, =5, —(2TT, +TT, s, )=TT, -TT, <0

since TT, <TT,. In other words, TC(S')>TC(S). That is, the interchange of the

customer orders O, and O, in Schedule S increases the total completion time. It

follows that processing the customer order with smaller total time in the first position
must be optimal.

5.4 Heuristic Algorithms

The size of the MILP model discussed in the previous section increases drastically as
the number of customer orders and jobs increases. Therefore, optimal solution for
large-sized problems may not be determined within reasonable computational times.
Moreover, for most real life problems sub-optimal results can be satisfactory. This
motivates us to develop fast algorithms which provide optimal or near-optimal

solutions within acceptable computational times.

Our first proposed heuristic algorithm consists of three steps. In the first step, an
initial sequence is created without setup savings obtained by assigning a common job
of a pair of customer orders processed successively. Step 2 attempts to improve this
initial sequence by taking into account the setup savings. In Step 3, the schedule
obtained in Step 2 is improved, if possible, using a pair-wise interchange the
positions of the customer orders. The stepwise description of our proposed algorithm

is as follows:
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Algorithm-1:
Step 1. [Initial Schedule Generation without Setup Savings]

(a) For each customer order O;, calculate the total time as:

TT=3 (s;+p)

J; €0,

(b) Decompose the customer order set O into two disjoint sets O' and O"
(O0=0'u0" and O'N0O" =) where the set O' consists of customer
orders having no common job with other customer orders, and its

complement set O" consists of remaining customer orders.

(c) Decompose the customer order set O’ into three disjoint subsets O, Op
and O, , where

o ={oi |TT, < min {TT, —max{sj}}},

0,€0" J;€0,

o ={oi | min {TT, —max{sj}}<TTi < max{TT,}},

0,e0" J,€0, 0,e0"

0O, ={oi |max{TT|}£T'I'i}.

0,e0"

(d) Sequence all customer orders of each subset Og, O}, and O"UO; in
non-decreasing order of their total times. Denote the resulting sequences

as os1(0g), 041 (0}) and o4 (0" UOg). Let K, be the number of
customer orders in the set o (0" UOg). Set i =1.

(e) Let o be the initial sequence of all customer orders without setup savings

as
o:ost7(0g) = os17(0"VWOR) — os17(0Ap)

(f) Calculate the associated total completion time CT of the initial schedule

of all customer orders.
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Step 2. [Improved Schedule with Setup Savings]

(a)

(b)
(©)

If i > K, —1 then go to Step 2(c); otherwise, let Oy; and Oy.,; are two
adjacent customer orders in positions i and i+1 of the sequence
o1 (0" U0;). If the set of common jobs in this pair is empty, then
go to Step 2(b); otherwise, determine an unassigned job having the
maximum setup time from the set of common jobs, assign this job to
the last and the first job positions of these linked customer orders Oy
and Oy,,;, respectively.

Set i =i+1, and repeat Step 2(a).

Let o, be the first improved schedule of all customer orders.
Calculate the associated total completion time CT, of the improved

schedule o .

Step 3. [Improved Schedule by Pair-wise Interchange of Customer Orders]

(@)
(b)

(©)

(d)

Seti=land |1=2.

If i>K, -1 then go to Step 3(f); otherwise, let Oj;; and Oy are two

customer orders in positions i and | of the initial feasible sequence

o, obtained in Step 1.

If there is at least one unassigned common job in the pair of the

customer orders Oy and Oyp, then

e Determine a common job having the maximum setup time from
the set of unassigned common jobs.

e Assign the common job to the last and the first job positions of the

customer orders Op;; and Oy, respectively.

e Goto Step 3(e).
Otherwise, Go to Step 3(d).

If there is a common job, which is the single job, in the customer order

O[|] or O[|], then
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e If the common job is the single job of the customer order Oy,
then assign the common job to the last job position of the customer
order Oyy; otherwise (i.e. the common job is the single job of the
customer order Op;), assign the common job to the first job

position of the customer order Oy.

e Goto Step 3(e).
Otherwise, set | =1+1 and Go to Step 3(b).

(e Pairwise interchange the position of the string of all customer orders
between positions i and | with the position of the string of customer
orders starting at position | and ending at position k.
o Seti=i+l+k—1,I=i+1.1fI=K,, thenseti=i+1.
e Go to Step 3(b).

)] Let o), be the second improved schedule of all customer orders.

Calculate the associated total completion time CT,; of the schedule

ol -
Step 4. [Final schedule]

(@ If CT, <CT,, then select the schedule o, as the final schedule, and
set o = o, ; otherwise, select the schedule o, and set o =0 .

(b)  Stop.
We illustrate Algorithm-1 with a numerical example.

Example 2 Consider a simple instance of the problem in which there are seven
orders. Jobs in each customer order and the setup and processing times for all jobs
are given in Table 5.1 and Table 5.2, respectively. The total time for each customer
order, which is obtained in Step 1(a), is already included in the data shown in Table
5.1.
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Table 5.1 Jobs and initial total times of the customer orders in Example 2

Customer o, 0, O, 0, O, O O,
Jb(J)) [ 3,3, | Jo | I | Ju | s | e 9|3, 3|30 dg| da| I | I
Initial

Total Time 38 86 79 65 47 80 20
(TT))

Table 5.2 Setup and processing times for all jobs in Example 2

Job (J,) N FR A O O N D TR O T I O O R R
Setup Time (s;) 13 17 | 25 | 12 | 16 | 13 | 14 | 20 | 13 | 12 | 28
Processing Time (p,) 7 1 | 13| 8 [11 |29 | 1 |12 | 32| 8 | 13

Step 1(b) of the algorithm gives us the set O’:{OZ,OG,O7}, which is composed of

customer orders having no common job with other customer orders, and the set

0"={0,,0,,0,,0,}. Step 1(c) of the algorithm decomposes the set O’ into

Op ={0,}, 0, ={0,,0,} and Oy =@ since TT, =20 < 21, where

0,e0"

J;€0,

min {TTI —max {sj }}

= min{TT1 - 5na(>)< {sj },TT3 — max {s

J;€0,

},TT4—wg{sj},TT5— max{sj}}

J;€0;

=min{ 38 -max{13,17}, 79 — max{12,16, 20}, 65— max{13,17,16},

47 —max {14, 20} }

=min{21, 59, 48, 27}

=21

and TT, =86>79, TT; =80>79 where
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max T, }=max{TT,, TT,, TT,, TT, } = max{38, 79, 65, 47} = 79.

The following sequences are obtained by Step 1(d) of the algorithm
osrr (Og) = {07}
osrr (O4) = {Oe’ 02}
osr (0" UOR) ={0;,05,0,,0;}

Table 5.3 illustrates the sequence ogrt = {0y, 05,04, 03} obtained by Step 1 for
the set 0" UOR ={0;,05,04,05}.

Table 5.3 Sequence ogTT = {01, O5, 04, O3} obtained for the set O" UOR in Step 1

Customer Order Sequence 0} O, 0, O,
Job Sequence B N It O I PV P Y P Y D U IV
Total Time 38 47 65 79

In Step 1(e), the initial sequence of all customer orders without setup savings is

constructed as:
o: {07} — {01,05,04,03} — {06, 02}
The associated total completion time of this sequence is obtained in Step 1(f) as

CT =20x7+38x6+47x5+65x4+79x3+80x2+86x1=1,346 time units.

In Step 2, we first consider the adjacent customer orders in positions 1 and 2 of the

sequence o (0" UOR) =1{0,,05,0,,0,}. This first pair of customer orders are
O, and Oy, and they have no common job. Thus, we consider the adjacent customer

orders in positions 2 and 3, which are O; and O,. This second pair of customer

orders has also no common job. When we consider the adjacent customer orders in

positions 3 and 4, which are O, and O;, we observe that job J. is the common job,

and it is assigned to the last and the first job positions of the customer orders O, and
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O, respectively. Table 5.4 illustrates the improved sequence for the set

0" UOR ={0,05,04,05}, and the associated total completion time CT, of all

customer orders is

CT, =20x7+38x6+47x5+65x4+63x3+80x2+86x1=1,298 time units.

Table 5.4 Improved sequence {O,, O,,0,, 0, } obtained for the set O" O in Step 2

Customer Order Sequence O, O, 0, O,
Job Sequence oI, | d | g | I I, s | I | I, | Js
Modified Total Time 38 47 65 63

In Step 3, the customer order O, in position 3 (1 =3) has two unassigned common
jobs J; and J, with the customer order O, in position 1 (i =1). The job having the
maximum setup time from the set of common jobs is J,, and it is assigned to the last
and the first job positions of the customer orders O, and O,, respectively. The
customer order O; is between the customer orders in positions 1 and 3, and the
customer orders O, and O, form a string of customer orders since they are linked by
job J.. We interchange the positions of the customer order O, and the string of
customer orders O, and O,. Thus, the modified sequence of the orders becomes
0,-0,-0;-0O;. The new values for indices i and | become
i=i+1+k—1=1+1+4-3=3 and | =i+1=3+1=4, respectively. The customer

order Oy in position 4 (I =4) has one unassigned common job, which is Jg, with
the customer order O; in position 3 (i =3). Thus, job Jg is assigned to the last and
the first job positions of the customer orders O, and O, respectively. The improved
sequence obtained for the set 0" UOL ={0;,0,,0,,05} is illustrated by Table 5.5,

and the associated total completion time CT, of all customer orders is

CTj) =20x7+38x6+48x5+63x4+27x3+80x2+86x1=1187 time units.
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Table 5.5 Improved sequence {O,, O,, O,, O, } obtained for the set O" O in Step 3

Customer Order Sequence 0} 0, 0, O,
Job Sequence oL, |, 3 | Js | Js | I, Jg | Jg | Iy
Modified Total Time 38 48 63 27

From Step 4, we obtain the best (final) sequence o, = {0,,0,,0,,0;,0;,0,,0,} of
all customer orders and jobs with a total completion time of CT. =1187 time units

(equivalent to the optimal total completion time value) since
CTy =1187 <CT, =1,298. Table 5.6 illustrates the final sequence.

Table 5.6 Final sequence o of all customer orders and jobs in Example 2

Customer
Order Sequence O O, O, O; O Os ©,

Job Sequence Jio [ i da da] Ji| s ds | Jaf ds [ Je | Jr | o] Jo| o] I

Modified Total

. 20 38 48 63 27 80 86
Time

Our second proposed heuristic algorithm consists of two steps. In the first step, an
initial sequence without setup savings is created as in Step 1 of Algorithm-1. Step 2
then attempts to improve this initial sequence by taking into account the setup

savings. The stepwise description of our proposed algorithm is as follows:
Algorithm-2:

Step 1. [Initial Schedule without Setup Savings] Apply Step 1 of Algorithm-1.
Step 2. [Improved Schedule with Setup Savings]

@ Among the customer orders in positions 1 through Ky of the
sequence ostT (0" UOR), set c=1. Let O] be this customer order

in position ¢ of the sequence ogT1 (0" UOR). Set i =1.
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(b)

(©)

(d)

(€)
(f)

Determine a job having the maximum setup time from the set of

unassigned jobs in the customer order Ofc]- Let J; be this job. Assign
job J;j to the last job position of the customer order Olc]-

Move the customer order O] to position i of the sequence
ostT(0"UOR).

Among the customer orders in positions i+1 through Ky of the
sequence ogTT (0" UOR), determine the customer order having the
minimum total time TT with job J ;. Let O] be this customer order

in position ¢ of the sequence ogpT (0" wOR). If there is no such
customer order, then set ¢ =i+1, and go to Step 2(b); otherwise, go to
Step 2(e).

Assign job J; to the first job position of the customer order O[c]-

Set i=i+1. If i>Ky —1 then go to Step 3; otherwise, go to Step
2(b).

Step 3. [Final schedule]

(@)

(b)

Let o be the improved (final) schedule, obtained by Step 2, of all
customer orders.
Calculate the associated total completion time CTg of the final

sequence of all customer orders.

We illustrate Algorithm-2 with a numerical example.

Example 3 Consider the problem given in Example 2.

In Step 1(e) of Algorithm-1, the initial sequence of all customer orders without setup

savings is constructed as:

o: {07} — {01,05,04,03} — {0, 0,}

The associated total completion time of this sequence is obtained in Step 1(f) as

CT =20x7+38x6+47x5+65x4+79x3+80x2+86x1=1346 time units.
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In Step 2(a) of Algorithm-2, we set ¢ =1 and consider Oy as it is the first customer
order in the sequence oyt (0" UOR) =101, 05,04, 03. That is, Opj =0y since

c =1. The job having the maximum setup from the set of jobs in this customer order

Is Jo, which is assigned to the last job position of the customer order O;. In Step
2(c), no need to move O; to position 1 of the sequence {O;, Os, 04, O3} since Oy is

already in the first position. Among the customer orders in positions 2 through 4 of

the sequence {O;, 05,04, 03}, the customer order having the minimum total time
with job J, is determined as O, , which is in position 3 (i.e., c=3). In Step 2(e),
job J, is assigned to the first job position of the customer order O,. In Step 2(b),
job Jg is determined as the job having the maximum setup time from the set of
unassigned jobs J; and Jg in the customer order Oy, and job Jg is assigned to the
last job position of the customer order Oy4 . In Step 2(c), the customer order Oy is
moved to position 2 of the sequence {O;,0s,0,4,03}, and the new sequence
becomes {O;, 04,05, 03}. Among the customer orders in positions 3 and 4 of the
new sequence {O;, 04,05, 03}, the customer order having the minimum total time
with job Js is determined as Og , which is in position 4 (i.e., c=4). In Step 2(e),
job Jg is assigned to the first job position of the customer order Osz. In Step 2(b),
job Js is determined as the job having the maximum setup time from the set of
unassigned jobs J4 and Jg in the customer order Og, and job Jg is assigned to the
last job position of the customer order Og. In Step 2(c), the customer order Og is
moved to position 3 of the sequence {O;,04,0s5,03}, and the new sequence
becomes {Ol, Oy4, O3, 05}. The customer order in position 4 (i.e., c=4) in the new
sequence {O;,04,03,05} is Os, and it is the only customer order having the
minimum total time with Jg. In Step 2(e), job Jg is assigned to the first job position
of the customer order Os. The improved sequence {O;, 0,4, 03,05} obtained by
Step 2 for the set 0" WO} = {0,,0,,0,,0;} is illustrated by Table 5.7.
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Table 5.7 Sequence {Ol Oy, O3, 05} obtained for the set O" L Oy, in Step 2

Customer Order Sequence 0} 0, 0, O,
Job Sequence oL, |, 3 | Js | Js | I, Jg | Jg | Iy
Modified Total Time 38 48 63 27

The  final  sequence of all  customer orders and jobs is
o ={07,0;,04,03,05,04,0,}, which is same as the sequence found by
Algoritm-1 and illustrated by Table 5.6. The associated total completion time of this

sequence is
CTg =20x7+38x6+48x5+63x4+27x3+80x2+86x1=1187 time units.

Our third proposed heuristic algorithm consists of three steps. First two steps of
Algorithm-3 are same as the first two steps of Algorithm-1. However, in the third
step of Algorithm-3, the pair-wise interchange starts from the customer order in the
last position and customer orders are moved backward instead of forward. This
moving direction has an advantage over Algorithm-1 when processing times are

longer than setup times.
Algorithm-3:

Step 1. [Initial Schedule Generation without Setup Savings] Apply Step 1 of
Algorithm-1.

Step 2. [Improved Schedule with Setup Savings] Apply Step 2 of Algorithm-1.
Step 3. [Improved Schedule by Pair-wise Interchange of Customer Orders]

@) Seti =Kyandl =Ky — 1.

(b) If i=1 then go to Step 3(f); otherwise, let Op;; and Oy are two
customer orders in positions i and | of the initial feasible sequence
o, obtained in Step 1.

(© If there is at least one unassigned common job in the pair of the

customer orders O and Oy, then
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(d)

(€)

(f)

e Determine a common job having the maximum setup time from
the set of unassigned common jobs.
e Assign the common job to the first and the last job positions of the

customer orders O and Oy}, respectively.

e Goto Step 3(e).
Otherwise, Go to Step 3(d).

If there is a common job, which is the single job, in the customer order
Oy or Oy, then
e If the common job is the single job of the customer order O3, then

assign the common job to the first job position of the customer

order Oy; otherwise (i.e. the common job is the single job of the
customer order Oy), assign the common job to the last job
position of the customer order Oy;.

e Goto Step 3(e).
Otherwise, set | =1 —1 and Go to Step 3(b).

Pairwise interchange the position of the string of all customer orders
between positions i and | with the position of the string of customer
orders starting at position | and ending at position k.

o Seti=i—1+k—I,l=i-1.If =1 thenseti=i-1.

e Go to Step 3(b).

Let oy be the second improved schedule of all customer orders.

Calculate the associated total completion time CT,; of the schedule

on -

Step 4. [Final schedule] Apply Step 4 of Algorithm-1.

Example 4 Consider the previous example. First two steps of Algorithm-3 are same
as the ones in Algorithm-1. Therefore, the improved sequence for the set

0" UOR ={0;,03,04,05}, and the associated total completion time CT, of all

customer orders is
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CT, =20x7+38x6+47x5+65x4+63x3+80x2+86x1=1,298 time units.

In Step 3, set i =4and | =3. Since these two customer orders are linked, indices i

and | are updated until i =3 and | =1. The customer order O, in position 3 (i = 3)
has two unassigned common jobs J, and J, with the customer order O, in position
(I = 1). The job having the maximum setup time from the set of common jobs is J,,
and it is assigned to the first and the last positions of the customer orders O, andO, ,
respectively. Positions of customer orders O, and O, are interchanged. Thus, the
modified sequence of the orders becomes O, —O, —O, —O,. The new values for
indices i and | become i=i—-1+k—-1=3-1+1-1=2 and I=i-1=2-1=1,
respectively. This pair of customer orders has no common job. Hence, i becomes 1

and Step 3 is completed. The improved sequence obtained for the set

0"u0} =1{0,,0,,0,,0,} is illustrated by Table 5.8, and the associated total

completion time CT,, of all customer orders is
CT, =20x7+47x6+38x5+48x4+63x3+80x2+86x1=1,239 time units.

Table 5.8 Sequence {05, 0,,0,, 03} obtained for the set O" WOy, in Step 3

Customer Order Sequence O, o) 0, O,
Job Sequence ol Jg | I 1 I, |, | Js | Js | I, | s
Total Time 47 38 48 63

From Step 4, we obtain the best (final) sequence o, = {0,,0;,0,,0,,0,,0,,0,} of
all customer orders and jobs with a total completion time of CT_. =1,239 time units

(equivalent to the optimal total completion time value) since
CT, =1239<CT, =1,298. Table 5.9 illustrates the final sequence.
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Table 5.9 Final sequence o of all customer orders and jobs in Example 4

Customer
Order O, O, 0, 0, 0, O o,
Sequence

Job

Sequence Jm J7 Jg ‘]1 ‘]2 ‘]2 ‘]1 ‘]5 ‘]5 ‘]4 ‘]3 Js Js Jg J11

Modified
Total 20 47 38 48 63 80 86

Time

Initial step of Algorithms 1, 2 and 3, which is a decomposition of customer orders
into subsets, is common, but improvement step of these algorithms differs from each

other. Figure 5.1 illustrates the flow of same and different steps of these algorithms.
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Algorithm 1 Algorithm 3 Algorithm 2
Step 1
Initial Schedule Generation without Setup Savings
Algorithm 1 Algorithm 3 Algorithm 2
Step 2 Step 2

Improved Schedule with Setup Savings Improved Schedule with Setup Savings

- job with maximum setup time is

- searching common jobs in two
searched among all customer orders

adjacent customer orders, only.

except the customer orders in the
before and after set.

Algorithm 1 Algorithm 3 Algorithm 2
Step 3 Step 3
Improved Schedule by Improved Schedule by Step 3

Pair-wise Interchange of
Customer Orders

Pair-wise Interchange of
Customer Orders

Final Schedule

- start from the first
customer order among the
customer orders except the
customer orders in the
before and after set

- move customer orders to
the forward

- start from the last
customer order among the
customer orders except the
customer orders in the
before and after set

- move customer orders to
the backward

Algorithm 1

Algorithm 3

Step 4
Final Schedule

Step 4
Final Schedule

Figure 5.1 Flowchart Diagram for the Heuristic Algorithms 1, 2 and 3
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Finally, an algorithm is proposed to find the best solution among the solutions of

previously presented algorithms.

Algorithm-4:

Step 1. Let CT, be the total completion time obtained by Algorithm a.
Run Algorithms 1, 2, and 3.

Step 2. Calculate CTg, = min{CT,,CT,,CT.,}, and stop.

Example 5 Consider Example 2. Application of Algorithm-4 gives the following

steps.

Step 1. Algorithms 1, 2, and 3 give solutions with CT, =1187 time units,
CT, =1187 time units and CT, =1,239 time units, respectively.

Step 2. Total completion time is calculated as

CT,.., =min{CT,,CT,,CT,} = min{1187;1,187;1,239} = 1,187
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CHAPTER 6

COMPUTATIONAL EXPERIMENTS

In this chapter, we describe our computational tests to evaluate the effectiveness and
efficiency of the MILP model and the proposed heuristic algorithms in finding the
optimal schedules for the total completion time minimization problem. The
mathematical model is coded in GAMS 22.6 and solved by using CPLEX 11.0. The
proposed heuristic algorithms are coded in C++. All computational experiments are
conducted on a personal computer with Intel Core i7 Dual-Core 2.20 GHz CPU and

4 GB RAM under Windows 7 operating system.

6.1 Computational Setting for Test Problems

The values of the parameters used in our experiments are generated as follows:

1. Number of customer orders (K): 5, 10, 15, 20
2. Number of job types (N ): 5, 10, 15, 20
3. Number of jobs within each customer order: They are generated from four

discrete uniform distributions
Variable: DU[1, N]

Constant: DU[2, N-1]
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4. Processing times: Short: DUJ1, 10]
Long: DU[100, 200]

5. Setup times: Low mean-low variance: DU[25, 35]
Low mean-high variance: DU[10, 50]
High mean-low variance: DU[55, 65]
High mean-high variance: DU[40, 80]

For each possible combination of the above parameters, 5 problem instances are

generated. Hence, a total of 1280 problems are tested.

To solve our mathematical model for the total completion time minimization
problem, the software package GAMS with CPLEX solver was run with an option
file which set node selection procedure and resource limitation. According to these
options CPLEX run with a 2048 MB allocated memory, two parallel threads, using
best-estimate search as node selection policy and strong branching. Also, the limit on
the number of nodes to be investigated is 102, and the number of iterations is 10°.
In our experiments, problem instances are solved under these conditions and we limit
the runtime of the CPLEX for obtaining the optimal solutions of each problem

instances to 10,800 seconds.

6.2 Performance Measures

The solver CPLEX gives two types of solutions for the MILP models. One of the
solutions is the best integer solution which is the desired one; other solution is the
best non-integer solution in which some of the variables are no-integer. If the best
non-integer solution obtained is equal to the best integer solution, then we conclude
that the optimal solution is achieved by the MILP model. Otherwise we are uncertain
about optimality of the solution. For the problems with optimal solutions, we
compare the total completion time obtained by our heuristic algorithms with the total
completion time of the optimal solution. However, for the problems with best integer
solutions, we compare the total completion time obtained by our heuristic algorithms

with the total completion time of the best integer solution.
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To measure the effectiveness of the heuristic algorithms for the cases in which an
optimal solution is obtained by the MILP model, we calculate the percent deviation
of the total completion time obtained by each heuristic algorithm from the total
completion time of the optimal solution. Let PD® be this percent deviation, which
can be calculated by

H o

PD° =1 ~TC 100 (16)
C

where TC" = Total completion time of the solution obtained by the heuristic

algorithm, and

TC® = Total completion time of the optimal solution obtained by the MILP

model.

Similarly, for the cases in which an optimal solution is not guaranteed (but a best-
integer solution exists) by the MILP model, we calculate the percent deviation of the
total completion time obtained by each heuristic algorithm from the total completion
time of the best-integer solution. Let PD® be this percent deviation, which can be
calculated by

H B

PD® :uxloo (17)
C

where TC® = Total completion time of the best integer solution obtained by the

MILP model.

The efficiency measure of the MILP model and the heuristic algorithms is the
computational time required to solve the problem. The computational time for the
heuristic algorithms was not measured since it was relatively very small, less than 1
second, for all heuristic algorithms. Also note that the computational time required
for solving a problem instance increases as the number of customer orders and the
number of job types increases. But the computational time is again very small which

is less than 1 second generally.
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6.3 Discussion of the Results
In this section the performances of our solution approaches are discussed. We first
examine the performance of the MILP model, and then discuss the performances of

the heuristic algorithms.

6.3.1 Performance of the MILP Model

The performance of the MILP model is given in the Table 6.1. From this table, it is
clear that all problem instances can be solved optimally when the number of
customer orders is five. However, among the problem instances having ten customer
orders there is only one problem instance that cannot be solved optimally. As
mentioned earlier, the number of optimally solved problem instances decreases to
249 and 95 for the set of problems having fifteen and twenty customer orders,

respectively.

Table 6.1 Performance of the MILP model

MILP
TOTAI;LRISEEAE?\IAER OF NUMBER OF NUMBER OF BEST NUMBER OF
K INSTANCES OPTIMUM INTEGER INTEGER UNSOLVED
CONSIDERED SOLUTIONS SOLUTIONS PROBLEM
OBTAINED OBTAINED INSTANCES
5 320 320 0
10 320 319 1
15 320 249 65
20 320 95 175 50

The detailed analysis on the number of optimal solutions and best-integer solutions
obtained by the MILP model for different combinations of the processing and setup
times are given in Table 6.2.

To emphasize the performance of MILP model, we should investigate the quality of
solutions which are not optimal. It is a common phenomenon that MILP model ends
up with a gap between solution found and the best possible. Therefore, gap values
are examined in order to indicate the percentage difference of integer solution from
the theoretical optimum. Gap values are analyzed for 240 nonoptimally solved

problem instances under three circumstances; best case, worst case, and average case.
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For some of the problem instances, so many iterations are done and integer solutions
found become closer to the theoretical optimum after each iteration. However,
GAMS is terminated because of time limitation before reaching the optimum
solution. But, this case is the best case since until 3-hour time limitation is
completed, gap values are very close to zero. In the worst case analysis, we focused
on the problem instances whose solution procedure (branching) is terminated due to
memory errors that occur after few iterations are completed. In this case, integer
solutions found are very raw, hence gap values are high. Maximum gap value, which
represents the worst case, is found as 22.92%. On the other hand, for some problem
instances branching becomes very difficult and time consuming. When branching is
slow, the number of iterations is moderate which leads to higher gap values than the
best case and lower gap values than the worst case. In the average case analysis, gap

values are found as 0.56% on the average.

6.3.2 Performance of the Heuristic Algorithms

In this section, we discuss the effects of changes in the problem parameters on the
performance of heuristic algorithms. To understand the comparison tables given in
the following pages, we use abbreviations which are given in Appendix A. For the
individual performances of the heuristic algorithms, we first report the number of

times each heuristic gives the optimal solution in Table 6.3.

Table 6.3 Number of optimally solved problems by the MILP model and heuristic
algorithms

MILP ALG1 ALG2 ALG3 ALG 4

NUMBER OF
PROBLEM OPTIMAL BESTINTEGER| OPTIMAL OPTIMAL OPTIMAL OPTIMAL

5 320 320 0 202 108 205 232
10 320 319 1 93 52 96 113
15 320 249 65 42 37 47 65
20 320 95 175 7 6 5 10
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While we are analyzing the performance of heuristic algorithms, we focused on the
performance Algorithm 4. Many comparisons shown in this section is based on
Algorithm 4 because we know that the performance of Algorithm 4 is better than
other three algorithms, since Algorithm 4 takes the best solution among the solutions
of Algorithm 1, 2 and 3. For each combination of experiment parameters, 5 problem
instances are generated and we take the average of percent deviations of these 5
problem instances. Table 6.4 shows the percent deviations of Algorithm 4 from the
optimal solution for 640 problem instances where number of jobs in each customer
order is variable. For instance, the average percent deviation of 5 problem instances
is calculated as 1.887 when the number of customer order is 5, the number of job
type is 5, processing times are short, mean and variance of setup times are low and
the number of jobs within each customer order is variable. Empty cells in Table 6.4
indicate that the average percent deviation cannot be calculated for the related
problem sets since MILP solutions do not exist for those problem sets due to lack of
memory.

Table 6.4 Average percent deviation of Algorithm 4 from the optimal solution for
VARIABLE case

VARIABLE
K N SHORT LONG
AVG
LL LH HL HH AVG LL LH HL HH AVG

5 1.887 2.365 0.000 0.000 1.063 0.000 0.660 0.846 0.341 0.462 0.762
5 10 0.066 0.000 1.008 0.000 0.268 0.000 0.000 0.000 0.038 0.009 0.139
15 0.700 0.948 0.835 0.000 0.621 0.000 0.029 0.000 0.003 0.008 0.314
20 0.000 0.437 0.015 0.224 0.169 0.000 0.008 0.000 0.000 0.002 0.085
AVG_5 0.663 0.937 0.464 0.056 0.530 0.000 0.174 0.211 0.096 0.120 0.325
5 5.707 2.869 1.843 2.826 3.311 0.740 0.526 0.826 1.556 0.912 2.112
10 10 1.157 1.716 2.747 1.632 1.813 0.238 0.227 0.212 0.389 0.266 1.040
15 0.910 0.175 1.531 1.025 0.910 0.045 0.000 0.000 0.050 0.024 0.467
20 1.323 2.062 0.436 1.776 1.400 0.042 0.016 0.001 0.187 0.062 0.731
AVG_10 2.274 1.706 1.639 1.815 1.858 0.266 0.192 0.260 0.545 0.316 1.087
5 3.498 2.209 1.876 5.908 3.373 0.340 1.156 1.449 0.881 0.956 2.165
15 10 1.736 2.787 2.856 1.885 2.316 0.223 0.338 0.373 0.636 0.392 1.354
15 1321 0.793 1.388 1.229 1.183 0.152 0.090 0.064 0.139 0.112 0.647
20 1.182 3.902 0.559 0.693 1.584 0.023 0.127 0.014 0.156 0.080 0.832
AVG_15 1.934 2.423 1.670 2.429 2.114 0.185 0.428 0.475 0.453 0.385 1.249
5 0.943 1.873 1.271 0.849 1.234 1.077 0.515 1.588 0.763 0.986 1.110
20 10 1.602 1.266 2.825 1.898 0.126 0.271 0.774 0.609 0.445 1.171
15 3.404 2.519 2.961 0.103 0.107 0.630 0.338 0.295 1.628
20 0.000 0.000 0.000
AVG_20 1.983 1.570 2.205 0.849 1.652 0.435 0.297 0.997 0.570 0.575 1.113
AVG_TOTAL 1.714 1.659 1.495 1.287 1.539 0.221 0.273 0.486 0.416 0.349 0.944
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Table 6.4 shows that average percent deviations of the solutions obtained by
Algorithm 4 when the processing times are short (denoted by SHORT) are greater
than the solutions obtained when the processing times are long (denoted by LONG).
Figure 6.1 illustrates the difference between the averages of SHORT and LONG for
each number of customer orders. From figure, percent deviations of LONG for each
number of customer order is significantly less than percent deviations of SHORT.
This situation is expected, because, in LONG problem instances, processing times
are relatively greater than setup times. Hence, the effect of setup reduction is less
significant than SHORT case since the process times are very small relative to setup
times. This behavior is valid for the problem instances in which the customer orders

have constant number of jobs.
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Figure 6.1 Difference between the average percent deviations

A similar table is constructed for the problem instances in which the number of jobs
in customer orders is taken as constant. As can be seen in Table 6.5, many of the

problem instances cannot be solved when the number of customer orders is twenty.
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Table 6.5 Average Percent deviation of Algorithm 4 from optimal solutions for

CONSTANT case
CONSTANT
K N SHORT LONG AVG
LL LH HL HH AVG LL LH HL HH AVG

5 1.487 0.974 1.472 0.055 0.997 0.061 0.273 0.010 0.008 0.088 0.542

5 10 0.155 0.077 2.407 2.096 1.184 0.201 0.175 0.151 0.474 0.250 0.717
15 0.170 0.529 3.739 0.828 1.316 0.162 0.018 0.040 0.215 0.109 0.713

20 2.504 0.817 1.344 0.314 1.245 0.013 0.100 0.180 0.098 0.098 0.671

AVG_5 1.079 0.599 2.241 0.823 1.186 0.109 0.142 0.095 0.199 0.136 0.661

5 0.024 0.153 0.744 1.129 0.513 0.317 0.125 0.027 0.891 0.340 0.426

10 10 0.152 0.403 0.000 1.303 0.465 0.317 0.528 0.514 0.392 0.438 0.451
15 0.275 0.693 3.490 0.717 1.294 0.284 0.144 0.260 0.381 0.267 0.780

20 0.539 1.831 0.344 1.620 1.084 0.079 0.240 0.145 0.099 0.141 0.612

AVG_10 0.248 0.770 1.145 1.192 0.839 0.249 0.259 0.236 0.441 0.296 0.568

5 0.069 0.000 0.318 0.523 0.228 0.057 0.284 0.128 0.754 0.306 0.267

15 10 0.031 0.000 1.872 1.985 0.972 0.148 0.170 0.309 0.096 0.181 0.576
15 0.049 0.021 0.854 0.011 0.233 0.017 0.090 0.131 0.013 0.063 0.148

20 0.163 0.259 0.032 0.151 0.087 0.007 0.158 0.003 0.064 0.108

AVG_15 0.078 0.007 0.826 0.638 0.387 0.077 0.138 0.182 0.216 0.153 0.270

5 0.000 0.000 0.420 0.420 0.210

20 10 0.062 0.029 0.006 0.032 0.002 0.001 0.017 0.012 0.008 0.020
15 0.000 0.021 0.400 0.210 0.105

20 0.000 0.000 0.000

AVG_20 0.031 0.000 0.029 0.006 0.017 0.012 0.001 0.279 0.012 0.076 0.046
AVG_TOTAL 0.359 0.344 1.060 0.665 0.607 0.112 0.135 0.198 0.217 0.165 0.386

Percent deviations of the solutions obtained by Algorithm 4 when processing times
are short are greater than percent deviations when processing times are long except
for twenty customer orders. When the number of customer orders is twenty and the
number of jobs in each customer order is constant, most of the problem instances
cannot be solved optimally. Hence, for those problem instances, analysis of
Algorithm 4’s performance, which is based on its percent deviation from optimal
solution, would not be enough and may lead to wrong results. Thus, the best integer
solutions obtained by the MILP model should be considered for comparison when
the optimal solution does not exist. Table 6.6 shows the percent deviations of
Algorithm 4 solutions from the best integer solutions obtained by the MILP model.

Table 6.6 Average percent deviation of Algorithm 4 from the best integer solutions for

CONSTANT case
CONSTANT

K N SHORT LONG

AVG
LL LH HL HH AVG LL LH HL HH AVG

5 0.908 -0.064 2.300 -0.206 0.734 -0.003 -0.031 0.115 0.286 0.092 0.413
20 10 -0.030 -1.734 0.004 -0.622 -0.596 1.000 -0.198 0.329 0.133 0.316 -0.140
15 0.326 -1.776 -1.336 -3.528 -1.578 -0.048 -0.146 1.734 -0.044 0.374 -0.602
20 -0.992 -3.169 * 2.163 -0.666 -0.732 0.758 0.143 -1.737 -0.392 -0.529
AVG_20 0.053 -1.686 0.323 -0.548 -0.465 0.054 0.096 0.580 -0.341 0.097 -0.184
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From Figure 6.2, it is clear that Algorithm 4 gives better solutions than best integer

solutions, and the percent deviations obtained for the case, in which processing times

are short, are significantly smaller than those obtained for the case, in which

processing times are long, since the total completion time becomes sensitive to the

setup reduction when processing times are relatively smaller than the setup times.

The solutions obtained by Algorithm 4 are compared with the best integer solutions

obtained by the MILP model are given in detail in Appendix A.
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Figure 6.2 Percent deviation of Algorithm 4 with respect to K =20

We also investigate the behavior of Algorithm 4 for each case of different number of

customer orders. In Figure 6.3, the behavior of algorithm is presented for 5-order

case, based on the number of jobs within each customer order and the processing

times.
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Figure 6.3 Percent deviations from the optimal for K =5

As can be seen from Figure 6.3, Algorithm 4 efficiently finds optimal and near
optimal solutions for the problem instances when processing times are long whether
the number of jobs in each order is taken as variable or constant. Furthermore, the
solution quality of Algorithm 4 also increases as the number of jobs increases. Figure
6.4 shows the average percent deviations of the solutions obtained by Algorithm 4
from the optimal solution obtained by MILP when the number of jobs in each
customer order is variable or constant and the processing times are short and long.
One can observe that the percent deviation is dramatically large for the case in which
the number of job is five, the number of jobs in each customer order is variable and
processing times are short, as compared to the cases where there are 10, 15 or 20

customer orders.
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The percent deviations of Algorithm 4 solutions from those obtained by MILP model

for problem instances having 15 or 20 customer orders are very similar to the ones

obtained for the problem instances with 5 or 10 customer orders, and they are

presented in Appendix B and C, respectively. Besides these percent deviation

analyses, Figure 6.5 illustrates the general averages of percent deviations for each

case of different number of customer orders.
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Figure 6.5 General average percent deviations for K =5, K =10, K =15 and K =20

As can be seen from Figure 6.5, Algorithm 4 gives better solutions when the number
of customer orders is 5. However, no trend or pattern related with the number of
customer orders is observed. On the other hand, performance of Algorithm 4
increases while the number of jobs increases. Detailed analysis of average percent
deviations obtained for problem instances generated by different combinations of the
number of jobs within each customer order and the processing times of the jobs are

given in Appendix D.

Table 6.7 shows the performance of the three algorithms when the number of jobs in
each customer order is variable. For some problem instances, we observe that
Algorithms 1 and 3 give optimal or near optimal solutions whereas Algorithm 2
gives solutions considerably far from the optimum. However, we observe the
opposite results, in which the solutions obtained by Algorithms 1 and 3 are
considerably far from the optimal solutions, when Algorithm 2 gives optimal or near
optimal solutions. This shows us that Algorithm 2 behaves different than the other
two algorithms while Algorithms 1 and 3 behave similarly. The performance of
Algorithm 2 is worse than the performance of other two algorithms especially when

the number of jobs in each customer order is variable.
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Table 6.7 Average percent deviation of Algorithms 1, 2 and 3 for VARIABLE case

VARIABLE
SHORT LONG

K N AVG_SHORT AVG_LONG AVG_VAR
AG1 | ALG2 | AG3 | AGl | AG2 | AG3 | AwGl | A2 | ALG3
5 3575 | 8760 | 1796 | 0.744 | 10.280 | 0.610 | 2159 | 95520 | 1.203
s 10 1.845 | 55830 | 1.383 | 0009 | 838 | 0009 | 0927 | 7.107 | 0.69
15 0626 | 4630 | 0626 | 0027 | 20427 | 0008 | 0326 | 12.529 | 0.317
20 0.169 | 17.159 | 0.169 | 0.002 | 14.356 | 0.002 | 0.085 | 15.758 | 0.085
AVG_5 1554 | 9.095 | 0993 | 0.195 | 13362 | 0.157 | 0875 | 11.228 | 0.575
5 12.203 | 5288 | 10447 | 1.060 | 5495 | 0936 | 6.632 | 5392 | 5.692
10 10 2.662 | 13.737 | 2242 | 0.443 | 25474 | 0359 | 1.553 | 19.606 | 1.300
15 1.102 | 12.851 | 1.102 | 0.059 | 14.184 | 0.024 | 0580 | 13.517 | 0.563
20 1.833 | 17.714 | 1459 | 0.062 | 21.587 | 0.062 | 0.947 | 19.650 | 0.760
AVG_10 4450 | 12398 | 3.813 | 0406 | 16.685 | 0345 | 2428 | 14541 | 2.079
5 17.188 | 3.784 | 13.896 | 1.731 | 4631 | 1400 | 9460 | 4.208 | 7.648
5 10 3.807 | 13.086 | 3.679 | 0584 | 8041 | 0461 | 2195 | 10564 | 2.070
15 1.584 | 12.203 | 1.321 | 0268 | 17.195 | 0211 | 0.926 | 14.699 | 0.766
20 1.939 | 21.889 | 1.588 | 0.165 | 22.011 | 0080 | 12052 | 21.950 | 0.834
AVG_15 6.130 | 12740 | 5121 | 0687 | 12970 | 0538 | 3.408 | 12.855 | 2.829
5 13.667 | 1.234 | 11.980 | 2.014 | 2495 | 1644 | 7.841 | 1864 | 6812
20 10 4922 | 4983 | 2902 | 0597 | 10318 | 0463 | 2.759 | 7.650 | 1.682
15 3.642 | 21151 | 3.248 | 0395 | 14102 | 0324 | 2018 | 17626 | 1.786

20

AVG_20 9345 | 5455 | 809 | 1.002 | 8972 | 0810 | 5174 | 7.213 | 4453
AVG_TOTAL 5370 | 9922 | 4506 | 0573 | 12.997 | 0463 | 2971 | 11.459 | 2.484

In contrary, as it can be seen in Table 6.8, the difference among the percent

deviations of the solutions obtained by all algorithms is not significant when number

of jobs in each customer order is constant.

Table 6.8 Average percent deviation of Algorithms 1, 2 and 3 for CONSTANT case

CONSTANT
K N SHORT LONG AVG CON AVG_TOTAL
AVG_SHORT AVG_LONG B
ALG1 ALG2 ALG3 ALG1 ALG2 ALG3 ALG1 ALG2 ALG3 ALG1 ALG2 ALG3
5 1.809 2.157 1.809 0.327 0.381 0.327 1.068 1.269 1.068 1.614 5.394 1.136
5 10 2.380 2.072 2.725 0.357 0.673 0.300 1.369 1372 1.513 1.148 4.240 1.104
15 1.663 2.464 2.112 0.144 1.031 0.152 0.903 1.748 1132 0.615 7.138 0.724
20 1.921 2.940 2.003 0.113 0.637 0.205 1.017 1.789 1.104 0.551 8.773 0.595
AVG_5 1.943 2.408 2.162 0.235 0.681 0.246 1.089 1.544 1.204 0.982 6.386 0.890
5 3.379 0.696 3.672 0.732 0.562 0.737 2.055 0.629 2.205 4.344 3.010 3.948
10 10 1.175 0.751 1.890 0.719 0.678 0.950 0.947 0.715 1.420 1.250 10.160 1.360
15 2.005 1.529 2.195 0.374 0.379 0.458 1.190 0.954 1.326 0.885 7.236 0.945
20 1.376 2.117 2.149 0.141 0.593 0.243 0.758 1.355 1.196 0.853 10.503 0.978
AVG_10 1.984 1.273 2.476 0.492 0.553 0.597 1.238 0.913 1.537 1.833 7.727 1.808
5 0.673 0.286 0.836 0.700 0.335 0.899 0.686 0.311 0.867 5.073 2.259 4.258
1 10 2.164 0.979 4.105 0.363 0.286 0.454 1.264 0.632 2.280 1.729 5.598 2.175
> 15 0.451 0.383 0.659 0.075 0.094 0.075 0.263 0.239 0.367 0.595 7.469 0.567
20 0.479 0.157 0.477 0.222 0.329 0.075 0.351 0.243 0.276 0.701 11.097 0.555
AVG_15 0.914 0.442 1.492 0.340 0.261 0.376 0.627 0.352 0.934 2.018 6.603 1.882
5 0.000 0.000 0.000 0.826 0.420 0.826 0.413 0.210 0.413 4.127 1.037 3.613
2 10 0.213 0.033 0.359 0.051 0.019 0.051 0.132 0.026 0.205 1.446 3.838 0.944
15 0.306 0.363 0.349 0.000 0.363 0.349 1.009 8.995 1.067
20 0.000 0.000

AVG_20 0.142 0.017 0.251 0.167 0.112 0.174 0.154 0.065 0.212 2.664 3.639 2.333
AVG_TOTAL 1.246 1.035 1.595 0.308 0.402 0.348 0.777 0.718 0.972 1.874 6.089 1.728
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In Figure 6.6, average percent deviations of the solutions obtained by Algorithms 1,
2, and 3 from the optimal solutions are analyzed, and the performance of these
algorithms are compared. It can be observed that Algorithms 1 and 3 gives better
results than Algorithm 2 for all cases in which the number of customer orders is
taken as 5, 10, 15 or 20, and their average percent deviations from the optimal
solution is less than 3%. The average percent deviations of Algorithms 1, 2 and 3
from the optimal solutions are calculated as 1.874%, 6.089% and 1.728%,

respectively.

As a summary, Algorithms 1 and 3 outperform Algorithm 2 for most of the problem
instances but Algorithm 2 gives better results for large-sized problem instances
especially when the number of jobs ordered by each customer is constant. On the
other hand, Algorithm 4 has an average percent deviation of 0.665% over all problem

instances since it takes the best solution among Algorithms 1, 2 and 3.
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Figure 6.6 General average percent deviations of each algorithm for K =5, K=10, K=15
and K =20
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this study, a new customer order scheduling problem on a single-machine with job
setup times is considered. It is assumed that all jobs in the same customer order are
processed successively and delivered to the customer at the same time, and no setup
time is necessary before the processing of the first job of a customer order if this first
job is the same as the last job of the immediately preceding customer order. We have
investigated the problem for two objectives, one is minimizing the makespan and the

other one is minimizing the total completion time of customer orders.

For the makespan problem, we have shown that the problem is polynomially
solvable. However, for the total completion time problem, we have developed a
mathematical programming model and heuristic algorithms that obtain optimal and

near-optimal solutions, respectively.

We observed from our experiments that the proposed heuristic algorithms developed
for the total completion time minimization problem find promising results as it
solves small-and medium-sized problem instances optimally and finds near-optimal

solutions for large-sized instances in very short computational time. The results also

reveal that solving the problem by a standard MILP solver seems not to be useful

alternative, especially for large-sized problem instances.

Order scheduling problems are not yet extensively studied. Thus, there is
considerable number of issues remaining open for future research. Several extensions
of our study can be investigated. First, development of additional heuristic
algorithms, including meta-heuristics could be useful to improve the quality of

solutions obtained in this study. Second, the study of the same problem considered in
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this study for different problem characteristics, such as ready times, precedence
relations among the jobs, and the performance measures concerning due dates of the
customer orders, especially the total tardiness, the maximum lateness, and the
number of tardy customer orders, would be other extensions. Third, the study of
same problem for more complex machining environments such as parallel machines
or multiple stages may be another future research issue. Finally, the assumption of
non-existence of multiple identical jobs in a customer order may be relaxed, and the

future study issues mentioned above would be investigated.
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APPENDICES

APPENDIX A - COMPARISON TABLES

TABLE A.1- ABBREVIATIONS USED IN COMPARISON TABLES

ABBREVIATION

EXPLANATION

K

Number of customer orders

N

Number of different jobs

VARIABLE or VAR

Number of jobs within each customer order is variable,
and determined by DU[1,N]

CONSTANT or Number of jobs within each customer order is constant

CNST (fixed), and determined by DU[2, N-1]

SHORT Processing times are determined by DU[1,10]

LONG Processing times are determined by DU[100,200]

LL Setup times have low mean and low variance, and are
determined by DU[25,35]

LH S Setup times have low mean and high variance, and
are determined by DU[10,50]

HL Setup times have high mean and low variance, and are
determined by DU[55,65]

HH Setup times have high mean and high variance, and are

determined by DU[40,80]
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APPENDIX B - AVERAGE PERCENT DEVIATIONS FROM THE
OPTIMAL WHEN K =15
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APPENDIX C — AVERAGE PERCENT DEVIATIONS FROM THE
OPTIMAL WHEN K =20
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APPENDIX D - AVERAGE PERCENT DEVIATIONS CALCULATED

FOR K =5, 10, 15, 20

2.5

2.0

15

B K=5
EK=10

1.0 -

0.5 -

0.0

gK=15
OK=20

5 10

é
15

20

Figure D- 1 Average percent deviations for VARIABLE case
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Figure D- 2 Average percent deviations for CONSTANT case
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Figure D- 4 Average percent deviations for VAR_LONG case
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