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ABSTRACT

LINE INTEGRAL REPRESENTATION OF FRINGE WAVES FOR
PERFECTLY CONDUCTING AND IMPEDANCE SURFACES

BASDEMIR, Hiisnii Deniz
Ph.D., Department of Electronic and Communication Engineering

Supervisor: Prof. Dr. Yusuf Ziya UMUL

May 2014, 63 pages

In this thesis, surface diffraction was investigated for perfectly conducting and
impedance cylinders. Moreover, the line integral representations of fringe fields were
derived analytically and generalized with using the unit vectors of related edge
contours. Hence, the method of physical theory of diffraction was improved with
reducing the scattering surface integral to line integral. The derived expressions were
applied to perfectly conducting parabolic reflector geometry for investigation of
exact diffracted fields. In addition, uniform expressions of scalar fringe waves which
are based on the physical theory of diffraction method are derived for an impedance
half-plane. The asymptotic and uniform expressions were compared for the
impedance half-plane geometry. All these mentioned fields were plotted and

analyzed numerically.

Keywords: Surface Diffraction, Edge Diffraction, Fringe Waves.
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MUKEMMEL iLETKEN VE EMPEDANS YUZEYLER iCiN SACAK
ALANLARININ CiZGi INTEGRAL GOSTERIMi

BASDEMIR, Hiisnii Deniz
Doktora, Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Tez Yoneticisi: Prof. Dr. Yusuf Ziya UMUL
Mayis 2014, 63 sayfa

Bu tezde, mikemmel iletken ve empedans silindirler igin yiizey kirinimi
incelenmistir. Dahas1 sacak alanlarinin c¢izgi integral gosterimi analitik olarak
tiretilmis ve kenar hattiyla alakali birim vektorler kullanilarak genellestirilmistir.
Boylece kirinimin fiziksel teorisi metodu sacilma ylizey integrallerinin cizgi
integraline indirgenmesiyle gelistirilmistir. Kesin kirinim alanlarinin arastirilmasi
icin tiiretilen ifadeler miikemmel iletken parabolik yansitict geometrisine
uygulanmistir. Buna ek olarak, kirinimin fiziksel teorisi metoduna dayanan siirekli
sacak alanlarinin ifadeleri bir empedans yarim diizlemi i¢in tiiretilmistir. Empedans
yarim diizlem geometrisi icin asimptotik ve siirekli cinsinden ifadeler
karsilastirilmistir. Bahsedilen biitiin alan ifadeleri ¢izdirilmis ve sayisal olarak analiz

edilmistir.

Anahtar Kelimeler: Yiizey Kirinimi, Kenar Kirinimi, Sacak Alanlar.
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CHAPTER 1

INTRODUCTION

1.1 Background

In general, wave radiation has to be analyzed by taking into account scatterers.
Scatterers are finite structures. These structures reflect waves from uniform tangent

planes or diffract waves from their non-uniform parts [1]. In a medium, total field
consists of incident field (El.,ﬁl l.) and scattered field (ES,IjI s). Incident fields are

produced by a source in the absence of any scatterer. Total electric and magnetic
fields can be written as
E =E +E (1.1)
and

H =H,+H,. (1.2)
Exact solutions of the scattered fields must satisfy the Helmholtz equation and
related boundary conditions. Helmholtz equation is a differential equation that can be
solved by using the method of separation of variables if the scatterer’s geometry is
suitable. Diffraction problems are one of the most popular investigation fields of
scattering problem, solutions of which are obtained by using different methods.
There are three major groups of solution methods. The first one is analytic, the
second one is numerical and the last one is asymptotic methods. If the variables
cannot be separated, this means that the geometry is complex and then high
frequency asymptotic techniques are preferred. In this thesis work we are interested
in the high frequency (HF) asymptotic techniques. The high frequency asymptotic
condition is satisfied when kp >>1, where k is the wave number, and p is the
distance between source and observation point. This technique deviates from two

major groups which are ray-based and current-based. Geometrical optics (GO),
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which is one of the ray based techniques, indicates that in the high frequency,
electromagnetic waves travel like rays in the vacuum [1]. This method shows us
incident and reflected fields, and these fields help us to determine the good and bad
zones for the communication. However, this technique does not include diffraction
phenomena. GO fields, which are directly reaching the observation point is not
affected by the scatterers. However, GO does not include the diffracted fields.
Geometrical theory of diffraction (GTD) [2] and its uniform version of uniform
theory of diffraction (UTD) [3] are popular ray-based techniques for investigation of
diffraction problems. These techniques have a problem at the caustic regions. They
give infinite field values at those regions. Both current-based and integral-based
techniques eliminate this problem. PO, which was suggested by McDonald is one of
them [4]. It is based on the integrating current, which is induced on the scatterer’s
surface. Although the technique is accurate in the applications, it gives wrong
diffracted fields on the edges. The second defect originates from its definition where
the contribution from the shadow part is excluded. These defects were fixed in
physical theory of diffraction (PTD) method, which was suggested by Ufimtsev in
1950s by defining additional correction current [5]. Ufimtsev called this current
“non-uniform current”, whereas the other authors called “fringe current”. Scattered
field consists of the composition of the uniform and non-uniform field components
according to the PTD. The uniform field component is obtained by using the PO
method. The non-uniform field component is the result of the fringe current which
flows on the discontinuity of the scatterer [6]. Sommerfeld's exact expressions of the
non-uniform currents were presented for the numerical computations by Ufimtsev
[7]. PTD technique is based on this correction current. The more general form of the
PTD was developed for electromagnetic edge waves by Ufimtsev [8]. PTD is based
on the concept of the elementary edge waves. Grazing singularities of the PTD were
eliminated by Ufimtsev for electromagnetic and acoustic wave problems [9-10].
Unfortunately, the method of PTD can be applied just for solution known problems.
This originates from its definition. The new and interesting method for obtaining the
exact solution of diffracted fields from perfectly electric conducting (PEC) surfaces
is the modified theory of physical optics (MTPO) [11]. This technique eliminates all

mentioned difficulties by defining three axioms, which are considered the scatter and



aperture surface, the angles of transmission and reflection are taken as function of the

scatter and aperture coordinates, and a redefined new unit vector.

Pathak performed an UTD analysis of the scattered fields from a PEC cylinder in
1979 [12]. Asymptotic expression for the scattering by a perfectly conducting
cylinder was investigated by Franz [13]. A new method for investigation of the plane
wave scattering by a perfectly conducting circular cylinder near a plane surface was
presented by Borghi F., Santarsiero M., Frezza F., Schettini G [14]. Asymptotic
expansions of exact solutions for the scattered fields from perfectly conducting
cylinder were investigated on the complex plane and critical discussions GO, PO and
GTD were presented by Kouyoumjian [15]. Diffracted and reflected fields by any
convex cylinder were constructed by Keller [16]. The eigen-function solution for
electromagnetic scattering by the cylinder was published in 1881 [17], the parabolic
cylinder in 1914 [18]. Debye obtained asymptotic approximation for the current on
the illumination side of the cylinder by using the saddle point method [19]. Riblet
gave the first two terms of the asymptotic expansion of the current on the illuminated
part of the cylinder [20]. Wetzel published a study about the high frequency currents
on the all parts of the cylinder [21]. Wait obtained the current on a parabolic cylinder
in the vicinity of the shadow boundary [22]. An analytical solution was presented for
the electromagnetic scattering from a dielectric cylinder by Lawrence and Sarabandi
[23]. Scattering from a perfectly conducting cylindrical reflector was examined by
Yalcin [24]. Physical optics integral was obtained for a cylinder by Umul at all. [25].
Plane wave scattering by a perfectly conducting circular cylinder near a plane surface
was investigated by Borghi at all. [26]. Diffraction of waves generated by magnetic
line source by the edges of a cylindrically curved surface with different phase
impedance was presented by Biiyiikaksoy and Uzgoren [27]. The diffracted fields
from the smooth convex perfectly conducting surface and the contributions of the PO
and PTD currents which are described in terms of the Fresnel function and the non-
singular Pekeris functions were investigated by Michaeli with the method of PTD
[28]. Equivalent surface currents were implemented in a standard general purpose
PTD code by Syed and Volakis for a number of impedance and coated structures
[29]. PTD was applied to a perfectly conducting cylinder to investigate the diffracted
fields by Basdemir [30-31].



The third chapter of this thesis is allocated for investigation of the surface diffraction
from PEC and impedance cylinders. The contribution of this work is in the
application of the PTD method, both for impedance and PEC cylinders. Although
PEC cylinder was investigated previously by us [30], according to our knowledge,
there is no work in the literature about the application of the PTD to an impedance
cylinder for the investigation of the surface diffraction. The PEC cylinder will be
revisited for increasing the intelligibility of the applied method. Using PTD method,
the fringe currents and the fringe fields will be obtained and the contributions of
these related to the scattered fields and the impacts of the surface diffraction will be

investigated in the third chapter.

Young first proposed the physical meaning of the scattered fields from a knife edge
by the superposition of the incident and edge diffracted fields [32]. Although his
valuable idea was allowed to show the interference characteristic of the scattered
fields, his interpretation did not based on mathematics. Therefore, this proposal was
dominated by the Fresnel's theory of diffraction. Later on, Maggi and Rubinowitz
independently derived mathematical expressions for the qualitative representation of
the Young’s idea by using the Kirchhoff's integral formula [33-34]. The obtained line
integrals are the reduction forms of the surface integrals to the line integrals and the
evaluation of these integrals directly gives the edge diffracted fields. This theory
provides the investigation of the diffracted fields independently from the total
scattered fields. However, Ganci's works on the half plane showed that the solution
of the Maggi-Rubinowitz (boundary diffraction wave, BDW) gives an approximate
solution like physical optics (PO) [35-36]. Ufimtsev improved his theory with
reducing his surface integrals to reduce the edge point contributions but he did it
indirect and heuristic considerations [37]. Mitzner and Michaeli also used this
surface to edge reduction technique independently [38-39]. The result of the
Mitzner’s work was formulated in terms of the incremental length diffraction
coefficients (ILDC) and the Michaeli's work was formulated in terms of the
equivalent edge currents (EEC) for wedge like solutions. Both approaches were
compared by Knott [40]. Michaeli's expressions are finite for all directions of
incidence and observation for edges. In the oblique incidence observation point is

described with two different angles. The first one, £ is related with the edge contour
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and second one, ¢ is related with the plane of the perpendicular incidence [39]. The
scattering angle £ was taken different from the incident angle according to Michaeli

for the case of oblique incidence. Thus, the equivalent edge currents were improved

for the observation points that are out of the Keller’s cone. The angle S is the
function of the integral variable but he did not modify the ¢ angle. According to the
equivalent edge current method of Michaeli, the angle ¢ is not a function of the
integration variable. However, the angle ¢ becomes variable at the discontinuity of

an edge. Because of this, at the corners, the method gives wrong diffracted fields.
Umul has overcome this corner problem with defining the exact form of the
equivalent edge currents by using the axioms of the modified theory of physical
optics (MTPO) [41-42]. The curved surface diffraction has been studied by many
researchers. The scattering of the electromagnetic fields from the curved surfaces
was studied by Biiyiikaksoy and Uzgoren [43], and also Akduman and Biiylikaksoy
[44]. Scattering of a line source from a cylindrical parabolic impedance reflector was
investigated by Umul [45]. Scattering from a cylindrical reflector which is fed by an
offset electrical line source was investigated by Yalg¢in [46].

In the fourth chapter of this thesis, rigorous form of the fringe field expressions will
be obtained and generalized by using the unit vectors. The obtained expressions will
be applied to the parabolic reflector geometry, which has the PEC boundary
condition and is fed by the H-polarized magnetic line source. The method that is

based on the MTPO axioms will be applied.

The half-plane problem is one of the most fundamental problems of diffraction
phenomena. Exact solution of this problem was obtained for the PEC case by
Sommerfeld in 1882. Ufimtsev's PTD is based on this exact solution. Non-uniform
fringe fields can be obtained by the subtraction of asymptotic PO fields from
asymptotic exact solutions. Similarly, uniform fringe fields can be obtained by
subtraction of uniform PO fields from uniform exact solutions of the related
geometry. Using the uniform fringe fields instead of the non-uniform version is more
reliable. Umul pointed out after a comparison that the values used by Ufimtsev were
quite large and not giving the correct results for the fringe fields [47]. According to

Umul’s work, approximate expressions are not valid in the transition regions.
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Therefore, the solutions that are represented by the Fresnel functions must be used
for the scattering problems [47]. Syed and Volakis derived PTD formulation for
investigation of radar cross section (RCS) and they presented their formulation for
impedance and coated structures [48]. Although PTD results for different impedance
structures were presented by Syed and Volakis, fringe field expressions were not
studied analytically and numerically. In addition, the work does not include the
uniform version of the fringe field expressions and results were analyzed in terms of
the total fields. In the literature, there are lots of applications on the diffraction
analysis for impedance surfaces such as land-sea transition, solar cell panels on
satellites and edges of high performance antennas [49-52].

In the fifth chapter of this thesis, uniform fringe field expressions for impedance
half-plane will be investigated. Although the diffraction from a half-plane was
studied by many researchers according to our knowledge, there is no study on the
application of the PTD method to an impedance-half plane. Moreover, uniform
expressions of fringe fields have not been examined for an impedance half-plane. It
will be examined in this thesis for the first time. Additionally, uniform and non-
uniform expressions will also be derived and compared numerically. Differences will
be examined according to the distribution of fringe field. All these mentioned fields
will be analyzed numerically in the numerical parts of the chapters by using

MATLAB.

The time factor of exp( Jj a)t) is assumed and suppressed throughout the thesis where

w is the angular frequency.

1.2 Objectives

The primary aim of this study is to reduce of the scattering surface integral to a line
integral in order to directly obtain the edge diffracted fringe fields. Thus, the
obtained integral expression is generalized for the PEC case. The derived fringe
expression is used for investigation of the contribution to the scattered fields for
parabolic reflector geometry. Moreover, the contribution of the diffracted fields to
the scattered fields for different geometries such as half-planes and cylinders with the

impedance boundary conditions is also studied. The method, which is used for this
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aim is the physical theory of diffraction (PTD). The derived expressions of the fringe
fields are transformed into uniform versions. In some applications, asymptotic and
uniform fringe field expressions are compared. All these field expressions are

analyzed numerically.

1.3 Organization of the Thesis

This thesis contains six chapters. All the necessary information about the reduction
of the scattering surface integral to line integral representation, methods used for the
derivation of the fringe fields and numerical analysis of these fields can be found for
different geometries.

Chapter 1 is an introduction to the history of edge diffraction and objectives of this
thesis.

Chapter 2 includes an introduction of the physical optics and physical theory of
diffraction technique which will be used in this thesis. In addition, line integral
representation of fringe fields and generalization process are introduced.

In Chapter 3, generalized form of the fringe waves for perfectly electric conducting
edge and its application of the parabolic reflector are studied.

In Chapter 4, perfect electric conducting and impedance cylinder application of the
PTD in terms of the series solutions are investigated.

Chapter 5 includes the derivation of the fringe fields for an impedance half-plane and
comparison of the asymptotic and uniform fringe fields.

Chapter 6 includes the conclusion part.



CHAPTER 2

CURRENT BASED TECHNIQUES

2.1 Fundamental Concept of the Current Based Techniques

The exact solutions of the scattered fields can be obtained by the solution of the
Helmholtz equation for appropriate geometries. In some cases, especially for the
complex geometries, solution methods can be inadequate for the Helmholtz equation.
The expressions are not separated to variables because of the complexity of
geometries. In this situation, high-frequency asymptotic techniques are more suitable
to obtain the scattered field expressions. The current based techniques are one of the
most known high frequency asymptotic techniques. The basic idea for this
approximation is to define an equivalent current on the tangential plane of the
scatterer object by the incident field. This approximation is valid in the high

frequencies, which means that kp >>1 when compared with the scattering object. In
this case, k is the wave number and p is the observation distance. Figure 1 shows

the induced current on the scattering object.

Figure 1 Induced surface current by incident wave

It can be seen from the Fig. 1 that J .. 1s the induced electric current by the incident

wave. Induced current can be thought as the source of the scattered field. This
current is modeled mathematically with respect to the boundary conditions of any

scatterer’s surface. Scattered field includes geometrical optical fields which are
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incident (El.), reflected (E,) fields respectively and also includes diffracted fields

(E 4 ) Examples of the current based techniques are the modified theory of physical

optics (MTPO) [11], physical optics (PO) [4] and physical theory of diffraction
(PTD) [5].

2.2 Physical Optics (PO)

In the high-frequency asymptotic techniques, the PO and its scalar version, called the
extended Kirchhoff integral, are useful methods for investigation of the scattering
phenomena. The method PO was suggested by Mcdonald in 1913 [4]. It can be a
good prediction of the scattered fields for large metallic objects. Since the situations
of reflection and diffraction have a local character in high-frequencies, the related
approximation is valid for the problems where the size of the scatterer is sufficiently
greater than the wavelength. According to this technique, induced field on the object
is determined by the geometrical optics. Geometrical optics (GO) gives us the
electromagnetic waves that travel in ray tubes at high frequencies. For this reason
this technique is generally named as ray optics. In a homogeneous medium, energy
moves along ray paths that are straight lines. We can assume the surface of the
scattering object as an infinite tangential plane with respect to small wavelength
according to obstacle. This surface is called geometric optic surface. The main idea is
to achieve current on the scatterer. Current induced by the incident field can be

written,

J,, =iixH, ,in the lit region (2.1)
and

J ro =0, in the shadow region (2.2)
where 7 is the unit normal vector which is outward from the illuminated part of the

scatterer as shown in Fig. 2. Keep in mind that PEC case is considered. H . 1s the

total magnetic field intensity. It is defined on the scatterer’s surface. Since PO takes
the reflected fields as GO fields, the total field on the surface is twice of the incident
field.



Figure 2 Physical optics lit and shadow regions

In the far field total scattering PO field can be found

E =—jaA (2.3)

from the Eq. (2.3). A shows the magnetic vector potential. For finding the magnetic

vector potential, physical optics scattering integral is written as
" Il'l 0 7 '
=—||J,,Gds
= J;j PO 2.4)

where the integral is defined over the scatterer's surface. The term G is the free

. —JjkR . . .
space Green’s function and equal to % where minus sign in the exponential

term corresponding the waves is propagating in the outward direction, and R is the
distance between the source and observation point. Green’s function includes the
phase and magnitude variations information away from the source. The method PO
has two important defects. The first one is the incorrect contribution of edge
diffraction to the scattering integral. This defect was eliminated by Umul by using
modified version of the surface currents [11]. He obtained the exact solution of the
edge diffracted waves for PEC half-plane by using this method. Later on, this method
was extended for wedge problem by Umul [53]. The second defect of the PO method
is the absence of the shadow surface currents. These are the results of the definition

of PO method. The PO approximation is based on the GO and GO predicts zero field
10



in the shadow region. Thus, the surface currents on this part of scatterer are taken as
zero. For this reason, it is not possible to evaluate the exact scattered fields with a
wedge by using PO method since PO only takes into account the illuminated part of
the scatterer and reduces the wedge problems to the half-plane. The physical theory

of diffraction (PTD) was proposed by Ufimtsev to overcome this defect [5].
2.3 Physical Theory of Diffraction (PTD)

As mentioned before, it is not possible to evaluate the exact scattered fields by using
the PO method because of its definition. The PO current limited only the illuminated
part of the scatterer, so it leads to wrong diffracted field contribution to the scattered
field. In this situation, PO reduces the wedge like geometries to the half-plane
problem. For this reason, a method called physical theory of diffraction was
introduced by Ufimtsev in 1950’s [5]. The aim of the method is to obtain the exact
wedge diffracted waves by using the exact solution. When Ufimtsev was improving
the PO technique, he was aware of the Sommerfeld’s exact wedge solution [54]. The
fundamental idea of Ufimtsev’s concept is to divide the induced current into two
components. This total current can be thought as the source of the scattered field. It

can be defined as

— —

Jt = ‘]uniform + Jnonuniform (25)

in terms of the uniform and non-uniform currents. First part, J is called the

uniform °
uniform part of the current. This part is obtained from the PO. PO current is
described on the lit region of the scatterer’s tangential surface which is called the
geometric optic surface. PO approximation is based on the GO fields. Since GO
predicts zero field in the shadow region, the shadow current is taken as zero by the
PO method. The incident wave shows equal distribution over the tangential plane. Its
amplitude is constant and its phase is a linear function of the plane coordinates.
Because of this it is named as the uniform component. The currents which are
induced over the tangential plane of the scatterer are defined by taking into account
the surface boundary conditions. The PTD method is valid for both acoustic and

electromagnetic surfaces. The relation between the acoustic and electromagnetic
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surfaces has to be described. On the acoustically soft plane, total field on the

scatterer is equal to zero and can be written as

Uy =0 (2.6)
but its normal derivative is different from zero. On the acoustically hard plane, total

field can be given as

=2u, 2.7)

uf hard 4
but its normal derivative is equal to zero on the surface. On a PEC surface the
tangential component of the electric field intensity is equal to zero. If the electric
field polarization is parallel to the edge of the scatterer, this time surface is called
perfectly magnetic conducting (PMC) surface. These conditions tell us for
electromagnetic boundary conditions in the acoustically soft plane, tangential
polarization of the incident electric field is different from zero but incident magnetic
field is equal to zero and in the acoustically hard plane, tangential polarization of the
incident electric field is equal to zero but incident magnetic polarization is different
from zero. Acoustically hard plane is described as PEC surface in the
electromagnetic and acoustically soft plane is described as PMC surface in the
electromagnetic. The main contribution of PTD to the diffraction phenomena is the
non-uniform part which is introduced by Ufimtsev. Non-uniform parts are the
discontinuity of the scattering objects. In Fig. 3 the edge, smooth bending and

discontinuity of curved surface are given as the examples of discontinuities.

a b C

Figure 3 Different shapes where the incident field generates the non-uniform source
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As seen in the Fig. 3, a is the sharp edge, b is the smooth bending and c is the
discontinuity of curvature. These discontinuities are the reason of diffraction. Current
induced on these discontinuities, especially on the edges, was called fringe currents
and the fields which are radiating from these discontinuities were called fringe fields
by the Ufimtsev [5]. Actually, Ufimtsev did not find the non-uniform currents;
instead, he evaluated the non-uniform field due to the non-uniform current. Ufimtsev
obtained this fringe fields subtracting PO scattered waves from the Sommerfeld’s
exact solution. Special feature of this technique allows us to calculate the fields
which are in the shadow and the caustic regions. Although this technique is just
applicable for the solution known problem, its serious contributions to the
technology can’t be disregarded. With the contribution of this technique to the
modern low radar cross-section systems, Lockheed Martin produced F-117 Stealth

Fighter airplane.

2.4 Theory of Line Integrals

The diffraction phenomenon is based on the radiation and interference properties of
waves. Early interpretation about diffraction process is observed by Newton's
explanation. According to Newton, light consists of particles. Hence, diffraction is a
natural result of the compelling effect of discontinuities on the particles. However,
Young proved the wave nature of the light with his well known double slit
experiment in 1802 [55]. Young first proposed the physical meaning of the scattered
fields from a knife edge by the superposition of the incident and edge diffracted
fields. It is important to note that scattering integral consists of the surface integral.
Hence, for obtaining the edge diffracted fields, total surface integral has to be
reduced to line integral. The similar procedure was applied by Maggi and
Rubinowicz [33-34]. Maggi and Rubinowicz showed independently that Kirchhoff’s
integral can be decomposed as the sum of two terms. The first one represents the
undisturbed wave which is directly propagates through an aperture and the second
one represents the diffracted wave. In the introduction part, similar studies of authors
about the reduction process were mentioned. In this part, we will concentrate on the

reduction of the Kirchhoff's surface integral to a line integral in order to directly

13



obtain the edge diffracted field. The investigation of the diffracted fields from a half-
plane will be illustrated.

The scattering surface is given in Fig. 4. The half-plane is lying on the
surface {x e [0,00), y=0,z€ (—o0,00)}. The total field is equal to zero according to the

Dirichlet (soft) boundary condition.

Incident wave

X
>
Figure 4 The geometry of the soft half-plane
The Kirchhoff's surface integral is given as
1
ulP)=—1|||uVG - GVu|- ndS
()= IS [l ] (2.8)

where u is the total field, G is the Green's function and 7 is the unit normal vector

of the surface, respectively. The Dirichlet boundary condition is written as
ul, =0. (2.9)

The surface is illuminated with the plane wave of

U = uoe/k(xcos¢0+ysin¢0) (2 10)
where u, is the any component of the electric or magnetic field. After application of

Eq. (2.9) to Eq. (2.8), according to PO the expression is

1 ou .
”(P)_EISJGEdS 2.11)

where a%n is equal to a%y . Total field is written as

u="2u, (2.12)

Hence Eq. (2.11) is written as
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Jksingy T T iing e
ulP)=—2"79 e " ——dx dz 2.13
(P)=—"— j Zv I - (2.13)
2 2 :
where R is the ray path and equal to [(x—x') +y2+(z-2) F The x part can be
reduced asymptotically by the well-known edge point technique [11]. The edge point

technique is written as

Tf (x)e < dx = ik 1) o) (2.14)
J

oQ

—_
Q

SN—

a

The phase function of Eq. (2.13) is written as
g(x')zx'cos%—R. (2.15)

The first derivative of the phase function is obtained as

dg x—x
—2 =cosq, + (2.16)
dx % R

where X~ x%? is equal to —cosa from Fig. 5.

14 > X

Q(x',O,z')

Figure 5 The angles of the scattered field

The phase function takes the form as
g(0)=-R, (2.17)

at the edge of the scatterer where R, is the ray path from edge to observation point

1
P and equal to [,02 + (z -z )2 F . The first derivative of phase function of Eq. (2.15)
is given by

g (0)=cosg, —cose, (2.18)
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keep in mind that & is equal to ¢, at the edge. The amplitude function is obtained as

L
- (2.19)

e

f(0)=

at the edge. After the application of the edge point technique, Eq. (2.13) is rewritten

as

15 sin TR
u,(P)=-— % R (2.20)
2w .0 _cos@,—cosa, R,

and reduced form of the surface integral is obtained. The Fig. 6 shows the angles of

generalization process.

Scattered wave Incident wave

Figure 6 The angles of generalization process

The angles can be represented in terms of the unit vectors. They can be written as

sing, =|n, Xn,|, (2.21)
cos@, =1, Xe, (2.22)
and
cosa, =n,Xe, (2.23)
respectively.
Hence, the generalized edge diffraction integral is derived as
- iR,
u, (P)= 217[ | A "(e:f’!r ) e}; dl (2.24)

for an arbitrary soft surface.
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CHAPTER 3

DIFFRACTION BY CYLINDERS

3.1 Diffraction by a Perfectly Electric Conducting Cylinder

This part is based on the M.Sc. thesis and the papers by Basdemir H. D. [30-31].

In this section, the field generated by the uniform component of the surface current,
which is called the PO part, is calculated. This part is used for the examination of the
radiated field by non-uniform component of the surface current. PTD is applied as
the difference between the exact and PO fields. Hence, the effect of the non-uniform
component to the scattered field is observed. Perfectly electric conducting (PEC)
surface is taken into account. PEC means that total electric field on the tangential
plane is equal to zero. This determination comes from the acoustic. Due to the
definition of acoustic, this surface is called hard surface. The geometry of the

problem is given in Fig. 7.

Incident wave

PEC cylinder

Figure 7 The Geometry of the PEC cylinder
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The PEC cylinder is illuminated by the plane wave of
E =é Eje ™ (3.1)
where E, is the complex amplitude factor and the incident wave is z polarized. The

induced electric surface current can be defined as

Jpo =20% H, (3.2)

where 7 is the unit normal vector and equal to e,. Incident magnetic field

component is obtained from the Maxwell-Faraday equations as
_Ek

H =
02

1

(_ é.p Sin@_jkpcow + é¢ COS@—jchom) 3.3)

Using the Eq. (3.3) under the surface condition,

- _ 2E.k
Tpo =2iixH)| =¢ e
p=a X

cos ¢ e—jkacosaﬁ

(3.4)

PO current is written. For simplification of the current, speed of light ¢ = %/ﬁ
0/0

and wave number k = (% are used. Reconstruction of the current is then given by

- _2E C resss
Jpp =€.—2cosg e ! (3.5)
0

where Z is the impedance of the vacuum. PO scattering integral can be constructed

by using the magnetic vector potential. Magnetic vector potential is written as
ity e
_4x~[JJP0 R ds (3.6)
for the PO current. PO current is inserted into Eq. (3.10) and the integral of magnetic
vector potential is obtained as

3
E o e /R o
J- Z—Ocosgi)e_’k““’“j eTad(b dz 3.7)
0

L
Azezél—;vj
=Ty

2
where a is the radius of the cylinder. The z part of the integral can be evaluated as

Ie_jkCOShada:%H(()Z)(kR) (38)

C
As aresult, Eq. (3.7) takes the form of
18



3z

2 \
A=e, ”O—EO“ j cos@e " HP (kR,)d ¢ (3.9)
2Z,]

)

where R, is the ray path and equal to \/ P> +a’> —2pacos(p—¢ ). The expression of

the uniform scattered electric field is obtained from

E =—joA (3.10)
where this notation is valid for the far field which is kp >>1. Hence, uniform

scattered electric field expression is obtained as

3z

— E 2 . , .
D Jeosge o HIP kR, )dp (3.11)
0

4
)

PO _ =
E " =e,

s

Total exact scattered field from the cylinder can be written as

=)

EM =6.E, Y j"a,H,7 (kp)e (3.12)

and
g =L@ 3.13
n HISZ) (ka) ( . )

for magnetic polarization case from the Ref. [56]. The terms J, ,H, are the zeroth
order and the third order Bessel functions respectively. Specifically, the third order
Bessel function is called Hankel function and a is radius of the cylinder. According
to PTD method, the contribution of non-uniform part is obtained as

EN =" _EP° (3.14)
Using Eq. (3.11) non-uniform scattered electric field is written as

iz

ENU —¢ E i c—n H(Z) k - a)luoEOa 7 ' —jkacosaﬁ'H(Z) kR)d '
M=EE Y a Y (hp)+E = [eosge N HT (KRG (3.15)

n=—oo 0 V1
?=

which is the exact scattered non-uniform field. Another way to find the non-uniform
field is evaluating non-uniform current over the surface of the cylinder so that non-

uniform current have to be written. Surface current on the cylinder is written as

- _ —2E & j—"ejw
Joumee = ¢ . 3.16
exact Z a)ﬂﬂ'a ”:z_w H:[Z) (ka) ( )

for PEC case from Ref. [56]. From Eq. (3.5) PO current is written as
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J oy =€. cos ge 71 (3.17)
7,
The non-uniform current is obtained as
jNU = jngce - jPO (3.18)

according to PTD [5]. Hence, non-uniform current takes the form of

- . —2E, & je™ L 2E .
J, =€ 0 —e. =Y cosgere? 3.19
T i R P ) 7y O G149

when Eq. (3.18) is used. When Eq. (3.6) is used, magnetic vector potential is
constructed as
—jkR

oo oo —n ' ' E ~ o i i
f f b5 T Facosger et | Caapas (320)
oura ,—. H,” (ka ) Z, R

for non-uniform scattered field. The z part of the integral is evaluated from the Eq.

(3.8) so non-uniform scattered field takes the form of

2z

1 ~ _:uoEo N j_n ng 1y (2)
Ay, =é. e H (kR,)d
N 2 jaur n__mH(z)(ka)j (kR )dg
. uak, f . .
6. 20 [cos g HP (kR,)d (3.21)
2]ZO $'=0

where R, is the ray path and equal to \/ p +a’-2pa cos(¢— P ) Evaluation of this

integral directly gives exact scattered non-uniform electric field. The expression of
PO should be translated into the series form for obtaining the non-uniform part. After
this transformation, by using the exact known scattered total field, non-uniform exact

solution can be obtained in the series form.
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3.2 Diffraction by an Impedance Cylinder

The geometry of the problem is given in the Fig. 8. The radius of the cylinder is a,

7 —¢ is the incident angle and 7 is the unit normal vector.

Incident field
%

Impedance cylinder

Figure 8 The impedance cylinder geometry

The geometry is illuminated by the transverse magnetic polarized (TM) plane wave
of

E, = E,e "’ (3.22)
where E, is the complex amplitude factor. PO currents can be described on the
tangential planar line as

JI? =nxH,

(3.23)

N

and

~I
<
S

=-nxE,

(3.24)

m
s

where El , H , are the total electric and magnetic fields respectively and 7 is the unit
normal vector of the tangential planar line of the surface and is equal to €, in this

case. The total GO field is the combination of the incident and reflected fields. The

total GO field can be written as
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E =E +TE, (3.25)

)_ sing —sin @

where [(g,6)=>"2 —%
sing +sin@

is the reflection coefficient and also known as the

Fresnel coefficient [57]. According to the PO approximation, reflected field has the
same structure with respect to the incident field. In light of this definition, total GO

field is written as

E| =(E +TE] =E(1+T) (3.26)

N s s

from the Ref. [57]. PO magnetic current is constructed as

T PO
J m

Y _ é¢EOe—jkacos¢' (1 + F) (3.27)

taking into account the Eq. (3.24). Total scattered PO electric field is given as

- | -
E,, = —]a)A—g—VxF (3.28)
0

where A is the magnetic vector potential and F is the electric vector potential.

Electric vector potential can be found
=~ _ € [[7r0 € R
Pl = 2
&

after the evaluation of this integral expression. Before the evaluation process, the
result of the rotation operation has to be found for total PO scattered field. Hence,

Eq. (3.29) is rewritten as

—jkR

! ! | [ & B (1+1T) -

— VXF=Vx| —
&, 4z

adz d¢ (3.30)

'—-N\‘Si

9

Tz
2

according to Eq. (3.28) where a is the radius of the impedance cylinder, R is the ray

path and equal to \/,02 +a’—2pacos(p—¢ )+(z—z)° . The z part of Eq. (3.30)

can be simplified as

J‘e—ijlcoshada:%H(()Z) (le) (331)

c

with using the variable change z-z =R, sinha where R, is equal to

\/ p’>+a’ —2pacos(¢p—¢) . Hankel function's Debby asymptotic form is given as
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T — 7
2 % e MR

HP (kR) =~ | —¢ * —
o (kR =~ R

The Eq. (3.30) is rewritten as

PR

J

3
1 . aEe 4t 2 e R .
— VxF=—2 e st (14 T)WVx| e, —— |d
£, 2W2m iﬂ (1+1) (”’JkRJ ¢
2

with respect to Eq. (3.31) and Eq. (3.32). The curl operation is given as

— jkR, 1 éap p§¢ e\v
e
Vx|e,— |=—|— — 0
[ 0 /kRIJ p|op a_ngkR
e 1
0 p 0
kR,

where the result can be found as
—JkR,

vx|a, ¢ |=a L 2 pe
" kR ) Cplop” JkR, |

Hence, curl operation in Eq. (3.34) is approximately equal to

— kR, — kR, OR
vx|é, € =¢ (l—jk—lpj.
" JkR, | JkR, Ip

p—acos(g—¢)

1

oR, .
where —1 is equal to

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

. The result of curl operation is obtained as

- — jkR, — jkR, 1 'k _ A
vl o |- (__ jk(p—acos@—9¢)) 337
VKR, | KR \ p R,

where — can be neglected because of k >>1. Hence the final expression of Eq.
(3.33) is found as

T 3z
2 —JkR,

(3.38)

. aEke* J%
4 Rl

1

—VXF =—e

&, NG e
2

is found from the Maxwell's equations as

P~ aCOS(¢_¢I)}(1 n F)e—jkacos¢' e

N

PO electric current can be found from Eq. (3.23). Total magnetic field in Eq. (3.23)
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e, pe, e,

- 1 d 0
H =—— — — 0 (3.39)
jou,plop 99
o o (E+rE
where total magnetic field is obtained as
j7R— (2 %E. — pé aE’Zj (3.40)
" jaup\ " 09 T 9p '
PO electric current which is given in Eq. (3.23) is obtained as
jepo — —EZ E‘0 CZOS ¢ e—jkacow)l (1 _ F) (3.41)

0

where Z, is the impedance of the vacuum. Magnetic vector potential A can be

written as
< Mo (fir0 e
=—||J. ds (3.42)
47 J;J- R
The integral is constructed as
_i% 3z
- i = o . —JjkRy .
A=—g HaEl T b o e (1-T)E— dg (3.43)

2277, 2 VAR,

using with Eq. (3.41) and simplification of z part as same as Eq. (3.30). The Eq.

(3.43) is rearranged as

3

S

ER

- aEke’ . cosd e
0 Cos¢efjkau)s¢ (1_1—*)

—joA=e,
2N27 VKR,

according to Eq. (3.28). Hence, total scattered PO field can be found as

d¢ (3.44)

|| —o

z
2

B o=z E kae'* I cosd + p—acos(¢—¢')}
) 2\% ¢'=g Rl
, e*ijl
X (1—T)e /e T d¢ (3.45)

1

with the combination of Eq. (3.38) and Eq. (3.42) according to Eq. (3.28). Total
scattered or the exact scattered field from an impedance cylinder can be found under
the considerations of the impedance boundary conditions. Impedance boundary

condition is given as
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fixixE,| =-ZixH,| (3.46)

where 7 is unit normal vector Z, E,, H, are impedance of scatterer, total electric

and magnetic fields respectively. Total electric field can be obtained after the wave
transform is applied to the incident electric field. The wave transform is defined as

e M =t =N g (kaye™™ (3.47)

n=—o0

from Ref. [56]. Total electric field is defined as

E =E +E, (3.48)

t

where E_ is the scattered electric field from the cylinder and it is written as

E =¢.E, > j"a,HP(kple™ (3.49)
from Ref. [56]. In this case, total electric field's expression is obtained as
E =2E, Y i, kp)+a,H hp)l™ (3.50)

in terms of the series solution. Total magnetic field is found as

[Z— [E aEZ—pE aEZj (3.51)
© jaup\ 70 T ap '

after application of the Maxwell's equations to Eq. (3.50). According to the

impedance boundary condition, the term a, can be obtained from

~e.E, Y i, (ka)+ a, H O (ka)k "

n=—oo

p=a

{5, 3 5ba)sa.n Gl

n=—oo

=75,

(3.52)

je,
Hence, a, is found as

jkz,J (ka)—2ZJ (ka)
ZH" (ka)- jkZ,H® (ka)

(3.53)

n

Under the consideration of the impedance boundary condition, total scattered electric

field is found as

E=¢E, 3 j|J,(kp)+a,H P (kp)l" (3.54)

where
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jksin@J (ka)—J (ka)
H® (ka)— jk sin 6H > (ka)

(3.55)

n

Z
The term sin@ is the impedance factor and equal to 70 where Z, is impedance of

vacuum and Z is impedance of scatterer. According to PTD method, total scattered
electric field can be described as

E =E, +E,, (3.56)
with the combination of PO and the contribution of non-uniform fields. The

contribution of the non-uniform part to the scattered electric field can be found

Ey =E -E,, (3.57)

Non-uniform obtained as

{i |7 (kp)+a H® (kp) e -

N

3z

=3

2

Iy _ o . o —JkR '
{cos o+ P “C(’;(‘/j ¢ )J(l +T)e Hhacosto-0) eﬁd(zﬁ (3.58)
1

kae

with respect to the PTD method. According to PTD, total currents can be described

as

J =Jr 4! (3.59)
and

J,=J"+7J! (3.60)
where J is the total magnetic current, J . 1s the total electric current and J i J J

are the magnetic and electric fringe currents. Total currents are found from the Eq.
(3.23), Eq. (3.24) and Eq. (3.46). The relation between total electric and magnetic
currents is written as

J, =—ixJ, (3.61)

N|~

et

under considerations of Eq. (3.23), Eq. (3.24) and Eq. (3.46). Total magnetic current

is written as

i (3.62)

~!
g

n

n=—o0
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where a, was described before. Magnetic fringe current can be given by

JI=J —Jk (3.63)

m

for definition of PTD. Magnetic fringe current is written as

n=-—oco

il =2¢Eo{if" 7, (ka)+ 0, H P (ka)l e — e esoe (”r)} (69

Same procedure is valid for electrical fringe current. Hence, electrical fringe current

can be found

JI=J, -Jr (3.65)

et e

from definition of PTD. Total electric field is given by

J

et

= % s ' (ka) + @, H® (ka) (3.66)

from the Eq. (3.58). Electrical fringe current is obtained as

0

J! :ZZEO{% ) j'"[J'n(ka)+anH;”'(ka)]+Zicosqj'e-f"m(1—1")}. (3.67)

3.3 Numerical Results

In this analysis part, numerical results for the nonuniform currents and the scattered
fields will be investigated. In order to investigate the far field, the observation point
is taken to a comprehensible distance from the scatterer. The distance between the
source points to the observation point will be taken as 104, where A is the
wavelength. High frequency asymptotic techniques require that the size of the
scatterer should be higher than the wave length of incident wave. Radius of the

cylinder (a) will be taken as 54 for the consistence of high frequencey condition.

Impedance factor sin @ will be taken as 4.
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PO E field
Total E field
Fringe E field

270

Figure 9 Scattered electrical fields from impedance cylinder

Figure 9 shows the total scattered fields. PO scattered field includes the diffracted
fields and reflected fields. Amplitude variations approach to zero near 0° because of
the wrong diffracted fields and the deficiency of the shadow part. Diffracted fringe
field takes its maximum value near 0° and compensates these deficiencies of the PO
scattered field. Total scattered field includes both reflected and diffracted fields. As
can be seen in the Fig. 9 the amplitude of the total scattered field consists of the

interference of the PO and fringe fields.
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PO E field
Total E field
Fringe E field

Figure 10 Scattered electrical fields from impedance cylinder for smaller radius

Figure 10 shows the scattered electric fields from impedance cylinder for the smaller
radius of cylinder. As expected, cylinder acts as a line source thus electrical fields
scattered by the cylinder equaly radiate to all directions. Hence, high frequency

condition is not provided so cylinder acts as a line source not a scatterer.

Je PO current
Je Total current
Je Fringe current

180

Figure 11 Electrical currents flowing on impedance cylinder
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Figure 11 shows the electrical currents which are induced by the incident field. In
Fig. 11, current patterns become dominant on the reflection region. PO current takes
maximum amplitude value between 120° and 240°. PO currents amplitude values
lead to zero value at 0°. Because of the exclusion of the shadow part of the scatterer
by the PO, there is not any amplitude values for the currents. Fringe current consists
one main and two minor lobes and its maximum directivity occurs at the 180°. The
total electrical currents amplitude variation distrubutes equally at the reflection
regions. Fringe current compensates the deficiency of PO in the shadow region and it

can be analyzed especially in the minor lobes of fringe current in Fig. 11.

Je Total current
Je PO current
Je Fringe current

180

Figure 12 Electrical currents flowing on impedance cylinder for smaller radius

Figure 12 shows the electrical current distrubition over the impedance cylinder. In
this case radius of cylinder is taken as smaller than one in Fig. 11. In the shadow
region the distribution of the fringe and total current are the same. PO current
distributes over the illumunated region. Also cylinder acts as line source in this

figure and distrubition of total current is equal for all the observation directions.
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Je Total current
Je PO current
Je Fringe current

Figure 13 Electrical currents flowing on impedance cylinder for sin @ — oo

In Fig. 13 the behaviour of the surface is similar with the perfecly electric conducting
surface. This behaviour is related with the value of sin @ term, which is used in the
reflection coefficient. When this term goes to infinity surface acts as a conducting
surface. Hence the effect of the surface impedance is dependent on this term. There
was no need to plot the magnetic currents for this case because of the boundary
conditions of conducting surface predict zero magnetic current in the surface. The
detailed explanations for the conducting case will be examined in the subsequent

figures.
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Jm Total current
Jm PO current
Jm Fringe current

Figure 14 Magnetic currents flowing on impedance cylinder

Figure 14 shows the magnetic currents, which are induced by the incident field. In
Fig. 14, current patterns become dominant on the reflection region like the Fig. 11.
Fringe current has one main and two side lobes in Fig. 14. Main lobe takes its
maximum amplitude values at 180° and the side lobes amplitude values decrease
towards to the shadow regions. Fringe currents compensate the deficiency of the PO
currents in the shadow regions. The effect of the impedance is observed in both Fig.
11 and Fig. 14. Impedance surface absorbed a part of the incoming energy and
decreased the amplitudes of the currents. Although the normalized results were

plotted, due to effects of the impedance surface, amplitudes take smaller values.

In Fig. 15 radius of the cylinder is taken smaller than the one in Fig. 14. Hence, the
total current distrubution is observed in all directions, PO current disribution is same
with the previous case and fringe current distribution is the same like total current
distribution in the shadow region. In the illuminated region fringe current amplitude
takes its maximum values at 180° and decreases when the angles goes to boundary of
illuminated regions. Also in this case due to the smaller radius cylinder reduces to a

line source.
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Jm PO current
Jm Fringe current

180

270

Figure 15 Magnetic currents flowing on impedance cylinder for small radius

For the PEC cylinder, the distance between the observation point and the origin will
be taken as 54, which is constant for all plots, where A is the wavelength. Radius of
the cylinder (a) will be taken as 24 in Fig. 16 and Fig. 17. Figure 16 shows the
currents on the cylinder. The amplitudes of exact and uniform currents are between
120° and 240°.Maximum amplitude is obtained at 180°. Non-uniform current is the
difference between the total current and the PO current. As it can be seen in the Fig.
16, the amplitude differences occur in the region bordered by the red line. Deficient
current amplitude between the PO current and the exact current is accomplished by

the non-uniform current amplitude.
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PO current
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Figure 16 Electrical currents flowing on the PEC cylinder

Figure 17 shows the scattered fields. Non-uniform scattered field takes the finite
values at the first and fourth regions. PO radiation exists only at the lit region, which
is bounded by angles 90° and 270° and the scattered fields from the shadow part of
the obstacle are excluded. As expected, the distribution of PO scattered fields
amplitude is uniform between the 90° and 270° and exists in the shadow region. The
exact total scattered electric fields amplitude is observed in all directions of
observation. Radiation especially concentrates at the shadow region for PEC case. At
0° the total scattered electric fields amplitude takes maximum value. In accordance
with the theory, non-uniform field distribution is observed in the shadow part of the
scatterer. Like exact total field, non-uniform component of the scattered field takes
maximum amplitude values at 0°. No amplitude variation is observed for non-
uniform field in the lit region of the cylinder. The absent part of the exact fields in

the shadow region is caused by the non-uniform scattered field.
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Exact E field
PO E field
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Figure 17 Scattered electric fields from PEC cylinder

Figure 18 shows the current distribution of for the smaller radius of PEC cylinder.
PO current distribution does not change in this situation but the total current
distributes uniformly for all directions of observation. Non-uniform current is
obtained by subtracting the PO current from the total current. It can be seen from Fig.
18 that the effect of the PO current is rather small, as expected since the non-uniform
current distribution is nearly the same like total current. A small difference between
the non-uniform and total current is observed in the illuminated region because of the
PO current’s effect.

In Fig. 19 scattered electric fields are observed for the smaller radius of conducting
cylinder. Total electric field amplitude distribution and non-uniform electric field
distribution are almost the same. PO electric field amplitude is smaller than others.
Also in this situation cylinder acts as a line source, not a scatterer, thus field
distribution is observed in all directions of observation.

As a result, it can be observed that the radius of cylinder is directly related to the
field or current distribution. Since the high frequency condition is not achieved in the
smaller radius of the cylinder, cylinder acts as a line source. Hence, in this case high

frequency methods are not preferred.
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Figure 19 Scattered electric fields from PEC cylinder for smaller radius

36



CHAPTER 4
DIFFRACTION by PERFECTLY CONDUCTING EDGES
4.1 Perfectly Electric Conducting Half-Plane

In this part, general line integral representation of the fringe field expressions for
PEC edges will be derived. The generalization process will start with the derivation
of PO part for PEC edges. After that, fringe field expression will be obtained by
using the exact diffracted field. Lastly, obtained expression will be transformed into
general line integral representation with the aid of the unit vectors.

The geometry of the problem for PO diffracted field is given in Fig. 14. The half-

plane is lying on the surface {xe [0,00), y=0,z€ (~oo0,00)}.

Figure 20 The geometry of the half-plane

The half-plane is illuminated by the plane wave of

Hi — EZHOe_ik(xcos¢o+ysin¢0) (41)
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where magnetic field polarization is taken into account and ¢, is the incident angle.
PO current is defined as
J o =2 H, (4.2)

where 7 is the unit normal vector of the half plane and equal to ¢ . Magnetic vector

potential is written as
—- e ,
e A *3)

The connection between the magnetic vector potential and the scattered magnetic

field can be satisfied by

H= LV x A (4.4)
M,
PO current is written as
jpo =e, 2Hoejkxv o (4.5)

with using Eq. (4.2) and Eq. (4.4). Scattering integral can be composed as

- H © o . ~ —jkR i .
H="2 [ [e™o%vx|e, S laxde (4.6)
2r R

2 =00 x =0

with using Eq. (4.3), Eq. (4.4) and Eq. (4.5) where R is the ray path and equal

to [(x —x) +y +(z- z')z]%. The curl operation in Eq. (4.6) is given as
— jkR . ) — jkR - jkR
vxle & |- Kez)e o g e @.7)
R ’ R R R R
and from the Fig. 14 Eq. (4.7) is decomposed as
e JkR e —JjkR e —JkR
VX[EX 2 jz—éyjkcosnsinﬁ 2 +eé_jksinnsin f 2 (4.8)

-z R . .
where cosn = ZR < , sin = ?1 and sin7y = Rl respectively. Hence the Eq. (4.6)
1 1

is decomposed as

- —jkR
j A (—@jkcos?]sin,b’ﬁ?Z sim]sinﬁ)e

—o0 x =0

dxdz  (4.9)

—38

i = 2o
2z R

according to the Eq. (4.8). x part of the Eq. (4.9) can be taken by using the well-

known edge point technique. The edge point technique is given as

38



j f(x)e_jkg(")dx— f(a)g(a) eI (4.10)

The phase function of the diffraction integral is written as

W =x cosd, — R 4.11)

where the first derivative ¥ is equal to cosd, +

written as
f(x):cosnsinﬂ 4.12)
R
At the x =0 point the phase function and its derivative takes the form as
w=R, (4.13)
and
W =cosg, —cosf3, (4.14)

' , 1
where R, is the ray path at the x =0 and equal to [pz +(z—z2 )Z]A. The amplitude

function takes the form as

Fx =0y = 1A (4.15)
R(%
Hence the diffraction integral takes the form as
~_H, 1 e M
H = 2— —é, cos7sin 3, +¢é_sin7sin ﬁ cosg—cos B, R, dz  (4.16)

with using Eq. (4.13), (4.14) and Eq. (4.15). The stationary phase method can be
used for the evaluation of the z part of the diffraction integral. The phase function of

the integral is written as

w=R (4.17)

. o . -z .
where the first derivative of the phase function is equal to R The stationary

phase point can be found by equating the first derivative of the phase function to

zero. Then stationary phase point is found as

Z, = 2. (4.18)
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At the stationary phase point 77 and f, values are equal to % and 7—-¢ |,

respectively. The second derivative of the phase function is written as

_—Rez+(z—z')

v = R (4.19)

. 1 . . . .
, and it is equal to e at the stationary phase point. The amplitude function can be

written as
sin @, 1
cos@, +cos¢@ p

at the stationary phase point. Hence, PO diffracted magnetic field is written as

flz =2)= (4.20)

. . H, -~ sing e ¥
H=¢, —~e* 4.21
¢ ‘N2z cos@+cosd, \/kp (4.21)
Exact diffracted field from the half plane is written as
~ e_j% 1 1 e
H,= _ngo + (4.22)
W27 | (0?7 PP ko
2 2
Equation (4.22) is rearranged as
- e—f% 2COSQCOS& 0P
H, =—¢H 2 2 (4.23)

0 J2rm cosg+cos g, \/ﬁ

The difference of the exact diffracted field and PO diffracted field can be found as
¢ 9

-/% 2cos - cos Y —sing _;
ioose’ 272 P oo (4.24)

67
! “N2m COS @+ Ccos @, \/ﬁ

where H ; is found to be fringe field. A new coordinate system and other related

angles are given in the Fig. 21 to generalize the magnetic fringe current.
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ne
Figure 21 The geometry of the related angles
The following relations are written as
cosg=—5,-ii,,sing=5,-d (4.25)
cos@, =, -n, (4.26)
and
o 1 —
cos—=—=4/1-5,n, 4.2
SRNG) a M (4.27)
o _ 1 ———
cos—=—=,/1+5, 1, 4.28
NG (4.28)

from the kinds of direction vectors. The expression of the fringe field is found as

H e e_jZ \/1+§i -ﬁe\/l—fd ‘N, —Ed'g e
=—e€
! z /27[ (S:i_gd).ﬁe \/E

in terms of the direction vector. Hence, generalized magnetic fringe integral

(4.29)

expression is defined as

H, =-e

B [H.©) dl.  (430)

‘2 (5, —5,)-n, R,
4.2 Parabolic Reflector Application

The geometry of the problem is presented in the Fig. 22 where ¢ is the angle of
incidence, p is the distance between the source and observation points, ,0' is the

distance between the source and the reflector, 7 is the unit normal vector, R is the
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ray path and P,Q are the observation and reflection points respectively. The angle

between 7 and p is equal to%. f 1s the focal length of the PEC reflector. The

PEC cylindrical reflector is lying between the angles — ¢, and ¢, .

P ﬁ\y

Magnetic
line source

Figure 22 The geometry of parabolic reflector, which is illuminated by the magnetic
line source

As can be seen from Fig. 22 parabolic reflector is fed by the magnetic line source

which is defined as

—jkp

H=¢1F

i zom 431)
Jio (

where I, is the complex amplitude factor. PO electric current can be written directly

as

- ( ¢ ¢ e—jkp'
Jpop =2 cos—e¢, +sin-—¢, |, : (4.32)
where 7 is the unit normal vector which is defined in Eq. (4.2) and equal to

—coszé ,t sin¢—é¢ for the problem geometry. Scattered magnetic field is written
2 2

as
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- I ) Ce TR kR e—jkp‘ '
HPO:iHVX(ea,cos% 2 +e sm% 2 ds (4.33)

ko'

from expressions of Eq. (4.3), (4.4) and Eq. (4.31). R is the ray path and equal to

—. The curl
cos”

[p2+p'2—2pp' cos(¢—¢')+(z—z')2]% where p'is equal to

operation of the Eq. (4.33) is written as

", kR ' —JjkR ' — jkR
1 e, cosﬂe——cosﬂjke—a—R+sinﬂjk e’ oR (4.34)
Yo, 2 R 2 R dp 2 R J¢

where the derivatives of the ray path according to the pand ¢ are equal to

p-pcos@=¢) . ppsin(@-¢)
R R

respectively. The angle equalities of the

derivative values can be written as

oR _ 9

_ap = cos{gx‘) 5 +,6] (4.35)
and

R _.[ ¢

Y = sm(¢ 5 + ,BJ (4.36)

from Fig. 22. The angle equalities are inserted in to Eq. (4.34) and rearranged form
of Eq. (4.34) is written as

e—ij 1 ¢' .
e, —cos—+ jkcos(@—¢ + ) (4.40)
R \p 2
to be the end of the curl operation. Eq. (4.33) is rewritten as
o) —jkp ¢ e—ij . . i
Hpp = —cos—+chos(¢ ¢ +¢) pdedz  (4.41)
27z s % 2 R
with using Eq. (4.33) and Eq. (4.40). The z part of the integral can be eliminated by
using
“jkRcha 1 T 112
[e i dg = —H (kR, ) (4.42)

| , 1
where z—z =R;sha and R = [R12 +(z-z2 )Z]A. Hence, Eq. (4.41) is written as
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I % e—jkp‘

= -1, 1 ¢ . : ” o
H,, =e¢. (—cos—+ jkcos(p—¢ + [)’)]Hé (kR)p dp  (4.43)
2 Nko P2

with respect to the Eq. (4.42). The effect of the edges of the parabolic reflector can
be found by applying the fringe field expression. The geometry of the diffracted field
is given in Fig. 23.

P

Parabolic
S reflector

Figure 23 The geometry of diffracted fields

The related expressions are defined as

¢° +17i, sin—> % (4.44)
2
and
5, =i, cos B, +dsin 5, sinn (4.45)
where d = cos&+e¢ sm¢—2°and n,=e, s1n¢—2°—e¢ cos& for the upper edge.

When the Eq. (4.44) and Eq. (4.45) are inserted to the Eq. (4.30), the fringe field

expression is written as

B L= o0 1+sm 1/1 cos 8, —sin B, sin7 T
Hyj=-2.-— [ 1, p _—dz (446)
g kpo sin?0 —cos S, ¢

, 1
where R, is the ray path and equal to [pz +p; =2pp,cos(@—@,)+(z—2)° ]A. The

phase function is written as
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w=R, (4.47)

Z—Z

where the first derivative of the phase function is equal to ¥ =— . Stationary

e

phase point can be found by equating the first derivative of the phase function to
zero. Hence, the stationary phase point z, is equal to z. The second derivative of the

phase function can be written as

o1
V,=71— (4.48)
: : : 2, 2 )
at the stationary phase point where R, is equal to [p + Py —2p0p, cos(¢—¢0)] 2.
The amplitude function is written as
. @ . .
| 1+sm?°4/1—cos,3w —sin S, sin7, 1
fle =)= o (4.49)
sin % _ cos R.,

at the stationary phase point. Hence, Eq. (4.46) can be rewritten as

B I e”"”” . 1+sm 1/1 cos B, —sin B, sin7n, s

H; (4.50)

V2T o kp 0 sin & +cos kR,

where the £, and 77, is equal to 7 —¢ and % respectively. The related expressions

for the lower edge of the PEC cylindrical reflector is defined as

:c?cos¢—2°+fze sin& (4.51)

and
5, =i, cos B, +dsin 5, sinn (4.52)
4

where d = e, cos¢—20+é¢ cos¢—2° and n, =—e sm%+e¢ cos? for the lower edge.

Eq. (4.30) is written as

B [ e = 1+ sin%’dl—cosﬁe —sin S, sinn o R,
H} =e 2’" j p R dz (4.53)
T kP e sin?0 —cos f, e
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, )}
for the lower edge where R, is equal to [p2 + 05 —2PP, cos(P+ ) +(z—z2 )Z]A.
The phase function of Eq. (4.53) is written as
V=R, (4.54)

o o - -z . .
and its first derivative ¥ is equal to Rk The stationary phase point can be

found as z, =z by equating the first derivative of the phase function to zero. The

second derivative of the phase function is written as

Ve=® (4.55)

es

at the stationary phase point and R,  is equal to [p2 + 05 —2pp, cos(P + @, )]%. The

value of the amplitude function is written as

.9 : :
| 1+sin ?01 [1—-cos 3, —sin B, sin7, |
fle, =2)= — (4.56)

sin & cos 3, R,

at the stationary phase point and the values of the angles S,

es

n, are equal to 7 —¢

and %, respectively. Hence, Eq. (4.53) is rewritten as

7 e‘j"”° o 1+sm 1/1 cos B, —sin 3, o tRe
m

H. =-¢ (4.57)
f z
27 N kpo sin ¢— —COos kR,
2 es
The exact diffracted field can be found as
H,=H,, +H!+H) (4.58)

by adding the contributions of the fringe fields to the PO diffracted field.

4.3 Numerical Results

In this analysis part, exact diffracted fields, fringe fields and diffracted PO fields will

be investigated. In order to investigate the far field radiation, the observation distance

is taken reasonably away from the scatterer. The observation distance will be taken

46



as 74, where A is the wavelength, and The focal length f will be taken as 24 . The

parabolic reflector will be positioned between the angles — ¢, and ¢, .

Figure 24 Exact diffracted fields

Figure 24 shows the exact diffracted fields from the edges of the parabolic reflector,
which is given in the Eq. (4.58) for different incident angles. The amplitude values of
the diffracted fields become dominant on the reflection region. The main beams can
be observed between the angles 150° and 210°. The maximum radiation is observed
at 180°. The fields” amplitudes take the minimum values at 90° and 270°. The effect

of the incident angle ¢, can be seen directly in Fig. 24. The diffracted fields’

amplitudes decrease in the reflection region when the incident angle increases.
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Exact diffracted

Fringe diffracted
PO diffracted

Figure 25 The PO, fringe and exact diffracted fields for ¢, :%

Figure 25 shows the exact, fringe and the PO diffracted fields. The PO diffracted
field is in a perfect harmony with the exact diffracted field except for the reflection
boundaries, which are at the angles 45° and 315° respectively. The PO and exact
diffracted fields take maximum amplitude values at 180°. Although the PO diffracted
fields amplitude goes to zero value at the 90° and 270°, exact diffracted fields take
different amplitude values at those angles. The fringe diffracted fields’ amplitude
takes the major values between the reflection regions. The minor lobes are observed
between the angles 90° and 270°. The fringe diffracted fields fix the defects of the
PO diffracted fields in both reflection and shadow boundaries and also reflection and

shadow regions.
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CHAPTER S
DIFFRACTION by AN IMPEDANCE HALF-PLANE
5.1 Introduction and Solution of the Problem

This part is based on the paper by Basdemir H. D., “Fringe Waves in An Impedance
Half-Plane”, Progress in Electromagnetic Research, vol. 138, pp. 571-584, (2013).

Uniform fringe field expression for an impedance half-plane will be obtained in this
chapter. In the beginning, PO expression for the half-plane geometry will be obtained
from Huygens-Kirchhoff integral under the impedance boundary condition. The

geometry of the problem is given in Fig. 26. The half-plane is lying on the surface
{re[0.0).y =0.2€ (~o0,0)}.

y

Plxyz) A

X

Impedance Half-plane

Q(x' 0, ZV)
Figure 26 The geometry of an impedance half-plane
We consider the E-polarization case for the incident field in this study. The method
can also be applied to the H-polarization case. The half-plane is illuminated by the
plane-wave of
Jk (xxcos g+ ysin gy ) (5.1)

u; =uye

l

where the u, is the complex amplitude factor and u, is any component of the electric

field. The total field can be written as
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u, =u; +u, (5.2)
where u, is the reflected field from the surface. The PO takes the reflected fields as a
geometric optics (GO) fields so the reflected field can be described as
u, = Dugelteoshyind) (5.3)
where I is the reflection coefficient and equal to

_sing, —siné
sing, +sin @

r (5.4)

according to Ref. [57]. When taking into account the reflection coefficient which is
given in Eq. (5.4) the angle @ determines the surfaces polarization case. When sin 8
takes the values between one and infinity, electric polarization case is observed, and
if sin@ takes the values between zero and one, magnetic polarization case is
observed.

The Eq. (5.2) is rearranged according to Eq. (5.1) and Eq. (5.3), (5.4) and redefined

on the scattering surface as

u,| =1+ Duge’™ (5.5)

The impedance boundary condition for the Cartesian coordinates is defined as

1 du,
u =
o jksin@ on |,

(5.6)

where s is the y =0 plane, n is the unit normal vector of the scattering surface,

. . Z . . .
sin@ 1is equal to 70, and Z, is the impedance of the vacuum, and Z is the

impedance of the scatterer. According to Eq. (5.5) and Eq. (5.6), derivative of the
field expression is written as

ou,
dy |y‘:0 sing, +sin @

_ 2 jku, sin @sin ¢, o e 05y

(5.7)

For the 2-D case, if the geometry is symmetric according to the z coordinates a

further expression of the Huygens-Kirchhoff integral can be given by
u(P)=— (u——G—Jdl' (5.8)
[

where P is the observation point and G is the Green’s function. The 2-D Green’s

function is given as
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G= %Hg” (kR) (5.9)

The PO integral is constructed as

_ 2u, sin @, T [ 1 Jieoss, 0G_ jksin®

P)= : jkx'cos%G d '
MPO( ) 4z sin @, +sin € dy sin¢0+sint9€ ] * (5.10)

x'=0

according to Eq. (5.5), (5.7), (5.8) and the geometry of the problem. The term g—G
y

can be found from the chain rule as

oG _m oH”(kR) oR
— =T — (5.11)
dy j OR Oy

. 2 e Ve o
where R is the ray path and equal to (x—x) +(y— y) . The derivative

operation of the ray path according to the normal vector is written as

JR
dy

= —% (5.12)
y':O

where —% is written as —sin  from the geometry of the problem. The Eq. (5.11) is

obtained
a—qsleEZ)(kR)sinﬁ (5.13)
dy

H'* (kR)

by inserted Eq. (5.12) into Eq. (5.11) and the derivative operation Oa—R is equal

to —kH”(kR). Therefore, the PO integral which is given in Eq. (5.10) is
reconstructed as

)= 1 ku,sing,

S ine roind [(sin B —sin@)e™ " H > (kR )dx  (5.14)
sing, +sin@

=—00

uy, (P

1
where R, is the ray path and equal to [(x— x )2 + yz]é . Debby asymptotic expansion

of the Hankel function is written as

2 e T
H?P(kR )= |——e Mg 4 5.15
2 (kR,) */ﬂle (5.15)

where kR, >>1 . As aresult the Eq. (5.14) yields
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j 77.'

ku, sin ¢, ¢

JkRy
sin B —sin @)e™ % £ gy (5.16)
sing, +siné 27 I p e

Vi,

Upo (P =

where R, is equal to [(x—x')2 + yz]yz. The integral expression can be transformed

into

_ kuysing, ¢ B+ ¢o ﬁ 4
%ro (P) sing, +sin @ \/_ I ,Sin g, { 2 2
—cos P _2% sin ﬁ;¢}(sinﬁ —sin §)e’™ <% %dx‘ (5.17)

by using Ref. [11] for separately investigation of the incident and reflected diffracted
fields by using the trigonometric relation of sin(a —b)=sinacosb—cosasinb. The

incident and reflected diffracted fields can be written as

V4

u (P)= kg e I sin B —sin @)cos P+ 9,
o sing, +sin@ 27 2
: ﬁ_ ¢ Jjkx cos ¢ e_ijl !
Xsin———e ¢ ——dx (5.18)
2 VKR,
and
e e’ B,
ul (P)= 0 sin /3 —sin @)cos 0
PO( )=- sin@, +sin @ \/ I p ) 2
) — JkR,
XSinMeﬂ“ ot €y (5.19)
2 kR,

respectively. The asymptotic evaluation of Eq. (5.18) can be found by using the edge

point technique. The edge point technique is given as

T fla)e™ do = - Jlk ; (( ))efkg (5.20)

where the detailed explanation can be found in Ref. [11]. The phase function of Eq.

(5.18) is written as
g(x')=x cosg, — R,. (5.21)

The first derivative of the phase function can be found as
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X—X

g (w)=cosg, + (5.22)
1
The stationary phase values of the phase functions are found as
g(x.)=-p (5.23)
and
g (x,)=cosg, + Ri (5.24)

1

X . . . .
where — is written as —cos 5, from the geometry of the problem and keep in mind
1

that S, which is the reflection angle’s value at the edge is equal to 7 —¢. The

amplitude function can be written as

f(x,)=(sin B, —sin @)cos P ;% sin P ;% \/Ilc_p (5.25)

at the edge. Hence, the asymptotic incident diffracted PO field is obtained as

T . . . - +

-5 (sin @ —sin @)sin =9, cos O+ 9, ik
u (P)=— Uy € 2 2 ¢ (5.20)

ro sing, +sin@ 27 cos @, +cos @ Vkp

by using the edge point method. The Eq. (5.26) is simplified as
; - (sin @ —sin @)sin a0 jkp
upy (P)=— . 5.27)
ro sing, +sin @ /27 2cos¢_¢° Jkp (
2
. . . . a a—>b

using the trigonometric relation of cosa+cosb=2cos cos The

diffracted field, in Eq. (5.27) is not uniform since it approaches to infinity at the
shadow and reflection boundaries. The uniform theory is based on the asymptotic

relation of

T

N
e * e

2\/596

for x >>1 [58-59]. The sign(x) is the signum function which is equal to 1 for x >0

(5.28)

sign(x)Fﬂx” =

and -1 for x<0. The F [x] is the Fresnel function and can be defined by the integral
of
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Flx]= 2y (5.29)

i
et
c j e
Jr
In order to obtain the uniform version of the diffracted fields, two new parameters

are introduced as

& =—\|2kp cos 4 _2¢° (5.30)
and
&, =—2kp cos?Th +2¢° (5.31)

for using instead of x in Eq. (5.28). Hence, the uniform version of the Eq. (5.27) can

be obtained as
U

id P -0
5o (P) sing, +sin @

(ing—sin@)sin ©— L e sign(e JF[E [l 532
The same procedure is valid for the reflected diffracted field, so the uniform version
of the reflected diffracted field is directly written as

U

. . . + kpcos(o—d) -
—m(sm¢ —sin 6?)sm¢—2¢°e’kp v ¢°)szgn(df+ )FH/,Z” (5.33)
0

upo (P)=

If the scattering geometry is symmetric with respect to the z coordinate, the

generalized PO integral for an arbitrary impedance surface is written as
k .
uy (P) === [ulQ),aler. 7 - B)H? (kR)d (5.34)
’

from Ref. [60], where « is the incident angle, and £ is the reflection angle.

According to Fig. 20 Eq. (5.34) can be rewritten as

—ku T ikx' cos '
uy (P)=—— [ qlg,, 7~ B)H (KR, )dx (5.35)

X =—o0

where q(¢0,7£ — B3) is the compositions of the Maliuzhinetz function and is equal to

o6 7~ )= %sm%{m— ¢)(Sin§ - cos%)

+y(2m - ¢)(sin§ +cos %ﬂ (5.36)

where w(x) is written as
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Xwﬁ(x—g—ejwﬁ(x—%+0} (5.37)

The term v/, (x) is the Maliuzhinetz function and can be described as

. T .. n
xTsinn —4xcos—sin—+ 2
1 7 gy

= exp| - — dn |. _
w,(x)=exp . j o n (5.38)

Hence, using Debby asymptotic form of the H” (kR), which is equal to

HO(R)= | 2e's e (5.39)
z JkR
the scattering integral takes the form
iy e — jkR
i (P)=-uh = [ H gz ) (540)
\/E x'=0 \/E

1
where R, is the ray path and equal to [(x—x')2 + yZ]A. The phase function and the

amplitude function of Eq. (5.40) are written as

g(x')=x cosg, — R, (5.41)
and
£(x)=glgy. 7 - B)——. (5.42)
VKR,
The first derivative of the phase function is derived as
o dR
g (x)=cosg, - L (5.43)
dx
dR, x—x . .. .
where d_ can be found P and this expression is written as —cos £ from the
X 1

geometry of the problem. The edge point contribution of Eq. (5.40) can be obtained

as

T
—j=

N PRy !
MM(P)_ omq(%’ﬂ- IBe)

o (5.44)
\/E cos@, —cos f3,
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by using the edge point technique which is given in Eq. (5.20). The reflection angle

B takes B, value in the edges and equal to 7 —¢@. The Eq. (5.44) is rewritten as

T
-J

et (¢oa¢) e (5.45)
" J2r cos @, +cos¢ \/_

Equation (5.45) can be separated into incident and reflected diffracted part using the

uy (P)=u

trigonometric relation, which is previously given. After the trigonometric separation

operation, Eq. (5.45)’s uniform version can be written as

‘](¢0»¢) jkpcos b+dy) ¢ ¢0

gy (P)===2 2= ’ 00 sign(e, P&, ] (5.46)
and
ujy (P)= 405:9) ,sosio-) i 9= sign(& )F[£[] (5.47)
sin @, 2

by using Eq. (5.28) and Eq. (5.29). According to the PTD, fringe fields can be
obtained subtracting the PO fields from the exact solution, so the total fringe field

expression can be obtained as

u,(P)=uy (P)=u,,(P) (5.48)
where the u,, (P) is the exact edge diffracted fields expression from the impedance
half plane and to be formed as

u, (P)=u(P)+ul(P) (5.49)
by the addition of Eq. (5.46), (5.47). Also u,,(P) is the edge contribution of the PO
method and to be formed as

po (P) =ty (P)+upy (P) (5.50)
by addition of Egs. (5.32) and (5.33). The expressions of the incident and reflected

diffracted fringe fields can be written as

uy (P)=uy; (P)=up, (P) (5.51)
and

ug' (P)=uji (P)=ujo (P) (5.52)
respectively, taking into account Egs. (5.32), (5.33), (5.46) and Eq. (5.47). Equation

(5.48) is valid for obtaining the asymptotic fringe field expression. In the beginning,

asymptotic PO contribution can be obtained from the evaluation of Eq. (5.16)
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according to Eq. (5.20). After this evaluation, the asymptotic PO field can be found

as

v/

_ uysing, e 4 sing—sin@ e (5.53)
sin@, +sin @ 27z cosP, +cosP \[kp '

The asymptotic fringe field expression can written as

M;O(P):

v
-j=

u e * sin @, (sin g —sin @) | e~
a P — 0 , + 0 (554)
uf( ) cos @, +cos @ NEY S q(¢0 9) sin g, +sin @ \/ﬁ

using the subtraction of Eq. (5.53) from Eq. (5.45).
5.2 Numerical Results

In this section, fringe field expressions will be analyzed numerically. In order to
investigate the far field radiation, the observation distance is taken reasonably away
from the scatterer. The high frequency asymptotic techniques can be used under the

condition of kp >>1, where p and k are the observation distance and wave
. . 2z .
numbers, respectively. The wave number k is equal to i where A is the

wavelength. If the observation distance p is taken as 64, the high frequency
condition is found as 12z >>1, so the high-frequency condition is provided by the

distance 64 . The angle of incidence ¢, is taken as 60° and the siné term will be

taken as 4. Although the function siné@ takes values between -1 and 1 in
trigonometry, in the literature for impedance boundary condition it can takes values
from zero to infinity. It should not be confused with trigonometry. It has been used in
this way in the literature since Maliuzhinetz [61]. Figure 27 shows the diffracted
fringe fields where the expressions were given in Eq. (5.48), (5.51) and Eq. (5.52). It
can be seen that a minor lobe occurs between the reflection and shadow boundaries
and there is not any amplitude values at the reflection (120°) and shadow boundaries
(240°). The major radiation is observed in the illuminated and the shadow regions.
The amplitude variations of the incident diffracted fringe fields go to zero at 240°,
and the amplitude variation of the reflected diffracted fringe fields goes to zero at
120°. Furthermore, it can be observed in Fig. 27 that incident diffracted fringe fields

concentrate in the shadow regions so compensate the incident fields in the
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illuminated regions, and also reflected diffracted fields concentrate in the illuminated

regions to compensate the reflected fields in the shadow regions.

Figure 27 Total diffracted, incident diffracted and reflected diffracted fringe fields

Figure 28 shows the uniform and asymptotic fringe fields. The asymptotic fringe
field expression is given in Eq. (5.54). Although the amplitudes take equal values in
the illuminated and shadow regions, in the transition regions take different values.
The asymptotic fringe field takes different than zero amplitude value at 120° and
240° when compared with the uniform fringe field. This is a predicted scene for the
asymptotic fringe fields for an impedance structures. The reason of the enhancement
at 120° is the result of the asymptotic expressions, which is given in the Eq. (5.54). In
Fig. 28 this behavior is tried to explain. According to the PTD, asymptotic
expression of the fringe field can be obtained subtraction of the PO asymptotic
expression from the exact asymptotic solution. The asymptotic expressions give
infinite values at the transition regions. Due to the uncertainty resulting from the
extraction process, finite field values are obtained after this operation. Although the
fields compensate to each other in all direction of observation, at the reflection
boundary the fields can’t compensate to each other so the enhancement at 120° is
observed. Figure 29 shows that the asymptotic fringe field amplitude varies with the

observation angle. In this case amplitude value takes more understandable at 120°
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(reflection boundary). This behavior is related to the reflection coefficient. Incident
diffracted fields are independent of the surface reflection coefficient so at 240° there

is no amplitude change in that region.

Figure 28 Uniform and non-uniform fringe fields

In the reflection coefficient when sin @ approaches to infinity in Eq. (5.54), surface
acts as a perfectly conducting surface. It can be seen from Fig. 23 that the reflected
diffracted fringe field’s amplitudes will become equal point with respect to the
incident diffracted fields. Therefore at 120° and 240° amplitudes take equal values.
The amplitude values for all plots were found as expected because diffracted fields
compensate the deficiencies of the GO fields in the transition regions and take half of

the amplitude values of the GO fields.
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Figure 29 The asymptotic fringe field when sin @ — oo
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CHAPTER 6

CONCLUSION

In this thesis, fringe field’s contributions to the scattered fields were investigated for
different geometries. Initially cylindrical structures are investigated taking into
account the PEC and impedance boundary conditions. The PEC cylinder was
revisited for increasing the intelligibility of the method used. Uniform currents and
uniform scattered fields were obtained using PO method. PO integral was converted
to the series form using the Hankel functions, which are the combination of the
solution of Bessel’s equation. Then to take into account the known exact scattered
field from the cylinder, the contribution of the non-uniform current to the scattered
field was obtained using the PTD method. In this thesis, the PO integral was
converted to a series solution because its conversion is much easier than the
conversion of the total exact scattered field from the series form to the integral form.
In addition, the non-uniform scattering field can be found from the integration of the
fringe current but it is too complex to evaluate the exact current over the surface of
the scatterer. Moreover, we investigated the scattered and the diffracted fields from
an impedance cylinder with the method of the PTD. Although the PO scattered field
includes the edge diffraction it gives wrong values. Total field includes total surface
diffraction and total reflected fields. The difference between the total field and the
PO field is fixed by the non-uniform field. Surface diffractions and non-uniform
current's contribution to the scattered field were investigated numerically. The
benefit of this theory is fixing the defects of the PO methods in the diffraction part
for curved impedance surfaces, which do not exist in the literature. It is possible to
investigate the complex geometries like parabolic, hyperbolic or ellipsoidal surfaces
using these fringe currents. It is seen that the contributions of the non-uniform parts

are not negligible for scattering.
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In addition, in this thesis scattering surface integrals were reduced to the line
integrals for investigation of the exact diffracted fields. Hence this formulation was
generalized for various diffraction applications. This formulation is based on the
MTPO axioms. In contrary to the other approaches, this derived expression is based
on the MTPO axioms and scattering angle is variable at the corners and the edges.
This is the main advantageous of this approach. This new formulation was applied on
the PEC cylindrical parabolic reflector geometry, which was fed by the H-polarized
line source. The PO diffracted fields were found. Fringe field’s expressions were
derived. The asymptotic evaluations of the diffraction integrals lead to the fringe
fields. The fringe fields were used for fixing the PO diffracted fields and the exact
diffracted fields were obtained. The PO, the fringe and the exact diffracted fields
were analyzed numerically. The exact diffracted fields were investigated numerically
for different incident angles. It is observed that the results are in the harmony with

the theory.

Furthermore, uniform and asymptotic fringe field expressions were derived for a half
plane with the impedance boundary conditions by using the method of PTD. First of
all, the contributions of the PO fields were derived by integrating the fields in the
given surface. Then, the field expression, which had been obtained from the surface
integral was subtracted from the exact solution in order to obtain the asymptotic form
of the fringe fields. The asymptotic fringe fields were transformed into the uniform
fringe fields by using the method which is given in Refs. [58-59].

The derived uniform fringe fields were found to be more reliable than the asymptotic
forms because asymptotic expressions give wrong field values in the transition
regions. It was observed that the separated fringe fields compensate the reflected and
incident fields in the shadow regions. Numerical analysis showed that the uniform
fringe fields are in harmony with the theory. We observed that amplitudes of the
asymptotic fringe field are finite for all direction of observation and nearly consistent
with the uniform fringe fields except for the reflection and shadow boundaries. In
this respect, when compared to Ufimtsev’s works, it appears that Ufimtsev’s
amplitude values were exaggerated [5-62]. In chapter 4, Fig. 4.2 of Ref. [5],
amplitude values of asymptotic fringe field components take equal value with GO

fields [5]. However, it is noticeable that diffracted fields amplitude values have to be
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half of the GO amplitude values in the shadow and reflection regions. The more

rigorous expressions were presented and numerically analyzed in this thesis.
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