APPLICATIONS OF FAULT-TOLERANT SUPERVISORY CONTROL FOR
DISCRETE EVENT SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES OF
CANKAYA UNIVERSITY

BY
SARMAD NOZAD MAHMOOD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF
ELECTRONIC AND COMMUNICATION ENGINEERING

JUNE 2014

Title of the Thesis : Applications of Fault-tolerant Supervisory Control for

Discrete Event Systems

Submitted by Sarmad Nozad Mahmood

Approval of the Graduate School of Natural and Applied Sciences, Capkaya
University.

Prof. Dr. Taner ALTUNOK

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.
e B \p

Prof. Dr. Celal Z/aum (L
Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Klaus Werner SCHMIDT

Supervisor

Examination Date: 02.06.2014

Examining Committee Members ' e >
Assistant Prof. Dr. Ulas BELDEK (Cankaya Univ.) ‘ %‘
Assoc. Prof. Dr. Klaus Werner SCHMIDT (Cankaya Univ.) / U, AM/
Assoc. Prof. Dr. Ece G. SCHMIDT (ODTU) ? M

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Sarmad Nozad MAHMOOD
Signature ; et
Date :02.06.2014

ifi

ABSTRACT

APPLICATIONS OF FAULT-TOLERANT SUPERVISORY CONTROL FOR
DISCRETE EVENT SYSTEMS

MAHMOOD, Sarmad Nozad
M.Sc., Department of Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

June 2014, 61 pages

Failure-recovery supervisory control for discrete event systems (DES) is concerned
with the recovery from faults that impair the desired system behaviors. Hereby, it is
required to detect the occurrence of faults using fault diagnosis and then adapt the
system operation such that the system can continue its operation with a potentially
degraded performance. In addition, it is generally desired to resume the original
system operation after a faulty component is repaired.

As the first contribution of this thesis, a new fault diagnosis method is implemented
and evaluated. Different from existing approaches, this method allows detecting the
repeated occurrence of faults and is particularly useful when considering systems
where faults can repeatedly occur after repair. As the second contribution of the
thesis, a new method for the fault-recovery supervisory control is developed. Similar
to existing approaches, this method assumes that the system follows its nominal

behavior as long as the system is non-faulty. If a fault occurs, the system should at

least obey a degraded specification until the desired behavior under fault is achieved
in a bounded number of steps. As an extension, the proposed method also allows
returning to the nominal behavior after system repair. In addition, our approach is
based on the idea of modular supervisory control and hence scalable to large-scale
systems. To the best of our knowledge, there is no other modular approach for the
fault-recovery supervisory control. The applicability of the developed method is

demonstrated by a medium-size laboratory model ofa manufacturing system.

Keywords: Discrete Event Systems, Supervisory Control, Fault Diagnosis, Fault

Recovery, Manufacturing Systems.

0z

AYRIK OLAYLI SISTEMLER iCiN HATA KALDIRIR GOZETIMLI
KONTROL UYGULAMALARI

MAHMOOD, Sarmad Nozad
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi
Tez Yoneticisi: Dog¢. Dr. Klaus Werner SCHMIDT

Haziran 2014, 61 sayfa

Ayrik olay sistemlerine (DES) iliskin ariza ¢6ziim denetleme kontrolii, istenen sistem
davraniglarmi olumsuz etkileyen arizalarin ¢oziilmesiyle ilgilidir. Bu noktada, ariza
tanist kullanarak arizalarin olusumunu tespit etmek ve daha sonra sistemin potansiyel
olarak daha diisik bir performansta calismaya devam etmesini saglayacak sekilde
sistemin c¢aligmasini adapte etmek gerekmektedir. Ayrica, genellikle arizali bir
bilesen tamir edildikten sonra sistemin normal calismasina devam etmesi
beklenmektedir. Bu tezde ilk katki olarak, yeni bir ariza tanimlama yontemi
uygulanmis ve degerlendirilmistir. Bu yontem mevcut yaklasimlardan farkli olarak,
arizalarin yineleyerek meydana gelmesini tespit etmeye olanak tanimaktadir ve
Ozellikle tamirden sonra arizalarin yineleyerek meydana geldigi sistemler ele
alindiginda yararhdr. Bu tezde ikinci katki olarak, ariza ¢6ziim denetleme kontrolii
icin yeni bir yontem gelistirilmistir. Mevcut yaklagimlara benzer sekilde, bu yontem
sistem ari1zali olmadig: siirece sistemin tanimh (nominal) davranismi siirdiirecegini

distinmektedir. Ariza meydana geldigi durumda ise sistem birka¢ islem ile ariza

Vi

durumunda istenen davranisa ulasilincaya kadar en azindan diigik performans
gerekliliklerine uymalidir. Ek olarak, Onerilen yontem ayni zamanda sistem
onarildiktan sonra tanimlanan davranisa geri donmeye de olanak tanimaktadir.
Ayrica, yaklagimimiz modiiler denetim kontrolii fikrine dayanmaktadir ve dolayisiyla
da bliyiik 6lcekli sistemlere de uygulanabilir. Bildigimiz kadariyla, ariza denetim
kontroliine iliskin baska bir modiiler yaklasim bulunmamaktadir. Gelistirilen
yontemin uygulanabilirligi, bir imalat sisteminin orta biiyiklikte bir laboratuvar

modeli ile gosterilmistir.

Anahtar Kelimeler: Ayrik Olayl Sistemler, Denetleme Kontrol, Ariza Tespiti, Ariza

Coziimleme, Uretim Sistemleri.

vii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor Assoc. Prof. Dr.
Klaus Werner SCHMIDT, who has encouraged and guided me throughout this thesis
patiently.

I also would like to express my deepest gratitude to my ill mother for her support and
encouragement and her prayers that make me successful and hopeful in the life. To

my father whose support makes my way of success.

I also would like to express my sincere gratitude to my uncle Waleed Majeed and my
aunt, who supported and encouraged me along my life. To my dearest and lovely

sister and brother.

I also thank and appreciate the Scientific and Technological Research Council of
Turkey (TUBITAK), for providing equipment and financial support (during my
thesis). This research was supported by TUBITAK [Career Award 110E185].

Finally, I thank Cankaya University precisely Mechatronics Engineering
Department, as well as Electronic and Communication Engineering Department, for
their support and creating the appropriate requirements of laboratories and

equipments necessary during my study and research period.

viii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM iii
ABS T RAC T . . .ot iv
OZ. vi
ACKNOWLEDGMENTS e viii
TABLE OF CONTENTS. . ..ot e e iX
LISTOF FIGURES. o e Xi
LIST OF TABLE. e e e e e Xiv
LISTOF ABBREVIATIONS e XV
CHAPTERS:
1. INTRODUCTION ... e e e e 1
2. BACKGROUND THEORY OF SUPERVISORY CONTROL FOR
DISCRETEEVENTSYSTEMS i 4
2.1. Discrete Event Systemsand Languagesv... 4
2.2, AUOMALAo 5
2.3. SupervisoryControl. 8
2.4, State AUraCtiont 10
2.5, Fault Diagnosis e 11
2.6. Interleaving Composition. ... 14
2.7. Language CONVEIgENCE. . . oottt e e i 14
3. REPEATED FAULT DIAGNOSIS 15
3.1, BasicDesCription. 15
3.2. Diagnosability with Repeated Faults 15
3.3. Diagnosability Verification for Systems with Recurrent Faults. 17
3.3.1. CertainNumberofFaults............ 17
3.3.2. Observer Automaton Construction.coovuiinn ... 19

3.3.3. Verifier Automaton Construction 24
4. MODULAR FAULT-RECOVERY SUPERVISORY CONTROL FOR

FAULT RECOVERY. ... e 28
4.1. Monolithic Control for Fault Recovery. 29
4.1.1. Fault Recovery System Componentsc.oovuvvn... 29
4.1.2. Fault Recovery Supervisor Design Requirements. 30
4.1.3. Supervisor for Fault Recoveryand Repair 30
4.2. Modular ControlOVerview, 31
4.2.1. ProblemDescription. 32
4.2.2. Example System 32
4.2.3. DefinitionofModules............ 43
4.3. Computation of Modular Supervisors For Fault Recovery. 43
4.3.1. Fault-Recovery for the FaultyModule 43
4.3.2. Fault-Recovery for Non-Faulty Module 47
4.3.3. Repair for the FaultyModule 51
4.3.4. Repair for Non-FaultyModule 53
4.3.5. Faultand Repair Coordinatorsccciuruunn.. 54
4.4. Faulty and Non-Faulty Modules Simulation. 59
5. CONCLUSION ANDFUTUREWORKot 60
51. Conclusion 60
5.2, FUUre WOrK.o 61
REFERENCES. e R1
APPENDICES . . . o Al
A. CURRICCULUM VITAE. e Al

FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure5
Figure6
Figure7
Figure8
Figure 9
Figure10
Figurell
Figurel?

Figurel13
Figurel4
Figurel5
Figurel6

Figure 17
Figurel18

Figure19
Figure20

Figure21
Figure22

LIST OF FIGURES

Simple automaton example

Language specification diagnosability example

Simple systemexample G

Simple system example DiagnoserD.

Plants G; for illustrating the case of detectable faults...........

Plants G, for illustrating the case of detectable faults

Plants Gsfor illustrating the case of detectable faults

Plants G4 for illustrating violation of R-diagnosability
Plants Gs for illustrating violation of R-diagnosability
Observer automaton for G1,G2,G3

Verifier automaton for G4,Gs

input

Plantautomaton G, =

Observer automaton G2t

input

Plantautomaton G,

Observer automaton Gzesuit

input

Plantautomaton Gg ™

Observer automaton Ggesu't

input

Plantautomaton Gy~ ...

Observer automaton Ggesu!t

input

Plantautomation G~ i

Observer automaton Gi&suit

Verifier automata for Sy ,S5 , S5

12
13
13
17
17
18
18
18
20
21
21

21
22

22
22

22
23

23
23

24
26

Xi

FIGURES

Figure23 Verifierautomatonfor S i, 27
Figure24 Laboratory manufacturingsystem.......................... 28
Figure25 Whole system modulescontrol 32
Figure26 The entire examplesystem.......... i, 33
Figure27 Stack feeder componentand its model Gsgg. . ..o oot 34
Figure28 Rotary table componentand its modelGgrry. 34
Figure29 Manufacturing machine component and its normal model Gpa1 ... 35
Figure30 Manufacturing machine model with fault Gy, ;.. 35
Figure31 Manufacturing machine modelGmaz. . ..o oo oot 36
Figure32 Exit Slide component and its models Gxs1,Gxs2. -+« « v vv v v v 37
Figure 33 Rail transport system RTS component.. 37
Figure34 Rail transport systemplant model Grrs.o oo a s 38
Figure35 Conveyor belt plant model Gcotser « v v oo oo 38
Figure36 Position 5 specification Cps and position 4 specification Cps 38
Figure37 Position 3 specification Cpzand position 2 specificationCp,. 39
Figure38 Mutual exclusion specifications Ciorig and Coorig .+« o oo v .t 39
Figure39 The model Of RTSIGRTSI. « « v v vt v vt 40
Figure40 Conveyor belt componentand its model Gcoz . o .o oo v oot 41
Figure4dl Rotarytablecomponent............. 42
Figure 42 Rotarytable model Grro. oo oo oo oo 42
Figure 43 System fault supervisor diagram. 44
Figure44 Module 1 components. v 45
Figure45 Nominal specificationautomata C* and C)* 46
Figured6 Degraded specificationautomata ¢P1,cP*,cPl. 46
Figure47 Faulty specificationautomata C{landCft.................. 46
Figure48 Fault-recoverysupervisor Sf............., 47
Figure 49 Module 2 componentsttt 48

Xii

FIGURES

Figure50 Nominal specification automata C¥2 ,CV% ,CN4............... 49
Figure51 Degraded specification automata €22 ,cP%,cP%, cP? cP2,ch?... 49
Figure52 Faulty specification automata C{?, 12, cf?,ck,ckz 50
Figure53 Systemrepair supervisordiagram...............c..covvnun... 52
Figure54 Supervisor S1formodulel............, 53
Figure55 Systemrepair supervisor SR, 53
Figure56 Coordinating automaton Py 1forS{............ 56
Figure57 Coordinating automaton Py for SR............... 56
Figure58 Coordinating automaton Py 1for S5 57
Figure59 Coordinating automaton Py for SX o .l 58
Figure60 Whole system simulation using flexfact program.............. 59

Xiii

LIST OF TABLES

TABLES

Table 1 Stack feeder Gsg; model information. L 34
Table 2 Rotary table Ggrr1 model information........................ 35
Table 3 Manufacturing machine Gya; model information.............. 36
Table 4 Manufacturing machine Gyaz model information. 36
Table 5 Exit slides Gxs1,Gxs2 models information. 37
Table 6 Rail transport system Ggrrs1 model information................ 41
Table 7 Conveyor belt Gcos model information. 42
Table 8 Rotary table Ggrr2 model information. 43

Xiv

CCP
CcO
DES
MA
RMS
RMT
RT
RTS
SCT
SF

LIST OF ABBREVIATIONS

Controlled Convergence Problem
Conveyor Belt

Discrete Events Systems
Manufacturing Machine
Reconfigurable Manufacturing Systems
Reconfigurable Machine Tools

Rotary Table

Rail Transport System

Supervisory Control Theory

Stack Feeder

XV

CHAPTER 1

INTRODUCTION

Discrete event system (DES) models are used for systems that reside on a discrete state
space and whose state evolution depends on the occurrence of discrete events [1]. Ex-
amples for DES are manufacturing systems, transportation systems or communication
networks[2, 3, 4, 5, 6]. The supervisory control theory for discrete event systems (DES)
as introduced by Ramadge/Wonham [7] generally assumes that the system behavior is
correct. That is, the potential occurrence of faults is not taken into account. Such as-
sumption is not justified in practical systems, where faults such as the breakdown of a
machine, the failure of a sensor or the breakdown of acommunication link are common.
In thisthesis, mainly fault occurrences in manufacturing systems are considered.

Dealing with faults requires methods for the fault diagnosis, failure recovery and system
repair. Fault diagnosisis concerned with detecting and identifying the occurrence of a
fault. The existing literature on fault diagnosis focuses on the occurrence of permanent
faults such that the system is generally assumed to remain faulty for all times. Various
fault diagnosis approachesin different architectures are proposed in this setting [3, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Fault diagnosis approaches for permanent faults
are not suitable if system repair is considered. In that case, the repeated occurrence
of faults is possible. Although there are few approaches that investigate intermittent
faults [20, 21, 22, 23], they are also not suitable since they do not determine the exact
number of fault occurrences. Accordingly, a fault diagnosis approach for detecting
each repeated occurrence of a fault is developed in the TUBITAK research project
“A Formal Framework and Continuous Workflow for the Controller Design, Failure
Diagnosis and Failure Recovery of Reconfigurable Manufacturing Systems” [24]. This
approach is evaluated by examples and the relevant algorithms are implemented in the
1ibFAUDES software library [25] in thisthesis.

In industrial applications, the occurrence of a fault usualy leads to stopping the
operation of a running system for system repair and performing a complicated restart

procedure in order to resume the system operation. That is, the occurrence of a fault
severely impacts the operation of a system, leading to loss of production quantity
and quality. Hence, it is highly desired to find ways to automatically recover from
faults after its detection. Hereby, fault recovery is used in the sense that the system
operation is continued with a potentially degraded system performance and automat-
icaly returning to the correct system operation after repair. The existing literature
[26, 27, 28, 29, 30, 31, 32] mostly considers recovery from faults without system re-
pair. Only the work in [33, 34] includes repair in the supervisor design. However, the
proposed methods are targeted for a monolithic system model and hence not scalable
to large-scale systems.

In this thesis, the monolithic method in [34] is extended to modular failure-recovery
supervisory control. That is, we consider systems that are composed of multiple system
components. In principle, the method suggests the following system behavior:

In the nominal case (no fault occurred), the system follows a behavioral specifi-
cation that describes the desired operation of the system.

If afault occurs, a degraded operation of the system is permitted.

After afault occurrence, it takes a bounded number of event occurrences until the
system starts following the desired operation under fault.

If the faulty part of the system is repaired, the system operation returns to the
nominal behavior in abounded number of event occurrences.

As the main contribution of the thesis, this behavior is achieved by using two modular
supervisors per system component. The first modular supervisor realizes the nominal
system behavior and moves the system to the behavior under fault in case a fault hap-
pens. The second supervisor realizes the behavior under fault and returns the system to
the nominal operation in case of repair. The thesis provides detailed algorithms for the
supervisor computation and demonstrates the proposed failure-recovery method using
amedium-scal e application example. It is further shown that, under certain conditions,
the resulting system is able to contain the fault in the sense that the fault occurrence
and repair is not visible to the outside.

Precisely, the contributions of the thesis are listed as follows:

e A new approach for the fault diagnosis with repeated faults including an ago-
rithm for the diagnosability verification. In this thesis, the algorithms for the

2

diagnosability verification are implemented.

¢ A new approach for the modul ar fault-recovery supervisory control. Inthisthesis,
the algorithms for the supervisor design are both developed and implemented in
the software library 1ibfaudes.

e A case study that demonstrates the applicability of the devel oped fault-recovery
method using a manufacturing system laboratory example.

The remainder of the thesisis organized as follows. Wefirst provide background infor-
mation on discrete event systems, the concept of formal languages and automatamodels
in Chapter 2. In addition, we discuss supervisory control, fault diagnosis and several
relevant operationsin that chapter. Our new method for the diagnosis of repeated faults
isdescribed and illustrated by examplesin Chapter 3. Finally, we devel op our modular
approach for the failure-recovery supervisory control in Chapter 4. We present al al-
gorithms and apply our method to an manufacturing system example. Conclusions and
directions for future work are given in Chapter 5.

CHAPTER 2

BACKGROUND THEORY OF SUPERVISORY CONTROL FOR DISCRETE
EVENT SYSTEMS

The chapter gives a background about supervisory control for discrete event systems
by outlining the main topics that are needed in this thesis.

2.1. Discrete Event Systems and L anguages

The study in this thesis is based on the modeling framework of discrete event systems
(DES). DES are systems with a set of discrete states and such that transitions between
states are triggered by the occurrence of discrete events. Consider a simple example
of a push button to describe the behavior of a DES. It is able to perform two different
tasks: turning the switch ON or OFF if pushed or released. Hence the push button
can be modeled with the two discrete states pushed and released. Transitions
between the states happen with the two possible discrete events pushON, pushOFF.
The occurrence of pushON eventispossiblein state released and the state pushed
is assumed afterwards. Reversely, in the pushed state, any transition with pushOFF
leads back to the released state.

The concept of formal languages is used to represent the behavior of DES. Let X be the
finite set of events of a DES, also called alphabet. A finite sequence of eventsin X is
called string. The length of a string s, denoted by |g|, is given by the number of events
ins. € isthe empty string with length |e| = 0. The set that contains all possibilities of
finite strings of events in the finite alphabet X including (¢) is denoted as £* (Kleene
Closure).

In the previous example (push button switch), the alphabet is given by X = {pushoON,

pushOFF}. A possible sequence of eventsis s = pushON pushOFF pushON with
length |s| = 3. The Kleene closure of X in this case is £* = {&,pushON, pushOFF,
pushON pushON, pushON pushOFF, pushOFF pushON, pushOFF pushOFF,..}.

4

The concatenation of two strings s; € ¥* and s, € X* is the strings s; $.1f we have a
string s= $1S such that s, s € ¥*, thenwe say that s; isaprefix of s. L C X* iscalled
alanguage over . Another important term related to the languages is called the prefix
closure. Prefix closure of L contains all the prefixes of stringsin L and iswritten as L:

L={seX|3te X" suchthat st € L} (2.1

A language L is prefix closed if it is equal to its prefix closure L =L .

Another operation on languages is the natural projection. natural projection keeps al
eventsin an alphabet = and deletes the others (2 \ £) from any stringse =*. Let S C X.
This natural projectionisdefinedasp: * — T with

pe) =¢

() = o ifoeX

plo)= e otherwise

p(so) = p(s)p(o) (2.2)

In our previous example, consider that we want to take care about the event (pushON)
of pushing the button on, and we want to project (S= pushON pushOFF pushON).
Then, we use £ = {pushoN}. The function considers the occurrence of al other
events not in () as invisible. That is, these events are removed from the string s =
pushON pushOFF pushON and the projected result is p(s) = pushON pushON.

2.2. Automata

DES can be modeled by afinite state automaton as follows
G =(X,Z,6,%0,Xm) (23

where

e X isafinite set of states.

e XY isafinite set of events.

e 0: X xX— Xisapartial transition function.
e Xp € X istheinitial state (state where the automata starts from).

o X C X isthe set of marked states (states that the system should reach in order to
complete atask).

The behavior of an automaton is represented by the languages L(G) and Ly (G):

e L(G) isthe closed language which includes all paths that follow event sequences
using the transitions starting from the initial state to any state of G.

L(G) = {s€e Z*|8(x0,9) exists} (2.9
e Ln(G) is the marked language which includes all paths that follow event se-
guences using the transitions starting from the initial state to any marked state of

G.

Lm(G) = {5 € L(G)[8(x0,5) € X} (25)

An automaton G is considered (nonblocking) if it satisfies the following condition:

[m(G) = L(G) (26)

The condition above is fulfilled, if al stringsin G can be extended to a marked state.
An automaton can be cyclic or acyclic. A cycle in an automaton is a sequence of states
X1,X%2,...,% (K is a natural number) such that (x; = x¢) and for al (i=1,...,k— 1),
there exists an event (o; € X) such that (6(Xi, 6i) = Xi+1). This means, that a system
starts from the state (x; of G), passes over the transitionsin G then, and then returnsto
the same state (x1). Accordingly, an automaton G without cycles, is called acyclic.

There are several characteristicsin each automata such as accessibility, coaccessibility
or both of them together as Trim.

e Accessible: The automaton G = (X,Z, 8, %o, Xm) is accessible, if al statesin X
can be reached from the initial state xg. Formally, we write:

Vx € X,3s e X" such that §(xp,s) = X 2.7

The operation Acc(G) makes G accessible by removing all non-accessible states.

e Coaccessible: The automaton G = (X, X, 8, Xo, Xm) iS coaccessible, if it is possi-
ble to reach a marked state from any state in X. Formally, we write:

Vx € X,3s e X* such that §(x,S) € Xm (2.8)

Hereby, we redize that every Coaccessible automaton is nonblocking

Lm(G) = L(G). The operation CoAcc(G) makes G coaccessible by removing
all non-coaccessible states.

e Trim: If the accessibility and the coaccessibility conditions are fulfilled in the au-
tomaton G = (X, Z, 8§, %o, Xm). Then, the automaton istrim. We use the following
operation:

Trim(G) = CoAcc(Acc(G)) (2.9

Consider that G = (X,Z,8,X0,Xm) and G’ = (X', Z, 8', x5, X,) arefinite state automata.
G’ isasubautomaton of G, if X’ C X, xy =X andfor al x € X’ and ¢ € Z, it holds that
d'(x,0)! = &'(x,0) = 6(x,0). Inwords, The automaton (G') is extracted from G by
removing states and transitions. Then, we write (G' C G) if (G) is a subautomaton of
G. G isadtrict subautomaton of G if additionally 6(x,c) € X' = 6'(x,0) = 6(x,0).
In words, only states are removed from G to obtain G'.

For clarity, we introduce a simple system automaton G = (X, X, ,Xo, Xm) in Fig. 1.

Figure 1. Simple automaton example

G has 6 states and 5 events. The states are (X = {1,2,3,4,5,6}). Among this set
of states there is one initial state xo = 1 and three marked states X, = {1,3,6}. The
events are X = {a,b,c,d,e}. The transitions relations § of this simple automaton is
represented as follows:

o 5(La)=2,8(2,b)=3,5(2,€ =4.

e 5(2,d)=5,8(3,c)=4,5(5.c) =6.

The closed language for this automatais (L(G) = {€, a, ae, ab, abc,ad,adc}). Then, we
can easily find the marked language which is (Li(G) = {¢e,ab,adc}). The automaton
G is accessible because every state in X, is reachable from the initial state 1. However
G is not coaccessible because the state 4 has no transitions to any marked states X, =
{1,3,6}. Applying CoAcc, the state 4 is removed from G. In result, we obtain a strict
subautomaton of G. Moreover, it has to be mentioned that G is acyclic.

Discrete event systems are usually modeled using one or more component automata.
In the latter case, it is possible to combine all these components in a single system by
using the synchronous composition operation. This operation synchronizesthe different
automataon their shared events same eventsin each automaton, whereas the occurrence
of the other unshared events are independent from each other.

Consider that we have two different automatas Gy, G, , G1 = (Xq, X1, 81,%0.1, Xm,1) and
G2 = (X2,X2, 82,X0,2, Xm,2). The synchronous composition is written as:

G1||G2 = G12 = (X12,Z12, 012, X0,12, Xm,12) (2.10)

Synchronous composition operation states are Xi2 = X1 x Xo (the canonical product of
states from X; and X3), the events are X1, = X1 U X5 (the union of events in X1 and
%), the initia state is Xg 12 = (Xo,1,X0,2), the marked states are Xm 12 = Xm.1 X Xm 2.
The transition makes sure that the eventsin ;1 N X, that are shared by G; and G, are
synchronized. For (x1,X2) € X12 and o € 1!

(01(X1,0),02(X2,0) if 6 €Z1NZE3A01(X1,0)! Ada(X2,0)!
012((X1,%2),0) = ¢ (81(x1,0),%2) if o€ X1\ 22N 61(x1,0)! (211)
(X1, 02(X2,0)) if 0 €Zp\ 21N 02(X2,0)!

2.3. Supervisory Control

Supervisory control was introduced by Ramadge and Wonham [7] and is hence called
the Ramadge/Wonham framework. The basic supervisory control problem is defined
asfollows. We write X = X UX, for controllable (X¢) and uncontrollable (%,) events:

e X representsthe set of controllable events: The supervisor can forbid the occur-
rence of such events whenever is wanted.

e X, represents the set of uncontrollable events: The supervisor can not forbid the
occurrence of these kinds of events.

We say that S= (Q, X, v,qo, Qm) isasupervisor for G with Z, if Sonly disables events
inZc. Thatis, for all se L(G)NL(S) and 6 € X, withso € L(G) also so € L(S).

A language K C Lim(G) is said to be controllable for L(G) and X if KX, NL(G) C K,
and there exists a supervisor S such that L, (G||S) = K if and only if K is controllable
for L(G) and X, [7]. If K is not controllable for L(G) and X, the supervisor will
implement the supremal controllable sublanguage of K. We write:

Lm(S/|G) = SupC(K, L(G), %) (2.12)
It is ensured that such supervisor is nonblocking and maximally permissiveif:
SUPC(K, L(G),Zy) # 0 (2.13)

Considering a plant G and a supervisor S, the closed loop system is obtained by us-
ing synchronous composition operation G||S. The closed language and the marked
language of G||Sare obtained asL(G)||L(S) and L (G)||Lm(9).

The supervisor Sisdetermined to fulfill the desired behavior of the closed-loop system.
In discrete event systems the desired behavior usualy is represented by an automaton
C=(Y,Z,8,¥0,Ym) and K = L(C) isthe specification language.

A specification is said to be controllable with respect to G and X, C X if it fulfills the
condition:

KZuNL(G) CK (2.14)

e K : The prefix-closure of (K).
e KX,: The concatenation between the set of all strings that starts with the prefix

in K and the uncontrollable eventsin X,,.

Consider that(o € X,). Since no supervisor can disable uncontrollable events, if a
specification allows any string (s € K) concatenated with an uncontrollable event in the

9

plant (so € L(G)), then the concatenated string must also belong to the specification
(so € K). Animportant fact in this context is that there exists a nonblocking supervisor
Ssuch that Lin(GJ|S) = K if and only if K is controllable with respect to G and Z,,.

If the controllability property isviolated, the supremal controllable sublanguage Kg,p
K such that Kgy, is controllable with respect to G and X, can be obtained. The related
operation iswritten as:

SupC(K, G, Zu) = [J{K' CK[K' (2.15)

is controllable with respect to G and X,,. As result, a nonblocking supervisor S is
obtained such that:

Lm(GI[S) = Ksub (2.16)

We mentioned that the supervisor enablesthe largest possible sublanguage of K. There-
fore, it isaso caled (maximally permissive).

2.4. State Attraction

Consider an automaton G = (X, X, §,Xp, Xm) and the uncontrollable events (X,). Then,
the subset X’ C X is denoted as invariant set in G if there is no transition leaving the
states in the subset X':

vxe X and o € X it must hold that §(x,0)! = 8(x,0) € X'[35)] (2.17)

Moreover, The set (X’ C X) is denoted as (weakly invariant set) if all the transitions
that leave the states in the subset X’ are transitions with controllable events:

vxe X" and o € %, it holdsthat §(x,0)! = 8(x,0) € X'[35] (2.18)

Definition 1. Let A C X’ C X and consider that A, X’ are invariant setsin G. Ais
denoted as a strong attractor for X’ in G if:

e the strict subautomaton of G with the state set X’ \ Aisacyclic

e Vxe X/, thereisue X* st. §(x,u) € A

10

Briefly, definition 1 meansthat there must be no arbitrarily long strings outside the state
set A and the set A must be reached after a limited number of event occurrences in the
system. We aso need to mention that the computational complexity of verifying this
conditionis & (|X|+ [X]).

Definition 2. Let A C X’ C X and consider that A, X’ areinvariant setsin G. X, C obe
the set of uncontrollable events. A is denoted as a weak attractor for X’ in G if there
was a state feedback supervisor SC G s.t. Aisa strong attractor for X’ in S,

In words, the set isweak attractor if there exists a supervisor that makes the closed |oop
system G||Sastrong attractor for X" in S.

Moreover, based on the references [35, 36], there exists a supremal subset of X denoted
astheset Qg(A) C X such that A isaweak attractor for Qg(A) in the plant G with the
uncontrollable events X,. The computational complexity of the algorithm that computes
the set Qg (A) is (O(|X]-|Z])). |X| represents number of state whereas, |X| represents
number of events used in the system, respectively. Finally, we need to mention that
the computational complexity of the algorithm that obtains the supervisor (SC G) that
makes A strong attractor for Qg(A) in the supervisor Sis 0/(|X|?).

2.5. Fault Diagnosis

A fault is an undesirable behavior of a system. Generaly, any system can be subjected
to different kinds of faults such as:

Transient Fault: The fault can occur one time and does not occur again.

Intermittent fault: This is the most annoying type of faults. The fault can happen,
disappear and happen again, etc.

Permanent fault: The fault happens and remains until the system is repaired.

In DES, usualy permanent faults are considered. Then, it is assumed that the oc-
currence of faults cannot be directly observed but faults have to be inferred from the
observed system behavior. To this end, we denote the unobservable events as %, and
the observable as X,. The aphabet of any system includes both observable and un-
observable events such that £ = X, UZX,. In addition, we use the natural projection
p:Xr — X5

11

The fault diagnosis is based on the partially observed DES G = (X, X,0,Xp). p(L(G))
is the language that is seen from the plant. A fault is represented by the violation of a
given prefix-closed specification language K = K C L(G). That is, the system is fault-
freeaslong asastring s L(G) (and any prefix of s) fulfillsse K = K, while sisfaulty
as soon as s ¢ K. So, the detection is needed, by partial observation through p, if a
faulty stringin L(G) \ K happened.

=

Figure 2: Language specification diagnosability example

Consider Fig. 2 as an example. It shows a plant (left) and a specification (right). We
mentioned before that the behavior of the system is realized during the projection p :
X* — X5, that maps each event o € X to its observation p(o) € Z§. Then, in this
example if the string s = (hAh(BAh)' kT) occurred and we found that the projection
result of the specification C is (AB) comparing with the projection of s, then thefault is
certain because of the difference in the observations. Wheress, if the projection result
of the specification C was compared with a new string in this system like s = (hyAB),
then the fault can not be detected. The following definition of language-diagnosability
asintroduced in [11, 15] formalizes this goal.

Definition 3. Let G model a DESand let K = K C L(G) be a specification language.
K islanguage-diagnosable w.r.t. G and the natural projection p : ¥* — X if:

(IneN)(Vse L(G) \K)(Vst € L(G), |t| > nor st deadlock) (2.19)

= (Yue p~ip()NL(G),u ¢ K).
The definition above (2.19) considersthe faulty stringss < L(G) \ K. Then all extended
strings with the same projection should be faulty in case a deadlock, also all extended
string & with same projection should become faulty if they are longer than a finite
detection delay n of events.

Itisshownin[11, 15] that language-diagnosability isverified in polynomial time based
on G and the specification automaton C = (Y, X, k,yo) with L(C) = K. If G has pg

12

states and qg transitions, and C has pc states, then the complexity for this verification
is 0(pc- 0% - PE)-

The fault detection is usually realized by a diagnoser automaton that follows the ob-
servations from the system. It is a finite state automaton constructed using the system
model that is wanted to be put under observation. We introduce a simple system ex-
ample with its diagnoser in Fig. 3 to identify the normal and the faulty strings in the
system according to Definition 3.

Figure 3. Simple system example G

e IN 2F » 3F5F 8N 4F 6F SN

Y

JE

(e
Figure 4. Simple system example Diagnoser D

The example in Fig. 3 shows different strings (faulty and normal). For example the
string (fAB) and the stings (AfBT) are faulty strings, whereas the string (A(BC)")
and (AB(AB)") are normal strings. The example violates diagnosability condition, By
considering the string:

s=felL(G)withfes (2.20)

Then, for all t = A(BC)',& € L(G), and u= A(BC)' € p1p(st) NL(G) but f ¢ u, it
is not possible to find abound n € N. So that, the system in Fig. 3 is not diagnosable.
This is also observed from the related diagnoser automaton in Fig. 4. Thereis aloop
with the events A and C between the states (3F,5F,8N) and (4F,6F,9N) that contains both
fault labels (F) and normal labels (N). Thisindicates the violation of diagnosability.

13

2.6. Interleaving Composition

In thisthesis, we use the interleaving composition as introduced in [37] [page 99]. The
operation allows processes with the same al phabet to interleave their operation without
synchronizing on shared events. Hence, any activity in the system is the activity of one
of the processes. In particular, we need to take a nondeterministic decision in case two
processes allow the same event. We write:

K1|||K2, (K1 interleaved with Kz) (2.21)

Formally, we define the interleaving composition as follows:

Definition 4. Let X be an alphabet and K1, Ky C * be two languages. The interleaving
composition Ky |||K2 of K1 and K5 is defined such that:

se Ky|||Kz & s=sis?- - sls? for somek € N and

0y e (2.22)
$i1S - eKjfor j=1,2

2.7. Language Convergence

We further use the notion of language convergence [38, 39]. For astring s e X*, we
write sufi(s) for the string obtained by deleting the first i event from s. Particularly,
sufo = sand suf g (s) = €.

Consider two different languages M,K C ¥*. The language M is said to be converged
to K, denoted by K < M, if there is an integer n € N such that for each s € M, there
existsan i < n such that sufi(s) € K. The least possible n is named convergence time.

The controlled convergence problem which is denoted as (CCP) is introduced in su-
pervisory control for discrete event systems. Consider the plant G over the alphabet
¥, the set of uncontrollable events X, C X and the specification K C £*. A supervisor
Sfulfills CCP for G, K and X if §||G is nonblocking, S||G is controllable for L(G),
Yy and K < Ln(S|G). Consider that X is the state set of G and Y is the state set of a
recognizer C such that Ly (C) = K. The satisfaction of CCP is decided by an algorithm
with complexity &/(|X|222Y]).

14

CHAPTER 3

REPEATED FAULT DIAGNOSIS

3.1. Basic Description

The main objective of fault diagnosis for DES is diagnosing the systems that are sub-
jected to faults. However, most of theliteratureisonly concerned with permanent faults
and does not consider faults that can re-occur. Nevertheless, such faults can very well
happen for example after afaulty system component is repaired. This chapter presents
anew method for the diagnosis of repeated faults.

We use a state-based model and associate the occurrence of a fault to reaching certain
states and presents a polynomial-time algorithm for the verification of the new property
of R-diagnosability. The algorithm remembers the number of fault occurrences in all
strings that have the same observation. We further show the results that the repeated
diagnosis function computed (ComputeRepeatedGo Function), which is implemented
in the diagnosis plug-in of the 1ibfaudes software library [25] in this thesis. Last
but not least, We mention that automata are considered as four-tuple G = (X, X, 0,Xo)
in fault diagnosis since the set of marked states is not needed.

3.2. Diagnosability with Repeated Faults

In this section, we model each system as G = (X, X, §,X%p) and the observable events
Yo C Z. The natural projectionis p: X* — Xg. Asin [20], we introduce the faulty state
map y : X — {0,1} suchthat y(x) = 1indicatesthat afault happens whenever the state
xisreached. Then, the language K; C L(G) with:

Ki:= {s€ L(G)|ly(6(x0,9)) = 1} 31

15

Comprisesal strings that are faulty. We further introducethemap ¢ : X x ¥* — N such
that:

c(x,u) := {u' < uly(3(x,u)) =1}, 32
That is, ¢ counts the number of faults in a given string starting from state x. We write
c(s) if x=Xp.

Inthissectionweillustratesall what isrelated to diagnosing the systems under recurrent
faults occurrences.

Definition 5. Assume that G is a plant automaton, X, is a set of observable events and
p: X" — X isanatural projection. Let themaps y : X — {0,1} andc: L(G) — N be
defined asin (3.1) and (3.2). Then, v is denoted as R-diagnosable for G and X, if:

(IneN)(Vk e N)(Vse L(G),c(s) =k)(Vst € L(G),|t| > n (33)
) :

or & deadlock) [u € p~tp(st) NL(G) = c(u) =K.

R-diagnosability as introduced in Definition 5 requires for each string s that indicates
k = c(s) faults that the occurrence of k faults can be detected either after a bounded
delay or if the plant deadlocks. In particular, Definition 5 implies that the occurrence
of the k+ 1st fault is not allowed before the kth fault is detected.

Single faults and multiple fault occurrences were introduced before in Definition 3 and
5. Then, we write the plant Gy for each k € N such that:

L(Gk) = {s€ L(G)|c(Xo,s) <k} (3.9
Gk contains all strings s € L(G) with at most k faults. Also we introduce Gg such that:
L(Go) = {s€ L(G)|c(xo,S) = 0} (35

Then, the recent introduced plant Gg showsthat it containsall stringsthat are not-faulty.
Based on this definition, the following result that was derived in [40] can be used.

Definition 6. Let G, X, p, v, ¢ be given as in Definition 5. Then, v is R-diagnosable
for G and pif and only if for each k € N, L(Gy_1) islanguage-diagnosable for Gy and
p.

According to thisresult, we can easily perform a polynomial time test for each k.

16

Hence, Definition 6 is useful for plants G where the maximum number of faults is
bounded with:

max y(s) = < oo 3.6

S11G) V(S) = Kmax (3.6)
In that case, only Knax classical language diagnosability tests have to be examined.
Unfortunately, the test in Definition 6 is uselessif no such bound exists.

3.3. Diagnosability Verification for Systemswith Recurrent Faults

3.3.1. Certain Number of Faults

We discuss the requirements for the verification of R-diagnosabilty by severa exam-
ples [40Q]. In principle, we need to take care whether the fault occurred after the last
observation and if the occurrence of such fault isallowed right after the last observation
or not.Consider the strings in the systems G1, G,, G3 in the following figures with the
set of observable eventsis X, = { &, B} and the statesin gray color represent the faulty
states.

Gy a v a sy b N5 g c
~O—00>0—@—®

Figure 5. Plants G for illustrating the case of detectable faults

In system G; the fault is detected because the faulty state is reachable by the observable
event 3. Then, any string with projection o isnon-faulty, and any string with projection
o is considered faulty. Hence, we make sure that the fault is certain after observing
the projected stringt = a3. A fault happened before reaching state 6 and right after
observing o3. We denote such fault as certain.

G “m
~(D——-0=@—E—=

Figure 6: Plants G, for illustrating the case of detectable faults

In system G, we know from the model that the fault occurred after observing o, but
there are different strings that have o projection. For example, the string s = aab
which is afaulty string and can be divided into two sub strings s; = .S, = ota < S.
Each string of these has o projection but there is an ambiguity, because s; , s, are

17

non-faulty whereas the string sis faulty. Hence, it is not possible to detect afault after
t = . Only after observing o8, the fault is certain. Here, the reason that the fault
is not certain immediately is that state 4 was reached but not right after the previous
observation c.

Figure 7: Plants Gz for illustrating the case of detectable faults

In system Gg, consider the strings s; = aa and s = ab. There is an ambiguity be-
cause s is not faulty whereas s, is faulty and both of them have the same projection
(o). Hence, it is not possible to detect afault after t = . Or consider different strings
s = oaf and s, = obf, one fault is certain after observing o 3. but both strings have
the same projection (o 3) in this case the fault is not detected because s is faulty and
S is not faulty. There is no fault happened when state 3 was reached but one fault
happened when state 4 was reached. Hence, one fault is not certain after observing o.
Moreover, knowing that a fault happened when state 5 was reached right after observ-
ing a3 and no more fault happens until reaching state 8 shows that a fault is certain
after observing a.f3.

CiNa g a b gaB 7 c
~O0—@—0C>@—0——0©

Figure 8: Plants G4 for illustrating violation of R-diagnosability

In system G4, R-diagnosability condition is violated, for the string o« because the fault
occurs after o, whereas for the string ccab it is not possible to make a new observation
for the new fault. That is, it cannot be decided if one fault or more than one fault hap-
pened in the system. For G4, the classical diagnosability condition is fulfilled because
one certain fault occurred after observing o.. However, it is not possible to obtain the
exact number of faults and R-diagnosahility is violated.

CsNa Nagb 5 gac
~O0—0=-@=0—0——0®

Figure 9: Plants G5 for illustrating violation of R-diagnosability

18

In Gs, R-diagnosability condition is also violated, because there is one fault happened
inthestring s; = aa whereasfor the string s2 = a.ab, no fault happened that means, we
have both faulty and non-faulty strings with same observation o.. Then, it is clear that
two faults happened for the string aabf in the system, but it is not possible to detect
the first fault after the string azab, then only one fault is detected after o observation.

3.3.2. Observer Automaton Construction

The verification procedure for R-diagnosability is composed of two steps. In the first
step, we introduce the automaton S° = (Q°,Zo, v°,Qg) that detects the observations
from G asfollows[3, 20, 4Q].

Q° = {(x,k,b) € X x {0,1} x {0,1} U{NR}|x € X and I € Z,

3.7
such that 5(x, 0)!orflo € = such that §(x,0)!} St
(x,k,b) € Qg if and only if Ju € X, such that x = 6 (Xo, u), 38)
c(xo,u) =k < 1,¢(x0,€) = b '
NR e Qf if and only if Ju € X, such that ¢(xp,u) > 1 (3.9
For al g= (x,k,b),d = (X,K,b) € QPando € %, (3.10)
q € v°(qg,o) if and only if Ju € X}, such that ' = 6(q, ou), (3.11)
c(x,ou) =K <1lc(x0)=b <1 '
NR € v°(q,0) if and only if Ju € X}, such that 6(x,ou) = X' and (3.12)

c(x,ou) >1

Each state of S° states consists of three components (x,k,b). X represents the state
name in the system G whether an observable transition was available from x or x was
deadlock state, k represents the number of faults after the latest observable transition, b
representsthe direct or indirect occurrence of afault after observabletransition. Finally,
if more than one fault with unobservable event occurred in the system, then NR stateis
reached in S from (x,k, b) to the state NR.

The construction algorithm isimplemented in the diagnosis plug-in of 1ibfaudes as
ComputeRepeatedGo. Theagorithm is designed asfollows:

1. Find all states that are reachable from the initial state of G with unobservable

19

events and count the number of fault occurrences. All those states start form the
initial state qo of S°. If there is a string with more than one fault occurrence, NR
state becomes reachable from the initial state of S°.

2. Insert qp in the set of waiting states.
3. Take one state q from the waiting states.

4. Find all states x, that are reachable from astate in g by strings cu with one single
observable event o and an unobservable string u. Insert each such state (x, k, b)
in the waiting set and add a transition to these states in v°. Hereby, K counts the
number of faults that happenin cu and b = 1 if afault happened directly after .
Otherwise b = 0.

5. Terminateif the waiting set is empty. Otherwise, go to 3.
S has at most |Q°| < [X|-2-2+ 1 states and at most |Q°|2|Z,| transitions. Then, the
computational complexity of constructing S is O(|X|? |Z|).

Inorder toillustrate the construction of S°, we use ComputeRepeatedGo for G1, Gy, G3
with the resulting automatain Fig. 10.

Sy

Figure 10: Observer automaton for G, G, G3

We further note that our algorithm already shows the violation of R-diagnosability con-
dition for G4. Precisely, in S) the NR state is reachable from the initial state. This
means, that a second fault happened after the last observation but without observing its
happening as shown in the following results Fig. 11.

20

Figure 11: Verifier automaton for G4, Gs

We used ComputeRepeatedGo to test additional systems as shown in the following
figures to make sure that the algorithm is working properly. In these figures, the faulty
states are indicated by marked states in the plant automata.

sigma

gama

Figure 12: Plant automaton Gy*™"

@ = G

Figure 13: Observer automaton Gt

21

~< b
= gama _c
b -

Figure 14: Plant automaton G™"

Figure 16: Plant automaton Gy ™"

alpha

Figure 17: Observer automaton Gt

22

Additionally, we intended to use two more systems using ComputeRepeatedGo to
check the algorithm from different sides to study al error possibilities. The system
Gy in Fig. 20 and 21 which contains only observable events, fulfills R-diagnosability.
In particular, the states components (x, k,b) show that al faults are detected directly
because of the observable events that are used in system Gap.

alpha alpha

@ = @

Figure 18: Plant automaton Gy™"

Figure 20: Plant automation G, ™"

23

Figure 21: Observer automaton Gig!*

3.3.3. Verifier Automaton Construction

The observer automaton in the previous section is the basis for R-diagnosability verifi-
cation. Asthe next step, we construct a verifier automatonV = (Q, %o, v, Qo) by using
two copies of S automaton. The construction as introduced on [page 10] of [40] isas
follows:

QC Q°x{0,1} x Q°x {0,1} x {N,A,F} U{NR} (3.13)

QO = {(q07 janOa j/a|)|q0 = (Xa ka b),Q6 = (X/>klvb/) S ngj - k7 jl =K (3 14)
andl =Nif j=j =0,I=Fifb=b'=11 = Aotherwise} '
The state of Q consistsof the5-1tems (s, j1,0p, j2,!). Eachitemindicatesthat achange

happened in the verifier automaton. These itemsis represented as follows:

e (1,qp are states of two copies of S°.
e j1, jo represent the number of faults that happen in the system.

o | representsthe state label of the verifier automaton: N (Normal), A (Ambiguous)
or F (Fault).

The initial state of the verifier automaton Qo contains all state entries qo, ¢, that are
initial statesin . Hereby, |, j’ isthe number of faults that happen in the system for
the respective states g, g, such that the state is labeled as N if it is normal, F if afault
happened in the initia state of the plant (b = b’ = 1) and A if there exist normal and
faulty strings with € projection.

24

Then, the transitions that change the verifier state using o € X, events, work asfollows:

v(g,0) =0 (3.15)

For g = ((x1, K, b1), j1, (%2, ka2, 02), j2.1), 0 = ((xq, Ky, 1), i1, (%0, K5, D5), J5,1) € Qif :

vO((x1,k1,b1),0) = (X3, Ky, b)) and vO((xo, ko, bp), 0) = (%5, K5, b)) (3.16)

ji=15=0andl’=Nif j1+k;=j2+k,=0 (3.17)
Normal state — no fault in both copies of <.

ji=1j5=0andl’=Aif j1+kK =1and jo+k, =0 (3.18)

Ambiguous state — the fault happened in the first copy and no fault happened in the
second copy of .

j1=0,j5=1andl’=Aif j1+k; =0and jo+k, =1 (3.19)

Ambiguous state — no fault happened in the first copy and the fault happened in the
second copy of S.

ji=1j,=1andl’ = Aif j1+K, = jo+K, = landky = 0AbD, =0

(3.20)
orko=0Ab,=0

Ambiguous state — the fault happened in both the first and the second copy of <, but it
issaid to be ambiguous because no faulty strings with same observationk; = 0Ab; =0
orkp =0Ab,=0.

j1=0j,=0andl' =F if jy+K = jo+Ky=Llandky = 1vb; =1

(3.22)
andkp =1vb,=1

Faulty state — the fault happened because (k; =1V b} = 1and kp = 1V b, = 1) in spite
of the number of faults counter in the first and the second copy of S° was recorded as
j1=15=0Then, it isreset to start a new fault detection.

d =NRif ji+k; >1or jo+k, > 1 (3.22)

The reachability of NR state means that more than one fault happened with observing
only the last observation.

25

Finally, it is possible to verify R-diagnosability but after introducing another kind of
states called deadlock state (Qg).

Qd = {a=((x1,ke,b1), j1, (X2, k2, b2), j2,1) € QYo € Z,-6(x1,0)!

or =8 (x2,0)!} (3.23)

Definition 7. Let G be a plant, Z, be a set of observable events and y be a faulty state
map. Assume that V is the verifier constructed as described above and Qq is the set of
deadlock states. Then, v is R-diagnosable for G and X, if and only if: [40]

e Thestate NR cannot bereached fromtheinitial state Qg in the verifier automaton
V.

e There must be no cycles of states labeled with A in the verifier automatonV.

e There must be no deadlock state g € Qq with label A in the verifier automaton V.

We illustrate the construction of the verifier automaton using S}, S, S} from before.
The results are shown in Fig. 22. All verifiers satisfy the conditionsin 7.

Vi

(1,0,03,0, (1,0,00,0N

(1,0,00,0, (1L.0,00,0.N

i
{8,0,0),0,(8,0,00,0.,F (81,02, (6,1,0),1,A

1

¥
Vi i
{1,0.0).0. (1.0.05.0.N 13,0,00,0, (3.0.00,0.M - {5.1.1).0.(5.1.1).0.F

]

[B.0,00.0, (5,1.1).0.F : (6,1,0),1, (3,0,0),0,4 a
3
{5.1.1).0. (B.0.0).0.F (3,0,0),0,(6,1,0),14 .

Figure 22: Verifier automatafor §, S,

¥

26

(1,0,00,0, (1,0,0),0,N (4,1,0),1, (4,1,0),1,N

Figure 23: Verifier automaton for

We further note that NR state is reachable for the automaton (Vs) in Fig. 23. Hence, the
conditionsin 7 are violated.

27

CHAPTER 4

MODULAR FAULT-RECOVERY SUPERVISORY CONTROL FOR FAULT
RECOVERY

Fault-tolerant and fault-recovery control allow a system to continue its operation after
a fault occurrence while fulfilling a potentially degraded specification. Generaly, two
types of fault-tolerance are considered [41]:

e Passive fault tolerance: Same supervisor is used as a controller for both the
normal and faulty case.

e Activefault-tolerance: Needs a supervisor to control the system in case of fault
occurrence. Such controller depends on a fault detection unit so as to adjust its
operation in case of fault.

In this chapter, we propose computational procedures for modular fault-recovery super-
visors. To this end, we employ and further develop methods that were first introduced
for the supervisory control of reconfigurable manufacturing systems [42, 43]. The ap-
plicability of our method is demonstrated by alaboratory system at Cankaya University
asshown in Fig. 24.

Figure 24: Laboratory manufacturing system

28

4.1. Monolithic Control for Fault Recovery

In this section, we outline an approach for the monolithic fault-recovery supervisory
control [34]. This approach is the basis for our modular approach to fault-recovery
supervisory control

Fault recovery systems are built based on three types of language specifications, anom-
inal specification which shows the acceptable behavior of the system before a fault
occurrence, the degraded specification which is followed after fault occurrence before
changing the fault recovery system over to the faulty specification, the faulty specifica-
tion which should finally be followed in the faulty case.

4.1.1. Fault Recovery System Components

Fault recovery systems are always modeled by using the alphabets =, N, >F 3. Here,
>F represents fault events, =N represents nominal events which have no relation with
faults and * = ENUZF. The set of uncontrollable events is X,. The plant model in
fault recovery systems are formalized using two different models, one model for the
nominal (non faulty) plant behavior GN = (XN, =, 8N, X}, X[}), and another model for
the whole plant G = (X,Z, 8, %o, Xm) which contains the faulty plant behavior. The
acceptable behavior of the system is specified as:

L(GY) C L(G) and L(GN) € Lm(G) (4.1)

The language specifications that fault recovery systems are built on, are Denoted as
follows:

1. (KN) is subset of the marked language of the whole plant (KN C Li,(G)), which
demonstrates the nominal behavior of the system incase of fault free(the fault is
forbidden) which is obtained by SupC(KN, L(GN),X,).

2. (KP) is subset of the marked language of the whole plant (KP C Ly (G)), which
demonstrates the degraded specification(admissible behavior) which is the stage
that the system follows after fault occurrence.

3. Finally, we show (KF) issubset of the degraded specification (KP), which demon-
stratesthe faulty specification (wanted behavior), which isthe stagethat isreached
after the fault occurrence in fault recovery systems.

29

4.1.2. Fault Recovery Supervisor Design Requirements

Weintroduce the faulty supervisor as S = (QF, X, vF, gf, QF,). S isthe supervisor that
achieves fault recovery after following the three stages that we introduced before. Our
aim now is to design anon blocking fault-recovery supervisor §” = (QF, =, vF, of, Qf)
for G and £, such that:

(ALm(G||S) N (=N)* < KN (4.2)

(B) It holdsfor all se L(G||S) N (EN)*=F(ZN)* that s=sls? - - sis2fs3
with £ € 5F ¢ e (EN)*fori=1,....kand j=1,2,s}---steKNand (4.3)
ﬁ%se c KD

(C)KF = Lin(G||S)/KNEZF (4.4

In words, the items mean that the supervisor must agree with the nominal specification
KN if there is no fault. Second, the supervisor must follow the degraded specification
KP to continue system operation after any fault occurrence in the system. Hereby, apart
of the substring (%- : q} € W) should fulfill nominal behavior before afault occurrence
in the system, whereas the other substring (s? - - - ss3 € KP) should continue to astring
in KP before the fault occurrence in the system. Hence, we say that the degraded
specification (KP) is completed using the normal behavior substring that fulfills (KN).
Last but not least, fault recovery supervisor must finally converge to the faulty behavior
(KF).

4.1.3. Supervisor for Fault Recovery and Repair

We introduce a new language specification (KA C Ly (G)) asin[34]. This specification
KA fulfills the two conditions (A) and (B) in subsection (4.1.2). We note that:

KNZEE* NL(G) (4.5)

Follows the normal behavior of the system before any fault occurrence. Moreover,
interleaving composition operation as introduced in Section 2.6 is used to obtain:

KA = (KNEF[||KP) 1 (KNEF(2N)* 1 Lim(G) (46)

30

The new specification (K”) as introduced above fulfills the two conditions (A and B).
Then according to equation (4.6), the specification (K”) follows all the strings in the
plant such that a sub string of these strings until the occurrence of the fault will be
in KNXF | and the other sub string should continue to a string in KP before the fault
occurrence in the system. Conversely, the strings of KA will exist in KN before afault
occurrence in the system. Then, the recovery specification isfound by getting the prefix
of the nominal behavior (KN) which is done viamarking (KN) strings.

Now, after obtaining (K”) , the conditions (A and B) are achieved by obtaining the
supervisor(S* = (Q4, 2, vA g5, QL)) that redlizes the maximally permissive behav-
ior such that (G||S") follows the nominal behavior before the fault occurrence and
follows the admissible behavior (degraded specification) to continue system operation
after fault occurrence. The supervisor is computed as follows:

Lm(S*) = SUpC(K”,L(G), 2y). (4.7)

Finally, condition (C) is achieved by using language convergence method which is
introduced in Section 2.7. Fault recovery supervisor S iscomputed using the algorithm
in [34] such that:

Lm(S) = convafter(KF, Ln(S), KNz, 5) (4.8)

The function ConvAfter isimplementedin 1ibfaudes.

4.2. Modular Control Overview

Fault recovery supervisors are constructed to govern the systems that are subjected to
faults using the same idea as supervisors for the reconfiguration control of DES. That
is, it is desired to follow a certain behavior (configuration) until a change of configu-
ration is requested. In that case, the current configuration is completed and the new
configuration is started [42, 43]. The main difference is that the changing between
the supervisors in reconfiguration control occur according to system requirements to
perform a specific work. In contrast, in fault recovery supervisors there is no system
demand to change the supervisor, rather system demand happens involuntarily dueto a
fault. In addition, it has to be noted that the plant behavior after fault is different since
certain operations cannot be performed.

31

4.2.1. Problem Description
In order to simplify the notation, we consider a system that consists of two modular
components (module 1 and module 2). Moreover, we assume that a fault can happen

in module 1, whereas module 2 is fault-free but its operation is affected by the fault in
module 1. In this setting, we use the fault-recovery controllersin Fig. 25.

Module 1
F
JA e
¢

Figure 25: Whole system modules control

Each module is controlled by two supervisors. In module 1, S is active in the nominal
case and during the transition to the faulty behavior after afault occurrence. Reversely,
S} controls module 1 in the faulty case and returns module 1 to the nominal operation
after repair. The supervisors S; and S have an analogous function for module 2. In the
following we develop design procedures for the previously described supervisors.

4.2.2. Example System
In order to illustrate the basic idea of fault-recovery, we introduce the components of

a manufacturing system that we used in our examples in this chapter. The system
overview isshown in Fig. 26.

32

ama

Figure 26: The entire example system

The system consists of the following components:

One Stack Feeder (SF1).

Two Rotary Tables (RT1 and RT2).

Two Machine Tools (MA1 and MA2).

One Rail Transport System (RTS1).

One conveyor belt (CO3).

One Exit Slide (XS1).

We next give a description of the components.

Stack Feeder (SF1):

The stack feeder isadevice that works as product collector and system feeder. It pushes
the products to the system when it is alowed. The products that enter the system
through the stack feeder, move to the next component which is the component beside
the stack feeder (RT1 in our system).

Thefigure and the model of SF1 are shownin Fig. 27, and the events of the stack feeder
arelisted in Stack feeder information table.

33

sfl-rtl_SW

Figure 27: Stack feeder component and its model Gg=1

Table 1: Stack feeder Gg=1 model information

Event names [lustration Type
sfl-rt1 Sw | The product movesfromsfltortl | Controllable

Rotary Table (RT1):

Rotary table is equipped with abelt in order to transport productsto different directions
as shown in Fig. 28. The rotary table can rotate either with clockwise direction and
stay vertically to transport the product UP or Down, or it can rotate with anticlockwise
direction and stay horizontally to transport the product LEFT or Right. In our example
SF1listo theright, MA2 isto the left and MAL1 is above RT1. Hence, the rotary table
can transport and receive products from and to these devices.

Figure 28: Rotary table component and its model Ggr1

Table 2: Rotary table Ggrr1 model information

Event names [llustration Type
sfl-rtl1_SW The product moves from sf1 to rtl Controllable
rtl-sfl1 SwW The product moves from rt1 to sf1 Controllable

ma2-rtl_SW The product moves from ma2 to rtl1 Controllable
rtl-ma2_SW The product moves from rt1 to ma2 Controllable
mal-rtl SW The product moves from mal to rt1 Controllable
rtl-mal_SW The product moves from rt1 to mal Controllable

ns-rtl SW The product moves from nsto rtl Controllable
rtl-ns_SW The product moves from rtl to ns Controllable
rtl rcw The rotary tablel rotates (clockwise) Controllable

rtl_rccw | Therotary tablel rotates (anticlockwise) | Controllable

Machine (MA1):

The machine as in Fig. 29 consists of several parts: a moving belt which transports
products, the machine head that moves up or down in order to enable processing, a
single machine tool which performs a production operation. In our system, MA1 is
located between RT1 and a conveyor belt CO15.

rtl-mal_SW

mal_start_SW

Figure 29: Manufacturing machine component and its normal model Gya1

In our example, we assume that the fault can happenin MA1 such that MA1 will not be
able to start processing any more. The model of MA1 with fault-occurrence is shown
inFig. 30.

mal_start_SW

mal-rt1_SW

repair

Figure 30: Manufacturing machine model with fault GF;

35

Table 3: Manufacturing machine Gy a1 model information

Event names [llustration Type

rtl-mal_SW The product moves from rtl to mal Controllable
col5-mal_SW | Theproduct movesfromcol5tomal | Controllable

mal-rtl SW The product moves from rtl to ma2 Controllable
mal-col5_SW | The product movesfrom maltocol5 | Controllable

fault Fault happensin the system Uncontrollable
repair Repair happensin the system Controllable
mal_start_SW Start processing in (mal) Controllable

Machine (MA2):

MA2 follows the same operation as MA 1 with the different neighbors RT1 (right) and
RT2 (left). The model of MA2 isshownin Fig. 31.

rt1-mg2_SW ma2_start_SW

Figure 31: Manufacturing machine model Gy

Table 4: Manufacturing machine Gy a2 model information

Event names [llustration Type
rtl-ma2_SW | The product movesfromrtltoma2 | Controllable
rt2-ma2_SW | The product movesfrom rt2toma2 | Controllable
ma2-rt1l SW | The product movesfrom ma2tortl | Controllable
ma2-rt2_SW | The product movesfrom ma2 tort2 | Controllable
ma2_start_SW Start processing in (ma2) Controllable

Exit Slides (XSL and XS2):

Exit slide allows storage of products after production and is shown in Fig. 32. It simply
receives products from the neighboring component. The models of XS1 and XS2 are
shownin Fig. 32.

36

mal-xsl_SW ma2-xs2_SW

Figure 32: Exit Slide component and its models Gxs1, Gxs

Table 5: Exit dlides Gx g1, Gxs models information

Event names Illustration Type
mal-xsl_SW | The product movesfrom malto xsl | Controllable
ma2-xs2_SW | The product moves from ma2 to xs2 | Controllable

Rail Transport System (RTYS):

Therail transport system (RTS) consists of arail that allows two cars to move left and
right, and a conveyor belt on each car that can transport products asis shown in Fig. 33.
In thisthesis ,we only consider the right car denoted as RTS1. Therail is divided into
4 positions (5,4,3,2) and the RTS1 can move to each position.

Each position of the rail transport system has an upper and a lower component such
that the conveyor belt (CO) can transport products up or down. The conveyor belts on
our RTS is denoted as CO15.

Figure 33: Rail transport system RTS component

Plant models of RTS1 and CO15 are shown in Fig. 34 and 35, respectively. Hereby, it
isassumed that RTS1 isinitialy in position 5 and CO15 is empty.

37

st 34

is2 cooff

ngam ” s » 52 oncar u EEE] u ng s . EEE % 52 ol - .
4 a
1

iy s
apom K\
L
w2 om
—_ ° .
N

col5_Wome9

rts2_b2off

Figure 35: Conveyor belt plant model Geois

The plant model for both CO15 and RTSL1 is built by using synchronous composition
operation of the following components:

Grrsi = Gcous||Grrs (4.9)

Next, it isrequired to determine specifications such that each position only allow prod-
uct transport to and from the correct components as in the real system. These specifi-

cations are shown in the following figures.

co15-ma5_SW
co15-co8_SW
M
‘_4 co3-col5_SW .

Figure 36: Position 5 specification Cps and position 4 specification Cpy

38

co15-ma8_SW co15-rc_SW
ma9-col5_SW

rts1/4-3 ~ mad-col5_SW

Figure 37: Position 3 specification Cpz and position 2 specification Cpy

mal-col5_SW

rts1_2-8

i

ﬁ !a.‘ \
=

’ ma8-col5_SW

/—

e
17
@ co8-co15_SW ‘

y
|
\ co15-co8_SW

co15-co8_SW

co15-ma8_SW

m

Figure 38: Mutual exclusion specifications Cyorig and Coorig

Then, the overall specification is computed using synchronous compasition operation
of the specifications above:

Crositions = CP5| |CP4| |CP3’ ’CP2| |Clorig| |C20rig (4-10)

As aresult, RTS1 allows product transport to and from the correct components of the
laboratory system.

The result of the closed-loop RTS GE?%, that comprises both RTS1 and CO15 is com-
puted using the SupCon Algorithm:

Lm(GIF_g'WSl) = SJpC(GIﬁa?ASIL Lm(Crosition) Zu) (4.11)

Since the overall result istoo big for display in thisthesis, we only note that G'ﬁ%""ﬁ has
89 states. In our design, we use an abstraction of G4, according to [44] to get asmall
plant automata with less number of states (Grrs1). The result is shown in Fig. 39.

ma8-co15_SW rtst_§2

13-
c015-maB_SW Q
rts1_3-4

co15-ma1_SW

c015-ma5_SW

Figure 39: The model of RTS1 Ggrrs1

40

Table 6: Rail transport system Ggrrs1 model information

Event names Ilustration Type

rtsl 4-5 Move col5 from position4 to position5 | Controllable
col5-mal_SW | Theproduct movesfrom col5tomal | Controllable
mal-col5_SW | The product movesfrom malto col5 | Controllable
col5-ma5_SW | The product movesfrom col5to mas | Controllable
ma5-col5_SW | The product movesfrom ma5to col5 | Controllable
rtsl 5-4 Move col5 from position5 to position4 | Controllable
col5-co3_SW | The product movesfrom col5toco3 | Controllable
co3-col5.8W | The product movesfrom co3to col5 | Controllable
col5-co8._SW | The product movesfrom col5toco8 | Controllable
co8-col5._SW | The product moves from co8to col5 | Controllable
rtsl 4-3 Move col5 from position4 to position3 | Controllable
col5-ma8_SW | Theproduct movesfrom col5to ma8 | Controllable
ma8-col5_SW | The product movesfrom ma8to col5 | Controllable
rtsl 3-4 Move col5 from position3 to position4 | Controllable
rtsl 3-2 Move col5 from position3 to position2 | Controllable
col5-rc_SW The product moves from col5torc | Controllable
col5-ma9_SW | Theproduct movesfrom col5to ma9 | Controllable
ma9-col5_SW | The product movesfrom madto col5 | Controllable
rtsl 2-3 Move col5 from position2 to position3 | Controllable

Conveyor Belt (CO3):

CO3 moves products to two directions (Up,Down), see Fig. 40. In our laboratory sys-
tem, COS3 transports products from and to RT2 and CO15. The model of CO3 is shown
in Fig. 40.

co15-co3_SW

rt2-co3_SW
[

]
Ql co3-col5_SW '

Figure 40: Conveyor belt component and its model Gcos

b 4

41

Table 7: Conveyor belt Gcpz model information

Event names Ilustration Type
col5-co3_SW | The product moves from col5 to co3 | Controllable
co3-col5_SW | The product moves from co3 to col5 | Controllable

rt2-co3_SW | Theproduct movesfromrt2toco3 | Controllable

co3-rt2.SW | Theproduct movesfromco3tort2 | Controllable

Rotary Table (RT2):

The operation of RT2 is analogous to the previously described RT1. Only the neighbor
components CO3 and MA2 are different. The model of RT2 isshown in Fig. 42.

Figure 42: Rotary table model Ggr2

42

Table 8: Rotary table Grro model information

Event names [llustration Type
ma2-rt2_SW The product moves from ma2 to rt2 Controllable
rt2-ma2_SW The product moves from rt2 to ma2 Controllable
L-rt2_SW The product moves from left sideto rt2 | Controllable
rt2-L_SW The product moves from rt2 to left side | Controllable
co3-rt2 SW The product moves from co3 to rt2 Controllable
rt2-co3_SW The product moves from rt2 to co3 Controllable
ns-rt2 SW The product moves from nsto rt2 Controllable
rt2-ns_SwW The product moves from rt2 to ns Controllable
rt2 rew The rotary table2 rotates (clockwise) Controllable
rt2_rccw | Therotary table2 rotates (anticlockwise) | Controllable

4.2.3. Definition of Modules

We finally refer again to Fig. 26. We divide this system into two modules according to
Section 4.2.1. Module 1 consistsof SF1, RT1, MA1 and MA2 and hence isthe module
with the faulty component MA1. Module 2 consists of RT2, CO3 and RTS1. Thereis
no fault in module 2 but it might be affected by afault in module 1.

4.3. Computation of Modular Supervisorsfor Fault Recovery

In this thesis, each module is controlled using four supervisors that are synchronized
to govern the faulty and the non-faulty system behavior as shown in Fig. 26. We next
develop algorithms for computing these supervisors in order to achieve fault recovery
and return to the nominal behavior after system repair.

4.3.1. Fault-Recovery for the Faulty Module

Weintroduce anew algorithm called SystemFaultN1 to build the supervisor S that
governs module 1 in case of afault.

43

Algorithm 1. (SystemFaultN1):

asin [34]
Find g € Q7 such that Liy(Sf;) € KF

Vo € XF such that vF(g,0)! : remove the transition from
qwith o from vF

Q™ = QF U{wait}

Qhy = Qhy U {wait}

vF(q,repair_fin) := wait

Vo € F\ {repair_st} : vF(wait, o) = wait
Vo € X\ {repair &} : vF(wait, o) = wait
vF(wait, repair_st) = of;

Compute Acc(S™) and return the result

(4.12)

(4.13)

(4.14)

(4.15)
(4.16)
(4.17)
(4.18)
(4.19)
(4.20)

(4.21)

In words, we first obtain S~ using the algorithm in [34]. Then, we find the state ¢ such
that the marked language of S™ starting from q is contained in the marked language of

KF. This means, we look for the state where the desired faulty behavior is achieved.

We keep this state but remove al transitions from that state. Instead we insert a new

transition with event repair_fin to a new waiting state wait. All events except for
repair_s are selflooped in wait and repair_st leadsto theinitial state q(F,. Finally, make
the result accessible. That is, the resulting supervisor is responsible for leading module
1 to the faulty behavior. Here, the event repair _fin indicates that the faulty behavior
is reached. After achieving this, S| becomes inactive in the state wait and becomes

active again if repair is completed with the event repair _st. The basic operation of S

isshownin Fig. 43.

Figure 43: System fault supervisor diagram

First Module Example:

We consider module 1 as shown in Fig. 44 with SF1, MA1, MA2 and RT1. In the
nominal case, we want to enter productsfrom SF1 and producein MA1. Then, products
should exit the system to XS1 (blue arrow). If afault happensin MA1, products that
are aready transported to MA1 should go back to MA2 for processing and exit from
XS2 (green arrow). New products should directly move to MA2 (red arrow).

Note: We changed the name of XS1 to CO15 and XS2 to RT2 intentionally in the
supervisors for compatibility issues during operating our laboratory example.

4= Normal Path
+=— Degraded behavior
4= Faulty Path

Figure 44: Module 1 components

In order to design afault recovery supervisor S}, we use the plant model of module 1:

Gy = Ger1//Grr/|Gitasl Gmaz (4.22)

Next, we need to obtain the nominal specification K{\‘ by specifying a closed loop sys-
tem that allows the tasks presented in the nominal behavior. KI is computed from the
automatain Fig. 45 as:

KY' = Lm(C1)lILm(C5) (4.23)

45

rtl_rcw
sf1-rt1_SW rtl-mal_SW
@ rt1_rcew #4

rt1-mal_SW I !u mal_start_SW

Figure 45: Nominal specification automata CN* and C)*

Now, we formulate the degraded specification KP composed of C?,CP,CP in Fig. 46
as:

KD = Lm(CP)||Lm(CE)||(Lm(C5Y) (4.24)

rt1-ma2_SW

. rt1-ma2_SW G ma2_start_SW

rt1-ma2_SW

rt1-ma2_SW I
. rtl-mal_SW I! ' mal-rtl_SW

Figure 46: Degraded specification automataCP1, CP?, cD?

We note that processing with machine MA1 is not possible according to KP and C9!
shows that MAZ2 is used in case of fault.

Finally, we use the faulty specification KI" with the automatain Fig. 47.

K = Lm(CEY)||ILm(C5Y) (4.25)

rt1-ma2_SW e ma2_start_SW

Figure 47: Faulty specification automata CT* and C5t

46

The specifications CT,C5 show that new products can enter the system through SF1,
move to MA2 and |eave the system after processing.

Applying Algorithm 1, we obtain the supervisor S, with 30 states as shown in Fig. 48.
Note that this figure is only included in the thesis to highlight the structure of ﬁ . The
upper part of the supervisor implements the nominal behavior, whereas the center part
realizes the degraded behavior. The wait state (with selfloops) is finally reached when
the desired faulty behavior is achieved.

Figure 48: Fault-recovery supervisor ﬁ

4.3.2. Fault-Recovery for Non-Faulty Module

The supervisor that controls the non-faulty module 2 in case of fault occurrence is
computed according to a new algorithm SystemFaultN2. The algorithm computes
the supervisor S; exactly as SystemFaultN1 in Section 4.3.1 with the small mod-
ification that step 3 is removed from Algorithm 1. This measure is taken under the

47

assumption that module 2 should expect further products that come from module 1
when performing the degraded behavior. The completion of the degraded behavior is
decided by module 1 when entering the faulty behavior with the event repair _fin.

Second M odule Example:

Module 2 comprises different components as shown in Fig. 49. These components are
RTS1, RT2, CO3 and XS2.

Note: We changed XS2 name intentionally to MA9 in the supervisorsfor compatibility
issues during operation of our laboratory model.

Fig. 49 shows the desired system paths. The blue arrow represents the normal path, the
green arrow represents the path that the system should follow after the fault.

4= Normal Path-K¥

¢mm Degraded behavior K?

4mm Faulty Path K¥

Figure 49: Module 2 components

Similar to module 1, we compute the supervisor i according to the modified Algorithm
1. First, we need the plant G, for module 2 that is computed by using synchronous
composition operation:

G2 = Ggrs1||Gcosl||Grr2 (4.26)

The resulting automaton has 128 states which is too big to be shown in our thesis.

Next, we obtain the nominal specification K that the system follows in module 2 in
case of no fault in the system. We use the automata in Fig. 50 to compute:

K3' = Lm(CY?)[|Lm(C3%)/|Lm(C5? (4.27)

48

mal-col5_SW | rts1_5-4
rts1 4-3
rtsl_5-4 rts1_3-2

co15-ma9_SW

rts1 2-3
co15-ma9_SW rts1_3-4
@ rts1 4-5

Figure 50: Nominal specification automata C)¥2, C)'2, Ch2

#4

The specifications show that the product leaves module 1 and enters module 2 through
CO15 in position 5 of RTS1. Then, it moves to the positions 4,3,2. In position 2, the
product moves to the exit slide MA9 and then RTS1 returns to position 5.

Next, we determine the degraded specification K for module 2 to continue the product
path after a fault. Then, the specifications that perform this task is specified by the
automatain Fig. 51 as:

K2 = CT?|C3?|IC52|ICF?(|C5?|Cs? (4.28)

3
@
28
@
A

col5-ma9_SW e rts1 2-3
2 _rew
ma2-rt2_SW rt2-co3_SW
<

rt2_rccw

#3

(+)

, . ma2-rt2_SW . t2-co3_SW @

c03-co15_SW

co3-col5_SW

co15-ma9_SW

Figure 51: Degraded specification automata CP2, C92, C2, CD?, CP?, CP?

49

After the fault occurrences in the system, module 2, RTS1 moves from position 5 to
position 4 and waits for products to enter from RT2. When a product reaches RT2, it
turns clockwise, then moves the product to CO3. In order to allow a new product to
enter module 2, RT2 is turned anticlockwise and CO3 moves the product to the waiting
RTSL1 in position 4. Next, RTS1 moves to position 4,3,2 and the product leaves the
system to MA9. Finaly, the empty RTS2 moves back to position 4 to wait a new
product from the faulty path of the system.

Finally, we specify the faulty behavior of module 2 based on the automata in Fig. 52
as.

K = C1?(C5?|C5?ICh%|C5? (4.29)

rt2-co3_SW

rt2-co3_SW N
1 4 2
co03-co15_SW

c03-col5_SW

rts1_4-3 ’ rts1_3-2
co15-ma9_SW

Figure 52: Faulty specification automata Cf2, C5?, C52, Ci2, CE?

In the faulty behavior of module 2, the product enters module 2, RT2 turns clockwise,
then movesthe product to CO3. In order to allow anew product to enter module 2, RT2
turns anticlockwise, after that CO3 moves the product to the waiting RTSL1 in position

50

4. Next, CO15 moves over the positions (4,3,2), then the product |eaves the system to
MAO. Finally, the empty RTS1 returns to position 4.

Using the plant and specificationsfor module 2, we apply thealgorithm SystemFaultN2
and obtain the supervisor $ for module 2 with 115 states which istoo big to be put in
our thesis.

4.3.3. Repair for the Faulty Module

We next design system repair supervisor denoted as S* = (ZR =R oR 2, ZR). we
develop the algorithm SystemRepair. Note that this algorithm will be suitable for
computing the supervisors under repair St and SK for both modules. Asinputs, we use
the following automata:

plant G = (X, %, 8,0, Xm) (4.30)
Supervisor S= (Q, X, v,qo, Qm) that realizes the faulty

. (4.31)
system behavior.
Attractor supervisor T1 = (Q,X, @,qo, —) for state attraction (4.32)
of theset {go} in S '
Attractor supervisor To = (Y, X, A, Yo, Ym) for state attraction of (4.33)
the set {xo} in G. '
State X € X that correspondsto state gp in S. (4.34)

Algorithm 2. (SystemRepair):

ZR=Qu{d|q e Q} U{wait} U{X|x € X} (4.35)
ZR = QmU {wait} (4.36)
Z5 = {wait} (4.37)

Foreachqge Qando € X:
v(g,0)! = aR(g,0) = v(q,0). (4.38)
o(q,0)! = aR(d,0) = § for ©(q,0) = §

For eachqe Q:

4.39
oR(q,repair) = of (439

51

For each o € =R\ {fault st} :

aR(wait, o) = wait (4.40)
aR(wait, fault_st) = go and aR(qp, fault_fin) =X (4.42)
Set X asinitial statein T (4.43)
Setyp € Y as marked state in T (4.44)
TrimT, (4.45)
Copy T, in S} (4.46)
aR(qp, fault_fin) = % (4.47)
ForyeYando € Zsuchthat A(y,0) =Yo: (4.48)

aR(g, o) = wait(q is the state of S® that correspondsto y)

The basic structure of X isalso shown in Fig. 53.

Figure 53: System repair supervisor diagram

In words, SR obtains the states of S, Ty, T, and the waiting state wait and the marked
states of Sand wait. The initial state of X iswait (initially the supervisors Sf and S,
are active). The transitions of the supervisor S, T; and T, are directly copied into S®.

In addition, a transition with the event repair is inserted from each state q of Sto the
corresponding state g of T;. The initial state of T; is connected to X via fault_fin
and the marked state of T is connected to the waiting state via the transitions that are
leading to the initia state of G in the attractor To.

In our example, we use the supervisor under fault Sas shown in Fig. 54. It is computed
from the plant automaton G, and the faulty specification K.

52

ma2-rt2_SW

ma2_gtart_SW
sf1-rt1_SW

Figure 54: Supervisor S for module 1

The automaton Ty is obtained from Sby removing the transitions from state 1 to 2 and
from state 6 to 2. Moreover, T, consists of a single state without any transitions. Then,
we can apply Algorithm 2 to find the system repair supervisor Sf Theresult is shown
inFig. 55.

Figure 55: System repair supervisor St

System repair supervisor (@) in Fig. 55 shows the three parts S, Ty, wait as discussed
before.

4.3.4. Repair for Non-Faulty Module

The construction of the repair supervisor for module 2 follows the same Algorithm 2
(SystemRepair). Hence, we just demonstrate the application of this algorithm to
our example. Again, the supervisor Sis obtained from G, and the fault specification
K2F . Note that this computation assumes that RTS1 starts from position 4 and the initial
state of G, is chosen accordingly. Since Sand T; have 48 states, they cannot be shown
in this thesis. In addition, it holds that the operation of T; terminated in position 4
of RTS1, whereas the operation of the non-faulty system behavior should start from

53

position 5. Hence, an automaton T, that moves RTS1 from position 4 to position 5 with
the event rtsl 4 — 5 is chosen. Then, the application of Algorithm 2 leads to a system
repair supervisor $ with 98 states. Again, the automaton is too big to be displayed in
thisthesis.

4.3.5. Fault and Repair Coordinators

The fault-recovery supervisors constructed in the previous sections are responsible for
leading the system to the faulty behavior in case of afault occurrence and return to the
nominal system behavior in case of system repair. What is missing is the coordination
of when the faulty/nominal system behavior should start. To this end, we use two
coordinator automata for each module as introduced in [43].

The first coordination automaton is denoted as P; and is responsible for starting the
faulty system behavior after the degraded system behavior is completed. It is defined
asfollows:

P = ({first,second,last},Z U { fault,repair_fin, fault s},

_ _ (4.49)

Ny, firg, { firs})
For (.aachaezi\{fault}: (4.50)
ni(firs, o) = first
n(firg, fault) = second (4.51)
F h) ir_fin}:

oreach o € X\ {repair_fin} (4.52)
n1(second, o) = second
n1(second, repair_fin) = last (4.53)
m(lag, fault &) = first (4.54)

In words, P; has three states that are connected according to the event sequence fault,
repair_fin, fault_st such that the faulty system behavior isonly allowed to start (fault_st)
if the degraded behavior isfinished (repair_fin). Selfloops are added in the states first
and second, whereas no further events are allowed in last. Hence, the faulty behavior
must start immediately.

The second coordination automaton is denoted as P, and is responsible for starting the
nominal system behavior after the behavior under repair is completed.

Its definition is analogousto P; with asmall modification in state |ast depending on the
attractor T,, such that all events that appear in T, are added in the form of a selfloop
transition in state last of P».

P, = ({first,second,last},Z U {repair, fault_fin,repair s},

. . (4.55)
no, firgt, { first})
For each 2\ {fault}:

2 g €24 Lfadt) (4.56)
na(firg, o) = firs
no(first, repair) = second (4.57)
Foreach o € £\ {fault_fin} : (4.58)
n2(second, o) = second
n2(second, fault_fin) = last (4.59)
n2(last,repair &) = first (4.60)
For al eventso of Ty : (4.61)

n2(last, o) = last

We next determine the coordinators for module 1 and 2 of our example system. Py q
governs the start of the faulty behavior of module 1 and Py » governs the start of the
nominal behavior of module 1. The respective automata are shown in Fig. 56 and 57.

55

fault_fin

rtl_rccw

Figure 56: Coordinating automaton Py 1 for q

fault_fin

-
/I,g

Figure 57: Coordinating automaton Py , for S¥

56

Itisclear in this example that no selfloops are added in the state | ast of Py » becausethe
attractor T, of the faulty module does not have transitions.

Similarly, we obtain the coordination automata P, 1 and P> in Fig. 58 and 59.

Figure 58: Coordinating automaton P, ; for S;

S/

Figure 59: Coordinating automaton P, for S

Here, we can see a selfloop with event rts1 4 — 5 in last of P, since attractor T, of
module 2 has two states and one event (rts1 4-5).

In summary, we use the modular supervisor as shown in the following equation in order
to implement the overall supervisor.

SIS IISHIISHPLAlPL2| IPoa|[P2.2 (4.62)

58

4.4. Faulty And Non-Faulty Modules Simulation

In addition to the theoretical computation, it is possible to validate the designed super-
visors using the manufacturing simulator FlexFact [45] and the controller simulator
DESTool [46]. We used this simulator for the example system in Fig. 60. It could
be verified that the closed-loop operation is as desired when using our modular failure-
recovery supervisors. In addition, a laboratory experiment with the laboratory system
in Fig. 24 was performed successfully.

Figure 60: Whole system simulation using flexfact program

59

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

We are gathering two different methods to create our ideain thisthesis. We first use the
idea of fault recovery of discrete event systemsideato compute supervisorsthat govern
the system behavior under the fault based on the algorithm in [34]. Such fault recov-
ery supervisor follows behaviors: the nominal behavior that realizes the desired system
behavior without fault, the degraded behavior that continues the system behavior after
fault with a reduced performance, the faulty behavior which realizes the desired be-
havior under fault and is achieved after a bounded delay. Secondly, we use the idea of
reconfiguration supervisors for system repair. Specificaly, the system behavior is re-
turned to follow the nominal behavior. The combination of both ideasis found suitable
in thisthesis.

As the main contribution of the thesis, the cited methods are not used in a monolithic
way but to design modular fault-recovery supervisors. To this end, we focus on the
case of systems with two modular components, whereby one modular component can
become faulty. We develop construction algorithms for separate modular supervisors
that handle the system behavior after a fault and after system repair. Due to the mod-
ular design, it is possible to apply our method to large-scale system. It aso has to be
noted that this is the first modular approach to failure-recovery for discrete event sys-
temsin the existing literature. The practicability of the developed method isillustrated
by a medium-size manufacturing system example and is validated by simulation and
laboratory experiment.

60

5.2. FutureWork

The thesis work considers a special case of modular control for failure-recovery. Ac-
cordingly, severa extensions are possible:

It is possible to consider more than two modular plant components.

It is possible to consider faultsin more than one modular plant component.

In order to coordinate the behavior or the modular system components, it is pos-
sible to extend the modular approach by hierarchical supervisory control.

Consider under which conditions recovery from afault does not affect the rest of

alarge system.

61

REFERENCES

C. G. Cassandras and S. Lafortune,(2008),“Introduction to Discrete Event
Systems,SecondEdition,” Springer.

S.R. Das and L.E. Holloway,(2000), “Characterizing A Confidence Space for
Discrete event Timings for Fault Monitoring Using Discrete Sensing and
Actuation Signals,”Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol 30, no. 1, pp. 52-66.

Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kumar, (2001),“A
Polynomial Algorithm for Testing Diagnosability of Discrete Event Systems,”
Automatic Control, IEEE Transactions on, vol 46, no. 8, pp. 1318-1321.

A. Bouloutas, G.W. Hart, and M. Schwartz,(1992), “Simple Finite-State Fault
Detectors for Communication Networks,” Communications, IEEE Transactions
on,vol. 40, no. 3, pp. 477-479.

A. Benveniste, E. Fabre, S. Haar, and C. Jard,(2003),“Diagnosis of
Asynchronous Discrete Event Systems: A Net Unfolding Approach,” Automatic
Control, IEEETransactions on, vol. 48, no. 5, pp. 714-727, 2003.

D.N. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A.E. Lindsey,
(2000),“Communication Protocols for A Fault-Tolerant Automated Highway
System,” Control Systems Technology, IEEE Transactions on, vol 8, no. 5, pp.
787-800.

P. J. RamadgeandW. M.Wonham, (1987), “Supervisory Control of A Class of
Discrete Event Processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206-230.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, (1995),“Diagnosability of Discrete-Event Systems,” Automatic
Control, IEEE Transactions on, vol. 40, no. 9, pp. 1555-1575.

R1

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Yoo and S. Lafortune, (2002),“Polynomial Time Verification of
Diagnosability of Partially Observed Discrete Event Systems,” Automatic
Control, vol. 47, no. 9, pp. 1491-1495.

A. Schumann and Y. Pencol’e, (2007),“Scalable Diagnosability Checking of
Event Driven System,” In International Joint Conference on Artificial
Intelligence, Hyderabad, India, pp. 575-580.

T. Yoo and H. Garcia, (Dec 2008),“Diagnosis of Behaviors of Interest in
Partially Observed Discrete Event Systems,” System and Control Letters, vol. 57,
no. 12, pp. 1023-1029.

K. W. Schmidt, (2010),““Abstraction-Based Failure Diagnosis for Discrete Event
Systems,”System and Control Letters, vol. 59, pp. 42-47.

R. Debouk, S. Lafortune, and D. Teneketzis, (2000),“Coordinated
Decentralized Protocols for Failure Diagnosis of Discrete Event Systems,”
Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 10,
pp. 33-86.

Y. Pencol’e and M. Cordier, (2005), “A Formal Framework for The Decent
Ralised Diagnosis of Large Scale Discrete Event Systems and its Application to
Telecommunication Networks,” Artif. Intell. Journal, vol. 164, no. (1-2), pp. 121—
170.

W. Qiu and R. Kumar, (March 2006),“Decentralized Failure Diagnosis of
Discrete Event Systems,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 36, no. 2, pp. 384-395.

R. Debouk, R. Malik, and B. Brandin,(2002), “A Modular Architecture for
Diagnosis of Discrete Event Systems,” In IEEE Conference on Decision and
Control, Las Vegas, Nevada USA.

O. Contant, S. Lafortune, and D. Teneketzis,(2006),“Diagnosabilityof Discrete
Event Systems with Modular Structure,” Discrete Event Dynamic
Systems:Theory and Applications, vol. 16, pp. 9-17.

C. Zhou, R. Kumar, and R.S. Sreenivas, (May, 2008),“Decentralized Modular
Diagnosis of Concurrent Discrete Event Systems,” In Discrete Event Systems,
International Workshop on, Géteborg, Sweden, pages 388-393.

R2

19.

20.

21.

22.

23.

24,

25.

26.

27.

W. Qiu and R. Kumar, (May 2008),“Distributed Diagnosis Under Bounded-
Delay Communication of Immediately Forwarded Local Observations,” Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol.
38, no. 3, pp. 628-643.

Shengbing Jiang, Ratnesh Kumar, and Humberto E.
Garcia,(2003),“Diagnosis of Repeated/Intermittent Failures in Discrete Event
Systems,” Robotics and Automation, IEEE Transactions on, vol 19, no. 2, pp.
310-323.

Shengbing Jiang and Ratnesh Kumar,(2006), “Failure Diagnosis of Discrete
Event Systems with Linear-Time Temporal Logic Fault Specifications,”
Automation Science and Engineering, IEEE Transactions on, vol 3, no. 1, pp.
128-133.

C. Zhou and R. Kumar, (2009),“Computation of Diagnosable Fault-
Occurrence Indices for Systems with Repeatable Faults,” IEEE Trans. Automat.
Contr., vol. 54, no. 7, pp. 1477-14809.

Hu Hong, (2012), “Diagnosis of Intermittent Faults in Discrete Event Systems,”
Master’s thesis, Department of Electrical and Computer Engineering, Toronto
University, Toronto, Canada.

K. W. Schmidt,(2011-2014), “A Formal Framework and Continuous Workflow
for The Controller Design,” Failure Diagnosis and Failure Recovery of
Reconfigurable Manufacturing Systems, Career Project, TUBITAK.

LibFAUDES, (2006-2014), “Libfaudes Software Library for Discrete Event
Systems,”[Online]. Available: www.rt.eei.uni-erlangen.de/FGdes/faudes(Data
Download Date: 16.06.2013).

A. Saboori and S. Hashtrudi-Zad, (2005), “Fault Recovery in Discrete Event
Systems,” In Proc. Computational Intelligence: Methods and Applications, ICSC
Congress on, Istanbul, Turkey.

A. Paoli and S. Lafortune, (2005), “Safe Diagnosability for Fault Tolerant
Supervision of Discrete Event Systems,” Automatica, vol. 41, no. 8, pp. 1335-
1347.

R3

http://www.rt.eei.uni-erlangen.de/FGdes/faudes

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Paoli, M. Sartini, and St’ephaneLafortune, (April 2011), “Active Fault
Tolerant Control of Discrete Event Systems Using Online Diagnostics,”
Automatica, vol. 47, no. 4, pp. 639-649.

R. Kumar and S. Takai,(2012), “A Framework for Control-Reconfiguration
Following Fault-Detection in Discrete Event Systems,” International Symposium
on Fault Detection, Supervision and Safety of Technical Processes, pp. 848-853.

T. Wittmann, J. Richter, and T. Moor, (2012), “Fault-Tolerant Control of
Discrete Event Systems Based on Fault-Accommodating Models,” In 8th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes,
pages 854-859.

Q. Wen, R. Kumar, J. Huang, and H. Liu, (2008),“A Framework for Fault-
Tolerant Control of Discrete Event Systems,” Automatic Control, IEEE
Transactions on, vol. 53, no. 8, pp. 1839-1849.

Q. Wen, R. Kumar, and J. Huang, (2008), “Synthesis of Optimal Fault-
Tolerant Supervisor for Discrete Event Systems,” In American Control
Conference, pages 1172 -1177.

A. Silek and K. W. Schmidt, (2013),“Computation of Fault-Tolerant
Supervisors for Discrete Event Systems,” In 4th IFAC Workshop on Dependable
Control of Discrete Systems, pages 115-120.

A. Sulek and K. W. Schmidt, (2014), “Computation of Supervisors for Fault-
Recovery and Repair for Discrete Event Systems,” In Workshop on Discrete
Event Systems.

Y. Brave and M. Heymann, (1990),“Stabilization of Discrete Event Processes,”
Int.J. Control, vol. 51, pp. 1101-1117.

Y. Brave and M. Heymann, (1993),“On Optimal Attraction of Discrete Event
Processes,”Information Sciences, vol. 67, pp. 245-276.

C. A. R. Hoare,(2004,1995),“Communicating Sequential Processes, Prentice
Hall International,”.

R4

38.

39.

40.

41.

42.

43.

44,

45,

46.

R. Kumar, V. Garg, and Steven |. Marcus, (1993),“Language Stability and
Stabilizability of Discrete Event Dynamical Systems,” SIAM Journal of Control
and Optimization, vol. 31, no. 5, pp. 1294-1320.

Y.M. Willner and M. Heymann, (1995),“Language Convergence in Controlled
Discrete Event Systems,” Automatic Control, IEEE Transactions on, vol. 40, no.
4, pp. 616 —627.

K. W. Schmidt,(2013), “Fault Detection and Diagnosability of Discrete Event
Systems with Recurring Faults,” Technical Report, Cankaya University, Ankara.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki,(2010),“Diagnosis
and fault-Tolerant Control,”Springer.

HarithM.KhalidHendi,(2014), “Applications of Reconfigurable Manufacturing
Systems: A Laboratory Case Study,” Master’s thesis, Department of Electronic
and Communication Engineering, Cankaya University, Ankara, Turkey.

Harith M. Khalid, Mustafa SancayKirik, and Klaus Werner Schmidt,
(2013),“Abstraction-Based Supervisory ~ Control ~ for Reconfigurable
Manufacturing Systems,” In Workshop on Dependable Control of Discrete
Systems, York, United Kingdom, pp. 157-162.

K.W. Schmidt, and C. Breindl, (2014),“A Framework for The Stabilization of
Discrete Event Systems Under Partial Observation,” Information Sciences (in
press).

FlexFact, (2014),“FlexfactSimulator for Manufacturing Systems,”’[Online].
Available: http://www.rt.techfak.fau.de/FGdes/flexfact.html. (Data Download
Date: 23.10.2013).

DEStool, (2008-2014),“Destool Graphical User Interface for Discrete Event
Systems,” [Online]. Available: http://www.rt.techfak.fau.de/FGdes/destool/.
(Data Download Date: 02.04.2013).

R5

http://www.rt.techfak.fau.de/FGdes/flexfact.html
http://www.rt.techfak.fau.de/FGdes/destool/

APPENDICES A

CURRICCULUM VITAE

PERSONAL INFORMATION

Surname, Name: Mahmood, SarmadNozadMahmood
Nationality: Iragi (IRAQ)

Date and Place of Birth: 27 October 1985, Kirkuk - Iraq
Marital Status: Single

Phone: +90 534 415 65 24 / +964 770 138 49 00

Email: sarmad.nozad@yahoo.com

EDUCATION
Degree Institute Year
MS. Cankaya Univ. Electronicand | 2013/2014
Communication Eng.
B.Sc. College of Technology, Kirkuk 2007/2008
High School Al-Taakhi Preparatory School | 2003/2004

FOREIGN LANGUAGES
Arabic, English, Turkish

PUPLICATIONS

Swash S. Muhammed, SarmadN. Mahmood, and Aydin. Akan,(April-
2014),“Cyclostationary Features Based Spectrum Sensing For Cognitive Radio,”
International Journal ofScientific and Engineering Research, Volume 5, Issue 4, pp.
203-206.

HOBBIES
Reading, Video Games, Movies

Al

mailto:sarmad.nozad@yahoo.com

	11.pdf
	sign.pdf
	sig1.pdf
	sign2.pdf

	12.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	Thesis_Sarmad17_77.pdf
	ref1.pdf
	ref2.pdf
	CV.pdf

