
APPLICATIONS OF FAULT-TOLERANT SUPERVISORY CONTROL FOR

DISCRETE EVENT SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

 ÇANKAYA UNIVERSITY

BY

SARMAD NOZAD MAHMOOD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

ELECTRONIC AND COMMUNICATION ENGINEERING

JUNE 2014

iv

ABSTRACT

APPLICATIONS OF FAULT-TOLERANT SUPERVISORY CONTROL FOR

DISCRETE EVENT SYSTEMS

MAHMOOD, Sarmad Nozad

M.Sc., Department of Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

June 2014, 61 pages

Failure-recovery supervisory control for discrete event systems (DES) is concerned

with the recovery from faults that impair the desired system behaviors. Hereby, it is

required to detect the occurrence of faults using fault diagnosis and then adapt the

system operation such that the system can continue its operation with a potentially

degraded performance. In addition, it is generally desired to resume the original

system operation after a faulty component is repaired.

 As the first contribution of this thesis, a new fault diagnosis method is implemented

and evaluated. Different from existing approaches, this method allows detecting the

repeated occurrence of faults and is particularly useful when considering systems

where faults can repeatedly occur after repair. As the second contribution of the

thesis, a new method for the fault-recovery supervisory control is developed. Similar

to existing approaches, this method assumes that the system follows its nominal

behavior as long as the system is non-faulty. If a fault occurs, the system should at

v

least obey a degraded specification until the desired behavior under fault is achieved

in a bounded number of steps. As an extension, the proposed method also allows

returning to the nominal behavior after system repair. In addition, our approach is

based on the idea of modular supervisory control and hence scalable to large-scale

systems. To the best of our knowledge, there is no other modular approach for the

fault-recovery supervisory control. The applicability of the developed method is

demonstrated by a medium-size laboratory model of a manufacturing system.

Keywords: Discrete Event Systems, Supervisory Control, Fault Diagnosis, Fault

Recovery, Manufacturing Systems.

vi

ÖZ

AYRIK OLAYLI SİSTEMLER İÇİN HATA KALDIRIR GÖZETİMLİ

KONTROL UYGULAMALARI

MAHMOOD, Sarmad Nozad

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği

Tez Yöneticisi: Doç. Dr. Klaus Werner SCHMIDT

Haziran 2014, 61 sayfa

Ayrık olay sistemlerine (DES) ilişkin arıza çözüm denetleme kontrolü, istenen sistem

davranışlarını olumsuz etkileyen arızaların çözülmesiyle ilgilidir. Bu noktada, arıza

tanısı kullanarak arızaların oluşumunu tespit etmek ve daha sonra sistemin potansiyel

olarak daha düşük bir performansta çalışmaya devam etmesini sağlayacak şekilde

sistemin çalışmasını adapte etmek gerekmektedir. Ayrıca, genellikle arızalı bir

bileşen tamir edildikten sonra sistemin normal çalışmasına devam etmesi

beklenmektedir. Bu tezde ilk katkı olarak, yeni bir arıza tanımlama yöntemi

uygulanmış ve değerlendirilmiştir. Bu yöntem mevcut yaklaşımlardan farklı olarak,

arızaların yineleyerek meydana gelmesini tespit etmeye olanak tanımaktadır ve

özellikle tamirden sonra arızaların yineleyerek meydana geldiği sistemler ele

alındığında yararlıdır. Bu tezde ikinci katkı olarak, arıza çözüm denetleme kontrolü

için yeni bir yöntem geliştirilmiştir. Mevcut yaklaşımlara benzer şekilde, bu yöntem

sistem arızalı olmadığı sürece sistemin tanımlı (nominal) davranışını sürdüreceğini

düşünmektedir. Arıza meydana geldiği durumda ise sistem birkaç işlem ile arıza

vii

durumunda istenen davranışa ulaşılıncaya kadar en azından düşük performans

gerekliliklerine uymalıdır. Ek olarak, önerilen yöntem aynı zamanda sistem

onarıldıktan sonra tanımlanan davranışa geri dönmeye de olanak tanımaktadır.

Ayrıca, yaklaşımımız modüler denetim kontrolü fikrine dayanmaktadir ve dolayısıyla

da büyük ölçekli sistemlere de uygulanabilir. Bildiğimiz kadarıyla, arıza denetim

kontrolüne ilişkin başka bir modüler yaklaşım bulunmamaktadır. Geliştirilen

yöntemin uygulanabilirliği, bir imalat sisteminin orta büyüklükte bir laboratuvar

modeli ile gösterilmiştir.

Anahtar Kelimeler: Ayrık Olaylı Sistemler, Denetleme Kontrol, Arıza Tespiti, Arıza

Çözümleme, Üretim Sistemleri.

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor Assoc. Prof. Dr.

Klaus Werner SCHMIDT, who has encouraged and guided me throughout this thesis

patiently.

I also would like to express my deepest gratitude to my ill mother for her support and

encouragement and her prayers that make me successful and hopeful in the life. To

my father whose support makes my way of success.

I also would like to express my sincere gratitude to my uncle Waleed Majeed and my

aunt, who supported and encouraged me along my life. To my dearest and lovely

sister and brother.

I also thank and appreciate the Scientific and Technological Research Council of

Turkey (TÜBİTAK), for providing equipment and financial support (during my

thesis). This research was supported by TÜBİTAK [Career Award 110E185].

Finally, I thank Çankaya University precisely Mechatronics Engineering

Department, as well as Electronic and Communication Engineering Department, for

their support and creating the appropriate requirements of laboratories and

equipments necessary during my study and research period.

ix

TABLE OF CONTENTS

STATEMENT OF NON–PLAGIARISM . iii

ABSTRACT. iv

ÖZ. vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS. ix

LIST OF FIGURES. xi

LIST OF TABLE. xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS:

1. INTRODUCTION . 1

2. BACKGROUND THEORY OF SUPERVISORY CONTROL FOR

DISCRETE EVENT SYSTEMS .

4

 2.1. Discrete Event Systems and Languages . 4

 2.2. Automata . 5

 2.3. Supervisory Control. 8

 2.4. State Attraction . 10

 2.5. Fault Diagnosis . 11

 2.6. Interleaving Composition . 14

 2.7. Language Convergence. 14

3. REPEATED FAULT DIAGNOSIS . 15

 3.1. Basic Description. 15

 3.2. Diagnosability with Repeated Faults . 15

 3.3. Diagnosability Verification for Systems with Recurrent Faults. 17

 3.3.1. Certain Number of Faults . 17

 3.3.2. Observer Automaton Construction . 19

x

 3.3.3. Verifier Automaton Construction . 24

4. MODULAR FAULT-RECOVERY SUPERVISORY CONTROL FOR

FAULT RECOVERY.

28

 4.1. Monolithic Control for Fault Recovery. 29

 4.1.1. Fault Recovery System Components . 29

 4.1.2. Fault Recovery Supervisor Design Requirements. 30

 4.1.3. Supervisor for Fault Recovery and Repair . 30

 4.2. Modular Control Overview . 31

 4.2.1. Problem Description . 32

 4.2.2. Example System . 32

 4.2.3. Definition of Modules . 43

 4.3. Computation of Modular Supervisors For Fault Recovery. 43

 4.3.1. Fault-Recovery for the Faulty Module . 43

 4.3.2. Fault-Recovery for Non-Faulty Module . 47

 4.3.3. Repair for the Faulty Module . 51

 4.3.4. Repair for Non-Faulty Module . 53

 4.3.5. Fault and Repair Coordinators . 54

 4.4. Faulty and Non-Faulty Modules Simulation. 59

5. CONCLUSION AND FUTURE WORK . 60

 5.1. Conclusion . 60

 5.2. Future Work. 61

REFERENCES. R1

APPENDICES . A1

A. CURRICCULUM VITAE. A1

xi

LIST OF FIGURES

FIGURES

Figure 1 Simple automaton example. 7

Figure 2 Language specification diagnosability example. 12

Figure 3 Simple system example G 13

Figure 4 Simple system example DiagnoserD. 13

Figure5 Plants G1 for illustrating the case of detectable faults. 17

Figure6 Plants G2 for illustrating the case of detectable faults 17

Figure7 Plants G3for illustrating the case of detectable faults 18

Figure8 Plants G4 for illustrating violation of R-diagnosability 18

Figure 9 Plants G5 for illustrating violation of R-diagnosability 18

Figure10 Observer automaton for G1,G2,G3. 20

Figure11 Verifier automaton for G4,G5 . 21

Figure12 Plant automaton 𝐺6
𝑖𝑛𝑝𝑢𝑡

 . . . 21

Figure13 Observer automaton 𝐺6
𝑟𝑒𝑠𝑢𝑙𝑡 . 21

Figure14 Plant automaton 𝐺7
input

. 22

Figure15 Observer automaton 𝐺7
result . 22

Figure16 Plant automaton 𝐺8
input

. 22

Figure 17 Observer automaton 𝐺8
result . 22

Figure18 Plant automaton 𝐺9
input

. 23

Figure19 Observer automaton 𝐺9
result . 23

Figure20 Plant automation 𝐺10
input

 . 23

Figure21 Observer automaton 𝐺10
result . 24

Figure22 Verifier automata for 𝑆1
𝑜 ,𝑆2

𝑜 , 𝑆3
𝑜. 26

xii

FIGURES

Figure23 Verifier automaton for 𝑆5
𝑜 . 27

Figure24 Laboratory manufacturing system . 28

Figure25 Whole system modules control . 32

Figure26 The entire example system . 33

Figure27 Stack feeder component and its model GSF1. 34

Figure28 Rotary table component and its modelGRT1. 34

Figure29 Manufacturing machine component and its normal model GMA1 . . . 35

Figure30 Manufacturing machine model with fault 𝐺𝑀𝐴1
𝐹 35

Figure31 Manufacturing machine model Gma2. 36

Figure32 Exit Slide component and its models GXS1,GXS2. 37

Figure 33 Rail transport system RTS component .. 37

Figure34 Rail transport system plant model GRTS. 38

Figure35 Conveyor belt plant model GCO15.. 38

Figure36 Position 5 specification CP5 and position 4 specification CP4 38

Figure37 Position 3 specification CP3and position 2 specificationCP2. 39

Figure38 Mutual exclusion specifications C1orig and C2orig 39

Figure39 The model of RTS1GRTS1. 40

Figure40 Conveyor belt component and its model GCO3 41

Figure41 Rotary table component . 42

Figure 42 Rotary table model GRT2. .. 42

Figure 43 System fault supervisor diagram. 44

Figure44 Module 1 components 45

Figure45 Nominal specification automata 𝐶1
𝑁1 and 𝐶2

𝑁1 46

Figure46 Degraded specification automata 𝐶1
𝐷1 ,𝐶2

𝐷1 ,𝐶3
𝐷1 46

Figure47 Faulty specification automata 𝐶1
𝐹1𝑎𝑛𝑑𝐶2

𝐹1 46

Figure48 Fault-recovery supervisor 𝑆1
𝐹. 47

Figure 49 Module 2 components . 48

xiii

FIGURES

Figure50 Nominal specification automata 𝐶1
𝑁2 ,𝐶2

𝑁2 , 𝐶3
𝑁2. 49

Figure51 Degraded specification automata 𝐶1
𝐷2 ,𝐶2

𝐷2 ,𝐶3
𝐷2, 𝐶4

𝐷2, 𝐶5
𝐷2,𝐶6

𝐷2 . . . 49

Figure52 Faulty specification automata 𝐶1
𝐹2, 𝐶2

𝐹2, 𝐶3
𝐹2, 𝐶4

𝐹2,𝐶5
𝐹2 50

Figure53 System repair supervisor diagram . 52

Figure54 Supervisor S1 for module 1 . 53

Figure55 System repair supervisor 𝑆1
𝑅. . .. 53

Figure56 Coordinating automaton P1,1for𝑆1
𝐹. 56

Figure57 Coordinating automaton P1,2for 𝑆1
𝑅. 56

Figure58 Coordinating automaton P2,1for 𝑆2
𝐹 . 57

Figure59 Coordinating automaton P2,2for 𝑆2
𝑅 . 58

Figure60 Whole system simulation using flexfact program 59

xiv

LIST OF TABLES

TABLES

Table 1 Stack feeder GSF1 model information . 34

Table 2 Rotary table GRT1 model information . 35

Table 3 Manufacturing machine GMA1 model information 36

Table 4 Manufacturing machine GMA2 model information. 36

Table 5 Exit slides GXS1,GXS2 models information. 37

Table 6 Rail transport system GRTS1 model information 41

Table 7 Conveyor belt GCO3 model information. 42

Table 8 Rotary table GRT2 model information . 43

xv

LIST OF ABBREVIATIONS

CCP Controlled Convergence Problem

CO Conveyor Belt

DES Discrete Events Systems

MA Manufacturing Machine

RMS Reconfigurable Manufacturing Systems

RMT Reconfigurable Machine Tools

RT Rotary Table

RTS Rail Transport System

SCT Supervisory Control Theory

SF Stack Feeder

CHAPTER 1

INTRODUCTION

Discrete event system (DES) models are used for systems that reside on a discrete state

space and whose state evolution depends on the occurrence of discrete events [1]. Ex-

amples for DES are manufacturing systems, transportation systems or communication

networks [2, 3, 4, 5, 6]. The supervisory control theory for discrete event systems (DES)

as introduced by Ramadge/Wonham [7] generally assumes that the system behavior is

correct. That is, the potential occurrence of faults is not taken into account. Such as-

sumption is not justified in practical systems, where faults such as the breakdown of a

machine, the failure of a sensor or the breakdown of a communication link are common.

In this thesis, mainly fault occurrences in manufacturing systems are considered.

Dealing with faults requires methods for the fault diagnosis, failure recovery and system

repair. Fault diagnosis is concerned with detecting and identifying the occurrence of a

fault. The existing literature on fault diagnosis focuses on the occurrence of permanent

faults such that the system is generally assumed to remain faulty for all times. Various

fault diagnosis approaches in different architectures are proposed in this setting [3, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Fault diagnosis approaches for permanent faults

are not suitable if system repair is considered. In that case, the repeated occurrence

of faults is possible. Although there are few approaches that investigate intermittent

faults [20, 21, 22, 23], they are also not suitable since they do not determine the exact

number of fault occurrences. Accordingly, a fault diagnosis approach for detecting

each repeated occurrence of a fault is developed in the TÜBİTAK research project

“A Formal Framework and Continuous Workflow for the Controller Design, Failure

Diagnosis and Failure Recovery of Reconfigurable Manufacturing Systems” [24]. This

approach is evaluated by examples and the relevant algorithms are implemented in the

libFAUDES software library [25] in this thesis.

In industrial applications, the occurrence of a fault usually leads to stopping the

operation of a running system for system repair and performing a complicated restart

1

procedure in order to resume the system operation. That is, the occurrence of a fault

severely impacts the operation of a system, leading to loss of production quantity

and quality. Hence, it is highly desired to find ways to automatically recover from

faults after its detection. Hereby, fault recovery is used in the sense that the system

operation is continued with a potentially degraded system performance and automat-

ically returning to the correct system operation after repair. The existing literature

[26, 27, 28, 29, 30, 31, 32] mostly considers recovery from faults without system re-

pair. Only the work in [33, 34] includes repair in the supervisor design. However, the

proposed methods are targeted for a monolithic system model and hence not scalable

to large-scale systems.

In this thesis, the monolithic method in [34] is extended to modular failure-recovery

supervisory control. That is, we consider systems that are composed of multiple system

components. In principle, the method suggests the following system behavior:

• In the nominal case (no fault occurred), the system follows a behavioral specifi-

cation that describes the desired operation of the system.

• If a fault occurs, a degraded operation of the system is permitted.

• After a fault occurrence, it takes a bounded number of event occurrences until the

system starts following the desired operation under fault.

• If the faulty part of the system is repaired, the system operation returns to the

nominal behavior in a bounded number of event occurrences.

As the main contribution of the thesis, this behavior is achieved by using two modular

supervisors per system component. The first modular supervisor realizes the nominal

system behavior and moves the system to the behavior under fault in case a fault hap-

pens. The second supervisor realizes the behavior under fault and returns the system to

the nominal operation in case of repair. The thesis provides detailed algorithms for the

supervisor computation and demonstrates the proposed failure-recovery method using

a medium-scale application example. It is further shown that, under certain conditions,

the resulting system is able to contain the fault in the sense that the fault occurrence

and repair is not visible to the outside.

Precisely, the contributions of the thesis are listed as follows:

• A new approach for the fault diagnosis with repeated faults including an algo-

rithm for the diagnosability verification. In this thesis, the algorithms for the

2

diagnosability verification are implemented.

• A new approach for the modular fault-recovery supervisory control. In this thesis,

the algorithms for the supervisor design are both developed and implemented in

the software library libfaudes.

• A case study that demonstrates the applicability of the developed fault-recovery

method using a manufacturing system laboratory example.

The remainder of the thesis is organized as follows. We first provide background infor-

mation on discrete event systems, the concept of formal languages and automata models

in Chapter 2. In addition, we discuss supervisory control, fault diagnosis and several

relevant operations in that chapter. Our new method for the diagnosis of repeated faults

is described and illustrated by examples in Chapter 3. Finally, we develop our modular

approach for the failure-recovery supervisory control in Chapter 4. We present all al-

gorithms and apply our method to an manufacturing system example. Conclusions and

directions for future work are given in Chapter 5.

3

CHAPTER 2

BACKGROUND THEORY OF SUPERVISORY CONTROL FOR DISCRETE

EVENT SYSTEMS

The chapter gives a background about supervisory control for discrete event systems

by outlining the main topics that are needed in this thesis.

2.1. Discrete Event Systems and Languages

The study in this thesis is based on the modeling framework of discrete event systems

(DES). DES are systems with a set of discrete states and such that transitions between

states are triggered by the occurrence of discrete events. Consider a simple example

of a push button to describe the behavior of a DES. It is able to perform two different

tasks: turning the switch ON or OFF if pushed or released. Hence the push button

can be modeled with the two discrete states pushed and released. Transitions

between the states happen with the two possible discrete events pushON, pushOFF.

The occurrence of pushON event is possible in state released and the state pushed

is assumed afterwards. Reversely, in the pushed state, any transition with pushOFF

leads back to the released state.

The concept of formal languages is used to represent the behavior of DES. Let Σ be the

finite set of events of a DES, also called alphabet. A finite sequence of events in Σ is

called string. The length of a string s, denoted by |s|, is given by the number of events

in s. ε is the empty string with length |ε| = 0. The set that contains all possibilities of

finite strings of events in the finite alphabet Σ including (ε) is denoted as Σ� (Kleene

Closure).

In the previous example (push button switch), the alphabet is given by Σ = {pushON,

pushOFF}. A possible sequence of events is s = pushON pushOFF pushON with

length |s| = 3. The Kleene closure of Σ in this case is Σ� = {ε,pushON,pushOFF,
pushONpushON, pushONpushOFF, pushOFFpushON,pushOFFpushOFF, ..}.

4

The concatenation of two strings s1 ∈ Σ� and s2 ∈ Σ� is the strings s1 s2.If we have a

string s = s1s2 such that s1,s2 ∈ Σ�, then we say that s1 is a prefix of s. L ⊆ Σ� is called

a language over Σ. Another important term related to the languages is called the prefix

closure. Prefix closure of L contains all the prefixes of strings in L and is written as L:

L = {s ∈ Σ�|∃t ∈ Σ� such that st ∈ L} (2.1)

A language L is prefix closed if it is equal to its prefix closure L = L .

Another operation on languages is the natural projection. natural projection keeps all

events in an alphabet Σ̂ and deletes the others (Σ\ Σ̂) from any string s ∈ Σ�. Let Σ̂ ⊆ Σ.

This natural projection is defined as p : Σ� → Σ̂ with

p(ε) = ε

p(σ) =

{
σ if σ ∈ Σ̂
ε otherwise

p(sσ) = p(s)p(σ) (2.2)

In our previous example, consider that we want to take care about the event (pushON)

of pushing the button on, and we want to project (s = pushONpushOFFpushON).

Then, we use Σ̂ = {pushON}. The function considers the occurrence of all other

events not in (Σ̂) as invisible. That is, these events are removed from the string s =

pushONpushOFFpushON and the projected result is p(s) = pushONpushON.

2.2. Automata

DES can be modeled by a finite state automaton as follows

G = (X ,Σ,δ ,x0,Xm) (2.3)

where

• X is a finite set of states.

• Σ is a finite set of events.

5

• δ : X ×Σ → X is a partial transition function.

• x0 ∈ X is the initial state (state where the automata starts from).

• Xm ⊆ X is the set of marked states (states that the system should reach in order to

complete a task).

The behavior of an automaton is represented by the languages L(G) and Lm(G):

• L(G) is the closed language which includes all paths that follow event sequences

using the transitions starting from the initial state to any state of G.

L(G) = {s ∈ Σ�|δ (x0,s) exists} (2.4)

• Lm(G) is the marked language which includes all paths that follow event se-

quences using the transitions starting from the initial state to any marked state of

G.

Lm(G) = {s ∈ L(G)|δ (x0,s) ∈ Xm} (2.5)

An automaton G is considered (nonblocking) if it satisfies the following condition:

Lm(G) = L(G) (2.6)

The condition above is fulfilled, if all strings in G can be extended to a marked state.

An automaton can be cyclic or acyclic. A cycle in an automaton is a sequence of states

x1,x2, . . . ,xk (k is a natural number) such that (x1 = xk) and for all (i = 1, . . . ,k− 1),

there exists an event (σi ∈ Σ) such that (δ (xi,σi) = xi+1). This means, that a system

starts from the state (x1 of G), passes over the transitions in G then, and then returns to

the same state (x1). Accordingly, an automaton G without cycles, is called acyclic.

There are several characteristics in each automata such as accessibility, coaccessibility

or both of them together as Trim.

• Accessible: The automaton G = (X ,Σ,δ ,x0,Xm) is accessible, if all states in X

can be reached from the initial state x0. Formally, we write:

∀x ∈ X ,∃s ∈ Σ� such that δ (x0,s) = x (2.7)

6

The operation Acc(G) makes G accessible by removing all non-accessible states.

• Coaccessible: The automaton G = (X ,Σ,δ ,x0,Xm) is coaccessible, if it is possi-

ble to reach a marked state from any state in X . Formally, we write:

∀x ∈ X ,∃s ∈ Σ� such that δ (x,s) ∈ Xm (2.8)

Hereby, we realize that every Coaccessible automaton is nonblocking

Lm(G) = L(G). The operation CoAcc(G) makes G coaccessible by removing

all non-coaccessible states.

• Trim: If the accessibility and the coaccessibility conditions are fulfilled in the au-

tomaton G = (X ,Σ,δ ,x0,Xm). Then, the automaton is trim. We use the following

operation:

Trim(G) =CoAcc(Acc(G)) (2.9)

Consider that G = (X ,Σ,δ ,x0,Xm) and G′ = (X ′,Σ,δ ′,x′0,X
′
m) are finite state automata.

G′ is a subautomaton of G, if X ′ ⊆ X , x′0 = x0 and for all x ∈ X ′ and σ ∈ Σ, it holds that

δ ′(x,σ)! ⇒ δ ′(x,σ) = δ (x,σ). In words, The automaton (G′) is extracted from G by

removing states and transitions. Then, we write (G′ 	 G) if (G′) is a subautomaton of

G. G′ is a strict subautomaton of G if additionally δ (x,σ) ∈ X ′ ⇒ δ ′(x,σ) = δ (x,σ).

In words, only states are removed from G to obtain G′.

For clarity, we introduce a simple system automaton G = (X ,Σ,δ ,x0,Xm) in Fig. 1.

Figure 1: Simple automaton example

G has 6 states and 5 events. The states are (X = {1,2,3,4,5,6}). Among this set

of states there is one initial state x0 = 1 and three marked states Xm = {1,3,6}. The

events are Σ = {a,b,c,d,e}. The transitions relations δ of this simple automaton is

represented as follows:

7

• δ (1,a) = 2 , δ (2,b) = 3 , δ (2,e) = 4.

• δ (2,d) = 5 , δ (3,c) = 4 , δ (5,c) = 6.

The closed language for this automata is (L(G) = {ε,a,ae,ab,abc,ad,adc}). Then, we

can easily find the marked language which is (Lm(G) = {ε,ab,adc}). The automaton

G is accessible because every state in X , is reachable from the initial state 1. However

G is not coaccessible because the state 4 has no transitions to any marked states Xm =

{1,3,6}. Applying CoAcc, the state 4 is removed from G. In result, we obtain a strict

subautomaton of G. Moreover, it has to be mentioned that G is acyclic.

Discrete event systems are usually modeled using one or more component automata.

In the latter case, it is possible to combine all these components in a single system by

using the synchronous composition operation. This operation synchronizes the different

automata on their shared events same events in each automaton, whereas the occurrence

of the other unshared events are independent from each other.

Consider that we have two different automatas G1,G2 , G1 = (X1,Σ1,δ1,x0,1,Xm,1) and

G2 = (X2,Σ2,δ2,x0,2,Xm,2). The synchronous composition is written as:

G1||G2 = G12 = (X12,Σ12,δ12,x0,12,Xm,12) (2.10)

Synchronous composition operation states are X12 = X1 ×X2 (the canonical product of

states from X1 and X2), the events are Σ12 = Σ1 ∪Σ2 (the union of events in Σ1 and

Σ2), the initial state is x0,12 = (x0,1,x0,2), the marked states are Xm,12 = Xm,1 ×Xm,2.

The transition makes sure that the events in Σ1 ∩Σ2 that are shared by G1 and G2 are

synchronized. For (x1,x2) ∈ X12 and σ ∈ Σ12:

δ12((x1,x2),σ) =

⎧⎪⎪⎨
⎪⎪⎩

(δ1(x1,σ),δ2(x2,σ) if σ ∈ Σ1 ∩Σ2 ∧δ1(x1,σ)!∧δ2(x2,σ)!

(δ1(x1,σ),x2) if σ ∈ Σ1 \Σ2 ∧δ1(x1,σ)!

(x1,δ2(x2,σ)) if σ ∈ Σ2 \Σ1 ∧δ2(x2,σ)!

(2.11)

2.3. Supervisory Control

Supervisory control was introduced by Ramadge and Wonham [7] and is hence called

the Ramadge/Wonham framework. The basic supervisory control problem is defined

as follows. We write Σ = Σc ∪̇Σu for controllable (Σc) and uncontrollable (Σu) events:

8

• Σc represents the set of controllable events: The supervisor can forbid the occur-

rence of such events whenever is wanted.

• Σu represents the set of uncontrollable events: The supervisor can not forbid the

occurrence of these kinds of events.

We say that S = (Q,Σ,ν ,q0,Qm) is a supervisor for G with Σu if S only disables events

in Σc. That is, for all s ∈ L(G)∩L(S) and σ ∈ Σu with sσ ∈ L(G) also sσ ∈ L(S).

A language K ⊆ Lm(G) is said to be controllable for L(G) and Σu if KΣu ∩L(G) ⊆ K,

and there exists a supervisor S such that Lm(G||S) = K if and only if K is controllable

for L(G) and Σu [7]. If K is not controllable for L(G) and Σu, the supervisor will

implement the supremal controllable sublanguage of K. We write:

Lm(S||G) = SupC(K,L(G),Σu) (2.12)

It is ensured that such supervisor is nonblocking and maximally permissive if:

SupC(K,L(G),Σu)
= /0 (2.13)

Considering a plant G and a supervisor S, the closed loop system is obtained by us-

ing synchronous composition operation G||S. The closed language and the marked

language of G||S are obtained as L(G)||L(S) and Lm(G)||Lm(S).

The supervisor S is determined to fulfill the desired behavior of the closed-loop system.

In discrete event systems the desired behavior usually is represented by an automaton

C = (Y,Σ,β ,y0,Ym) and K = Lm(C) is the specification language.

A specification is said to be controllable with respect to G and Σu ⊆ Σ if it fulfills the

condition:

KΣu ∩L(G)⊆ K (2.14)

• K : The prefix-closure of (K).

• KΣu: The concatenation between the set of all strings that starts with the prefix

in K and the uncontrollable events in Σu.

Consider that(σ ∈ Σu). Since no supervisor can disable uncontrollable events, if a

specification allows any string (s ∈ K) concatenated with an uncontrollable event in the

9

plant (sσ ∈ L(G)), then the concatenated string must also belong to the specification

(sσ ∈ K). An important fact in this context is that there exists a nonblocking supervisor

S such that Lm(G||S) = K if and only if K is controllable with respect to G and Σu.

If the controllability property is violated, the supremal controllable sublanguage Ksub ⊆

K such that Ksub is controllable with respect to G and Σu can be obtained. The related

operation is written as:

SupC(K,G,Σu) =
⋃
{K′ ⊆ K|K′ (2.15)

is controllable with respect to G and Σu. As result, a nonblocking supervisor S is

obtained such that:

Lm(G||S) = Ksub (2.16)

We mentioned that the supervisor enables the largest possible sublanguage of K. There-

fore, it is also called (maximally permissive).

2.4. State Attraction

Consider an automaton G = (X ,Σ,δ ,x0,Xm) and the uncontrollable events (Σu). Then,

the subset X ′ ⊆ X is denoted as invariant set in G if there is no transition leaving the

states in the subset X ′:

∀x ∈ X ′ and σ ∈ Σ it must hold that δ (x,σ)! ⇒ δ (x,σ) ∈ X ′[35] (2.17)

Moreover, The set (X ′ ⊆ X) is denoted as (weakly invariant set) if all the transitions

that leave the states in the subset X ′ are transitions with controllable events:

∀x ∈ X ′ and σ ∈ Σu it holds that δ (x,σ)! ⇒ δ (x,σ) ∈ X ′[35] (2.18)

Definition 1. Let A ⊆ X ′ ⊆ X and consider that A,X ′ are invariant sets in G. A is

denoted as a strong attractor for X ′ in G if:

• the strict subautomaton of G with the state set X ′ \A is acyclic

• ∀x ∈ X ′, there is u ∈ Σ� s.t. δ (x,u) ∈ A

10

Briefly, definition 1 means that there must be no arbitrarily long strings outside the state

set A and the set A must be reached after a limited number of event occurrences in the

system. We also need to mention that the computational complexity of verifying this

condition is O(|X |+ |Σ|).

Definition 2. Let A ⊆ X ′ ⊆ X and consider that A,X ′ are invariant sets in G. Σu ⊆ σbe

the set of uncontrollable events. A is denoted as a weak attractor for X ′ in G if there

was a state feedback supervisor S 	 G s.t. A is a strong attractor for X ′ in S.

In words, the set is weak attractor if there exists a supervisor that makes the closed loop

system G||S a strong attractor for X ′ in S.

Moreover, based on the references [35, 36], there exists a supremal subset of X denoted

as the set ΩG(A)⊆ X such that A is a weak attractor for ΩG(A) in the plant G with the

uncontrollable events Σu. The computational complexity of the algorithm that computes

the set ΩG(A) is (O(|X | · |Σ|)). |X | represents number of state whereas, |Σ| represents

number of events used in the system, respectively. Finally, we need to mention that

the computational complexity of the algorithm that obtains the supervisor (S 	 G) that

makes A strong attractor for ΩG(A) in the supervisor S is O(|X |2).

2.5. Fault Diagnosis

A fault is an undesirable behavior of a system. Generally, any system can be subjected

to different kinds of faults such as:

Transient Fault: The fault can occur one time and does not occur again.

Intermittent fault: This is the most annoying type of faults. The fault can happen,

disappear and happen again, etc.

Permanent fault: The fault happens and remains until the system is repaired.

In DES, usually permanent faults are considered. Then, it is assumed that the oc-

currence of faults cannot be directly observed but faults have to be inferred from the

observed system behavior. To this end, we denote the unobservable events as Σuo and

the observable as Σo. The alphabet of any system includes both observable and un-

observable events such that Σ = Σo ∪Σuo. In addition, we use the natural projection

p : Σ� → Σ�
o.

11

The fault diagnosis is based on the partially observed DES G = (X ,Σ,δ ,x0). p(L(G))

is the language that is seen from the plant. A fault is represented by the violation of a

given prefix-closed specification language K = K ⊆ L(G). That is, the system is fault-

free as long as a string s ∈ L(G) (and any prefix of s) fulfills s ∈ K = K, while s is faulty

as soon as s
∈ K. So, the detection is needed, by partial observation through p, if a

faulty string in L(G)\K happened.

Figure 2: Language specification diagnosability example

Consider Fig. 2 as an example. It shows a plant (left) and a specification (right). We

mentioned before that the behavior of the system is realized during the projection p :

Σ� → Σ�
o, that maps each event σ ∈ Σ to its observation p(σ) ∈ Σ�

o. Then, in this

example if the string s = (hAh(BAh)i kT) occurred and we found that the projection

result of the specification C is (AB) comparing with the projection of s, then the fault is

certain because of the difference in the observations. Whereas, if the projection result

of the specification C was compared with a new string in this system like s = (hyAB),

then the fault can not be detected. The following definition of language-diagnosability

as introduced in [11, 15] formalizes this goal.

Definition 3. Let G model a DES and let K = K ⊆ L(G) be a specification language.

K is language-diagnosable w.r.t. G and the natural projection p : Σ� → Σ�
o if:

(∃n ∈ N)(∀s ∈ L(G)\K)(∀st ∈ L(G), |t| ≥ n or st deadlock)

⇒ (∀u ∈ p−1p(st)∩L(G),u
∈ K).
(2.19)

The definition above (2.19) considers the faulty strings s ∈ L(G)\K. Then all extended

strings with the same projection should be faulty in case a deadlock, also all extended

string st with same projection should become faulty if they are longer than a finite

detection delay n of events.

It is shown in [11, 15] that language-diagnosability is verified in polynomial time based

on G and the specification automaton C = (Y,Σ,κ,y0) with L(C) = K. If G has pG

12

states and qG transitions, and C has pC states, then the complexity for this verification

is O(pG ·q2
G · p2

C).

The fault detection is usually realized by a diagnoser automaton that follows the ob-

servations from the system. It is a finite state automaton constructed using the system

model that is wanted to be put under observation. We introduce a simple system ex-

ample with its diagnoser in Fig. 3 to identify the normal and the faulty strings in the

system according to Definition 3.

Figure 3: Simple system example G

Figure 4: Simple system example Diagnoser D

The example in Fig. 3 shows different strings (faulty and normal). For example the

string (f AB) and the stings (A f BT) are faulty strings, whereas the string (A(BC)*)

and (AB(AB)*) are normal strings. The example violates diagnosability condition, By

considering the string:

s = f ∈ L(G) with f ∈ s (2.20)

Then, for all t = A(BC)i,st ∈ L(G), and u = A(BC)i ∈ p−1p(st)∩ L(G) but f /∈ u, it

is not possible to find a bound n ∈ N. So that, the system in Fig. 3 is not diagnosable.

This is also observed from the related diagnoser automaton in Fig. 4. There is a loop

with the events A and C between the states (3F,5F,8N) and (4F,6F,9N) that contains both

fault labels (F) and normal labels (N). This indicates the violation of diagnosability.

13

2.6. Interleaving Composition

In this thesis, we use the interleaving composition as introduced in [37] [page 99]. The

operation allows processes with the same alphabet to interleave their operation without

synchronizing on shared events. Hence, any activity in the system is the activity of one

of the processes. In particular, we need to take a nondeterministic decision in case two

processes allow the same event. We write:

K1|||K2,(K1 interleaved with K2) (2.21)

Formally, we define the interleaving composition as follows:

Definition 4. Let Σ be an alphabet and K1,K2 ⊆ Σ� be two languages. The interleaving

composition K1|||K2 of K1 and K2 is defined such that:

s ∈ K1|||K2 ⇔ s = s1
1s2

1 · · ·s
1
ks2

k for some k ∈ N and

s j
1s j

2 · · ·s
j
k ∈ Kj for j = 1,2

(2.22)

2.7. Language Convergence

We further use the notion of language convergence [38, 39]. For a string s ∈ Σ�, we

write sufi(s) for the string obtained by deleting the first i event from s. Particularly,

suf0 = s and suf|s|(s) = ε .

Consider two different languages M,K ⊆ Σ∗. The language M is said to be converged

to K, denoted by K ⇐ M, if there is an integer n ∈ N0 such that for each s ∈ M, there

exists an i ≤ n such that sufi(s) ∈ K. The least possible n is named convergence time.

The controlled convergence problem which is denoted as (CCP) is introduced in su-

pervisory control for discrete event systems. Consider the plant G over the alphabet

Σ, the set of uncontrollable events Σu ⊆ Σ and the specification K ⊆ Σ∗. A supervisor

S fulfills CCP for G, K and Σu if S||G is nonblocking, S||G is controllable for L(G),

Σu and K ⇐ Lm(S||G). Consider that X is the state set of G and Y is the state set of a

recognizer C such that Lm(C) = K. The satisfaction of CCP is decided by an algorithm

with complexity O(|X |222|Y |).

14

CHAPTER 3

REPEATED FAULT DIAGNOSIS

3.1. Basic Description

The main objective of fault diagnosis for DES is diagnosing the systems that are sub-

jected to faults. However, most of the literature is only concerned with permanent faults

and does not consider faults that can re-occur. Nevertheless, such faults can very well

happen for example after a faulty system component is repaired. This chapter presents

a new method for the diagnosis of repeated faults.

We use a state-based model and associate the occurrence of a fault to reaching certain

states and presents a polynomial-time algorithm for the verification of the new property

of R-diagnosability. The algorithm remembers the number of fault occurrences in all

strings that have the same observation. We further show the results that the repeated

diagnosis function computed (ComputeRepeatedGo Function), which is implemented

in the diagnosis plug-in of the libfaudes software library [25] in this thesis. Last

but not least, We mention that automata are considered as four-tuple G = (X ,Σ,δ ,x0)

in fault diagnosis since the set of marked states is not needed.

3.2. Diagnosability with Repeated Faults

In this section, we model each system as G = (X ,Σ,δ ,x0) and the observable events

Σo ⊆ Σ. The natural projection is p : Σ� → Σ�
o. As in [20], we introduce the faulty state

map ψ : X →{0,1} such that ψ(x) = 1 indicates that a fault happens whenever the state

x is reached. Then, the language Kf ⊆ L(G) with:

Kf := {s ∈ L(G)|ψ(δ (x0,s)) = 1} (3.1)

15

Comprises all strings that are faulty. We further introduce the map c : X ×Σ� →N such

that:

c(x,u) := |{u′ ≤ u|ψ(δ (x,u′)) = 1}|. (3.2)

That is, c counts the number of faults in a given string starting from state x. We write

c(s) if x = x0.

In this section we illustrates all what is related to diagnosing the systems under recurrent

faults occurrences.

Definition 5. Assume that G is a plant automaton, Σo is a set of observable events and

p : Σ� → Σ�
o is a natural projection. Let the maps ψ : X → {0,1} and c : L(G)→ N be

defined as in (3.1) and (3.2). Then, ψ is denoted as R-diagnosable for G and Σo if:

(∃n ∈ N)(∀k ∈ N)(∀s ∈ L(G),c(s) = k)(∀st ∈ L(G), |t| ≥ n

or st deadlock) [u ∈ p−1p(st)∩L(G)⇒ c(u) = k].
(3.3)

R-diagnosability as introduced in Definition 5 requires for each string s that indicates

k = c(s) faults that the occurrence of k faults can be detected either after a bounded

delay or if the plant deadlocks. In particular, Definition 5 implies that the occurrence

of the k+1st fault is not allowed before the kth fault is detected.

Single faults and multiple fault occurrences were introduced before in Definition 3 and

5. Then, we write the plant Gk for each k ∈ N such that:

L(Gk) = {s ∈ L(G)|c(x0,s)≤ k} (3.4)

Gk contains all strings s ∈ L(G) with at most k faults. Also we introduce G0 such that:

L(G0) = {s ∈ L(G)|c(x0,s) = 0} (3.5)

Then, the recent introduced plant G0 shows that it contains all strings that are not-faulty.

Based on this definition, the following result that was derived in [40] can be used.

Definition 6. Let G, Σo, p, ψ , c be given as in Definition 5. Then, ψ is R-diagnosable

for G and p if and only if for each k ∈ N, L(Gk−1) is language-diagnosable for Gk and

p.

According to this result, we can easily perform a polynomial time test for each k.

16

Hence, Definition 6 is useful for plants G where the maximum number of faults is

bounded with:

max
s∈L(G)

ψ(s) = kmax < ∞ (3.6)

In that case, only Kmax classical language diagnosability tests have to be examined.

Unfortunately, the test in Definition 6 is useless if no such bound exists.

3.3. Diagnosability Verification for Systems with Recurrent Faults

3.3.1. Certain Number of Faults

We discuss the requirements for the verification of R-diagnosabilty by several exam-

ples [40]. In principle, we need to take care whether the fault occurred after the last

observation and if the occurrence of such fault is allowed right after the last observation

or not.Consider the strings in the systems G1,G2,G3 in the following figures with the

set of observable events is Σo = {α,β} and the states in gray color represent the faulty

states.

Figure 5: Plants G1 for illustrating the case of detectable faults

In system G1 the fault is detected because the faulty state is reachable by the observable

event β . Then, any string with projection α is non-faulty, and any string with projection

αβ is considered faulty. Hence, we make sure that the fault is certain after observing

the projected string t = αβ . A fault happened before reaching state 6 and right after

observing αβ . We denote such fault as certain.

Figure 6: Plants G2 for illustrating the case of detectable faults

In system G2 we know from the model that the fault occurred after observing α , but

there are different strings that have α projection. For example, the string s = αab
which is a faulty string and can be divided into two sub strings s′1 = α,s′2 = αa < s.

Each string of these has α projection but there is an ambiguity, because s1 , s2 are

17

non-faulty whereas the string s is faulty. Hence, it is not possible to detect a fault after

t = α . Only after observing αβ , the fault is certain. Here, the reason that the fault

is not certain immediately is that state 4 was reached but not right after the previous

observation α .

Figure 7: Plants G3 for illustrating the case of detectable faults

In system G3, consider the strings s1 = αa and s2 = αb. There is an ambiguity be-

cause s1 is not faulty whereas s2 is faulty and both of them have the same projection

(α). Hence, it is not possible to detect a fault after t = α . Or consider different strings

s1 = αaβ and s2 = αbβ , one fault is certain after observing αβ . but both strings have

the same projection (αβ) in this case the fault is not detected because s1 is faulty and

s2 is not faulty. There is no fault happened when state 3 was reached but one fault

happened when state 4 was reached. Hence, one fault is not certain after observing α .

Moreover, knowing that a fault happened when state 5 was reached right after observ-

ing αβ and no more fault happens until reaching state 8 shows that a fault is certain

after observing αβ .

Figure 8: Plants G4 for illustrating violation of R-diagnosability

In system G4, R-diagnosability condition is violated, for the string α because the fault

occurs after α , whereas for the string αab it is not possible to make a new observation

for the new fault. That is, it cannot be decided if one fault or more than one fault hap-

pened in the system. For G4, the classical diagnosability condition is fulfilled because

one certain fault occurred after observing α . However, it is not possible to obtain the

exact number of faults and R-diagnosability is violated.

Figure 9: Plants G5 for illustrating violation of R-diagnosability

18

In G5, R-diagnosability condition is also violated, because there is one fault happened

in the string s1 =αawhereas for the string s2=αab, no fault happened that means, we

have both faulty and non-faulty strings with same observation α . Then, it is clear that

two faults happened for the string αabβ in the system, but it is not possible to detect

the first fault after the string αab, then only one fault is detected after αβ observation.

3.3.2. Observer Automaton Construction

The verification procedure for R-diagnosability is composed of two steps. In the first

step, we introduce the automaton So = (Qo,Σo,νo,Qo
0) that detects the observations

from G as follows [3, 20, 40].

Qo = {(x,k,b) ∈ X ×{0,1}×{0,1}∪{NR}|x ∈ X and ∃σ ∈ Σo

such that δ (x,σ)!or�σ ∈ Σ such that δ (x,σ)!}
(3.7)

(x,k,b) ∈ Qo
0 if and only if ∃u ∈ Σ�

uo such that x = δ (x0,u),

c(x0,u) = k ≤ 1,c(x0,ε) = b
(3.8)

NR ∈ Qo
0 if and only if ∃u ∈ Σ�

uo such that c(x0,u)> 1 (3.9)

For all q = (x,k,b),q′ = (x′,k′,b′) ∈ Qoandσ ∈ Σo (3.10)

q′ ∈ νo(q,σ) if and only if ∃u ∈ Σ�
uo such that q′ = δ (q,σu),

c(x,σu) = k′ ≤ 1,c(x,σ) = b′ ≤ 1
(3.11)

NR ∈ νo(q,σ) if and only if ∃u ∈ Σ�
uo such that δ (x,σu) = x′ and

c(x,σu)> 1
(3.12)

Each state of So states consists of three components (x,k,b). x represents the state

name in the system G whether an observable transition was available from x or x was

deadlock state, k represents the number of faults after the latest observable transition, b

represents the direct or indirect occurrence of a fault after observable transition. Finally,

if more than one fault with unobservable event occurred in the system, then NR state is

reached in So from (x,k,b) to the state NR.

The construction algorithm is implemented in the diagnosis plug-in of libfaudes as

ComputeRepeatedGo. The algorithm is designed as follows:

1. Find all states that are reachable from the initial state of G with unobservable

19

events and count the number of fault occurrences. All those states start form the

initial state q0 of So. If there is a string with more than one fault occurrence, NR

state becomes reachable from the initial state of So.

2. Insert q0 in the set of waiting states.

3. Take one state q from the waiting states.

4. Find all states x, that are reachable from a state in q by strings σu with one single

observable event σ and an unobservable string u. Insert each such state (x,k,b)

in the waiting set and add a transition to these states in νo. Hereby, K counts the

number of faults that happen in σu and b = 1 if a fault happened directly after σ .

Otherwise b = 0.

5. Terminate if the waiting set is empty. Otherwise, go to 3.

So has at most |Qo| ≤ |X | · 2 · 2+ 1 states and at most |Qo|2 |Σo| transitions. Then, the

computational complexity of constructing So is O(|X |2 |Σ|).

In order to illustrate the construction of So, we use ComputeRepeatedGo for G1,G2,G3

with the resulting automata in Fig. 10.

Figure 10: Observer automaton for G1,G2,G3

We further note that our algorithm already shows the violation of R-diagnosability con-

dition for G4. Precisely, in So
4 the NR state is reachable from the initial state. This

means, that a second fault happened after the last observation but without observing its

happening as shown in the following results Fig. 11.

20

Figure 11: Verifier automaton for G4,G5

We used ComputeRepeatedGo to test additional systems as shown in the following

figures to make sure that the algorithm is working properly. In these figures, the faulty

states are indicated by marked states in the plant automata.

Figure 12: Plant automaton Ginput
6

Figure 13: Observer automaton Gresult
6

21

Figure 14: Plant automaton Ginput
7

Figure 15: Observer automaton Gresult
7

Figure 16: Plant automaton Ginput
8

Figure 17: Observer automaton Gresult
8

22

Additionally, we intended to use two more systems using ComputeRepeatedGo to

check the algorithm from different sides to study all error possibilities. The system

G10 in Fig. 20 and 21 which contains only observable events, fulfills R-diagnosability.

In particular, the states components (x,k,b) show that all faults are detected directly

because of the observable events that are used in system G10.

Figure 18: Plant automaton Ginput
9

Figure 19: Observer automaton Gresult
9

Figure 20: Plant automation Ginput
10

23

Figure 21: Observer automaton Gresult
10

3.3.3. Verifier Automaton Construction

The observer automaton in the previous section is the basis for R-diagnosability verifi-

cation. As the next step, we construct a verifier automaton V = (Q,Σo,ν ,Q0) by using

two copies of So automaton. The construction as introduced on [page 10] of [40] is as

follows:

Q ⊆ Qo ×{0,1}×Qo ×{0,1}×{N,A,F}∪{NR} (3.13)

Q0 = {(q0, j,q′0, j′, l)|q0 = (x,k,b),q′0 = (x′,k′,b′) ∈ Qo
0, j = k, j′ = k′

and l = N if j = j′ = 0, l = F if b = b′ = 1, l = A otherwise}
(3.14)

The state of Q consists of the 5-Items (q1, j1,q2, j2, l). Each item indicates that a change

happened in the verifier automaton. These items is represented as follows:

• q1,q2 are states of two copies of So.

• j1, j2 represent the number of faults that happen in the system.

• l represents the state label of the verifier automaton: N (Normal), A (Ambiguous)

or F (Fault).

The initial state of the verifier automaton Q0 contains all state entries q0,q′0 that are

initial states in So. Hereby, j, j′ is the number of faults that happen in the system for

the respective states q0,q′0 such that the state is labeled as N if it is normal, F if a fault

happened in the initial state of the plant (b = b′ = 1) and A if there exist normal and

faulty strings with ε projection.

24

Then, the transitions that change the verifier state using σ ∈ Σo events, work as follows:

ν(q,σ) = q′ (3.15)

For q = ((x1,k1,b1), j1,(x2,k2,b2), j2, l),q′ = ((x′1,k
′
1,b

′
1), j′1,(x

′
2,k

′
2,b

′
2), j′2, l

′) ∈ Q if :

νo((x1,k1,b1),σ) = (x′1,k
′
1,b

′
1) and νo((x2,k2,b2),σ) = (x′2,k

′
2,b

′
2) (3.16)

j′1 = j′2 = 0 and l′ = N if j1 + k′1 = j2 + k′2 = 0 (3.17)

Normal state – no fault in both copies of So.

j′1 = 1, j′2 = 0 and l′ = A if j1 + k′1 = 1 and j2 + k′2 = 0 (3.18)

Ambiguous state – the fault happened in the first copy and no fault happened in the

second copy of So.

j′1 = 0, j′2 = 1 and l′ = A if j1 + k′1 = 0 and j2 + k′2 = 1 (3.19)

Ambiguous state – no fault happened in the first copy and the fault happened in the

second copy of So.

j′1 = 1, j′2 = 1 and l′ = A if j1 + k′1 = j2 + k′2 = 1 and k1 = 0∧b′1 = 0

or k2 = 0∧b′2 = 0
(3.20)

Ambiguous state – the fault happened in both the first and the second copy of So, but it

is said to be ambiguous because no faulty strings with same observation k1 = 0∧b′1 = 0

or k2 = 0∧b′2 = 0.

j′1 = 0, j′2 = 0 and l′ = F if j1 + k′1 = j2 + k′2 = 1 and k1 = 1∨b′1 = 1

and k2 = 1∨b′2 = 1
(3.21)

Faulty state – the fault happened because (k1 = 1∨b′1 = 1 and k2 = 1∨b′2 = 1) in spite

of the number of faults counter in the first and the second copy of So was recorded as

j′1 = j′2 = 0 Then, it is reset to start a new fault detection.

q′ = NR if j1 + k′1 > 1 or j2 + k′2 > 1 (3.22)

The reachability of NR state means that more than one fault happened with observing

only the last observation.

25

Finally, it is possible to verify R-diagnosability but after introducing another kind of

states called deadlock state (Qd).

Qd = {q = ((x1,k1,b1), j1,(x2,k2,b2), j2, l) ∈ Q|∀σ ∈ Σ,¬δ (x1,σ)!

or ¬δ (x2,σ)!}
(3.23)

Definition 7. Let G be a plant, Σo be a set of observable events and ψ be a faulty state

map. Assume that V is the verifier constructed as described above and Qd is the set of

deadlock states. Then, ψ is R-diagnosable for G and Σo if and only if: [40]

• The state NR cannot be reached from the initial state Q0 in the verifier automaton

V .

• There must be no cycles of states labeled with A in the verifier automaton V .

• There must be no deadlock state q ∈ Qd with label A in the verifier automaton V .

We illustrate the construction of the verifier automaton using So
1,S

o
2,S

o
3 from before.

The results are shown in Fig. 22. All verifiers satisfy the conditions in 7.

Figure 22: Verifier automata for So
1,S

o
2,S

o
3

26

Figure 23: Verifier automaton for So
5

We further note that NR state is reachable for the automaton (V5) in Fig. 23. Hence, the

conditions in 7 are violated.

27

CHAPTER 4

MODULAR FAULT-RECOVERY SUPERVISORY CONTROL FOR FAULT

RECOVERY

Fault-tolerant and fault-recovery control allow a system to continue its operation after

a fault occurrence while fulfilling a potentially degraded specification. Generally, two

types of fault-tolerance are considered [41]:

• Passive fault tolerance: Same supervisor is used as a controller for both the

normal and faulty case.

• Active fault-tolerance: Needs a supervisor to control the system in case of fault

occurrence. Such controller depends on a fault detection unit so as to adjust its

operation in case of fault.

In this chapter, we propose computational procedures for modular fault-recovery super-

visors. To this end, we employ and further develop methods that were first introduced

for the supervisory control of reconfigurable manufacturing systems [42, 43]. The ap-

plicability of our method is demonstrated by a laboratory system at Çankaya University

as shown in Fig. 24.

Figure 24: Laboratory manufacturing system

28

4.1. Monolithic Control for Fault Recovery

In this section, we outline an approach for the monolithic fault-recovery supervisory

control [34]. This approach is the basis for our modular approach to fault-recovery

supervisory control

Fault recovery systems are built based on three types of language specifications, a nom-

inal specification which shows the acceptable behavior of the system before a fault

occurrence, the degraded specification which is followed after fault occurrence before

changing the fault recovery system over to the faulty specification, the faulty specifica-

tion which should finally be followed in the faulty case.

4.1.1. Fault Recovery System Components

Fault recovery systems are always modeled by using the alphabets Σ,ΣN,ΣF,Σu. Here,

ΣF represents fault events, ΣN represents nominal events which have no relation with

faults and Σ = ΣN ∪̇ΣF. The set of uncontrollable events is Σu. The plant model in

fault recovery systems are formalized using two different models, one model for the

nominal(non faulty) plant behavior GN = (XN,Σ,δ N,xN
0 ,X

N
m), and another model for

the whole plant G = (X ,Σ,δ ,x0,Xm) which contains the faulty plant behavior. The

acceptable behavior of the system is specified as:

L(GN)⊆ L(G) and Lm(GN)⊆ Lm(G) (4.1)

The language specifications that fault recovery systems are built on, are Denoted as

follows:

1. (KN) is subset of the marked language of the whole plant (KN ⊆ Lm(G)), which

demonstrates the nominal behavior of the system incase of fault free(the fault is

forbidden) which is obtained by SupC(KN,L(GN),Σu).

2. (KD) is subset of the marked language of the whole plant (KD ⊆ Lm(G)), which

demonstrates the degraded specification(admissible behavior) which is the stage

that the system follows after fault occurrence.

3. Finally, we show (KF) is subset of the degraded specification (KD), which demon-

strates the faulty specification (wanted behavior), which is the stage that is reached

after the fault occurrence in fault recovery systems.

29

4.1.2. Fault Recovery Supervisor Design Requirements

We introduce the faulty supervisor as SF = (QF,Σ,νF,qF
0,Q

F
m). SF is the supervisor that

achieves fault recovery after following the three stages that we introduced before. Our

aim now is to design a non blocking fault-recovery supervisor SF = (QF,Σ,νF,qF
0,Q

F
m)

for G and Σu such that:

(A)Lm(G||SF)∩ (ΣN)� ⊆ KN (4.2)

(B) It holds for all s ∈ L(G||SF)∩ (ΣN)�ΣF(ΣN)� that s = s1
1s2

1 · · ·s
1
ks2

kfs3

with f ∈ ΣF,s j
i ∈ (ΣN)� for i = 1, . . . ,k and j = 1,2,s1

1 · · ·s
1
k ∈ KN and

s2
1 · · ·s

2
ks3 ∈ KD

(4.3)

(C)KF ⇐ Lm(G||SF)/KNΣF (4.4)

In words, the items mean that the supervisor must agree with the nominal specification

KN if there is no fault. Second, the supervisor must follow the degraded specification

KD to continue system operation after any fault occurrence in the system. Hereby, a part

of the substring (s1
1 · · ·s

1
k ∈KN) should fulfill nominal behavior before a fault occurrence

in the system, whereas the other substring (s2
1 · · ·s

2
ks3 ∈ KD) should continue to a string

in KD before the fault occurrence in the system. Hence, we say that the degraded

specification (KD) is completed using the normal behavior substring that fulfills (KN).

Last but not least, fault recovery supervisor must finally converge to the faulty behavior

(KF).

4.1.3. Supervisor for Fault Recovery and Repair

We introduce a new language specification (KA ⊆ Lm(G)) as in [34]. This specification

KA fulfills the two conditions (A) and (B) in subsection (4.1.2). We note that:

KNΣFΣ�∩L(G) (4.5)

Follows the normal behavior of the system before any fault occurrence. Moreover,

interleaving composition operation as introduced in Section 2.6 is used to obtain:

KA = (KNΣF|||KD)∩ (KNΣF(ΣN)�∩Lm(G)) (4.6)

30

The new specification (KA) as introduced above fulfills the two conditions (A and B).

Then according to equation (4.6), the specification (KA) follows all the strings in the

plant such that a sub string of these strings until the occurrence of the fault will be

in KNΣF , and the other sub string should continue to a string in KD before the fault

occurrence in the system. Conversely, the strings of KA will exist in KN before a fault

occurrence in the system. Then, the recovery specification is found by getting the prefix

of the nominal behavior (KN) which is done via marking (KN) strings.

Now, after obtaining (KA) , the conditions (A and B) are achieved by obtaining the

supervisor(SA = (QA,Σ,νA,qA
0 ,Q

A
M)) that realizes the maximally permissive behav-

ior such that (G||SA) follows the nominal behavior before the fault occurrence and

follows the admissible behavior (degraded specification) to continue system operation

after fault occurrence. The supervisor is computed as follows:

Lm(S
A) = SupC(KA,L(G),Σu). (4.7)

Finally, condition (C) is achieved by using language convergence method which is

introduced in Section 2.7. Fault recovery supervisor SF is computed using the algorithm

in [34] such that:

Lm(S
F) = ConvAfter(KF,Lm(S

A),KNΣF,Σu) (4.8)

The function ConvAfter is implemented in libfaudes.

4.2. Modular Control Overview

Fault recovery supervisors are constructed to govern the systems that are subjected to

faults using the same idea as supervisors for the reconfiguration control of DES. That

is, it is desired to follow a certain behavior (configuration) until a change of configu-

ration is requested. In that case, the current configuration is completed and the new

configuration is started [42, 43]. The main difference is that the changing between

the supervisors in reconfiguration control occur according to system requirements to

perform a specific work. In contrast, in fault recovery supervisors there is no system

demand to change the supervisor, rather system demand happens involuntarily due to a

fault. In addition, it has to be noted that the plant behavior after fault is different since

certain operations cannot be performed.

31

4.2.1. Problem Description

In order to simplify the notation, we consider a system that consists of two modular

components (module 1 and module 2). Moreover, we assume that a fault can happen

in module 1, whereas module 2 is fault-free but its operation is affected by the fault in

module 1. In this setting, we use the fault-recovery controllers in Fig. 25.

Figure 25: Whole system modules control

Each module is controlled by two supervisors. In module 1, SF
1 is active in the nominal

case and during the transition to the faulty behavior after a fault occurrence. Reversely,

SR
1 controls module 1 in the faulty case and returns module 1 to the nominal operation

after repair. The supervisors SF
2 and SR

2 have an analogous function for module 2. In the

following we develop design procedures for the previously described supervisors.

4.2.2. Example System

In order to illustrate the basic idea of fault-recovery, we introduce the components of

a manufacturing system that we used in our examples in this chapter. The system

overview is shown in Fig. 26.

32

Figure 26: The entire example system

The system consists of the following components:

• One Stack Feeder (SF1).

• Two Rotary Tables (RT1 and RT2).

• Two Machine Tools (MA1 and MA2).

• One Rail Transport System (RTS1).

• One conveyor belt (CO3).

• One Exit Slide (XS1).

We next give a description of the components.

Stack Feeder (SF1):

The stack feeder is a device that works as product collector and system feeder. It pushes

the products to the system when it is allowed. The products that enter the system

through the stack feeder, move to the next component which is the component beside

the stack feeder (RT1 in our system).

The figure and the model of SF1 are shown in Fig. 27, and the events of the stack feeder

are listed in Stack feeder information table.

33

Figure 27: Stack feeder component and its model GSF1

Table 1: Stack feeder GSF1 model information

Event names Illustration Type
sf1-rt1 SW The product moves from sf1 to rt1 Controllable

Rotary Table (RT1):

Rotary table is equipped with a belt in order to transport products to different directions

as shown in Fig. 28. The rotary table can rotate either with clockwise direction and

stay vertically to transport the product UP or Down, or it can rotate with anticlockwise

direction and stay horizontally to transport the product LEFT or Right. In our example

SF1 is to the right, MA2 is to the left and MA1 is above RT1. Hence, the rotary table

can transport and receive products from and to these devices.

Figure 28: Rotary table component and its model GRT1

34

Table 2: Rotary table GRT1 model information

Event names Illustration Type
sf1-rt1 SW The product moves from sf1 to rt1 Controllable
rt1-sf1 SW The product moves from rt1 to sf1 Controllable
ma2-rt1 SW The product moves from ma2 to rt1 Controllable
rt1-ma2 SW The product moves from rt1 to ma2 Controllable
ma1-rt1 SW The product moves from ma1 to rt1 Controllable
rt1-ma1 SW The product moves from rt1 to ma1 Controllable
ns-rt1 SW The product moves from ns to rt1 Controllable
rt1-ns SW The product moves from rt1 to ns Controllable
rt1 rcw The rotary table1 rotates (clockwise) Controllable
rt1 rccw The rotary table1 rotates (anticlockwise) Controllable

Machine (MA1):

The machine as in Fig. 29 consists of several parts: a moving belt which transports

products, the machine head that moves up or down in order to enable processing, a

single machine tool which performs a production operation. In our system, MA1 is

located between RT1 and a conveyor belt CO15.

Figure 29: Manufacturing machine component and its normal model GMA1

In our example, we assume that the fault can happen in MA1 such that MA1 will not be

able to start processing any more. The model of MA1 with fault-occurrence is shown

in Fig. 30.

Figure 30: Manufacturing machine model with fault GF
ma1

35

Table 3: Manufacturing machine GMA1 model information

Event names Illustration Type
rt1-ma1 SW The product moves from rt1 to ma1 Controllable
co15-ma1 SW The product moves from co15 to ma1 Controllable
ma1-rt1 SW The product moves from rt1 to ma2 Controllable
ma1-co15 SW The product moves from ma1 to co15 Controllable

fault Fault happens in the system Uncontrollable
repair Repair happens in the system Controllable

ma1 start SW Start processing in (ma1) Controllable

Machine (MA2):

MA2 follows the same operation as MA1 with the different neighbors RT1 (right) and

RT2 (left). The model of MA2 is shown in Fig. 31.

Figure 31: Manufacturing machine model Gma2

Table 4: Manufacturing machine GMA2 model information

Event names Illustration Type
rt1-ma2 SW The product moves from rt1 to ma2 Controllable
rt2-ma2 SW The product moves from rt2 to ma2 Controllable
ma2-rt1 SW The product moves from ma2 to rt1 Controllable
ma2-rt2 SW The product moves from ma2 to rt2 Controllable
ma2 start SW Start processing in (ma2) Controllable

Exit Slides (XS1 and XS2):

Exit slide allows storage of products after production and is shown in Fig. 32. It simply

receives products from the neighboring component. The models of XS1 and XS2 are

shown in Fig. 32.

36

Figure 32: Exit Slide component and its models GXS1,GXS2

Table 5: Exit slides GXS1,GXS2 models information

Event names Illustration Type
ma1-xs1 SW The product moves from ma1 to xs1 Controllable
ma2-xs2 SW The product moves from ma2 to xs2 Controllable

Rail Transport System (RTS):

The rail transport system (RTS) consists of a rail that allows two cars to move left and

right, and a conveyor belt on each car that can transport products as is shown in Fig. 33.

In this thesis ,we only consider the right car denoted as RTS1. The rail is divided into

4 positions (5,4,3,2) and the RTS1 can move to each position.

Each position of the rail transport system has an upper and a lower component such

that the conveyor belt (CO) can transport products up or down. The conveyor belts on

our RTS is denoted as CO15.

Figure 33: Rail transport system RTS component

Plant models of RTS1 and CO15 are shown in Fig. 34 and 35, respectively. Hereby, it

is assumed that RTS1 is initially in position 5 and CO15 is empty.

37

Figure 34: Rail transport system plant model GRTS

Figure 35: Conveyor belt plant model GCO15

The plant model for both CO15 and RTS1 is built by using synchronous composition

operation of the following components:

GRTS1 = GCO15||GRTS (4.9)

Next, it is required to determine specifications such that each position only allow prod-

uct transport to and from the correct components as in the real system. These specifi-

cations are shown in the following figures.

Figure 36: Position 5 specification CP5 and position 4 specification CP4

38

Figure 37: Position 3 specification CP3 and position 2 specification CP2

Figure 38: Mutual exclusion specifications C1orig and C2orig

39

Then, the overall specification is computed using synchronous composition operation

of the specifications above:

CPositions =CP5||CP4||CP3||CP2||C1orig||C2orig (4.10)

As a result, RTS1 allows product transport to and from the correct components of the

laboratory system.

The result of the closed-loop RTS GLow
RTS1 that comprises both RTS1 and CO15 is com-

puted using the SupCon Algorithm:

Lm(G
Low
RTS1) = SupC(GLow

RTS1,Lm(CPosition),Σu) (4.11)

Since the overall result is too big for display in this thesis, we only note that GLow
RTS1 has

89 states. In our design, we use an abstraction of GLow
RTS1 according to [44] to get a small

plant automata with less number of states (GRTS1). The result is shown in Fig. 39.

Figure 39: The model of RTS1 GRTS1

40

Table 6: Rail transport system GRTS1 model information

Event names Illustration Type
rts1 4-5 Move co15 from position4 to position5 Controllable

co15-ma1 SW The product moves from co15 to ma1 Controllable
ma1-co15 SW The product moves from ma1 to co15 Controllable
co15-ma5 SW The product moves from co15 to ma5 Controllable
ma5-co15 SW The product moves from ma5 to co15 Controllable
rts1 5-4 Move co15 from position5 to position4 Controllable

co15-co3 SW The product moves from co15 to co3 Controllable
co3-co15 SW The product moves from co3 to co15 Controllable
co15-co8 SW The product moves from co15 to co8 Controllable
co8-co15 SW The product moves from co8 to co15 Controllable
rts1 4-3 Move co15 from position4 to position3 Controllable

co15-ma8 SW The product moves from co15 to ma8 Controllable
ma8-co15 SW The product moves from ma8 to co15 Controllable
rts1 3-4 Move co15 from position3 to position4 Controllable
rts1 3-2 Move co15 from position3 to position2 Controllable
co15-rc SW The product moves from co15 to rc Controllable
co15-ma9 SW The product moves from co15 to ma9 Controllable
ma9-co15 SW The product moves from ma9 to co15 Controllable
rts1 2-3 Move co15 from position2 to position3 Controllable

Conveyor Belt (CO3):

CO3 moves products to two directions (Up,Down), see Fig. 40. In our laboratory sys-

tem, CO3 transports products from and to RT2 and CO15. The model of CO3 is shown

in Fig. 40.

Figure 40: Conveyor belt component and its model GCO3

41

Table 7: Conveyor belt GCO3 model information

Event names Illustration Type
co15-co3 SW The product moves from co15 to co3 Controllable
co3-co15 SW The product moves from co3 to co15 Controllable
rt2-co3 SW The product moves from rt2 to co3 Controllable
co3-rt2 SW The product moves from co3 to rt2 Controllable

Rotary Table (RT2):

The operation of RT2 is analogous to the previously described RT1. Only the neighbor

components CO3 and MA2 are different. The model of RT2 is shown in Fig. 42.

Figure 41: Rotary table component

Figure 42: Rotary table model GRT2

42

Table 8: Rotary table GRT2 model information

Event names Illustration Type
ma2-rt2 SW The product moves from ma2 to rt2 Controllable
rt2-ma2 SW The product moves from rt2 to ma2 Controllable
L-rt2 SW The product moves from left side to rt2 Controllable
rt2-L SW The product moves from rt2 to left side Controllable
co3-rt2 SW The product moves from co3 to rt2 Controllable
rt2-co3 SW The product moves from rt2 to co3 Controllable
ns-rt2 SW The product moves from ns to rt2 Controllable
rt2-ns SW The product moves from rt2 to ns Controllable
rt2 rcw The rotary table2 rotates (clockwise) Controllable
rt2 rccw The rotary table2 rotates (anticlockwise) Controllable

4.2.3. Definition of Modules

We finally refer again to Fig. 26. We divide this system into two modules according to

Section 4.2.1. Module 1 consists of SF1, RT1, MA1 and MA2 and hence is the module

with the faulty component MA1. Module 2 consists of RT2, CO3 and RTS1. There is

no fault in module 2 but it might be affected by a fault in module 1.

4.3. Computation of Modular Supervisors for Fault Recovery

In this thesis, each module is controlled using four supervisors that are synchronized

to govern the faulty and the non-faulty system behavior as shown in Fig. 26. We next

develop algorithms for computing these supervisors in order to achieve fault recovery

and return to the nominal behavior after system repair.

4.3.1. Fault-Recovery for the Faulty Module

We introduce a new algorithm called SystemFaultN1 to build the supervisor SF
1 that

governs module 1 in case of a fault.

43

Algorithm 1. (SystemFaultN1):

Compute SF = (QF,ΣF,νF,qF
0 ,Q

F
m) using G,KN,KD,KF,Σu

as in [34]
(4.12)

Find q ∈ QF such that Lm(SF
q)⊆ KF (4.13)

∀σ ∈ ΣF such that νF(q,σ)! : remove the transition from

q with σ from νF
(4.14)

QF = QF ∪{wait} (4.15)

QF
m = QF

m ∪{wait} (4.16)

νF(q,repair f in) := wait (4.17)

∀σ ∈ ΣF \{repair st} : νF(wait,σ) = wait (4.18)

∀σ ∈ ΣF \{repair st} : νF(wait,σ) = wait (4.19)

νF(wait,repair st) = qF
0 (4.20)

Compute Acc(SF) and return the result (4.21)

In words, we first obtain SF using the algorithm in [34]. Then, we find the state q such

that the marked language of SF starting from q is contained in the marked language of

KF. This means, we look for the state where the desired faulty behavior is achieved.

We keep this state but remove all transitions from that state. Instead we insert a new

transition with event repair f in to a new waiting state wait. All events except for

repair st are selflooped in wait and repair st leads to the initial state qF
0. Finally, make

the result accessible. That is, the resulting supervisor is responsible for leading module

1 to the faulty behavior. Here, the event repair f in indicates that the faulty behavior

is reached. After achieving this, SF
1 becomes inactive in the state wait and becomes

active again if repair is completed with the event repair st. The basic operation of SF
1

is shown in Fig. 43.

Figure 43: System fault supervisor diagram

44

First Module Example:

We consider module 1 as shown in Fig. 44 with SF1, MA1, MA2 and RT1. In the

nominal case, we want to enter products from SF1 and produce in MA1. Then, products

should exit the system to XS1 (blue arrow). If a fault happens in MA1, products that

are already transported to MA1 should go back to MA2 for processing and exit from

XS2 (green arrow). New products should directly move to MA2 (red arrow).

Note: We changed the name of XS1 to CO15 and XS2 to RT2 intentionally in the

supervisors for compatibility issues during operating our laboratory example.

Figure 44: Module 1 components

In order to design a fault recovery supervisor SF
1, we use the plant model of module 1:

G1 = GSF1‖GRT1‖GF
MA1‖GMA2 (4.22)

Next, we need to obtain the nominal specification KN
1 by specifying a closed loop sys-

tem that allows the tasks presented in the nominal behavior. KN
1 is computed from the

automata in Fig. 45 as:

KN
1 = Lm(C

N1
1)||Lm(C

N1
2) (4.23)

45

Figure 45: Nominal specification automata CN1
1 and CN1

2

Now, we formulate the degraded specification KD
1 composed of CD

1 ,C
D
2 ,C

D
3 in Fig. 46

as:

KD
1 = Lm(C

D1
1)||Lm(C

D1
2)||(Lm(C

D1
3) (4.24)

Figure 46: Degraded specification automata CD1
1 , CD1

2 , CD1
3

We note that processing with machine MA1 is not possible according to KD
1 and CD1

2

shows that MA2 is used in case of fault.

Finally, we use the faulty specification KF
1 with the automata in Fig. 47.

KF
1 = Lm(C

F1
1)||Lm(C

F1
2) (4.25)

Figure 47: Faulty specification automata CF1
1 and CF1

2

46

The specifications CF
1 ,C

F
2 show that new products can enter the system through SF1,

move to MA2 and leave the system after processing.

Applying Algorithm 1, we obtain the supervisor SF
1 with 30 states as shown in Fig. 48.

Note that this figure is only included in the thesis to highlight the structure of SF
1. The

upper part of the supervisor implements the nominal behavior, whereas the center part

realizes the degraded behavior. The wait state (with selfloops) is finally reached when

the desired faulty behavior is achieved.

Figure 48: Fault-recovery supervisor SF
1

4.3.2. Fault-Recovery for Non-Faulty Module

The supervisor that controls the non-faulty module 2 in case of fault occurrence is

computed according to a new algorithm SystemFaultN2. The algorithm computes

the supervisor SF
2 exactly as SystemFaultN1 in Section 4.3.1 with the small mod-

ification that step 3 is removed from Algorithm 1. This measure is taken under the

47

assumption that module 2 should expect further products that come from module 1

when performing the degraded behavior. The completion of the degraded behavior is

decided by module 1 when entering the faulty behavior with the event repair f in.

Second Module Example:

Module 2 comprises different components as shown in Fig. 49. These components are

RTS1, RT2, CO3 and XS2.

Note: We changed XS2 name intentionally to MA9 in the supervisors for compatibility

issues during operation of our laboratory model.

Fig. 49 shows the desired system paths. The blue arrow represents the normal path, the

green arrow represents the path that the system should follow after the fault.

Figure 49: Module 2 components

Similar to module 1, we compute the supervisor SF
2 according to the modified Algorithm

1. First, we need the plant G2 for module 2 that is computed by using synchronous

composition operation:

G2 = GRTS1‖GCO3‖GRT2 (4.26)

The resulting automaton has 128 states which is too big to be shown in our thesis.

Next, we obtain the nominal specification KN
2 that the system follows in module 2 in

case of no fault in the system. We use the automata in Fig. 50 to compute:

KN
2 = Lm(C

N2
1)||Lm(C

N2
2)||Lm(C

N2
3 (4.27)

48

Figure 50: Nominal specification automata CN2
1 , CN2

2 , CN2
3

The specifications show that the product leaves module 1 and enters module 2 through

CO15 in position 5 of RTS1. Then, it moves to the positions 4,3,2. In position 2, the

product moves to the exit slide MA9 and then RTS1 returns to position 5.

Next, we determine the degraded specification KD
2 for module 2 to continue the product

path after a fault. Then, the specifications that perform this task is specified by the

automata in Fig. 51 as:

KD
2 =CD2

1 ||CD2
2 ||CD2

3 ||CD2
4 ||CD2

5 ||CD2
6 (4.28)

Figure 51: Degraded specification automata CD2
1 , CD2

2 , CD2
3 , CD2

4 , CD2
5 , CD2

6

49

After the fault occurrences in the system, module 2, RTS1 moves from position 5 to

position 4 and waits for products to enter from RT2. When a product reaches RT2, it

turns clockwise, then moves the product to CO3. In order to allow a new product to

enter module 2, RT2 is turned anticlockwise and CO3 moves the product to the waiting

RTS1 in position 4. Next, RTS1 moves to position 4,3,2 and the product leaves the

system to MA9. Finally, the empty RTS2 moves back to position 4 to wait a new

product from the faulty path of the system.

Finally, we specify the faulty behavior of module 2 based on the automata in Fig. 52

as:

KF
2 =CF2

1 ||CF2
2 ||CF2

3 ||CF2
4 ||CF2

5 (4.29)

Figure 52: Faulty specification automata CF2
1 , CF2

2 , CF2
3 , CF2

4 , CF2
5

In the faulty behavior of module 2, the product enters module 2, RT2 turns clockwise,

then moves the product to CO3. In order to allow a new product to enter module 2, RT2

turns anticlockwise, after that CO3 moves the product to the waiting RTS1 in position

50

4. Next, CO15 moves over the positions (4,3,2), then the product leaves the system to

MA9. Finally, the empty RTS1 returns to position 4.

Using the plant and specifications for module 2, we apply the algorithm SystemFaultN2

and obtain the supervisor SF
2 for module 2 with 115 states which is too big to be put in

our thesis.

4.3.3. Repair for the Faulty Module

We next design system repair supervisor denoted as SR = (ZR,ΣR,αR,zR
0 ,Z

R
m). We

develop the algorithm SystemRepair. Note that this algorithm will be suitable for

computing the supervisors under repair SR
1 and SR

2 for both modules. As inputs, we use

the following automata:

plant G = (X ,Σ,δ ,x0,Xm) (4.30)

Supervisor S = (Q,Σ,ν ,q0,Qm) that realizes the faulty

system behavior.
(4.31)

Attractor supervisor T1 = (Q,Σ,ω,q0,−) for state attraction

of the set {q0} in S.
(4.32)

Attractor supervisor T2 = (Y,Σ,λ ,y0,Ym) for state attraction of

the set {x0} in G.
(4.33)

State x̂ ∈ X that corresponds to state q0 in S. (4.34)

Algorithm 2. (SystemRepair):

ZR = Q∪{q′|q ∈ Q}∪{wait}∪{x′|x ∈ X} (4.35)

ZR
m = Qm ∪{wait} (4.36)

zR
0 = {wait} (4.37)

For each q ∈ Q and σ ∈ Σ :

ν(q,σ)! ⇒ αR(q,σ) = ν(q,σ).

ω(q,σ)! ⇒ αR(q′,σ) = q̃′ for ω(q,σ) = q̃

(4.38)

For each q ∈ Q :

αR(q,repair) = q′
(4.39)

51

For each σ ∈ ΣR \{ f ault st} :

αR(wait,σ) = wait
(4.40)

For each σ ∈ ΣR \{ f ault st} :

αR(wait,σ) = wait
(4.41)

αR(wait, f ault st) = q0 and αR(q′0, f ault f in) = x̂ (4.42)

Set x̂ as initial state in T2 (4.43)

Set y0 ∈ Y as marked state in T2 (4.44)

Trim T2 (4.45)

Copy T2 in SR (4.46)

αR(q′0, f ault f in) = x̂ (4.47)

For y ∈ Y and σ ∈ Σ such that λ (y,σ) = y0 :

αR(q,σ) = wait(q is the state of SR that corresponds to y)
(4.48)

The basic structure of SR is also shown in Fig. 53.

Figure 53: System repair supervisor diagram

In words, SR obtains the states of S, T1, T2 and the waiting state wait and the marked

states of S and wait. The initial state of SR is wait (initially the supervisors SF
1 and SF

2

are active). The transitions of the supervisor S, T1 and T2 are directly copied into SR.

In addition, a transition with the event repair is inserted from each state q of S to the

corresponding state q′ of T1. The initial state of T1 is connected to x̂ via f ault f in

and the marked state of T2 is connected to the waiting state via the transitions that are

leading to the initial state of G in the attractor T2.

In our example, we use the supervisor under fault S as shown in Fig. 54. It is computed

from the plant automaton G1 and the faulty specification KF
1 .

52

Figure 54: Supervisor S1 for module 1

The automaton T1 is obtained from S by removing the transitions from state 1 to 2 and

from state 6 to 2. Moreover, T2 consists of a single state without any transitions. Then,

we can apply Algorithm 2 to find the system repair supervisor SR
1 . The result is shown

in Fig. 55.

Figure 55: System repair supervisor SR
1

System repair supervisor (SR
1) in Fig. 55 shows the three parts S1,T1,wait as discussed

before.

4.3.4. Repair for Non-Faulty Module

The construction of the repair supervisor for module 2 follows the same Algorithm 2

(SystemRepair). Hence, we just demonstrate the application of this algorithm to

our example. Again, the supervisor S is obtained from G2 and the fault specification

KF
2 . Note that this computation assumes that RTS1 starts from position 4 and the initial

state of G2 is chosen accordingly. Since S and T1 have 48 states, they cannot be shown

in this thesis. In addition, it holds that the operation of T1 terminated in position 4

of RTS1, whereas the operation of the non-faulty system behavior should start from

53

position 5. Hence, an automaton T2 that moves RTS1 from position 4 to position 5 with

the event rts1 4−5 is chosen. Then, the application of Algorithm 2 leads to a system

repair supervisor SR
2 with 98 states. Again, the automaton is too big to be displayed in

this thesis.

4.3.5. Fault and Repair Coordinators

The fault-recovery supervisors constructed in the previous sections are responsible for

leading the system to the faulty behavior in case of a fault occurrence and return to the

nominal system behavior in case of system repair. What is missing is the coordination

of when the faulty/nominal system behavior should start. To this end, we use two

coordinator automata for each module as introduced in [43].

The first coordination automaton is denoted as P1 and is responsible for starting the

faulty system behavior after the degraded system behavior is completed. It is defined

as follows:

P1 = ({ f irst,second, last},Σ∪{ f ault,repair f in, f ault st},

η1, f irst,{ f irst})
(4.49)

For each σ ∈ Σ\{ f ault} :

η1(f irst,σ) = f irst
(4.50)

η1(f irst, f ault) = second (4.51)

For each σ ∈ Σ\{repair f in} :

η1(second,σ) = second
(4.52)

η1(second,repair f in) = last (4.53)

η1(last, f ault st) = f irst (4.54)

In words, P1 has three states that are connected according to the event sequence f ault,

repair f in, f ault st such that the faulty system behavior is only allowed to start (f ault st)

if the degraded behavior is finished (repair f in). Selfloops are added in the states f irst

and second, whereas no further events are allowed in last. Hence, the faulty behavior

must start immediately.

54

The second coordination automaton is denoted as P2 and is responsible for starting the

nominal system behavior after the behavior under repair is completed.

Its definition is analogous to P1 with a small modification in state last depending on the

attractor T2, such that all events that appear in T2 are added in the form of a selfloop

transition in state last of P2.

P2 = ({ f irst,second, last},Σ∪{repair, f ault f in,repair st},

η2, f irst,{ f irst})
(4.55)

For each σ ∈ Σ\{ f ault} :

η2(f irst,σ) = f irst
(4.56)

η2(f irst,repair) = second (4.57)

For each σ ∈ Σ\{ f ault f in} :

η2(second,σ) = second
(4.58)

η2(second, f ault f in) = last (4.59)

η2(last,repair st) = f irst (4.60)

For all events σ of T2 :

η2(last,σ) = last
(4.61)

We next determine the coordinators for module 1 and 2 of our example system. P1,1

governs the start of the faulty behavior of module 1 and P1,2 governs the start of the

nominal behavior of module 1. The respective automata are shown in Fig. 56 and 57.

55

Figure 56: Coordinating automaton P1,1 for SF
1

Figure 57: Coordinating automaton P1,2 for SR
1

56

It is clear in this example that no selfloops are added in the state last of P1,2 because the

attractor T2 of the faulty module does not have transitions.

Similarly, we obtain the coordination automata P2,1 and P2,2 in Fig. 58 and 59.

Figure 58: Coordinating automaton P2,1 for SF
2

57

Figure 59: Coordinating automaton P2,2 for SR
2

Here, we can see a selfloop with event rts1 4− 5 in last of P2,2 since attractor T2 of

module 2 has two states and one event (rts1 4-5).

In summary, we use the modular supervisor as shown in the following equation in order

to implement the overall supervisor.

SF
1 ||S

F
2 ||S

R
1 ||S

R
2 ||P1,1||P1,2||P2,1||P2,2 (4.62)

58

4.4. Faulty And Non-Faulty Modules Simulation

In addition to the theoretical computation, it is possible to validate the designed super-

visors using the manufacturing simulator FlexFact [45] and the controller simulator

DESTool [46]. We used this simulator for the example system in Fig. 60. It could

be verified that the closed-loop operation is as desired when using our modular failure-

recovery supervisors. In addition, a laboratory experiment with the laboratory system

in Fig. 24 was performed successfully.

Figure 60: Whole system simulation using flexfact program

59

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

We are gathering two different methods to create our idea in this thesis. We first use the

idea of fault recovery of discrete event systems idea to compute supervisors that govern

the system behavior under the fault based on the algorithm in [34]. Such fault recov-

ery supervisor follows behaviors: the nominal behavior that realizes the desired system

behavior without fault, the degraded behavior that continues the system behavior after

fault with a reduced performance, the faulty behavior which realizes the desired be-

havior under fault and is achieved after a bounded delay. Secondly, we use the idea of

reconfiguration supervisors for system repair. Specifically, the system behavior is re-

turned to follow the nominal behavior. The combination of both ideas is found suitable

in this thesis.

As the main contribution of the thesis, the cited methods are not used in a monolithic

way but to design modular fault-recovery supervisors. To this end, we focus on the

case of systems with two modular components, whereby one modular component can

become faulty. We develop construction algorithms for separate modular supervisors

that handle the system behavior after a fault and after system repair. Due to the mod-

ular design, it is possible to apply our method to large-scale system. It also has to be

noted that this is the first modular approach to failure-recovery for discrete event sys-

tems in the existing literature. The practicability of the developed method is illustrated

by a medium-size manufacturing system example and is validated by simulation and

laboratory experiment.

60

5.2. Future Work

The thesis work considers a special case of modular control for failure-recovery. Ac-

cordingly, several extensions are possible:

• It is possible to consider more than two modular plant components.

• It is possible to consider faults in more than one modular plant component.

• In order to coordinate the behavior or the modular system components, it is pos-

sible to extend the modular approach by hierarchical supervisory control.

• Consider under which conditions recovery from a fault does not affect the rest of

a large system.

61

R1

REFERENCES

1. C. G. Cassandras and S. Lafortune,(2008),“Introduction to Discrete Event
Systems,SecondEdition,” Springer.

2. S.R. Das and L.E. Holloway,(2000), “Characterizing A Confidence Space for
Discrete event Timings for Fault Monitoring Using Discrete Sensing and
Actuation Signals,”Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol 30, no. 1, pp. 52–66.

3. Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kumar, (2001),“A
Polynomial Algorithm for Testing Diagnosability of Discrete Event Systems,”
Automatic Control, IEEE Transactions on, vol 46, no. 8, pp. 1318–1321.

4. A. Bouloutas, G.W. Hart, and M. Schwartz,(1992), “Simple Finite-State Fault
Detectors for Communication Networks,” Communications, IEEE Transactions
on,vol. 40, no. 3, pp. 477–479.

5. A. Benveniste, E. Fabre, S. Haar, and C. Jard,(2003),“Diagnosis of
Asynchronous Discrete Event Systems: A Net Unfolding Approach,” Automatic
Control, IEEETransactions on, vol. 48, no. 5, pp. 714–727, 2003.

6. D.N. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A.E. Lindsey,
(2000),“Communication Protocols for A Fault-Tolerant Automated Highway
System,” Control Systems Technology, IEEE Transactions on, vol 8, no. 5, pp.
787–800.

7. P. J. RamadgeandW. M.Wonham, (1987), “Supervisory Control of A Class of
Discrete Event Processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230.

8. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, (1995),“Diagnosability of Discrete-Event Systems,” Automatic
Control, IEEE Transactions on, vol. 40, no. 9, pp. 1555–1575.

R2

9. S. Yoo and S. Lafortune, (2002),“Polynomial Time Verification of

Diagnosability of Partially Observed Discrete Event Systems,” Automatic

Control, vol. 47, no. 9, pp. 1491–1495.

10. A. Schumann and Y. Pencol´e, (2007),“Scalable Diagnosability Checking of

Event Driven System,” In International Joint Conference on Artificial

Intelligence, Hyderabad, India, pp. 575–580.

11. T. Yoo and H. Garcia, (Dec 2008),“Diagnosis of Behaviors of Interest in

Partially Observed Discrete Event Systems,” System and Control Letters, vol. 57,

no. 12, pp. 1023–1029.

12. K. W. Schmidt, (2010),“Abstraction-Based Failure Diagnosis for Discrete Event

Systems,”System and Control Letters, vol. 59, pp. 42–47.

13. R. Debouk, S. Lafortune, and D. Teneketzis, (2000),“Coordinated

Decentralized Protocols for Failure Diagnosis of Discrete Event Systems,”

Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 10,

pp. 33–86.

14. Y. Pencol´e and M. Cordier, (2005), “A Formal Framework for The Decent

Ralised Diagnosis of Large Scale Discrete Event Systems and its Application to

Telecommunication Networks,” Artif. Intell. Journal, vol. 164, no. (1-2), pp. 121–

170.

15. W. Qiu and R. Kumar, (March 2006),“Decentralized Failure Diagnosis of

Discrete Event Systems,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 36, no. 2, pp. 384–395.

16. R. Debouk, R. Malik, and B. Brandin,(2002), “A Modular Architecture for

Diagnosis of Discrete Event Systems,” In IEEE Conference on Decision and

Control, Las Vegas, Nevada USA.

17. O. Contant, S. Lafortune, and D. Teneketzis,(2006),“Diagnosabilityof Discrete

Event Systems with Modular Structure,” Discrete Event Dynamic

Systems:Theory and Applications, vol. 16, pp. 9–17.

18. C. Zhou, R. Kumar, and R.S. Sreenivas, (May, 2008),“Decentralized Modular

Diagnosis of Concurrent Discrete Event Systems,” In Discrete Event Systems,

International Workshop on, Göteborg, Sweden, pages 388–393.

R3

19. W. Qiu and R. Kumar, (May 2008),“Distributed Diagnosis Under Bounded-

Delay Communication of Immediately Forwarded Local Observations,” Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol.

38, no. 3, pp. 628–643.

20. Shengbing Jiang, Ratnesh Kumar, and Humberto E.

Garcia,(2003),“Diagnosis of Repeated/Intermittent Failures in Discrete Event

Systems,” Robotics and Automation, IEEE Transactions on, vol 19, no. 2, pp.

310–323.

21. Shengbing Jiang and Ratnesh Kumar,(2006), “Failure Diagnosis of Discrete

Event Systems with Linear-Time Temporal Logic Fault Specifications,”

Automation Science and Engineering, IEEE Transactions on, vol 3, no. 1, pp.

128–133.

22. C. Zhou and R. Kumar, (2009),“Computation of Diagnosable Fault-

Occurrence Indices for Systems with Repeatable Faults,” IEEE Trans. Automat.

Contr., vol. 54, no. 7, pp. 1477–1489.

23. Hu Hong, (2012), “Diagnosis of Intermittent Faults in Discrete Event Systems,”

Master’s thesis, Department of Electrical and Computer Engineering, Toronto

University, Toronto, Canada.

24. K. W. Schmidt,(2011–2014), “A Formal Framework and Continuous Workflow

for The Controller Design,” Failure Diagnosis and Failure Recovery of

Reconfigurable Manufacturing Systems, Career Project, TÜBİTAK.

25. LibFAUDES, (2006–2014), “Libfaudes Software Library for Discrete Event

Systems,”[Online]. Available: www.rt.eei.uni-erlangen.de/FGdes/faudes(Data

Download Date: 16.06.2013).

26. A. Saboori and S. Hashtrudi-Zad, (2005), “Fault Recovery in Discrete Event

Systems,” In Proc. Computational Intelligence: Methods and Applications, ICSC

Congress on, Istanbul, Turkey.

27. A. Paoli and S. Lafortune, (2005), “Safe Diagnosability for Fault Tolerant

Supervision of Discrete Event Systems,” Automatica, vol. 41, no. 8, pp. 1335–

1347.

http://www.rt.eei.uni-erlangen.de/FGdes/faudes

R4

28. A. Paoli, M. Sartini, and St´ephaneLafortune, (April 2011), “Active Fault

Tolerant Control of Discrete Event Systems Using Online Diagnostics,”

Automatica, vol. 47, no. 4, pp. 639–649.

29. R. Kumar and S. Takai,(2012), “A Framework for Control-Reconfiguration

Following Fault-Detection in Discrete Event Systems,” International Symposium

on Fault Detection, Supervision and Safety of Technical Processes, pp. 848–853.

30. T. Wittmann, J. Richter, and T. Moor, (2012), “Fault-Tolerant Control of

Discrete Event Systems Based on Fault-Accommodating Models,” In 8th IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes,

pages 854–859.

31. Q. Wen, R. Kumar, J. Huang, and H. Liu, (2008),“A Framework for Fault-

Tolerant Control of Discrete Event Systems,” Automatic Control, IEEE

Transactions on, vol. 53, no. 8, pp. 1839–1849.

32. Q. Wen, R. Kumar, and J. Huang, (2008), “Synthesis of Optimal Fault-

Tolerant Supervisor for Discrete Event Systems,” In American Control

Conference, pages 1172 –1177.

33. A. Sülek and K. W. Schmidt, (2013),“Computation of Fault-Tolerant

Supervisors for Discrete Event Systems,” In 4th IFAC Workshop on Dependable

Control of Discrete Systems, pages 115–120.

34. A. Sülek and K. W. Schmidt, (2014), “Computation of Supervisors for Fault-

Recovery and Repair for Discrete Event Systems,” In Workshop on Discrete

Event Systems.

35. Y. Brave and M. Heymann, (1990),“Stabilization of Discrete Event Processes,”

Int.J. Control, vol. 51, pp. 1101–1117.

36. Y. Brave and M. Heymann, (1993),“On Optimal Attraction of Discrete Event

Processes,”Information Sciences, vol. 67, pp. 245–276.

37. C. A. R. Hoare,(2004,1995),“Communicating Sequential Processes, Prentice

Hall International,”.

R5

38. R. Kumar, V. Garg, and Steven I. Marcus, (1993),“Language Stability and

Stabilizability of Discrete Event Dynamical Systems,” SIAM Journal of Control

and Optimization, vol. 31, no. 5, pp. 1294–1320.

39. Y.M. Willner and M. Heymann, (1995),“Language Convergence in Controlled

Discrete Event Systems,” Automatic Control, IEEE Transactions on, vol. 40, no.

4, pp. 616 –627.

40. K. W. Schmidt,(2013), “Fault Detection and Diagnosability of Discrete Event

Systems with Recurring Faults,” Technical Report, Çankaya University, Ankara.

41. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki,(2010),“Diagnosis

and fault-Tolerant Control,”Springer.

42. HarithM.KhalidHendi,(2014), “Applications of Reconfigurable Manufacturing

Systems: A Laboratory Case Study,” Master’s thesis, Department of Electronic

and Communication Engineering, Çankaya University, Ankara, Turkey.

43. Harith M. Khalid, Mustafa SancayKırık, and Klaus Werner Schmidt,

(2013),“Abstraction-Based Supervisory Control for Reconfigurable

Manufacturing Systems,” In Workshop on Dependable Control of Discrete

Systems, York, United Kingdom, pp. 157–162.

44. K.W. Schmidt, and C. Breindl, (2014),“A Framework for The Stabilization of

Discrete Event Systems Under Partial Observation,” Information Sciences (in

press).

45. FlexFact, (2014),“FlexfactSimulator for Manufacturing Systems,”[Online].

Available: http://www.rt.techfak.fau.de/FGdes/flexfact.html. (Data Download

Date: 23.10.2013).

46. DEStool, (2008–2014),“Destool Graphical User Interface for Discrete Event

Systems,” [Online]. Available: http://www.rt.techfak.fau.de/FGdes/destool/.

(Data Download Date: 02.04.2013).

http://www.rt.techfak.fau.de/FGdes/flexfact.html
http://www.rt.techfak.fau.de/FGdes/destool/

A1

APPENDICES A

CURRICCULUM VITAE

PERSONAL INFORMATION

Surname, Name: Mahmood, SarmadNozadMahmood

Nationality: Iraqi (IRAQ)

Date and Place of Birth: 27 October 1985, Kirkuk - Iraq

Marital Status: Single

Phone: +90 534 415 65 24 / +964 770 138 49 00

Email: sarmad.nozad@yahoo.com

EDUCATION

Degree Institute Year

MS. Çankaya Univ. Electronic and

Communication Eng.
2013/2014

B.Sc. College of Technology, Kirkuk 2007/2008

High School Al-Taakhi Preparatory School 2003/2004

FOREIGN LANGUAGES

Arabic, English, Turkish

PUPLICATIONS

Swash S. Muhammed, SarmadN. Mahmood, and Aydin. Akan,(April-

2014),“Cyclostationary Features Based Spectrum Sensing For Cognitive Radio,”

International Journal ofScientific and Engineering Research, Volume 5, Issue 4, pp.

203–206.

HOBBIES

Reading, Video Games, Movies

mailto:sarmad.nozad@yahoo.com

	11.pdf
	sign.pdf
	sig1.pdf
	sign2.pdf

	12.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	Thesis_Sarmad17_77.pdf
	ref1.pdf
	ref2.pdf
	CV.pdf

