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ABSTRACT 

 

 

CHANNEL ESTIMATION USING PER-SURVIVOR PROCESSING 

 

 

 

AL-HASHIMI, Hayder 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr.  Orhan GAZİ 

 

August 2014, 45 pages 

 

 

 

In this thesis per-survivor processing has been used for estimating the coefficients of 

a frequency selective channel.  Two well-known methods, least mean square and 

recursive least mean square, along with per-survivor processing have been used 

during channel estimation. To increase the accuracy of the estimated channel 

coefficients an improved per-survivor processing channel estimation technique has 

been proposed and from the simulation results it is seen that the proposed technique 

results in better estimated channel coefficients than the channel coefficients obtained 

using classical per-survivor approach.  
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ÖZ 

 

 

KANAL TAHMİMİ KULLANARAK KAZANAN PATİKA 

 

 

 

AL-HASHIMI, Hayder 

Yüksek Lisans,  Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr.  Orhan GAZİ 

Ağustos 2014, 45 sayfa 

 

 

Bu tez çalışmasında kazanan-patika yöntemi kullanılarak frekans seçici kanal 

katsayıları en az ortalama kare ve yinelemeli en az ortalama kare yöntemleri 

kullanılarak hesaplanmıştır. Kazanan patika yöntemi kullanılırken kanal 

katsayılarının tahmininde en az ortalama ve yinelemeli en az ortalama yöntemleri 

kullanılmıştır. Hesaplanan kanal katsayılarının doğruluğunu arttırmak için ileri 

kazanan patika yöntemi önerilmiştir ve benzetim sonuçlarına bakıldığında 

önerdiğimiz yöntemle elde edilen katsayıların gerçek katsayılarla klasik yöntemle 

elde edilenlere göre daha yakın olduğu görülmüştür. 

 

 

 

 

 

Anahtar Kelimeler: Kazanan Patika, Kanal Tahmini, En Az Ortalama Kare, 

Yinelemeli En Az Ortalama Kare. 
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CHAPTER 1 

 

INTRODUCTION 

 

An Estimate is a quantitative assessment of the potential cost of efforts or the future 

outcome. Estimation is a process that mostly used to predict the project’s cost, size, 

resources, efforts, or duration. The software market today with increased reliance on 

external elements and the code to be adapted has led to new types of techniques to 

estimate. Estimate is a practice that has totally moved from a mere approximations 

based on the size of the estimates and the functional component to new meaning. 

 

1.1. Channel Estimation 

 

The channel estimation method is quite essential in mobile systems and wireless 

networks. Whereas, the wireless channel change rapidly with the passage of time, 

commonly caused by the transmitter and receiver being in motion that influenced by 

the mobile wireless communication interference. It also happened due to multiple 

reflections from the surrounding areas, such as hills, buildings and other obstacles. In 

regards to deliver reliable and speedy data transfer rates, system needs to assess the 

accurate timely changing network.  

 

The portable radio system is the most important technologies delivered quality of 

service (QoS) such as voice, video and text data transmission for both movable users 

and travelers. Information of the instinct reply of propagation channels in mobile 

wireless estimator help in collecting information which is useful in testing, design 

and plan a radio transmission system. 

The network assessment relied on instructed order of bits which is always distinctive 

to a particular sender and repeats in each spurt transmission [1]. Channel Estimator 
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for each burst, separately estimate the CIR (channel impulse response) by exploiting 

transmitted and received bits and also provide knowledge on the CIR to signal 

sensor. The signal sensor must contain the knowledge of the channel impulse 

response of the wireless link with already passed sequences. A separate estimator 

channel can perform this task. At the receiver side demodulation can occur any time, 

therefore the corrupted modulated signals must pass under the channel estimate by 

using MMSE, LMS, RMS, MLSE etc. Fig. 1 is showing the channel estimate: 

Signal 

source
Encoder modulator +

ISI

channel

noise

Receiver

filter
Detector

Estimation

channel 

DemodulatorDecoder

 

Figure 1: The block diagram of the channel estimator 

 

In order to boost capacity, date bandwidth and optimized packet system that supports 

various Radio Access Technologies (RATs) advance technologies should be 

developed. The existing mobile telecommunication networks are known as pre-4G 

standard, which is actually a part of a new advances long term evolution (LTE) 

Program. LTE is an improvement to Universal Mobile Telecommunication Systems 

(UMTS) and a new version of the next generation of mobile telephone.  

 

Radio channels in mobile radio systems usually fade multi-path channels, that cause 

inter-symbol  interference (ISI) in the received signals. To remove that ISI reference, 

various kind of equalizer can be used. Detection algorithms based on search trellis 

(such as MLSE or MAP) provide good reception performance, but still they are not 

much countable. Currently these algorithms are very popular. However, these 



3 
 

detectors still require CIR knowledge that contain channel estimation sequence of 

known bits. Thus, the channel estimator is able to estimate the CIR for each burst 

separately by exploiting bits transmitted and received. 

 

Digital sources are normally covered by channel coding and secure against channel 

fading but after a while binary signals modulate and transmit over multi-path fading 

channel. Noise is also added and combines the received signals. Where there is a 

multi-path channel, inter-symbol interference (ISI) must be found in the received 

signal. Therefore a signal sensor/detector such as MLSE or MAP must know about 

CIR characteristics to make sure that ISI has removed completely. One thing here 

must be noticed that equalization is also possible with decision feedback, linear, and 

blind equalizer [2]. After capturing the signal, it decode channel to extract the 

original message. 

 

Later on the receiver can take advantage of transmitting known bits and received 

samples correspond to estimate CIR for each separate burst. Least-Squares (LS) or 

Linear Minimum Mean Squared Error (LMMSE) methods are a few techniques of 

channel estimation that can be used for the same purpose. 

 

Channel 

Estimator 

Linear Nonlinear

LSE MMSE DFSE MAP MLSE

  

Figure 2: Channel estimator types 
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1.2.  The Problem of Channel Estimation 

 

Radio/wireless channel in a movable networks is a major test as a means of trusted 

maximum bandwidth communications. When network signals broadcast via the radio 

channel, they bear different sort of distortion. The recipient gets a lined position of 

the signals delivered to network users, debilitating factors arbitrary amount of 

arbitrary delay before. Due to the reflection and incoherent from numerous barriers 

between sender and receiver, too many duplicates of the similar signals transmitted 

to the receiver side.  

 

Opposite link asynchronous nature in nature, i.e. the arrival of different signals at the 

same receiver with different relative time offset [3], with regard to the timing of 

arbitrary signal in the receiver. Not convert the received signal from the pass band to 

baseband, and demodulated, digital, and then processed in the basement for detecting 

and decoding the bits of information. The exposure of a specific user's communicated 

bits includes the association of the received waveform with a duplicate of the 

consistent dispersal code at the receiver. Perfect associated requirements a correct 

approximation of the user's timing offset. 

  

1.3. Training Sequence  

 

When considering the transfer of information through the channel, two most 

important parts known as sender and receiver complete this transformation process 

and that are to be trained. This instruction must be delivered before transmitting data 

and its purpose should be supporting decoding channels, or during both encoding and 

decoding processes.  Usually in fading channels a series of instructions can be 

delivered gradually either in the beginning of each cohesion period, so that the 

receiving node can assess the channel properties and later communicate it with preset 

standards (see, for example, [4], [5], [6],[7]). 

 

Here, the reactions contacts over a period of time less fixed separate DMC memory 

channel with flawless feedback, any noise and instantaneous (causal) will be studied. 
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It is assumed that the sender and receiver are completely unaware about the channel 

matrix Q transmission. However, both nodes are aware that Q relates to a subset Q of 

organizing exhibitions. By rule, to send training order doesn’t need affect the rates 

can be achieved by a system of communication. You can make the length of the test 

sequence negligible compared with the Thereafter information order length. Though 

this is the major purpose of study, and the partitioning between the estimate channel 

coding data might result in the death as error exponent. Here the work of Feder and 

Lapidoth would be discuss [8] by which decoding to the families of the World 

stations are considered without reactions. It shows that global decoders that are 

optimum in the sense that they accomplish (asymptotically) as well as the highest 

likelihood decoding tuned to channel more of that transferred by. In actual, show that 

a mixture of training and decoding sequence designed for the maximum likelihood 

estimates channel is not optimal.   

 

1.4.  Per Survivor Processing (PSP)  

 

Per Survivor Processing (PSP) is a general framework of measurement based on the 

probability of detective approach, whereas the existence of unidentified values stops 

the utilization of the old Viterbi approach. The conception is based on the 

understanding that the PSP-oriented decision estimate unknown parameters that are 

embedded in the structure of the search algorithm itself. We can say that the PSP 

doesn’t only offers superior performance but also a natural way to address the 

problem of decoding from first principle which makes it an appropriate vehicle for 

integrating tasks receiver design. 

 

Various states come across during processes and data must decode in the existence of 

unknown, possibly time-varying channel parameters. When the predominant signal-

to-noise ratio (SNR) is not too huge or is quickly changing then ad hoc approaches 

for data detection do not work very well. Therefore, more sophisticated solutions are 

required, in which the loss of earlier well-known methods can be recovered. These 

solutions of maximum difficulty that perceived practically are actually not feasible. 

The existing solutions are more demanded due to the improved computational power 
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(speed and memory). Moreover, the traditional arrangement of digital transmitted 

waveform permits for actual parametric demonstrating, that means the information of 

a few key waveform parameters serves for replicating the sample waveform of 

delivered random signal with high accuracy. 

 

Points discussed above are the trend to study more about the channel and utilize that 

information in detection process. It actually tracks that the structured learned to 

perform this learning procedure, presentation and examined by its effect on the 

transmitted Bit-Error Rate (BER) of the driven information, that have a vital role in 

entire receiver’s system efficiency. However reducing the BER in the data analysis 

procedure is a basic and suitable objective. There are various methodologies for same 

purpose during existence of all these channel persuaded insufficient issues. 

Therefore,  there is no place for any objection about the best solution, if all the 

channel data is already recognized. Now the only disorganized thing in observation 

now is the data and the omnipresent thermal noise.  

 

This issue has been resolve a long time ago, but still there is no any comprehensive 

solution exist because no one can understand channel completely. Specially in 

challenging environment it is even more complex due to lack of channel modeling, 

limited receiving resources, signal collision due to the high traffic of the radio 

spectrum,  and quality of receiving electronic components,  etc. Moreover, the 

extreme profitable wants for more high bandwidth and mobility shows that stations 

will perform slow and cooperate fewer. Hence, finding the perfect and speedy 

receiver is even harder. On behalf of this framework, we can say that the present 

architecture supported by PSP is well developed and it gathered detected data 

estimation methods that increase receive efficiency. Due to this support receiver can 

even perform multiple tasks according to user priority and it known as individual 

task oriented receiver [9].   

 

The basic concept behind the creation of methods group is where PSP is linked up to 

put on the likelihood-functional (LF) model in the presence of noise over signs. Its 

been done in order to (a) differentiate among numerous enumerable hypotheses and 
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(b) assess other helpful limits. The concept of likelihood-based detection and 

estimation drives probability based outcome, which is totally different from statistic 

point of view of non-numerical testing or any other learning process such as artificial 

intelligence or expert-system approach that work on neural network. This approach is  

most adopted and famous approach for the parametric friendly model communication 

group. Algorithms involve in these groups can be differentiate through detailed 

probability based assumptions and externally forcefully applied restraints on the 

processor structure. Least mean square (LMS), Kalman filter and recursive least 

squares (RLS) [10] algorithms can be used in PSP decoder, to estimate the channel 

parameters.  

 

1.5. The AWGN Channel 

 

After the implementation of  the transmitter, the next thing that needs to be 

considered is the modeling of the wireless channel. A wireless channel can be 

considered as a noisy filter, by which the transmitted signal needs to pass through 

before reaching  to the receiver. Therefore, to simulate a wireless communication 

system such as the one concerned here, one needs to formulate an appropriate filter 

which gives an accurate representation of the channel response. This channel 

modeling can be separated into modeling the AWGN . 

 

The AWGN channel assumes that the noise in the channel is a wide-band noise with 

constant power spectral density across all frequencies and has a Gaussian amplitude 

distribution. In a wireless communication system, many noise sources are present, 

with the most significant being the receiver front end amplifier. As the noise is 

linearly additive, for all intent and purposes it can be regarded as a single AWGN 

source which additive corrupts the transmitted signal before it reaches the 

demodulation in the receiver. Hence, an AWGN channel can be easily modeled in 

summer which simply adds white Gaussian noise to the receiver input. For 

simulation purposes, random numbers that model white Gaussian noise are added to 

the transmitted signal samples. 
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1.6.  Thesis Outline 

 

The study is formed into four chapters.  By summarizing, the target of this study is to 

improve the estimation of the channel coefficient at the receiver side and to achieve 

values as approximate as possible to the real values by using per-survivor processing. 

Thus the study is categories as follows: Chapter 1 describes the introduction to the 

channel estimation by using per-survivor processing generally. Chapter 2 comprises 

the channel estimation details and per-survivor processing technique with several 

examples for clarification. Chapter 3 contains the original work and the results of the 

simulation. And finally Chapter 4 includes the conclusion and future work. 
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CHAPTER 2  

 

MAXIMUM LIKELIHOOD BASED CHANNEL AND SQUENCE 

ESTIMATION METHODS 

 

Data detection and channel estimation are the two main issues in the time varying 

digital communication. The Maximum Likelihood Sequence Estimation (MLSE) 

[11] provides the best data decoding methods that make sure that the receiver knows 

the channel parameters correctly. Whenever the existence of unidentified quantities 

stops the specified usage of the Classical Viterbi (CV) algorithm, Per-Survivor 

Processing (PSP) provides an effective framework to examine the MLSE algorithms. 

This rule basically relies on the concept of hidden data estimation approach with 

integrated framework of the Viterbi system with various programs to useful MLSE 

and Reduced State Sequence Estimation (RSSE). The channel reduction method that 

utilized in RSSE has an upfront clarification with relation to the existing rule [19]. 

Simulation outcome for given algorithms can be applied to certain inter-symbol 

interference (ISI) channels indicating irrelevant performance deprivation in respect 

with MLSE. 

 

To reduce the complexity of MLSE algorithm comprise in the IS1 lattice that 

depends on truncation of the channel impulse feedback and canceled remaining IS1 

by choice response Equalization instruments [12]. Many writers have independently 

present that substantial act enhancement over the direct application of DFE, might 

found by joint DFE approaches in decoding process. This methodology, firstly 

mentioned [13] under the framework of immeasurable IS1 channels, that distinguish 

from conservative DFE. In above scenario the impact of the remaining IS1 canceled, 

in the counting of each division metric on behalf of the specific survivor order. 

Moreover currently, numerous writers have projected [14], [15] and protracted the 
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following method [16], [17] by joining it with set segregating rules [18]. The above 

mention methodology has been denoted as Delayed Decision Feedback Sequence 

Estimation (DDFSE) [14], and in its advance form RSSE [17]. 

 

2.1.  Maximum Likelihood Sequence Estimation (MLSE)  

 

The channel state knowledge is usually expected to exist already at the receiver in 

radio communication systems.  Conventionally, a training order is used to analyze 

the channel estimation. Instead of, the channel can be identifying by utilizing 

relevant belongings of the passed signals. Though, the computational force need to 

combined ML result to detect symbol and to estimate channel issue rises 

proportionally with measurement of the issue. To meaningfully decrease this 

computational force, combined ML approximation and detection can be formulate as 

an integer least-squares and present signal-to-noise ratios (SNR) and that issue can be 

resolved through decoding of known difficulty of experiential methods. In chase of 

high bandwidth data services has caused in a marvelous quantity of research action in 

the radio communications community. To get highly reliable transmission, specific 

consideration has been remunerated to the design of receivers [20], [21]. In system 

design, one mostly identifies channel information limits at the receiver. These 

parameters are typically achieved by transmitting a training order, means reducing a 

segment of the transmission rate. In contrast, in applied system because of fastest 

variations of channel, minimum resources, training and channel chasing are not 

feasible. One likely solution is to inversely encode the passing data and to emit the 

requirement for channel information. One another solution use to compromise the 

existing belongings of the passing data to learn the channel and one can compromise 

the passing data relates to a finite alphabet. 

  

 The detection of a signal transmitted through a communication channel having 

memory and additive Gaussian noise has been widely studied for different channel 

models. Equalization techniques have been used in communication systems to 

combat the inter-symbol interference (ISI) induced by distributive channels. When 

the transmitted data sequences can be equip, maximum-likelihood sequence 
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estimation (MLSE) minimizes sequence-error probability and can, hence, be 

considered as an optimal equalization method. MLSE, implemented using the Viterbi 

algorithm for known finite channel-impulse response (CIR), is well known [9]. The 

MLSE algorithm has also been studied for a mobile communication channel that 

disperses the transmitted signal in both time and frequency domains and whose 

impulse response is considered as a Gaussian random process [22], [23]. 

 

Due to unknown CIR or unknown statistical parameters of the CIR, combined data 

recognition and channel approximation methods were proposed by combining 

Viterbi algorithm for data detection with adaptive methods, such as least mean 

square (MLS), recursive least squares (RLS), and Kalman filtering for estimating the 

CIR [24], [25] and [26]. However, the inherent decision delay in such procedures 

causes poor channel tracking in a time-variant environment. The idea of per-survivor 

processing (PSP) was proposed to combat the decision delay problem, where each 

survivor path of the trellis diagram in the MLSE structure has its own CIR estimation 

[27], [28]. Although PSP is a practical way to achieve better performance in a time-

variant channel, the nature and degree of optimum of such PSP-based channel 

estimation procedures, the influence of such estimates on the optimal of the MLSE 

criterion, and the coupling between estimation, detection, and channel models are not 

clear. 

 

In following section, we will briefly review the maximum-likelihood sequence 

estimation (MLSE) for inter-symbol interference (ISI) stations. The model shown in 

Fig. 3 is communication model that explains a compound sign denoted as M 

alphabet, which is produced by a source every character retro. The communicating 

filter, the station, the noise blanching filter (Whitened Matched Filter, WMF) and 

receiving corresponds are mentioned due to the response of their receiving 

corresponded [l2]. 

 

The process of noise  is white, zero-mean, Gaussian and self-determining of the data 

order, along with the autonomous actual and invented parts of alteration. 
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  Transmission 

Signal + MLSE

n

M

Y
M`

 

                                              

Figure 3:  A simple example to system model 

 

The rank of the station (network) is presented very well as the column vector  

                          
  (2.1) 

At the t-th step , the branch metrics are evaluated  

     (    ,     ) = │   -     (    ,     )    (2.2) 

In which, 

     (    ,     ) = ∑         
 
    (2.3) 

The signal here known as the noiseless signal components that is linked up with the 

ranked changes      →     . Then, the metrics      (    ) are minimized for all the 

   states according to 

     (    ) =               +     (    ,     ) ] (2.4) 

At last, the survivor arranged vectors    (  ) are widen on the conversion that 

comply Eq. (2.4) according to   

      (    ) = [    ¦    (    ,     )  ] (2.5) 

in which,    (    ,     )  is the t-th data sign linked up with the measured 

conversion. The maximum-likelihood sequence estimation (MLSE) algorithm is 

numerically explained in Example.1, which shows four random data  modulated by 

BPSK that sent over channel which has three nonzero samples. 
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Example -1 

 

In this example, the data d=(1 1 0 1) is generated randomly and adopted by using 

BPSK modulation technique to be  =(1 1 -1 1). After modulation, by employing 3-tap 

ISI channel which has three nonzero samples = 0.407, = 0.815 and = 0.407 and 

applying the following formula, transmission signal can be computed as: 

    (    ,     ) = ∑         
 
    (2.6) 

Assume initial state is (-1 -1). Then, the next state will depend on the input sequence 

by shifting the initial state. Furthermore, this state will be initial state for the next 

state.  

 

The effect of the input bit which will decide the next state, if the input bit is -1, the 

next state will be  -1-1, if the input bit is 1, that’s mean the next state will be 1-1. 

Where     =            represents a vector which consists of the current state 

         with the current input bit = 1 and    is a channel coefficient represented 

by the vector (  ,   ,….,     ), since the value of (L=2). Applying Eq. (2.6) as 

follows 

  =                 ]   [
   
  
  

] 

Hence            

In similar way, we can find         ,           and            

Finally, the transmission signal will be   =(           ). The transmission signal is 

transmitted over Additive White Gaussian Noise channel (AWGN) with mean µ=0 

and SNR=20. 

The receiver signals are calculated by 

   =       (2.7) 

Now, branch metric can be computed for each branch according to 
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     (    ,     ) = │   -     (    ,     )    (2.8) 

Then, calculating (state metric)     for each branch according to the following 

equation 

Let      in initial 

      (    ) =               +     (    ,     ) ] (2.9) 

To compute the value of next state metric (    ), the minimum arrived branch metric 

which summed with the previous state metric (    ) is chosen as in Eq. (2.9). This 

operation is continued until the last bit of the sequence (  ). Eventually, we have 

four state metric values and choose the minimum state metric value to detect the 

survivor path. Thereafter, tracing back is done until the initial state to estimate the 

sequence. As shown in the following Figure.  
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2.2.  The  Per-Survivor Processing (PSP) 

 

PSP was started as an approach that delivers Maximum Likelihood Sequence 

Estimation in an environment where some of the signal constraints are unidentified. 

The idea behind approach is that diverse approximations of the unidentified 

parameters are linked with each state in the trellis. The estimations are efficient from 

one knot in the trellis to the next by using the data related with the trellis edge in data 

aided parameter approximation. At each knot, only the approximation linked with the 

winning trail to that knot and the estimate connected with the state from which the 

winning trail came are used to grow the new estimation to be linked with the state. 

This harvests a per survivor approximation of the unidentified parameters. Detail 

explanation of PSP can be found in [27]. 

 

PSP is a channel estimation technique which is based on the surviving paths in the 

VA. In a PSP approach different channel responses are estimated along the surviving 

trails that are connected with every state in the trellis of the VA simultaneously. Each 

surviving path maintains and updates its own channel estimate based on the 

corresponding hypothesized transmitted data sequence [29], and that gain is only 

used for that surviving path to calculate branch metrics. The existence of individual 

gains for surviving paths means that each gain estimated is confined within the 

surviving path, along with its error. Thus unlike conventional MLSE,  if one of the 

gain for a particular surviving path is corrupted with noise or distortion, then the rest 

of the surviving paths may not be affected, and as decision making is based on the 

best surviving path, this error would not propagate through the decoding sequence. 

moreover, as the gain is estimated based on the previous surviving paths, in general, 

the more reliable the surviving path is the more reliable the channel estimation 

associated with it is. This therefore increases the reliability in a self-propagating 

manner (i.e. the better the surviving path, the better the gain, which in turn leads to a 

more accurate surviving path). Finally, as the gain for each surviving path is 

calculated based on previous survivors right at the start of the algorithm. 
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Without feedback from the tentative decision, the delay between receiving and 

decoding a symbol is significantly reduced. Hence PSP is suitable for fast time 

varying channels with a great reduction in the effects of error propagation. 

 

Here, we will assume branch metric      (    ,     )  is unknown, in the state 

conversion. The following state might happen during existence of unidentified 

stations (networks) constraints or while operational with an abridged difficulty 

lattice. Specifically Eq. (2.2) the experiential signals   , or the signals component 

clear with noise        (    ,     ), or both of them can work as unknown measures. 

For example, if the network impulse reply is unknown, the both quantities will be 

unknown. However, in reality, both the discrete-time equivalent channel and WMF 

feedback is unidentified. In this scene, of RSSE, except the empirical signal other 

some doubted affect the silent signal modules because of the existence of remaining 

ISI are unknown. 

 

With these doubts, it can be assumed that several unidentified amounts may be 

assessed by utilizing data-aided estimate methods. If data-aided approximations of 

these amounts are accessible, it can be uses to examine the MLSE methodology    

Eq. (2.2) and Eq. (5.5). A traditional way for this MLSE estimation is depended on 

the utilization of initial results for data addition approximation of an unidentified 

measure, in decision-directed manner.  

  

The above method can be utilized in various acquired knowledge of MLSE (for 

example, see [l2], [16], and [18]). This approach can also be utilized in early efforts 

to decrease the various decoding processes by DFE instruments [30]. The 

disadvantage of this method is the decoding process and its faults in assessment order 

where various unidentified measure error circulation occur. Moreover, the character 

of the decrypting order utilized for data-aided measurement relies on large decoding 

interruption that boost the excellence of the decoding order process but in various 

steps that results in an undesirable delay in the approximation process [18]. An 

alternative to the above classical approach is represented by some certain 

measurement of the unknown values. In following methodology, the order used for 

data addition estimation of metric branch that corresponds to a specific situation 



17 
 

conversion is the classification linked up with the certain path dismissing in the early 

step. Measurement of MLSE algorithms rely on certain processing in a formal 

obtained by replacing Eq.  (2.2) with  

      (    ,     ) = │   -     (    ,     )    (2.10) 

The measurements in above scenario are occupied upon the survivor order 

dismissing in earlier process. The approach then continues as in Eq. (2.4) and Eq. 

(2.5). The factor that motivated to follow the approach is to decrease the no of errors 

that are propagate according to above mentioned traditional approach of decoding 

process with minimal delay. The driven outcome that shows the basic DDFSE and 

RSSE can be summarized according to above approach of MLSE in undefined 

surroundings.  

 

2.3.  Applications of Per Survivor Processing 

 

The main concern when designing a PSP-based MLSE receiver is the design of the 

channel estimation algorithm. The channel estimation is derived from the previous 

entries of the surviving path. Applications of Per-Survivor Processing (PSP) to 

adaptive Maximum Likelihood Sequence Estimation (MLSE) and Reduced State 

Sequence Estimation (RSSE) are investigated in time-varying frequency-selective 

Rayleigh fading channels, which are typical of digital mobile communication 

systems. It is shown that the PSP characteristic of providing the channel estimators to 

the individual survivors with zero-delay, high-quality data-aiding sequences proves 

essential in a rapidly time-varying environment [31]. In the PSP the least mean 

square (LMS), recursive least squares (RLS) and Kalman filter [10] algorithms can 

be used to estimate the channel parameters. 

 

Adaptive algorithms are used to adjust the coefficient of the digital filter, as the error 

signal Eq. (2.12) is minimized according to some criterion, e.g. the least squares 

sense.  Common algorithms that have found widespread application is the recursive 

least square (RLS) and the least mean square (LMS)[33]. They gradually reduce the 

mean square error between the input signal and other reference signal. The main 

features that approve the use of the LMS algorithm is its low computational 

complexity, proof of convergence in stationary environment, unbiased convergence 
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in the mean to the Wiener solution, and stable behavior when implemented with 

finite_ precision arithmetic [32]. 

 

2.3.1. Least Mean Square (LMS) 

 

Although the well-known adaptive least mean squares (LMS) algorithm suggests a 

practical way of estimating unknown channels in any communication system, the 

associated performance over time-varying channels are known to be far behind that 

of the optimal Wiener filter especially as the speed of time-variations increases. The 

main reason behind this degradation is the large eigenvalue spread of the input 

correlation matrix for fast time-varying channels [33]. This motivates us to explore 

for a suitable adaptive algorithm as an extension of the conventional LMS algorithm 

which will be robust to adverse effects of fast fading channel such as the large 

eigenvalue disparity and hopefully achieve a significantly improved performance yet 

at a still practical level of complexity as compared to the original algorithm as well 

as to the optimal Wiener filter. 

In the literature, there are several works on the forward-backward signal processing 

techniques applied to communication problems with a promise of improved overall 

performance. In [34], a forward-backward LMS (FBLMS) adaptive line enhancer is 

proposed for stationary systems which make use of the forward and the backward 

prediction errors jointly to update the weight-vector which eventually achieves a 

lower level adjustment. This algorithm is further elaborated in [35] which 

demonstrate the same performance with a less computational burden. In [36], a 

different approach is preferred in which the adaptations are performed in the forward 

and the backward directions independently along each of the paths present in the 

trellis using a per-survivor processing (PSP) based approach [19], [28]. These 

estimates are then combined using some optimal binding strategies for which the 

final performance improvement is significant, but unfortunately with an excessively 

large overall processing complexity. 

 

Adaptive algorithms have a wide variety of application areas due to their self-

learning characteristics, computational efficiency and convergence to the optimal 
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non-adaptive solutions. In digital communications, the LMS algorithm is one of the 

well-known adaptive algorithms that commonly used in numerous applications 

including equalization and channel estimation. 

 

In this section, only LMS is investigated due to its implementation simplicity. The 

accuracy and the convergence properties of LMS determine the overall performance 

of the PSP algorithm. In the time-varying channel, the convergence rate of LMS is 

governed by the step-size parameter, which determines the tracking ability and 

convergence rate of the LMS. The conventional PSP was based on fixed step-size 

LMS. But in a time-varying multi-path and Doppler shift environment, there is no 

fixed optimized step-size parameter that can estimate the channel well all the time, 

because the receiver has no knowledge of the terminal speed and other fast changing 

channel parameter. Without the ability of optimizing the step-size factor, the 

performance of the PSP will have a significant degradation in dynamic channel 

conditions. Because of this drawback, the conventional PSP algorithm with fixed 

step size is impractical. Its performance with optimal step size becomes the high 

bound for the practical PSP algorithm without optimized step size. The degradation 

happened due to this inadequate size. To tackle this problem, an adaptive PSP that 

can speed up the convergence rate and improve the performance of the PSP in time-

varying wireless channels without optimizing the step size. This variable step-size 

approach is applied to each survivor path individually eliminating any dependence 

between all survivor paths in the original PSP approach. In [37], variable step-size 

LMS (VS-LMS) algorithms were analyzed and tested in the steady environment 

which showed its promise of overcoming the slow convergence rate. However, the 

performance of the VS-LMS algorithms on time-varying channels has not been 

studied. The proposed adaptive PSP will show that VS-LMS algorithms can also 

improve the system performance in dynamic environments, due to the high accuracy 

of the data-aided channel estimation in PSP. The VS-LMS algorithms suffer from 

another drawback, i.e., the performance is very sensitive to the selection of a 

parameter representing the step-size updating factor. An optimal has to be 

determined before applying VS-LMS. Basically, the algorithm transfers the 

performance dependency on step size into the dependency on step-size updating 
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factor. Letter in this study, we propose a new step-size updating scheme which is 

independent of any parameters. This new channel estimator can approach the 

optimum performance of the PSP with optimal step size in highly dynamic channels 

without any knowledge of the speed and channel conditions. The  channel impulse 

response is expressed by 

    (  ,   ,….,     ) (2.11) 

At the t-th step, for all possible transitions     →     , the following errors are 

calculated 

   (    ,     ) =    -     (    )
T
     (2.12) 

Here, the vector relies on time now and state dependent. One phase of the Viterbi 

approach is then achieved and state metrics are computed using 

     (    ) =                + │    (    ,     ) │
2
 ] (2.13) 

The channel estimates     (    ) are then updated according to the stochastic gradient 

algorithm 

     (    ) =    (  ) + ß                    (2.14) 

over those transitions    →      that satisfy Eq. (2.13). For cooperation between 

speed of merging and constancy constant ß is chosen. Here it is to be noticed that the 

linked up with certain path there are a station vector, a metric and a survivor 

arrangement. 

 

Example - 2 

 

The Least Mean Square (LMS) is approach for channel estimation with per-survivor 

processing illustrated in this example. At the transmission side, the procedure is 

identical to the one in example 1. At the receiver side, for all possible transitions         

   →     , the following errors are calculated for t-th step 

   (    ,     ) =    -     (    )
T
      (2.15) 

The next state metric is calculated by using the value of the computed error in          

Eq. (2.15) and the value of previous state metric with imposition that the initial value 

of      as shown below 
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     (    ) =                + │    (    ,     ) │
2
 ]  (2.16) 

The channel estimations (  ) are then updated according to the following equation 

     (    ) =    (  ) + ß                    (2.17) 

The computation of the state metrics is illustrated in the following Figure. 
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Figure 5: Viterbi MLS 

 

2.3.2. Recursive Least Mean Square (RLMS) 

 

The Recursive least squares (RLS) adaptive filter is an algorithm which recursively 

finds the filter coefficients that minimize a weighted linear least squares cost 

function relating to the input signals. This is in contrast to other algorithms such as 

the least mean squares (LMS) that aim to reduce the mean square error. In the 

derivation of the RLS, the input signals are considered deterministic, while for the 

LMS and similar algorithm they are considered stochastic. Compared to most of its 

competitors, the RLS exhibits extremely fast convergence. However, this benefit 
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comes at the cost of high computational complexity [12]. The RLS algorithm can be 

used with an adaptive transversal filter to provide faster convergence [38] & smaller 

steady state error. The RLS algorithm uses the information contained in all the 

previous input data to estimate the inverse of the auto-correlation matrix of the input 

vector. It uses this estimate to properly adjust the tap weights of the filter. 

 

RLS adaptive filters propagate (from one iteration to the next) inverse of the least-

squares auto-correlation matrix. However the inverse matrix always updates 

difference between two matrices, this approach comprehensively known as recursive 

least-squares (RLS) adaptive filters. The one significant distinction between 

stochastic gradient adaptive filters and RLS adaptive is that the RLS adaptive filters 

provide perfect solution of optimized problems at each modification step. The certain 

order with the major metric corresponds to the desired joint assess of station and 

arrangement. However, the approach is found by letting 

    (    ,     ) =     (    )
T
     (2.18) 

Thus, it is indicated that an assessment of the station impulse response at the t-th 

step, is shown by a discrete-time complication sum as a scalar product of a time-

dependent state-dependent channel vector. 

     (  ,   ,….,     ) (2.19) 

a converted data vector 

                        
   (2.20) 

The maximization of the likelihood function with respect to the channel vector for a 

given survivor sequence (i.e., the inner maximization). it may be performed by a 

Recursive Least Square (RLS) algorithm [l2] is given as 

   
    

 
   

         
    

 
   

 ʆ ({yn}
t
n=0 │ {  }

t
n=0  , {hn}

L
n=0  )  (2.21) 

At the t-th step,      (    )  is estimated by recursively minimizing 

     (    ) =∑   
   ω

t - n
│       - ∑                

 

   
. mn-i │

2
  (2.22) 

in which, the sequence {mn}
t
n=0   is associated to the survivor      (    ). The 

weighting factor 0 < ω < 1 is introduced to limit the memory of the algorithm to 

allow for slowly time varying channels. The resulting algorithm is the following. At 

the t-th step, for all possible transitions     →      the following error is calculated 
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   (    ,     ) =          (    )
T
     (    ,     ) (2.23) 

After that a step of the Viterbi algorithm processed that referring Eq. (2.13). For each 

phase and conversion step    →      that encompass the Kalman gain vectors, the 

reverse of the correlation matrices, the survivors and the channel impulse replies are 

updated accordingly.       

     (    ) = 
                               

                                                    
 (2.24) 

              
 

 
                                                 ] (2.25) 

     (    ) =    (  ) +      (    )                   (2.26) 

In the further steps the above updated channel vectors are used. Then in the further 

step of algorithm the above updated station vectors uses. It is been noticed that a 

survivor order, a station vector, a Kalman gain vector and an assessed of reverse 

correlation matrix is linked up.  

 

Example - 3 

 

This example explains Recursive Least Mean Square (RLS) algorithm. The process 

of transmitting signal is similar to Example 1 with a little difference at the receiver 

side that is computing errors for all possible transitions    →     . 

                                                  (2.27) 

subsequently, computing state metric    for each branch in accordance with the 

following equation. 

                 
  

                                ]  (2.28) 

with initial value   =0. 

for each phase and conversion    →      that expand the survivors, the Inverse of the 

correlation metrics, kalman gain vectors and station impulse responses updates due 

to   
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     (    ) = 
                               

                                                    
 (2.29) 

              
 

 
                                                 ] (2.30) 

     (    ) =    (  ) +      (    )                   (2.31) 
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Figure 6: Viterbi RLS 

 

After that the above updated station vectors used in the further process of algorithm. 

The minimum arrived branch metric which summed with the previous state metric 

(  ) is chosen as in Eq. (2.28) To determine the value of next state metric (      ). 

This procedure is ongoing to the last bit of the sequence. Now, four state metric 

values are computed, to detect the survivor path and determine the estimation 

channel coefficient, the minimum state metric value is selected. After that, tracing 

back is done until the initial state to estimate the sequence.  
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CHAPTER 3 

 

COMPUTER SIMULATION RESULTS for CHANNEL ESTIMATION 

 

3.1.  The Application of The Least Mean Square (LMS) 

 

This chapter proposes the methodology of our work. Our work is performed the 

channel estimation technique using per-survivor processing which means blind 

estimation technique. It estimates the channel impulse response (CIR) and sequence 

at the receiver side. The system is represented in Fig. 7 as shown below 

Signal

source
modulator ISI channel + Detector

 channel

estimation

noise

                                                        Figure 7: System model 

 

The source generates the data randomly which is represented by   

                       (3.1) 

where      {1 , 0}. 

The data is modulated to binary phase shift keying (BPSK) by M vector 

                       (3.2) 

where      {1 , -1}. 

The transmitted signal is represented by 

       (    ,     ) = ∑         
 
    (3.3) 
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where                            
  exemplifies a vector that consists of the 

current state (    ,     ) with the current input bit     and    is a channel 

coefficient represented by the vector (  ,   ,….,   ), since the value of (L=2). After 

obtaining the transmission signal, sending it over Additive White Gaussian Noise 

channel (AWGN) with signal to noise ratio. 

  SNR(db) =10          (3.4) 

where     =   
  

  
  and    = 

  

 
  . 

The initial state is equal to (-1 -1). To detect the next state, shifting the initial state 

with the input sequence bit by bit as explained in Fig. 10. 

   

                                     

                                                     -1      -1     -1                                     

 

                                   

                                                             -1       -1     -1 

 

Figure 8: Shift state 

 

The received signal Y can be expressed as follow: 

    =    + n (3.5) 

At the receiver side, we use LMS algorithm. At the t-th step, for all potential 

transitions    →     , the following error is computed considering that the initial 

channel coefficient (  ) equals to (0 0 0) 

    (    ,     ) =    -     (    )
T
     (3.6) 

𝑚𝑡 𝑚𝑡   𝑚𝑡   

NEXT 

STATE 
PREVIOUS 

STATE 
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Now, the vector h is time and state dependent. Then, one step of the Viterbi 

algorithm is pre-formed to get. 

                 
  

                              
  ] (3.7) 

The channel estimates     (    ) are then updated according to stochastic gradient 

algorithm using. 

     (    ) =    (  ) + ß                    (3.8) 

Forward LMS algorithm (   →     ) estimates the forward channel coefficient  ̅   

and the sequence. This operation is done by deciding the survivor path from 

choosing minimum value of the state metric (  ). 

 

In backward LMS algorithm (   →     ) , it is similar to forward LMS algorithm 

with a little bit difference that starts from the last bit as initial bit and updates the 

backward channel coefficient  ̅    down to   . Finally, we got the values of the 

channel estimation from determining the survivor path. 

 

Bidirectional LMS algorithm [40] is the average of forward  ̅   and backward  ̅   

channel coefficients as in Eq. (3.9). Where we compute the channel coefficient for 

forward and backward algorithms. 

 ̅    = 
 ̅     ̅   

 
 (3.9) 

The error square of channel impulse response is 

              ̅                 ̅                 ̅      (3.10) 

Where h is the channel coefficient in the transmission and   ̅   is the estimated 

channel coefficient. 
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3.2. The Simulation Results 

 

The simulation result of classical least mean square (LMS) with the calculation of 

forward, backward and bidirectional algorithms [39] are shown in Fig. 9. 

 

Figure 9: Forward, Backward and Bidirectional LMS 

 

Fig. 10 shows an algorithm which is similar to classical forward (LMS) algorithm 

with a little bit deference that this algorithm uses iterations. In the first iteration, 

estimate the sequence and the channel coefficients. After that, use those channel 

coefficients as initial channel coefficients for the next iteration. Apply mathematical 

computations on estimated sequence only and estimate channel coefficients again. 

Repeat this operation for a sufficient number of iterations. 
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Figure 10: LMS with feedback 

 

At another trying to improve the estimation of channel coefficients with average 

method of the estimated coefficient. 

 

a) Channel coefficient = (       +        +       +       ) / 4. 

 

Figure 11: Average of all estimated coefficient 
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b) Channel coefficient = average of the best two survivor paths. 

 

Figure 12: Average between the best two 

 

c) Channel coefficient = 0.4 * h ( the best channel coefficient ) + 0.3 * h ( the 

second best channel coefficient ) + 0.2 * h ( the third best channel coefficient 

) + 0.1 * h ( the best fourth channel coefficient ). 

Figure 13: Channel coefficient by ratios 
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At other hand Channel coefficient = 0.5 * h ( the best channel coefficient ) + 0.3 

* h   ( the second best channel coefficient ) + 0.1 * h ( the third best channel 

coefficient ) + 0.1 * h ( the best fourth channel coefficient ). 

Figure 14: Channel coefficient by other ratios 

 

As mentioned before, the  survivor path is taken and the other path is neglected at 

each state. In this algorithm, we used the neglected path to employ it by multiply it 

by the Z factor and denoted the result as a correction term. This correction term is 

added to the updating channel estimation or subtracted from it. As we mentioned 

before.  
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3.2.1. The Addition of The Compensating Term  

 

1)      (    ) =    (  ) + ß                                                                (3.11) 

      After that, Channel coefficient =      (    ) + Z *  ̅     (    )   

 

a) Z = 0.001 

 

Figure 15: Simulation results with addition of correction term (Z=0.001) 

 

b) Z = 0.0001 

 

Figure 16: Simulation results with addition of correction term (Z=0.0001) 

 

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

LMS algorthim

SNR in dB

A
v
e
ra

g
e
 C

h
a
n
n
e
l 
E

s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

forword LMS

addition correction term

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

LMS algorthim

SNR in dB

A
v
e
ra

g
e
 C

h
a
n
n
e
l 
E

s
ti
m

a
ti
o
n
 E

rr
o
r

 

 

forword LMS

addition correction term



33 
 

c) Z = 0.00001 

 

Figure 17: Simulation results with addition of correction term (Z=0.00001) 

 

d) Z =    * 0.01 

 

Figure 18: Simulation results with addition of correction term (Z =    * 

0.01) 
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e) Z =    * 0.01 

 

Figure 19: Simulation results with addition of correction term (Z =    * 

0.01) 

 

2)      (    ) =    (  ) + ß                                                               (3.12) 

After that, Channel coefficient = (1-Z) *      (    ) + Z *  ̅     (    )   

 

a) Z = 0.01 

 

Figure 20: Simulation results with addition of correction term (Z = 0.01) on 

both sides 
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b) Z = 0.001 

Figure 21: Simulation results with addition of correction term (Z = 0.001) on both 

sides 

 

c) Z = 0.0001 

 

Figure 22: Simulation results with addition of correction term (Z = 0.0001) on both 

sides 
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d) Z =    * 0.01 

 

Figure 23: Simulation results with addition of correction term (Z =   * 0.01) on both 

sides 

 

e) Z =     * 0.01 

 

Figure 24: Simulation results with addition of correction term (Z =    * 0.01) on 

both sides 
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f) Z =     * 0.01 

 

Figure 25: Simulation results with addition of correction term (Z =    * 0.01) on 

both sides 

 

g) Z =     * 0.01 

 

Figure 26: Simulation results with addition of correction term (Z =    * 0.01) on 

both sides 
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3.2.2. The Subtraction of The Compensating Term 

 

1)      (    ) =    (  ) + ß                                                                      (3.13) 

      After that, Channel coefficient =      (    ) -  Z *  ̅     (    )   

 

a) Z = 0.001 

Figure 27: Simulation results with subtraction of correction term (Z = 0.001) 

 

b) Z = 0.0001 

Figure 28: Simulation results with subtraction of correction term (Z = 0.0001) 
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c) Z = 0.00001 

 

Figure 29: Simulation results with subtraction of correction term (Z = 0.00001) 

 

d) Z =     * 0.001 

 

Figure 30: Simulation results with subtraction of correction term (Z =    * 0.01) 
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e) Z =     * 0.001 

 

Figure 31: Simulation results with subtraction of correction term (Z =    * 0.01) 

 

f) SNR= 0 to 5 where Z =     * 0.001  

     And SNR=6 to 10 where Z =     * 0.001 

 

            Figure 32: Simulation results with subtraction of correction term (Z =    * 

0.01 and     * 0.01  ) 
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2)      (    ) =    (  ) + ß                                                                    (3.14) 

       After that, Channel coefficient = )1-Z) *      (    ) -  Z *  ̅     (    )   

 

a) Z = 0.001 

 

Figure 33: Simulation results with subtraction of correction term (Z =  0.001) on 

both sides 

 

b) Z = 0.0001 

Figure 34: Simulation results with subtraction of correction term (Z = 0.0001) on 

both sides 
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c) Z =     * 0.001 

 

Figure 35: Simulation results with subtraction of correction term (Z =    * 0.001) on 

both sides 

 

d) Z =     * 0.001 

 

Figure 36: Simulation results with subtraction of correction term (Z =    * 0.001) on 

both sides 
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From the simulation results above, we found a lot of method to improve the 

estimation of the channel impales response (CIR). From those results, we noticed 

that some of the methods are affective at low signal to noise ratio but they are 

ineffective at high signal to noise ratio as shown in Fig. 20, Fig. 23, Fig. 25, Fig. 28, 

Fig. 30, Fig. 34 and Fig. 35 . Another method for estimating the channel coefficient 

is taking the average of all survivor paths, average of the best two paths or taking the 

incommensurate ratios of the paths. Also, addition or subtraction a constant as a 

correction term. All of these methods have worse estimation than classical LMS 

algorithm as shown in Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16,   

Fig. 17, Fig. 18, Fig. 19, Fig. 21, Fig. 22, Fig. 24, Fig. 26, Fig. 27, Fig. 29, Fig. 31 

and Fig. 33. Finally, the best results are gotten from the method of addition and 

subtraction a constant which is multiplied by the variance of the AWGN as in  Fig. 

32 and Fig. 36. 
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CHAPTER 4 

 

CONCLUSION 

 

The aim of this thesis is to estimate the value of the channel impulse response (CIR) 

closer to the real value. A class of algorithms for MLSE have been used, based on 

the principle of performing signal processing operations, needed for the estimation of 

unknown parameters, in a per-survivor method. Introduced by several authors for 

state complexity decrease in Inter-symbol Interference environment, DDFSE and 

RSSE make use of this principle. A number of algorithms have been used that apply 

the per-survivor processing PSP to estimate the sequence and the Channel Impulse 

Response (CIR) as Least Mean Square (LMS) and Recursive Least Square (LS). By 

using LMS in the presence of the unknown quantity channel parameter to estimate 

the channel impulse response. 

 

The receiver design was carried out in a simulated environment developed in 

MATLAB. Through the use of a simulated environment, and disregarding some 

practical parts of the design like symbol synchronization, an efficient receiver design 

was developed, with most of the effort going into developing the signal processing 

algorithm for the receiver. 

 

By applying LMS over AWGN channel we got the value of channel impulse 

response (CIR). A part is added to (or subtracted from) the equation of updating 

channel estimation as a correction term to improve CIR values. The correction term 

has two fractions, the first one is the neglected path which assumed that it has 

information, the second one is the variance of the noise AWGN channel. By 

multiplying these tow fractions, better estimation values for the CIR are achieved. 

From the results that we obtained, we conclude that the neglected path has 
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information and it is possible to benefit from it to estimate the channel impulse 

response. 

 

4.1.  Suggestions for Future Research 

 

As seen throughout the thesis, there are a number of observations which suggest that 

further improvements could be achieved that could not be implemented due to time 

and resource constraints. In Recursive Least Square algorithm, correction terms can 

be used to achieve better estimation values for the channel impulse response. Hence, 

the neglected paths can be used as  correction terms to update channel estimation. 

Moreover, hardware implementation of the suggested structure can be applied by 

using FPGA or DSP boards.  
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