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ABSTRACT 

 

 

POSITION ESTIMATION USING SATELLITE IMAGES 
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M.Sc., Department of Mathematics and Computer Science 

Supervisor: Assoc. Prof. Dr. Hadi Hakan MARAŞ 

 

October 2014, 111pages 

 

 

    This thesis deals with estimating position and orientation in real time, using visual 

measurements. A system has been developed with which to solve this problem for 

unprepared environments, assuming that a map or scene model is available. 

Compared to ‘camera-only’ examples, the developed system is accurate and robust, 

and can handle periods of uninformative or no visual data, reducing the need for high 

frequency visual updates. The system achieves real-time pose estimation via the use 

of a framework of nonlinear state estimation for which state space models have been 

developed. System performance was evaluated using an augmented reality application 

in which the system output was used to superimpose virtual graphics on the live video 

stream. Furthermore, experiments were performed in which an industrial robot 

providing ground truth data was used to move the sensor unit. In both cases the 

system performed well. Calibration of the relative position and orientation of the 

camera was found to be essential for proper system operation. A new and easy-to-use 

algorithm with which to estimate these data was developed using a stereo visual 

approach. Experimental results revealed that the algorithm works well in practice. 
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UYDU GÖRÜNTÜLERİNİ KULLANARAK POZİSYON TAHMİNİ BULMAK 

 

 

HAZZAA, Omar Amil 

Yüksek Lisans, Matematik ve Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Doç. Dr.Hadi Hakan MARAŞ 

 

Ekim 2014, 111 sayfa 

 

 

  Bu tezde, görsel ölçümler kullanılarak, gerçek zamanlı konum ve yön tahminden 

bahsedilmiştir. Bu tezde hazırlıksız ortamlarda bir harita veya bir senaryo modeli 

mevcut olduğu varsayılarak, bu sorunu çözmek için bir sistem geliştirilmiştir. Sadece 

camera örnekleri ile kıyaslandığında, geliştirilmiş sistem doğru, sağlam, yüksek 

frekans ve görsel güncellemelerin ihtiyacını azaltarak, uninformative veya hiçbir 

görsel veri olmadan işleyebilmektedir. Geliştirilen sistem gerçek zamanlı durum 

uzayının modellerini geliştirerek doğrusal olmayan durumun çerçeve kullanımı 

yoluyla tahmini poza ulaşmaktadır. Sistem performansı sistem çıkışının canlı video 

akışını, sanal grafiğe ekleyerek artırılmış gerçeklik uygulamasını kullanımıyla 

geliştirilmiştir. Ek olarak, deneyler sensor birimini hareket ettirmek için bir 

endüstriyel robota gerçek yer verilerini sağlayarak yapılmıştır. Her iki durumda da, 

sistem iyi bir performans sergilemiştir. Göreli konumu ve yönelimi kameranın 

kalibrasyon sisteminin düzgün çalışması için gerekli olduğu tespit edilmiştir. Görsel 

stereo yaklaşımı ile kolay kullanımlı algoritma kullanarak, yeni bir algoritma 

sunulmuştur. Deneysel sonuçlar ise geliştirilen algoritma uygulama kısmında iyi 

performans ile çalıştığını gösterilmiştir.  

Anahtar Kelimeler: GPS, Konum Tahmini, Vizyon Yerelleştirme, Stereo Görme. 
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CHAPTER 1 

 

INTRODUCTION 

 

  The area of robotics has received great interest from researchers across various fields 

in recent years. Indeed, the idea of using a robot rather than a human to carry out a 

specific task is fascinating. Robotics involves a wide variety of technologies, ranging 

from artificial intelligence algorithms to the physical machines themselves. These 

components enable the construction of a system whose potentially huge capabilities 

are greater than those of its basic components. Robotics systems can provide 

functions previously achievable through the use of traditional machines or through 

humans working with traditional tools. 

  Robotics systems can be employed for several different functions, ranging from car 

assembly to medical surgery [1]. The fundamental principle involved in robot 

development is the ability to make such systems perform their tasks by themselves, 

that is, 'autonomously’. Mobile robots are machines that can move autonomously, 

either in space, on the ground or underwater. Such vehicles are usually unmanned, 

meaning that no humans are onboard. Mobile machine movement is performed via the 

use of sensors which sense the environment, with on-board computational resources 

guiding the robot’s passage. 

  The main application of such robotic vehicles is their ability to access locations out 

of reach or which pose a significant risk to any human presence. For example, 

although human divers may dive to depths of one hundred meters or more, 

environmental factors such as pressure, light and currents limit further exploration of 

the vast volume of the Earth’s oceans to mobile machines [2]. Robotic vehicles are 

also effectively employed for routine functions in environments which are 

inappropriate for humans, due to factors such as darkness, health risks and noise. 
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  Mobile robot localization is the ability of a robot to understand and sense the 

properties of its environment in order to reach a specific location more efficiently, 

reliably and accurately. At the first instance, it may seem a trivial task to navigate a 

robot when compared to brain surgery or automobile manufacture. However, the latter 

tasks are so carefully planned and structured that they are essentially high-precision 

positioning applications for highly specialized tools. In contrast, the problem with 

robot navigation is associated with a lack of any such high precision, with no 

databases available as to floor plans and any objects in the environment to be 

navigated. Furthermore, the environment may be unknown (with obstacles), there 

may be people moving around, not to mention the presence of deformable objects 

such as plants and toys. Dealing with such a variable environment poses a plethora of 

challenges to a mobile system. 

 

1.1 Overview 

   Position awareness is the result of successful self-localization. Self-localization can 

thus be defined as answering the question “where am I?”. Successful localization with 

high accuracy enables the establishment of the relationship between current position 

and a framework such as a map, i.e., “I am in region A on the map”. Position 

estimation is an important ability for aircraft, supporting navigation and other 

position-dependent activities. Position estimation is therefore now an essential part of 

modern life. 

   A mobile robotic system that navigates huge-scale environments needs to know its 

location in the real world in order to successfully plan its path and its movements. 

This requires the establishment of a close relationship between environment and 

framework. The general approach employed to solve this problem is to provide the 

system with a detailed description of the environment. 

   Position estimation systems in almost all aircraft now depend blindly on on-board 

GPS receivers. However, the GPS signal is often quite weak and can be jammed in 

cheap and simple ways. Indeed, the United States has identified GPS as a national 

security threat due to its susceptibility to jamming [3]. Furthermore, GPS service 

unavailability is frequent due to dense cloud cover, solar flares, and permanent 

obstructions such as buildings and trees. A more serious threat is represented by 
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hostile action, with the in-flight loss of GPS service potentially leading to the aircraft 

crashing (especially robotic aircraft such as unmanned aerial vehicles or UAVs). As a 

result of this GPS fallout problem, the safe use of UAVs in populated areas is still not 

guaranteed, "except in rare cases such as war zones"[4]. 

    Researchers are currently making a huge effort to solve this problem using many 

different methods. One possible solution is the development of a localization system 

based on the use of a visual system. In fact, the common video camera is a highly 

suitable device with which to attempt to solve the localization problem, considering 

its ability to sense the surrounding environment. Indeed, virtually all aircraft already 

employ a multi-camera system as an essential in-flight sensor tool. These cameras are 

quite light and consume less power, while the images produced contain a huge 

amount of information. On the other hand, cameras are quite sensitive to light 

conditions such as sun reflection.  

   Vision-based localization using an optical sensor system such as a photometric 

device uses the spatial features found in the visual environment of the camera to 

determine the system’s location. However, multiple techniques are employed for 

navigation and positioning through the use of visual information; the main 

components of each of these techniques are model representations of the environment, 

location detection algorithms, and sensing models. Further functions include image 

processing, mapping, motion plan generation, and motion execution. In robot 

navigation, the task of determining position and orientation via image analysis is 

known as Visual Odometry (VO), the architecture of which is shown in Figure 1 [5]. 

The VO system focuses on estimating camera position and displacement, and has a 

wide range of applications in localization and target tracking. 

 

  

 

 

 

Figure 1 Visual odometry system 
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1.2 Motivation  

      Recent years have seen a growing global market for drone aircraft, with demand 

arising in parallel in both military and civil fields. In the former there is an urgent 

need to secure borders and to improve reconnaissance and surveillance, as well as to 

access places unreachable to humans. Military drones are now employed to direct 

more accurate attacks, as well as to gather information directly from the battlefield. 

The recent growth in civilian applications is also very noticeable, such as the 

shopping website Amazon’s aim to deliver goods to consumers via unmanned aircraft 

[6], and the Government of Dubai delivering parcels to citizens in the same manner 

[7]. Internet giants Google are also keen to buy factories manufacturing such 

machines. This indicates that the near future will witness a genuine revolution in the 

field. The motivation behind the present project was thus to increase the reliability of 

these aircraft, whose blind reliance on GPS has proven to be a real obstacle to their 

expanded use inside more densely-populated areas. 

 

1.3 Objective 

     The main aim of this project was to develop an application for position estimation 

that can work under different circumstances at both high speed and with high 

accuracy. Such a system would work to support navigation in unmanned aircraft in 

situations of a sudden loss of GPS service for any reason, thereby offering these 

robots greater reliability. 

Basic image-based localization frameworks typically exhibit the following 

limitations: 

1- Scale: Elements in different images have different scales.  

2- Orientation: Images are rotated with respect to one another.  

3- Illumination: Variation in illumination represents a significant problem for 

accurate image matching.  

4- Occlusion: Objects that are separate in the 3D world might interfere with each 

other in 2D image planes.  

5- Matching: The matching of objects in terms of planar, textured or edge.  
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6- Clutter: Difficulty in distinguishing between the background and object 

boundaries.  

This thesis represents an attempt to solve these limitations using the following 

methods:  

1- Consistency: Position detection should be insensitive to variation in noise.  

2- Accuracy: Position detection should be as accurate as possible.  

3- Speed: Position identification will be useless if not completed with sufficient 

speed. 

 

1.4 Organization of the Thesis 

This thesis comprises 6 chapters organized as follows:  

Chapter 1: The introduction.  

Chapter 2: Discusses the literature reviewing the development of image-based 

positioning systems.  

Chapter 3: Focuses on image geometry.  

Chapter 4: Focuses on image processing.  

Chapter 5: Application.  

Chapter 6: Results. 
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CHAPTER 2 

 

LITERATURE REVIEW FOCUSSING ON THE DEVELOPMENT OF 

IMAGE-BASED POSITIONING 

 

 

     Computer vision is now a major part of modern navigation systems, with many 

image-based strategies proposed since the early 1980s based either on images stored 

in databases or on physical landmarks. The various techniques employed depend on 

the nature of the environment in which the robot moves, the limits of the known 

sphere and the type of sensors with which the robot is supplied. Position estimation 

techniques can be divided into four general types: 

 

A- Landmark-Based methods. 

 

B- Trajectory integration and dead reckoning. 

 

C- Standard reference patterns. 

 

D- A priori world model knowledge, matching sensor data with this world model 

for position estimation. 

 

2.1 Landmark-Based Methods 

       
      A very popular technique, landmark-based position estimation involves the robot 

determining its own position by finding landmarks in the sphere. As the extent of 

these landmarks is known, their general position relative to the robot can be 

measured, and thus the position and direction of the robot can be triangulated from 

these measurements with reduced uncertainty. This technique can make use of 

naturally occurring landmarks such as hilltops, roof edges and the tops of buildings, 

or infrared beacons placed at known positions in the environment. The essential 

requirement of the landmark-based approach is that the robots should have the ability 

to locate and identify landmarks, but this is not an easy function. Position estimation 
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methods based on landmarks vary considerably depending on the type of sensors used 

(vision sensors or distance sensors) and the class of the technique, i.e., the type of 

features to be identified (such as streaks, corners or point sources). Furthermore, a 

huge number of landmarks are often needed, the example of which are shown in 

Figure 2.  

  A variety of landmark-based techniques have been proposed for position estimation 

[8]. McGillem and Rappaport describe autonomous vehicle navigation based on an 

infrared location system. They employ an active approach to position calculation 

involving three infrared torches to extract the texture of the sphere, as well as a 

scanning optical system "capable of measuring the angles between a pair of beacons" 

[9]. Nasr and Bhanu developed a method of perception reasoning based on landmark 

recognition, together with an expectation paradigm for robot navigation [10]. 

Sugihara developed an approach with which to estimate the position of a robot 

equipped with a monocular camera. The location of this unmanned vehicle is 

established using images captured by the camera, together with a map of the 

environment in which the vehicle is to navigate. In the images recorded by the 

unmanned vehicle, with the visual axis corresponding to the surface, only vertical 

edges are detected. The map provides points where vertical edges are located. 

  Sugihara then classifies the problem of position estimation into two types. In the first 

type, all vertical edges found in the camera images are given, with the robot location 

established by finding a similarity between the vertical edges shown in the images and 

those on the known map. In the second problem type, vertical edges are 

distinguishable from one another, but only the order in which they are visible in the 

image from left to right is supplied. The limitations are assumed chiefly from a 

computational complexity standpoint [11]. 

   Hui et al. proposed an approach with which to solve the indoor localization problem 

via the use of barcode landmarks. These intelligent landmarks are marked with a red 

color. When the robot obtains an image recorded by a color camera in RGB, it first 

changes the color system to the HSV system. After searching for the red image, the 

robot then calculates its position relative to the landmark based on the formula 

I=(x,y,¥), where x,y are the position co-ordinates and ¥ is the rotation [12]. Similarly, 
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Jang presented a color detection approach based on the chromaticity of special 

landmarks to solve the indoor position estimation problem [13]. 

Many of the landmark-based methods considered above suffer from the following 

disadvantages:  

1- Assume the provision of data regarding landmarks located inside the machine 

sphere domain. 

2- Require an elementary position in order to start landmark testing. 

3- Depend on the robot’s vision and ability to identify landmarks from frames 

and to identify shape properties such as attitude with respect to the robot’s 

current position. 

4- Require a database of landmarks found on the flight path which are then 

searched for in the frames. 

 

 

 

 

 

 

 

 

  

Figure 2 Example of landmark 

 

 

2.2 Trajectory Integration and Dead Reckoning 

 

     Another type of method employed to estimate robot localization and pose is 

trajectory integration and dead reckoning. In this technique the unmanned vehicle 

constantly stores information regarding its present location and pose; as it changes its 

position it modifies the location by dead reckoning, using the camera to sense its 

environment relative to the new location. Features are revealed by the camera when 

monitoring specific positions of the unmanned vehicle, with data then employed to 

build a 3D model of the world. When the unmanned vehicle changes its position, new 
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features are detected and reiterated to correspond with the old features. A certain 

degree of unmanned vehicle activity is also recognized by its positioning systems. 

The on-board positioning system of an unmanned vehicle uses the information 

obtained from the estimation of these activities to predict the position of new features 

in the 3D model of the world. This process is used to help the system reduce the 

search space and to build up a relationship between the features and the 3D model of 

the world in the view. The parameters of unmanned vehicle motion between the new 

and old locations are obtained precisely because the relationships were established by 

cameras. This solution enables the position of the unmanned vehicle to be obtained 

with a high degree of accuracy. This process proceeds as a loop and thus the 3D world 

model is updated continuously. Figure 3 displays example of this type of approach. 

    Moravec was the first researcher to develop an autonomous system for unmanned 

vehicle navigation based on the use of binocular vision. He also defined properties 

with which to reduce features in the obtained frame from coarse to fine, with a 

correlation strategy used to establish a correspondence between features in different 

frames selected by the operator [14]. Matthies and Shafer discussed the employment 

of the 3-D Gaussian distribution, finding this approach to be more appropriate for use 

with binocular vision to reduce triangulation errors associated with limited sensor 

resolution [15]. In their approach they used a method to determine the 3-D Gaussian 

error distribution parameters of mean and covariance for binocular frames. They also 

developed a technique with which to constantly update unmanned vehicle location, 

taking into consideration the Gaussian error distribution of the features, as well as 

moving parameters and their error co-variance. Kalman filtering was employed in an 

efficient frequent process to find the current state of the dynamic system from a 

concatenation of testing and noisy measurements [16]. Kalman filtering is a 

probabilistic approach typically used for forward inference in linear systems with 

Gaussian noise.  

Faugeras and Ayache also tried to solve the limitations associated with the 

autonomous navigation of an unmanned vehicle, specifically employing a more 

mathematical and strict approach. They used three vision sensors to build a stereo 

system, with target features then found using a 3-D model of the environment to 

detect line segments. This model was created by combining all optical information 

obtained at many different locations. The final result of this approach was the creation 
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of a number of 3D line segments, which were linked to the coordinate frames and 

related by accurate motion [17]. Errors in the 3D model and line segment 

measurements were tackled via the use of a Kalman filtering technique. Similar to that 

employed by Faugeras and Ayache, Crowley developed a line segment-based 

technique to create a model of the environment, with Kalman filtering again used to 

reduce variance error. However, whereas the former authors used a vision sensor to 

obtain their data, the latter used a circular ring of 24 ultra-sound sensors [18]. Chatila 

and Laumond created a model of the environment and a position referencing system 

via the use of multi-laser range finder sensors to measure depth, and optical shaft 

encoders on the drive wheel axis to obtain trajectory integration for their unmanned 

vehicle "HILARE" [19]. 

     In the above techniques, the position estimation strategy depends on the 

representation used for the sensory observations and the environment. Miller 

suggested a method with which to solve the indoor position estimation problem for an 

unmanned vehicle involving the construction of a model for the indoor surface of the 

real world. Ranging devices such as sonar and laser range finders enabled the system 

to move around obstacles and walls [20]. However, this approach does not work in 

open space because wall and obstacle representation requires a huge amount of 

information for the unmanned vehicle due to its projection on the floor, and thus the 

latter’s motion is limited. The general key to this approach is the fact that it is easy to 

make a map of the environment by linking regions with frame coordinates. Features 

represented by obstacles and walls are employed to build line segments, with end 

point locations set for the region using the frame coordinate system. Region edges are 

identified with labels in order to allow the system to refer to adjoining regions. All 

regions are divided into four types (0--F, l--F, 2—F, and 3--F), with the environment 

floor for the unmanned vehicle including 3 degrees, two representing translation (x,y) 

and the other orientation. A further type "JF" is employed to reduce j degrees via the 

use of sonar to obtain range information. As well as the map model, Miller also 

presented an approach for location estimation involving a guide search paradigm. 

Because of the limited space of this type of environment, the unmanned vehicle can 

determine the size of positional information in an estimated fashion. If the unmanned 

vehicle is in the first type of region (0--F), the only information available would be in 

the form of extrapolations from its last known position, obtained using the unmanned 
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vehicle’s ability to perform dead reckoning. When the unmanned vehicle must move 

to region 1--F or higher, positional information can be detected by reading the state of 

several sensors and by applying a heuristic search algorithm over the table of matches 

between walls and map borders. This approach requires the use of one-time matching 

between features and the map border, with a simple geometric calculation then 

applied to process the location and orientation of the unmanned vehicle. 

 Elfes employed a grid-based representation technique known as "Certainty Grids" to 

build a workspace map for an unmanned vehicle. This approach involved creating a 

rectangular grid model of the environment floor, with each grid containing spatial 

information recognized by the unmanned vehicle via the use of laser sonar [21]. The 

author additionally developed a fast algorithm for two maps of the aforementioned 

area to determine vehicle displacement, angle, and the advantage of the match. This 

data is then used to identify the position and administration of the adaptable 

unmanned vehicle. 

 

 

 

 

 

 

 

Figure 3 Example of trajectory integration and dead reckoning  

 

2.3 Standard Pattern 

  Another approach aimed at the accurate estimation of an unmanned vehicle’s 

movement direction and position involves the placement of accepted or standard 

patterns in the environment. Figure 4 displays an example in the form of lamps placed 

on an airport runway. Once the unmanned vehicle identifies these patterns, its location 

can be estimated based on the accepted area of the model and its geometry. Such 

models are designed to produce a huge amount of geometric information when the 

pattern is subject to the perspective projection of the vision sensors. Due to factors 
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such as noise, ambiguous objects may be found. The designed approach will avoid 

ambiguous interpretations, although a minimum level of camera a priori knowledge is 

desirable. These methods are decidedly advantageous for those applications which 

require a degree of accuracy with respect to unmanned vehicle position location. 

Simple path recognition systems can be employed to locate the unmanned vehicle by 

recognizing the mark (i.e., the standard pattern). Researchers have employed a variety 

of signs, patterns and geometry techniques for location estimation [22, 23]. 

 

 

 

 

 

 

 

Figure 4 Example of standard pattern 

 

2.4 A Priori World Model Knowledge 

When sufficient data is available regarding the environment in which the unmanned 

vehicle is to navigate, researchers have employed unique approaches to solve the 

location problem. In such scenarios the environment can be divided into two types: 

indoor and outdoor. In Figure 5, information for a DEM. A variety of location 

estimation techniques can be employed. Essentially, the unmanned vehicle senses the 

environment by using its on-board vision system, detecting the correspondence 

between what it sees and the provided model of the environment (CAD or DEM). 

Navigation in the world is then performed by estimating pose and location based on 

this correspondence. One problem with this type of method is that sensor readings and 

environment model data can be in various formats. For example, for an unmanned 

vehicle provided with a CAD model of an apartment and an RGB on-board camera, as 

the CAD model uses three-dimensional data and the camera two-dimensional images, 

the two types of information are difficult to match. This type of problem has attracted 

the attention of many researchers, including Kak et al. [24]. In their work the latter 
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authors present the "PSEIKI" system, which uses logic in a hierarchical framework to 

interpret images obtained by vision sensors. The authors also discuss how "PSEIKI" 

can be employed for the self-location of an unmanned vehicle, with PSEIKI output 

data used in combination with a navigational system in the unmanned vehicle 

“PETER” [24]. Vehicle position-encoders store estimates of its location and heading 

at each point. Errors are derived from many sources such as wheel slippage. However, 

the encoders, vision sensors and CAD model of the environment together generally 

provide an accurate estimation of vehicle location and direction. The general idea 

behind using encoders which generate CAD model data is to approximate vehicle 

location and to estimate that actually obtained by the on-board vision system. Matches 

are then built between features in the two images (expected and actual), and thus the 

position of the unmanned vehicle can be estimated with reduced uncertainty. 

Other researchers have employed a similar approach in developing a position 

estimation system. For example, Tsubouchi and Yuta constructed a navigation system 

for their unmanned vehicle "YAMABICO" by using a color camera as a vision sensor 

and a map for the working environment, taking into account real-time requirements 

[25]. Their presented system includes three functions, the first of which involves the 

generation of images by the on-board color camera. These images are then processed 

to extract perspective information based on the map model and coordinate 

transformation. The final function is to create a correspondence between the 

perspective data and the map model. A color camera was considered essential, as 

color images are invariant under shadow or light. 

 

 

 

 

 

 

 

Figure 5 Example of a priori world model knowledge 
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Chapter 3 

 

IMAGE GEOMETRY 

  Many types of imaging devices are available, from simple telescopes through to 

more complex devices such as video cameras, radio telescopes, and even the human 

eye. Invented in the sixteenth century, the first camera or "camera obscura" contained 

no lens, instead employing a pinhole to let in light and focus the rays onto the camera 

wall. In contrast, the modern cameras which replaced the pinhole model are equipped 

with (sometimes many) sophisticated lenses.    

  Image geometry can be defined as the spatial relationship between objects in the real 

world and objects in an image plane. The main application of image geometry is to 

correct distortion in digital images taken by a camera. Images taken by cheap cameras 

are often of low quality and suffer from significant distortion effects. These images 

must be corrected in order to be used in any survey. The world we live in is three 

dimensional, which means that any point in the "real world" space can be specified by 

three coordinates (X, Y, and Z). In contrast, an image is a two-dimensional plane, 

with points on this image accordingly represented by a two-dimensional coordinate 

system (X and Y). One of the main aims of computer vision is to recover the lost 'Z' 

axis. The present chapter focuses on the camera matrix and camera calibration, and 

how these are involved in recovering the 'Z' axis. 

3.1 Transformation 

  Transformations are used to solve many problems associated with computer vision. 

These transformations are also used in computer graphics. The following section 

discusses the transformations of translation, scaling and rotation. 
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3.1.1 Translation 

  Let us consider the point of an object in the real world ' P ' with the coordinates (X1, 

Y1, Z1). Assume point ' P ' is subject to translation by [DX DY DZ] respectively in the 

3D space. As a result of this process, a new point ' P´ ' is produced with three new 

coordinates (X2, Y2, Z2) in the 3D space, as given by the following equations: 

𝑋2 = 𝑋1 + 𝐷𝑋                                                  (3.1) 

𝑌2 = 𝑌1 + 𝐷𝑌                                                   (3.2) 

𝑍2 = 𝑍1 + 𝐷𝑍                                                   (3.3) 

These equations can also be written in matrix form as follows: 

[

𝑋2
𝑌2
𝑍2
1

] =  [

1 0 0 𝐷𝑋
0 1 0 𝐷𝑌
0 0 1 𝐷𝑍
0 0 0 1

]  *  [

𝑋1
𝑌1
𝑍1
1

]                              (3.4) 

[

𝑋2
𝑌2
𝑍2
1

] = T * [

𝑋1
𝑌1
𝑍1
1

]                                              (3.5) 

where T = [

1 0 0 𝐷𝑋
0 1 0 𝐷𝑌
0 0 1 𝐷𝑍
0 0 0 1

] 

'T' is called the "Translation matrix", for which the inverse translation matrix is given 

by: 

T´ = [

1 0 0 −𝐷𝑋
0 1 0 −𝐷𝑌
0 0 1 −𝐷𝑍
0 0 0 1

] 

We can verify that TT´ = T´T = I, where I is the identity matrix. 

 

3.1.2 Scaling 

     Let us consider the point of an object in the real world ' P ' with coordinates (X1, 

Y1, Z1). Assume that point ' P ' is scaled by [SX SY SZ] respectively in the 3D space. 
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As a result of this process, a new point ' P´ ' is produced with new coordinates (X2, 

Y2, Z2) in the 3D space, as given by the following equations: 

𝑋2 = 𝑋1 ∗ 𝑆𝑋                                                         (3.6) 

𝑌2 = 𝑌1 ∗ 𝑆𝑌                                                          (3.7) 

𝑍2 = 𝑍1 ∗ 𝑆𝑍                                                         (3.8) 

These equations can also be written in matrix form as follows: 

[

𝑋2
𝑌2
𝑍2
1

] =  [

𝑆𝑋 0 0 0
0 𝑆𝑌 0 0
0 0 𝑆𝑍 0
0 0 0 1

]  *  [

𝑋1
𝑌1
𝑍1
1

]                                 (3.9) 

[

𝑋2
𝑌2
𝑍2
1

] = S * [

𝑋1
𝑌1
𝑍1
1

]                                                  (3.10) 

                                    Where S = [

𝑆𝑋 0 0 0
0 𝑆𝑌 0 0
0 0 𝑆𝑍 0
0 0 0 1

] 

'S' is known as the "scaling matrix", the inverse of which is given by: 

S´ = [

1/𝑆𝑋 0 0 0
0 1/𝑆𝑌 0 0
0 0 1/𝑆𝑍 0
0 0 0 1

] 

 

3.1.3 Rotation 

     Let us consider the point of an object in the real world ' P ' with coordinates (X1, 

Y1, Z1). Denote the line between the origin point ' O ' (0, 0, 0) and point ' P ' as ' R ', 

and assume the angle between ' R ' and the X axis is θ. This process will produce a 

triangle from which we can obtain X1 and Y1 using the following expressions: 

X1 = R ∗ cosθ                                                          (3.11) 

𝑌1 = 𝑅 ∗ 𝑠𝑖𝑛𝜃                                                          (3.12) 
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   Now consider rotating point ' P ' about the Z axis by angle ø. This now means that 

the angle between ' R ' and the X axis is (θ + ø), and we can write the formulae for X2 

and Y2 as follows: 

X2 = R ∗ cos(ø + θ)                                                   (3.13) 

𝑌2 = 𝑅 ∗ sin (ø + 𝜃)                                                   (3.14) 

We can also simplify these formulae to the following: 

𝑋2 = 𝑅 ∗ (𝑐𝑜𝑠 ø ∗ 𝑐𝑜𝑠𝜃) − 𝑅 ∗ (𝑠𝑖𝑛ø ∗ 𝑠𝑖𝑛𝜃)                          (3.15) 

𝑌2 = 𝑅 ∗ (𝑠𝑖𝑛 ø ∗ 𝑠𝑖𝑛𝜃) + 𝑅 ∗ (𝑐𝑜𝑠ø ∗ 𝑐𝑜𝑠𝜃)                         (3.16) 

From equations 3.13 and 3.14 we can then write the formulae as follows: 

𝑋2 = 𝑋1 ∗ 𝑐𝑜𝑠𝜃 − 𝑌1 ∗ 𝑠𝑖𝑛𝜃                                         (3.17) 

𝑌2 = 𝑋1 ∗ 𝑠𝑖𝑛𝜃 + 𝑌1 ∗ 𝑐𝑜𝑠𝜃                                          (3.18) 

The above equations can be written in matrix form as follows: 

[

𝑋2
𝑌2
𝑍2
1

] =  [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0
0 0 1 0
0 0 0 1

]  *  [

𝑋1
𝑌1
𝑍1
1

]                               (3.19) 

[

𝑋2
𝑌2
𝑍2
1

] = A *  [

𝑋1
𝑌1
𝑍1
1

]                                                      (3.20) 

Where 'A' is: 

                         Either    R(θ, Z)   =[

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0
0 0 1 0
0 0 0 1

] 

                         Or         R(θ, X)   =[

1 0 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 0 1

] 
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                          Or        R(θ, Y)   =[

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃 0
0 1 0 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

] 

 

3.2 Perspective Transformation 

   Perspective transformation involves transforming a point from the real world 3D 

coordinate system to the 2D image coordinate system. The distance between the lens 

and the image plane is known as the focal length, here denoted ' f ' and the origin 

point as ' O ' in Figure 6.  

 

 

 

 

Figure 6 Pinhole camera model: a) origin at the lens, b) origin at the image plane. 

Using two equivalent triangles we can write the following: 

−𝑦

𝑌
=

𝐹

𝑍
                                                                   (3.21) 

The point in the image plane is actually upside down and for this reason 'y' is 

negative. 

Thus we can obtain 'x' and 'y' via the following equations: 

x = −
𝐹 ∗ 𝑋

𝑍
                                                               (3.22) 

y = −
𝐹 ∗ 𝑌

𝑍
                                                              (3.23) 

The above equations represent the perspective transform with the origin ' O ' at the 

lens. If the origin ' O ' is moved to the image, the perspective transform is defined by 

the following equations: 
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x =
𝐹 ∗ 𝑋

𝐹 − 𝑍
                                                             (3.24) 

y =
𝐹 ∗ 𝑌

𝐹 − 𝑍
                                                            (3.25) 

Due to the nature of the last two equations it is impossible to derive a perspective 

matrix, and thus another type of transformation known as "homogeneous 

transformation" is required to convert the Cartesian coordinate system data (X, Y, Z) 

into that for a homogeneous coordinate system (CX, CY, CZ, C). Transformation of 

each axis is carried out by multiplying a constant 'C'; the reverse transformation from 

the homogeneous coordinate system to the Cartesian coordinate system thus involves 

dividing all axis vectors (CX, CY, CZ) by 'C'. 

From the above we can define the perspective matrix as follows: 

P = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/𝑓 1

] 

and the inverse perspective matrix as: 

𝑃−1 =

[
 
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0
1

𝑓
1
]
 
 
 
 

 

The perspective transform which relates the homogeneous world coordinates to the 

homogeneous image coordinates is defined thus: 

[
 
 
 
 

𝐶𝑋
𝐶𝑌
𝐶𝑍

−
𝐶𝑍

𝑓
+ 𝐶

]
 
 
 
 

=  [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/𝑓 1

] ∗ [

𝐶𝑋
𝐶𝑌
𝐶𝑍
𝐶

] 

 

3.3 Camera Model  

   From the above section we know that the perspective transform relates the world 

coordinates with the image coordinates when the camera is located at the origin of the 



02 
 

world coordinates. For this reason, in real life we need to translate and rotate the 

camera to bring the object of interest to the field of view. This means that the camera 

model contains several transformations besides the perspective transform. 

   Assuming that the camera is at the origin of the real world coordinates, we first need 

to translate by the G matrix and then rotate by θ counterclockwise about the Z axis 

(matrix R (z,-θ)). A further rotation of ø counterclockwise about the X axis (matrix 

R(x,-ø)) is then required, followed by translation by (r1 r2 r3) (matrix of C).  

    From the above we can relate the homogeneous coordinates of the real world (Wh) 

with the homogeneous coordinates of the camera image (Ch) as follows: 

𝐶ℎ = 𝑃 ∗ 𝐶 ∗ 𝑅(−ø, 𝑋) ∗ 𝑅(𝜃, 𝑍) ∗ 𝐺 ∗ 𝑊ℎ                              (3.26) 

where 

P = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/𝑓 1

] 

C = [

1 0 0 −𝑟1
0 1 0 −𝑟2
0 0 1 −𝑟3
0 0 0 1

] 

G = [

1 0 0 −𝑋1
0 1 0 −𝑌1
0 0 1 −𝑍1
0 0 0 1

] 

R (-θ, Z)   =[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0

0 0 1 0
0 0 0 1

] 

R (-ø, X)   =[

1 0 0 0
0 𝑐𝑜𝑠ø 𝑠𝑖𝑛ø 0
0 −𝑠𝑖𝑛ø 𝑐𝑜𝑠ø 0
0 0 0 1

] 

   Now we can calculate the location of the point in the image plane using the 

Cartesian coordinate system as follows: 
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x = 𝐹
(𝑋 − 𝑋0) ∗ 𝑐𝑜𝑠𝜃 + (𝑌 − 𝑌0) ∗ 𝑠𝑖𝑛𝜃 − 𝑟1

−(𝑋 − 𝑋0) ∗ 𝑠𝑖𝑛𝜃 ∗ 𝑠𝑖𝑛ø + (𝑌 − 𝑌0) ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑠𝑖𝑛ø − (𝑍 − 𝑍0) ∗ 𝑐𝑜𝑠ø + 𝑟3 + 𝐹
            (3.27) 

 

y = 𝐹
−(𝑋 − 𝑋0) ∗ 𝑠𝑖𝑛𝜃 ∗ 𝑐𝑜𝑠ø + (𝑌 − 𝑌0) ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑐𝑜𝑠ø + (𝑍 − 𝑍0) ∗ 𝑠𝑖𝑛ø − 𝑟2

−(𝑋 − 𝑋0) ∗ 𝑠𝑖𝑛𝜃 ∗ 𝑠𝑖𝑛ø + (𝑌 − 𝑌0) ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑠𝑖𝑛ø − (𝑍 − 𝑍0) ∗ 𝑐𝑜𝑠ø + 𝑟3 + 𝐹
             (3.28) 

 

3.4 Lens Distortion 

   In reality, cameras, especially those used for filmmaking, are much more 

complicated than simple pinhole cameras because they employ multi-component 

lenses in front of their apertures that gather and focus incoming light. As a result, the 

incoming light from the point of an object in the real three-dimensional world to the 

image plane will likely deviate slightly due to lens distortion. Lens distortion can be 

divided into three types as follows: 

1- Barrel distortion: The camera lens causes image magnification, with the 

straight lines in the image bulging outwards as shown in Figure 7. This effect 

is significant in zoom lenses, where distortion increases when moving away 

from the center "principle point" and reaches a peak in the image borders. 

However, this effect can be exploited in a positive way by using "fisheye 

lenses" in the plane to map specific objects in the environment. 

 

 

 

 

 

 

Figure 7 Barrel distortion 

 

2- Pincushion distortion: Here the camera lens causes image magnification in 

which the image is bowed inwards, as shown in Figure 8. This effect also 

occurs in zoom lenses, with distortion increasing when moving to the center 

"principle point" and the greatest damage observed at the image border.  

 



00 
 

 

 

 

 

 

Figure 8 Pincushion distortion 

3- Mustache distortion: A combination of barrel and pincushion distortion, 

mustache distortion is the least common of the three distortion types. Barrel-

like distortion appears near the center and lessens gradually with distance from 

the principle point, while pincushion distortion is observed near the border and 

decreases gradually with distance, as shown in Figure 9. 

 

 

 

Figure 9 Mustache distortion 

We can correct lens distortion by using the following equation: 

[
𝑥𝑑𝑖𝑠𝑡
𝑦𝑑𝑖𝑠𝑡

] = ( 1 + 𝐾1 (𝑥−2 + 𝑦−2 ) +  𝐾2 (𝑥−2 + 𝑦−2 )2) ∗  [
𝑥
𝑦]                           (3.29) 

where 'k'1 and 'K2' are coefficients that control the amount of distortion. From the 

above equation we can rewrite a full equation as follows: 

[
𝑥𝑑𝑖𝑠𝑡
𝑦𝑑𝑖𝑠𝑡

] = [
x´dist/dx
𝑦´𝑑𝑖𝑠𝑡/𝑑𝑦

] + [
𝑥0
𝑦0

]                                                  (3.30) 

             = [
x0
𝑦0

] + ( 1 + 𝐾1 (𝑥−2 + 𝑦−2 ) +  𝐾2 (𝑥−2 + 𝑦−2 )2) ∗  [
𝑥0
𝑦0

] 

    Now we will outline a simple scenario for the estimation of the lens distortion 

coefficients. Knowledge of the camera’s internal parameters enables the acquisition of 

the ideal points (x, y) which correspond to the distortion points (xdist, ydist). Each 

point generates two equations from which we obtain the K coefficients. 

 [
( 𝑥 − 𝑥0)(𝑥−2 + 𝑦−2 ) ( 𝑥 − 𝑥0)(𝑥−2 + 𝑦−2 )2

( 𝑦 − 𝑦0)(𝑥−2 + 𝑦−2 ) ( 𝑦 − 𝑦0)(𝑥−2 + 𝑦−2 )
] ∗  [

𝐾1
𝐾2

] =  [
𝑥𝑑𝑖𝑠𝑡 − 𝑥
𝑦𝑑𝑖𝑠𝑡 − 𝑦

]   (3.31) 
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3.5 Camera Calibration 

  In the previous section we discussed the camera model which relates the world 

coordinates with the image coordinates. It was assumed that camera focal length, 

angles, and translation displacements are known. Camera calibration is carried out in 

order to determine the camera model parameters which enable the camera to be used 

as a measuring device. Camera calibration can thus be defined as the process of 

extracting all camera parameters, including focal length, principle point, lens 

distortion, and pixel size. 

    Calibration is an essential component of the three-dimensional vision system and is 

necessary to obtain the hardware information from a two-dimensional image. A 

variety of calibration methods have been employed in the literature, two of which are 

described here: 

1- Photogrammetric calibration. 

2- Plane-based internal parameter estimation. 

  Photogrammetric calibration is performed by observing a calibration object whose 

geometry in the real world is known with very good precision. In this scenario height 

calibration can also be carried out efficiently. This type of calibration typically uses 

an object consisting of two or three orthogonal planes, as shown in Figure 10. 

However, the method also requires expensive apparatus to calculate the geometry of 

objects in the real world such as laser scanners and ultrasound range finders. 

 

 

 

 

 

Figure 10 Photogrammetric calibration object 

    As shown in the camera model, the relationship between the homogeneous 

coordinate system of a point in the real world and the homogeneous coordinate 
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system of the point in the image is obtained via equation 3.26. Here let us assume the 

following equation: 

𝐴 = 𝑃 ∗ 𝐶 ∗ 𝑅(−ø,𝑋) ∗ 𝑅(𝜃, 𝑍) ∗ 𝐺                                 ( 3.32) 

This means we can rewrite equation 3.26 using equation 3.32 as follows: 

𝐶ℎ = 𝐴 ∗ 𝑊ℎ                                                    (3.33) 

'A' is a 4*4 matrix expressed by the following: 

A=[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

] 

Equation 3.26 can be written in matrix form as follows: 

[

𝐶ℎ1
𝐶ℎ2
𝐶ℎ3
𝐶ℎ4

]=[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

]*[

𝑋
𝑌
𝑍
1

]                            (3.34) 

   The aim of camera calibration is to determine the 'A' matrix using the known 3D 

points for which there are corresponding image coordinates. From the above, 'A' is a 

4*4 matrix with 16 unknown elements. In order to obtain the 'A' matrix we must try to 

simplify as much as possible. 'Ch3' is not meaningful in the image coordinate system 

because the 'Z' axis is absent. As a result the third row in the 'A' matrix can be 

removed, with the A matrix then rewritten as follows: 

A=[
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎41 𝑎42 𝑎43 𝑎44

] 

Equation 3.34 can then be rewritten: 

[
𝐶ℎ1
𝐶ℎ2
𝐶ℎ4

]=[
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎41 𝑎42 𝑎43 𝑎44

]*[

𝑋
𝑌
𝑍
1

]                              (3.35)                           

Now we have an 'A' matrix with 12 unknown elements. We can find [Ch1, Ch2 and 

Ch4] from the previous equation via the following expressions: 
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𝐶ℎ1 = 𝑋 ∗ 𝑎11 + 𝑌 ∗ 𝑎12 + 𝑍 ∗ 𝑎13 + 𝑎14                         (3.36) 

𝐶ℎ2 = 𝑋 ∗ 𝑎21 + 𝑌 ∗ 𝑎22 + 𝑍 ∗ 𝑎23 + 𝑎24                         (3.37) 

𝐶ℎ4 = 𝑋 ∗ 𝑎41 + 𝑌 ∗ 𝑎42 + 𝑍 ∗ 𝑎43 + 𝑎44                         (3.38) 

  To convert data from the homogeneous coordinate system to the Cartesian 

coordinate system we must divide all elements by the last element. In this case we 

obtain 'x' and 'y' by respectively dividing 'Ch1' and 'Ch2' by 'Ch4' as follows: 

x =
𝐶ℎ1

𝐶ℎ4
                                                          (3.39)     

y =
𝐶ℎ2

𝐶ℎ4
                                                          (3.40)     

We can simplify these equations to: 

𝑥 ∗ 𝐶ℎ4 = 𝐶ℎ1                                                 (3.41)     

𝑦 ∗ 𝐶ℎ4 = 𝐶ℎ2                                                 (3.42)     

and then to: 

𝑥 ∗ 𝐶ℎ4 − 𝐶ℎ1 = 0                                             (3.43)     

𝑦 ∗ 𝐶ℎ4 − 𝐶ℎ2 = 0                                             (3.44)     

Equations 3.43 and 3.44 can then be solved: 

𝑇 = 𝑥 ∗ (𝑋 ∗ 𝑎41 + 𝑌 ∗ 𝑎42 + 𝑍 ∗ 43 + 𝑎44 )  

𝐺 = 𝑋 ∗ 𝑎11 + 𝑌 ∗ 𝑎22 + 𝑍 ∗ 13 + 𝑎14  

𝑇 − 𝐺 = 0                                                         (3.45)   

𝐽 = 𝑦 ∗ (𝑋 ∗ 𝑎41 + 𝑌 ∗ 𝑎42 + 𝑍 ∗ 43 + 𝑎44 )  

𝐵 = 𝑋 ∗ 𝑎21 + 𝑌 ∗ 𝑎22 + 𝑍 ∗ 23 + 𝑎24  

𝐽 − 𝐵 = 0                                                            (3.46)   

   We now have five known points X, Y and Z of the object in the real world for 

which x and y are the corresponding image coordinates, as well as 12 unknown 
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elements a11,...,a44. This means that if we collect n points from observing the object 

we will obtain 2*n equations, which can be used to solve the 12 unknowns. 

 

 

 

 

 

 

The previous matrix can be rewritten as follows: 

 

     

    

 

   

 In this homogeneous system, which has multiple solutions, we can assume that 

a44=1. We can therefore rewrite equation 3.48 as either: 

 

 

                                                                                                                                                   

 

 

 

𝐷 ∗ 𝐹 = 𝑅                                                            (3.49) 
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When D =  

[
 
 
 
 
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1 1 0 0 0 0 −𝑥1 ∗ 𝑋1 −𝑥1 ∗ 𝑌1 −𝑥1 ∗ 𝑍1
𝑋2 𝑌2 𝑍2 1 0 0 0 0 −𝑥2 ∗ 𝑋2 −𝑥2 ∗ 𝑌2 −𝑥2 ∗ 𝑍2
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

𝑋𝑛 𝑌𝑛 𝑍𝑛 1 0 0 0 0 −𝑥𝑛 ∗ 𝑋𝑛 −𝑥𝑛 ∗ 𝑌𝑛 −𝑥𝑛 ∗ 𝑍𝑛
0 0 0 0 𝑋1 𝑌1 𝑍1 1 −𝑦1 ∗ 𝑋1 −𝑦1 ∗ 𝑌1 −𝑦1 ∗ 𝑍1
0 0 0 0 𝑋2 𝑌2 𝑍2 1 −𝑦2 ∗ 𝑋2 −𝑦2 ∗ 𝑌2 −𝑦2 ∗ 𝑍2
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
0 0 0 0 𝑋𝑛 𝑌𝑛 𝑍𝑛 1 −𝑦𝑛 ∗ 𝑋𝑛 −𝑦𝑛 ∗ 𝑌𝑛 −𝑦𝑛 ∗ 𝑍𝑛]

 
 
 
 
 
 
 
 
 
 
 

 

F = [𝑎11 𝑎12 𝑎13 𝑎14 𝑎21 𝑎22 𝑎23 𝑎24 𝑎41 𝑎42 𝑎43]𝑇  

R = [𝑥1 𝑥2 …𝑥𝑛 𝑦1 𝑦2…𝑦𝑛]𝑇  

In the above system we know the values of D and thus it is easy to determine the 

values of F using matrix algebra as follows: 

𝐷𝑇 ∗ D ∗ F = 𝐷𝑇 ∗ 𝑅                                              (3.50) 

F = (𝐷𝑇𝐷)−1 ∗ 𝐷𝑇𝑅                                              (3.51) 

  A second method of camera calibration, known as Plane-based internal parameter 

estimation, is more commonly employed to obtain internal camera parameters and 

requires no precise environmental measurements. As an example we will use several 

images of a planar surface with different orientations. A checkerboard of black and 

white squares is employed as a calibration pattern by being moved in front of a fixed 

camera in several directions.  

  As outlined above, equations 3.21 and 3.22 are used to identify the points of an 

object in the real world environment on the image plane. We can thus identify the 

points on the image plane in the image array via the following equations: 

x´ =
𝑥

𝛼𝑥
+ 𝑥0                                                    (3.52) 

y´ =
𝑦

𝛼𝑦
+ 𝑦0                                                   (3.53) 

              𝛼𝑥 =
𝑓

𝑑𝑥
                                                           (3.54) 

 𝛼𝑦 =
𝑓

𝑑𝑦
                                                           (3.55) 
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    where 'dx' is the pixel width and 'dy' is the pixel height in physical units, and point 

(x0, y0) is the location of the origin. 

Equations 3.52 and 3.53 can be rewritten in matrix form as follows: 

 

[
𝑥´
𝑦´
1
] = 𝐴 ∗ [

𝑋𝑐
𝑌𝑐
𝑍𝑐

]                                                  (3.56) 

𝐴 = [
𝛼𝑥 0 𝑥0
0 𝛼𝑦 𝑦0
0 0 1

] 

Where 

[
𝑋𝑐
𝑌𝑐
𝑍𝑐

] = 𝑅 [
𝑋
𝑌
𝑍
] + 𝑡                                               (3.57) 

𝑅 = 𝑟1 ∗ 𝑟2 ∗ 𝑟3                                              (3.58) 

and 't' is the translation vector.  

Let us denote the camera matrix as 'P'. 

𝑃 = 𝐴[𝑅|𝑡]                                                  (3.59) 

This produces the following final equation: 

[
𝑥´
𝑦´
1

] = 𝑃 ∗ [

𝑋
𝑌
𝑍
1

]                                                 (3.60) 

   The previous equation is then used to translate points from the 3D real world 

coordinate system to the 2D image coordinate system. 

Assuming that the Z axis is equal to zero, this produces: 

[
𝑥´
𝑦´
1

] = 𝑃 ∗ [

𝑋
𝑌
0
1

] 
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[
𝑥´
𝑦´
1

] = 𝐴[𝑟1 𝑟2 𝑟3 |𝑡] [

𝑋
𝑌
0
1

] 

𝑟3 = 0 

[
𝑥´
𝑦´
1

] = 𝐴[𝑟1 𝑟2 𝑡] [
𝑋
𝑌
1
]                                           (3.61) 

𝐻 = 𝐴[𝑟1 𝑟2 𝑡]                                                   (3.62) 

'H' is a 3*3 matrix, expressed as follows: 

𝐻 = [
ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

] 

We can also rewrite this matrix: 

𝐻 = [
| | |

ℎ1 ℎ2 ℎ3
| | |

] 

This means that:  

𝐻 = [ℎ1 ℎ2 ℎ3]                                                    (3.63) 

𝐴−1𝐻 = [r1 r2 t]                                                 (3.64) 

[ℎ1 ℎ2 ℎ3]𝐴−1 = [𝑟1 𝑟2 𝑡] 

ℎ1𝑇 (𝐴−𝑇𝐴−1 ) ℎ2 = 0                                             (3.65) 

ℎ1𝑇 (𝐴−𝑇𝐴−1 ) ℎ1 = ℎ2𝑇 (𝐴−𝑇𝐴−1 ) ℎ2                                 (3.66) 

We can then denote  (𝐴−𝑇𝐴−1 ) as B, where B is a 3*3 matrix written as follows: 

 𝐵 = (𝐴−𝑇𝐴−1 ) = [
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

] 

Since we know the form of the camera calibration matrix in equation 3.61, we can 

verify that: 
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B =

[
 
 
 
 
 
 

1

𝛼𝑥2 
0 −

𝑥0

𝛼𝑥2 

0
1

𝛼𝑦2 
−

𝑦0

𝛼𝑦2 

−
𝑥0

𝛼𝑥2 
−

𝑦0

𝛼𝑦2 

𝑥02 

𝛼𝑥2 
+

𝑦02 

𝛼𝑦2 
+ 1

]
 
 
 
 
 
 

 

Note that B is symmetric and defined by a 6D vector: 

𝑏 = [𝐵11 𝐵12 𝐵22 𝐵13 𝐵23 𝐵33]𝑇 

ℎ𝑖𝑇B ℎ𝑗 = 𝑣𝑖𝑗𝑇  𝑏                                                         (3.67) 

Where 𝑣 equals: 

𝑣𝑖𝑗 = [ℎ𝑖1ℎ𝑗1 ℎ𝑖1ℎ𝑗2 + ℎ𝑖2ℎ𝑗1 ℎ𝑖2ℎ𝑗2 ℎ𝑖3ℎ𝑗1 + ℎ𝑖1ℎ𝑗3 ℎ𝑖3ℎ𝑗2 + ℎ𝑖2ℎ𝑗3 ℎ𝑖3ℎ𝑗3]𝑇 

[
𝑣12𝑇

(v11 − 𝑣22)𝑇] ∗ 𝑏 = 0                                                  (3.68) 

𝑣 ∗ 𝑏 = 0                                                                 (3.69) 

𝑥0 = −
𝐵13

B11
                                                                 (3.70) 

𝑦0 = −
𝐵23

B22
                                                                 (3.71) 

𝛼𝑦 = ( 
𝐵11𝐵22𝐵33 − 𝐵22𝐵132 − 𝐵11𝐵232

𝐵11𝐵222
)
1

2
                      (3.72) 

𝛼𝑥 = 𝛼𝑦( 
𝐵23

B22
) 𝑇                                                    (3.73) 

 

3.6 Camera Location 

 

  After we obtain the camera matrix, it is simple to determine the camera location by 

taking any two points in the real world’s three dimensions. Let us consider two points 

'P1' and 'P2' whose coordinates are (X1, Y1, Z1) and (X2, Y2, Z2), respectively. Both 

points have a corresponding point in the image coordinate system: point 'I' (cf1, cf2, 

cf3, cf4) and point 'J' (cs1, cs2, cs3, cs4). This means that: 
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𝐼 = A ∗ P1                                                               (3.74) 

J = A ∗ P2                                                                (3.75) 

As the 'A' matrix is now known, we can obtain 'P1' and 'P2' using the following 

equations: 

𝑃´1 =
𝐼

A
                                                                     (3.76) 

𝑃´2 =
𝐽

A
                                                                    (3.77) 

   As the image coordinate system has no Z axis, cf3 and cs3 are both equal to zero. 

From the above we can deduce that the two points P´1 and P´2 will lie on the line 

connecting the original point in the real world and the center of projection L, but 

because we are using two points it is now easy determine the camera location by 

drawing two lines, the first from P1 through P´1 and I to L, and the second from P2 

through P´2 and J to L (Figure 11). The intersect between these two lines is the 

camera location. 

 

 

 

 

 

 

 

Figure 11 Determining camera location 

 

3.7 Camera Orientation 

    The camera orientation is the same as that of the image plane. When the object 

moves closer to the lens, its image moves farther away from the image center along 

the Y axis. This means that when the object is at the lens, the image will be formed at 

infinity. The only way the image of a finite world point can be at infinity is if the four 

homogenous elements in the image coordinate system are equal to zero, as shown in 



20 
 

Figure 12 From the above we can understand the fourth row in the camera matrix 

which determines the camera orientation: 

 

𝑎41𝑋 + a42Y + a43Z + a44 = 0                                    (3.78) 

 

This is the equation of a plane passing through lens L parallel to the image plane. 

It is now easy to recover the camera parameter from the camera matrix using the 

following: 

θ = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎42

−𝑎43
                                                (3.79) 

ø = 𝑎𝑟𝑐𝑠𝑖𝑛
−𝑎41

√𝑎412 + 𝑎422 + 𝑎432
                             (3.80) 

 

 

 

 

 

 

 

Figure 12 Camera orientation 

 

3.8 Camera Pose Estimation  

       The aim of pose estimation is to determine the orientation and position of the 

camera which would result in the projection of a given set of three-dimensional points 

into a given set of image points. The most common applications of pose estimation 

are object recognition and making a 3D model from a 2D model. Each point of an 

object in the real world "3D space" has to project onto the “2D” space of the camera 

image coordinate system, using three rotations and three translations relative to the 

same base coordinate system. 
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     Let us consider a point 'W' in the real three-dimensional world with coordinates 

(X1,Y1,Z1) and a second point 'w´' with coordinates (x´, y´), which is the projection 

of 'W' onto the two-dimensional image space. To obtain 'w´' the principal point 'W' 

must first be rotated by (øX, øY, øZ) to produce a new real-world point 'R' with 

coordinates (X, Y, Z). 'R' is then translated by (Tx, Ty, Tz), with point 'w´' finally 

produced from 'R' via perspective translation using a lens-centered coordinate system: 

(x´, y´) = ( 
𝐹(𝑋 + 𝑇𝑥)

Z + Tz
,
𝐹(𝑌 + 𝑇𝑦)

Z + Tz
)                                    (3.80) 

    In order to simplify the above equation, (Tx, Ty, Tz) can be replaced by (Dx, Dy, 

Dz), where 'Dx' and 'Dy' are the displacement in the first two dimensions and 'Dz' is 

the displacement in the third dimension. As a result we can rewrite the above equation 

as follows: 

(x´, y´) = ( 
𝐹𝑋

Z + Dz
+ 𝐷𝑥,

𝐹𝑌

Z + Dz
+ 𝐷𝑦)                            (3.81) 

 

(x´, y´) = ( 𝐹𝑋𝑐 + 𝐷𝑥, FYc + 𝐷𝑦)                                    (3.82) 

Where  

c =
1

Z + Dz
                                                  (3.83) 

Pose estimation can be formulated as an optimization problem which minimizes the 

error between the model and image coordinate system [26]. The error existing 

between the elements of model and image can be determined by tiny changes in the 

six unknown elements (Dx, Dy, Dz, øX, øY, øZ), partially derived with respect to the 

image coordinates. The equation for error 'R' in the 'x' image coordinate, expressed as 

the sum of the products of its partial derivative multiplied by the error correction 

values, can be written as follows: 

  𝑅 =
ⱷ𝑥´

ⱷ𝐷𝑋
 ▲ 𝐷𝑋 +

ⱷ𝑥´
ⱷ𝐷𝑌

 ▲ 𝐷𝑌 +
ⱷ𝑥´
ⱷ𝐷𝑍

 ▲ 𝐷𝑍 +
ⱷ𝑥´
ⱷø𝑋

  ▲ ø𝑋 +
ⱷ𝑥´
ⱷø𝑌

  ▲ ø𝑌 +
ⱷ𝑥´
ⱷø𝑍

   ▲ ø𝑍

If (X, Y, Z) is rotated about the 'Y' axis by 'øY', the new coordinate of this point is 

given by the following: 
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𝑋2 = X1 cos  ø𝑌 + 𝑍 𝑠𝑖𝑛 ø𝑌                                       (3.85) 

𝑌2 = 𝑌1                                                         (3.86) 

Z2 = −X1 sin  ø𝑌 + 𝑍1 cos  ø𝑌                                   (3.87) 

Which means that: 

ⱷ𝑍

ⱷø𝑌
= X1 cos  ø𝑌 + 𝑍 𝑠𝑖𝑛 ø𝑌 = −𝑋2                           (3.88) 

ⱷ𝑌

ⱷø𝑌
= 0                                                     (3.89) 

ⱷ𝑋

ⱷø𝑌
= −X1 sin  ø𝑌 + 𝑍1 cos  ø𝑌 = 𝑍2                         (3.90) 

   For 'k' image points we can write '2*k' equations with six unknowns, with this linear 

system of equations expressed as follows: 

                                                     (3.91) 

     where '▲' is the vector of the six unknown parameters, as shown in Table 1, A is 

the derivative matrix, and R is the vector of the error. Calculation of '▲' can be 

achieved via the following: 

 

                                                                                                 (3.92) 

  

 

 

 

 

Table 1 Partial Derivatives of Image Coordinates 
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Figure 13 Pose algorithm 

 

Start with an initial estimate of six parameters, 

 (Dx, Dy, Dz, øX, øY, øZ) 

If you do not know, assume all parameters to be zero. 

Apply transformation to the model, and project the model on the 

image plane by computing (x', y') 

Compute the errors Ex', and Ey'. If the errors are acceptable, quit. 

Find change in six parameters, 

(▲Dx,▲ Dy, ▲Dz, ▲øX, ▲øY, ▲øZ), 

Of transformation, by using least squares fit. 
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3.9 Epipolar Geometry 

 

       As discussed earlier in the chapter, when any point in the real three-dimensional 

world is imaged by a camera it will lose its 'Z' axis value. If we therefore consider a 

point P in the real world and draw a straight line intersecting P and the optical center 

of the camera, each point on this line will project to the same position in the image, 

resulting in a loss of image depth. In order to solve this problem we will now consider 

a more advanced case of point translation with which to estimate image depth or the z 

axis, known as epipolar geometry. This involves translating the same point onto two 

image planes simultaneously using two cameras placed at different locations. The 

motion vector of this point to the cameras will determine its 'z' axis value, and as a 

result we must find the corresponding point on the image, as shown in Figure 14. In 

this case we don't need to inspect the point across the entire image because in fact we 

have only one degree of freedom for its possible location in the second image. 

 

 

 

 

 

Figure 14 Epipolar geometry 

Based on the above figure the following terms should first be defined: 

1- Base-line: the straight line between the two optical centers of the right- and 

left-hand cameras (blue line). 

2- Epipolar plane: a triangle containing the base-line as its base, and its three 

corners being the optical centers of the cameras (gray dots) and a point in the 

real world (X). 

3- Epipole: a point of intersect between the base-line and the image plane (yellow 

dots), produced by the projection of each camera’s center of projection onto 

the opposing camera’s image plane. 
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4- Epipolar line: the line created by the intersection between the epipolar plane 

and the image plane; this line must pass through the epipole. 

   Any point on the epipolar line of one image plane should therefore have a 

corresponding point somewhere on the epipolar line of the other image plane. 

 

3.9.1 Essential Matrix 

    This matrix is a 3x3 matrix that “encodes” the epipolar geometry of the two views, 

as well as the other properties described below, that deal with corresponding points in 

stereo cameras. In order to obtain an essential matrix, we will first denote 'P' as a 

point in the real world, 'Pl' as the projection of point 'P' onto the left-hand camera 

image plane, 'Pr' as the projection of point 'P' onto the right-hand camera image plane, 

and 'B' as the base-line. This means that: 

Pr = Pl − B                                                          (3.93) 

  From the above, (Pl, Pr & B) are coplanar as follows: 

Pr. 𝐵 ∗ 𝑃𝑙 = 0                                                     (3.94) 

 The two vectors "Pl & Pr" can now be defined based on their respective optical 

centers, in this case "Pl" with "Ol" and "Pr" with "Or". This is followed by a 

translation on "B" and the application of a rotation "R" matrix, resulting in: 

𝑃𝑟´ = 𝑅 𝑃𝑟 = 𝑅 ( 𝑃𝑙 − 𝐵 )                                            (3.95) 

 

𝑃𝑟 = 𝑅−1 𝑃𝑟´ = 𝑅𝑇 Pr´                                                  (3.96) 

and substituting gives: 

(𝑅𝑇𝑃𝑟´)𝐵 ∗ 𝑃𝑙 = 0                                                     (3.97) 

  As base-line 'B' is the translation of the point between the two cameras, translation 

vector 'T' is equal to: 

𝑇 = [
0 −𝑇𝑧 𝑇𝑦
𝑇𝑧 . −𝑇𝑥

−𝑇𝑦 𝑇𝑥 0
] 

This means that: 

(𝑅𝑇𝑃𝑟´ )𝑇𝑇 ∗ 𝑃𝑙 = 0                                                  (3.98) 
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𝑃𝑟´𝑇(𝑅 𝑇) 𝑃𝑙 = 0                                                     (3.99) 

Denoting 'E' for (R T), we can rewrite the equation as follows: 

𝑃𝑟´𝑇𝐸 𝑃𝑙 = 0                                                            (3.100) 

As the above equation expresses the relationship between the same point in the two 

cameras, the equation for the epipolar line can be written as follows: 

Pl =
𝐹𝑙 ∗ 𝑃

𝑍𝑙
                                                                     (3.101) 

Pr =
𝐹𝑟 ∗ 𝑃

𝑍𝑟
                                                                  (3.102) 

Eliminating 'Pl' & 'Pr´' and dropping the prime we find: 

𝑃𝑟𝑇𝐸 𝑃𝑙 = 0                                                            (3.103) 

As 'Zl', 'Zr ' and ' fl', 'fr ' can be canceled from this matrix equation, it follows that: 

𝑃𝑟𝑇𝐸 = 𝐼1𝑇                                                             (3.104) 

𝐼2𝑇 = E Pl                                                               (3.105) 

The two equations above lead us to the following relations: 

𝑃𝑟𝑇𝐼2𝑇  = 0                                                             (3.106) 

𝑃𝑙𝑇𝐼1𝑇  = 0                                                             (3.107) 

This means that: 

E Pl = I2                                                                 (3.108) 

𝐸𝑇𝑃𝑟 = I1                                                              (3.109) 

  We can now obtain the epipolar lines corresponding to 'pl' and 'pr', respectively, and 

ultimately find the epipoles from the above formulation. In fact, the epipole lies on 

every epipolar line within the same image. Thus, 'er' satisfies (can be substituted for 

'pr' in) the above equation, and hence: 

𝑒𝑟𝑇𝐼2 = 0                                                             (3.110) 

𝑒𝑟𝑇𝐸 𝑃𝑙 = 0  (for all 'Pl')                                               (3.111) 
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3.9.2 Fundamental Matrix 

    We implicitly assumed in the final part of the essential matrix calculation that the 

cameras are calibrated. The present section thus examines the scenario for 

uncalibrated images. Let us denote the intrinsic matrix for the left camera as 'A', the 

intrinsic matrix for the right camera as 'B', the point in the left image plane as 'I', the 

point in the right image plane as 'J', and the two points in the real world as 'P1' and 

'P2'. This means that: 

I = A ∗ 𝑃1                                                    (3.112) 

J = B ∗ 𝑃2                                                    (3.113) 

As we actually need to obtain the reverse direction, the inverse equations are required: 

P1 = 𝐴−1 ∗ 𝐼                                                   (3.114) 

P2 = 𝐵−1 ∗ 𝐽                                                    (3.115) 

Substituting 'p1' and 'p2' in the essential matrix equation: 

(𝑗 ∗ 𝐵−1)𝑇 ∗ 𝐸 ∗ (𝑗 ∗ 𝐴−1) = 0                                       (3.116) 

𝐽𝑇 ∗ (𝐵−1)𝑇 ∗ 𝐸 ∗ 𝐴−1 ∗ 𝐼 = 0                                       (3.117) 

𝐽𝑇 ∗ F ∗ 𝐼 = 0                                                         (3.118) 

𝐹 = (𝐵−1)𝑇 ∗ 𝐸 ∗ 𝐴−1                                                (3.119) 

  'F' is defined as the “fundamental matrix”. Because it contains all the information 

that would be needed to calibrate the cameras, it contains more free parameters than 

the essential matrix. 

 

3.10 Recovering Image Depth 'Z' 

    Almost all photography involves converting a point from three dimensions to two 

dimensions during image capture. However, camera modifications can be made to 

recover the third dimension "z" Figure 15 via the use of active methods or extra 

devices such as ultra-sound sonar or laser range finders. As discussed earlier, image 
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depth can be recovered if we use two optically aligned cameras in "stereo vision" and 

apply epipolar geometry. 

 

 

 

 

 

Figure 15 Image depth 

In the above figure the point in the real world is denoted as "Target". This point is 

projected onto the two-camera stereo system, with distances of 'dXl' pixels from the 

optical center of the left-hand camera and 'dXr' pixels from the optical center of the 

right-hand camera. 'L' is the base-line, 'Z' is image depth, 'dl' is the distance from the 

optical center of the left-hand camera to the point in the real world, 'dr' is the distance 

from the optical center of right-hand camera to the point in the real world, and 'f ' is 

the focal length. Using triangulation we obtain: 

𝑑𝑙

−𝑑𝑋𝑙
=

𝑍

𝑓
                                                       (3.120) 

𝑑𝑙 =
−𝑑𝑋𝑙 ∗ 𝑍

𝑓
                                                     (3.121) 

𝑑𝑟

𝑑𝑋𝑟
=

𝑍

𝑓
                                                            (3.122) 

𝑑𝑟 =
𝑑𝑋𝑟 ∗ 𝑍

𝑓
                                                       (3.123) 

L = dl + 𝑑𝑟                                                          (3.124) 

𝐿 =
−𝑑𝑋𝑙 ∗ 𝑍

𝑓
+

𝑑𝑋𝑟 ∗ 𝑍

𝑓
                                              (3.125) 

𝐿 =
−𝑑𝑋𝑙 ∗ 𝑍 + 𝑑𝑋𝑟 ∗ 𝑍

𝑓
                                             (3.126) 
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𝐿 =
𝑍(𝑑𝑋𝑟 − 𝑑𝑋𝑙)

𝑓
                                                  (3.127) 

𝑍 =
𝐿 ∗ 𝑓

(𝑑𝑋𝑟 − 𝑑𝑋𝑙)
                                                     (3.128) 

𝑍 =
𝐿 ∗ 𝑓

(𝑑𝑋𝑟 − 𝑑𝑋𝑙) ∗ 𝑃𝑆
                                              (3.129) 

where 'PS' is pixel size in centimeters. 

 

3.11 Object Size Estimation  

       Object size estimation is essential to a variety of applications. Similarly, 

knowledge of the real size of an object captured by a camera is very important for the 

accurate classification this object ("an ant is smaller than an elephant"). Object size 

estimation can be carried out by determining the distance between two points in the 

real world using a camera. Let us denote the first point as 'A' and the second point as 

'B', as shown in Figure 16. 

 

 

      'A' 

      'B' 

 

 

 

Figure 16 Example of size estimation 

  If we know the distance between the camera and point 'A', the distance between the 

camera and point 'B', and the angle of intersect of the two lines from 'A' and 'B' to the 

optical center of the camera 'ø', the following triangle is produced in figure 17: 
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Figure 17 Triangle between object and camera 

We can calculate 'C' using the following equation: 

C = √𝐴𝑙2 + 𝐵𝑙2 − 𝐴𝑙 ∗ 𝐵𝑙 ∗ 𝑐𝑜𝑠∅                                     (3.130) 

   Equation 3.129 describes how to obtain 'Al' and 'Bl'. The angle between 'Al' and 'Bl' 

can be determined using the following figure:  

 

 

 

 

Figure 18 Triangle of the object inside the camera 

The two focal length lines intersect to make two right-angled triangles in the image 

plane. In these triangles the base and rib are known, with Pythagoras’ proof (Figure 

19) then applied to obtain the chord. 

 𝑎2 + 𝑏2 = 𝑐2                                                      (3.131) 

 

 

  

 

Figure 19 Pythagoras’ proof 
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After applying this twice to find "Al' " and "Bl' ", and as the base is already known, 

the following equation can then be used to obtain the cos of ø: 

 

cos ø =
𝐴𝑙′2 + 𝐵𝑙′2 − 𝐶′2

𝐴𝑙′ ∗ 𝐵𝑙′
                                                (3.132) 

 

With this knowledge we can then calculate the length and width of the object. 
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Chapter 4 

 

IMAGE PROCESSING 

 

    A color image can be defined as a 2D light intensity function "f(x, y)", where (x and 

y) are spatial coordinates and the value of f in (x, y) is similar to the brightness of the 

scene at that point. For a multispectral image, f(x, y) is a vector, each component of 

which indicates the brightness of the scene at point (x, y) in the corresponding spectral 

band.  

 

    A digital image is made up of individual picture elements known as pixels. 

Typically, pixels are organized in an ordered rectangular array. The size of an image 

is thus determined by the dimensions of this pixel array, with the image width the 

number of columns and the image height the number of rows in the array. A pixel 

array can therefore be defined as a matrix of 'M' columns and 'N' rows.  

 

    To refer to a specific pixel within the image matrix, we define its coordinates at 'x' 

and 'y'. The coordinate system of image matrices defines 'x' as increasing from left to 

right and 'y' as increasing from top to bottom. Compared to normal mathematical 

convention, the origin is in the top left corner and the 'y' coordinate is flipped. Why is 

the coordinate system flipped vertically? Originally, digital images were defined in 

terms of the electron beam scanning pattern of televisions, which scanned from left to 

right and top to bottom. Other than this historical reason, there is no purpose served 

by this inversion of the y coordinate. Image size is not to be confused with the size of 

the real-world representation of an image. Image size specifically describes the 

number of pixels within a digital image. The real-world representation of a digital 

image requires one additional factor known as resolution. Resolution is the spatial 

scale of the image pixels. 
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𝑓(𝑥, 𝑦) =

[
 
 
 
 
 
𝑓(1,1) 𝑓(1,2) 𝑓(1,3) 𝑓(1,4) . . . 𝑓(1, 𝑁)
𝑓(2,1) 𝑓(2,2) 𝑓(2,3) 𝑓(2,4) . . . 𝑓(2, 𝑁)

. . . . . . . .

. . . . . . . .

. . . . . . . .
𝑓(𝑀, 1) 𝑓(𝑀, 2) 𝑓(𝑀, 3) 𝑓(𝑀, 4) . . . 𝑓(𝑀, 𝑁)]

 
 
 
 
 

         (4.1) 

 

4.1 Color Spaces  

 

    The color space is a mathematical classification of a group of colors. The color 

space most commonly used in graphical and another applications is "RGB", where 'R' 

refers to the color red, 'G' to green, and 'B' to blue. Other types of color space include 

YUV, YIQ, and YCbCr. Each of these color spaces has a special function, with 

YCbCr, for example, used in video systems. However, all types of color space have 

three basic concepts: "saturation", "hue", and "brightness". A variety of different 

models have since been developed, such as HSI and HSV, aimed at making color 

systems easy to understand, and are employed in processing and programming. The 

"RGB" color space is considered essential because vision sensors typically capture 

images using this system. As a result, all other systems can be directly related to the 

"RGB" color space. 

4.1.1 RGB Color Space       

      As discussed above, the RGB system is produced by mixing the colors R, G, and 

B. Every other color is therefore a mixture of these three base colors in different 

proportions, as shown in Table 2. This space is typically represented using the 

Cartesian coordinate system as illustrated below figure: 

 

 

 

 

Figure 20 The RGB color cube 
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Table 2 100% RGB Color Bars 

   Although this system has a wide range of applications and almost all vision sensors 

capture images in "RGB", it is not appropriate for image processing due to the fact 

that each color is derived from a mixture of three other colors. As each color has 226 

levels, the color space comprises more than 16 million colors, leading to a lack of 

precision in the results. 

 

4.1.1.1 Gray Color Space   

 

   In this space, colors are represented only by the intensity of the original color (in the 

RGB space), meaning that this color space contains only 256 colors ranging from 

black to white. The grays comprising this range are more suitable for use in image 

processing. Three methods are available with which to convert an image from RGB to 

Gray: 

1- Lightness method: based on the average of the most and the least prominent 

colors figure 21-a. 

𝐺𝑟𝑎𝑦 = 𝑀𝑎𝑥 (𝑅, 𝐺, 𝐵) + 𝑀𝑖𝑛 (𝑅, 𝐺, 𝐵) / 2                (4.2) 

2- Average method: the three-color average figure 21-b. 

𝐺𝑟𝑎𝑦 = 𝑅 + 𝐺 + 𝐵 / 3                                     (4.3) 

3- Luminosity method: this method is more complex than the previous two because 

it depends on the sensitivity of humans to different colors figure 21-c. As 

humans are more sensitive to green, followed by red then blue, a weight can be 

applied as follows to generate the color space: 

𝐺𝑟𝑎𝑦 = 0.21 ∗ 𝑅 + 0.72 ∗ 𝐺 + 0.07 ∗ 𝐵                               (4.4) 
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          a                                                             b                                                   c 

Figure 21 Gray color space methods: a) lightness method, b) average method, c) 

luminosity method 

 

4.1.2 YUV Color Space 

This space is used in three types of video system (SECAM, NTSC and PAL). The 'Y' 

in YUV represents a type of gray space comprising black and white color information, 

with the other components derived by subtracting the 'Y' value from the red and blue 

components of the original RGB space as illustrated below figure. 

 

 

 

 

 

 

 

Figure 22 YUV color space 
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Colors are translated from the RGB space to the YUV (figure 23) space as follows: 

1- As outlined earlier, the RGB space comprises three layers, with the color 

range of each color varying from [0-255]. For translation to the YUV space, 

we must change this range to [0-1] for each layer using the following 

equations: 

𝑅´ = 𝑅 / 255                                             (4.5) 

𝐺´ = 𝐺 / 255                                             (4.6) 

𝐵´ = 𝐵 / 255                                             (4.7) 

These equations can be rewritten in matrix form as follows: 

[
𝑅´
𝐺´
𝐵´

] =

[
 
 
 
 
 

1

255
0 0

0
1

255
0

0 0
1

255]
 
 
 
 
 

∗ [
𝑅
𝐺
𝐵
]                                 (4.8) 

2- The RGB colors can then be applied to the YUV space as: 

𝑌 = 0.299 ∗ 𝑅´ + 0.587 ∗ 𝐺´ + 0.114 ∗ 𝐵´                (4.9)   

𝑈 = −0.147 ∗ 𝑅´ − 0.289 ∗ 𝐺´ + 0.436 ∗ 𝐵´            (4.10) 

𝑉 = 0.615 ∗ 𝑅´ − 0.515 ∗ 𝐺´ − 0.100 ∗ 𝐵´             (4.11) 

The above equations can be rewritten in matrix form as follows: 

[
𝑌
𝑈
𝑉
] = [

0.299 0.587 0.114
−0.147 −0.289 0.439
0.615 −0.515 −0.100

] ∗ [
𝑅´
𝐺´
𝐵´

]                        (4.12) 

This means that the color range of the YUV space differs from the RGB color range 

space by the values in the following Table: 

 

 

 

          

Table 3 YUV Value Bars 
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a                                b 

Figure 23 RGB conversion to YUV: a) image in the RGB color space,  b) image in 

the YUV color space 

We can also transfer colors from the YUV space system to the RGB space system 

(figure 24) using the following equations: 

𝑅´ = 𝑌 + 1.140 ∗ 𝑉                                             (4.13) 

𝐺´ = 𝑌 − 0.395 ∗ 𝑈 − 0.581 ∗ 𝑉                        (4.14) 

𝐵´ = 𝑌 + 2.032 ∗ 𝑈                                           (4.15) 

𝑅 = 𝑅´ ∗ 255                                                   (4.16) 

𝐺 = 𝐺´ ∗ 255                                                   (4.17) 

𝐵 = 𝐵´ ∗ 255                                              (4.18) 

 

 

 

 

 

    a                                b 

Figure 24 YUV conversion to RGB: a) image in the YUV color space, b) image in 

the RGB color space 
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4.1.3 YIQ Color Space 

  The YIQ color space is used in video systems such as the NTSC TV system. Derived 

from the YUV color space, in this case the 'Y' represents a gray space and (I & Q) 

carry the chrominance information as illustrated below figure: 

 

 

Figure 25 YIQ color space 

The translation of colors from the RGB space to the YIQ space (figure 26) involves 

the following steps: 

1- As the RGB space comprises three layers, with each color ranging from [0-

255], this range must be converted into [0-1] for each layer using equations 

[4.4, 4.5, and 4.6]. 

 

2- RGB colors can then be applied to the YIQ space via the following equations: 

𝑌 = 0.299 ∗ 𝑅´ + 0.587 ∗ 𝐺´ + 0.114 ∗ 𝐵´             (4.19) 

𝐼 = 0.596 ∗ 𝑅´ − 0.275 ∗ 𝐺´ − 0.321 ∗ 𝐵´                (4.20) 

𝑄 = 0.212 ∗ 𝑅´ − 0.523 ∗ 𝐺´ + 0.311 ∗ 𝐵´               (4.21) 

These equations can be rewritten in matrix form as follows: 

[
𝑌
𝐼
𝑄

] = [
0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

] ∗ [
𝑅´
𝐺´
𝐵´

]                                (4.22) 

This means that the color range of the YIQ space differs from the RGB color range 

space by the values in the following Table: 

 

 

 

Table 4 YIQ Value Bars 
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a                                b 

Figure 26 RGB conversion to YIQ: a) image in the RGB space, b) image in the YIQ 

color space 

  Colors can also be translated from the YIQ space system to the RGB space system 

(figure 27) using the following equations: 

𝑅´ = 𝑌 + 0.956 ∗ 𝐼 + 0.621 ∗ 𝑄                        (4.23) 

𝐺´ = 𝑌 − 0.2721 ∗ 𝐼 − 0.647 ∗ 𝑄                        (4.24) 

𝐵´ = 𝑌 − 1.107 ∗ 𝐼 + 1.704 ∗ 𝑄                           4.25) 

Equations [4.15, 4.16 and 4.17] can then be used to obtain [R, G and B]. 

 

 

 

 

 

 

   a                                    b 

Figure 27 YIQ conversion to RGB: a) image in the YIQ color space, b) image in the 

RGB color space 
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4.1.4 HSI Color Space 

 

 Attempting to produce a more intuitive representation of colors, the HSI color space 

has three components: 'H'ue, 'S'aturation and 'I'ntensity. The system is derived from a 

double cone shape with one axis running down its center, representing 'I'. A range of 

gray colors run the length of this axis, with black and white at either end. The figure 

below illustrates how colors are represented in the HSI color space. 

 

 

 

 

Figure 28 HSI color space 

   If the cone is viewed from above, it becomes a circle. Different colors, or hues, are 

defined as having specific positions around this circle. Hues are determined by their 

angular location on this wheel, with red at 0 degrees and the others progressing as 

illustrated below figure: 

 

  

 

Figure 29 HSI color circle 

Saturation is measured in terms of vertical distance from the intensity axis. Colors 

closer to the center of intensity are lighter, while those far from the center are distinct 

in emersion. The HSI system is considered more appropriate for use in image 

processing than the RGB system. Detecting and changing the yellow color in an 

image would be an impossible task using the RGB system, because this color has a lot 

of values. In contrast, the HSI system includes a range of yellow colors. Such a task 

could proceed as follows figure: 
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Figure 30 Color selection in an RGB image using the HSI color system 

The following steps are involved in transferring colors from the RGB space to the HSI 

(figure 31) space: 

1- Normalization of RGB color values: 

𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵
                                                           (4.26) 

     𝑔 =
𝐺

𝑅 + 𝐺 + 𝐵
                                                           (4.27) 

            𝑏 =
𝐵

𝑅 + 𝐺 + 𝐵
                                                           (4.28) 

2- 'H', 'S' and 'I' are normalized as follows: 

𝑠 = 1 − min(𝑟, 𝑔, 𝑏)     s ∈ [0,1]                                             (4.29) 

𝑖 = (𝑅 + 𝐺 + 𝐵)/(3 ∗ 255)    i ∈ [0,1]                                    (4.30) 

If (b ≤ g): 

          (4.31) 

                 Else: 

                     (4.32) 

Now we must convert [h s i] to [H S I] using the following equations: 

𝐻 = ℎ ∗
180

π
                                                                         (4.33) 

𝑆 = 𝑠 ∗ 100                                                                          (4.34) 

the original RGB image would be converted to HSI 

the Hue (or saturation or intensity) would be modified 

the image would be converted back to RGB 
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𝐼 = 𝑖 ∗ 255                                                                            (4.35) 

 

 

 

Table 5 HSI Value Bars 

 

 

 

 

 

       a                   b 

Figure 31 RGB conversion to HSI: a) image in the RGB color space, b) image in the 

HSI color space 

   We can also transfer colors from the HSI space system to the RGB space system 

(figure 32) using the following equations: 

ℎ =
𝐻 ∗ 𝜋

180
                                                              (4.36)  

𝑠 =
𝑆

100
                                                                (4.37) 

𝑖 =
𝐼

100
                                                                 (4.38) 

𝑥 = 𝑖 ∗ (1 − 𝑠)                                                         (4.39) 

𝑦 = 𝑖 ∗ [1 +
𝑆 ∗ cos(ℎ)

cos (
𝜋
3 − ℎ)

]                                             (4.40) 

𝑧 = 3 ∗ 𝑖 − (𝑥 + 𝑦)                                                  (4.41) 
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where ℎ <
2𝜋

3
→ 𝑟 = 𝑦, 𝑔 = 𝑧 𝑎𝑛𝑑 𝑏 = 𝑥 

where 
2𝜋

3
≤ ℎ <

4𝜋

3
→ 𝑟 = 𝑥, 𝑔 = 𝑦 𝑎𝑛𝑑 𝑏 = 𝑧 

where 
4𝜋

3
≤ ℎ < 2𝜋 → 𝑟 = 𝑧, 𝑔 = 𝑥 𝑎𝑛𝑑 𝑏 = 𝑦 

Then by using equations [4.16, 4.14 and 4.18] we obtain [R, G and B]. 

 

  

 

 

 

        a             b 

Figure 32 HSI conversion to RGB: a) image in the HSI color space, b) image in the 

RGB color space 

 

4.1.5 HSV Color Space 

 

      Based on human color perception, the HSV color system represents colors in 

terms of three components: hue, saturation, and value. Whereas the RGB color space 

generates colors by mixing the three essential colors red, green and blue, in the HSV 

space colors are generated from the factors of brightness, vibrancy, and color. The H, 

S and V components (figure 33) can be defined as follows: 

1- Hue is represented by a circle containing the full color range, where the zero 

degree point is the original color. For example, if red is at zero degrees, the 

two hundred and forty degree point represents blue. 

2- Saturation is a ratio of color purity ranging from 0 to 100. Values closer to 

zero are lighter and those closer to 100 more saturated and bold. 

3- Value essentially represents the lightness value of the original color in the 

RGB system. 
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Figure 33 HSV color space system 

Colors can be translated from the RGB space system to the HSV space system (figure 

34) using the following steps: 

1- Normalization of RGB color values via equations [4.26, 4.27 and 4.28]. 

2- Acquisition of 'max' and 'min' values, as well as the difference between them 

‘delta’. 

𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝑟, 𝑔, 𝑏)                                                    (4.42) 

𝐶𝑚𝑖𝑛 = 𝑀𝑖𝑛(𝑟, 𝑔, 𝑏)                                                      (4.43) 

𝑑𝑒𝑙𝑡𝑎 = 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛                                                (4.44) 

3- Calculation of Hue: 

𝑇 =
𝑔−𝑏

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
         if (r == max)                                      (4.45)  

𝑇 =
𝑏 − 𝑡

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
+ 2         if (g == max)                        (4.46) 

𝑇 =
𝑟 − 𝑔

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
+ 4         if (b == max)                              (4.47) 

𝐻 = 𝑇 ∗ 60                                                     (4.48) 

4- Calculation of Saturation:    

If (Cmax != 0): 

        𝑆 =
𝑑𝑒𝑙𝑡𝑎

𝐶𝑚𝑎𝑥
                                                      (4.49) 

              Else: 

                      𝑆 = 0                                                          (4.50) 

5- Calculation of Value: 

𝑉 = 𝐶𝑚𝑎𝑥                                                (4.51) 
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a b 

Figure 34 RGB conversion to HSV: a) image in the RGB color space, b) image in the 

HSV color space 

We can also transfer colors from the HSV space system to the RGB space system  

(figure 35) using the following equations: 

             𝐶 = 𝐶 ∗ 𝑆                                                            (4.52) 

𝑥 = 𝐶 ∗ (1 −| (
𝐻

60
)𝑚𝑜𝑑 2 − 1|)                                 (4.53) 

𝑚 = 𝑉 − 𝐶                                                    (4.54) 

 

 

 

        (𝑅, 𝐺, 𝐵) = (𝑅′ + 𝑚,𝐺′ + 𝑚,𝐵′ + 𝑚)                        (4.55) 

 

 

 

 

 

   a                   b 

Figure 35 HSV conversion to RGB: a) image in the HSV color space, b) image in the 

RGB color space 
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4.2 Image Enhancement  

     The main goal of image enhancement is to improve the original image in order to 

obtain a more suitable result for the intended application. This approach can be 

applied under two essential categories: the frequency domain and the spatial domain. 

Whereas the latter includes the direct manipulation of image pixel values, such values 

cannot be accessed directly in the frequency domain. As a result, the Fourier 

transform is employed to convert pixel values to the frequency domain for frequency 

modification, with the inverse Fourier transform then applied to obtain the final 

image. During image enhancement we can obtain light images from dark images and 

vice versa, as well as change the image contrast. This popular function is used to 

reduce image noise, which has a direct effect on image processing applications such 

as edge detection and region detection. The method also assists in the perception of 

visual images by changing various properties as illustrated below figure: 

 

 

 

 

 

 

 

Figure 36 Block diagram of image enhancement  

As outlined previously, image enhancement using a spatial domain approach is  

carried out directly, and thus can be expressed as follows: 

𝑔 (𝑥, 𝑦) = 𝑇 [ 𝑓(𝑥, 𝑦) ]                                     (4.56) 

where 'f' refers to the original image (or set of images), ‘g’ refers to the image after 

enhancement, and ‘T’ refers to the function applied to image ‘f’.  

4.2.1 Gray Image Transformation 

   A variety of gray transformation categories are available, as shown in Figure 37. 

Here 'r' refers to the pixel value before processing and's' refers to the pixel value after 

processing. 
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Figure 37 Basic intensity transformation functions 

   In the above figure 'r' refers to the original image, ‘s’ refers to the image after 

applying the enhancement functions, and 'L' is the range of pixel values in gray level 

"L = 256". 

4.2.1.1 Gray Image Negatives 

This transformation is applied to the gray space that has a color range from [0 to L-1], 

where 'L' equals 255 (as illustrated in figure 38), and is obtained via the following 

expression: 

𝑠 = 𝐿 − 1 − 𝑟                                                (4.57) 

This process effectively works by reversing the value of pixel "intensity". As a result, 

dark regions, especially black, are dominant in size. This method is commonly 

employed in air force planes. 

  

  

 

 

 

    a                        b 

Figure 38 Gray scale inversion: a) image in gray scale, b) the inverted image 
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4.2.1.2 Log Transformation 

In this method a narrow range of low-level gray space intensities in the original image 

are transformed into a broad range in the final image, and vice versa, i.e., a wide 

range of high-intensity values in the original image are transformed into a narrow 

range in the final image. This transformation thus increases the pixel values of dark 

regions and compresses the pixel values of light regions as illustrated below figure. 

The inverse-log transform will do the opposite. This transformation can be applied via 

the following expression:  

𝑠 = 𝑐 ∗ 𝑙𝑜𝑔 ( 1 + 𝑟 )                                    (4.58) 

 

 

 

 

 

 

 

Figure 39 LOG enhancement image, c=20 

4.2.1.3 Power-Law Transformation 

  This transformation, as shown in Figure 40, is produced using the following 

expression: 

S = 𝑐𝑟𝑦                                                            (4.59) 

   This transformation function is also known as gamma correction. For various values 

of γ, different levels of enhancement can be obtained. As shown in Figure 40, the 

value of 'γ' has a significant effect on enhancement. In Figure 41, variation in ' γ' 

produces the observed changes in pixel light intensity in the displayed images. The 

main difference between power-law transformation and log transformation is that the 

curves of the former can be obtained only by changing the value of 'γ'.  
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Figure 40 Plots of the power-law function when c=1 and for values of y between 

[0.04 – 25.0] 

 

 

 

 

 

 

 

 

 

Figure 41 Example of power-law function application: a) original aerial image, b) 

result when y=3.0, c) result when y=4.0, d) result when y=5.0, for all c=1 

4.2.1.4 Contrast Stretching 

   In this transformation the image is improved by stretching the area of pixel intensity 

values. This process assists in understanding the content of an image, especially 

regarding objects inside dark or highly luminous regions. Contrast stretching is 

carried out using the following expression: 

s = (r − c) [
b − a

d − c
] + a                                                 (4.60) 
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In the above equation, 'a' and 'b' represent the assigned limits of pixel intensity values 

in the final image (in the gray space system the value of 'a' is usually equal to zero and 

the value of 'b' is equal to two hundred and fifty five).   

   The letters 'c' and'd' respectively represent the lower and upper limit of pixel 

intensity values in the original image, and can be obtained via a histogram. If the 

value of 'a' is equal to the value of 'c', and the value of 'b' is equal to the value of 'd', 

the final image will be the same as the original image. The main obstacle facing this 

transformation method is that outlier values can reduce its effectiveness. For example, 

consider an image with the dimensions 512*512, which thus contains a total of 

262144 pixels. Let us assume we have one pixel with the value zero and one pixel 

with the value two hundred and fifty five, with the remaining pixel values between 

one hundred and one hundred and fifty; in such a scenario, contrast stretching cannot 

be applied and we should instead divide the image into blocks, with each individual 

block representing an image as illustrated below figure. 

 

 

 

 

 

 

Figure 42 Example of contrast stretching 

4.2.2 Spatial Domain Filtering 

   Spatial filtering involves the use of a pixel and its neighbors in order to select a new 

value for that pixel. The simplest type of spatial filtering is known as linear filtering. 

In this method a weight is attached to the pixels adjacent to the pixel of interest, with 

these weights then used to blend the pixels together to provide a new value for the 

pixel of interest. Linear filtering can be employed to smooth, blur, sharpen, or find the 

edges of an image. 
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4.2.2.1 Mean Filtering 

  Mean filtering is very important at the pre-processing stage because it involves 

smoothing local variations and blurring the image (figure 44), which in turn reduces 

image noise. In this case the filter is a window with size (m,n), where 'm' and 'n' are 

odd integers (figure 43). This window is used to corrupt the original image in order to 

calculate the average value in the area covered by the window. The mean filter 

equation is expressed as follows: 

R(x, y) =
1

𝑁 ∑  ∑   𝑛
𝑙=1  𝑊(𝑘, 𝑙)𝑂(𝑥 − 𝑘, 𝑦 − 𝑙)

𝑚

𝑘=1

                         (4.61) 

O: is the original image. 

W: is the filter window. 

m, n: is the size of W. 

R: is the result of applying W to O. 

x,y: are the coordinates of the image point. 

N: is the sum of values in W. 

 

  

 

 

 

 

 

Figure 43 Mean filter applied in matrix form 

 

 



45 
 

 

 

 

 

 

 

                                         a                                                                                 b 

Figure 44 Mean filter applied to an image: a) image with noise, b) image after mean 

filtering 

 

4.2.2.2 Median Filtering 

  Median filtering is also used to reduce image noise, typically at the pre-processing 

stage prior to the application of the main processing function (especially those which 

are sensitive to noise) in order to improve the results of processes such as edge 

detection. The method is widely used as it is very effective at removing noise whilst 

simultaneously preserving edges, and is particularly useful for the removal of 'salt and 

pepper' type noise (figure 46). Median filtering works by using windows which are 

slid pixel by pixel over the entire image. The filter is calculated by first sorting all 

pixel values in the window into numerical order, then replacing the pixel under 

consideration with the middle pixel value as illustrated below figure: 

 

 

 

 

 

 

 

Figure 45 Median filter applied in matrix form 
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                  a                                                                         b 

Figure 46 Median filtering applied to an image: a) image with noise, b) image after 

median filtering 

 

4.2.2.3 Gaussian Filtering 

 Gaussian filtering is a nonlinear digital filtering technique which is widely used to 

blur an image and thereby remove noise. The Gaussian filter works by moving 

through the image pixel by pixel and replacing each value with the average value of 

window pixels As in median filtering, this window slides pixel by pixel over the 

entire image, but in this case the filter is calculated using the Gaussian equation below 

(Table 6), which is then applied to all pixels in the image (figure 48).: 

 

                                                                                                                               (4.61) 

 

 

 

 

 

 

Table 6 Gaussian Kernel When σ=1 

 

1 4 7 4 1 

4 16 26 16 4 

7 26 41 26 7 

4 16 26 16 4 

1 4 7 4 1 
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Figure 47 Plots of the Gaussian kernel when σ=1 

 

 

 

 

 

 

 

       

           a                                                                                b 

Figure 48 Gaussian filtering: a) image with noise, b) image after Gaussian 

filtering 

4.3 Edge Detection 

   Edge detection is used in image processing to detect the boundaries of regions 

inside an image, in the attempt to assign changes in brightness. The aim of edge 

detection is object extraction and image segmentation, such as the extraction of the 

foreground from the background. Edge detection has attracted the attention of many 

researchers and is considered one of the most important fields of study in lower level 

computer vision [27]. 
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4.3.1 Canny Edge Detection 

Developed by John F. Canny in 1986, canny edge detection involves the acquisition 

of a wide range of image boundaries via the use of multi-level processes [28]. Canny 

edge detection is aimed at best achieving the following standards: 

1- Detection: find the largest possible number of real edge points and reduce the 

number of disingenuous edge points (figure 49). 

2- Localization: the discovered edges should be as close as possible to genuine 

edges. 

3- Number of responses: one genuine edge should not bring about more than one 

distinguished edge. 

The algorithm runs in 5 separate steps: 

1- Smoothing: using the Blurring filter on the image to reduce noise. 

2- Finding gradients: edges should be marked where the gradients of the image 

are large in magnitude. 

3- Non-maximum suppression: only local maxima should be marked as edges. 

4- Double thresholding: potential edges are determined via thresholding. 

5- Edge tracking via hysteresis: final edges are determined by suppressing all 

edges that are not connected to a very certain (strong) edge. 

 

 

 

 

 

 

  

 

 

Figure 49 Example of Canny edge detection 
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4.3.2 Sobel Edge Detection 

  The Sobel operator is a discrete differential operator which utilizes two 3x3 kernels 

(figure 51); one kernel estimates the gradient in the x-direction, and the other 

estimates the gradient in the y-direction, as follows: 

 

𝐺𝑋 = [
−1 0 +1
−2 0 +2
−1 0 +1

]                                              (4.62) 

 

𝐺𝑌 = [
−1 −2 −1
0 0 0

+1 +2 +1
]                                           (4.63) 

 

   The image is convolved with both kernels to approximate the derivatives of 

horizontal and vertical change. At each given point, the gradient magnitude can be 

approximated as: 

𝐺 = √𝐺𝑋2 + 𝐺𝑌2                                                    (4.64) 

 

   Due to the Sobel operator’s smoothing effect (Gaussian smoothing), it is less 

sensitive to any noise present in images. However, this smoothing affects the accuracy 

of edge detection. In other words, although the Sobel method does not produce an 

image with sufficient accuracy for edge detection, it is adequate for use in numerous 

other applications as illustrated below figure: 

 

 

 

 

 

 

 

 

 

Figure 50    Block diagram of the Sobel edge detection algorithm 
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Figure 51 Example of Sobel edge detection 

4.3.3 Prewitt Edge Detection 

   The Prewitt edge filter is used to detect edges based on the application of a 

horizontal and a vertical filter in sequence as illustrated figure 52. Both filters are 

applied to the image and summed to form the final result. The Prewitt operator 

produces values that are symmetric around the center (x,y) coordinates. The two 

filters are basic convolution filters which take the following form: 

𝐺𝑋 = [
−1 0 +1
−1 0 +1
−1 0 +1

]                                              (4.65) 

𝐺𝑌 = [
−1 −1 −1
0 0 0

+1 +1 +1
]                                           (4.66) 

 

 

 

 

 

 

 

Figure 52 Example of Prewitt edge detection 
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4.4 Region Segmentation 

  Image segmentation is a complementary approach to the edge detection methods 

outlined above. Whereas in edge detection we segment an image by identifying the 

object boundaries and variation in image intensity, region segmentation involves 

identifying regions occupied by objects. Pixels are grouped into regions of similar 

properties.  

4.4.1 Simple Segmentation 

  In simple cases where the image contains one object in the gray level, we can 

convert it into a corresponding binary image in which the object pixels are denoted as 

1's and the background pixels as 0's. To determine a binary image we need to use a 

threshold value T, as follows: 

𝐵(𝑥, 𝑦) = {
1, 𝑖𝑓  𝐹(𝑥, 𝑦) > 𝑇

0, 𝑖𝑓 𝐹(𝑥, 𝑦) ≤ 𝑇
                                             (4.67) 

  where 'B' is a binary image, 'F' is a gray image, and 'T' is a threshold. Occasionally 

we need to use two thresholds to convert an image from the gray level to the binary 

level as follows: 

𝐵(𝑥, 𝑦) = {
1, 𝑖𝑓  𝑇1 < 𝐹(𝑥, 𝑦) < 𝑇2     
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                                  (4.68) 

4.4.1.1 Thresholds and Histograms 

The distribution of gray levels can be used to determine the threshold used in binary 

images as illustrated below figure:  

 

  

 

       

                           a                                                                         b 

Figure 53 Histograms: a) simple synthetic image with one projection,  b) histogram 

of image shown in (a). 
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 The histogram of a synthetic image will contain distinct spikes. When such a 

histogram has two spikes, it can be considered bimodal. In contrast, the histogram of a 

real image may not contain clear spikes but instead may consist of peaks and valleys. 

This pattern is the result of gray levels at the edges changing gradually from 

background to foreground as illustrated below figure: 

 

 

 

 

 

 

Figure 54 Example of a bimodal histogram 

Objects with approximately the same range of gray levels are grouped to form a class. 

The histogram of an image will therefore include a peak for each class of objects and 

one large peak corresponding to the background as illustrated below figure: 

 

 

 

 

  

              a                                                                                                 b 

Figure 55 Simple thresholds: a) image consisting of three objects, b) histogram of 

image shown in (a) 

 

𝐵1(𝑥, 𝑦) = {
1, 𝑖𝑓  0 < 𝐹(𝑥, 𝑦) < 𝑇1       
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                  (4.69) 
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𝐵2(𝑥, 𝑦) = {
1, 𝑖𝑓  𝑇1 < 𝐹(𝑥, 𝑦) < 𝑇2       
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                (4.70) 

  

𝐵3(𝑥, 𝑦) = {
1, 𝑖𝑓  𝑇2 < 𝐹(𝑥, 𝑦) < 𝑇3       
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                  (4.71) 

    It should be noted that the histogram can only distinguish between classes of 

objects; it does not contain any spatial information. As a result, a "chess board" image 

comprising an equal number of alternating black and white blocks, and an image 

comprising random black and white dots of equal distribution will produce the same 

histogram. 

4.4.1.2 Peakiness Test 

  The histogram of a real image may contain small peaks due to noise. Therefore, not 

all peaks can be used in segmentation. Before histogram peaks can be used in 

segmentation, we need to identify genuine peaks which correspond to object regions. 

We will use the peakiness test for that purpose as illustrated below figure: 

 

 

 

 

 

Figure 56 

   

   A peak can be considered ‘good’ if it is sharp and deep. A peak is sharp if the area 

under it is small. Peak sharpness can be expressed as the ratio of the area of the 

rectangle enclosing the peak to the number of pixels N under the peak, with peak 

depth the relative height of the peak. The peakiness test uses the following 

information: 

1- W : the width of the peak in terms of gray level range from valley to valley. 



45 
 

2- P  : height of the peak. 

3- Va,Vb : the two valley points either side of the peak. 

4- N : the number of image pixels covered by the peak. 

The sharpness of a peak can be defined via the ratio: 

𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 = 𝑁 / ( 𝑃 ∗ 𝑊 )                         (4.72) 

  The maximum ratio value of 1 represents the worst possible case, with peak 

sharpness increasing as the value decreases toward zero. The ratio of valley height to 

peak height is: 

𝑉𝑎𝑙𝑙𝑒𝑦𝑠_𝑇𝑜_𝑃𝑒𝑎𝑘 = ( 𝑉𝑎 + 𝑉𝑏 ) / 2𝑃             (4.73) 

The actual peakiness test value is thus the product of the two ratios above: 

𝑃𝑒𝑎𝑘𝑖𝑛𝑒𝑠𝑠_𝑇𝑒𝑠𝑡 = ( 1 − 𝑉𝑎𝑙𝑙𝑒𝑦𝑠_𝑇𝑜_𝑃𝑒𝑎𝑘 ) ∗ ( 1 − 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 )    (4.74) 

If the obtained peakiness value is greater than some threshold, then that peak can be 

used for segmentation. 

4.4.2 Connected Component Algorithms 

In order to find a connected group of pixels in an image we need to apply a connected 

component algorithm. There are three possible degrees of connectedness as illustrated 

below figure: 

 

 

 

                       a                                             b                                    c 

Figure 57 Pixel connectedness:  a) 4-connected, b) 8-connected, c) 6-connected 

  In 4-connectedness, a pixel is considered with respect to four of its immediate 

neighbors (Left, Right, Up, Down), because these pixels are located at a distance of 

one from the original pixel. In 8-connectedness the four diagonally adjacent pixels are 
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also considered. The following two subsections contain a discussion of two 

algorithms used to find connected components in an image: recursive and sequential. 

4.4.2.1 Recursive Algorithm 

  The recursive algorithm works well and is easy to implement. However, being 

recursive, when run on a small computer with a limited stack this algorithm may 

easily run into stack overflow, which therefore must be taken care of by the 

programmer. For example, for a 512 * 512 image comprising a quarter of a million 

pixels, the recursive algorithm may have several thousand recursive calls. The 

algorithm involves the following steps: 

1- Scan the binary image from left to right, top to bottom. 

2- If an unlabeled pixel is found with a value of '1', assign a new label to it. 

3- Recursively check the neighbors of the pixel in step 2 and assign the same 

label to these pixels if they are unlabeled with a value of '1'. 

4- Stop when all pixels of value '1' have been labeled. 

4.5.2.2 Sequential Algorithm 

The sequential algorithm is a two-pass algorithm which labels image regions. The 

first pass scans the binary image and assigns any unlabeled pixel a new label. In the 

assignment of these labels the labels of neighboring pixels are also considered. During 

the second pass the labels of pixels are changed to the labels of their respective 

equivalence classes. The algorithm proceeds as follows: 

1- Scan the binary image from left to right, top to bottom. 

2- If an unlabeled pixel has a value of '1', assign a new label to it. 

3- Determine the equivalence class labels. 

4- In the second pass, assign the same label to all elements in each equivalence 

class. 

4.5.3 Seed Segmentation  

  The first step of seed segmentation is to compute the histogram of an image. This 

histogram may contain a number of small peaks due to image noise and uneven 

illumination. During the second step, the histogram is smoothed to remove these small 

peaks by averaging over 3 elements. In the third step, candidate peaks and valleys are 
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identified simply by detecting local maxima and minima in the histogram. ‘Good’ 

peaks are then detected via the peakiness test. In the fifth step, the image is segmented 

using thresholds at the valleys between peaks. The last step is carried out to determine 

a set of connected components in the image as illustrated below figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 Block diagram of the seed segmentation algorithm 

4.5 Template Matching  

   Template Matching is used to examine and detect the position of the image template 

in a target image. This method can generate a better result when applied only to image 

edges or to images in the gray space. Template matching is usually applied after 

choosing a region from the original image to use as the image template. In this case 'S' 

refers to the target image, (x, y)  to the coordinate system of the pixels in the target 

image, 'T' to the image template, and (xt, yt) to the coordinate system of the pixels in 

the image template. We then simply move the center (or the origin) of the 

Compute the histogram 

Smooth the histogram 

Peak and valley detection, with 

good peaks identified via the 

peakiness test 

Segmentation using thresholds 

at the peaks identified in the 

previous step 

Identify regions by connected 

components 
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template T(x t, y t) over each (x, y) point in the search image, and calculate the sum of 

the products of the coefficients in S(x, y) and T(xt, yt) over the whole area spanned by 

the template. As all possible positions of the template with respect to the search image 

are analyzed, the position with the highest score is considered the best position. This 

method is sometimes referred to as 'Linear Spatial Filtering', and the template a ‘filter 

mask’, as illustrated below figure: 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

 

b 

Figure 59 Template matching test: a) source image, b) target image 

The following expressions are employed in the most famous template matching 

methods: 

http://en.wikipedia.org/wiki/Spatial_filter
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1- Squared difference 

                                                                                                                             (4.75) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 60 Example of squared difference application 
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2- Normalized squared difference 

 

                                                                                                                              (4.76)                                                                  

 

Figure 61 Example of normalized squared difference application 
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3- Cross-correlation  

 

                                                                                                                           (4.77) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62 Example of cross-correlation application 
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4- Normalized cross-correlation 

 

                                                                                                                               (4.78) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 Example of normalized cross-correlation application 
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5-  Correlation coefficient 

                                                                                                                                

(4.79) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64 Example of correlation coefficient application 
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6- Normalized correlation coefficient (NCC - Fast normalized cross-correlation) 

 

                                                                                                                                    (4.80) 

  

 

 

  

 

  

 

 

 

 

 

Figure 65 Example of NCC application 
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4.6 Integral Images 

   The summed area table or integral image is an effective method with which to 

calculate the sum of pixel values in a gray image. Originally developed in 1984, this 

method was not employed actively in the field of computer vision until 2001, when it 

was introduced by Viola as part of the "Viola-Jones Object Detection Framework". 

The goal of an integral image is to achieve the rapid computation of both box 

convolutions and intensities for any rectangle in an image which is not sensitive to 

rectangle size. In integral imaging, computation time is independent of filter size, thus 

allowing the use of any box filter application. An integral image is the same size as 

the original image, with its value at any point (x,y) being the sum of the intensity 

values for all points in the original image with locations less than or equal to (x,y) as 

illustrated below figure: 

 

 

 

 

 

 

 

 

Figure 66 Example of an integral image: a) image, b) summed area table 

 

𝑆(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝑆(𝑥 − 1, 𝑦) + 𝑆(𝑥, 𝑦 − 1) − 𝑆(𝑥 − 1, 𝑦 − 1)                          (4.81) 

 

  where ‘S’ is the integral image and ‘I’ is the original image. The image is then 

divided into four rectangles as follows: 

 

 

 

 

Figure 67   Summed Area Table 
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The sum of 𝐼(𝑥′, 𝑦′) is calculated using the following equation: 

𝐼(𝑥′, 𝑦′) = 𝑆[𝐴] + 𝑆[𝐷] − 𝑆[𝐵] − 𝑆[𝐶]                                  (4.82) 

The result of this equation for the above example is equal to 6. 

4.7 Speeded Up Robust Features (SURF) 

   Originally developed in 2006 by Herbert Bay, the SURF (Speeded Up Robust 

Features) algorithm is a robust local feature detector which is useful for various 

computer vision functions, such as 3D reconstructions and object recognition. The 

SURF algorithm is derived from the SIFT algorithm, but is faster than the latter by 

several times and is more robust for use in image translation. As the SURF algorithm 

is based on the efficient construction of an integral image and a 2D Haar wavelet, it 

can be used to calculate the determinant of the Hessian for rapid blob detection. For 

features, the algorithm uses the sum of the Haar wavelet response around the point of 

interest. Again, these values can be computed with the aid of integral images [29]. 

SURF roadmap: 

1- Find interest points (using the determinant of the Hessian matrix) as illustrated 

figure 68. 

A Hessian matrix in two dimensions consists of 2*2 matrices containing the 

second-order partial derivatives as follows: 

 

 

         

 

 As a symmetric matrix, for any square matrix the determinant of the matrix is the 

product of the eigenvalues. Therefore, for the Hessian matrix, the eigenvectors form 

an orthogonal basis showing the direction of image curve features (gradient): if both 

eigenvalues are positive, local minima; if both eigenvalues are negative, local 

maxima; and if the eigenvalues have mixed signs, the saddle point. Therefore, if the 

product of the eigenvalues is positive, then the latter were either both positive or both 
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negative, and we are at a local extremum. Typically, some kind of threshold is applied 

to the determinant value so we only detect major features; we can also control the 

number of interest points in this way. The integral image is then used to obtain the 

sum of intensities for the square, by multiplying by the weight factor and adding the 

resulting sums for the box filter together after normalizing the filter. The matrix 

containing the thresholded determinants for a particular filter size is known as the 

‘blob response map’. This blob at location X=(x,y,σ): 

                                                                                                      (4.83) 

For a 9*9 matrix, when σ=1.2: 

                                                                                                                  (4.84) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68 Example of Hessian matrix application 
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2- Find major interest points in scaled space, with non-maximal suppression on 

scaled interest point maps. 

  An octave is defined as a series of filters which have a range which 

approximates a doubling of scale. By computing 3 octaves with the option of 

going to 4 octaves, the octaves overlap to ensure full coverage of each scale as 

illustrated below figure: 

 

 

 

 

 

 

Figure 69 graphical representations of filter side lengths for three different 

octaves 

  To find the main image features we can apply non-maximal suppression, 

with normal 3*3 non-maximal suppression carried out within the same blob 

response map, and non-maximal suppression on the blob response maps above 

and below the image in scale space for each octave as illustrated below figure: 

 

 

 

 

                                Scale 

 

 

 

Figure 70 Non-maximal suppression 
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Because of the coarse scale of the scale space, we need to interpolate the interest point 

to arrive at the correct scale (σ), expressing the Hessian as a Taylor expansion as 

follows: 

                                                                                              (4.85) 

Differentiating and setting to 0 gives: 

                                                                                                                (4.86) 

So the interpolated interest points are: 

 

                                                                                                             (4.87) 

 

                                                                                                                                            

(4.87) 

 

3- Find features. 

  We can use Haar transforms (figure 71) to assess the primary direction of 

each feature, with the intuition being that they provide a sense of the direction 

of the change in intensity. They are also resistant to overall luminance 

changes. The figure below shows simple box filters or ‘integral images’. 

 

 

 

 

Figure 71 Haar wavelet filters employed to compute the responses in the x 

and y directions. 

To compute the rotation we need to carry out the following steps for each 

feature: 

- Look at pixels in a circle of 6*σ radius as illustrated figure 72. 
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- Compute the x and y Haar transform for each point. 

- Use the resulting values as x and y coordinates in a Cartesian map. 

- Rotate a wedge of π/3 radians about the circle. 

- Choose the direction of maximum total weight. 

 

 

 

 

 

 

 

 

Figure 72 Neighborhood of radius 6s around the interest point 

 

Figure 73 Orientation assignment 

4- Generate feature vectors. 

A square descriptor window is constructed with a size of 20* σ centered on 

each interest point and with an orientation based on the derived rotation figure 

73. The descriptor window is then divided into 4*4 sub-regions for which: 
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- Each sub-region is a 5* σ square 

- Haar wavelets of size 2* σ are computed for 25 regularly spaced points in 

each sub-region. 

- For each of the 16 sub-regions we compute 4 values (sum dx, sum dy, sum 

abs(dx), and sum abc(dy)). 

- The feature vector is a 64 dimensional vector consisting of the above 4 

values for each of 16 sub-regions as the following figures: 

 

 

 

 

Figure 74 Feature descriptor in SURF with 64 dimensions 

 

 

  

Figure 75 Building the descriptor 

Figure 76 Descriptor entries of a sub-region representing the nature of the underlying 

intensity pattern. 
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Chapter 5 

 

THE APPLICATION 

Introduction     

  The present chapter describes the position estimation system which was designed for 

aircraft and UAV in particular figure 77. Originally, the system was developed under 

the assumption that the camera would be attached to the aircraft, relying solely on 

binocular vision to apply simple obstacle avoidance. However, to simplify system 

integration, the system is now implemented in a payload module consisting of two 

cameras and a general purpose CPU. The following section contains a detailed 

discussion regarding the development of an algorithm for obstacle avoidance. The 

system consists of two parts: hardware and software. The hardware includes two 

cameras and a computer, while the software covers the following seven functions 

(figure 78): 

1- Vision system calibration: to produce an estimate of both extrinsic and 

intrinsic camera parameters for stereo camera calibration. 

2- Image pre-processing: image enhancement, color segmentation, and region 

segmentation. 

3- Stereo vision system: extracting the depth and size of objects in the real world. 

4- Real-time information: the result of the image pre-processing and stereo vision 

system steps. 

5- Database information: all information about objects located under the flight 

path . 

6- Comparison: critical for making decisions with which to recognize objects in 

the real word by comparing system-derived information with database 

information. 

7- Position estimation: to determine the distance of the UAV from the object, and 

the former’s orientation. 

 

 

 

 

Figure 77 Project hardware (quadcopter with two cameras) 
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Figure 78 Block diagram of project software  
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5.1 Vision System Calibration 

The vision system calibration process consists of the following four steps: 

5.1.1 Single Camera Calibration 

   This step is necessary in computer vision in order to extract metric information from 

2D images. The proposed application uses ‘Plane-based internal parameter 

estimation’ for image correction and the extraction of camera parameters such as focal 

length, size of pixel, and point of origin. This information then assists in determining 

the properties of objects in the real world. Single camera calibration can be described 

by the following block diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79 Block diagram of single camera calibration 
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  To calibrate the camera based on this algorithm we here use the chess board pattern 

(figure 80) presented below during the following steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80 Calibration pattern (9*6 chess board) 

 

1- Capture an image ‘frame’ from a live video feed in the RGB color space 

system. 

2- Convert the image from the RGB color space system to the Gray color 

space system. The latter is considered more effective for image processing 

due to increased speed and accuracy. 

3- Attempt to reduce noise by using a median filter with window size ‘5’. 

4- Improve the picture and make full utilization of its conceivable qualities 

by using a contrast-stretching algorithm. 

5- Detect the chessboard via the pattern localization algorithm (this algorithm 

consists of two algorithms: 1-corner detection and line detection using the 

Hough line transform). 

6- Identify and label the corners inside the chessboard pattern.   

7- Repeat the above process (from step 1 to step 6) 20 times. 

8- Apply the camera calibration algorithm as outlined in Chapter 3. 

9- Generate XML file content for all camera information. 
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5.1.2 Image Rectification and Mapping 

    As explained in Chapter 3, lens distortion is a significant problem for real cameras. 

The developed system acts to rectify these distortions as follows figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 81 Block diagram of image rectification and mapping 
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5.1.3 Stereo Camera Calibration 

  As discussed in Chapter 3, the aim of stereo calibration is to correct the position of 

the two cameras, and extract the essential matrix and fundamental matrix as illustrated 

below figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 82 Block diagram of stereo camera calibration 
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1- Capture image ‘frames’ from a live video feed in the RGB color space 

system using both cameras. 

2- Convert the images from the RGB color space system to the Gray color 

space system. The latter is considered more effective for image processing 

due to increased speed and accuracy. 

3- Reduce image noise by using a median filter with window size ‘5’ in both 

images. 

4- Improve the picture and make full utilization of its conceivable qualities 

by using the contrast-stretching algorithm. 

5- Detect the chessboard via the pattern localization algorithm as a figure 83 

(this algorithm consists of two algorithms: 1-corner detection and line 

detection using the Hough line transform) in both images. 

6- Identify and label the corners inside the chessboard pattern in both images.   

7- Repeat the above process (from step 1 to step 6) 20 times. 

8- Apply the stereo camera calibration algorithm, as outlined in Chapter 3. 

9- Generate XML file content for all camera information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

Figure 83 Stereo camera calibration: a) left-hand camera, b) right-hand camera 
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5.1.1.4 Stereo Image Rectification and Mapping 

  As discussed in Chapter 3, to obtain corresponding lines in the images produced by 

two cameras, we built the following model: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 84 Block diagram of stereo image rectification and mapping 
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5.2 Image Pre-Processing 

Image pre-processing consists of the following three steps: 

5.2.1 Image Enhancement 

 Median filtering is employed to reduce noise in image pairs, thereby increasing the 

accuracy of the results as illustrated below figures: 

 

 

 

 

 

 

 

 

Figure 85 Block diagram of image enhancement 

 

 

 

 

 

 

 

 

 

 

 

a b 

Figure 86 Example of image enhancement: a) image before enhancement, b) image 

after enhancement 
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5.2.2 Color Segmentation 

  Images are converted from the RGB system space to the HSV system space, with 

thresholding techniques then used to segment the candidate regions in order to reduce 

the number of potential areas and thus increase processing speed and accuracy as 

illustrated below figures: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 87 Block diagram of color segmentation 

 

 

 

 

 

 

 

 

a                                                                                                       b 

Figure 88 Color segmentation: a) original image, b) image after segmentation 

 

RGB TO HSV 

Data-base 

information 

If H value in real time 

image > H value – 25 

in Data-base and H 

value in real time 

image < H value +25 

in Data-base then the 

color equal white else 

the color is a black  

H value of the object 

Region image 

RGB image after 

enhancement 

H value in Data-base = 25 



911 
 

5.3 Region Segmentation  

  A median filter with window size ‘5’ is used to remove small regions and thus 

narrow down the search field. Labeling of each region is then carried out only in the 

left-hand image of the image pair as illustrated below figures: 

 

 

 

 

 

 

Figure 89 Block diagram of region segmentation 

 

 

 

 

 

 

 

a b 

 

 

 

 

 

  

                            c 

Figure 90 Region labeling: a) region image, b) enhancement image, c) region labeling 
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5.4 Stereo Vision 

  The aim of this step is to convert objects into information. Object edges are first 

identified using Sobel edge detection, with template matching then carried out via the 

normalized correlation coefficient method, followed by disparity calculations. Objects 

are finally converted into information via stereo vision using the techniques discussed 

in Chapter 3, together with the “fill ratio” method. As the ratio of the number of pixels 

in the object to the size of the object, the fill ratio can be used to recognize object 

shape, as illustrated below figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 91 Block diagram of stereo vision information extraction 
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Figure 92 Extraction and labeling of objects in the left-hand camera image 
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Figure 93 Extraction of objects from the right-hand camera image 
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Figure 94 Stereo vision and information generation  
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5.5 Comparison 

  In this step, the real-time information generated in the previous step (size, width & 

length of object, and fill ratio) is compared with the corresponding object information 

contained in the database (figure 95). If the similarity ratio is greater than 75%, the 

system can be considered to have achieved its aim. The similarity ratio is calculated 

via the following equation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 95 Block diagram of real-time and database information comparison 
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𝑆′ =
size_from_real_time

𝑠𝑖𝑧𝑒_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎_𝑏𝑎𝑠𝑒
∗ 100                                    (5.1) 

 

𝑊′ =
width_of_object_from_real_time

𝑤𝑖𝑑𝑡ℎ_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎_𝑏𝑎𝑠𝑒
∗ 100                    (5.2) 

 

  

𝐿′ =
Length_of_object_from_real_time

𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎_𝑏𝑎𝑠𝑒
∗ 100                  (5.3) 

 

  

𝐹′ =
Fill_ratio_of_object_from_real_time

𝐹𝑖𝑙𝑙_𝑟𝑎𝑡𝑖𝑜_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎_𝑏𝑎𝑠𝑒
∗ 100             (5.4) 

 

  

Similarity = 𝑆′ ∗ 𝑤1 +  𝑊′ ∗ 𝑤2 +  𝐿′ ∗ 𝑤3 +  𝐹′ ∗ 𝑤4          (5.5) 

Where the weights are: 

W1=0.20966 

W2=0.304130 

W3=0.302214 

W4=0.209658 

 

   The weights given above are general, and can be obtained from the database for 

each aim. If the similarity is greater than 75%, the result can be accepted, otherwise 

the information must be rejected. 

5.6 Position Estimation 

  In this step we will determine the position of the plane on the map by calculating the 

distance between the plane and the examined object (whose location on the map is 

known), and the pose of the plane to the object, as illustrated below figures: 
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Figure 96 Diagram of position estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 97 Pose algorithm application 
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Chapter 6 

 

RESULTS 

6.1 Results   

In this work, a description and performance analysis of a new vision-based system is 

presented. This system offers local positioning based on a simplified binocular vision 

technique. The main testing aim was to recognize "landmarks" by comparing the 

images obtained by the system with those contained in a database. Tests were carried 

out against the SURF and FLANN matcher algorithms for many models, the results of 

which can be summarized as follows: 

1- After testing five samples, the developed system was found to be slower but 

more accurate than the existing algorithms as illustrated below figure:  

 

 

 

 

 

 

 

 

Figure 98 Comparison of the developed system vs SURF+FLANN 

2- After testing five samples with the same texture but varying in size, whereas 

the developed system was able to recognize all of them, the existing 

algorithms failed to recognize any, as illustrated below figure: 
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Figure 99 Comparison of sample recognition for the developed system vs 

SURF+FLANN 

2- After testing five partial samples of which less than 70% each were captured, 

whereas the developed system failed to recognize any of them, the existing 

algorithms were able to recognize all of them, as illustrated below figure: 

 

 

 

 

 

 

 

 

 

 

Figure 100 Comparison of partial-sample recognition for the developed system vs 

SURF+FLANN 

3- After testing five landmarks of which only descriptions and no pictures were 

available, whereas the developed system succeeded in recognizing all of them, 

the existing algorithms were not able to recognize any, as illustrated below 

figure: 
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Figure 101 Comparison of sample description recognition for the devloped system vs 

SURF+FLANN 

6.2 Conclusion 

During this study we were able to convert an image into position information by 

passing through a number of steps, beginning with the extraction of camera 

parameters which were then used to determine the relationship between the imaged 

point in the real world and the point as shown in the image. High-accuracy 

measurement assisted in the conversion of each point in the image from image data 

into position information. The presented system enables the detection of target object 

“landmarks” for which no picture exists in the database. The developed method can 

be used not only by an autonomous robot but also by a human pilot. 

6.3 Future Work 

 The main problem encountered in the present study was associated with extracting 

the landmarks from the image, with the result highly dependent on the segmentation 

step. Future work will involve converting the RGB cameras to thermal cameras, 

which will not only allow the system to be used at night, but also remove the need for 

the use of complex algorithms for color segmentation, because a thermal camera color 

system is more flexible, as illustrated below figure: 
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Figure 102 Aerial image of an urban area captured using an infrared camera 
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