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In this dissertation, new microstrip bandpass and bandstop filters based on fractal 

resonators have been presented in an attempt to construct filter designs with smaller 

size for almost modern wireless applications. The proposed bandpass filter structures 

have been generated based on Moore, Hilbert, Hilbert-zz and Sierpinski fractal 

geometries while the proposed bandstop filter  is  based on Hilbert Fractal resonators. 

The space-filling property and the self-similarity of the configurations related to the 

consecutive iteration levels of these fractal geometries have been found to create 

compact filter structures with accepted performance results.  

 

Narrowband compact Moore fractal filters from 2
nd

  and 3
rd

  iteration levels have 

been designed for  2.4 GHz band application using a relative dielectric constant of 

10.8 and dielectric thickness of 1.27 mm with good performance results in their quasi 

elliptic responses. For 3
rd

  iteration  Moore  bandpass filter, size reduction percentage 
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as compared with 2
nd

 iteration one  resonating at the same frequency and using the 

same substrate material for  3
rd

 iteration structure is  43% .The simulated and 

measured results are well-matched to each other . 

Stepped impedance Hilbert microstrip bandpass filters have designed with 

characteristics of compacted sizes and narrow band responses which are the 

requisites of recent wireless communication systems. These filters are built from two 

edge coupled resonators, each resonator has been achieved by  applying step 

impedance resonator generator on 1
st
 and 2

nd
 iterations of Hilbert fractal resonators 

on each segment for each fractal iteration . They have been proposed for the ISM 

band applications at center frequency of 2.4 GHz using a substrate with a dielectric 

coefficient of 9.6 and thickness of 0.508 mm. Results show that these filters own 

satisfactory output frequency responses. Size reduction percentage as compared with 

1
st
  iteration stepped impedance Hilbert bandpass filter operating at similar frequency 

and using similar substrate material for 2
nd

 iteration structure is 63.34% . 

New fractal design scheme based on Hilbert-zz curve has been used to produce 

compact microstrip bandpass filter .This fractal filter has been realized using two 

coupled resonators using additional coupling stubs .The material substrate has 

relative dielectric constant of 9 and thickness of 1.27 mm. Simulation graphs 

demonstrate that these filters possess good transmission and return loss features for 

the resultant frequency responses. 

It should be mentioned that Moore, stepped impedance Hilbert resonator and Hilbert-

zz bandpass filters exhibit higher harmonics eliminations in out of passband regions 

of their frequency responses which are much desired properties in modern wireless 

communications. 

Miniaturized microstrip bandpass filters have been designed using Sierpinski fractal 

curves from 0
th

 to 3
rd

 iteration levels. The intended filter designs have been 

performed using dual-mode square slotted microstrip resonator in accordance with 

adopted fractal iterations. These microstrip bandpass filters have less bandwidth and 

sharper transmission responses than those of the single mode resonator and 

traditional square patch filter. Filter structures generating from the successive 
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iterations of the applied fractal geometries exhibit a noticeably low insertion loss, 

and sharper response of about 1% fractional bandwidth as compared with the 

conventional microstrip square patch filter of 3% fractional bandwidth constructed at 

the same resonant frequency of 5.33 GHz and using substrate material of dielectric 

coefficient of  10.8 and thickness of 1.27 mm. 

A new dual-band microstrip bandpass filter has been designed using Peano fractal 

geometry  at resonant frequencies of  2.25 GHz and 4.825 GHz using a substrate of a 

relative dielectric constant of 10.8 and thickness of 1.27 mm. The topology of this 

filter consists of dual edge coupled  resonators constructed from 1
st
 iteration of  

Peano fractal geometry. Simulated responses show that this filter has well frequency 

responses as well as dual bands gained which are highly requested in current 

communication systems. 

On the other hand, new designs of Wide Bandpass Filter (WBPF) and Narrow 

Bandstop Filter (NBSF) based on  Hilbert fractal resonators have been investigated 

using Sonnet simulator. The frequency responses properties of the proposed filters 

have been studied to observe the corresponding broad bandpass and narrow bandstop 

behaviours at the frequency around 2GHz.Moreover, the phase dispersion and 

surface current density details about proposed filters have been presented and 

analyzed. The proposed fractal filters have been found to possess compact sizes with 

flexible designs in addition to good frequency  responses. 

The modeling, simulation and performance evaluation  have been performed using 

the method of moment (MoM) package Microwave Office 2009 from Advanced 

Wave Research (AWR) and a full-wave based electromagnetic simulator Sonnet 

software package which are very commonly used in electronics industry and research 

institutions.  

 

Keywords: Microstrip Fractal Resonators, Compact Bandpass and Bandstop Filters, 

Narrow Bandpass Filters, Wide Bandpass Filter, Narrow Bandstop Filter, Frequency 

Harmonic Suppressions. 
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Bu tezde, yeni fraktal mikroşerit bant geçiren ve bant durduran filtre tasarımları 

modern kablosuz uygulamalar için daha küçük boyutu ile filtre tasarımlar üretmek 

amacıyla geliştirmiştir. 

Önerilen Bant-geçiren filtre yapıları Moore, Hilbert, Hilbert-zz ve Sierpinski fraktal 

geometrilerine dayanarak oluşturulurken. Önerilen bant durduran filtresi Hilbert 

Fraktal rezonatörlere dayanmaktadır. 

Bu dallanmış geometrilerin ardışık yineleme seviyelerine karşılık gelen yapıların 

boşluk doldurucu özelliği ve kendi kendine benzerliğı kabul edimiş performanslı 

indirgenmiş boyutlu filtre yapılarnın üretilmesi için tespit bulunmuştur. 

İkinciden Üçüncü yinelemeye dar bant kompakt Moore fraktal filtreleri, nispi 

dielektrik sabiti 10.8 ve dielektrik kalınliğı 1.27 mm olan ve yarı eliptik sonuç 
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performansları iyi olan durumlerı kullanılarak 2.4 GHz bant uygulaması için 

tasarlanmıştır. Üçüncü yinelemeli Moore bant-geçiren filtre için, ikinci yinelemeye 

göre aynı frekansta boyut küçültme yüzdesi için % 43 tur , üçüncü yineleme için aynı 

substrate materyalini kullanarak. Simülasyon ve ölçülen sonuçlar birbirine 

uyumludur. 

Kademeli empedans Hilbert mikroşerit bant-geçişli filtreler Modern telsiz iletişim 

devrelerinin gereksinimleri kompakt büyüklükte ve dar bantlı tepkilerinin özellikleri 

ile tasarladık.Bu filtreler çift kenar kuplajlı rezonatörden inşa edilmiştir, her 

rezonatör her fraktal yineleme için her segmentinde Hilbert fraktal rezonatörlerin 

birinci ve ikinci yineleme adım empedans rezonatör jeneratör uygulanmasına 

dayanmaktadır.Bu filtereler 9.6 nispi dielektrik sabiti ve 0.508 mm kalınlık ile 2.4 

GHz merkez frekansında ISM bant uygulamaları için tasarlanmıştır.Sonuçlar bu 

filtrelerin iyi iletime sahip ve geri dönuş kaybı özellikleri olduğunu göstermektedir. 

İkinci yinelemeli Kademeli empedans Hilbert mikro bant-geçişli filtre için,ilk 

yinelemeye göre aynı frekansta boyut küçültme yüzdesi için % 63,34 'tür, İkinci 

yineleme filtere için aynı substrate materyalini kullanarak. 

 

Hilbert-zz eğrisine dayalı yeni fraktal tasarım 9 nispi dielektrik sabiti ve 1.27 mm 

kalınlığında bir substrat kullanılarak ek bağlantı taslakları ile iki kutup kapasitif 

birleştiğinde mikro bant-geçiren filtre kompakt oluşturmak için getirilmiştir. 

Sonuçlar bu filtrelerin iyi iletime  ve çıkış frekans tepkisinin ve geri dönuş kaybı 

özellikleri sahip olduğunu göstermektedir. 

 

Moore , kademeli empedans Hilbert rezonatör  ve Hilbert-zz bant geçiren filtreleri 

kendi freakrans tepkilerinin bant geçiren bölgelerin dışında yüksek harmonik 

bastırma özelliği sergiler , ki bunlar modern telsiz iletişimi için çok istenen ve 

şaşırtıcı özellikerdir. 

 

Minyatür mikroşerit bant geçiren filtreler, üçüncü yineleme seviyelere sıfırıncı gelen 

Sierpinski fraktal eğrileri kullanılarak dizayn edilmiştir.Önerilen filtre tasarımı, 



 

 ix 

 

terçih edilen fraktal yinelemeye göre çift modlu, kare oluklu mikroşerit  rezonatörün 

kullanımına dayanmaktadır .Bu mikro bant geçiren filtreler tek modlu rezonatör ve 

geleneksel kare yama filtre daha dar ve keskin % 1  fraksiyonel bant genişliği tepkisi  

göstermektedir. Geleneksel mikroşerit yama kare filtresi ise aynı frekansta , 

dielektrik sabiti 10.8 ve kalınlığı 1.27 mm olan substrat malzeme kullanılarak % 3 tür 

fraksiyonel bant genişliği tepkisi vermektedir. 

Yeni çift bantlı mikroşerit bant geçiren filtre Peano fraktal geometrisi kullanılarak 

dizayn edilmiştir.Bu filtre, dielektrik sabiti 10.8 ve kalınlığı 1.27 mm olan yüzey 

malzeme kullanılarak 2.25 GHz ve 4.825 GHz rezanatörler frekansları tasarlanmıştır. 

Bu filtre Peano fraktal geometri ilk yineleme inşa çift kenar birleştiğinde 

rezonatörlerin oluşur.Simüle tepkiler bu filtrede frekans tepkilerini yanı sıra son 

derece güncel haberleşme sistemlerinde istenen kazanılan çift bant olduğunu 

göstermektedir. 

Öte yandan, Hilbert fraktal rezenatörlerde dayalı geniş bant geçiş filtresi ve dar bant 

durduran filtre yeni tasarımlar Sonnet simülatörü kullanılarak incelenmiştir. 

Önerilen filtrelerin frekans yanıtları özellikleri 2 GHz civarında frekansta gelen geniş 

bant geçiren ve dar bant durduran davranışlarını gözlemlemek için çalışılmıştır. 

Ayrıca, önerilen filtreleri hakkında faz dağılımı ve yüzey akım yoğunluğu ayrıntıları 

sunulmuş ve analiz edilmiştir.Önerilen fraktal filtreler, iyi bir frekans yanıtları vardir, 

ek olarak, esnek tasarımları ile kompakt boyutlarda sahip oldukları bulunmuştur. 

Modelleme, simülasyon ve performans değerlendirme çok yaygın elektronik sanayi 

ve araştırma kurumlarında kullanılan AWR2009 ve Sonnet simülatörleri kullanarak 

yapılmıştır . 

 

Anahtar Kelimeler: Mikroşerit Fraktal Rezonatörler, Kompakt Bant Geçiren ve 

Bant Durduran Filtreler, Dar Bant Filtreler, Geniş Bant Geçiren Filtre, Dar Bant 

Durduran Filtre, Frekans Harmonik Bastırma. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

Microwave bandpass and bandstop filters are available in all satellite, radar, and 

wireless communication systems, and are used to pass certain range of frequencies 

from a spectrum of frequencies and reject another according to the requirements of 

these systems. They are generally realized using one or more resonators, coupled to 

each other. In fact, a resonator is any physical component that stores both magnetic 

and electric energy in a frequency-dependent way. At the resonance frequency, the 

electric and magnetic current distributions  in the resonator are equally stored. An 

ideal resonator can be designed simply by a capacitor/inductor system, where at 

resonance the magnetic and electric energy is exchanged to each other between 

inductor and capacitor [1,2]. 

Passive filter types can be classified according to physical structures as follows : 

1.At Lower Frequencies 

 Lumped Element Filters 

Lumped elements have been used in microwave circuits for more than 30 years. 

The basic theory of filters [1,3-11] is corresponding to connected lumped 

inductors and capacitors as illustrated in Figure 1. This graph represents a 

lowpass filter, and we can construct a prototype design with 1 Ω input–output 

impedance and a 1-rad cutoff frequency. From here, it is basically a matter of 

scaling the g values for different elements to get the preferred frequency response 

and insertion loss. Moreover, other classes of filter such as highpass, bandpass, 

and band-stop simply involve a transformation in addition to the scaling to 

achieve the most wanted characteristics. For radio wave frequencies or the least 
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limit of the microwave frequency bands, passive filters can be realized by using 

coil inductors and parallel plate chip capacitors to build printed circuit board 

(PCB) connections. Several hybrid microwave integrated circuit (MIC) 

technologies such as thin film, thick film, and cofired ceramic are being adopted 

to build up such circuits. Lumped-element filters can be employed simply .By 

using presently obtainable surface-mounted components ,these filters can meet 

size and cost targets in high-volume production as in Ceramic Lumped-Element 

Filters and Superconducting Lumped-Element Filters . 

 

Figure 1  Lowpass filter prototype 

 

2. At Higher Frequencies 

 Dielectric Filters 

Dieletric  filters (DFs)  are suitable for bandpass filtering. Against the two-

dimensional plane (2D), three dimensional (3D) of the device is also classified as a 

DR filter. In the category of 3D devices, designers selected firstly  metallic empty 

cavities or waveguides to meet their requirements for very narrow bandwidth 

filtering. But after 1980s, the high dielectric constant material with low loss and good 

thermal stability, have become available. DF solution has been adopted for many 

applications, especially the spatial uses. This technique permits us to eliminate the 

size of the cavity and waveguide devices and increase their performances. In the 

cases of DF as compared to cavity, some values of  average ratios can be given for 

dual-mode resonators : 

1 : 4 in volume 

1 : 2 in mass 

Furthermore, DF structure with excited mode can be selected to provide a specific 

response required. DFs are typically used on the number of devices, especially in the 

microwave filters using various topologies according to their functions. The main 
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functions can be done by treating extremely narrow bandwidth filtering and  power 

signals [12-14]. 

 

 

 Microstrip Line Filters 

Figure 2 shows the cross section of strip transmission line and microstrip on printed 

PCB.  For stripline the mode of  propagation is essentially  TEM because of  the 

conducting plate is bounded by the same dielectric material.  Namely that  e = r, the 

dielectric constant of the medium. For microstrip line, the propagation mode consists 

of TE and TM modes since the upper dielectric of a micostrip line is usually air 

while the bottom dielectric is PCB dielectric. For TEM mode, the electromagnetic 

phase velocities in air and the PCB are different, due to non-matching at the air-

dielectric boundary.  However quasi-TEM  may be applied at frequency of 6GHz or 

lower where the axial H and  E fields are small enough .  For microstrip line the 

effective dielectric constant e limits between  unity and r.  In situations of  low 

frequencies , the electromagnetic field is mostly distributed in the air, while at larger 

frequencies, the electromagnetic field concentrates on PCB dielectric.  So, the 

microstrip line is dispersive [1,6,8]. Figure 3 shows the effective regions of 

dielectric constant of microstrip and strip line. 

 

 

Figure 2 Cross section view of microstrip and strip transmission line as implemented 

on a printed circuit board 

 

 

Figure 3  Effective dielectric constant of microstrip and stripline 
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 Coplanar Waveguide (CPW) Filters 

Coplanar waveguide is a kind of electrical transmission line which can be produced 

using printed circuit board technique, and is used to transmit microwave-frequency 

signals. On a smaller scale, coplanar waveguide transmission lines are also 

constructed into monolithic microwave integrated circuits. Conventional coplanar 

waveguide as depicted in Figure 4 has one conducting track printed onto a dielectric 

substrate, together with dual return conductors, one to either side of the track. All 

previous conductors are on the same side of the substrate, and hence are coplanar. 

The return conductors are separated from the middle track by a small gap, which has 

an unvarying width along the length of the line. Away from the cental conductor, the 

return conductors typically enlarge to an indefinite but large distance, so that each is 

notionally a semi-infinite plane. 

 

Figure 4 Conventional coplanar waveguide (CPW) 

 

CPW structure is very useful to alter the microstrip planar filter designs because of 

its independency to the thickness of substrate. Different contributions on parallel-

coupled CPW bandpass filters (BPFs) are reported as in [15-17]. The filters with 

excellent  selectivity and high performance interference rejection levels are still 

desired in modern communication applications. Relatively, the four-pole filter with 

dual transmission zeros was indicated in [18]. In [19], the quasi-elliptic CPW BPFs 

based on capacitive cross-coupling effect and stepped-impedance resonators (SIR) 

were suggested to implement compact size and satisfactory selectivity. As well as 

transmission zeros, an enhancement of the stopband rejection is also necessary. Until  

now, the achieved CPW BPFs to exclude the spurious responses are still limited [20-

http://en.wikipedia.org/wiki/Monolithic_microwave_integrated_circuit
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21]. A specific pattern of double-surface CPW filter using  via holes was used to 

reduce the spurious responses. 

Another four-pole BPF was presented in [21] using dual  asymmetric parallel-

coupled CPW stages at the input/output terminal to produce  two transmission zeros 

for excluding the harmonic passband around triple of the center frequency  (3   ). 

However, at the same time, the CPW structures with miniaturized size, good 

selectivity, and good stopband rejection are difficult to be realized. 

 

 Waveguide Filter 

A waveguide filter is an electronic device in which its internal metal tubes are with 

hollow so that an electromagnetic wave may be sent. Waveguide filters are essential 

elements in communication and electronic engineering designs and have diverse 

applications. These include limitation of noise and selection of signals. Waveguide 

filters are often applied in the microwave frequencies band when they have adequate 

size and low loss. Microwave filters are used widely in broadcasting, satellite 

communications, and telephone networks. There are many types of waveguide filter. 

The most widespread consists of several coupled resonant cavities. However within 

this class of waveguide filter, there are huge number of subtypes, primarily 

differentiated by coupling means. These coupling types include irises, posts and 

apertures. Other types of waveguide filters classified to stub filters, dielectric 

resonator filters, insert filters, and corrugated-waveguide filters. Several waveguide 

designs have applied filter basics but their application is something other than to 

filter signals. For examples, directional couplers, diplexers and impedance matching 

components. These designs frequently may take on the form of a filter, or at least in 

part. 

The common manufacturing principle of substandard waveguide in mostly used 

simple term is the hollow metal type as shown Figure 5, but other waveguide 

technologies are possible [22]. The wave is mostly embraced by conducting material. 

There is possibility to build waveguides out of dielectric rods ,[23] the most well 

known sample being optical fibres.  

http://en.wikipedia.org/wiki/Electronic_filter
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Electronic_engineering
http://en.wikipedia.org/wiki/Noise_(electronics)
http://en.wikipedia.org/wiki/Selectivity_(electronic)
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Insertion_loss
http://en.wikipedia.org/wiki/Microwave_filter
http://en.wikipedia.org/wiki/Satellite_communications
http://en.wikipedia.org/wiki/Satellite_communications
http://en.wikipedia.org/wiki/Telephone_network
http://en.wikipedia.org/wiki/Resonant_cavity
http://en.wikipedia.org/wiki/Coupling_(electronics)
http://en.wikipedia.org/wiki/Dielectric_resonator
http://en.wikipedia.org/wiki/Dielectric_resonator
http://en.wikipedia.org/wiki/Directional_coupler
http://en.wikipedia.org/wiki/Diplexer
http://en.wikipedia.org/wiki/Impedance_matching
http://en.wikipedia.org/wiki/Waveguide_(optics)
http://en.wikipedia.org/wiki/Optical_fibre
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High performance narrow-band microwave waveguide bandpass filters are largely 

favourite for the next generation of modern wireless communication systems. To 

satisfy this purpose, there is big interest in the compact microstrip filters because of 

their ease of fabrication, low loss, miniaturized size and low weight [22,23]. 

 

Figure 5 Waveguide filters 

 

1.2 Some Miniaturization Techniques of Microstrip BPF and BSF 

 

1.2.1 Using high dielectric constant substrate  

 

It is  most intuitive miniaturization method related to the choice of dielectric 

substrates with high ε
r
. Indeed, this produces a reduction of the wave propagation 

velocity on the transmission line and the consequent reduction of the wavelength for 

a given frequency. However, in order to be used as substrate for thin films, a 

dielectric material has to satisfy very stringent requirements, such that, presently, 

only LaAlO
3 

and MgO are really used in the filter design. It is clear that LaAlO
3 

offers the best miniaturization perspectives but, in many practical applications, its 

low ε
r 
uniformity makes more reliable the use of MgO [24]. 
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1.2.2 Use of slow wave transmission line 

 

Slow wave resonators are generally realized by loading basic transmission lines by a 

large number of planar inductances and/or capacitances, with very small dimensions. 

In this way, periodic structures are obtained, where the wave propagation constant is 

strictly dependent on the frequency (high dispersion). Usually, they present also an 

increasing spacing between harmonics with an improved out-of-band rejection for 

the filter response. A typical slow wave resonator is reported in Figure 6. In this 

case, the inner region of a basic λ
g
/2 resonator is removed and loaded by a series of 

capacitive fingers, which increase the equivalent capacitance C. The consequent 

reduction of the wave velocity (v
T
) is strictly dependent on the number and 

dimensions of the fingers. By this technique, a resonant frequency reduction between 

20-30% can be obtained, even if the smaller dimensions of the loading elements (in 

some cases around   few tens of microns) can make the design particularly sensitive 

to the photolithography process quality [24]. 

 

Figure 6 Slow wave resonator loaded by capacitive fingers  

 

1.2.3 Use of microstrip lumped element circuit 

 

As far as the microstrip lumped elements are concerned, they can be considered as 

the result of an extreme application of the meandering technique. In these structures, 

similarly to what happens in a LC couple, the resonator parts, where the magnetic 

field is stored, are separated from the parts where the electric field is stored. A 

typical example, where the inductive and the capacitive regions are evidenced, is 

shown in Figure 7.  

The use of quasi lumped elements leads to a significant size reduction of a filter and 

is very interesting above all for applications in UHF range (lower than 1GHz). 

However, due to the presence of extremely miniaturized sections, the reduction of 
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the quality factor can be significant, with values in some cases lower than 10
4 

[25-

29]. 

 

Figure 7  A microstrip lumped element 

 

1.2.4 High temperature superconductivity (HTS) microstrip filter technique  

 

High-Temperature Superconductivity (HTS) thin films possesses very lower surface 

resistance (Rs) as compared with normal metals. HTS is most modern filter 

technology that affects continuously on the design of electronic systems 

,communication systems, medical instrumentation, and military microwave systems. 

Because HTS uses thin film, it is the best solution  for compact HTS filter devices. 

Consequently, by HTS Filters, narrow band responses in the available RF frequency 

spectra and compact devices using different  transmission-line structures have been 

adopted and characterized. Because of high power dissipation of these types of filter, 

an efficient cooling is needed. Thin film technology was available mainly due to the 

advancement in semiconductor industry especially in the fields of wireless 

communication [1, 30-32]. 

 

 

1.2.5 Low temperature cofired ceramic (LTCC) filters technique 

 

Low temperature cofired ceramic LTCC is one of the most sufficient ways for 

miniaturizing and packaging technologies, as LTCC can bundle both passive and 

active components into a single module to meet the system-in-a-package (SiP) 
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requirement. These circuits may become wire bonded to ceramic-based hybrids. This 

technology can reduce discontinuities and air gaps present in conventional stripline 

assemblies, which will improve the output responses of these circuits. All of these 

advantages can effectively reduce the cost, size, mechanical complexity and weight 

for stripline devices [1, 33]. 

 

1.2.6 Dual and multi mode filters technique: 

 

Up to date, dual-mode microstrip filters have  remarkable properties, because of their 

high selectivity characteristics. They can be used as a double tuned circuit, therefore, 

a desired n order is equivalent to its half order of minaturized filter. Namely, each 

element is two pole filter in single structure. Dual mode microstrip filters can consist 

of one or more dual mode microstrip line resonator in form of square patch, triangle, 

ring, disk or whatever [1,24,34]. 

However, triple mode filter is more miniaturized than dual mode filter, because each 

resonator represents three poles in single structure as compared with dual mode 

structure[24,35]. Different orders of multimode resonator filters represent the number 

of poles for these components which can be accomplished by applying the SIR 

elements in circuit configuration [36-39]. 

Another way to reduce dual-mode resonators is to use (cross slotted patch), 

miniaturized by the application of surface cuts which, increase the current path 

length, produce a decrease in the resonance frequency without changing the external 

dimensions [36]. 

 
 
 

1.2.7 Fractal microstrip filters 

 

Mandelbrot defined Fractals as in [40] as method of classifying structures whose 

dimensions were not integers. These curves have been adopted previously to specify 

unique natural phenomena that where difficult to define with Euclidean geometries, 

as in the density of clouds, length of coastline  and branched trees. The term fractal is 

basically taken from the Latin word fractus, which indicates irregular or broken 

fragments. Therefore, there is need for a geometry that handles these complex shapes 
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better than Euclidean geometry, where the Euclidean geometry have a whole number 

of dimensions as in a one dimensional line and two dimensional planes [40]. 

In antennas, filters and other microwave circuit designs, the use of fractal shapes 

makes the operational frequency of component which depends on the ratio of the 

electromagnetic signal's wavelength to the physical size of the component 

independent of its scale. This means that a fractal device structure can be constructed 

in small sizes, yet possessing a broad frequency range. The reasons for using fractal 

antennas and filters appears are firstly because of self-similarity especially for 

antennas (which means number of copies of itself can be appeared at several scales) 

to operate in same way at several wavelengths. Secondly, because by using space-

filling properties of some fractal shapes, many microwave and RF microstrip devices 

can be folded and packaged in smallest areas [40]. 

 Research results explained that, because of increase of the total length of  microstrip 

line on a given substrate, using fractal curves may decrease resonant frequency of 

microstrip resonators, and gives narrow band responses[41-42].  

 

1.3 Thesis Objectives 

 

The aim of this thesis is to present compact microstrip bandpass filter designs  based 

on Sierpinski, Moore, Hilbert and Hilbert-zz fractal geometries as well as microstrip 

narrow bandstop filter using Hilbert fractal resonators suitable for use in various 

wireless mobile applications. The proposed filter designs have been modeled, 

simulated and evaluated using reliable AWR2009 and Sonnet  EM software 

packages. 

 

1.4 Thesis Outline 

 

This Ph.D dissertation is arranged as follows: 

 Chapter two includes the fundamental principles of fractal geometry and 

applications. 

 Chapter three provides basics and parameters of the bandpass and bandstop 

filters.  
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 Chapter four shows the design and simulated results of proposed fractal bandpass 

filters. 

 Chapter five presents the design and the simulation results of proposed wide 

bandpass filter and narrow bandstop filter based on Hilbert fractal geometry. 

 Chapter six includes the conclusions and suggestions for future work. 
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CHAPTER 2  

 

FRACTAL GEOMETRY CONCEPTS AND APPLICATIONS  

 

2.1 Introduction 

 

The mathematician scientist, Benoit Mandelbrot defined and expanded Fractals as in 

[40] as method of assorting structures whose dimensions were not complete number. 

These curves have been harnessed previously to clarify some natural phenomena  

that are  hardly defined with Euclidean geometries, as in the density of clouds, blood 

vessels,  and branched trees .The term fractal is basically quoted from the Latin word 

fractus, which means broken parts or fragments. Therefore, there is serious 

reqiurement for a geometry that handles these complex shapes better than Euclidean 

geometry, where the Euclidean geometry have one dimensional line, or two 

dimensional planes...etc  as in dots, squares and cubes [40]. 

 

2.2 Types of Fractals           

 

Generally, fractals can be divided into two types, natural (random) and mathematical 

(deterministic).   Natural fractals are all those that are available in nature - clouds, 

mountains, trees, leaves, valleys, the human respiratory system.  Mathematical 

fractals are fractals developed using mathematical formulas and the concepts of 

iteration, recursion etc. Widely known mathematical fractals are Mandelbrot set, 

Julia set, Van Koch curve, Sierpinski triangle etc [40, 43]. Figures 8-15 show some 

examples of fractals that they can seen from nature or from Mandelbrot set. 
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Figure 8 Oak Tree – a natural fractal object 

 

 

Figure 9 Fern leaf- a natural fractal object 

 

 

Figure 10 Sierpinski Triange - a mathematical fractal object 
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Figure 11 Sierpinski Carpet- a mathematical fractal object 

 

 

 

Figure 12 Natural flakes 
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Figure 13 Julia set 

 

 

Figure 14 Spiral or not, visual illusion 
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Figure 15 Fractal forgery 

2.3 Fractal Concepts and Euclidian geometry  

 

Firstly, fractals are a decidedly modern invention. Although possessed of turn- of- 

the- century ancestors, they have been well-known as main contributed scientists 

only over the last ten years.  Fractal shapes are called to be self-similar and 

independent of scale or scaling. Secondly, Euclidean geometry supplies concise 

exact definitions of man-made objects but is inappropriate for natural shapes. It 

yields cumbersome and inaccurate descriptions. Machine shops are essentially 

Euclidean factories: objects easily described are easily built. Fractals, on the other 

hand, submit a superior characterization of many natural structures and have already 

given computer imagery a natural flavor. Euclidean shapes are typically explained by 

a simple algebraic formula, fractals are generally the results of recursive algorithms 

which can be made by computer programs [40, 43, 44]. 
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Euclidian  Fractal Geometry 

 (1) Traditional (>2000 years) (1)  Modern  

(2) Based on characteristic size or scale  (2)  No specific size or scaling 

(3) Suits human made objects. (3)  Appropriate for natural  shapes  

(4) Described by formula. (4)  Recursive algorithm 

 

Table 1 Comparasion Between Euclidian and Fractal Geometry 

 

2.4 Properties of Fractal 

Fractals are a modern group of geometrical objects that have three main properties: 

self similarity, space filling and fractal dimensions.  

The first property is the self-similarity property. A self similar object is one which 

can be split into any number of similar parts. An essential characteristic of fractals 

that differentiates them from the more Euclidean shapes is the characteristic that 

magnified subsets look like the whole and to each other.  [40]. The second property 

is the space filling property; the possibility of these fractal curves to pack longer 

geometries in to smallest areas. This property is considered as best candidate instead 

of the Euclidean geometries to design a very small size filter compared with the 

design wavelength. The last property is the fractal dimensions; this requirement 

recognizes fractals from the Euclidean geometries, which own integer dimensions. 

The basic idea of dimension is represented as topological dimension. A point, a line 
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segment, a square and a cube, as shown in Figure 16 have integer dimensions zero, 

one, two and three, respectively.  

 

Figure 16 Euclidean geometries 

 

The concept of self similarity is closely associated dimension concept. 

            D = log N / log (1/r)                                                              (2.1)

  

where N is the total number of distinct copies, and (   ) is the reduction factor value 

which means how will the length be of the new side with respect to the original side 

length. 

An object usually described as one-dimensional, for example, a line segment, also 

possesses same scaling property. It can be split into N similar portions each of which 

is scaled down by the ratio r=1/N of the whole. Similarly a two-dimension object 

such as a square area in the plane, can be split into N self-similar parts each of which 

is constricted by a ratio r = 1/N
1/2

. 

A three-dimensional object as in a solid cube may be divided into N small cubes each 

of which is scaled down by a ratio r = 1/ N
1/3

. A D-dimensional self-similar object 

can be divided into N smaller replcas of itself each of which is dimensionally 

reduced by a factor r where r = 1/N
1/D

 or N=1/r
D
. 

The fractal dimension as compared with Euclidean dimension does not need to be an 

integer. Clouds have a fractional dimension of approximately  3.3 as shown in 

Figure 17 . Van Koch curve, a mathematical fractal, has a dimension of 1.26  as 

shown in Figure 18 [40,43].  
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Figure 17 Fractal cloud 

 

Figure 18 Van Koch snowflake 

 

2.5 Some Types of Deterministic Fractal Geometry 

 

2.5.1 Cantor set  

 

Cantor fractal, or cantor set, shown in Figure 19 is a simple example of a fractal 

geometry. A common construction is  the middle third Cantor set generated by 

iterative process. This can be said the most simple fractals and a good place to 

discuss the nature of fractal geometries. The Cantor set has unlimited set of hidden 

line segments in the unit interval. The best method to understand the generation 

process of  Cantor set fractal is its construction illustration. This is given in      

Figure 19  for the simplest form of Cantor set, namely the triadic Cantor set. The set 

is constructed by process of middle third removal of the unit line segment as in stage 

1 in the figure. From the dual remaining line segments, each one third in length, the 
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middle thirds are again deleted as in stage 2 in the figure and so on. This fractal also 

called as a Cantor discontinuum or Cantor dust [40, 43]. 

        

Figure 19 The first four stages in the construction of the Cantor set 

          

2.5.2 Koch curve 

The construction method of the Koch curve is shown in Figure 20. As same as 

Cantor set, the Koch curve is easily built using an iterative algorithm started with line 

segment initiator as in n = 0 in the figure . The initiator is divided into thirds, and the 

middle third deleted. Then, the middle third is replaced with dual identical segments, 

both one-third in length, which produce an equilateral triangle as in  n= 1; this step 

represents Koch curve generator. Similarly,  the middle third is deleted from each of 

the four segments as in n= 2 and each is replaced with dual similar segments as 

before and so on for n= 3 and 4 .An obvious property of the Koch curve is it is like 

infinite in length. This can be distinguished from the generation process. At each 

generation step n, the length of the fractal curve raised as      

 

  , where     is the 

previous step length of the curve in. As generations step increases, the length of the 

curve also increases [44]. 

 

 

2.5.3 Sierpinski gasket 

The generation procedure of the Sierpinski gasket is shown in Figure 21. The 

initiator here is a solid triangle in this figure. The middle triangular portion is cut 

from triangle initiator. By the same way, the middle triangular portions are deleted 

from the remaining triangular elements as in n = 2 and so on for n = 3,4 and 5 . Each 

Stage 0 (n=0)  

Stage 1 (n=1) 

Stage 2 (n=2) 

Stage 3  (n=3) 
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fractal iteration in this generation consists of three smaller copies of the previous 

stage, each copy dimensionalized by scaling factor of one half [40, 44-45]. 

 

2.5.4 Sierpinski carpet 

 

The Sierpinski carpet, Figure 22, is a mathematical fractal which can be considered 

as two dimensional geometry [44,46]. The Sierpinski carpet is constructed 

analogously to the Sierpinski gasket, but it use squares instead of triangular. To 

generate this fractal curve, it must start with a filled square in the plane, and then 

divided it into nine smaller identical squares where the central square is removed. 

The remaining squares are split into nine smaller similar squares which each central 

are removed [44]. This process can be continued to infinite.    

 

Figure 20 The first four stages in the construction of the Koch curve 

 

n=1 n=2 n=3     n=4 
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Figure 21 The first five stages in the construction of the Sierpinski gasket 

 

 

 

 

Figure 22 The first four stages in the construction of the Sierpinski carpet 

 

 

 

initiator Generator, n=1 n=2 

n=3 n=4 
n=5 

initiator Generator, n=1 

n=3 n=4 

n=2 
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2.5.5 T- Fractal geometry 

 

It is also called Koch Minkowiski; the initiator of this fractal geometry is a Euclidean 

square as in Figure 23. Each of the four straight line segments of the starting shape is 

replaced with the generator, as shown in Figure 23 below. The generating steps can 

be  continued to infinite number of iterations. The final fractal structure is a geometry 

with unlimited complex underlying structure which cannot be differentiable at any 

point [24,47]. 

 

Figure 23 The iterative generation procedure of a T- fractal geometry 

 

2.5.6 Hilbert  fractal geometry 

 

Hilbert fractal geometry is well-known as the space-filling curves (SFCs). The 

geometry of this fractal can be constructed from a long metallic strip compacted 

within a microstrip patch as in Figure 24. As the fractal iteration increases, this 

geometry can space-fill the patch. Hilbert fractal geometries have been used in wide 

variety of miniaturized antenna designs as compared to filter designs[24,41,48].  

                                  

Figure 24 Hilbert fractal iterations  (a)Original ,0
th

 iteration (b) 1
st
 iteration(c) 2

nd
  

iteration  (d) 3
rd

 iteration  
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The fractal curve can be suitable in a square section of S as external side. In 

accordance with Hilbert fractal resonators with side length S and iteration k, the total 

sum of conducting line segments L(k) can be calculated by [24]: 

SkL k )12()(                                                                                                            (2.2)                                                    

The general aim in designing antennas and filters by using Hilbert fractal geometry  

is to increase SFC  fractal iteration as far as possible so as to match the resonator in 

more miniaturized area. However, it has been concluded that, there is an obvious 

inversely proportional relationship for this type of SFCs between compactness level  

and quality factor of the resonator. The strip width w and the gap between the strips g 

are important factors which relatively define this relation [24]. The external side S 

are connected with  w , g  and iteration level k (k≥2) by: 

 

ggwS k  )(2                                                                                                        (2.3)                                

2.5.7 Peano fractal geometry 

 

Peano fractal geometry was proposed by Peano in 1890 as space-filling curve [49]. 

The most amazing property of the Peano-curve algorithm is its larger packaging or 

folding rate than the Hilbert fractal generation procedure in filling a 2-D region, 

which expects that the Peano resonator may have  lower  resonant frequency as 

compared with Hilbert resonator of the same iteration order k. The Peano fractal 

curve, as in Figure 25, fits in a square section of S as external side. The total strip 

length  L(k)  of Peano fractal geometry can be calculated by [50,51]: 

SkL k )13()(                                                                                              (2.4)

                                                                                                           

On the other hand, the side length S  of Peano  microstrip resonator  can be 

determined  from the values of strip width w and gap  between the strips g within 

iteration level k (k≥2) by [50,51]: 

ggwS k  )(3                                                                                          (2.5)

                                                                                       

The fractal dimension gives details about space filling processing and a prominent 

irregularities measure when viewed at very small scales. A dimension   contains   
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much   information about the geometrical properties of a fractal like self similarity 

and compression levels [24,50,51].  

 

 

    Figure 25 The first three iteration levels of  Peano fractal curve generation process 

 

2.8.5 Moore fractal geometry 

 

First of all, the Moore fractal geometry is a closed curve as compared to  Hilbert 

fractal geometry as stated in Figure 26. It can be drawn by connecting some copies 

of the Hilbert curves placed end to end by using suitable orientations [52]. The 

2
nd

 ,3
rd

 , and 4
th

  iterations of Moore space-filling curves have been shown in   

Figure 26 (b) .  

 

Figure 26 The 2nd iteration, 2n  , the 3rd iteration, 3n , and the 4th iteration, 

4n , for (a). Hilbert and (b). Moore fractal curves [52] 

For a Moore fractal resonators  constructed from conducting trace with a side length 

L and iteration n, the length of each line segment dn is given by: 
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12 


nn

L
d                                                                                                          (2.6) 

 

Because of Moore geometry is a closed as compared to Hilbert geometry of the same 

iteration, the all line segments forming the perimeter of Moore fractal geometry 

equals to that of Hilbert plus one, where the all line segments for the Hilbert space 

filling curve can be evaluated by [24]: 

 

LS n

n )12(                                                                                                          (2.7) 

 

So, the corresponding perimeter of Moore fractal curve of the same iteration level, n, 

order will be [8]: 

   LS
n

n

n )
12

1
)12((


                                                                                  (2.8) 

 

By strip width w, and the spacing between strips g, the side length of Moore 

resonator  can be given as [24,52] : 

 

ggwL n

n  )(2                                                                                            (2.9) 

 

2.6 Applications of Fractal Geometries in Science and Engineering 

2.6.1 1/f Noise and fractals in DNA base sequence 

 

Standard special density measurement techniques are applied in a new manner to 

single base positions in DNA sequences. Measurements verified the ubiquitous low-

frequency noise and long 1/fb fractal association in addition to outstanding short-

range periodicity. The classification of data bank on behalf of large banks (primates, 

invertebrates, plants, etc.) display system average spectral index changes and 

evolution categories [53,54]. 
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2.6.2 Fractal geometry of music 

 

A parallelism of the fractal geometry of natural landscape and that of music suggests 

that music can be investigated through a visual representation of acoustic signals. 

The parallelism inspires us to make musical abstracts by scaling the original down to 

half, quarter or eight of its original length. An algorithm for this has been devised. 

The self-similarity of Bach’s music has been demonstrated by this analysis. Bird 

songs, nursery rhymes and classical music are distinguished by their diatomic scale. 

Bird songs and nursery rhymes are not well structured successions of tones, 

dominated by unison or seconds (i = 0,1,2….). A proper combination of selected 

songs can however, include enough variety to achieve fractal geometry. The progress 

to baroque and classical composers is manifested by the approximation to fractal 

geometry in Bach’s and Mozart’s music, simulating the harmony of nature. This is 

absent in modern music [55, 56]. 

2.6.3 On the synthesis and processing of images  and fractal signals 

 

Some techniques are available for generating random images and fractal signals. The 

methods are basically obtained from a Fourier based description of a random scaling 

fractal and are therefore able to utilize a Fast Fourier Transform. This provides the 

potential for constructing a real time facility by implementing the available DSP 

hardware, the principle intention for developing the techniques [44]. 

2.6.4 Positive wavelet representation of fractal signals and images 

 

With appropriate choice of an analyzing positive pulse wavelet, information 

concerning the structure of a signal is concentrated economically in the local maxima 

and minima of the function of two variables, position and scale given by the wavelet 

transformation. This information is extracted by process of co-relation detection, in 

which the analyzing wavelet is regarded as a multiple-scale matched filter. 

Identification of local extrema corresponds to the detection of signal wavelets [44]. 
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2.6.5 Application in geological site characterization 

 

Fractal geometry can be applied to a problem of practical significance in geo-

sciences that of generating a rock transmissivity field with realistic detail over a 

range of length scales from a relatively small number of measured values [57]. 

2.6.6 Image compression 

 

Fractal techniques (Affine transformation and the concept of attractors) can be 

employed to achieve phenomenal compression of images of natural scenery [44].  

2.6.7 Microwave circuit applications 

 

Recent developments in wireless communication systems have introduced new 

challenges to design and produce very good compact components. These challenges 

encourge microwave circuit designers and filter designers to find key  solutions by 

adopting different types of fractal geometries [24, 41-42, 58]. 

By self-similarity property of fractal structures , multi-band fractal antennas, such as 

Sierpinski carpet  and Sierpinski gasket antennas have been successfully applied, 

while the space-filling charcterisics can be used to minimize antenna and filter size. 

Fractal geometries have unique space-filling properties. Research results explained 

that, because of increase of total length of the microstrip line fractal resonators, the 

use of fractal curves can decrease resonant frequency and offers narrow resonant 

peaks [42,58].   

Fractals are going toward a new generation of compact RF and microwave passive 

networks for wireless devices. Any wireless system depends on an RF front-end 

which includes antennas, filters and diplexers, along with other passive elements 

such as capacitors, inductors and resistors. There is no problem whether the system is 

as influential as a cellular base-station, as sensitive as a super conducting satellite 

receiver or as small as a system-on-chip wireless device, the compactness and 

integration of such a front-end becomes always a key issue in terms of performance, 

robustness, packaging and cost.Fractal technology has been already applied in the 

miniaturization of another essential part of the wireless front-end. Compact fractal 
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antennas for handsets, PDAs, cellular base-stations and high-speed data applications 

have been used in every small corner of the wireless world. The size compression 

and multiband qualifications of fractals allow well-organized, broadband and 

multipurpose devices to be packed in places that were at length unreachable due to 

size, weight, or appearance constraints. Based on an analogous principle to filter and 

antenna miniaturization capabilities, fractal technology has been recently proven to 

become the most efficient way in packaging RF and microwave networks as well 

[59,60]. 

 

2.7 Literature Survey of Fractal Microwave Filters   

Among the earliest use of fractals in the design and manufacturing filters is 

Yordanov et. al, [61].  

In 1999, Yordanov, et. al , [61] had designed and prospected Cantor fractal filter as 

shown in Figure 27 below. The transmission and reflection properties had been 

studied from multilayered slab made from two kinds of dielectrics. The relative 

permittivity between them is assumed to be a complex number. The pattern of the 

slab follows the       of the Cantor fractal set construction. In order to consider easy 

for fabrication slabs, the values of N are restricted to 3,4 or, maximum, 5. 

 

Figure 27 Example of Cantor fractal media 

 

In 2004, Barra, [24] had designed and fabricated highly miniaturized 

superconducting filters, using resonators based on fractal layouts. His attention has 

been focused on Hilbert and Koch-Minkowiski space filling curves as shown in 
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Figure 28. He explored the miniaturization levels achievable by these resonators, 

emphasizing the parameters which allow obtaining a good trade-off between 

compact size and losses. Several prototype four pole filters, with Chebychev and 

quasi elliptic responses, have been designed and fabricated. The main experimental 

measurements are reported as well.  

 

Figure 28 a) Koch-Minkowski and b) Hilbert resonator examples 

 

Typical and simplified  cross-coupled spiral resonators with Hilbert configuration 

(CCSR-H) based on 3
rd

 and 4
th

 fractal iterations  have been introduced in [62] for a 

large coupling coefficient with comparison between each other. All introduced 

designs in [62] have low insertion loss, high out-of-band rejection level and wider 

band frequency responses. Moreover, surface current distributions simulated by 

IE3D software package have been used to analyze the coupling regions in spiral and 

Hilbert configurations. These configurations are shown in Figures 29-30 

respectively. 

 



 

 31 

 

 

Figure 29 Typical CCSR-H based on 4
th

  Hilbert fractal iteration  

 

  

Figure 30 Typical CCSR-H based on 3
rd

 Hilbert fractal iteration  

 

Narrow band dual loosely coupled resonators microstrip bandpass filters based on 

Hilbert fractal geometry with coupling stubs have been proposed for wireless 

application as in [41] within ISM band at fundamental frequency of 2.4 GHz. The 

proposed filter design topology is based on a single-mode microstrip resonators 

constructed from  2
nd

 and 3
rd

 iteration levels of Hilbert fractal geometry. The 

performance of each  propsed filter has been analyzed using a method of moments 

(MoM) based software package, Microwave Office 2007, from Advanced Wave 

Research Inc. The new filters have small sizes  and low insertion loss as well as high 

performances, which are very essential  features in microstrip filter design 

theory.These filter structures are shown in Figures 31-32 . 
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Figure 31 The modeled microstrip bandpass filter with two resonators based on  2

nd
 

iteration Hilbert curve geometry 

 

 
 

Figure 32 The modeled microstrip bandpass filter with two resonators based on  3
rd

  

iteration Hilbert curve geometry 

 

In 2006, Bengin, et. al, [63] had investigated the use of Sierpinski fractal geometry in 

the fabrication of a complementary split ring resonator bandpass filter as stated in 

Figure 33. This filter using square Sierpinski fractal curves has been implemented to 

lessen resonant frequency of the structure and obtain more enhanced frequency 

responses. 
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Figure 33 (a) Sierpinski fractal curve of the second order, (b) Sierpinski double split 

ring configuration 

 

In 2006, Kim ,et.al, [64] have been used Koch fractal geometry to design parallel 

coupled BPF geometry with blocked hramonics.This type of fractal named after the 

mathematician Helge von Koch, is excellent choice which has been applied to 

minimize different conventional filters. This has two basic properties: the iteration 

factor and the iteration order. The iteration factor means the procedure of the fractal 

geometry generation, while iteration order represents the current achieved iteration 

for fractal structure. Figure 34 shows Koch shape bandpass filters. Koch –

Minkowski curve have been applied on the edges of the filter coupled sections. 

According to the generator in Figure 34, the iteration factor is ¼ and the orders are 

zero, 1
st
 and 2

nd
 iterations parallel coupled BPF as shown in Figure.2.27. 

 

Figure 34 The fractal layout of parallel coupled BPF geometry: a- Zero iteration, 

b-The first iteration, c- The second iteration 

  =0 

   =1 

       =2 
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In 2007, Xiao, et.al, [65] had introduced new properties of microstrip equilateral 

triangular patch resonator with fractal defection as explained in Figure 35 .This 

fractal filter has been introduced  to achieve high quality output response filters with 

multiple transmission zeros, low insertion loss and wide passband and stopband, in 

addition to compact sizes.  

 

Figure 35 Microstrip equilateral triangular resonator with fractal shaped defection 

 

Chen, et. al, [66] had proposed in 2007, Hilbert fractal curve ring with defected 

ground structure (DGS) to design a lowpass filter as in Figure 36. The DGS structure 

has a flat lowpass characteristic and a sharp band-gap property compared with the 

conventional dumbbell DGS. To improve the out-band suppression, an improved 

Hilbert fractal curve ring DGS cell model loaded with open-stubs was proposed. 

Based on the improved model, a compact L-band microstrip low-pass filter with 

periodic Hilbert curve ring  DGS was designed and fabricated. 

 

Figure 36 HCR DGS cell model 
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Ali[42] presented in 2008 new filter topologies based on  Minkowski-like pre-fractal 

curve .He proposed capacitively coupled dual mode microstrip bandpass filters to 

obtain more selectivity in the resulting filter performance as compared with using a 

single mode resonator. Minkowski-like pre-fractal curve iterations and generation 

method  can been recognized in Figure 37. 

 

 
 

Figure 37 The iterations of the Minkowski-like pre-fractal structure; (a) the 

generator, (b) the square ring resonator, (c) the 1
st
  iteration, (d) the 2

nd
  iteration, and 

(e) modified and enlarged copy of the 3
rd

  iteration 

 

In 2009 [58],  Ali and Hussain introduced a dual mode ring  resonator with Koch 

fractal shape to obtain miniaturized microstrip bandpass filter with accepted 

performance.The proposed filters have narrow bandwidths which are very useful to 

enhance immunity of wireless systems against frequency interferences. The 

generation iterations of the proposed fractal microstrip patch filters based on fractal 

Koch curve are shown in Figure 38. 
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Figure 38 The generation process of the proposed fractal microstrip patch structures 

based on fractal Koch curve. (a)  the generator. (b) the square patch initiator, (c) the 1
st
  

iteration,   and (d) the 2
nd

  iteration. 

     

In 2010 , the design of bandstop filter  based on Hilbert fractal defected ground 

structure (HDGS), has been developed and  optimized using fuzzy genetic algorithm 

as stated in [67]. This filter has been designed at 2.4 GHz center frequency with flat 

pass-band characteristics .The simulation results showed that this method has faster 

convergence rate than the traditional genetic algorithm.The structure of this bandstop 

filter is shown in Figure 39. 

 

 

 Figure 39 HDGS filter [67] 

More recently, a Peano fractal shaped open stub has been used to eliminate the 

second harmonic of the compact dual-mode ring based microstrip bandpass filters as 

explained in Figure 40. Modeling and performance evaluation of the presented 

filters have been performed using a full-wave electromagnetic EM simulator, from 

Sonnet Software Inc. Simulation results show that the introduction of the proposed 

stub almost maintains the physical size of the filters under test and improves the filter 

performance by reducing the harmonics to adequate levels. This method can be used 

in the miniaturized UWB antenna design as a simple means to create the required 

notch in the antenna response [68]. 



 

 37 

 

 

Figure 40 The modeled dual-mode microstrip bandpass filter structures with the 

Peano shaped open stubs connected at their inputs [68] 

 

A minaiturized dual-mode dual-band microstrip BPF, with its ground plane being 

defected using fractal based CSRR, is presented in [69]. The internal ring of the 

conventional square CSRR has been adapted by applying Minkowski like pre-fractal 

curve to its sides. This produces more compact microstrip BPF with two passbands. 

The upper band is a result of the dual-mode ring structure while the lower band is 

attributed to embedded CSRR structure in the filter ground plane. The configuration 

of the proposed filter has two parts as illustrated in Figure 41. The first one is the 

conventional microstrip dual-mode BPF configuration which comprises the upper 

side of the whole structure. The second part stands for the proposed CSRR as a DGS 

in the ground plane. 

 

Figure 41 The layout of dual-mode dual-band BPF showing the top dual-mode 

structure and the bottom CSRR DGS in the ground plane [69] 

 



 

 38 

 

A miniaturized dual-mode dual-band microstrip BPFs using the same design method 

reported in [69] but with different fractal iterations for inner ring   have  presented  in 

[70]. The Application of different iteration levels to the inner ring results in filter 

responses with different resonant frequency ratios. Experimental results have been 

achieved on produced filter prototypes, with respect to different iteration levels, are 

in high conformity with those theoretically obtained. The top view of this structure, 

Figure 42(a), stands for dual-mode BPF with the combined input/output ports. The 

ring resonator of this filter has the structure related to the 2
nd

  iteration Minkowski 

pre-fractal geometry. The bottom views, Figure 42 (b) and (c), show the fractal 

based CSRR structures related to the 1
st
  and 2

nd
  iterations Minkowski pre-fractal 

geometry that should be embedded in the implemented filter ground plane.  

Figure 42 The implemented microstrip dual-band dual-mode BPF structure: (a) the 

dual-mode fractal based ring structure (top view), (b) and (c) CSRRs with 

Minkowski fractal shaped inner ring of the 1
st
  and 2

nd
  iterations respectively 

(bottom views) [70] 
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CHAPTER 3 

 

BANDPASS AND BANDSTOP MICROSTRIP FILTER BASICS AND 

PARAMETERS 

 

3.1 Introduction 

 

Microstrip bandpaass and bandstop filters play very considerable roles in many RF 

and microwave system applications. Excellent performance, more compact size, 

lighter weight, and cheaper filters have been increasingly adopted in various 

microwave circuits and systems, because they are essential with rapid development 

of wireless communication systems [1,24,41,42] . 

This chapter presents the features of bandpass and bandstop filters. Main attention 

has been dedicated to introduce the concepts of coupling, external quality factor  for 

the microstrip resonators , main review about losses of microwave filters, dual mode 

filters  and fundamentals of bandstop (notch) filters . 

3.2 Bandpass Filter Basics  

 

An analog bandpass filter is a two port network, as in Figure 43, which works by 

allowing signals in a specific band of frequencies to pass, while signals at all other 

frequencies are stopped. Basically, a filter is realized by a set of resonators 

electromagnetically coupled each other and coupled to an external feed circuit. The 

number and the type of the couplings between the resonators determine the overall 

performances of the device [1, 25]. 
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Figure 43 Filter as a two port network 

 

The filter response is defined by its transfer function which, in the microwave range, 

is used to provide a desired expression to the transmission coefficient 

   =      
      . An important parameter describing the filter characteristics is the 

group delay (  ) which represents the overall delay of a signal due to filtering, 

expressed as: 

            
    

  
                                                                                                     (3.1) 

where     is in radians and   is in radians per second.However, in many practical 

applications, the filter specifications are mainly referred to the amplitude function 

      (or        for a reciprocal network[1]) which describes how the magnitude of 

the response varies with frequency. This is also done by the so called insertion loss 

(IL) response, defined as [1, 3]:        

        =10log 
    

      
  = 10log 

 

     
 = −                                                            (3.2)                                                                                                                                           

where      and       are incident and transmitted power respectively in the two port 

network. In the ideal case as shown in Figure 44 (a), a filter presents a perfectly 

rectangular amplitude response, where         is zero within the pass-band and -∞ 

elsewhere. Moreover, the phase response would be linear as a function of the 

frequency, implying a constant group delay. Provided these conditions, the input 

spectral components, contained in the pass-band, would be perfectly replicated in the 

output signal, while the spectral content outside the pass-band would be completely 
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reflected. Since such an ideal filter cannot be realized, in real cases a small but finite 

pass-band insertion loss IL
BW 

is always found as in Figure 44 (b) .                                                                                                                

 

Figure 44 (a) Ideal filter amplitude response (b) Real filter amplitude response 

 

Furthermore, there is transition region   , between the pass-band and the stop-band 

(                 ), which determines the so called filter selectivity. A key 

objective in telecommunication systems is usually to keep    as small as possible, to 

make the filter able to reject the interference of strong signals operating in the 

adjacent bands.  

3.3 Microstrip Technology 

 

The microstrip resonators are composed by two conducting planes separated by a 

dielectric layer with a permittivity ε
r 
and a thickness h as in Figure 45 while w and t 

represent the width and thickness of upper conductor plane on dielectric substrate 

[1]. 

 

                        Figure 45 Microstrip transmission line 
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While one of the two conducting planes is used as ground plane, the other one can be 

patterned by photolithographic processes, giving rise to different resonator types. 

The microstrip technology is very interesting since it offers a very easy way to 

fabricate frequency selective devices which, owing to their low size and weight, can 

be largely integrated with other devices and systems. The fields in the microstrip 

distribute within dual air medias, in the upper and lower dielectric section, therefore 

the structure is not homogeneous. Because of this inhomogeneous section, the 

microstrip does not back up a pure TEM wave. This is because a pure TEM wave has 

just transverse components, and its propagation velocity relies only on the material 

specifications such as the permeability and permittivity. However, with existing the 

dielectric substrate and the air which they act as guided-wave medias, the waves in a 

microstrip line will not  have hidden longitudinal components of electric and 

magnetic fields, and their propagation velocities will depend on the physical 

dimensions of the microstrip as well as material properties [1]. 

The simplest way to realize a microstrip resonator is to consider a straight line with 

open-circuit ends as in Figure 46 (a). According to the elementary transmission line 

model, if the microstrip line has length L, the modes resonate at the frequencies at 

which: 

                                 
   

 
  = 

 

            
                                                        (3.3) 

where λ
g 

is the wavelength in the considered dielectric substrate (basic λ
g
/2 

resonator), n is mode number, and ε
eff 

is the effective permittivity, which takes into 

account the fringing fields and depends on ε
r
, h and also on the microstrip width w 

[1,71]. 
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Figure 46 Basic planar resonators 

 

Another type of basic planar resonator can be realized by enlarging the transverse 

dimension w, in order to obtain structures, also called patch resonators, which 

possess a two dimensional set of modes with two mode numbers (n,m). A typical 

example is a square resonator as in Figure 46 (b). In this case, the symmetrical 

geometry provides also the possibility to generate two modes at the same frequency, 

thus having a two pole filter with only one patch (dual mode resonator). In the 

realization of a microstrip filter, the resonators are placed next to each other in 

specified distances d and are coupled simply by the fringing fields. Currently, patch 

resonators are widely used in planar filters application, for they have more small 

sizes, ease of fabrication, less loss and higher power handling capabilities, compared 

with the line-based resonator filters [72]. 

Considering the basic λ
g
/2 resonator, Figure 47 shows some typical Chebychev 

configurations, where the resonators have been coupled magnetically, putting close 

their long sides in the backward and forward configurations as in Figure 47 (a) and 

Figure 47 (b) respectively or electrically through the edge-coupled configuration as 

shown in Figure 47 (c) [24,71]. 

w 
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Figure 47 Basic microstrip filter layouts: a) Backward coupling, b) Forward 

coupling and c) Edge coupling 

 

Similarly, different approaches can be followed for the feed line configuration. 

Usually, the 50Ohm microstrip feed lines are coupled to the external resonators by a 

capacitive gap d as in Figure 48 (a) or by a direct connection (tapped line 

configuration as in Figure 48 (b) . 

 

Figure 48 a) Feed line configurations: a) capacitive gap and b) direct connection 

 

3.3.1 Source of Losses in Microstrip Filters 

 

In most conventional microstrip line filter, there are three different losses, which are 

conductors or ohmic loss, dielectric loss, and radiation loss. These losses may 

damage or affect the entire components of the electromagnetic (EM) wave 

propagation.The wave propagation constant in integrated microstrip filters is given 

by          , where             stands for overall attenuation constant 

orginating from the conductor  losses, dielectric  losses and  radiation  losses while    

is phase constant.  The unloaded quality factor of a resonator in accordance with 

single loss contribution is given by [32,73]: 

       =  
    

        
                                                                                                          (3.4)   

d 

 a

) 

a) 

     c) 

b) 
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where W is the overall stored electromagnetic energy and P
diss

is average dissipated 

power over time. When various losses are considered, total dissipative loss can be 

added  approximately ,independent from each other[5,31]: 

     =         =  
    

   
  =      

 

   
                                                                    (3.5)       

From this, the total  unloaded  quality factor    can be calculated as: 

   
 

  
=  

 

  
                                                                                                              (3.6) 

or, it can be linearly expressed  by [1,31]: 

 

  
 

 

  
 

 

  
 

 

  
                                                                                                                  

where               are the quality factors related to conductor losses, dielectric 

losses and radiation losses, respectively. For better filter performance, it is very 

necessary to eliminate or reduce these losses as far as possible; namely, the quality 

factor must be increased. 

 

3.3.1.1 Conductor Losses 

 

The conductor losses arise from many factors corresponding to the metal material 

forming the strip, the walls and ground plane. The sources of these losses are skin 

effects, conductivity and surface roughness [1,74]. At microwave frequencies, the 

conducting losses in a given material can be approximately described by the surface 

resistance Rs, defined as the real part of the surface impedance Zs, while     is the 

surface reactance, defined as imaginary part of the surface impedance Zs . In turn, Zs 

is defined as the intrinsic impedance encountered by a plane wave which, coming 

from the free space, is perpendicularly incident on an infinite half plane of the 

considered material.    is related to the material conductivity σ by the 

expression[1,32]: 

          

                    =  +j  = 
   

 
                                                                                 (3.8) 

 

Once R
s
 is defined, the dissipative power in the conducting parts of a resonator is 

given by: 
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                                                                                    (3.9)        

                                         

where Sc
 
is the overall conductor surface ,and H

 
is the related tangential component 

of the magnetic field. Similarly, the stored electromagnetic energy can be written by:   

  
 

 
            

 

 
                                                                                              (3.10) 

 

where v represents the overall resonator volume. In this way, the quality factor    
 

will be:                                   

    =   
  

  
  

         
 

 

         
 

  

 
  

    
                                                                                (3.11) 

where Γ is a parameter, with dimensions of a resistance, representing the ratio 

between an effective volume of the resonator (a volume weighted with the field) and 

the corresponding effective surface of the conducting parts. In many cases, this 

expression is differently rearranged by the introduction of length and 

equation(3.11) becomes: 

  =   
   

     
 
          

 

 

         
 

  

  
   

     
                                                                         (3.12)                                                            

where    = 
  

ε 
 = 377 ohm ,λ

0  
and    are respectively intrinsic impedance in free 

space, the wavelength at resonant frequency and geometric conductor parameter. It is 

easy to show that both    and Γ increase when resonators with higher ratios between v 

and Sc
 
are considered.  

Generally, conductor losses are corresponding to various geometry and material 

parameters. On the one hand, narrowing the strip reduces the total dimensions and 

weakens simultaneously the higher-order modes. However, narrow strip causes 

higher conductor losses. Moreover, narrowing the strip while maintaining the 

characteristic impedance (  ) constant must lead to decrease in the substrate 

thickness (h), which may cause hard fabrication tolerances. On the other hand, 

widening the strip reduces the conductor losses, but increases the radiation losses, as 

well as larger component size. Thus, there is a conflict issue between the need to 

have compact structures (with higher losses) and higher structures size (with less 

losses)[1]. 
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3.3.1.2 Dielectric Losses 

 

The dielectric losses can be written in quality factor    terms given in (3.13), where 

     is the dissipation factor [1,73,75]: 

   
 

    
                                                                                                                               

   
 

    
                                                                                                                                

In addition,    can also be written by (3.14) where,    and    are the dielectric 

attenuation constant, guided wavelength of the strip line transmission medium at 

interested frequency, respectively. In general, using low-loss dielectric substrates 

helps to reduce the dielectric losses. 

 

3.3.1.3 Radiation Losses 

 

When filter structures are open to air, they will radiate energy. By the way, the 

radiation losses can be reduced by fully coating and embedding the entire structures 

within the integration medium. Filters manufactured in such configuration are not 

only protected from the environment, but also from the electromagnetic interference 

(EMI). Vice versa for the extremely covered structures [1]. 

 

3.4 The Transfer Function of Analog Filter  

 

In the design of practical filters, the ideal rectangular amplitude response is 

approximated by using some specific polynomials, presenting different features 

concerning the steepness of the filter skirts and also implying different internal 

structures.Usually,     
 expressed as       : 

          
 

      
    

                                                                                                     

where                   

  
 

   
   
    

                                                                                                                    

and 
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                                                                                                 (3.17) 

 

where   represents variable frequency which is normalized to the passband cut-off 

frequency of the lowpass prototype filter,   is variable angular frequency of 

bandpass filter,    is the mid band frequency and FBW is the fractional bandwidth. 

  is a ripple constant related to a given return loss                | in dB. The 

degree N of the polynomial (F
N
) represents the number of the resonators and the 

roots of [      
    ] are also called “poles” of the filter. In modern applications, 

three types of polynomials are really considered: Chebychev, Cauer (elliptic) and 

quasi elliptic. Table 2 summarizes the expressions of these three cases and        

Figure 49 reports their typical exemplary responses. 

 

 

Response type  

 

  ( ) 

 

 

Chebychev 

 

                                   ≤1 

                                  ≥1  

         is normalized angular frequency 

 

Quasi elliptic 

 

                         
     

    
         

     

    
   

Where    =     (  >1) are the frequency locations of a pair of 

transmission zeros 

 

Cauer elliptic 
M  

     
     

   
   

  
   

 

   
     

   
    

 for N even 

N  
        

     
       
   

     
   

 

   
     

       
    

 for N odd and ≥3   

where 0 <   < 1  and   > 1 represent some critical frequencies 

 

Table 2 Polynomials for Filter Response [1,24] 
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Figure 49 a) Chebychev, b) quasi elliptic and c) elliptic responses 

 

In the quasi elliptic and elliptic cases,     is characterized by the presence of 

transmission zeroes (respectively 2 and N-1), which can be opportunely positioned 

very close to the band edges, improving the selectivity performances in comparison 

with Chebychev filter with same N.Indeed, it is easy to show that for every type of 

response, the degree N of the polynomials affects directly the desired selectivity   , 

as shown in Figure 50 for a Chebychev filter. 

 

Figure 50 Chebychev filter response as function of the number of  poles 

 

3.5 The Coupling Concept 

 

A general expression for the coupling coefficient k
ij 

of two coupled microwave 

resonators can be given considering the ratio between the coupled energy and the 

stored energy as in Figure 51 [1]: 

k
ij 

= 
             

                      
         

  
            

                                  
                           (3.18)                                 

  S21 
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Figure 51 General coupled RF/microwave resonators [1] 

 

where the generic k
i,j 

(coupling coefficient) represents the coupling between the i
th 

and j
th 

resonators, while  E and H are the electric and magnetic fields, respectively, 

evaluated at the resonance frequency. As shown, the overall coupling is composed of 

two terms, representing separately the electric and the magnetic couplings. It is to be 

noted that the coupling may have positive or negative sign. In particular, a positive 

sign indicates that the coupling improves the stored energy of uncoupled resonators, 

while a negative sign means the inversed effect. Consequently, the electric and 

magnetic couplings could have similar effect, if they have the same sign, or have the 

opposite effect, if their signs are different. Beyond the couplings between the 

resonators, it is also necessary to define the coupling strength of the input and output 

resonators with the feed circuit. To this end, for these resonators, one can introduce 

the external quality factor (    ) [24,71]:  

 

              =  
    

    
                                                                                                   (3.19)     

                                                                                                                                                                                                                                                                                                                                                                 

where W is the overall stored electromagnetic energy and P
EST 

is the power flowing 

out of the corresponding port. Usually, in all practical cases, the desired responses 

require the same value of P
EST 

for every port. In the following sections, we will 

shortly introduce the filter design procedure, describing how to get the coupling k
i,j 

and Q
ext 

from the desired       expression. Here, it is worth to remember that in the 

Chebychev case, considering all resonators having same resonant frequencies 
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(synchronously tuned), only the (k
j,j+1

=k
j+1,j

) elements of the coupling matrix [k] have 

non zero values. This means that a Chebychev response can be obtained by a simple 

ladder network with only sequential couplings, as shown in Figure 52 for a four pole 

filter. 

 

Figure 52 Four pole Chebychev network 

 

On the contrary, the elliptic filters, which offer the best performances in terms of 

selectivity, require also a very high number of couplings and result practically 

unrealizable in many cases. To this regard, a very good trade-off is provided by the 

quasi elliptic model. Indeed, this can be realized starting from the Chebychev model, 

by adding only one cross coupling as in Figure 53 [1].  

 

                              Figure 53 Four pole quasi elliptic network  

 

3.5.1 Coupling Matrix and External Quality Factor 

 

The coupling matrix representation is very quite significant for many coupled-

resonator filter topologies [1]. Although coupled-resonator filters with bridge 

couplings were published widely beginning as early as 1957, those that had the most 

important  microwave filter art were by Atia and Williams in 1972 [76]. The filter 

synthesis art then rapidly developed, with the result that narrow bandpass filters can 

be designed for any response such as linear-phase responses, elliptic-function 
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responses and responses that are not symmetric around center frequency. From a 

normalized coupled-resonator low-pass prototype network, these filters can be 

designed that is completely characterized by its coupling matrix [77]. This makes a 

very advantageous formula in terms of coupling coefficients and external quality 

factors for analysis and synthesis of coupled-resonator filter circuits as shown below 

[1]: 

      
 

       
     

          and                
 

   
     

                               (3.20) 

[                 

where P is   
  

  
 

 

  
 

  

 
   [ ] is the     identity matrix, [k] is the so-called 

general coupling matrix, which is an n × n reciprocal matrix (i.e.,          ). 

Finally, [q] is a     matrix with all entries zero except for      
 

   
 and      

 

   
 

where     and     are the scaled external factors given by     
  

  
        ,        

    .  

For Chebychev and quasi elliptic responses, this general approach has been widely 

developed and their synthesis is possible by analytical or numerical formulas. In 

particular, the specifications of a Chebychev filter are given by: the number of poles 

N, the centre frequency    , the in-band ripple  
 
,and the equi-ripple bandwidth BW. 

With these values provided, the coupling coefficients between resonators and Q
ext 

can be evaluated by [1,78]: 

1

1,
.

k


 
ii

ii
gg

BW
        for 1i  to )1( N                                                               (3.21)   

BW

gg
ex

10
1

.
Q                                                                                                           (3.22)

BW

gg NN
exN

1.
Q                                                                                                       (3.23) 

 

where g
i 
is the generic parameter of the low-pass prototype filter. The g

i 
parameters 

depend only on N and   and can be evaluated by analytical formulas [1, 79]. Some 

parameters for fixed   values are shown in Table 3. The approach to quasi elliptic 

responses, where the zeroes position with respect to the band edges have also to be 
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indicated in the specifications, is theoretically more complex, since an exact 

analytical formulation does not exist.  

However, even in this case, tables and approximated expressions are present in 

literature for the low-pass parameters of some basic quasi elliptic filter 

configurations with 4, 6 and 8 poles. Once known, k
i,j 

and Q
ext 

for a desired response, 

the design of a microstrip filter can be realized by the use of electromagnetic 

simulators which, given the substrate characteristics, allow fixing all the geometric 

parameters concerning the resonator dimensions, the distances between them and the 

considered feed line configurations.  

 

 

Table 3 Exemplary Parameters of Chebychev Low Pass Prototype Filters 

 
Most of the EM simulators are based on the method of moment, such that they 

evaluate the filter response by dividing first the resonators in small regions (mesh), 

less or more fitted according to the desired accuracy, and then solving a set of linear 

equations derived from an integral equation, whose unknown is the surface current 

density J
s
. Once defined, the shape and the dimensions of the resonators, for a given 

coupling configuration, the coefficient k
i,j 

as a function of the spacing d can be 

determined by analyzing the transmission response of two resonators, when they are 

insufficiently and weakly coupled to the external feed lines. Indeed, provided this 
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fundamental condition, it is easy to show that the corresponding       presents two 

characteristic peaks at frequency f
1 

and f
2 

as in Figure 54, symmetrically centered on 

f
0
. The coupling coefficient is given by[1, 80]: 

    
        

       
                                                                                                                     

                                            

                  

Figure 54 Typical transmission response of two coupled resonators 

 

A similar procedure can be followed for Q
ext

. The resonator can be coupled only to 

an input port (singly loaded resonator) or to both input/output ports (doubly loaded 

resonator) as shown in Figure 55 [1]. In the former case, Q
ext 

can be extracted from 

the phase response S
11 

by using the relation: 

 

     
     

               
                                                                                                         

In the latter case, the resonator is used as one pole filter and Q
ext 

can be derived from 

-3dB bandwidth transmission peak: 
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Figure 55 Q
ext 

calculation for (a) Singly and (b) Doubly loaded resonator 

 

3.6 Dual Mode Filters 

 

This section has introduced the basic principles of a dual-mode resonators, also some 

of theoretical calculations related with dual-mode resonators are presented.  

    

3.6.1 Dual-Mode Square Ring Resonator 

 

Classical microstrip bandpass filters are mostly designed using single-mode 

resonators. Recently, dual-mode resonators have been widely adopted in microwave 

and RF wireless communication applications for their high performance and low loss 

properties. Since they have double resonant nature, a dual-mode bandpass filter of 

some order requires half as multiple resonators as compared with classical topology 

[81]. Dual-mode principle for 2D and 3D resonators is well known and has been the 

subject of extensive studies since the early 70s [82]. This principle is typical of all 

the resonators provided of geometrical symmetry that, for this reason, are able to 

give rise to degenerate modes with the same resonant frequency. When the symmetry 

is kept intact, the two modes are orthogonal and they cannot exchange microwave 

power. On the contrary, when the geometrical symmetry is opportunely broken, the 

resonator boundary conditions change allowing the coupling between the modes. 

Consequently, two modes can be contemporarily present at slightly split frequencies. 

A main advantage of this type of resonator lies in the property that each of dual-

mode resonators can used as dual tuned resonant circuit, and hence the required 
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number of resonators for a n-order filter is decreased by half, in form of a compact 

filter configuration [1, 83-85]. 

 

3.6.2 Microstrip Dual-Mode Resonators 

 

To discuss this issue, let us start with a microstrip rectangular patch resonator top 

view in Figure 56, represented by a Wheeler’s cavity model [86], that in this case the 

modes are transverse magnetic TM, with the magnetic field orthogonal to z-axis. 

Where the electric walls are found perfectly in  the upper and lower side of the cavity 

while the remaining sides are the perfect magnetic walls. 

    

  Figure 56 Top view of a generic rectangular patch 

 

 The EM fields inside the cavity can be defined in terms of      
  modes:  
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where     represents the amplitude of  mode,   is the radian frequency, and a and 

     are the effective width and permittivity .The resonant frequency of the cavity 

can be determined by: 

     
 

     

   
  

 
 

 

  
  

 
 

 

 

or                                                                                        

     
 

        

   
  

 
 

 

  
  

 
 

 

                                                                               

Actually, there are an infinite number of resonant frequencies related to various field 

modes or distributions. By analyzing the modes      
 
and      , it is immediate to 

prove that in the former of the magnetic field is directed only along the y axis, while 

in the latter it is directed along the x axis. Consequently, the surface current       

   is oriented only along x in      , while it is oriented along y in      .  

     
 

   

 

  
 

and 

     
 

   

 

  
                                                                                                                           

Then, it is evident that for a square patch (a=t),       and      are degenerate 

modes, since they have the same resonant frequency and can separately and 

orthogonally (without power exchange) excited, as shown in Figure 57. However, as 

stated above, the modes can be coupled by introducing an adequate geometry 

distortion, such that the changed boundary conditions can be satisfied by the 

contemporary presence of the two modes. The final surface current distribution is 

then a superimposition of the original orthogonal currents and this justifies, also 

intuitively, the classical placement at right angle of the feed lines [1]. 

 A microstrip dual-mode resonator is not restricted with square shape, but typically 

has two-dimensional (2-D) symmetry. Figure 58 explains some classical microstrip 

dual-mode resonators, where D in each resonator refers to its symmetrical dimension, 

and     is the guided-wavelength at its resonant frequency in the associated 

resonator. It is necessary to indicate a small perturbation has been applied to each 

dual-mode resonator at offset location that is assumed at a 45° from its two 
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orthogonal modes. For example, a small cut can be  used to disturb the square patch 

and disk resonators, while a small patch can be inserted to the ring, square loop, and 

meander loop resonators, respectively. Note that for coupling of the orthogonal 

modes, the perturbations may also take other  forms that are different than those 

indicated in Figure 58. For example, a small elliptical deformation of a circular disk 

or patch can be used for coupling the two degenerate modes and, by the same way, a 

square patch can be little bit twisted into a rectangular shape for the coupling. The 

perturbation dimensions of each filter should be tuned for desired filter responses [1, 

84-85], because of behavior and the intensity of the coupling between dual 

degenerate modes of the dual-mode resonator are essentially depended by the 

perturbation’s size and shape. However, more details about this issue can be found in 

[87,88].   

 

 

Figure 57 Current distributions of the orthogonal modes in the basic square patch 
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Figure 58 Some microstrip dual-mode resonators (a) Circular disk (b) Square patch 

(c) Circular ring (d) Square loop (e) Meander loop 

 

3.6.3 Simple Model of Square Ring Resonator 

 

The microstrip ring resonator is a easy fabricated circuit and has been increasingly 

utilized to calculate dispersion, effective dielectric constant and discontinuity 

parameters and to measure optimal substrate thickness. Moreover, they are typically 

used in the circuit design and measurements, as in filters [89], oscillator [90], 

antennas, and so forth [91]. Also, many complicated circuits can be manufactured by 

adding a notch, cutting a slit, cascading dual or multiple rings, performing some 

solid-state devices, and so on. 

The square ring resonator is just a transmission line constructed in  closed loop. 

Figure 59 shows the conventional closed loop microstrip square ring resonator with 

dual coupling spacings. Power is coupled inside and outside the resonator via 

coupling gaps and feed lines. It has a big value of insertion loss because of small 

coupling regions. In the case of large distance between resonator and  the feed, the 

coupling gaps will not have effect on the resonant frequencies of the ring. This type 

of coupling is called “loose coupling.” Loose coupling represents negligible small 

capacitance of the coupling gap. If the feed lines are positioned closer to the 
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resonator, the coupling becomes stronger and the gap capacitances become more 

considered. This makes the resonant frequencies of the circuit away  from pure 

resonant frequencies of the ring. So, the capacitances of the coupling gaps for ring 

resonator design will be more appreciable [89]. 

The design of ring resonator requires guided wavelength (  ) determination for used 

transmission line. The ring resonates at the frequencies when its average perimeter is 

a multiple of the guided wavelength and results in, [Appendix A]  

 

 

Figure 59 The microstrip square ring resonator 

 

total length           for square, ring, and meander loop. 

2 r     , for n = 1, 2, 3, . . .  ring resonator                                                            

where r is the mean radius of the ring that equals the average of inner and outer 

radiuses,   is the guided wavelength, and n is the mode number. This relation is 

valid for the loose coupling condition with no considered coupling gap effects . From 

this equation, the resonant frequencies for different modes can be determined since 

   is frequency dependent. For the first mode, the maximum field happens at the 

coupling gap locations, and nulls take place normally from the coupling gap 

positions.  

 

3.6.4 Even -Odd -Modes 

 

The two orthogonal modes existing within a ring resonator are used as coupled 

modes instead of independent, thus, the most typical application of two port devices 
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are BPF. Figure 60 illustrates the basic structure of a dual-mode filter using one-

wavelength ring resonators that proved in appendix A for any shape (square, ring, 

and meander) using transmission line theorem. Input and output ports are spatially 

separated at     intervals, and an adequate perturbation or discontinuity is positioned 

at an equal distance from the input and output (point C or D in the Figure 60). The 

behavior of the combination of two orthogonal resonance modes can qualitatively be 

explained by applying the travelling wave theory to this figure. For simplicity, it has 

been assumed that a structure where the resonator is excited by electric coupling, and 

the input/output ports are capacitive coupled as shown in that figure. First, consider a 

case eliminating the perturbation or discontinuity within the resonator. The incident 

wave excited at the input port generates a strong electric field at point A due to 

electric coupling. The electromagnetic waves due to this electric field propagate 

clockwise and counterclockwise reaching point B at a reverse phase where the phase 

of the clock wise wave is      while the counterclockwise wave is    . The electric 

field amplitude at point B due to these waves becomes zero, and no response is 

generated at the output port. In next case, a discontinuity such as stub or notch at 

point C, as with the previous case, a strong electric field is generated at point A by 

exciting the input port, and thus two travelling waves are excited. The 

counterclockwise wave reaches point B at a     phase shift. Further propagating to 

point C at      phase shift, a portion of this wave reflected at in-phase or reverse 

phase due to this discontinuity in the transmission line of the resonator. Considering 

the reflected wave as in-phase, this wave propagates to point B while encountering a 

further phase shift of     . The total phase shift from point A becomes       and 

thus the electric field magnitude of this reflected attains its maximum value at this 

point. This allows the wave to propagate through the output port by electric coupling. 

Similarly, the reflected wave of the clockwise travelling wave due to the 

discontinuity can also propagate through the output port [92, 93]. 
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Figure 60 Structure of dual-mode resonator based on a one-wavelength ring 

resonator [29] 

 

3.6.4.1 Even-Mode 

 

The even-mode equivalent circuit of the ring resonator is shown in Figure 61 (b). 

This analysis valid for any shape such as ring, square, and meander, where a 

magnetic wall is applied along the (Symmetry S–plane), which is an open circuit, and 

divides the capacitance into one-half. Even-mode excitation, where two in-phase 

signals of equal amplitude are simultaneously applied to the input and output ports, 

satisfies open circuited conditions at the symmetrical plane of the circuit. Thus the 

circuit can be divided into two identical sub-circuits at the symmetrical plane, and 

analysis is based on either sub-circuit by applying an open-circuited condition to the 

divided plane [92]. 

 

3.6.4.2 Odd-Mode 

 

Similarly for odd-mode excitation, where signals of reverse phase are applied to the 

input and output ports, an identical circuit satisfying short-circuited condition at the 

divided plane is considered. As shown in Figure 61 (c) [92, 94].  
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Figure 61 a- Dual-mode resonator b- Even-mode equivalent circuit c- Odd-mode 

equivalent circuit 

 

3.6.5 Calculation of the Central Frequency and the Coupling Coefficient 

 

The resonance conditions for each mode are analyzed from Figure 61, and the 

derived resonance frequencies are used to obtain the coupling between the two 

orthogonal resonance modes. The coupling coefficient K between the orthogonal 

resonance modes can be expressed in the following form using the even- and odd- 

mode resonance frequencies, respectively expressed as     and    [92, 95-96]. 

  
        

     
                                                                                                                      

The resonance condition    
     

    

   
  represents index 1 refers to length     while    

  represents index 2 refers to 

length   . Since the resonance condition is given by               

    
  

 
 

 

     
                                                                                                                  

where   is the wave propagation speed along the transmission line,   and   are the 

off-resonance, propagation constant and angular frequency:     
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If perturbation B on symmetry axis, B    represents capacitor or B    represents 

inductor. Let us consider transmission line section of characteristic admittance   , 

propagation constant   and the length l connected to a load with the admittance load 

  . The input admittance is given by the relation: 

      

           

           
                                                                                                         

For the branch     in Figure 61 the load has admittance:  

   
  

 
                                                                                                                                      

Therefore                 

   
   

   

 
 
           

   
 
       

                                                                                                    

If we define the normalized susceptance as: 

  
 

  
 

Then: 

   
   

   

 
 
         

  
 
       

                                                                                                        

Furthermore; if we define the angle   such that: 

     
 

 
 

Then:    
   

                                                                                                                                                                                                                              

Applying the final equation to index 2, then: 

   
   

                                                                                                                           
 
                                                                               

At resonance                   
   

    
   

     then:  
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When the resonator is unperturbed mode then:  

      

 
                                                                                                                                                                                                

and: 
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Therefore 

        
 

 
      

 

 
                                                                                                        

and the resonant frequency for the even-mode is:
  

        
 

 
      

 

 
                                                                                                         

The perturbation does not affect the odd-mode therefore the odd-mode resonant 

frequency    remains the same as in the unperturbed case. 

  

                                                                                                                                                                                                                                     

The central resonant frequency is:
 

   
     

 
      

 

  
      

 

 
                                                                                  

The coupling coefficient of the two modes, define as the absolute value of the 

frequency shift between both even and odd-modes over the central frequency 

becomes:  

   
  

       

  
 

 
        

 
   

  
 
        

 
  

                                                                                     

note here   
 

  
 

  

  
          where d represents the side length of perturbation, 

  =characteristic admittance of the perturbation stub as shown in Figure 62. 

Therefore as the length of perturbation increases, this leads to increase of even 

resonant frequency      so affecting the resonant frequency     and coupling 

coefficient (K). The in-band insertion loss increases, since the even resonant mode 

increases, while the odd resonant mode remains constant. The configuration with 

only one perturbation in the symmetry plane as shown in Figure 62 is a very 

common case in literature [97] and two perturbations techniques can also be used 

[98- 102]. 
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Figure 62 Square ring resonator with a perturbation stub 

 

3.6.6 Calculation of    for Square Ring Resonator 

 

Ring resonator with orthogonal feed line is shown in Figure 63. The closed-loop ring 

resonator with total length of        is fed by dual orthogonal feed lines, where n is 

the mode number and λ  is the guided wavelength. The ring resonator is supplied by 

the input and output feed lines acts a shunt circuit, which consists of the top and 

down sections of    
    

 
  and     

   

 
, respectively. The      matrices of the 

top and down sections of the lossless ring circuit are given by: 

                

Figure 63 Configuration of the ring resonator supplied by dual orthogonal feed lines 

 

output 

input 
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= 
               

               
                                                          (3.47a) 

and 

   
  
  

 
     

= 
               

               
                                                          (3.47b) 

where   is the propagation constant and    
 

  
 is the characteristic impedance of 

the ring resonator. The Y parameters of the  top and down sections are realized from 

(3.47a) and (3.47b) and are given by: 

   
      

      
 
 

 

 
 
 
 
 
  

  
 

           
  

 

  
  

 
  

  
 

 
 
 
 
 

                                                       (3.48) 

where    up or down is for up or down sections. Moreover, the overall Y parameter 

of the whole circuit is expressed as:    

 
      

      
   

      

      
 
     

  
      

      
 
     

= 

 
                                     
                                     

                                         (3.49) 

Furthermore,     of the ring circuit can be obtained from (3.49) and is expressed as 

[103]:  

    
       

                       
 

 
       

   
     

  
  

        
   
     

  
   

 

      
   
     

  
   

                                          

For odd-mode excitation: 

                                                                                                                            

and for even-mode excitation: 

                                                                                                                           

The evaluated results in (3.51) clarify that the ring resonator supplied by dual 

orthogonal fed lines can exclude the odd-mode resonant frequencies and run only at 

even-mode resonant frequencies [90,104-106]. 
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3.6.7 Equivalent Lumped Elements G, L, C and Unloaded quality factor of 

Square Ring Resonators 

Figure 64 presents the topology of a closed-loop microstrip square ring resonator. 

The equations of the ring which are written in simple manner as:  

   
   

 
   

   
  

        

                                                                                                       

where n is the mode number ,    is the guided-wavelength,    is the external side 

length of the square ring resonator, c is the speed of light in free space,    is the 

resonant frequency and       is effective relative dielectric constant. From this 

structure, if the width of the ring is narrow, the ring might have similar dispersion 

properties as a transmission line resonator. Hence, the ring resonator can be a closed 

loop transmission line and analyzed by transmission-line model [89, 106].    

 

Figure 64 A closed- square loop microstrip ring resonator 

 

Figure 65 (a) shows the single port network of the ring and its equivalent circuit. 

From Figure 65 (a), the equivalent input impedance of the ring is difficult to be 

derived from single port network. Figure 65 (b)  shows another configuration using 

two-port network with an open circuit at port 2 (    ) to model the single-port 

network and evaluate the equivalent input impedance through      and   

parameter  matrix operations [106]. As seen in Figure 65 (b), the total length 

          for the fundamental mode n =1 is divided by input and output ports 

w 

   



 

 69 

 

on arbitrary positions of the ring with two sections    and   . The dual sections 

compose a parallel circuit. For this parallel circuit, a transmission line      matrix 

is utilized to find each section parameters. The      matrix of the individual 

transmission line lengths   and    is given as follows: 

    
  
  

 
   

  
                        

                        
                     (3.53)   

where subscripts 1 and 2 are corresponding to the transmission lines    and   , 

respectively,    
 

  
 is the characteristic impedance of the microstrip ring resonator, 

  is the attenuation constant    is the complex propagation constant and   is the 

phase constant [89, 106]. 

 

 

Figure 65 The input impedance of (a) One-port network and (b) Two-port network 

of the closed-loop ring resonator 

(b) 
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The total   parameters converted from      matrix in (3.53) for the parallel circuit 

are shown as: 

 
      

      
     

                                               

                                               
   (3.54)     

By adjusting     to zero, the input impedance     of the closed-loop ring in       

Figure 65 (b) can be determined as: 

       

  
 
    

 
   

             
                                                                                          

Letting     
   

λ 

 
,     can be rearranged as: 

    
  

 

                    

                   
                                                                                   

Practically, transmission lines have very low loss and the attenuation term can be 

assumed that        and then                Assuming     term and letting 

the angular frequency ω =     , where     is the resonant angular frequency and 

   is small, then:  

 

    
    

  
 

    

  
                                                                                                              

where    is the phase velocity of the transmission line. When a resonance 

occurs,      and    
  

 
 

   

  
 .Thus, Equation (3.57) can be rearranged as:                                 

      
   

  
                                                                                                                      

 and 

           
   

  
                                                                                                                

By these results, the input impedance    can be approximated as: 

  

    
  

 

      
   
  

     
   
  

                                                                                                          

Since    
   

  
         can be rewritten as: 
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For a general parallel GLC circuit, the input impedance is: 

 

    
 

       
                                                                                                                   

It is found from (3.60) and (3.61), the input impedance of the square-loop ring 

resonator has similar form as that of a parallel GLC circuit. So, the conductance of 

the equivalent circuit of the ring is: 

  
    

  
 

   

  
                                                                                                                    

and the capacitance of the equivalent circuit of the ring is: 

  
 

    
                                                                                                                                 

While the inductance of this equivalent circuit is derived from 

     
    

  , and is given by: 

  
 

  
  

                                                                                                                                   

where G, C, and L stand for the equivalent conductance, capacitance, and inductance 

of the square-loop ring resonator. Figure 66 illustrates the equivalent lumped 

element circuit of the ring in terms of G, C, and L. In addition, the unloaded Q of the 

ring resonator can be evaluated by [89]:           

   
   

 
 

 

   
                                                                                                                    

 

Figure 66 Equivalent elements G, C, and L of the closed-loop ring resonator 
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3.7 Notch (Bandstop) Filter  

 

Bandstop filters or band-reject filters reject signals within a frequency band bounded 

by a lower and an upper limit and allow transmission at frequencies out of this band. 

The ideal bandstop filter amplitude response in frequency domain is given in   

Figure 67 [81,107]. 

 

Figure 67 The ideal bandstop filter amplitude response 

 

In Figure 67,     and     are the lower and upper corner frequencies and    is the 

center frequency of the ideal bandstop filter. In ideal bandstop filter, attenuation in 

passband is zero, attenuation in stopband is infinite, and transition from passband to 

stopband is infinitely sharp. Such an ideal filter (brick wall filter) characteristics is 

not possible to obtain in practice. Practical filter responses have smoother passband 

to stopband transitions. Passband insertion losses are desired to be as small as 

possible and stopband attenuations are desired to be as high as possible. Ideal 

characteristics can be approximated using approximating functions like Butterworth, 

Chebyshev, Elliptic etc. within an acceptable tolerance.  

bandstop amplitude responses using these functions are given in Figure 68  . 
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Figure 68  Approximations for Ideal Bandstop Filter 

 

 

A bandstop filter (BSF) with a narrow stopband is called a notch filter. Notch filters 

basically reject or ‘notch’ out a specific frequency. So ideally they are like allpass 

filters except an abrupt attenuation at a specific frequency. Typical response of a 

notch filter and its important characteristics are shown in Figure 69. 

 

 

Figure 69  Typical response of a notch filter 
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The performance of notch filter can be evaluated by following parameters: 

 

 Stop band attenuation level at center frequency 

 Notch frequency bandwidth for given attenuation level 

 Insertion loss at passband region 
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CHAPTER 4 

 

DESIGN AND SIMULATION RESULTS FOR FRACTAL BANDPASS 

FILTERS 

 

4.1 Introduction 

 

This chapter is devoted to the design and simulation of miniaturized microstrip 

bandpass filters, realized by using Moore, Sierpinski and Hilbert fractal geometries. 

The aim of this chapter is to design and simulate a series of miniaturized fractal 

single-mode and dual mode bandpass filters to be used in many wireless 

communication applications with different frequency requirements such as (2.4GHz). 

Furthermore, the effects of edge spacing, additional stub length and another 

parameters on some resulting fractal filter responses have been discussed and 

evaluated.  

All filter designs presented in this chapter, have been modeled and simulated using 

available AWR2009 EM simulator package, which performs electromagnetic 

calculations using the method of moment (MoM) in addition to full-wave based 

electromagnetic simulator Sonnet software package [108,109].   

A bandpass filter requirements usually include the desired center frequency, 

bandwidth percentage, maximum insertion loss in the passband, and some essential 

rejection levels in the stopbands. There will also be a specification on the minimum 

return loss in the passband. The guided wave length (      is calculated by[1,89,110]:                                       

    
 

       
                                                                                                                               

Where    is guided wavelength, c light velocity,     relative dielectric constant, 

   center frequency and       effective dielectric constant which can be calculated 

as[1]: 

     
    

 
 

    

 
    

  

 
 

   

                                                                                                                   

where u = w/h, and 
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a=1+ 
 

  
    

    
 

  
 
 

        
 + 

 

    
       

 

    
 

 

                                                                       

b = 0.564  
  

      

   
     

 
     

                                                                                           (4.4) 

The accuracy of this model is better than 0.2% for     ≤ 128 and    0.01≤u≤100. 

However, in the present work, effective dielectric constant has been calculated using 

the approximated equation [111]: 

     
    

 
                                                                                                                             

The degree of coupling for space filling structures depends on width to gap ratio of 

fractal curve strips, which affects resonant frequency of output response[48]. On the 

other hand, the edge spacing between two resonators and tap position length, can be 

properly tuned to maximize return loss and minimize insertion loss to optimize 

frequency response of the filter [112,113]. However, extensive details about this 

subject are to be presented later in this chapter. 

As a drawback, in a real planar resonator, higher levels of fractal iteration imply 

lower value of microstrip width, thus raising the dissipative losses with a 

corresponding drop of the quality factor [113,114]. 

The procedure steps for designing fractal filters using AWR2009 or Sonnet 

electromagnetic modeling and simulation can be generalized as in Figure 70 and 

Figure 71 according to adopted fractal geometry. 

AWR2009 and Sonnet simulators are based on method of moment and full wave 

principle (modified method of moment) respectively, such that they evaluate the 

filter response by dividing first the resonators in small divisions (mesh), less or more 

fitted according to the desired accuracy, and then solving a set of linear equations 

derived from an integral equation. Each filter has been run under specific frequency 

range and chosen frequency step. Suitable boundary conditions are assigned, and 

then meshing is carried out on the model to get final refined mesh. In meshing, it is 

well-known that a finer mesh (more divisions) will give a more precise solution. 

However, a finer mesh will also require more time for the computer to solve the 

study. Therefore, it is necessary to decide the proper balance between computation 

time and an acceptable level of accuracy. The stationary solver (including parametric 

sweeps) uses a linear solver algorithm for solution determination. The execution has 
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been performed using Intel(R) Core(TM) i5-3770 @2.67 GHz CPU. Moreover, 

AWR2009 projects can be exporeted to Sonnet simulator using EXPORT command. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70      Flowchart for Moore, Hilbert and Peano BPF designs 

Start 

Set the design frequency and 

substrate parameters 

 

Design the 50 ohm I/O feeds at    

Choose fractal iteration 

Modeling the single microstrip resonator using AWR2009 or 

Sonnet simulator  
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            Figure 71 Flowchart for Sierpinski BPF designs 
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All designed filters in this chapter are based on the first five publications in the 

"PUBLICATIONS RELATED TO Ph.D THESIS" list in the end of this thesis. 

 

4.2 Design and Simulation Results of Moore Microstrip BPFs
 

 

Filter designs using two open-loop ring resonators with non-symmetric tapping feed 

lines have been created to fabricate compact bandpass filters with high selectivity. 

The new features for the proposed filters are high levels of miniaturizations and 

selectivity by applying fractal geometry on the two open-loop resonators. Moore 

fractal geometry has been selected for this reason because it has substantial space-

filling property in addition to the symmetrical open loop structure at each iteration 

level. The required steps of Moore fractal bandpass filter designs using EM simulator 

have been illustrated in Figure 70. 

Firstly, dual edge-coupled Moore resonators based on 2
nd

 iteration level  have been 

implemented  at a frequency of 2.4 GHz as in Figure 72. The structures of this filter 

have been etched using RT/Duroid substrate with a relative dielectric constant of  

10.8 ,  substrate thickness of 1.27 mm and conductor metal thickness of 35  m by 

using the standard mask etching technique. The resultant filter dimensions have been 

found to be 12.9×6.1 mm
2 

 with w= 0.4 mm, g =1.5 mm, q =0.5 mm, x =1.3 mm and 

y =1.5 mm. The coupling gap between the two resonators (d) is of 0.7 mm while  I/O 

feeder lengths are 1.75 mm. 

These procedural steps have been repeated  with a microstrip bandpass filter based 

on the 3
rd

    iteration of Moore fractal resonators, designed at the same frequency and 

using the same substrate specifications. Figure 73 explains the configuration of this  

microstrip bandpass filter. This filter possesses  total dimensions of 9.68× 4.64 mm
2
 

with  w= 0.405 mm, g =0.2 mm,  q =0.45 mm, x =0.2 mm, y =0.2 and d =0.4 mm. 

The 50 ohm  I/O feeder lengths are 1.1 mm. 

Filter topologies, shown in Figures 72 and 73, have been modeled and analyzed 

using EM Sonnet Simulator. The resultant simulated responses of return loss, S11, 

and transmission, S21, for these filters are illustrated in Figures 74 and 75 

respectively. It is apparent that the resultant bandpass filters based on 2
nd

 and 3
rd

  

iteration  of  Moore fractal geometries present a quasi-elliptic transmission response 
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with transmission zeros that are somehow symmetrically postioned around the design 

frequency near the passband edges. It is obvious from these simulation results that 

the performance response does not support harmonics that normally accompany the 

bandpass filter response. 

Relating to this issue, some adjustments in the filter structure can excite these 

harmonics to generate multiband bandpass response. However, this subject is out of 

the scope of this study to construct miniaturized bandpass filter. Furthermore, the 

higher harmonics levels implemented by the 3
rd

 iteration fractal based filter is less 

than those of the filter based on the 2
nd

 iteration. This dissimilarity in the out of band 

levels(the upper stopbands)  is mainly attributed to the positions of the tapping 

positions and the coupling gap between the two resonators of the two filter 

structures. This confirms the results reported in  [89,115], since these factors 

influence the electromagnetic couplings between the two resonators. The percentages 

of fractional bandwidths for  2
nd

 and 3
rd

 iteration Moore BPFs are of 5% and 3.75% 

which are in theory within narrow band ranges.  

 

Figure 72 The modeled layout of  2
nd

  iteration Moore fractal BPF at w =0.4 mm and 

g=1.5 mm 

 

Figure 73 The modeled layout of  3
rd

  iteration Moore  fractal BPF at w =0.4 mm 

and g=0.2 mm 
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Figure 74 The return loss and transmission responses of  2
nd

  iteration Moore BPF 

designed for 2.4 GHz 

 

 

Figure 75 The return loss and transmission responses of 3
rd

  iteration Moore BPF 

designed for 2.4 GHz 
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Table 4 gives an idea about the modeled Moore filter dimensions and main result 

parameters of BPF responses as designed for 2.4 GHz applications. These parameters 

contain dimensions of proposed  filters,  insertion loss, return loss and bandwidth. 

A critical problem in the miniaturization of passive resonators and filters originates 

from the reality that resonating structures have to involve definite size relative to the 

guided wavelength, g , which is evaluated, at the design frequency, by equation 

(4.1). 

 From equation (4.5), the effective dielectric constant e  = 5.4 and guided 

wavelength 
g

  = 53.79 mm have been determined at frequency f  = 2.4 GHz. 

According on these computations, the overall dimensions in terms of 
g

  are to be of 

(0.24
g

  x 0.11 
g

 )  and (0.18
g

 x 0.086 
g

 )   for 2
nd

 and 3
rd

 Moore bandpass 

filters respectively. 

The size lessening percentages of  3
rd

 iteration Moore BPF  with respect to the  2
nd

  

iteration one is about 43%. 

 

               

          Parameter 

 

2nd Iteration  

 

3rd Iteration 

Side Length (L), mm 6.1 4.64 

Occupied Area, mm2 78.69 44.9152 

Return loss , S11 (dB) -23.9 -20.5 

Insertion Loss (dB) -0.1 -0.155 

Bandwidth(MHz) 120 90 

 

Table 4  The Dimensions and Electrical Specifications of  Moore BPFs 

 

 It is significance  to point out that these filters can be modeled for other operating  

frequencies according to given system requirements by using dimensions 

modifications as notified in design flow chart of  Figure 70  using appropriate w and 

g values  that manage the side length, L, of fractal resonators. For example, 

resonance at 1.7 GHz design frequency has been acquired by selecting w = 0.5 mm 
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and g = 0.3 mm that make L = 6.1 mm for 3
rd

 iteration Moore BPF under same 

substrate specifications. 

Based on the specified specifications, the filter bandwidth could be controled under 

same iteration level and design frequency. This is performed  by estimating the w/g 

ratio in such a manner to vary  L to some extent (not quite different) using suitable 

scaling. For instance, 40 MHz bandwidth has been obtained via the EM simulator by 

opting w = 0.5 mm and g =1.3 mm which produces   L =5.9 mm for 2
nd

  iteration 

Moore BPF under same frequency, 2.4 GHz, and substrate requirements. 

The design frequency and bandwidth tunings in this study have been also approved 

for fractal resonators reported in [24,116]. The coupling gap between the two 

resonators, d, as in Figures 72 and 73  and Input /Output feeder locations can be 

absolutely adjusted to reduce insertion loss and increase return loss so as to improve 

frequency response of the filter as much as possible . 

The implemented fractal filters have noteworthy lower insertion loss and greater 

return loss magnitudes as compared with Hilbert and Minkowski-like fractal BPFs 

depicted in [41] and [42] respectively under same design frequency and substrate 

specifications. In addition, these two pole fractal bandpass filters are more 

minaturized than dual-mode Minkowski and Koch-like pre-fractal BPFs depicted in 

[42] and [117] respectively designed at the similar resonant frequency and using a 

substrate with the similar specifications. However, it is estimated that, further size 

reduction can be achieved for the filter structure related to the 4
th

 iteration of the 

proposed fractal generation process in the case of no practical constraints. 

 With the intention of geting close into the nature of current distributions of the 

proposed filters, simulation graphs for the surface current distributions at two 

operational frequencies, 2.4 GHz (the center frequency) and 2.7 GHz (in the 

stopband region), are described in Figures 76 and 77 respectively. In these figures, 

the red color points to the uppermost coupling effect while the blue color means the 

least one. As it can be observed, the current distributions at 2.4 GHz and 2.7 GHz are 

highly different and they are dimensioning  themselves as 2
nd

 and 3
rd

  iteration  

Moore fractal geometries.The highest surface current densities can be seen at the 

center frequency, which indicates that low losses are exist and the desired resonant 

frequency is within upper excitation condition. In contrast, the minimum  current 

densities can be perceived at 2.7 GHz in rejectband region . In this case, weakest 
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coupling can be seen, which is given by the truth that Moore BPFs are not enough 

being induced and, therefore, offer a physically powerful rejection in an otherwise 

passband structure.  

Also, the maximum current densities are quite focused in only one resonator of each 

Moore BPFs corresponding to 2
nd

 and 3
rd

 iteration at both frequencies. This might 

clarify the suppression of higher harmonics in out of band regions. 

 

 

(a) 

 

(b) 

Figure 76 Simulted current density distributions of the 2
nd

 iteration Moore microstrip 

BPF (a) at 2.4 GHz and (b) at 2.7 GHz 
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(a) 

 

(b) 

Figure 77  Simulted current density distributions of the 3
rd

  iteration Moore 

microstrip BPF (a) at 2.4 GHz and (b) at 2.7 GHZ 

 

The photographs of manufactured filter prototypes based on the 2
nd

 and 3
rd

  iteration 

Moore fractal geometries are illustrated in Figures 78 and 79 respectively. The 

output performences of these fabricated filters have been evaluated using HP8720C 

vector network analyzer. 

 

Figure 78 Graph of produced  2
nd

  iteration Moore  fractal BPF 
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Figure 79 Graph of produced 3
rd

  iteration Moore fractal BPF  

 

Figures 80 and 81 show  measured and simulated out-of-band S21 responses of 2
nd

 

and 3
rd

  iteration fractal filters respectively, while measured and simulated return loss 

S11 responses for same  filters are shown in Figures 82 and 83 respectively. In the 

measured and simulated results, only single pole comes into view in the passband 

despite the filters are of 2
nd

 order. This is because the output responses are shown 

through a large swept frequency range, and the passband only takes up a tiny section 

of the shown frequency range. If the results are viewed thtough a narrow swept 

frequency range, additional facts all through the passband, including the two poles, 

will start to come into sight. The experimental return loss values are 15.5 dB and 17 

dB for 2
nd

 and 3
rd

 iteration Moore fractal BPFs respectively while the experimental 

insertion loss values are better than 1 dB  for both fractal  filters. Consequently, the 

measured and simulated results are a little different. This small discrepancy might be 

related to tolerances in the substrate requirements and in manufacture process, where 

the gap between the two resonators and the tapping feed line locations have huge 

effect on the overall coupling required to obtain  the desired filter response. However 

these results have high-quality of conformity.  
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Figure 80 Simulated and measured out-of-band S21responses of the proposed filter 

based on 2
nd

  iteration Moore  curve geometry 

 

Figure 81 Simulated and measured out-of-band S21 responses of the proposed filter 

based on 3
rd

  iteration Moore curve geometry 
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Figure 82 Simulated and measured S11 responses of the proposed filter based on 2
nd

 

iteration Moore curve geometry 

 

 

Figure 83 Simulated and measured S11 responses of the proposed filter based on 3
rd

  

iteration Moore  curve geometry 
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The degree of coupling effect depends on width strip and spacing between strips 

values of Moore fractal curve, which affects the  performence of output frequency 

response due to changing in overall strip length and hence the side length of fractal 

shape . 

Figures 84 and 85 verify the effects of changing w and g on these filters. The 

variation of these parameters is not only varying the resonant frequency and insertion 

loss, but also shifting the locations of the transmission zeros that control the 

attenuation levels for these filters. 

 

Figure 84 The  transmission responses of the resulting 2
nd

  iteration fractal  

microstrip bandpass filter of different w and g values 

 

 

Figure 85 The  transmission responses of the resulting 3
rd

  iteration fractal  

microstrip bandpass filter of different w and g values 
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4.3 Design and Simulation Results of Sierpinski Bandpass Filters 

 

All designed Sierpinski filters in this section are based on the second publication in 

the "PUBLICATIONS RELATED TO PhD THESIS" list in the end of this thesis 

which is published in 2012.However, after two years of this publication, an extensive 

parametric study on our proposed Sierpinski filters has been reported in the 

publication entitled with "New Kinds of Fractal Iterated and Miniaturized 

Narrowband Bandpass Filters for Wireless Applications" done by V.Soni and M. 

Kumar which is indexed in ieee Xplorer in 2014.  

 

The initial pattern for the presented bandpass filter as a fractal is a square patch with 

a side length L. The inserted slotted structures are then based on Sierpinski carpet. 

This fractal geometry shown in Figure 86, is a uniform fractal which is a 

generalization of the Cantor set into two dimensions. The Sierpinski carpet is formed 

comparablely to the Sierpinski gasket, but it employs squares instead of triangles. 

The steps are, begin with a solid (filled) square C(0). Divide this into 9 smaller 

similar squares. Eliminate the interior of the center square to get the first iteration, 

i.e., C(1). Now subdivide each of the eight remaining solid squares into 9 similar 

squares and remove the center square from each to get C(2). Stay in this manner with 

the construction to obtain a decreasing sequence of similar sets. 

The Sierpinski carpet is the connection of all the sets in this sequence, that is, the set 

of points that continue after this construction is repeated infinitely. Figure 86 shows 

the first four iterations. The squares in red represent some of the smaller similar 

squares used in the construction, which are then combined relatively to the black 

ones.   

The ideal fractal structure is obtained by iterating infinite number of times. However, 

it has been concluded, in practice, that the number of generating iterations should be 

limited to only a few, before additional complexities arise [44]. 
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Figure  86 The generation process of the Sierpinski fractal geometry  iterations from  

C(0) to C(4) where C(0) is zeroth iteration ,C(1) is the first iteration and so on. 

 

Up to third iteration, i.e., C(3), dual-mode single microstrip patch bandpass filter 

structures have been designed at  f = 5.33 GHz. It has been presumed that, these filter 

structures have been etched using a substrate with a dielectric constant of 10.8
r


and thickness of 1.27 mm. The side length of the square patch resonator, 9L mm, 

has been calculated from  

 

                                         0.4
g

L                                                                        (4.7) 

Generally in degenerate dual-mode case, the bandpass filter response can be gained 

through the induction of the two degenerate modes by input output feed lines and 

setting the coupling between the two modes by inserting appropriate form of 

perturbation within the resonators. In this design, small perturbations are applied to 

each dual-mode resonator, at locations that are assumed at an angle 45
0
 offset from 

its two orthogonal modes. These perturbations are in the shape of a small square 

patch with a side length d, added to the upper right corner of the conventional square 

patch as illustrated in Figure 87, and in other subsequent iterations resonators of 

Figures 89,91,93. For coupling requirements of the orthogonal modes, the 

perturbations could also have forms other than this shape. But since the proposed 

resonating structures are described by their diagonal symmetry, this shape of 

perturbation is the most fitting to satisfy the required coupling [42,81,88]. The 

dimensions of the perturbations of each filter must be scaled for the required filter 
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performance, since the behaivor and the strength of the coupling between the two 

degenerate modes of the dual-mode resonator are primarily evaluated by the 

perturbation’s size and shape.  

A dual-mode filter structure based on the conventional square patch resonator, and 

three filter structures based on resonators having the shapes of the first three 

iterations of  Figure 86, have been modeled and analyzed at operating frequency of 

5.33 GHz using a full-wave based electromagnetic simulator from  Sonnet Software 

Inc. These filter structures are shown in Figures 87,89,91 and 93 respectively. The 

corresponding simulation results of return loss S11and transmission S21  responses 

of these filters are plotted in Figures 88,90,92 and 94 respectively. Comparing the 

insertion losses        which are peaks of transmission responses and bandwidths at -

3dB in Figures 90,92 and 94 with those of Figure 88 , it is  seen that the bandpass 

filters with iterations offer better performance than conventional dual-mode square 

patch resonator. This way, they have narrower bandwidth and lower insertion loss as 

compared to conventional filter of  Figure 87. It is also worth pointing out that the 

fractal filters iteration levels C(1) to C(3) have less symmetrical transmission zeros 

as compared to conventional resonator. Table 5 explains the resultant simulated 

parameters for designed filters. 

 
Figure 87 The layout of the modeled conventional dual-mode square patch 

microstrip resonator at d =1mm  
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As shown in Figures 95,96 and 97, increasing d, the side length of small perturbation 

square patch at the right top corners in Figures 89,91 and 93 causes S21 first to 

move rapidly upward toward the ideal 0dB point and then split into two visible 

peaks. Ideally there would be no coupling between the two modes at d = 0 mm. 

 It is seen from these figures that the splitting of frequency between the two modes 

and the coupling effect are increased as the perturbation size d, is increased.  

Simulation graphs show that the modeled bandpass filters possess good performance 

curves. As it can be seen, all filter responses exhibit dual transmission zeros that are 

located around the design frequency. The offered filter designs can readily be 

changed to other frequencies required for other wireless communication systems. In 

this case, the resulting new filter will be of greater or lower in size according to the 

frequency requirements of the specified applications.  

 

Figure 88 Return loss, S11, and transmission , S21 , responses of the conventional 

square patch microstrip bandpass filter shown in Figure 87 
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Figure 89 The layout of the modeled first iteration dual-mode Sierpinski patch 

microstrip resonator at d =0.8 mm 

 

Figure 90 Return loss, S11, and transmission , S21, responses of the first iteration 

Sierpinski patch microstrip resonator filter shown in Figure 89 

 

It is envisaged that the proposed fractal shape resonator may become a good-looking 

structure for developing minaiturized and good performance bandpass filters for 

modern wireless networks. 

 

 

 

 

 



 

 95 

 

 

 

 

 

 

 

 

 

 

 

Figure 91 The layout of the modeled second iteration dual-mode Sierpinski patch 

microstrip resonator  at d = 0.8 mm. 

 

 

 

Figure 92 Return loss, S11, and transmission , S21, responses of the second iteration  

Sierpinski patch microstrip resonator filter shown in Figure 91 

 

The proposed technique can be considered as a flexible design tool for compact 

microstrip bandpass filter for various wireless communication systems. 
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Figure 93 The layout of the modeled third iteration dual-mode Sierpinski patch 

microstrip resonator at d =0.7 mm 

 

 

Figure 94 Return loss, S11, and transmission, S21, responses of the third iteration 

Sierpinski patch microstrip resonator filter shown in Figure 93 
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Type 

 

Parameter 

C(0) 

 

C(1) 

 

C(2) 

 

 

C(3) 

 

Return Loss 

(dB),S11 

-25.4 -21.2 -10.7 -23.3 

Insertion Loss 

(dB),     

-0.13 -0.0649 -0.098 -0.028 

Actual Bandwidth 

at-3dB (MHz) 

160 60 50 75 

 

Table 5 Summary of The Simulated Parameters of The Modeled Filters 

 

 

 

Figure 95 Simulated transmission responses, S21, of the first iteration Sierpinski 

fractal bandpass filter as a function of d in units of mm 
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Figure 96 Simulated transmission responses, S21, of the second iteration Sierpinski 

fractal bandpass filter as a function of d in units of mm. 

 

 

Figure 97 Simulated transmission responses, S21, of the third iteration Sierpinski 

fractal bandpass filter as a function of d in units of mm. 

 

4.4 Design and Simulation Results of Stepped Impedance Hilbert Fractal   

Bandpass Filters 

 

Step impedance resonators (SIR) is a non-uniform transmission line, which were 

used in the filter design either for miniaturization purposes, or shift the spurious 

passband to the higher frequency, or to suppress the harmonic frequencies [119].The 
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SIR employed in this section was shown in Figure 98, it is made of two transmission 

line sections with two different characteristic impedances 1Z  and 2Z with 

corresponding electrical lengths x and y, respectively.  The input admittance that 

viewed from an open end can be calculated by[120] : 

 

    
                              

       
         

            
         

                                           (4.8)     

Where                ,              and K= 2Z  1Z . 

 

 

Figure 98 Schematic of the employed two-sections SIR 

 

Stepped impedance filter configurations based on 1
st
 and 2

nd
 iteration Hilbert fractal 

geometries depicted in Figures 99 and 100 consist of two resonators with 

asymmetric feed lines tapping the resonators. The coupling between the two open 

ends of the resonators takes place through the gap capacitance represented by the 

spacing d. Each resonator represents a single pole resonant circuit. Then the resulting 

two resonator bandpass filters will have two poles. The filters presented in this 

section over perform those reported in [89,115] respectively. In the present study, to 

design more compact bandpass filter, two miniaturization techniques have been 

applied to the hairpin resonators. The first is the application of fractal geometry and 

the second is the use of the SIR technique. 
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      Figure 99 The modeled layout of  1
st
  iteration two Hilbert resonators with SIR  

BPF 

 

 

Figure 100 The modeled layout of  2
nd

  iteration two Hilbert resonators with SIR  

BPF 

       

 

In addition to the dimensional scaling of the modeled resonator, to reach to design 

frequency, other parameters play an important role as optimization factors in filter 

performance. These parameters are the spacing between the adjacent resonators and 

I/O feed line tap positionss. Parametric study to explore the effects of values of these 

parameters on the resulting filter performance, will lead to minimum insertion loss 

and maximum return loss at the design frequency. In this study, we have used 1
st
 

iteration bandpass filter as explanation example for adopted optimization process as 

it can be seen from Table 6 and Table 7. 
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Table 6 Summary of The Simulated Parameters of The Modeled Filters 

 

 

 

 

 

 

 

 

 

 

 

Table 7  Summary of  Simulation  Result  Parameters of 1
st
  Iteration  Stepped  

Impedance Hilbert  BPF with  Respect to  p and q  Values 

 

Filter structures, presented  in  Figures 99 and 100,  have been modeled and 

analyzed at an operating frequency, in the ISM band, of 2.4 GHz using AWR2009 

simulator. These filter structures have supposed to be etched using a substrate with 

relative dielectric constant of 9.6 and 0.508 mm in thickness. The resulting filter 

dimensions  based on first iteration of Hilbert fractal geometry have been found to be 

18.29×9.79 mm
2 

 with w= 0.9 mm ,g =7.5 mm  , b =0.3 mm ,x =3 mm and y =3.11 

mm. On the other hand, The dimensions of the fractal filter based on second iteration 

are found to be 11.5× 5.7 mm
2
 with  w= 0.3 mm , =0.8 mm  , b =0.1 mm , x =0.7 mm 

and y =0.7 mm except in the up and bottom terminals nearby  edge spacing coupling 

where y reduced to 0.4 mm  to resonate at the design frequency.The resonators are 

directly coupled to the I/O through 50 Ω microstrip feed lines with asymmetric tap 

positions. The performance of the modelled filters, in terms of the return loss S11 

Parameters 

 

 

 d=0 mm 

  

d=0.13mm 

  

d=0.33mm 

    

 

d=0.53mm 

    

 

S11 (dB) ………. -12.71 -4.196 -0.316 

Insertion 

Loss(dB) 

………. -0.33 -2.079 -10.591 

Band Rejection 

levels(dB) 

………. --90.07, 

-70.557 

-78.863, 

-88.868 

-87.678, 

-95.353 

Parameters 

 

 

S11 (dB) Insertion 

Loss (dB) 

Band Rejection 

levels(dB) 

P=q=0 mm -0.755 -7.95 -74.331, 

-77.271 

P=q=3.8 mm ………. ………. ………. 

P=q=1.4  mm -1.748 -4.81 

 

-78.672, 

-73.793 

P=2 mm and 

q=2.2 mm 

-3.29 -2.66 -72.315, 

-73.324 

P=2.8 mm and 

q=3  mm 

-12.71 -0.33 -90.07, 

-70.557 
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and the transmission S21 responses, has been evaluated within swept frequency 

range from 1 to 5 GHz in order to monitor the filter out-of-band response and the 

level of the possible second harmonics. 

A parametric study has been conducted to explore the most effective filter 

parameters on the filter responses. These parameters include the coupling gap 

spacing and the I/O feed line tap positions.  

Figures 101 and  102 show the resulting S11 and S21 responses corresponding to 

different values of the spacing (d) between the two resonators, for the 1
st
 iteration 

Hilbert fractal based filters. Table 6 shows the results of the modeled Hilbert filter 

with edge spacing as a parameter with d=0 mm, 0.13 mm, 0.33 mm and 0.53 mm. It 

is clear, in both figures and Table 6; there is non-desired output frequency response 

in the case of d=0 mm, while its effect is more noticeable on the transmission zeros, 

return loss, insertion loss on the frequency responses of d=0.13, 0.33 and 0.53 mm. 

However, the results imply that the gap spacing affects the position of the 

transmission zero on the right side of the passband slightly more than that of the left 

of the passband. An optimal response can be found at d=0.13 mm since it has lowest 

insertion loss and highest return loss.  

 

Figure 101 The transmission responses of the resulting first iteration Hilbert 

microstrip filter with respect to different edge spacing values, d(in mm) 



 

 103 

 

 

Figure 102  The return loss responses of the resulting first iteration Hilbert 

microstrip filter with respect to different edge spacing values, d(in mm) 

 

The effects of varying the I/O feed line tap position on the filter responses have been 

demonstrated in Figure 103 and explained in Table 7. It is worthwhile to observe 

that I/O feed line tap positions have a considerable effect on the locations of the 

transmission zeros at both sides of the passband. This will affect the sharpness and 

skirt characteristics of the resulting response. By proper tuning of the I/O feed line 

tap positions, the selectivity of the proposed filters can be enhanced to a large extent. 

However, as the results imply, this could be achieved for feed line positions at p =2.8 

mm and q=3 mm. The results also reveal that the variation of the I/O feed line tap 

positions has big effects on the locations of transmission zeros of the bandpass filter 

based on the first iteration Hilbert geometry and certainly on  of the filter based on 

the second iteration fractal geometry.  
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Figure 103 The transmission responses of the resulting first iteration Hilbert 

microstrip filter with respect to different I/O port positions, p and q(in mm) 

 

By using the principles of previous parametric studies, optimal simulation results of 

return loss, S11, and transmission, S21, responses of modeled filters are shown in 

Figures 104 and 105. It is clear, that the  resulting bandpass filters based on the 1
st
  

to 2
nd

 iteration Hilbert fractal geometry offer quasi-elliptic  responses with 

transmission zeros that are asymmetrically located around the deign frequency. It is 

worth pointing from Table 8 that 1
st
  iteration Hilbert fractal BPF offers lower 

bandwidth, slightly higher return loss and higher insertion loss as compared to 2
nd

  

iteration one.  

Figures 104 and 105 show the out-of-band responses of the filters depicted in   

Figures 99 and 100 respectively. It is clear from thses figures, that the performance 

response has 2
nd

  harmonic suppression in out-of-band regions.  
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Figure 104 The return loss and transmission responses of BPF depicted in Figure 

99, designed for 2.4 GHz 

 

Figure 105 The return loss and transmission responses of BPF depicted in Figure 

100, designed for 2.4 GHz 
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Table 8 shows results of the modeled filter dimensions as designed for 2.4 GHz 

application with corresponding filter performance parameters. The previous filter 

designs can be applied for other operating frequencies by varying the filter 

dimensions up or down depending on the required resonant frequencies. In this case, 

the resulting filters might be of larger or smaller in sizes according to the frequency 

requirements of the specific applications.  

Table 8 shows bandwidths of 70 MHz and 240 MHz for proposed stepped 

impedance Hilbert filters. These bandwidths represent in-band frequency difference 

at -3 dB in passband region around 2.4 GHz. It is clear that as fractal iteration 

increases as value of microstrip width decreases, thus increasing the dissipative 

losses with a corresponding degradation of rejection levels [51] as it can be 

concluded from Table 8  and output responses of proposed filters. These results 

agree with the findings reported in [113]. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 Summary of The Calculated and Simulated Results of The Modeled Filters 

 

4.5 Design and Simulation Results of Hilbert-zz Microstrip Bandpass Filter 

 

A space-filling curve (SFC) may be adjusted over a flat or curved surface, and due to 

the angles between segments, the physical length of the curve is always greater than 

that of any straight line that can be fitted in the surface. A space filling curve is a 

curve that is large in terms of total strip length but small in terms of the area in which 

the curve can be included. 

                         Parameter 

                  

1st  Iteration 2nd  Iteration 

Side Length, mm 9.79 5.7 

Occupied Area, mm2 179.06 65.55 

Band Rejection levels(dB) -90.07 (left) 

-70.557 (right) 

-46.345 (left)  

  -68.257 (right) 

 

S11 (dB) -12.71 10.5 -

Insertion Loss(dB) -0.33 -0.42 

Bandwidth(MHz) 70 240 
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Figure 106 shows some specific types of reported Hilbert space filling curves which 

are called Hilbert zz set. The dimension of a fractal provides a detail of how much a 

space it fills. It is a measure of the weight of the irregularities when viewed at 

miniaturized scales. By the way, it can be implied from these fractal configurations, 

the new set has greater physical lengths as compared to Hilbert fractal shapes and 

hence more miniaturization possibilities for designing RF and Microwave microstrip 

filters [121,122]. 

 

 
Figure 106 Hilbert zz space filling curves  

 

A single resonator based on Hilbert-zz fractal geometry, has been designed at a 

frequency of 2.4 GHz. It has been supposed that the filter structure has been etched 

using a substrate with a relative dielectric constant of 9  and a substrate thickness of 

1.27 mm. The resulting resonator dimensions have been found to be 3.34x 3 mm
2
 

and a trace width of about 0.1 mm and gap between strip of about 0.09 mm. The 

output response offered by this resonator is useless to be introduced here. The same 

resonator with depicted dimensions and substrate specifications has been used to 

build a two-resonator microstrip bandpass filter. The topology of this filter is shown 

in Figure 107. The overall dimensions of this filter are of 6.74x 3 mm
2
. To enhance a 

suitable capacitive coupling between the resonators, stubs have been added to each 

resonator. These stubs will increase the overall length of the resonators making it 

resonates at a lower frequency. It has been found that this stub provides a suitable 

means to make the resonator resonates at the design frequency when modeling it in 
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the Sonnet EM simulator. In this case, the field solver will compute the same 

resonant frequency for both resonators. 

 

The total strip length and side length of Hilbert-zz resonator of Figure 107 without 

additional stub can be calculated by following equations: 

 L=264f+7g                                                                                                            (4.9)  

 S=4(2f+g)+3g                                                                                                      (4.10)  

       

where f =2w+g , is initial drawn strip during modeling .On the other hand, the total 

curve length in the case of existing coupling stub can be calculated by : 

 

   L=264f+7g+S+r                                                                                                 (4.11) 

   

 
Figure 107  The modeled layout of   Hilbert zz resonators BPF 

                                                                        

where r is connecting segment between Hilbert-zz resonator and coupling stub. It is 

found  that the bandpass filter based on Hilbert-zz fractal resonators offers a higher 

degree of miniaturization, as compared to 2
nd

  and 3
rd

 iteration of  Hilbert fractal 

resonators due to its higher packaging capabilities. Also, this filter possesses a 

noticeable compactness over the conventional half-wavelength resonator filter.     

Filter structure, depicted in Figure 107, have been modeled and analyzed at an 

operating frequency, in the ISM band, of 2.4 GHz using Sonnet electromagnetic 
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simulator. The simulation responses of return loss, S11, and transmission, S21, 

responses of this filter are shown in Figure 108. In this figure, pass region has been 

designed at a center frequency of 2.4 GHz  with bandwidth of 90 MHz , - 10.4 dB 

return loss  and -0.42 dB insertion loss  . 

 

 
Figure 108 The return loss and transmission responses of   Hilbert zz fractal  BPF 

designed for  2.4 GHz 

 

This filter offers a good quasi-elliptic transmission response with transmission zeros 

that are asymmetrically located around  2.4 GHz.  

The I/O ports positions and edge spacing are important parameters that motivate the 

resulting multi-resonator filter performance. Figures 109-110 show the resulting 

filter responses corresponding to different values of the coupling stub length. It is 

clear, from these figures; the variation in stub lengths affects the resonant frequency, 

as well as  its effect on  the transmission zeros. It is also pointing that return loss 

values have been changed to a level of about from   10.413 dB  to 0.202 dB and the 

insertion loss values differ from   0.404dB to  13.222 dB that are with respect to d 

values from d = 3 mm down to  d = 0 mm  . 

Figure 111 shows the out-of-band responses of the microstrip Hilbert-zz filter. It can 

be concluded from this figure, the output response has no tendency to support higher 

harmonics which conventionally accompany the bandpass filter performances. 

Figure 112 displays the scattering parameter for S11 and S21 simulation results of 

Hilbert-zz filter. 



 

 110 

 

 

 
 

Figure 109 The transmission responses (S21)  of the filter structure based on Hilbert 

zz curve with respect to different stub lengths 

 

 
Figure 110 The return loss responses (S11)  of the filter structure based on Hilbert zz 

curve with respect to different stub lengths 
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Figure 111 The out of band responses of the filter structure based on Hilbert zz 

curve with coupling stub  

 

 
  

Figure 112 The phase responses of the resulting Hilbert zz fractal two-resonator 

microstrip BPF 

 

Figures 113-114 demonstrate the surface current patterns on the conducting surface 

of both resonators at the design frequency where red color indicates higher coupling 

effect while blue indicates lower coupling effect. It clear from these figures that only 

at the design frequency the effective modes are induced and coupled to each other 

leading to the required filter performance, whereas at the other frequency, no modes 

are excited as expected. In these figures, the same color visualization is used as an 
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indication for the current densities. It is clear that highest current densities occur at 

the resonant frequency. 

 

 
 

Figure 113 Current density distribution at the conducting surface of stubbed 

Hilbert-zz  bandpass filter simulated at a resonant  frequency of 2.4 GHz 

 

 
Figure 114 Current density distribution at the conducting surface of stubbed 

Hilbert-zz bandpass filter simulated at a resonant frequency of 3 GHz 

 

4.6 Two Pole Dual Peano Bandpass Filter 

 

Dual resonator based on 1
st
  iteration Peano fractal geometry, has been designed at 

resonant  band  frequencies of 2.25 GHz and 4.825 GHz as in Figure 115. It has 
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been supposed that the modeled filter configuration has been etched using a substrate 

with a relative dielectric constant of 10.8 and a substrate thickness of 1.27 mm. The 

resulting resonator dimensions have been found to be 7.4 mm × 15 mm, with w = 0.6 

mm , g = 2.8 mm , r = 7.5 mm, q = 0.2 mm and k = 0.7 mm while the edge spacing 

between two Peano resonators is 0.2 mm. The input/output feed positions and 

spacing between the resonators are effective parameters that can adjust the filter 

performance.  

                     

Figure 115 The modeled microstrip bandpass filter with two resonators based on 1
st
 

iteration  Peano curve geometry 

 

The corresponding frequency responses of  S11 and S21 are shown in Figure 116 .It 

is clear, from this graph, that the resulting bandpass filters based on the 1
st
   iterations 

Peano fractal geometry offer good quasi-elliptic transmission responses with 

transmission zeros that are located around the design frequency for each band at 2.25 

GHz and 4.825 GHz . At the same time, there is good isolation between the two 

passbands. Four attenuation poles in the stopband can be observed as follows: 1.125 

GHz, 2.85 GHz, 3.45 GHz and 5.675 GHz. Table 9 shows the electrical specification 

parameters of the modeled filter.  
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Figure 116 The return loss and transmission responses of the resulting 1
st
  iteration 

fractal two-resonator microstrip bandpass filter 

 

Figure 117 shows the  phase response for S11 and S12 with respect to different 

frequencies.It is worth pointing that S21 phase responses offer higher frequency 

jumps as compared with S11 phase response. Moreover, the intersections between 

S11 and S21 responses can be recognized at operating band frequencies. 

 

 

Figure 117 The phase responses of the resulting 1
st
  iteration fractal two-resonator 

microstrip bandpass filter 

 

 
 

In addition to w and g values, I/O ports positions have remarkable effect in the 

resulting filter performance. Figures 118-119 show the resulting S11 and S21 

responses corresponding to input port positions, q=0.2 mm, 0.5 mm, 0.8 mm and 1.2 

mm. It is very obvious, in both figures the variation of q slightly affects the resonant 
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frequency, while its effect is much more noticeable on magnitudes of the 

transmission zeros, return loss and insertion loss. This parameter can be used to 

minimize insertion loss and maximize return loss according to q settings. 

To understand which part of filter is being utilized at each operating band frequency, 

the surface current distributions are presented as in Figures 120-121.These responses 

have been investigated using sonnet simulator, where red color indicates the highest 

coupling effect while blue color indicates the lowest one. It can be observed from 

these figures, that surface currents are scaling themselves as first iteration Peano 

fractal geometry.  

 
 

 

 

 

 

 

 

 

 

 

Table 9 Summary of The Simulated Result Parameter of The Modeled Peano BPF 

 

 
 

Figure 118  Influence of q values on S21 responses 

                   Band 

Parameter 

1st band  2nd band 

Resonant  

Frequency(GHz) 

2.25 4.825 

Return Loss, S11 (dB) -21.84 -15.51 

Insertion Loss (dB),     
-0.146 -0.139 

Bandwidth(GHz) 0.20 0.41 
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Figure 119  Influence of q values on S11 responses 

 

 

Figure 120  Current density distribution at the conducting surface of the 1
st
    

iteration  Peano bandpass filter simulated at a resonant  frequency of 2.25 GHz 

 

 
Figure 121 Current density distribution at the conducting surface of the 1

st
    iteration 

Peano bandpass filter simulated at a resonant  frequency of 4.825 GHz 
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CHAPTER 5 

 

DESIGN AND SIMULATION RESULTS FOR MICROSTRIP WIDE 

BANDPASS AND NARROW BANDSTOP FILTERS 

 

5.1 Introduction   

 

New designs of Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) 

based on Hilbert fractal resonators have been modeled using Sonnet simulator. The 

output frequency responses of the these filters have been examined to study the 

corresponding wide bandpass and narrow bandstop performances at the frequency 

around 2GHz. Additionally, the phase dispersion and surface current density details 

about proposed filters have been presented and analyzed. The proposed technique 

offers a new alternative to construct low-cost high-performance filter devices, 

suitable for a wide range of wireless communication systems. 

 

All designed Hilbert filters in this section are based on the sixth publication in the 

"PUBLICATIONS RELATED TO PhD THESIS" list in the end of this thesis. 

 

 

5.2 WBPF and NBSF Based on Hilbert Fractal Geometry   

 

In this chapter, the design of microstrip Hilbert fractal based filters has been done  by 

placing two resonators next to each other in specified distance. Each resonator is 

physical component that stores both magnetic and electric energy in a frequency-

dependent way. At fundamental frequency, the magnetic and electric current 

distributions in the resonator are equally stored. 

Hilbert fractal based  resonators are well popular in planar filters application, for they 

have more compact sizes, reasonable loss, better power handling features and more 

miniaturization as compared with meander structure or split ring resonators [24,59].  
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Accordingly, WBPF  consists of two microstrip  resonators as in Figure 122, each 

resonator is based  on 2
nd

  iteration of Hilbert fractal geometry. By the way, Hilbert 

resonator represents a single pole resonant circuit. So, the resulting two resonator 

bandpass filters will have two poles(2
nd

 order filter) regardless the iteration number 

of the fractal geometry. It has been assumed that the proposed filter structure has 

been etched using RT/Duroid substrate 6010LM with a relative dielectric constant of 

10.8, substrate thickness of 1.27 mm and metallization thickness of 35  m. Two 50 

ohm feed lines as input and output (I/O) ports are placed in left up and right bottom 

corners of the filter. The width and length of these feeders are about 1.3 mm and 1.5 

mm respectively. 

 
 

Figure 122 The modeled layout of  2
nd

 iteration two  Hilbert resonators  WBPF 

 

The proposed filter has overall dimensions of 13.5 x 6.7  mm
2
 with  a trace width of 

about  0.4mm, gap between strips of about 1.7 mm and edge spacing between the 

two resonators, d = 0.1 mm. The dimensions of  this microstrip filter using 

electromagnetic modeling and simulation have been chosen by arbitrary trails and 

suitable scaling according to selected frequency  of wireless communication systems. 

The layout of the proposed microstrip filter and dimension scaling method are 

essentially based on that presented in [89]. WBPF design   has been simulated and 

evaluated using a full-wave based electromagnetic simulator Sonnet software 

package. 
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Sonnet simulator  are based on the modified method of moment, such that they 

evaluate the filter response by dividing first the resonators in small grid 

divisions(mesh),  adjusted according to the desired accuracy, and then solving a set 

of linear equations derived from an integral equation.The grid division here has been 

chosen to be 1 mm. The filter has been run under frequency range from 1 GHz to 3.5 

GHz with frequency step of 0.025 GHz. Suitable boundary conditions are assigned, 

then meshing is carried out on the model to get final refined mesh. In meshing, it is 

well-known that more and smaller divisions will give a more exact solution. 

However, these smaller divisions will also require more time for the computer 

processor to solve the study. Therefore, it is necessary to choose the suitable balance 

between computation time and an acceptable level of accuracy. Using computer 

devices with four or more core processors can reduce the time of execution in the 

case of finer mesh. The stationary solver (including parametric sweeps) uses a linear 

solver algorithm for solution determination.  

The simulation results of return loss and transmission responses for WBPF are 

shown in Figure 123.  In this figure, pass-band has two resonances at  2 and  2.2 

GHz with a bandwidth of 0.52 GHz, - 28 dB return loss  and -0.125 dB insertion loss, 

can be observed clearly. 

 
 

Figure 123 The return loss and transmission responses of the 2
nd

  iteration   two 

Hilbert resonators WBPF 

 

The same resonators with depicted dimensions substrate specifications and simulator 

setting has been used to build NBSF, but with coupling edge spacing between the 
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two resonators, d = 0 mm. The topology of this filter is shown in Figure 124 with 

overall dimensions of 13.4 x 6.7 mm
2
. The filter is simulated under frequency range 

from 1 GHz to 3 GHz with frequency step of 0.025 GHz. 

 

 
 

Figure 124 The modeled layout of  2
nd

   iteration two  Hilbert resonators NBSF 

 

The corresponding results of return loss and transmission responses are shown in 

Figure 125.It has seen from this figure that the center frequency is 2.37 GHz and 

rejection band is 20 MHz, while the return loss and insertion loss values  are -0.1873 

dB and 13.746 dB respectively. This NBSF can be used in broadband 

communication systems that are sensitive to fixed frequency interferences.  

 
 

Figure 125 The return loss and transmission responses of the  2
nd

   iteration two  

Hilbert resonators NBSF 
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It can be concluded from Figures 123 and 125 that the simulation results of return 

loss, S11, and transmission, S21, responses of these filters offer good frequency 

responses with adequate performance. By the way, two transmission zeros (for 

WBPF) and reflection zeros (for NBSF)  have been appeared in output frequency 

responses of proposed filters at finite frequencies near the pass-band and reject-band 

regions as depicted from Figure 123 and Figure 125 respectively .These responses 

are known as quasi-elliptic frequency responses for the designed filters. However, 

these responses and their consequent transmission and reflection zeros could be, to a 

certain extent, adjusted through the variation of edge coupling  gap between Hilbert 

resonators and/or the input/output coupling used. For WBPF, two transmission zeros 

are located around resonant frequencies at 1.65 GHz and 2.9 GHz with S21 

magnitudes of -39.73dB and -44.742dB, respectively while NBSF exhibits two 

reflection zeros of -32.176 dB and -38.227 dB at 2.3 GHz and 2.5 GHz , respectively. 

 

 In general, all passive resonating devices must have definite size in terms of the 

guided wavelength ( g ) which can be calculated according equations (4.1). 

 Based on above equations, the overall dimensions in terms of 
g

  are found to be of 

(0.23
g

  x 0.11
g

 ) and (0.257
g

 x 0.13 
g

 )   for WBPF and NBSF respectively. 

Besides the resonator dimensions, to reach to design frequency, there is also another 

vital parameter plays an important role in the resulting multi-resonator filter 

performance [116], this is the spacing between the adjacent resonators (d). Its effect 

obviously appears in the return loss and insertion loss magnitudes more than 

resonance.Moreover; this factor characterizes interaction of two resonators which is 

used mostly in resonator filter theory. This gap is also known as capacitive coupling 

and it couples these resonators electrically. On the other hand, the direct coupled 

resonators (at d=0 mm) are interacted magnetically and it represents inductive 

coupling. 

Parametric study to investigate the effects of this parameter on the resulting filter 

performance, will lead to reach to minimum insertion loss and maximum return loss 

at the design frequency as well as the intended type of filter as pass or reject band.  
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In this study, we have used Hilbert microstrip resonators based on 2
nd

 iteration level 

as a clarification example for adopting the optimization process as it can be seen 

from Figures 126-127 and Table 10. Figures 126-127 show the resulting S11 and 

S21 responses corresponding to different values of the spacing between the two 

resonators for the 2
nd

 iteration of Hilbert fractal based filters. Table 10 shows the 

results of the modeled Hilbert filters with edge spacing as a parameter with d=0 mm, 

0.1 mm, 0.3 mm and 0.5 mm. It is clear, in both figures and Table 10; the variation 

in the spacing slightly affects the resonant frequency, while its effect is more 

noticeable on the transmission zeroes, return loss, insertion loss, bandwidth as well 

as the class of filter.  

 
 

Figure 126 The transmission responses of the resulting 2
nd

 iteration Hilbert  

microstrip filter with respect to different edge spacing values, d, (in mm) 

 

 
 

Figure 127 The return loss responses of the resulting 2
nd

 iteration Hilbert  microstrip 

filter with respect to different edge spacing values, d, (in mm). 
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Table 10 Summary of The Simulated Parameters of Hilbert Filters with Respect to d 

Values 

 

The BSF response can be obtained with d=0 mm as compared to BPF responses with 

other d cases. This is because of increased inductance of the filter structure without 

coupling gap case, consequently producing BSF response. Also, the simulation 

results involve that the gap spacing affects the position of the transmission zero on 

the right side of the passband slightly more than that of the left of the passband as in 

edge spacing values, 0.1 mm, 0.3 mm and 0.5 mm. The optimal responses of S11 and 

S21 for WBPF can be found in d = 0.1 mm case.   

Figures 128-129 show the phase scattering parameters for S11 and S12 responses 

within the swept frequency range from 1 to 4 GHz and within output phase angle 

range from -200 to 200 degree. These responses include some frequency jumps  

which are the significant  properties of quasi-elliptic filters. Accordingly, the 

intersection between S11 and S21 responses can be recognized easily, especially 

nearby resonant frequency.However, the S11 scattering response for NBSF 

configuration offers lowest jumping rate than other scattering responses of proposed 

filters where obvious phase decay can be identified easily, especially after 2.37 GHz 

center frequency. 

  d=0 mm 

   (BSF) 

d=0.1mm 

  (BPF) 

d=0.3mm 

  (BPF) 

d=0.5mm 

  (BPF) 

Resonance 

Frequencies, GHz 

  2.37 2,2.2 2.1384 2.1655 

Return Loss (dB) -0.1873 -28 -10.57 -4.812 

Insertion Loss(dB) -13.746 -0.125 -0.4 -2.158 

Actual Bandwidth  

(at -3dB) 

 20 MHz 520 MHz 331 MHz 170 MHz 

Trans. or Reflect. 

Zeros(dB)  

-32.176, 

-38.227 

-39.73, 

-44.742 

-78.895, 

-55.157 

-64.604, 

-54.414 
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Figure 128  The phase responses of the resulting WBPF 
 

 

 

 

 

Figure 129 The phase responses of the resulting NBSF 

 

To recognize which part of filter is being utilized ( highest and lowest coupling 

regions) at each operating frequency, the surface current distributions are presented 
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as in Figures 130-133 .These plots show surface current intensity graphs obtained by 

Sonnet simulator on the conducting surface of both Hilbert resonators. The surface 

current distributions are scaling themselves as second iteration Hilbert fractal 

geometry for each resonator .It is very clear from these figures that the current 

distributions differ from frequency to another where the red color indicates 

maximum coupling effect while blue color indicate  the least one. The maximum 

surface current densities can be seen at the resonant frequencies for both WBPF and 

NBSF structures, which is due to the fact that the quasi-static resonance is being fully 

excited. Whereas the lowest current intensities can be observed at 3 GHz in the stop - 

band region for WBPF and pass-band region for NBSF at the same frequency. In this 

case, weakest coupling can be seen, which is given by the fact that the designed filter 

are not being excited at 3 GHz. 

 

 
Figure 130 Current density distribution at the conducting surface of the 2

nd
 iteration 

Hilbert WBPF simulated at an operating frequency of 2 GHz 
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Figure 131 Current density distribution at the conducting surface of the 2
nd

 iteration 

Hilbert WBPF simulated at an operating frequency of 3 GHz 

 

         

Figure 132 Current density distribution at the conducting surface of the 2
nd

 iteration 

Hilbert NBSF simulated at an operating frequency of 2.37 GHz 
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Figure 133 Current density distribution at the conducting surface of the 2
nd

 iteration 

Hilbert NBSF simulated at an operating frequency of 3 GHz 
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CHAPTER 6 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

6.1 Conclusions  

 

In this dissertation, new fractal bandpass and bandstop filters have been proposed for 

wireless communication applications. In the first section of this dissertation, single 

band and dual band fractal BPFs were proposed and evaluated. The aim of this 

section is to design and simulate a series of miniaturized fractal single-mode  based 

on Moore ,Hilbert, Hilbert-zz and Peano fractal geometries to be used in many 

wireless communication applications within ISM band (2.4GHz) while Sierpinski 

fractal geometries have been investigated to design dual mode(two-pole) bandpass 

filters at resonant frequency (5.33 GHz). The other section of this dissertation is 

related to new designs of WBPF and NBSF based on Hilbert fractal curves.  The 

research highlights can be summarized as follows: 

1. New microstrip bandpass filter designs based on the 2
nd

 and 3
rd

  iteration 

levels of Moore space-filling curves have been presented as compact 

filters with satisfactory frequency responses and eliminated higher 

harmonics . These filters have been organized for ISM band applications 

at a resonant frequency of 2.4 GHz using a substrate with a dielectric 

coefficient of 10.8, dielectric thickness of 1.27 mm and metallization 

thickness of 35  m.  Under similar design frequency and substrate 

specifications, the proposed Moore microstrip filters have significant 

minor insertion loss and greater return loss values as compared with 

Minkowski-like and Hilbert fractal BPFs reported in [41] and [42] 

respectively. Furthermore ,  Moore bandpass filters are more compact 

than dual-mode Minkowski and Koch-like pre-fractal BPFs reported in 

[42] and [117] respectively. However, it is guessed that, more 

miniaturization level can be obtained for the filter configuration 



 

 129 

 

corresponding to the 4
th

 iteration of the proposed fractal generation 

method, if there are no practical restrictions. 

2. Narrowband, compact and easily fabricated microstrip bandpass filter 

designs based on Sierpinski fractal geometry have been introduced in this 

thesis. They are constructed from dual-mode (two poles) square slotted 

microstrip resonator from 1
st
 to 3

rd
 iteration of Sierpinski fractal 

geometries. These microstrip fractal filters have the improvements of 

possessing much narrower and sharper frequency responses than those of 

the single pole resonator and typical square patch filter. The resulting 

filter structures from successive fractal iterations show a notably small 

insertion loss, and sharper response of about 1% fractional bandwidth as 

compared with the microstrip square patch filter of 3% fractional 

bandwidth designed at resonant frequency of  5.33 GHz using a dielectric 

coefficient of 10.8, dielectric  thickness of 1.27 mm and metallization 

thickness of 35  m. Also ,under same material specifications, these filters 

have lower insertion losses as compared with square ring resonator BPFs 

with open end stub reported in [123] operating at 5.8 GHz and dual band 

dual mode Sierpinski BPFs stated in [124] around the first band operating 

band frequencies of 5.4 GHz  . 

3. New properties of fractal design scheme has been achieved to build 

compact microstrip bandpass filter .This filter composes of dual edge 

coupled resonators, each resonator is based on specific type of Hilbert 

space-filling curve which is called Hilbert-zz fractal geometry. The 

inserted coupling stub for each resonator enhances the electromagnetic 

coupling for microstrip filter  designed for ISM band wireless application 

using a dielectric constant of 9 and  dielectric  thickness of 1.27 mm. This 

fractal filter offers a good quasi-elliptic transmission response with 

transmission zeros that are asymmetrically located around 2.4 GHz with 

suppressed harmonics in out of band regions of frequency responses .It is 

found that the bandpass filter based on Hilbert-zz fractal resonators offers 

a higher degree of miniaturization, as compared to 2
nd

 and 3
rd

 iteration of 

the conventional Hilbert fractal resonators due to its higher packaging 
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capabilities. Also, this filter possesses a noticeable compactness over the 

conventional half-wavelength resonator filter [41].  

4. Novel microstrip bandpass filter designs using step impedance resonator 

(SIR) transmission line and Hilbert fractal geometries have been 

explained in this thesis. The proposed filters have been built from dual 

edge coupled resonators; each resonator is based on applying step 

impedance resonator generator on 1
st
 and 2

nd
 iteration levels of Hilbert 

fractal resonators on each segment for each fractal iteration. The proposed 

filters have been modeled for the ISM band applications at center 

frequency of 2.4 GHz and using a substrate having a dielectric constant of 

9.6 and a thickness of 0.508 mm. SIR approach inserted more reduction 

level to compacted Hilbert resonators by space filling property.  The new 

filter designs have small sizes  and low insertion loss as well as higher 

harmonics elimination which are very gorgeous features required for  

microwave circuit applications.Accordingly, these microstrip filters have 

more levels of compactness as compared to reported filters in [113] . 

5. A new dual band microstrip bandpass filter with quasi elliptic response 

has been presented. The proposed filter structure have been composed of 

dual coupled resonators which are based on first iteration of Peano fractal 

curves using a substrate having a dielectric constant of 10.8 and a 

thickness of 1.27 mm. Numerical simulations using AWR2009 show that 

the proposed filter offers good quasi-elliptic transmission responses with 

transmission zeros that are located around the design frequency for each 

band at 2.25 GHz and 4.825 GHz . At the same time, there is good 

isolation between the two passbands. Four attenuation poles in the 

stopband can be observed as follows: 1.125 GHz, 2.85 GHz, 3.45 GHz 

and 5.675 GHz. It may be expected that the new fractal bandpass filter is 

a very good-looking structure for developing multiband miniaturized 

components with recent development in wireless communications. 

6. For Moore, Hilbert-zz and stepped impedance Hilbert resonators, the 

coupling spacing between dual resonators and Input /Output port 

positions, can be properly tuned to increase return loss and decrease  

insertion loss as far as possible to improve frequency response of these 
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filters while the effective coupling depends on width strip and spacing 

between strips values of space filling curves. 

7. WBPF and NBSF designs are designed as good quality and miniaturized 

2
nd

 order filters. The proposed microstrip fractal based filters consist of 

two resonators based on 2
nd

 iteration of Hilbert fractal geometry using a 

substrate having a dielectric constant of 10.8 and a thickness of 1.27 mm. 

WBPF has been designed at resonant frequencies of 2 and 2.2 GHz with a 

bandwidth of 0.52 GHz in pass-band region, while NBSF has a center 

frequency of 2.37 GHz with 20 MHz bandwidth in the stop-band region. 

It has been found the coupling edge spacing (d) affects the filter 

performances obviously, in addition to circuit type as pass or reject band.  

The proposed designs offer high performance and simple fabrication for 

the implementation of fractal microstrip filters, which can be modified to 

be suitable for a wide variety of communication systems. 

6.2 Suggestions for Future Work 

 

Recent wireless technologies have quickly grown to locate their way into commercial 

and industrial applications. Many wireless communication systems, such as the 

global position system (GPS), global system for mobile (GSM), and Bluetooth 

system, industrial scientific medical (ISM band) have been demonstrated and 

applied. 

 Microwave filtering techniques are essential objects for controlling the spectrum of 

signals and tackling interferences issues in many wireless communication systems. 

Nowadays the physical volumes of RF and microwave front ends are dominated. 

Since the trend for future wireless systems is toward smaller and lighter filters size, 

there has been an ascending need for compact microwave and RF filters with 

interesting performences.  Some of the suggestion that can be recommended on this 

issue as follows: 

1. Relating the work presented in this thesis, additional research work has to 

be carried out to investigate the feasibility of designing compact size dual-

mode bandpass filter based on Moore fractal geometries and multiband 

dual mode Sierpinski bandpass filters. 
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2. In this work, filters of two orders were achieved  in order to verify the 

proposed designs. In fact, some concepts proposed in this dissertation can 

also be used in high-order filters to achieve higher selectivity . 

3. Combing Moore fractal curves with SIR technique to produce more 

miniaturized filters with suppressed higher harmonics in out of band 

regions. 

4. The ability of Moore and Sierpinski fractal shapes to construct as 3D 

objects, which can be used to build conformal fractal filters and resonators 

of higher performance in different frequency applications. 

5. All microstrip filter designs have been investigated using EM software 

packages represented by AWR2009 and Sonnet simulators. The output 

responses by these simulators are well-known by designers that they have 

high convergence to measured results as it can be noted from Moore 

bandpass filter structures. However, experimental verifications for 

remaining modeled filters are still needed. 
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APPENDICES  

 

APPENDIX A  

 

A.1 Determination of the Guided Wavelength in Ring Resonators  

 

In this appendix, an uncomplicated transmission-line model is used to compute 

frequency modes of ring resonators of any common shape. Moreover, it gives an 

explanation for dual-mode behavior. 

 

A.2 Frequency Modes for Ring Resonators  

 

Figure (A.1) explains the arrangements of the one-port square and annular ring 

resonators. For a ring of any general shape, the overall length l can be divided into 

  and    sections. 

                     

 

Figure (A.1) The configurations of one-port (a) square and (b) annular ring 

resonators  

 

In the case of the square ring, each section represents a transmission line,   and    

are the coordinates related to sections    and   , respectively. The ring is fed by the 
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source voltage V at somewhere with     < 0. The positions of the zero point 

        and the voltage V are randomly selected on the ring. For a lossless 

transmission line, the voltages and currents for the two sections are given as follows: 

             
                                                                                                             

           
  

 

  
                                                                                                

where   
          is the incident wave propagating in the +     direction   

         

        is the reflected wave propagating in the       direction,   is the propagation 

constant,         is the reflection coefficient at      = 0, and    is the impedance 

characteristic of the ring. 

 At resonance, standing waves set up on the ring. The least length of the ring 

resonator that maintains these standing waves can be gotten from the positions of the 

highest values of these standing waves. These positions can be determined from the 

derivatives of the voltages and currents in (A.1). The derivatives of the voltages are: 

     

     
      

                                                                                               

Letting                                       

            

     
 
      

                                                                                                              

The reflection coefficients can be found as: 

                                                                                                                           

Substituting         =1 into (A.1), the voltages and currents can be rewritten as: 

               
            

           
     

 

  
                                                                                                

Therefore, the absolute values of the maximum voltages on the ring can be found as: 

               
=2  

       for          
  

 
      , m=0,-1,-2,-3                                        

In addition, the currents      at the positions of       
  

 
 are        
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Also, the absolute values of the maximum currents can be found as: 

               
=

   
 

  
  for       

      

 
  ,                                                  

the voltages       at the positions of      
      

 
   are: 

                 
      

 
  

                                                                                              

Figure (A.2) explains the absolute magnitudes of voltage and current standing waves 

on each section    and    of the square ring resonator. Inspecting Figure (A.2), the 

standing waves replicate for multiples of  
  

 
  on the each section of the ring. Thus, to 

sustain standing waves, the shortest length of each section on the ring has to be 
  

 
 

,which can be considered as the elementary mode of the ring. For higher order 

modes:                 

       
  

 
                                                                                                        

where n is the mode number. Therefore, the total length of the square ring resonator 

is:                                 

                  

 l = total length of  any ring loop resonator 

Then:  

    
  

      

                                                                                                                       

 In terms of the annular ring resonator with a mean radius r as shown in Figure 

(A.1b),                           

                                                                                                                          

Equation (A.10) explains a general expression for frequency modes and can be used 

at any configuration of microstrip ring resonators including the dual-mode filter. 
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Figure (A.2) Standing waves on each section of the square ring resonator 
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