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ABSTRACT 
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In this thesis, we show that when we applied the Newton’s method on the exponential 

function, 
)()()( zQezPzF  , where )(zP  and )(zQ are polynomials in the complex 

plane, the attraction basins of roots have finite area when 3n . With the help of 

MATLAB we obtained nice fractals in order to prove the finite basins area when 3n  

and infinite basins area when 2n .   
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ÖZ 

 

 

NEWTONUN KARMAŞIK METODUYLA HAVZALAR FRAKTALI 

 

 

 

MURAD, Zainab 

Yüksek Lisans, Matematik ve Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Dumitru BALEANU 

 

Nisan 2015, 52 sayfa 

 

 

 

Bu tezde, )(zP  ve )(zQ karmaşık düzlemde polinom olduğu, 
)()()( zQezPzF   üstel 

işlevine Newton metodunu uyguladığımızda, 3n ise, köklerin atraksiyon havzası 

sonlu alana sahiptir. MATLAB yardımı ile, 3n olduğunda sonlu havza alanlarını 

kanıtlamak, ve 2n olduğunda sonsuz havza alanlarını kanıtlamak için düzgün 

fraktaller elde edilmiştir.   
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Havzalar, Üstel İşlev, Fraktal. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

      The study of functions of a complex variable has many practical use in applied 

mathematics and in various branches of science and engineering. The impetus to study 

proper the complex numbers first arose in the 16th century when algebraic solutions for 

the roots of cubic and quadratic polynomials were discovered by Italian mathematicians. 

However, it was discovered that these formulas, sometimes implies the manipulation of 

square roots of negative numbers [1, 2, 3, 4, 5].  

  

The first modern study of iteration was due to Ernst Schroder, a Gymnasium teacher in 

Germany who published two papers in Mathematische Annalen in 1870–71. Although 

his treatment is not very rigorous, he was the first to suggest the use of conjugation as a 

means to studying the dynamical behavior of an analytic function  f  near a fixed point 

0z  [6, 7, 8-12]. 

 

 Fractals represents a new field of mathematics and art. We recall that the fractal 

geometry is one of the great advances in mathematics [13]. The researchers have 

realized that the fractal geometry is an excellent tool for discovering some secrets from 

a large variety of systems and solving important problems in various branches of science 

and engineering [13,14, 15, 16,17].  

 

  Also almost all studies of fractals, are coming out from iterations of rational functions 

in the complex domain [18, 19]. Julia set of a rational function is defined as the set of 

all repelling periodic points and Fatou set is the opposite of Julia set. So, each repelling 

points belonging to Julia and all attracting fixed point of the rational function belonging 

to Fatou set [20, 21-30].  
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The Fatou Flower theorem gives an analytic description of the dynamics around a 

rationally indifferent fixed point. Thus, the degree of the exponent polynomial Q  

completely determines the number of petals at infinity [31, 32].  

 

Newton's method is known and introduced in calculation the roots of functions when 

the analytical methods failed. This method is better, if the initial supposition is close to 

the real root, iterations will converge very fast to the root. The dynamics of Newton's 

method in the complex plane, provides exciting of fractals which depend on what kind 

of functions we used [33, 34, 35]. 

 

 However, Newton's method for obtaining the solutions of the equations leads to some 

beautiful images when it is applied to complex functions, that which called a basin of 

attraction is defined to be the set of all points that converge to the same root. And the 

connected component of attraction basins which containing the root of the basin is called 

the immediate basin of attraction [36, 37]. 

 

 In this thesis we gave a review of Haruta method [31]. The main results of this thesis 

focus on the areas of the attraction basins. The basin of attraction for a rationally 

indifferent fixed point is a parabolic basin. The basin is lied in the Fatou set and the 

parabolic point lied on the border of the basin and in the Julia set. Also we depended on 

the other authors results [38, 39, 40, 41, 42]. 

 

This thesis is organized as follows: 

 

In the second chapter, we recall some fundamental mathematical concept, that will be 

used in presentation of the results, the complex dynamics and some basic definition of 

forward and backward orbits, fixed and periodic points. The theorem of Fatou Flower 

offers an explanation of the local dynamics about a rationally indifferent fixed point 

around  [31]. 
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In the third chapter, the main idea is based on Haruta’s study [31]. We focus on the 

dynamics of Newton's method on specific complex exponential function, when 3n to 

prove the finite area of attraction basins. 

 

In the fourth chapter, we simulate our methods with MATLAB, so by our fractal we 

proved finite basins area when 3n  and infinite basins area when 2n  by applied 

Newton's algorithm to complex exponential function .)()( )(zQezPzF   

 

In the fifth chapter we depict our conclusions.   

 

Finally, the MATLAB code is shown in appendices A1.  
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CHAPTER 2  

 

THE BASIC PRINCIPLES 

 

2.1 Complex Variables 

 

The real numbers have beautiful properties. But we are not able to take the square root 

of -1. Therefore, we are not able to find a root of the equation 012 x . We know that 

there is a complex number i  that is a root of the equation ,012 x  that is, 12 i  [1, 

2]. The complex numbers that includes i, can be an expression by the form iyxz  , 

where x and y are real numbers so, 1i is a complex number. We denoted x by 

)Re(z  and y by ).Im(z  The modulus (or absolute value) of z is ,22 yxz   is a real 

number which measures distance. For the purposes of describing complex numbers, it 

is referred to as the complex plane, or the z plane [2]. Using the fact that each point 

in the plane has an associated vector from the origin to that point, we can establish polar 

coordinates, r  and   for iyxz  . We have ,22 yxr   where cosrx   and 

sinry   [3]. 

 Hence, the complex number iyxz   can be written in the polar form as ,irez   and 

using the Euler's equation we obtain   sincos irz   [2]. A complex-valued 

function    iyxfzf   assigns to each z in the domain exactly one complex number

 zf . Just as z  decomposes into real and imaginary parts, each complex-valued 

function can be written by      ,,, yxivyxuzf   where u  and v  are each real valued 

functions [4]. In essence, )(zf  is a pair of real functions of two real variables that maps 

regions from its domain in the complex plane onto its range in another copy of the 

complex plane. We call these the z-plane and w-plane respectively. So, the Riemann 
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sphere is a model of the extended complex plane, the complex plane plus a point at 

infinity. We will refer to Riemann sphere as the symbol  ℂ∞ [4]. 

 

2.2 Basic Definitions 

 

Here we present some important information about the complex sets.  

 

Definition 1 [5]: The complex number is a zero (or root) of the function  zf   if it is a 

solution to the equation   0zf . 

 

Definition 2 [5]: Let 0z ℂ, r > 0 the set consisting of all points z satisfying rzz  0  

is called the open disc of radius r  central at 0z , which denoted by  

𝐷𝑟(𝑧0) = {𝑧 ∈  ℂ ∶ |𝑧 − 𝑧0| < 𝑟}. 

 

Definition 3 [5]: The complement of open disc is the closed disc, we can defined it by 

  0zDr { z ℂ :│ 0zz  │≤ r }. 

 

Definition 4 [5]: The boundary of open or close disc is the circle that form  

rC { z ℂ :│ 0zz  │= r }. 

 

Definition 5 [5]: Let set  ℂ, the point z  is said to be limit point of     if there exist 

nz such that  zz   and zzn
n




lim .  

 

Definition 6 [5]: The closures of any set   is the union of   and its limit points and 

is often denoted by  .    

 

Definition 7 [5]: The boundary of a set   is equal to its closure minus its interior and 

is often denoted by  . 
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Definition 8 [5]: A set   is said to be bounded if there exists 0M such that ,Mz   

whenever z . 

 

Definition 9 [5]: A set    is said to be compact if it is closed and bounded. 

 

Definition 10 [5]: An open set   ℂ is said to be connected if it is not possible to 

fined two disjoint non-empty open sets 1  and 2  such that 21  .  

 

2.3 Complex Derivatives and Analyticity 

 

Suppose that :f ℂ is a complex valued function, where   is an open subset         

of  ℂ  and 0z .  Then, the complex derivative of  f  at 0z  is 

                            

   
   

0

0

00
0

lim
zz

zfzf
zfz

dz

df

zz 





                                           (2.1) 

if this limit exists. We say that f  is differentiable at 0z  if it has a complex derivative at 

z0.When f is differentiable at all points of   we say that  f  is holomorphic in Ω . A 

complex-valued function  zf  is said to be analytic on an open set   if it has a 

derivative at every point of   . If  zf  is analytic onℂ, then is said to be entire [3]. 

 

2.4 Complex Dynamics 

 

In complex dynamics the aim is to know what occurs when an analytic functions 

repeated in the complex plan or the Riemann sphere [6]. In dynamics the process that is 

repeated is the application of a function. Also, to iterate a function means to evaluate 

the function over and over again, using the output of the previous application as the 

input for the next. The list of iterates around a point is denoted by the orbit of that point 

[7, 8]. If we have )(zg  is any complex function therefore, we could describe the orbit 

of z  by  zg n
is formed with repeating a function beginning at this point to grow a list 
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of numbers [9, 10]. For example the forward orbit of z of  zg 3
is the set of points in 

the sequence 

                                            ......)))((()),((),(, zgggzggzgz . 

 

Also, the backward orbit of z  is the set of points in the sequence 

 

                                                    zgggzggzgz 111111 ,,,  . 

 

The point z is a fixed point of the function  zg if   zzg   [11]. 

We can classify the fixed points according to λ, such that  λ )(zg  as  

1. if  | λ | = 0, z is super attracting, 

2. if  |λ | < 1, z  is attracting,  

3. if  |λ | > 1, z  is repelling,  

4. if  |λ | = 1, z  is neutral. 

In the same way the point z  is a periodic point for  zg  if   zzg n   [11]. 

Similarly, we can classify a periodic points according to λ, such that λ =  zg n as  

1- if  |λ | = 0, z   is super attracting, 

2- if  |λ | < 1, z  is attracting, 

3- if  |λ | > 1, z  is repelling,      

4- if  |λ | = 1, z  is neutral. 

 

2.5 Complex Polynomial  

 

A complex polynomial is a mathematical expression involving a sum of powers in 

complex variable multiplied by the complex coefficients. A complex polynomial with 

constant complex coefficients is given by  

                                                          m
k

m

m zazP 



0

,                                              (2.2)  

where the ma  are complex numbers not all zero and z  is a complex variable. In 

particular, a polynomial of degree zero is, by definition, a non-zero constant [12].  
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The function which is identically zero is often regarded as being a polynomial of degree 

–infinity. A complex polynomial of degree n  has at most n  zeros [12]. 

 

 

2.6  A Fractal 

 

       The fractal coming from the Latin “fractus” meaning “broken”. They are a never-

ending pattern. We recall that the fractals represent infinitely complex patterns that are 

self-similar across different scales. Thus, they are created by repetition of  a simple 

process czz nn 

2

1 over and over. Fractals are images of dynamic systems [13].        

Fractal geometry was mainly developed by Benoit Mandelbrot [14] during the sixties 

and seventies in order to recognize that many phenomena of nature are so irregular and 

complex therefore, they cannot be described properly by the Euclidean geometry. Many 

scientists have found that the fractal geometry is a powerful tool for uncovering secrets 

from a wide variety of systems and solving important problems in applied sciences.   

Fractal geometry is the better languages to define the nonlinear problems and have fixed 

over and over notice. Generally the studies of fractals, are coming out from iterations of 

rational functions in the complex domain [15, 16, 17].  

 

 

2.7 Rational Functions Iterations 

 

       Let T and S are complex polynomials, then the rational map is defined by                         

                                                    .
)(

)(
)(

zS

zT
zR                                                           (2.2) 

)(zR  is a rational map of a degree 𝑑 bigger than or equal 2 on the Riemann sphere, the

n th  iterates of R  are defined by 
nR which is RRRRRn  .... [18]. 

  

 The important problem in the dynamics of rational maps is to know the behavior of 

high iterates    zRRzR nn 1   [18].  
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A point z  is a fixed point of )(zR  if zzR )( . The derivative )(zR  is defined by the 

number λ )(zR  and λ is called the multiplier of R at z  [19].  We able to classify the 

fixed point of the rational map according to λ, as follows 

1. z  is attracting, if | λ | < 1, 

2. z  is repelling, if | λ | > 1,   

3. z  is neutral, if | λ | = 1,   

4. z  is a super attracting fixed point, if  |λ |  = 0. 

The orbit  010 ,...,, zzzz n  is called a cycle. We classify the cycle as (super) attracting, 

repelling and rationally indifferent or irrationally indifferent according to the type of the 

fixed point of
nR  [18]. For example the cycle is attracting if and only if   1 zR n [19]. 

For each rational function  zR  it able to conjugate  zR  with the conversion zz /1 . 

Therefore, when z  the behavior of  zR  is the same behavior of )/1(/1 zS  at 0 [20]. 

The two polynomials )(zT and )(zS  allow us to find the poles and zeros of the rational 

function, zeroes is the values for ,z  where 0)( zT  and  the pole is the value of ,z  

where .0)( zS  The critical points of a rational function  zR  are those where  zR  

vanishes [21]. 

Theorem [18]: If d > 1, a rational function of degree d  has precisely 1d  fixed points 

in ℂ∞counted with multiplicity . 

 

Corollary [25]: A rational map of positive degree d  has at most dd 2 critical points. 

A polynomial of positive degree d  has at most 1d  finite critical points. 

 

Definition 11 [24]: A family of complex analytic functions nF , that is defined on a 

domain D is called a normal family if every infinite sequence of maps from  nF  

contains a subsequence which converges uniformly on every compact subset of D . 

 

Theorem [23]: Let R  be a rational map of degree at least two. Then, the immediate 

basin of each super attracting cycle of R  contains a critical point of R . 

 

 

http://cnx.org/contents/6cc2a6b9-87af-4f20-9948-f6520e372eda@13


10 

 

2.8 Julia and Fatou Sets 

 

We recall that there is a Julia set J  for every point in the complex plane. Julia set is the 

set of points z  for which the orbit of z  under iteration of czz nn 

2

1 , remains 

bounded in the complex plane. Each Julia set has a complex parameter c [20].   

Therefore, the enumerating the first few iterations of Julia set by  

                                                      zz 0 , 

                                                      ,22

01 czczz   

                                                      cczczz  222

12 )( . 

 The Julia set is the boundary of the associated filled Julia set. However, Julia set of a 

rational function is defined as the set of all repelling periodic points and Fatou set is the 

opposite of Julia set. So, all attracting fixed point of the rational function belonging to 

Fatou set and each repelling points belonging to Julia set [20].  

 

Definition 12 [20]: The Julia set of rational function )(zR is the clouser of the repelling 

periodic points of )(zR  denoted by RJ . 

 

Definition 13 [24]: The Fatou set RF of rational functions denoted to be the set of points 

0z ℂ∞ so that  nF  is the normal family for about neighborhood of 0z . 

 

Definition 14 [26]: If the rational function is a map of a set X into itself, a subset E of 

X will be: 

1. Forward invariant if   EER  , 

2. Backward invariant if   ,1 EER 
 

3. Completely invariant if    EREER 1 . 

 

Remark [24, 28]: It is clear that RF , is open and completely invariant under ,f  and 

RJ  is closed and also completely invariant. Julia set of rational function  zR  is not 

important a bounded set but it certainly is enclosed. 
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Remark [22]: Here we introduce some properties of the Julia set RJ of the rational 

function R with degree .1d  

1. The Julia set is nonempty. 

2. The Julia set is completely invariant under R , that is z belongs to RJ , if and 

only if R(z) belongs to RJ . 

3. The Julia set RJ contains no isolated points, that is, RJ is a perfect set. 

4. If the Julia set RJ contains an interior point, then RJ must be equal to the entire 

Riemann sphere. 

5. The Julia set RJ is the closure of the repelling periodic points. 

6. Every parabolic periodic point belongs to the Julia set. 

 

Theorem [26]: The Julia set and the Fatou set are completely invariant. 

 

Theorem [26]:  The Julia set RJ of a rational function R is nonempty. 

 

Corollary [29]: If a rational map has only one fixed point which is repelling or Parabolic 

with multiplier 1, then its Julia set is connected. In other words, every component of the 

complement of the Julia set is simply connected. In particular, the Julia set of the 

Newton’s method for a non-constant polynomial is connected.  

 

Corollary [29]: If the Julia set of a rational map R is disconnected, then there exist two 

fixed points of R such that each of them is either repelling or parabolic with multiplier 

1, and they belong to different components of the Julia set.  

 

Theorem [18]: Let R be a rational map. Then JR is connected if and only if each 

component of is RF simply connected. 

 

Corollary [29]: The Julia set of the Newton method of a transcendental entire function 

is connected. 
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Remark [19]: An analytic complex map continuously divides the plane into tow  split 

subsets, first, is the stable set is called the Fatou set which denoted by ,F  and the second 

one is the Julia set which defined by J, in which the map is messy. The borders of these 

sets will create nice figures. 

 

2.9 An Attracting Petal and Repelling Petals 

 

Suppose M  is defined in a neighborhood U  of the origin. [p] is called an  attracting 

petal for M at fixed point if      0 ppM  and    00  pM n

n . A repelling petal 

[p] is an attracting petal for 
1M  which exists locally since 11 M . 

1M denotes the 

branch of the inverse of M fixing the origin [30,31].  

 

 

Figure 1 Attracting Petal [41]  

 

Also, if 0z  is a parabolic fixed point of M  which multiplier λ=1 and [p] is an attracting 

petals at 0, we define the parabolic basin (of attraction) of associated to [p] as below 

                                        pthroughnzzfCzA n

p ,,  . 
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2.10 The Leu-Fatuo Flower Theorem 

 

If M is a holomorphic map of the form  

                                      1,0,21   nczOCzzzM nn
.                                 (2.4) 

Defined in some neighborhood of the origin with 1 . Then zero is a parabolic fixed 

point and there are n  attracting petals and n  repelling petals for M at zero. Moreover, 

these petals alternate with one another [31].  

 

 

 

Figure 2 Attracting and Repelling Petal [31] 

 

Remark [31]: For simplicity of Leu-Fatuo Flowers theorem [31]. It will assume that (

c =1) when λ=1, then there exist respectively attracting and repelling direction rays 

along which orbits tend to zero and  . 

 

Definition 15 [21]: The attraction basin for an attracting fixed point 0z  of some rational 

function of degree larger than one is defined by 

  

                                           nzzRCzzA n ,00  . 
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Definition 16 [21]: Let 0z is to be the attracting fixed point, then element of  0zA  

containing 0z is called the immediate basin of attraction of 0z  which defined by 𝐴∗(𝑧0). 

 

2.11 Image and pre-image 

 

Let X and Y be two sets and T a function from x to y[32].Then the image of T is defined 

as image(T) = {b  Y : there is an a  X with T(a) = b}. 

  

So, let  X and Y be two sets and T a function from X to Y. If  C is a subset of the range Y 

then the pre-image, or inverse image, of Z under the function T is the set defined by 

                                               
1T (C)= {z  X: T(x)  Z}. 

 

Corollary [30]: The fixed point zero is the only attracting orbit completely contained 

in the closure of the union of the attracting petals. 

 

Corollary [30]: Accepting pre-images of zero, the orbit of  0z  converges to zero if 

and only if an image of 0z  lands in one of the attracting petals. It follows that 0z  is in 

the basin of attraction of zero. 
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CHAPTER 3  

 

BASIN'S AREA  

 

3.1 Newton's Method   

 

In numerical analysis, the Newton's algorithm is called iteration method to find real or 

complex roots of differentiable function. Start with an initial value, call 0z , on the 

complex plane, to get 1z  by the 0z  we have the following equation 

                                                 
 
 0

0

01
zF

zF
zz


 .                                                     (3.1) 

  Therefore, when using this new point 1z  it able to get 2z  by the same way.  

Repeating these similar steps recursively [33].The pattern is shown as 

                                             
 
 n

n

nn
zF

zF
zz


1 ,                                                       (3.2) 

such that   0
nzF . 

We will be call approximation of (n+1) by  nn zNz 1 , and defining Newton's method 

:)(zN ℂ→ ℂ by 

                                                     
 
 zF

zF
zzN nn


 .                                              (3.3) 

)(zN  is called Newton's transformation for ).(zF Therefore, the simple roots of )(zF  

are fixed points of )(zN  satisfying )(zN = .z We can determined the nature of the fix 

points by the derivative of )(zN  by  

                                                    
   

  
0

2







zF

zFzF
zN .                                         (3.4) 

Hence, a Newton sequence  nz  given by Newton's method converges to a root of  

,0)( zF  if 0z is a proper initial guess. 
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 The Newton's method will be at least quadratically convergent at a simple root and 

linearly convergent at a multiple root [34, 35]. 

 

3.2 Newton's Method Dynamics on  QPeF   

 

        Let QP,  are complexes polynomial, such that :P ℂ→ℂ of degree m , 0m , and 

:Q ℂ→ℂ of degree n  1n .When we applied the complex Newton's method on the 

exponential function
)()()( zQezPzF   we obtain  

                             
)(

)(
)(

zF

zF
zzN




)()()(

)(
)()(

)(

zPezQezP

ezP
z

zQzQ

zQ


  

                                                        
)()()(

)(

zPzQzP

zP
z


 .                                

 

We will get rational map  zN , as   :zN ℂ∞→ℂ∞. By rational map  zN  we can 

examine the resulting dynamics of exponential function )(zF  Recall that, the fixed 

point of 𝑁(𝑧) coincide with roots of F  [31]. We can determined the nature of the fix 

points by the derivative of 𝑁(𝑧) as follows  

 

1- If the fix point az  ,a is a multiple root, then the derivative of 𝑁(𝑧) is  

                                                     
2))((

)()(
)(

zF

zFzF
zN




 . 

Then, the simple root for  F is super attracting fixed point for 𝑁(𝑧). 

2- If the fix point ,az  then a  is a multiple root of F with multiplicity. The 

derivative of  zN  is given by  

                                             
m

m
zN

1
 ,  m is multiplicity of  a. 

3- If az   is a critical point of F, then 𝑁(𝑧)  has a pole at a  if and only if a  is not 

a root of F. If a  is a critical point and not a root of F, then a  will be send to 

infinity under single iteration of 𝑁(𝑧)  [31]. 
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Remark [31]: The speed of the convergence to a root depends on the multiplicity, 

therefore, there is an inverse relationship between them, and the higher multiplicity 

gives slower converge. 

 

Proposition [31]: Infinity is a parabolic fixed point, with multiplier equal to 1, for 

Newton’s method applied to ,)()( )(zQezPzF  where 𝑃and 𝑄 are complex polynomials, 

P  is not identically zero and Q is not constant. 

Proof [31]: 

Let P  is a complex polynomial of order m, ( 0m ) and Q is a complex polynomial of 

order 𝑛,  1n . 

Therefore, the Newton’s method for exponential function, 
)()()( zQezPzF   is  

                                            
 
 zF

zF
zzN




))((

)(
)(

)(




zQ

zQ

ezP

ezP
z .  

    Since, the degree of numerator of Newton’s method= 𝑚 + 𝑛, and the order for its 

denominator= 𝑚 + 𝑛 − 1. Then, we have lim
𝑧→∞

𝑁(𝑧) = ∞. Therefore,   is a fixed point 

of Newton’s method. 

To prove that   is a parabolic fix point of 𝑁(𝑧) we must determine the nature of  ∞. 

So, we will map   to zero via𝑔(𝑧) =
1

𝑧
 . The conjugate function 𝑀 given by 

                                         
)),

1
(()(
v

NgvM 
      

                                       
)

1
()

1
()

1
(

)
1

(
1

1

)
1

(

1

v
P

v
Q

v
P

v
P

v

v
N







 

                                  
))

1
()

1
()

1
((

)
1

(

))
1

()
1

()
1

((

)
1

()
1

()
1

(

1

v
P

v
Q

v
Pv

v
vP

v
P

v
Q

v
Pv

v
P

v
Q

v
P










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))

1
()

1
()

1
((

)
1

()
1

()
1

()
1

(

1

v
P

v
Q

v
Pv

v
vP

v
P

v
Q

v
P







 

 

                                       

.

)
1

()
1

()
1

()
1

(

)
1

()
1

()
1

(

v
vP

v
P

v
Q

v
P

v
P

v
Qv

v
Pv







 

Let us consider         

                                    

.

)
1

()
1

()
1

()
1

(

)
1

(

)(

v
vP

v
P

v
Q

v
P

v
vP

vH





 

 

Then, we have 𝑀(𝑣) = 𝑣 + 𝑣 𝐻(𝑣). Since,𝑣 = 0,  then,  𝐻(𝑣) = 0.  

So since, 𝑀′(𝑣) = 1 + 𝐻(𝑣) + 𝑣 𝐻′(𝑣), then 𝑀′(0) = 1. Therefore, infinity is the 

parabolic fixed point of 𝑁(𝑧). 

 

Leau–Fatou Flower application gives the information of local dynamics for 𝑁(𝑧) near 

infinity through the study of 𝑀 near the origin.The series expansion of M  is 

 

                                                   21   nn OvcvvvM ,      

where 
n

c
1

 . 

Therefore, the degree of the exponent polynomial Q  completely determines the number 

of petals at .  By the Fatou Flower theorem, the following propositions is proved [31].  

 

Proposition [31]: There is just n  repelling petals, n  attracting for the neutral fixed 

point infinity if Q  has degree of n .  
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Figure 3 The 𝑣- Plane [31] 

 

3.3 Basin's 

 

       Newton's approach to obtain the solutions of the equations leads to some nice 

images when it's applied to complex functions. That which called a basin of attraction 

is defined to be the set of all points that converge to the same root  *  when  n  

and we denoted by  *A , here  *  is the root of 0)( zF . Since  *  is the super- 

attracting fixed point of the Newton's method then the  *A  is an open region including

 * . By coloring each basin of attraction a different color, the boundaries between the 

basins are defined Julia set, in other words we can define Julia set by 

                                                        **

1 ... nF AAJ   .  

These boundary points are points that do not converge in any of Newton's method and 

form fractal image [36, 37]. The connected component of attraction basins  *A  which 

containing  *  of the basin is called the immediate basin of  *  [35, 36]. 
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Figure 4 Basin Fractal of Zero for n=4 [31] 

 

 

3.4 Basin's Area 

 

Theorem [31]: If Newton’s method is applied to QPeF  , where P and Q are complex 

valued polynomials, P is not identically zero and Q  is non-constant with degree of Q  

≥ 3, then the area of the attractive basin of a root of F  has finite area. 

 

Proof [31]: 

 There are more steps for prove the theorem, we will explain it step by step. 

 

 

Step 1. Basin Tail at ∞ Has Finite Area 

 

Because the infinity is a parabolic fixed point, therefore we have n attracting petals and 

n repelling petals at infinity when 𝑛 bigger than or equal 3, and that petals being 

consistently spaced. The attracting petals define parabolic basins of attraction for 

infinity. Also, the union for a basin of infinitywith Julia set of each roots basins has 

finite area. The tails of roots of the basin continue until infinity so these should lies 

between two attracting petals for infinity [31]. 
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 Then, these tails have finite area, by constructing attracting petals. Note that the petals 

are pairwise disjoint, and that each of them sub tend an angle n/2 at ∞. So, the total  

angle subtend at ∞ by all petals is 2 . The line of symmetry of a petal is the ray 

.,...,2,1,/ nknkk   and is called the axis of the petal [31]. 

 

 If keven, then the axis is an attracting ray and k odd determines a repelling ray. Every 

repelling ray of petals is a repelling direction for infinity, also every repelling axis ray 

to infinity lies within a basin tail. Since axis rays differ only by rotation, we may 

consider a tail of the which continue until infinityalong of a positive x- axis. We need 

to find a curve  𝛾 that lies inside the attractive basin of infinity, and hence bounds the 

basin tail from above for values of  𝑡  near infinity [31]. 

 

 In Figure 4 the lines closer to the real axis represent the boundary of the basin tail, 

which is bounded above by  and below by − . Because, an attracting petal must 

located in the immediate basin for infinity. Since, if   located in, or denotes the 

boundary of a petal near infinity therefore the orbits of points on   it coming until 

infinity under iterations. The symmetric argument illustrates this −  bounds a basin tail 

from below. Hence the tail of the basin is locate in the bounded area, it has finite area 

[31]. 

 

 

 

 

Figure 5 Basin Tail Bounded Above by   and Below by –  [31] 
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Figure 6 The z -Plane [31] 

 

Step 2. Construction of an Attracting Petal at   

 

The function of Newton’s algorithm )(zN acts on the z-plane. When send infinity to zero 

by   zzg /1  in order to study the nature of the fixed point at ∞, we will be work with 

M and the attracting and repelling petals from the Fatou Flower Theorem on the v-plane 

[31]. 

)(vM  is moving to the w-plane where  G  by semi-conjugacy  
nv

vw
1

  which 

send zero back to ∞. Note that the corresponding transformation in the w- plane is 

 

𝜔 → 𝐺(𝜔) = 𝜋𝜊𝑀𝜊 𝜋−1(𝜔), 

where  
n

1

1 1



 
. 

Conjugate )(zN by  
z

zg
1

 to M from   to near zero as before.  

Then we have  

                                           32

1

1   nnn vOvccvvvM , 
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where 
n

c
1

  and 
21

1

n

n
c


 . 

 

Figure 7 Transformation Diagram [31] 

 

With the semi-conjugation and by choosing the branch of the inverse associated with 

the  G , attracting direction 
n


, we obtain [31]: 

 

                       
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n
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nnn
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                             































 n

n

OncncG

3

1

1

1

1 1
1 



 , 

 

                              

















 n

n

OncncG

3

1

1

1

1 1




 , 

 

                               

















n

n

OncncG

3

11

1




 . 

 

Since  
n

c
1

   and 
21

1

n

n
c


  we have : 

                                       




















n

n

O
n

n
n

n
nG

3

12

111




 , 

                                        termlower
n

n
G

n





1

11
1



 , 

                                       termlowerG
n


1

1




 , 

where 
n

n 1
 . 
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Step 3. An Open Wedge-Shaped Region Construct in the w - plane 

 

In fact, near   iteration of G is effectively the translation via one to the left given any 

small number   ,0 , which it will be convenient to write as 

,0sin  we can choose a radius  𝑟0  > 0 for |𝜔| >  𝑟0 

such that  

                                                          sin1  G  

and                                                                                        

Ω = {𝜔 ∈ ℂ|ℰ < arg (ω + Α) }, 
 

     0,G . 

Taking an appropriate branch of the inverse map,   1  gets a lone attracting petal 

for 0. The lasting n – 1 branches get the rest of the attracting petals. The repelling petals 

are constructed in the similar way but by the change of variable 
nc

zn 1
 . 

 

 

 

 

 

Figure 8 G(w) [31] 

 

It able to select 
RA big sufficient for satisfy 0r . Also, the closure of 

 maps 

in itself under G. To increase the wedge size by decreasing the angle  , we have to shift 

  to the left since .0tan/   forA  It can be give the estimates for the minimum 

value of A, with 0 . 
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The closure of maps in itself. Therefore, symmetry of with the real line allows us, 

dose not loss of generality, for another arguments in the upper half plane. 

 Not that d = sin , and G( ) lies in 
  if 

 

                                        
n

n
where

n

1
,

2

sin
1


 






.  

Note that 

n

1




is largest when  is smallest. Writing  ire , the minimum value  

of rrei   occurs for .sinAr   Thus, we have 

 nn A
11

sin






 . 

Set 

                                                      

 nA
1

sin

sin




  , 

then, we have 

                                                          
  1
sin




n

n

A



. 

From, 









 



sin
,

sin
max 0

1

r
A

n

n

, then 0r  produces a wedge  such that images of 

points in   under G remain in  . Let g0  . Then  semi-conjugates )(zN and G. 

Bringing   for z-plane with the appropriate branch of 
1  producing a single attracting 

petal at infinity with attracting direction n/ . 

 

 

Step 4. Modified Bigger Petal 

 

To find a petal at ∞ which in the end limits the area of an attracting basin tail. In so far, 

it have construct the region   that is image under below a branch for 
1 , got a single 

attracting petal at infinity on z-plane. 
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It able to try use horizontal lines of denoting a boundary of   in the right half plane 

[31]. Under a branch of 
1 , a parabolic curve is sent a curve of degree 2

1
n

t


 near infinity 

on z-plane. This approach yields finite area for 6n , but says nothing about the cases 

where n <6. Hence, it can be construct a modification of the wedge   denoted ̂ , that 

is boundary close infinity is denoted with some curve  [31]. 

 

 

 

Figure 9 The ̂  Modified [31] 

 

We will require   to be the image of another curve   that lie at z-plane where 

dt
t




0

  for some 00 t . 

 In the end, the necessary is that ̂  satisfy    ˆˆG  standard calculus shows that the 

area under the curve  

                                                   









 nn t

b

t

a
itt

1
  

is bounded for 3n and    ,0,ba  when t   is big enough and positive.  

Now define,   0Re,ImImˆ   , where  


Remax0


  and 

is the curve  at planew  satisfy the following four argument : 

i.   is the image of  under .  

ii. Points on map above the curve  under G. 

iii.   Interests a boundary for Ω. 

iv. Points map above both  and  under G. 
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To limit a precise expression for the curve  , apply   nzzP   to  , where 3n  and 

Rba, , to obtain 

                                                        









t

b
aintt nn

 . 

Re-parameterizing by set ntx  results in 

nt

nb
nay

1
 , therefore, we will let  

                                                      


















nt

k
Kitt

1
 

with naK  and nbk   to satisfy  condition (i). Note that   is asymptotic to Ky  . 

 

The region ̂  will map inside of itself under G as long as  satisfies conditions (ii), 

(iii), (iv) above. 

 

 

 

Figure 10 Points on   Map Above   [31] 

 

 First we will show, as in the Figure 10, the points at   are sent to points above   with 

                                               ...1
1


n

G




  . 

Denote the image of    under G  by 
~

. It follows that [31] 
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k
Kitt   . 

We require that 

                                      Im  )(t


  >  Im   ))(Re( t


.                                            (3.5) 

 

Substituting in the real and imaginary parts of 
~

from above it gives [31] 
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                   (3.6) 

Denote the left side of the inequality by  L.  Since kLt n
t 

1

lim   and [31] 
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nn nt
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k
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1
1

1
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

+....    . 

Define the right side of the inequality by R  and let nkBR

1

 , where 
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Since 

                                                         ,1lim  Btt  

and 

                                                        ,1
1

lim 2 









t
Btt  

we have    

                                                       
2

11

tt
B    . 

Thus, we conclude [31] 

                                                   

















 2

1
1

11

1

nnn t

O

nt

k

t

k
R .  

Inequality (3.6) can be written by as  

 

                                                  
 1

11
1

11

nnnn nt

k

t

k

nt

k

t

k 
 , 

where
n

n 1
 ,  naK  and  nbk  . 

It’s clear that this expression holds if Kk  , or equivalently if .
1

n

n

a

b 
  Therefore, 

 provides a suitable boundary for ̂  in that, for sufficiently large t  and  appropriate  

choice of a and b, condition (ii) satisfied [31]. 

 

More precisely, we may choose a number 1  and assume that Kk )( . Then there 

exists the number T0dependingonly on P  and Q  like that (3.6) and subsequently (ii) 

are satisfied. For the remainder of the proof, we should work with these fixed values for 

k and T0. 

      We are now prepared to show condition (iii), that Γ and the boundary of Ω intersect 

for t  > 0. Seethe Figure 9. The approach is to find the point 0t > 0 at which  0t and 

the slope of the line defining δΩ  are equal [31].  
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If we determine that the curve lies above Ω at 0t   i.e..,  

 

                                                    00 Imtan tAt   .                                         (3.7) 

 

Hence,  t located below Ω for big values of t . 

Therefore, fix 0  and subsequently A . Not k > 0, K > 0 where   locate inside the 

upper half plane. Whenever, the slope of a line is tan  so the derivative of the curve 

will be [31] 

                                                           
1

1

00




 nt
n

k
t .  

By set these equal and solving for t0 yields  
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It remain to demonstrate that  
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or equivalently 
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 < K .                  (3.8)   

Remember that 
  1
sin




n
A




 and  

n

n 1
  are fixed via the polynomial Q and our 

choice of  . Therefore, for naK   and nbk   the value for  n  is predetermined, but 

the choice of a and b still open. Therefore, in equation (3.8) it replace all fixed 

expressions denotes by constant 1v and 2v  and  k by K)( with resulting in [31] 
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which holds for K  sufficiently large.  

Hence, (3.9) and in turn (3.7), holds, consequently satisfying condition (iii). 

To show condition (iv), suppose t1 and also t2 be the values of which Γ intersects the 

original wedge  Ω  with 

210 ttT   

also                                                    

                                                             212  tt  

denote the boundary  of ̂  to  be  

 

                                                    









,,

,,
ˆ

2

2

tt

tt
 

since               

                                                          2ReRe 0  tGt  . 

After that 2tt   implies 0Tt  . Therefore, for large enough values for K, the condition 

(iv) satisfy [31]. 
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CHAPTER 4 

 

BASINS FRACTAL 

 

In this chapter, we will use the functions that shape 
)()()( zQezPzF  (which Haruta [31] 

used it in his studies) to generate fractal on z-plane with different value of (n = 1, 2,..., 

14) in some examples to check up the basins area and showing of our results. We 

simulate our methods with MATLAB. So, we used │ )(zN k
│< 0.001 and 50k , 

which k is the number of iteration of  the Newton's method [31, 38-42].  

 

1.4 Our Results 

 

Part I:  

 When 2,1n  which means 3n  we will get infinite area of basins (see Example1 

and Example 2). 

 

Example 1.                                                 

When 1n , the exponential function be
zzezF )( . Therefore, the complex Newton’s 

method of
zzezF )( is  

                                           
)(

)(



z

z

ze

ze
zzN

z

z
z




1
. 

When 0z , we have 𝑁(0) = 0.  Since,  𝑁(0) = 0, then zero is a simple root of F . 

To determine the nature of zero by the derivative of )(zN as follows  

                                             
2

'

)1(

1
1)(

z
zN


  

For 0z ,  0)0(' N . Since, ,0)0(' N then, zero is super attracting fixed point of 

)(zN . 
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Also, since, ,)(lim 


zN
z

 therefore,   is a fixed point of )(zN . 

For checking the nature of  , it is  needed to conjugate )(zN by  
z

zg
1

  to M from 

infinity to zero as   

                                         
v

vv

v
NgvM






1

)1(
))

1
(()( .  

Let  
v

v
vH




1
)( , then, )()( vvHvvM  .  The series expansion of M is given by  

                                                   
2

)( vvvM  , 

                                                  vvM 21)(  . 

When v = 0, 1)0( M , therefore, we have   is a parabolic fixed point of )(zN . 

),0( z . ),0[   is a repelling direction for   and ]0,(  is an attraction direction for 

 . Since 1)deg( Q , there is one attracting and one repelling petal of )(zN  at  . The 

basin of attraction has infinite area, and the attracting basin lies in the region of the 

origin of Julia set. The attracting petals are not symmetrical about x-axis and y-axis 

since n  is odd.  

 

 

Figure 11 Basins Fractal of 
ZzezF )( for 1n  
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We can change )(zP  such as to )1( 2 z  and )1( 4 z  

 

Figure 12 Basins Fractal of 
ZezzF )1()( 2   for 1n  

 We Have Two Roots 1  

 

 

Figure 13Basins Fractal of 
ZezzF )1()( 4  for 1n   

We Have Four Roots 1  , i  
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Example 2. 

 Since, 2)deg( Q  then basins area is infinite, so, when 2n , the exponential function 

it will be by this shape
2

)( zzezF  . Therefore, the complex Newton’s method of

2

)( zzezF  is 
)(

)(
2

2




z

z

ze

ze
zzN

221 z

z
z


 .     

When 0z , 0)0( N .  Then, zero is a simple root of .F   To determine the nature of 

zero by the derivative of 𝑁(𝑧) as follows
22

2

)21(

21
1)(

z

z
zN




 , when 0z , 

.0)0( N  Since, 0)0( N .  Then, zero is super attracting fixed point of )(zN . Also, 

since, ,)(lim 


zN
z

 therefore,   is a fixed point of )(zN . For checking the nature of 

  , it is needed to conjugate )(zN by  
z

zg
1

  to M  from infinity to zero as  before. 

Then, we have
3

2

1
)( vvvM  . When v = 0, 1)(  vM , then   is a parabolic fixed 

point of ).(zN  

 

 

    Figure 14 Basins Fractal of 
2

)( zzezF  for 2n  

There are two attracting and two repelling petals of )(zN  at  . Different color denote 

to different iterative number. The attracting petals are symmetrical about y-axis. 
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 Also we can change )(zP  such as to )1( 2 z  and )16( 4 z  

 

     Figure 15 Basins Fractal of 
2

)1()( 2 zezzF   for 2n   

We Have Two Roots of  1  

 

     Figure 16 Basins Fractal of 
2

)16()( 4 zezzF  for 2n   

                                             We Have Four Roots )1( i  , )1( i  
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Iterative 

number 

Value of RGB color 

R G B 

1 0 0 0  

2 0.5625 0 0  

3 0.6250 0 0  

4 0.6340 0 0  

5 0.7540 0 0  

. . . . . 

. . . . . 

10 1.000 0.1143 0  

11 1.0000 0.1250 0  

12 1.0000 0.1875 0  

13 1.0000 0.2123 0  

. . . . . 

. . . . . 

. . . . . 

16 1.0000 0.4375 0  

17 1.0000 0.5210 0  

18 1.0000 0.5839 0  

. . . . . 

. . . . . 

. . . . . 

40 1.0000 0.2410 1.000  

. . . . . 

. . . . . 

62 0 0 0.6875  

63 0 0 0.6250  

64 0 0 0.5625  

 

Table 1 Color Palette’s Descriptions Infinite Basins Area 
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Part II: 

 When 3n  we will get finite area of basins (see Example 3, Example 4, Example 5, 

Example 6 and Example 7). 

 

Example 3. 

When 3n , the exponential function it is .)(
3zzezF  Therefore, the complex 

Newton’s method of
3

)( zzezF  gives
)(

)(
3

3




z

z

ze

ze
zzN

331 z

z
z


 . 

When 0z , we have 0)0( N . Since, 0)0( N , then zero is a simple root of F . To 

determine the nature of zero by the derivative of )(zN  as follows 

                                                   
23

3
'

)31(

61
1)(

z

z
zN




 .   

When 0z , we have 0)0(' N . Since, 0)0(' N , then, zero is super attracting fixed 

point of )(zN . Since, 


)(lim zN
z

, then,   is a fixed point of  )(zN . Conjugate )(zN

, by  
z

zg
1

  to M  from infinity to zero as 
4

3

1
)( vvvM  . 

When v = 0, ,1)(  vM  since, ,1)(  vM  then,   is a parabolic fixed point of )(zN . 

 

                                Figure 17 Basins Fractal of 
3

)( zzezF   for 3n  
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Also we can change )(zP such as to )2)(4)(14( 22  zzzz and )1( 3 z  

 

 

      Figure 18 Basins Fractal of 
3

)2)(4)(14()( 22 zezzzzzF    

for 3n   We Have Five Roots, 2+i, 2-i, 2i, -2i , +2 

 

   Figure 19 Basins Fractal of 
3

)1()( 3 zezzF   for 3n   

We Have Three Roots ii
2

3

2

1
,

2

3

2

1
,1   
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Example 4. 

 When 4n , the exponential function is .)(
4zzezF   Therefore, the complex 

Newton’s method of
4

)( zzezF  is  

                                        
)(

)(
4

4




z

z

ze

ze
zzN

441 z

z
z


 . 

When 0z , we have 0)0( N . Then, zero is a simple root of F . To determine the 

nature of zero by the derivative of )(zN  as follows   

                                                
24

4
'

)41(

121
1)(

z

z
zN




 . 

When 0z , we have 0)0( N . 

 Then, zero is super attracting fixed point of )(zN .  

Since, 


)(lim zN
z

, the series expansion of M  is 
5

4

1
)( vvvM  .                                                 

  When v = 0, we have .1)(  vM  Therefore,    is a parabolic fixed point of )(zN .  

 

Figure 20 Basins Fractal of 
4

)( zzezF  for 4n  

There are four attracting and four repelling petals for )(zN  at  . Since, n  is even the 

attracting petals are symmetrical about x-axis and y-axis. The basin  lies in the Fatou set 

and the parabolic point lies on the boundary of the basin and in the Julia set. 
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Also we can change )(zP  such as to )1( 4 z  and )16)(1( 44  zz  

 

 

     Figure 21 Basins Fractal of 
4

)1()( 4 zezzF   for 4n  

       We Have Four  Roots, 1  , i  

 

 

        Figure 22 Basins Fractal of 
4

)16)(1()( 44 zezzzF   

       for 4n ,We Have Eight  Roots 1 , i , i2  , 2  
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Example 5. 

When 5n , the exponential function is
5

)( zzezF  . Therefore, the complex Newton’s 

method of
5

)( zzezF  is  

                                             
)(

)(
5

5




z

z

ze

ze
zzN

551 z

z
z


 . 

Zero is a simple root of F .  So, the derivative of )(zN has the form 

                                                       
25

5
'

)51(

201
1)(

z

z
zN




 .   

Then zero is super attracting fixed point of )(zN . Since  


)(lim zN
z

, so,  is a fixed 

point of )(zN . The series expansion of M  is 
6

5

1
)( vvvM  .                                                   

When v = 0, 1)0( M .Then,   is a parabolic fixed point of )(zN .  

),0( z . ),0[   is a repelling direction for   . Also, ]0,(  is an attraction direction 

for  . 

 

Figure 23 Basins Fractal of 
5

)( zzezF   for 5n  

 

Since, n =5, then, there are 5 attracting and 5 repelling petal. Julia set is boundary of the 

basin. Since n  is odd then, the attracting petals not symmetrical on any axis. Basin tails 

of roots extend to   and it most lies between pairs of attracting petals for  .    
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Also we can change )(zP  such as to )5( z  and )2( z  

              

Figure 24 Basins Fractal of 
5

)5()( zezzF  for 5n  

 We Have One Root 5 

  

  Figure 25 Basins Fractal of 
5

)2()( zezzF  for 5n  

                                                            We Have One Root  
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Example 6. 

 When 6n , the exponential function is .)(
6zzezF  Therefore, the complex 

Newton’s method of
6

)( zzezF  is 

                                              
)(

)(
6

6




z

z

ze

ze
zzN

661 z

z
z


 . 

Zero is a simple root of F . So, the derivative of )(zNF is 

                                                     
26

6
'

)61(

301
1)(

z

z
zN




 . 

Then, zero is super attracting fixed point of )(zN . Since ,)(lim 


zN
z

 then   is a 

parabolic fixed point of )(zN .The series expansion of M is 
7

6

1
)( vvvM  . 

So, the derivative of )(vM  is 
6

6

7
1)( vvM  . 

When v = 0, 1)0( M , then,   is a parabolic fixed point of )(zN . 

 

         Figure 26 Basins Fractal of 
6

)( zzezF   for 6n  

Since deg( Q )= 6, then there are six  attracting and six  repelling petals for )(zN  at  . 

The basin is lied in Fatu set and the parabolic point lies on the boundary of the basin 

and in the Julia set. The basin has finite area. 
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Also we can change )(zP  such as to )1( 3 z  and )9)(1( 33  zz  

 

   Figure 27 Basins Fractal of 
6

)1()( 3 zezzF   for 6n  

         We Have Three Roots ii
2

3

2

1
,

2

3

2

1
,1   

 

Figure 28 Basins Fractal of
6

)9)(1()( 33 zezzzF   for 6n   

 We Have Five Roots 3,
2

3

2

1
,

2

3

2

1
,1  ii  
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Example 7.  Some finite basins area fractals of different n . 

 

 

   

         Figure 29 Basins Fractal of 
7

)( zzezF  for 7n  

      

          Figure 30  Basins Fractal of
8

)( zzezF  for 8n  
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            Figure 31 Basins Fractal of 
9

)( zzezF  for 9n  

 

 

           Figure 32 Basins Fractal of 
10

)( zzezF  for 10n  
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             Figure 33 Basins Fractal of
11

)( zzezF  for 11n  

 

      

             Figure 34 Basins Fractal of
12

)( zzezF   for 12n  
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            Figure 35 Basins Fractal of 
13

)( zzezF  for 13n  

 

 

             Figure 36 Basins Fractal of 
14

)( zzezF  for 14n  
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Table 2 Color Palette’s Descriptions Finite Basins Area 

 

 

Iterative 

Number 

Value of RGB Color 

R G B 

1 1 0 0  

2 1 0.09375 0  

3 1 0.1875 0  

4 1 0.28125 0  

5 1 0.375 0  

. . . . . 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

20 0.21875 1 0  

21 0.125 1 0  

29 0 1 0.625  

30 0 1 0.71875  

. . . . . 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

57 1 0 0.75  

58 1 0 0.65625  

59 1 0 0.5625  

. . . . . 

. . . . . 

. . . . . 

64 0 0 0  
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CHAPTER 4 

 

CONCLUSION 

 

 

In this thesis, we gave a review of Haruta method and we used his results to determine 

the type of basins area when 3n by applied the complex Newton method on 

exponential functions 
)()()( zQezPzF  , where zzP )(  and 

nzzQ )( . We simulate 

our methods with MATLAB, and we get the same results of [31, 38- 42]. Therefore, 

when n =1, 2, we get infinite area of the complex Newton’s basin, and  when 3n  we 

obtain finite area of complex Newton’s basin. Also, when we change zzP )(  in the 

complex exponential function to another polynomial we get also the same results when 

3n , and 2n , that means the area of the basin depend on the deg( Q ) not on the 

)(zP . The basin lie in Julia set for all n . The basins for each root in Julia set is finite 

area of 3n  and infinite area of 2n . If n  is even means the attracting petals of the 

fixed point zero and infinity are symmetrical about x-axis and y-axis. We also added 

Color Palette’s Descriptions table of the finite and infinite area.



 

R1 

 

 

 

REFERENCES 

 

 

 

 

1. Mathews J. H., Howell R. W., (1997), "Complex Analysis for Mathematics 

and Engineering”, Times Mirror Higher Education Group, New York, pp. 1-

455. 

 

 

2. Ahlfors L. V., (1996),"Complex Analysis", McGraw-Hill Book Company, 

USA, pp. 1-312. 

 

 

3. Mathews J. H., Howell R. W., (2012), "Complex Analysis", John & Bartelt 

Learning, USA, pp. 1-208. 

 

 

4. Blanchard P., (1984), "Complex Analytic Dynamics on the Riemann Sphere", 

Bulletin of the American Mathematicae Society, vol. 11, no.1,  pp. 85-140. 

 

 

5. Stein E., Shakarchi R., (2008), "Complex Analysis", Princeton University, 

USA, pp. 1-80. 

 

 

6. Khrennikov A., (2001), "Small Denominators in Complex P-Adic Dynamics", 

Indignations Mathematical, vol. 12, no.2, pp. 177–189. 

 

 

7. Scheinerman E. R., (1996), "Invitation to Dynamical Systems", Printice-Hall, 

USA, pp. 1-267. 

 

 

8. Khrennikov A., Nilsson M. (2001), "On the Number of Cycles of P-Adic 

Dynamical Systems", Journal of Number Theory, vol. 90, pp. 255-264. 

 

 

9. Alexander D. A., Iavernaro F., Rosa A., (2013),"A History of Complex 

Dynamics in One Variable", American Mathematical Society, vol. 50, no. 3, 

pp. 503–511. 

 

 



 

R2 

 

10. Alexander D., Devaney R. L., (2013), “A Century of Complex Dynamics”, 

Simons Foundation, USA, pp. 1-28. 

 

 

11. Devaney R. L., (2005), “A First Course in Chaotic Dynamical Systems”, 

Perseus Books, USA, pp. 1-293. 

 

 

12. Degot J., (2014), "Sendov Conjecture for High Degree Polynomıals", 

American Mathematical Society, vol. 142, no. 4, pp.1337–1349. 

 

 

13. Mandelbrot B. B., (1984), "The Fractal Geometry of Nature", The American 

Mathematical Monthly, vol. 91, no. 9, pp. 594-598.  

 

 

14. Mandelbrot B. B., (1989), "Fractal Geometry: What Is It , and What Does It 

Do?", Proceedings of the Royal Society of London, vol. 423, pp. 2-16. 

 

 

15. Falconer K., (1991), "Fractal Geometry-Mathematical", Courier Interna-

tional, France, pp. 3-277. 

 

 

16. Barnsley M. F., Devaney R. L., Benoit B. M., Pietgen H. O., Saupe D., Voss 

R. F., (1988), “The Science of Fractal  Images”, Springer-Verlag, USA, pp. 

1-20. 

 

 

17. Yang G., (2002), "Some Geometric Properties of Julia Sets and filled-in Julia 

Sets of Polynomials”, Complex Variables, vol. 47, no. 5, pp. 383-391. 

 

 

18. Beardon A. F., (1991), "Iteration of Rational Functions", Complex Analytic 

Dynamical System, Springer – Verlag, USA, pp. 1-272. 

 

19. Arteaga C., (2003), "Centralizers of Rational Functions", Complex Variables, 

vol. 48, no. 1, pp. 63–68. 

 

 

20. Yang W., (2010), “Symmetries of the Julia Sets of Newton’s Method for 

Multiple Root”, Applied Mathematics and Computation, vol. 217, pp. 2490-

2494. 

 

 



 

R3 

 

21. Gutierrez J. M., Luis J. H., Granes M. M., Rodriguez M. T., (2014), 
"Influence of the Multiplicity of the Roots on the Basins of Attraction of 

Newton’s Method", Numerical Algorithms, vol. 66, pp. 431-455. 

 

 

22. Devaney R. L., (1989), “An Introduction to Chaotic Dynamical Systems”, 

Addison-Wesley, USA, Puplicating Company, pp. 1-181. 

 

 

23. Devaney R. L., (1994), “Complex Dynamical Systems”, The Mathematics 

Behind the Mandelbrot and Julia Sets, Mathematical Society, USA, pp. 1-150. 

 

 

24. Wang Y., (2001), "Bounded Domains of the Fatou Set of an Entire Function", 

Israel Journal of Mathematics, vol. 121, pp. 55-60. 

 

 

25. Przytycki F., (1989), “Remarks on the Simple Connectedness of Basins of 

Sinks for Iterations of Rational Maps”, Dynamical Systems and Ergodic 

Theory, vol. 23, pp. 229–235. 

 

 

26. Peherstorfer F., Stroh C., (2001), "Connectedness of Julia Sets of Rational 

Functions", Computational Methods and Function Theory, vol. 1, no. 1, pp. 

61–79. 

 

 

27. Roesch P., (2008), "On Local Connectivity for the Julia Set of Rational Maps: 

Newton’s Famous Example", Annals of Mathematics, vol. 168, pp. 127–174. 

 

 

28. Sun Y., Yang C., (2001), “On the Connectivity of the Julia Set of a Finitely 

Generated Rational Functions" American Mathematical Society, vol. 130, 

no. 1, pp.49–52. 

 

29. Shishikura M., (2009), “The Connectivity of the Julia Set and Fixed Point”, 

Chemical Rubber Company, USA, pp. 1-276. 

 

 

30. Milnor J., (1990), “Dynamics in One Complex Variable”, Stony Brook, Third 

edition, USA, pp. 1-130. 

 

 

31. Haruta M. E., (1999), “Newton's Method on the Complex Exponential 

Function”, Transactıons of the American Mathematical Society, vol. 351, no. 

6, pp. 2499-2513. 

 



 

R4 

 

 

32. Bakir G. H., Tsuda K.,Zien A., (2004), “Learning to Find Graph Pre-

Images”, Springer , vol. 3175, pp. 253-261. 

 

 

33. Decker D. W., Kelley C.T., (1980), “Newton's Method at Singular Points. I 

*”, Siam Journal on Numerical Analysis, vol. 17, no. 1, pp. 66-70. 

 

 

34. Cilingir F.¸ (2007), "Mystery of the Rational Iteration Arising from Relaxed 

Newton’s Method", Chaos Solutions and Fractals, vol. 32, pp. 471–479. 

 

 

35. Soram R., Roy S., Singh S. R., Khomdram M., Yaikhom S., 

Takhellambam S., (2013),"On the Rate of Convergence of Newton-Raphson 

Method", the International Journal of Engineering and Science, vol. 2, no. 11, 

pp. 05-12. 

 

 

36. Mayer S., Schleicherd S., (2006), “Immediate and Virtual Basins of Newton’s 

Method for Entire Functıons”, Annales de L' Institute Fourier, vol. 56, no. 2, 

pp. 325-336.  

 

 

37. Wang X. Y., Wang T. T., (2007), “Julia Sets of Generalized Newton’s 

Method”, Fractal, vol. 15, no. 4, pp. 323–336. 

 

 

38. Wang X. Y., Yu X. J. (2009), "Julia Set of the Newton Transformation for 

Solving Some Complex Exponential Equation”, Fractal, vol. 17, no. 2, pp. 197–

204.  

 

 

39.  Wang X. Y., Song W. J., Zou X. L., (2009)," Julia Set of the Newton Method 

for Solving Some Complex Exponential Equation ", International Journal 

Image Graph, vol. 9, no. 2,  pp.153–169.  

 

 

40. Xing Y. W., Yi K. L., Yuan Y. S., Jun M. S., Feng D. G., (2010), “Julia Sets 

of Newton’s Method for a Class of Complex-Exponential Function F(z) = 

P(z)eQ(z)”, Nonlinear Dynamics, vol. 62, pp. 955–966. 

 

 

41. Çilingir F., (2004), “Finiteness of the Area of Basins of Attraction of Relaxed 

Newton Method for Certain Holomorphic Functions”, International Journal of 

Bifurcation and Chaos, vol. 14, no. 12, pp. 4177–4190. 

 



 

R5 

 

 

42. Çilingir F., (2008), "Infinite Basins of Julia Sets", International Journal of 

Bifurcation and Chaos, vol. 18, no. 10, pp. 3169–3173. 

 



 A1 

APPENDICES A 

 

 

THE MATLAB CODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 A2 

APPENDICES B 

 

 

CURRICULUM VITAE 

 

 

 

PERSONAL INFORMATION 

Surname, Name: Weli Murad, Zainab 

Date and Place of Birth: 20 June 1979,  Diyala-Iraq 

Marital Status: Single 

Phone: +9647706608751, +905313111470 

Email: mcs4509@gmail.com 

 

     

 

EDUCATION 

 

Degree Institution Year of 

Graduation 

M.Sc. 
Çankaya University, Mathematics 

and Computer Science 
2015 

B.Sc. University of Mustansiriya  2002 

High School Tahreer High School 1999 

 

WORK EXPERIENCE 

 

Year Place Enrollment 

2003-2008 Diyala University Employee 

2008-peresent Kirkuk University Employee 

 

 

FOREIN LANGUAGES 

English. 

 

 

HOBBIES 

Travel, Books, Sport. 

 



 A3 

 


