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ABSTRACT 

 

SOME NEW TRENDS IN SUPERINTEGRABLE SYSTEMS 

 

ABDULLAH, Suaad Madhat 

M.Sc., Department of Mathematics and Computer Science 

Supervisor: Assist. Prof. Dr. Dumitru BALEANU 

                           Co. Supervisor: Assist. Prof. Dr. Ozlem  DEFTERLI 

 

December 2015, 55 pages 

 

 

The Hamiltonian integrability in classical mechanics and the explicit metrics for a 

class of  two-dimensional cubically superintegrable systems are reviewed. Firstly, the 

integrals that are quadratic in moments corresponding to the natural Lagrangian 

systems are discussed with a special view focus to the two-dimensional case. The 

classical free Lagrangian admitting a constant of motion, in one and two dimensional 

space, was generalized by using the fractional Caputo derivative. The fractional 

Killing vectors and Killing-Yano tensors are presented in connection with the hidden 

symmetries of curved spaces. The Dunkl-Coulomb system in the plane was 

considered. The model that was defined in terms of the Dunkl Laplacian, involves 

reflection operators, with a      potential. The system is shown to be maximally 

superintegrable and exactly solvable.  

 

Keywords: Superintegrable systems, Hamiltonian systems, natural Lagrangian 

system, first integral, Killing vector, Killing tensors, Killing-Yano tensors, conformal 

Killing-Yano tensors, fractional Killing-Yano tensors. 

 

 

 



viii 

 

ÖZ 

 

 

Süperintegrallenebilir Sistemlerde Bazı Yeni Akımlar 

 

ABDULLAH, Suaad Madhat 

Yüksek Lisans, Matematik-Bilgisayar Anabili Dalı  

Tez Yöneticisi: Yrd. Doç. Dr. Dumitru BALEANU 

                     Tez Yöneticisi Yardimcisi: Yrd. Doç. Dr. Özlem  DEFTERLI 

 

December 2015, 55 pages 

 

 

Klasik mekanikteki Hamilton integrallenebilme ve iki boyutlu kübik olarak 

süperintegrsllenebilir sistemler sınıfı için belirgin metrikler sunulmuştur. İlk olarak, 

doğal Lagrangian sistemlerine ilişkin momentlerine göre ikinci dereceden olan 

integraller iki boyuta özel bir bakışla tartışıldı. Bir ve iki boyutlu uzayda bir hareket 

sabitine izin veren serbest Lagrangian kesirli hesaplamanın Caputo türevi 

kullanılarak genellestirildi. Kesirli  Killing vektörleri ve Killing-Yano tensörleri, 

eğimli uzayların saklı simetrileri ile bağlantılı olarak sunuldu. Dunkl-Coulomb 

sistemi düzlemde ele alinmış bulundu. Model,      potansiyeli ile yansıma 

operatörleri içeren Dunkl-Laplace operatorü açısından tanımlanmış. Sistemin 

maksimal süperintegrallenebilir ve tam çözülebilir olduğu gösterilmiştir.  

 

Anahtar Kelimeler: Süperintegrallenebilir sistemler, Hamiltonian sistemler, doğal 

Lagrangian sistemler, birinci integral, Killing vektörleri, Killing tensörleri, Killing-

Yano tensörleri, konformal Killing-Yano tensörleri, kesirli Killing-Yano tensörleri. 
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CHAPTER 1 

 

INTRODUCTION 

 

A superintegrable system is an integrable system if it has  more integrals of motion 

than the degrees of freedom, the Kepler system,  a hydrogen atom and harmonic  

oscillator are well-known examples of such a system. The importance of these 

systems is their symmetry, which may result almost integrability for the highly 

symmetric once [1-4]. We can also offer some famous models of integrable systems 

some classical mechanics models, e.g. free particle, harmonic oscillator, spinning 

top, planetary motion, and some (1 + 1)-dimensional classical field theories or partial 

differential equations, e.g. KdV, sine-Gordon, Einstein gravity, classical magnets and 

string theory.  Also in quantum mechanical there are some models, e.g. the quantum 

versions of the above classical mechanics models, and some (1 + 1)-dimensional 

quantum field theories [5]. 

The thesis is a review of some new trends in the area of superintegrable systems. The 

structure of my thesis is as follows: 

In Chapter  2  the basic definitions for integrable systems and action- angle variables 

are reviewed [6-9]. 

In Chapter 3 the explicit form of two dimensional superintegrable system of Matveev 

and Shevechin in  local coordinates, including cubic and linear integrals are given. 

That leads us to specific the parameters values that systems are in fact globally 

defined on    [10-16]. 

In Chapter 4  we reviewed the integral of motion generated by the fractional classical 

free Lagrangian in one and two dimensional space with the help of Killing-Yano 

tensor and Killing vector [17-55].   

In Chapter 5  we reviewed the Dunkl-Coulomb (DC) system in the plane which is 

derived by using the Hamiltonian system [56-67].  

Chapter 6 is dedicated to my concluding remarks. 
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CHAPTER 2 

 

INTEGRABILITY AND CLASSICAL MECHANICS 

 

In this chapter we are going to represent the integrability of ordinary differential 

equation. 

 

2.1   Basic definitions  

 

We can employ the Lagrangian mode to formulate the concept of integrability then 

the natural form of Lagrangian formulation is         ̇     when    are refer to 

generalized coordinates and          and  ̇  
   

  
 are refer to generalized 

momenta. The equations of motion are [1,2] 

 

 

  
(

  

  ̇ 
)  

  

  
                                              (2.1) 

These equation are of     order differential equation which require    initial 

conditions as              ̇      . Below we utilizedthe Hamiltonian approach 

[1,2]. 

 

2.1.1 Hamiltonian approach and integrable systems  

Let  a system possessing    degrees of freedom. The motion of this system is in a   -

dimensional phase space   is described by a trajectory, an open set of     with the 

local coordinates such as (      )  where         , (    is refer to the generalized 

momenta and    refers to the generalized positions). Consider the differentiable 

functions        , therefore           . Consider   and   being two 

dynamical variables so that the Poisson bracket of them is defined by [7] 
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                                                 {   }  {
  

   

  

   
 

  

   

  

   
}                                     (2.2) 

which fulfills  the  following properties [7] 

                                                       {   }   {   }  

                                     {  {   }}  {  {   }}  {  {   }}                            (2.3) 

Here (      ) are the coordinate functions  which satisfy the following canonical 

commutation relations, namely 

 

                                        {      }   ,   {      }   , {      }                            (2.4) 

           is the given  Hamiltonian. The dynamical variable   is determined by    

  

  
 

  

  
 {   } for any             By putting        or         the 

Hamiltonian equations are given by [7]  

 

                                 ̇      
  

   
     ̇    

  

   
                                                (2.5) 

It means that in the phase space the volume of the elements are preserved [7]. 

 

Definition 1 [7]: A function              satisfying  
  

  
   such that  

(2.5) is satisfied  is  a first integral or a constant of motion. Equivalently,  

                      if      then       denote the solutions of (2.5). 

The system (2.5) will be solvable provided that  it possess sufficiently many  

first integrals and the order reduction can be utilized.  

 

Example 1 [7]: In regard to a system with     and     , where (  is the 

degrees of freedom,   is phase space) the form of Hamiltonian  is 

 

                                                      
 

 
         .                                    (2.6) 

 Then, by equations (2.5) we get 

 

                            ̇  
  

  
  

 

 
           and     ̇      ̇   

  

  
 .                        (2.7) 

 Using the fact that the Hamiltonian is a constant of motion namely {   }     then 
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                                 (         )  
 

 
       (    )                                   (2.8) 

  is called the Hamiltonian  energy, where     (         ). So, we have [7] 

 

                                                        
 

 
                                                       (2.9) 

or 

                                             √        ,  and     ̇     .                           (2.10) 

 By integrating   
  

  
   

 

 
   following solution is obtained in  an  implicit  form  

 

                                                           ∫
  

√      –      

                                        (2.11) 

The exact solution can be obtain  if we evaluate the integral on the right hand side 

and invert the relation          to obtain       Sometimes the two steps are 

impossible to take but anyway these systems would be considered as integrable 

system [7].  

                  

Definition 2 [9]: Two functions     and    on a symplectic manifold are in 

involution if  {     }   . 

 

2.2.   The integrability with action angle variables  

 

The equations  (2.5) are usually enough to identity   constants of motion [7]. 

 

Definition 3 [7]: An integrable system means a   -dimensional phase space   

equipped with   independent functions              fulfilling  

 

                                {         }      and                                            (2.12) 

which says that the first integrals are in involution. Thus, the transformation 

    

                                                                                                    (2.13) 

is named canonical if  the Poisson bracket remains invariant  [7] 

 

                             ∑
  

   

 
   

  

   
 

  

   

  

   
 ∑

  

   

 
   

  

   
 

  

   

  

   
                   (2.14) 
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for all         . The canonical transformations preserve (2.5). For a function 

         fulfilling      
   

      
     Thus, we are able to build a canonical 

transformation,  namely [7] 

 

                                       
  

   
            

  

   
              ̂    

  

  
                       (2.15) 

  denotes a generating function [7,8]. We concentrate to seek a canonical 

transformation such that in the new variables                   namely [7] 

 

                                             
  

   
                                    (2.16) 

 

Theorem 1 [7,9]:  Assume              be   Liouville-Arnold  integrable 

system together  with      , and let  

 

                          {                                   }    

where         are constants and be an   dimensional level surface of      

integrals   . Then, if     is compact and connected then it is diffeomorphic 

to a torus 

                                                                         

and someone can offer the action-angle coordinates 

 

                                                                         

 

such that angles    are coordinates on    and actions    are first integrals 

[7,9]. The Hamiltonian equation’s (2.5) will be 

 

                             ̇     ̇                                              (2.17) 

 

So, via quadratures the integrable system are solvable [7,9]. 

 

Proof : See [7,9]. 
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The motion is given on  

 

                                   

of dimension    The     portion of the theorem implies that this surface denotes a 

torus. For any point in   there are strictly 1 torus    passing through that point. This 

implies that   admits a foliation via  -dimensional leaves. Any leaf is a torus and 

different tori coincide to different choices of           [7,9]. 

Suppose        
   

   
      thus,            can be solved for             and 

  (        )    . By differentiating with respect to    we conclude [7,9] 

 

  
   

   
 ∑

   

   
 

   

   
    

                                                                                                                               (2.18) 

  ∑
   

   
 

   

   
  ∑

   

   

   

   
 

   

   
    

 

Thus, we conclude that 

 

                            {      }  ∑    
   

   

   

   
   

   

   
 

   

   

   

   

   

   
                           (2.19) 

 

The      term vanishes since the     integrals are in involution. After some 

calculations we conclude that  [7,9] 

 

                                          ∑
   

   

   

   
(

   

   
  

   

   
)                                              (2.20) 

 and, as the matrices   
   

    
  are invertible, we conclude that 

 

                                                        
   

   
 

   

   
                                                   (2.21) 

 

 This stipulation means that ∮ ∑          for each closed contractible 

curve on     which is valid due to the theorem of Stokes. To see it recall 
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that when     we have  ∮      ∫   
 

 

 

  
       Here      denotes a 

boundary of a surface D  and we have [7,9] 

 

                                              
 

 
       

   

   
 

   

   
 .                                     (2.22) 

So, we have    closed curves which cannot be contracted  to a point, so that the 

conforming integrals do not vanish. Thus, we can define the action coordinates as 

[7,9]  

 

                                                     

 
∫ ∑    

 

  
                                                  (2.23) 

where the closed curve    is  the   th basic cycle of  the torus   . So, we conclude 

 

    {( ̃      ̃ )      ̃           ̃                   }                (2.24) 

where  ̃ are some coordinates on   . The  Stokes theorem means that the actions 

(2.23) are independent regarding the choice of    . Given  two such cycles    and  ́  

of opposite orientations [7,9] we have 

 

                  ∮ ∑             
∮ ∑        ∫ (

   

   
 

   

   
)                 ́ 

      (2.25) 

 

The actions (2.23) are the first integrals as ∮          only depending on         

and     are  the     integrals. The actions are Poisson  are commuting, namely [7,9]  

 

       {     }  ∑
   

   

   

   

   

   

   

   
 

   

   

   

   

   

   

   

   
 ∑

   

   

   

   
{     }                    (2.26) 

 

 The torus     can be equivalently introduced  by 

 

                                                       ̃          ̃                                          (2.27) 

for several constants   ̃      ̃   [7,9]. 

 

We  structure the angle coordinates    canonically conjugate to the actions using a 

generating function        ∫ ∑    
 

  
   , where    is a  chosen point on the torus. 

We recall that definition does not depend on a path joining    and   due to (2.21) 
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and Stokes’s theorem, respectively. Choosing a different    merely adds a scalar to   

but it leaves  the angles    
  

   
 invariant [7,9]. The angles are periodic coordinates 

possessing  a period    . To see it regard two paths   and      between     and     

and calculate [7,9]. 

 

                ∫ ∑           
   ∫ ∑      

    ∫ ∑      
                    

                                       
  

   
                                                 (2.28) 

 

The transformations                                            are 

canonical and invertible. So, we conclude that  [7,9] 

 

                                            {     }    {     }    {     }                         (2.29) 

  

and the dynamics is given via    ̇  {    ̃}       ̇  {    ̃}   when [7,9] 

 

                                                  ̃       (             )                              (2.30) 

We recall that       are      integrals, thus,  

 

                                 ̇   
  ̃

   
  , so   ̃   ̃    and  ̇  

  ̃

   
         

where the   
  are also     integrals. As a result we  proved (2.17). By integration  

we obtain [7,9] 

 

                                                                               (2.31) 

 

 The proof is complete.  

 

Example 2 [7]:  All Hamiltonian  system  time independent are integrable system in 

two dimensional phase  space. Hamiltonian  with  Harmonic   oscillator  is  given as 

 

                                                                    
 

 
            

We get a foliation of    by ellipses through different options of the energy 
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We  take       for a constant value of energy   .  Thus,  

 

                                                      
 

  
∮     

 

  
∬      

 

    
   

where   is the area that enclosed by    and using the Stokes theorem we get a 

moving from an integral on the boundary to an area integral inside. Thus, the new 

Hamiltonian form is 

                                               ̂     and      ̇  
  ̂

  
             

Then we have 

                                                               
 

 
(

 

 
      )    

Also the generating function is as [7] 

 

                                                 ∫      ∫ √          .                 (2.32) 

After that we choose a  sign+, namely 

 

                                     
   

  
 ∫

   

√        
         ( √

 

  
)                     (2.33) 

  thus, we get      √
 

  
              when the familiar solution are recovered as  

 

                            √                         √
  

            .               (2.34) 

 

 

 

 

 

 

 

 

 

 



10 

 

 

 

 

CHAPTER 3 

 

TWO–DIMENSIONAL CUBICALLY SUPERINTEGRABLE SYSTEMS 

 

3.1 Preliminaries: 

 

Integrable systems demand a set of independent functions such as  

                 that  they are all in involution to the Poisson bracket {     }  

on the cotangent bundle     of a   dimensional  manifold   . The superintegrable 

systems are obtained by a set of independent functions observables such as 

              ,  where     and satisfying  [1,2,10] 

 

                                 {     }   ,    to each                                           (3.1) 

The maximal value of   is       because in the system (3.1)       
   , 

meaning that the span of the  Hamiltonian vector fields,    
  is at every point of 

cotangent bundle    , subspace of the annihilator of the 1-form    ,  the second 

one having the      . It is noted that in two-dimensional manifolds, a 

superintegrable system is maximal because        According to [11] the huge 

quantity of outcomes for the models of superintegrable systems is constrained to 

quadratically superintegrable ones, implies that, the integrals    in the momenta are 

either quadratic or linear, and the metrics for all these systems are either constant 

curvature or flat. On surfaces of revolution MSh gave a full classification of all 

(local) Riemannian metrics [12] that is 

 

                                            
       

  
                    

  

  
                             (3.2) 

that possess a superintegrable geodesic flow, having integral      and   are linear 

and cubic integral in momenta. In [12] it was emphasized that whether the metric   

does not belong to the constant curvature, thus           the span  linear  of the cubic 

integral, here possess  four dimensional with              as a natural footing also 
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with the following constructer. Here     {   } is denoting the endomorphism 

linear that of        [10] such  that: 

  

(i)       are the coinciding eigenvectors when   has real eigenvalues     to the              

several real     , or [10] 

(ii)         are the coinciding eigenvectors when   has imaginary eigenvalues      

to the several real       or [10] 

(iii) The eigenvalue which is       also with 1- Jordan block of size three are in    

in this state {    }  
  

 
      {    }       for       that are real constants. 

 

Then the superintegrability is satisfied if the function   becomes a solution of the 

next non-linear       order  differential equation, such that [10] 

 

a)        
                   

       

 
            

b)        
                   

        

 
                                 (3.3) 

c)           
                  

 

Through all of these cases  the explicit formula had given of the cubical integrals. 

For example, when        or       , their form are written as [10] 

 

                           (       
         

             
         

 )           (3.4) 

      are expressed explicitly through the terms of   and also through its derivatives 

[12]. These equations for       are simply integrated and we get the metrics of 

Koenigs [11].  The cubic integrals possess the reducible constructer             

such that      are exactly those provided by Koenigs. It also proved that in the state 

(b), under the restrictions [10] 

 

                                                                |  |                                   (3.5) 

the  metric together with the cubic integrals  are real-analytic and globally defined       

on     [10]. 
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Theorem 1 [10]: The metric         

 
 

  

 
                       such that 

 

                                               
      

 
           (3.6) 

is globally defined on    .The Hamiltonian is given by 

 

                
 

 
        

 

 
(   

 

  
  

 )    
√ 

 
      iff            .           (3.7) 

The    and    cubic  integrals, are globally defined on    , namely 

 

                                                                               (3.8) 

 

                        ̈   
      ̇      (   ̇ ̈)  

    √                 (3.9) 

 

Theorem 2 [10]:  Consider the metric   

 

                             

 
 

  

 
          

 

 
                                   (3.10) 

such that 

 

{

                                                                                                                     

  (              )(               )       √      

                                                                                 

 

                                                                                                                               (3.11) 

 and 

                
 

 
        

 

 
(   

 

  
  

 )    
√ 

 
     iff         and       .  

The cubic  integrals     and       given by (3.8) and (3.9), are globally defined on    

too [10].  
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3.2. The trigonometric states  

 

3.2.1. The explicit formula of the metric 

 

The equation (3.3) (a) that got from [12] is 

 

                          
                   

       

 
                      (3.12) 

For the Koenigs metrics       Through  a scaling of    we can  put       . 

Through a scaling of    and a translation of   the right hand side  will be        , 

with a real free parameter   . Through  a translation of   , one can  put       and 

       Therefore, we should  solve [10] 

 

                                   
                       { }                        (3.13) 

We consider  now      like a function of   and we denote 

                                                
   

                                  (3.14) 

Thus we conclude that [10]  

                              
 

  
( 

  

  
)                                                       (3.15) 

also can be integrated,  is gotten 

                                    
  

  
                                            (3.16) 

Due to  the fact that              the      order equation is found as [10] 

 

                ̇        which implies that   (   
  

  
)

 

                    (3.17) 

By using (3.16) the quartic equation for   become 

 

                                                           (3.18) 

For        , this equation is still a quartic but in    it happens to become a 

linear one.  In terms of     by solving for    ,  we conclude that [10] 
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 ̇ 

  
                                 (3.19) 

Now, we define [10] 

 

               √  √                                     ̇           (3.20) 

such that   ̇  
  

  
. In the coordinates (       the metric becomes [10] 

 

                                 
 

 
  

 

   
            

 ̈

 
      

   

 
                            (3.21) 

which implies the Hamiltonian as 

 

                                                     
 

 
(      

 )      
 

 ̈
                      (3.22) 

 

3.2.2. The  case of the cubic integrals 

 

They are presented  in (3.4), and quoted from [12], namely 

 

                                      (    ̇       ̈   
   (   ̇ ̈)  

 )             (3.23) 

Due to the fact that [10] 

 

                                                                     ,  

the four observables  are not  dependent .  We have [10]  

 

                                                    
         

         
                   (3.24) 

So, we consider two different superintegrable systems, namely [10] 

 

                                      (       )             (       )                         (3.25) 

respectively. 

 

Proposition 1 [10]:    and    denote the integrals and the set (          ) 

generates a Poisson algebra. 

 

Proof [10]: We have 
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                           {    }       

 ̈
     

 (   ̇  ) (  ̉   (   ̇ ̈))               (3.26) 

The following equation 

 

                                                        (  ̉     (   ̇ ̈))                                  (3.27) 

does linearize upon the substitution   √   due to the fact 

 

                                          (  ̉    (   ̇ ̈))   ̉                                  (3.28)                                                                                      

which provides for    the most general monic polynomial of degree third  

 

                                                                                                  (3.29) 

The  function    from (3.19) displays exactly three parameters, namely        In 

(3.26) and (3.27) insure then conservation of both cubic integrals     and      

In addition we have 

 

                                 {     }                
        

 ,                       (3.30) 

 

                                                
         

        
 ,                    (3.31) 

and it is generated by four observables. 

 

3.2.3. The metric transformation and its curvature  

 

Through the expression (3.29) for variable  , we define the quartic polynomials   

and   as 

 

             ̇          ̈   ̇                  ̇                      (3.32) 

After that the metric (3.21) can be written in the formula [10] 

 

                      
 

 
       

 
 

  

 
              

 

 
         

  

 
                      (3.33) 

such that the scalar curvature existence has the following form [10] 

 

    
 

   (    ̇  (  ̇     ̇) )            ̇    ̇        ̇           (3.34) 
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The following conditions are imposed, namely [10]: 

 

1.         implies      

2.   to be real implies       

3.  The metric   requires      to be Riemannian [10]. 

 

3.2.4. Global characteristics  

 

 We start with a metric [10] 

 

                                                                                            (3.35) 

thus       is considered as an obvious singularity that can be erased, using the back 

coordinates of Cartesian [10]. 

 

Lemma 1 [10]: Let us consider the interval          such  that        and 

         to all    . Assume that     possess a simple real zero     ; therefore 

     denotes a curvature singularity precluding any manifold construction related 

with   . 

 

Proof [10]:  From (3.34) we have that  

 

                                               
                   

      ̇                 (3.36) 

and the right hand side of the equation (3.30) is different from zero. The presence of 

a curvature singularity for      rules out the probability of a  manifold 

construction. 

 

Lemma 2 [10]: If    takes its values in         and if one of the end-points is a 

zero of    (and not of  ), then the manifold has infinite measure and it cannot be 

closed. 

 

Proof [10]:  We consider the allowed interval for    be denoted by         . Then 

we have 
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                                                          ∫
    

 
 

 ⁄    

 

 
  ∫                                    (3.37) 

Now, if   possess a zero at one end-point where   does not vanish, then this integral  

diverges. Given any polynomial   we utilize the notation       for its discriminant.  

 

Proposition 2 [10]: If          the superintegrable systems    and     given by 

(3.25) are either trivial or are not defined on a closed manifold. 

 

Proof [10]: If       , it implies that           . The scalar curvature from 

(3.34) is a constant.  The  theorem  from [15] explains that for Riemannian spaces of 

constant curvature, namely          with      , each Stӓckel-Killing tensor of 

any degree is completely reducible to symmetrized tensor products of  KV. It means 

that the cubic  integrals here are reducible. For          it might also have 

                with          that yields [10] 

 

{
                                                

                           
     

 
                                                    

          (3.38) 

Firstly notice that for the metric   [10] 

 

                                      
 

 
      

       
 

     

   

      
     

       

       
                              (3.39) 

to be Riemannian it should obey       and        . If the roots    of   are 

ordered as        the positivity of the metric is achieved iff [10] 

 

                       

the upper bound of   being      Since          and         the expected 

manifold  cannot be closed utilizing the Lemma 2 [10].  

 

Proposition 3 [10]:  The superintegrable  systems    and     given by (3.25) are 

never globally defined on closed manifold  provided that        . 

 

Proof [10]: If        the polynomial D possess just a simple real zero. Utilizing 

      as new parameters it can be written 
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                                                      { }           (3.40) 

such that 

 

                                                                                                 (3.41) 

For   and    [10] we have 

 

                                

                                                                                                                               (3.42)              

                                                                        

 

It must exclude       due to the fact that                     is non-

positive. Then, the former discriminants are precisely non-positive, meaning that 

both polynomials   and   possess two simple real zeros. The relation  ̇      

shows that   is increasing, namely  [10] 

 

                                                                                  (3.43) 

 

Hence there exists a simple zero    of   such that       while the other one lies to 

the left of     because         .The polynomial    is [10] 

 

                                                     (3.44) 

reviling that for      it is never non-negative as it should; so, it will be left with the 

case      . Utilizing 

 

                           ̇                     ̇    (3.45) 

 

it shows that       is precisely non-positive and that  ̇    is non-negative from  

       to          .  As a result    increases  to  its  first  zero           

(since                            is equal to   for [10] 

 

                                                                                                             (3.46) 

Then vanishes at its second zero     such that          and finally, decreases 

to    . Therefore, we end up with                     
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So,                              so within this interval   possess a simple 

zero for      . Then, there is no underlying manifold construction by Lemma1 

[10].  

 

Proposition 4 [10]:  If           then the  superintegrable  systems     and     

provided by (3.25), on a closed manifold, are never globally defined. 

 

Proof [10]:   Let the roots of    be ordered  according to                Thus 

 

                                               and             (3.47) 

        

for 

                                                                                                            (3.48) 

the positivity interval for P should be determined now. But [10] 

 

                                ,                                (3.49) 

 

thus, there  will  be  either  no  real   root  or  four  real simple   roots   for P. The 

final is excluded since          ̇   at the zeros of    is non-positive, and non-

negative at those of  ̇. Observing  that                 implies that    

possess two simple real roots and        is one of them. This is so due to the fact 

that [10] 

 

                                                                                                  (3.50)                                  

which illustrates that 

 

                                                   but   ̇                (3.51) 

entails that, for positive    the function   is increasing with         . Hence 

     is a simple zero of    and any manifold construction is prohibiting via 

Lemma 1. Just when       the zeros of    might  appear. 

 Let us consider             We notice that [10] 

 

                                    and                           (3.52) 
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are negative and that there does exist                For    ̇       it will 

imply that          

                                                                         

where the     pair of simple zeros of   is          Positivity of both   and   is 

therefore reported for            The  function     remains  strictly  negative for  

            and it can conclude by Lemma 2 that the assumed manifold cannot be 

closed. Then the remaining two zeros of P defined via       must lie in (      . 

Since [10] 

 

                                                                                             (3.53) 

and then it increases to           thus it will have a simple zero         ,  

then at this point we have                      Let us discuss the following 

cases [10]: 

 

a) If        it implies that          and using the fact that          we 

obtain 

 

             

 

b) If          it implies that           , hence              and the 

positivity of   and    requires            Since         the assumed manifold 

cannot be closed via Lemma 2 [10].  

 

3.3.  The  hyperbolic state   

 

3.3.1. The metric explicit formula  

 

The equation (3.3) (b)  has the following form [12]  

 

                 
                   

        

 
                            (3.54) 

 

It might again put      ,     ,     ,      . Thus, the right hand side of the 

preceding equation will lead to three different states described according to 
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                                      (3.55) 

 

Here    is a free parameter. For    , the shifts        and        reveal that 

there is no require to regard      in (3.48). By the following definitions [10]  

 

                                                                                            (3.56) 

we have 

                                        ̈      
 

  
( 

  

  
)                              (3.57) 

By integration  it implies that [10] 

 

                              
  

  
                                            (3.58) 

When     
 

 
          the related  first order equation becomes [10] 

 

                 ̇          which implies that  (   
  

  
)

 

                (3.59) 

 

 Supposing that           we have [10] 

 

                             
 ̇ 

  
                                      (3.60) 

It gives an interesting result that is similar to the state (a), unless the variable   needs 

to be  not be positive. Defining [10] 

 

                      √  √                            ̇            (3.61) 

the following metric is reported, namely[10] 

 

                                        
 

 
    

 

   
            

 ̈

 
       

   

 
                    (3.62) 

Then corresponding Hamiltonian becomes [10] 

 

                                              
 

 
(       

 )         
 

 ̈
                          (3.63) 
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3.3.2. The cubic integrals  

 

Let us start with [10] 

 

                                                                          (3.64) 

such that 

                                       ̉   
         ̇      (   ̇ ̈)  

              (3.65) 

 

Proposition 5 [10]: The observables    and    are integrals of the geodesic flow. 

 

Proof [10]:  The complex object can be defined below, namely 

 

                                                                                               (3.66) 

Thus, the Poisson brackets  are 

 

                        {   }        

 ̈
     

 (    ̇  ) (  ̉    (   ̇ ̈))              (3.67) 

The transformation   √   gives  the  next linearization, namely [10] 

 

                                    (  ̉   (   ̇ ̈))   ̉       

which implies                                                                        (3.68) 

 

From (3.61) and  (3.67)   is an integral. Since                 , it 

reveals that these four observables which are not independent functions. We 

notice that [10] 

 

                       
    

                  
       

        
         (3.69) 

which lead us to two various superintegrable systems,  

 

                                                   (       )       (       )                    (3.70) 

Also we have [10] 

 

                                {      }                    
          

                      (3.71) 
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as in (3.62) for    
    

 , but it is not satisfied for the product [10] 

 

                                                            
     

 
,                           (3.72) 

which represent a new, independent, observable.               of     integrals of 

the geodesic flow clearly does not generate a Poisson algebra [10]. 

 

3.3.3. The curvature and metric transformation  

 

Using  (3.68) for     the related  polynomials are [10] 

 

                   ̇            ̈   ̇                    ̇        (3.73) 

which lead us to the metric [10] 

 

                       
 

 
       

 
 

  

 
            

 

 
         

  

 
                (3.74) 

with the constraints       and       which include its Riemannian signature. The 

related scalar curvature becomes [10] 

 

      
 

   (    ̇  (  ̇     ̇) )           ̇    ̇         ̇          (3.75) 

 

Lemma 3 [10]: Assume            be the admitted interval to   when    is a 

simple zero of    If for all      one has         and         then the metric   

reveals a conical singularity which precludes any manifold construction. 

 

Proof [10]: With the help of (3.66), when       the metric approximates as 

given below, namely 

 

                       
 

 
  

 

 ̇    
                   √      +.                        (3.76) 

Thus, for this singularity to be apparent, assuming              it will get 

[10] 

                                       
 

 
        (

  

 
)

 

           
 

√  
                        (3.77) 

and it cannot have  
 

 
    . This type of singularity is called conical [10].  
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Lemma 4 [10]: Suppose that the metric    

 

                                                                                 (3.78) 

on a closed manifold is globally defined. Thus, its Euler property is given as 

 

                                                                 
 ̇

 √  
                            (3.79) 

 

Proof [10]: Utilizing the orthonormal frame     √         √       then the 

connection  1-formula reads        
 

√ 
       where   is as in (3.73).  The  curvature 

2-formula is            
 ̇

√  
        from which it will get 

 

                                   
 

  
∫     

 ∫  ̇   
 

                                   (3.80) 

 

3.3.4. The global construct for     

 

3.3.4.1. First state:         

 

Proposition 6 [10]: For      and    there exists no closed manifold  

 

Proof [10]: In this state we have 

 

                                                                                       (3.81) 

 

                                                                
 

 
                           (3.82) 

then the metric   becomes [10] 

 

                                          
 

 
    

      
 

      

   

    
 

 

 

     

      
                                (3.83) 

 

For      the      and      iff              but since      it will 

obtain no manifold construction via Lemma 2 . For       the positivity of  metric 
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   is investigated for                     During this two states,   is a zero 

for   but the Lemma 2 cannot be used because       . Indeed,  the measure of 

the sought manifold [10] 

                                                          ∫
      

        ∫                                     (3.84) 

is divergent forbidding a closed manifold [10]. 

 

Proposition 7 [10]: For          there exists no closed manifold. 

 

Proof : See [10]. 

 

3.3.4.2.  The      state        

 

We consider the following expressions, namely: 

 

                                                                       

                   

                                                                √                                               (3.85)                                                                                

                                                      ̇                            (3.86) 

 

Proposition 8 [10]: For        there exists no closed manifold. 

 

Proof [10]: The positivity of    and   exist for any                    We 

conclude that 

                                          
 

 ⁄ (√   )                                (3.87) 

means that inside the interval (        admits a simple zero. This implies a 

curvature singularity . This never happens for           since         

However      is a zero of    together  with              concluded by Lemma 2 

[10]. 
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3.3.4.3. The state         

 

For       , it shows that [10] 

                
               √       

                                                                                                                               (3.88)    

                                                

 

Through this set         { }              takes its values.  

 

Theorem 3[10]: The superintegrable  systems    and    that given in (3.70) are 

globally defined on    if            

 

Proof [10]: Firstly we consider     . Then           is the ordering of the 

zeros of    Means that two possible intervals that make its positivity be ensuring: 

either             or            The     state is readily excluded since 

 decreases from           to                    thus  it will be 

vanishing in the interval and will  lead to  a curvature singularity. So we consider  

          

Then                 is non-positive, and due to the fact that   is 

decreasing  it will  stay  precisely non-positive anywhere on the interval. We 

conclude that  [10]  

 

                      

           
  

           

           
                                (3.89) 

where   

                                                    
(     )

 
(    )

                                       (3.90) 

Both these end-points are obvious singularities due to the fact that  

 

                                     
 

   
                   √                       (3.91) 

and  

                                      
 

    
                     √                   (3.92) 

Calculating the Euler characteristic. By resorting to Lemma 4, it will get [10] 
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(    )

 
        

    
                            (3.93) 

and this emphasis that the manifold is  diffeomorphic to   . Thus, the  measure  of 

this surface is given by 

 

                                                              
       

  

   
                                            (3.94) 

As a next step we discuss  the global  state of the integrals            . Using (3.88), 

so by referring to the theorem of Riemann  uniformization, it ends up with [10] 

 

                                             
 

 
(     

  
 

  
)  

 

   (  
  

  
 

     
)                     (3.95) 

such that 

                                           
 

 
 √

      

      
         

(    )

 
                       (3.96) 

For all          the conformal  factor is in fact       In addition we recall that [10] 

 

                 
    

    
               

    

    
                          (3.97) 

as well as the constrained  coordinates, namely 

 

                                                                                   (3.98) 

 

The  relation          and  formulas (3.64) and (3.65) produce [10] 

 

                               
  

 
(     

  
 

  
)       (      

  
 

   
)                        (3.99) 

such that  the functions      of    keep the forms as 

 

                                         
 ̇  √      

      √ 
               

    √      

     √ 
                       (3.100) 

     and   are obviously globally defined, so long as the quantities    and  
  

 

  
   in 

the Hamiltonian.  It  is  enough   to check  that the  functions   and   are  well-

behaved  near  the poles. Starting with the north pole         or           for 

which we obtain [10] 
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                                     {
  

    

       
 

     

                               

   
(    )

 
      

 

 
               

                 (3.101) 

where                 , whilst for the south pole        or        

it will get 

 

           {
  

    

      
 

      

 
                                         

                                     
                         (3.102)  

 

with              . It notices that either       or       may be  vanishing  

for some           but this does not endanger the result. In addition we have [10] 

 

                                  {     }   
  

 
(    

  
 

  
)       (       

  
 

  
)   (3.103) 

 

Proposition 9 [10]: There exists no closed  manifold for      . 

 

Proof [10]:  The above functions simplify  as   

 

                             

                                                                                                                             (3.104) 

                          

 

When       the positivity of   implies              , but since   possess a 

simple zero   
 

 
    , according to the Lemma 1 there is no manifold 

construction. For       either           or           ,  emphasize the 

positivity of       vanishes for     , and the measure of the would-be manifold, 

     ∫
      

      
  ∫    is divergent, ruling out a closed manifold. The residual 

state is         . The debate relies robustly on the sign of    [1-].  
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Proposition 10 [10]: There exists no closed manifold  for          together with 

     

Proof [10]:       are given by 

 

                                                      
             √        

                                                                                                                             (3.105)                                                                                               

                                                                  √    

with the ordering             . The positivity demands give three probable 

intervals [10]: 

 

                                                                                         (3.106)   

When     ,    is a zero of   for which 

 

                                                                   ,                         (3.107) 

and that concluded by Lemma 2 [10]. 

For      since         and             , there exists a simple zero     

of    inside    , hence, by using the Lemma 1,  no manifold structure can be founded. 

In the case when      it implies that                   and then   decreases 

to      ; it thus never vanishes and      in   , opening the probability of a 

manifold construction. 

 

3.3.5. The global construct for     

 

Proposition 11 [10]: The  superintegrable system  is never  globally defined  on a 

closed  manifold if            

 

Proof [10]:  Here it may  have  either 

 

                                                                                  (3.108) 

with      . The     state is discussed as in Proposition 2 due to the fact that  the 

metric   is of constant curvature. In the     state it has [10] 
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{
                                                    

                                  
     

 
                                        

         (3.109) 

 

First consider      .  Thus,   is  positive  iff                If         

then we conclude that      for all      Since         a curvature singularity 

inside   will be there. When         vanishes, it will  get                 and  

either           or               In the     state at      
 

 
       there 

will be a curvature singularity whilst, in the     state, the positivity  interval  is  

      ). Since      is  a zero  of    by utilizing the Lemma 2 [10]. Two real 

zeros exist and                   if         The interval of positivity can 

be written as                     Therefore one of its end-points at least  will  

coincide to a zero of P as  concluded by Lemma 2. After that  we discuss the state  

        D is positive  if and only if               [10]. When        , then  

     for  all      and we conclude the Lemma 3. If          it will obtain   

              ,  and  either         or          .  In  the      state 

remaining with          and  end  up  with a conical  singularity  for     ,   in  

the       state           where     is  a zero of  P, which turns out closedness by  

Lemma 2 [10]. Two real zeros are having and                   if      

   The interval of positivity becomes                   and one of its end-

points at least will coincide to a zero of   [10]. 

 

Proposition 12 [10]: If        the superintegrable systems are never globally 

defined on a closed manifold. 

 

Proof [10]: We have 

 

                                                                                                                                                  

                                                                                        (3.110) 

and  

                              

                                                                                (3.111) 
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respectively. The proof of this theorem can be found in [10] 

 

Theorem 4 [10]: If        it can put                          with  

         the superintegrable systems    and      that given through (3.70) are in 

fact globally defined on    if and only if           

 

Proof: See  [10]. 

 

3.3.6. Comparison with the outcomes of MSh 

 

In [12] it was stated in Theorem (6.1) that    
       

  
     

  

  
  where    is the 

solution of the differential equation (3.3) (b) with [10] 

 

                                                                   (3.112) 

is globally defined on    . Firstly, we write the metric in (     [10], namely 

 

                                               
  

  

   

 
 

  

 
                                            (3.113) 

where from the knowledge of   the   and   are yield by (3.73). We conclude that 

[10] 

 

                           
 ̇

 √  
  ̇  

  

  
      √     √

 

  
                    (3.114) 

 and  

                                               
  

  
 

  

  

  

  
   

 

  

  

  
 

 

  √ 
                           (3.115) 

 

The conditions on the metric (3.113) to be Riemannian implies       and      

and to use      it requires   to be locally bijective and   admits a fixed sign. Also 

we have                    that implies [10] 

 

                                                     
          

                           (3.116) 
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which   denoting a constant of integration that is not appearing through the 

proof  of the Theorem (6.1) in [12] and it can be arbitrarily chosen. The 

discriminant of   read as [10] 

 

                                 
             

               
          (3.117) 

but the discriminant sign is indefinite. The MSh Theorem (6.1)  in [12] agrees with 

the Theorem 2 when        , and in fact the metric is globally defined on     

[10]. 

 

3.4. The state of affine  

 

3.4.1. The metric  

 

We start with [10] 

                                   
                        

       

  
                  (3.118) 

respectively. We differentiate the equation for   and we conclude that 

 

                                                
                 

                           (3.119) 

Again regard that      like a function of the new   , then it follows that [10] 

 

                                                           
  

  
                            (3.120) 

Regarding        the inverse  function we finish as a linear differential equation, 

namely [10] 

 

                                         
  

  
                                            (3.121) 

Below we investigate two cases. When       it implies that    cannot vanish; 

assuming    
         

  
 , the original   , and the  metric    are obtain as [10] 

 

                
 

 

  

  
   which implies that    

 

  
                        (3.122) 
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The relations      
  

   
   

 

 

  

  
                reveal that through 

expressing the variable   and the function   in terms of    we  integrated the 

equation (3.118) [10]. 

 

 Whether      one can put       and, through a change of   , it may  set to  

    . To make these matters easy, we perform the rescaling:   
 

 
  and     . 

In this case we have     
 

 

  

  
   

 

                and two possible 

solutions will be gotten for   [10]:  

 

                                            
 

       
 

 ⁄
           

 

       
 

 ⁄
                  (3.123) 

where   here is regard the real constant to the integration [10]. 

 

3.4.2. Global construction for vanishing    

 

It was  already noticed that    
      

  
. Two states are  explained separately [10]: 

a) State one:     , then we have       . 

b) State two:     , thus           [10]. 

 

3.4.2.1. The state      

 

In this case we have        
   

 
 which implies that   

 

 
(  

     
 )   whilst 

the cubic integrals are written as  [10] 

 

                                                         
 

 
  

     
 (    

 

 
  )                        (3.124) 

and 

                                                    (
  

 
 

  

 
)   

  
 

 
                            (3.125) 

respectively. The superintegrable system is generated by           . The Poisson 

brackets are written as [10]  

 

                            {     }  
 

 
  

      {     }          {     }  
 

 
    

                 (3.126) 
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Proposition 13 [10]: The superintegrable system           is not globally defined 

for     . 

 

Proof [10]:  The  Riemannian  character  of the metric   requires       and       

The scalar curvature would be defined anywhere whether this metric    defined on a 

manifold. A simple calculation gives for result     
 

    which is singular for 

    . 

 

3.4.2.2. The state      

 

The corresponding Hamiltonian is given by [10] 

 

                      (
  

 

     
 )                                            (3.127) 

and       are cubic integrals, namely  

 

                                               
  

 
 
 

 
       (          

 )                       (3.128) 

and 

                           
 

 
(     (  

   

 
)

 

)   
  

 

 
                    (3.129)  

respectively. Poisson brackets are written in this case as [10] 

 

         {     }    
      {     }         {     }       

     
   

  

 
         (3.130) 

 

Proposition 14 [10]:  For        the  superintegrable system            

a) for     is not globally defined 

b) for        is trivial 

c) for       is globally defined on      . 

 

Proof [10]: The scalar curvature has thee expression       
 

  
              

       If       it is singular for    | |   ⁄ , and on a manifold the system 

cannot be defined.  When    , the metric   is reducing to the canonical metric 
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   of the hyperbolic plane    . As a result of the theorem of 

Thompson [10]     and    are reducible. The set      ) stays as an integrable system 

but it is trivial, namely  it is no longer superintegrable. We check the final state for 

which      The change of coordinates, namely [10] 

 

       (  
 

 
  )    

   ⁄

 
     ⁄          

 

 
    √   

 

 
              (3.131) 

leads to the conclusion that      is    for all      . The  expression of the metric 

  is given below: 

 

                    

                         
 

 
                (3.132) 

and, since   does not vanishes, it is globally conformally related to the canonical 

metric of the hyperbolic plane,       The Hamiltonian can be written as [10] 

 

                                      
  

   (  
    

 )  
 

   
   

    
    

                     (3.133) 

Taking into account that                    
       

        itreveals that 

[10] 

 

                   
  

 
 
    

 
     

 ( 
    

 
    )                               (3.134) 

is  globally defined on   . For     it is also true [10]. 

 

3.4.3. The global structure for non-vanishing    

 

By exchanging       in (3.123), there  two states to be regarded based to  

               [10]. 

 

3.4.3.1. First state      

 

By  following the metric    and  Hamiltonian, namely [10] 

 

              
 

  
              

  

 
(

  
 

     
 )                         (3.135) 
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when      
 

        ⁄   then the cubic integrals are written as [10] 

 

                                 
 

 
                   

       
                    (3.136) 

 

           
 

 
(         

    

√    
 

  

    
)   

  (      
  

√    
)      (3.137) 

 

respectively. On     the state      coincides for the canonical metric, so the 

system will be trivial [10]. 

 

Proposition 15 [10]: The superintegrable system           is globally defined for 

     if and only if         and  |   |      in case of manifold is      . 

 

Proof [10]:  In this case the scalar curvature is written by 

 

                                                       
 

  (     
(     )

        ⁄ )                              (3.138) 

 

When         it implies that   √  and    is be singular when     √      For 

      it have      . Thus, the curvature is singular when     √      provided 

   | |      When      , the function   is no longer vanishes, thus, the curvature 

stays continuous to      .   has the following form,  namely  [10] 

 

                 
 

  
                       

 

        ⁄                    (3.139) 

Define the new variable    (  
 

 √    
)  such that                    

Since   
  

  
  never vanishes, the inverse function      is   (      ) and the 

metric are given below [10]  

 

                                                         
 

 √       
              (3.140)          

where the conformal factor      is    and never vanishes. Thus, the manifold is 

again        The first cubic integral [10], namely 
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       (       ) 

   

 
    

       
             (3.141) 

is globally defined and the equation (3.137) implies 

 

       
 

 
(          

   

√    
 

 

    )   
  (      

 

√    
)      (3.142) 

 

Proposition 16 [10]: When      the superintegrable system           is 

globally defined either if        and  the  manifold  is        or  if        and 

    . 

 

Proof [10]:    is given by 

 

                                  
 

  
                        

 

        ⁄                     (3.143) 

We analyze the first the state      such that    √ . We define the new 

coordinate    (  
 

 √    
)       (√    )        Because    

  

  
  does 

not vanish, then        is      , and the metric   [10] 

 

                                                   
       

     
                   ,                        (3.144)         

is globally conformally related to the flat metric (the manifold is therefore 

    ). The corresponding cubic integral [10] 

 

                           
                         

      
            (3.145) 

stays globally defined, and for    the same holds true. 

When       the function     
 

   
  is no longer even, thus it ought to regard that 

      and              

        is  not defined for       so  no manifold 

construction exists. For       let   | | and  consider          We define the  

new coordinate as [10] 

 

                                (  
 

 √    
)                                  (3.146) 
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But    
  

  
  never vanishes, thus the inverse function      is             We 

conclude that the metric [10]  

 

                                

  
             

 

 √    
                   (3.147) 

is globally conformally again that linked to the canonical metric on the manifold 

     [10]. 

 

3.4.3.2. The     stateϵ = −1  

 

Let us start with the Hamiltonian and the metric as follows [10] 

 

                    
 

  
                 

  

 
(

  
 

     
 )                    (3.148) 

For      
 

        ⁄     corresponding the scalar curvature is [10] 

 

                                          
 

  (   
       

        ⁄ )                                          (3.149)                                                                        

and the cubic integral     is similar as in (3.136) but [10] 

 

              
 

 
          

    

√    
 

  

        
         

  

√    
     (3.150) 

 

Proposition 17 [10]: The superintegrable system           is globally defined on 

the manifold,      either for       or  for       and        . 

 

Proof [10]: It ought to have       to ensure      √   . For the case      the 

scalar curvature is singular as    vanishes. This occurs for    √    and        

Thus, no manifold construction  exists. Thus,  for         the function   does not 

vanish, then it can be defined 

 

                                 (  
 

 √    
)          √                      (3.151) 

 

so the inverse function      is               This leads to the metric   [10] 
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 √       
                (3.152) 

where the conformal factor does not vanish, thus, again the manifold is       We  

define [10] 

 

                            (  
 

 √    
)       √                              (3.153) 

thus, the metric   becomes [10] 

 

                                              
 

 √       
                           (3.154) 

where the conformal factor,  , does not vanish, thus, again the manifold is given 

by       The proof that the cubic integral,     and    are also globally defined is 

the same as  presented in Proposition 14 [10]. 
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CHAPTER 4 

 

FRACTIONAL KILLING-YANO TENSORS AND KILLING VECTORS 

 

As it is well known, the Caputo definition is more convenient than Riemann-

Liouville in all cases including the fractional differential geometry because the 

Caputo's derivative of the constant is zero whilst the derivative  Riemann-Liouville is 

not zero [37,38].The Caputo differential operator has the form [39-46]. 

 

             
 

 
      

{
 
 

 
 

 

      

 ∫                 

                  
 

 

  

                                                                      

                   (4.1) 

      refers to the Gamma function with       Here     and         . If 

the                    its Caputo fractional derivative gives [36] 

 

                             
 

 
     {

      

        
                                         

                                       
                           (4.2) 

Through the final decades the topic about the Killing and Killing-Yano (KY) tensors 

[36] was in connection to the geodesic motion of the superparticle and   the particle  

in a curved [24,27,47-53]. They explain the hidden symmetries related to the 

fractional Killing vectors (KV) and KY tensors on curved spaces. We denote the 

fractional derivative by [36] 

 

  
   

        

{
 
 

 
 

 

      
                                                                              

 ∫                   

   
               

 

 
 

  

                                                                       

                      (4.3) 

 

We consider      and          [36]. 
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4.1. The one-dimensional case 

 

We start  with one-dimensional free Lagrangian [54]. 

 

                                                                   
 

 
 ̇   ̇  ̇                                        (4.4) 

(4.4.) can be reformulated as  [36] 

 

                                                                  
 

 
    ̇

  ̇                                            (4.5) 

 where       *
  
  

+. The related fractional Lagrangian  has the form 

 

                                                           
 

 
     

     
                                           (4.6) 

within the fractional Caputo derivative. The corresponding fractional Christofell 

symbols (ChS) for           are defined as [36] 

 

                                         
 

 
   

 

 
   (  

       
       

    )                      (4.7) 

thus notice in the fractional state for order    the derivatives partial are 

defined. Here note that all the ChS are vanished and that is due to the metric 

is constant, namely [36] 

                                                           
 

 
                                                              (4.8) 

 

4.1.1. Fractional KV 

            

From the generalized equations below the KV can be computed [36]  

 

                                                                   
      

                                            (4.9) 

where      
 

is the  fractional covariant derivative denoted by  

 

                                                   
    

          
 

 
                                      (4.10) 

Since all  ChS are vanishes then it is simple to see that [36] 
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                          (4.11) 

 

 When      , the solution of (4.11) will be                . Here   is 

constant. Whilst to       the corresponding solution becomes [36] 

 

        ∑   

   

   

          

                                                ∑    ̀
   

   
     ̀                                  (4.12) 

where             ̀    ̀ are constants. 

 

4.1.2. Fractional KY tensors  

 

 The fractional KY anti symmetric tensor denoted by     
  fulfills [36] 

 

                                                              
        

 
 

                                           (4.13) 

where       
  denotes the fractional covariant derivative of the KY tensor  

    
    and it has the  for 

 

                                            
    

           
 

 
        

 
 

                               (4.14) 

By inspection we conclude that  

 

                                                          
                                                            (4.15) 

 for every of       .  

Then the related solutions will be            ,           and   is constant 

for           Whilst to        then the solution is 

 

                                                  ∑    
   

   
                                   (4.16) 

such that       are constants [36]. 
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4.2. The two-dimensional case 

 

 Angular momentum is the first integral of motion in the case of two dimensional 

classical free  Lagrangian, therefore the related Lagrangian becomes [54]. 

 

                                             
 

 
  ̇   ̇    ̇     ̇    ̇                                 (4.17) 

 

 Then, we conclude that the fractional  Lagrangian is given by 

 

                                                      
 

 
    

                                                  (4.18) 

 

which     is the related matrix, namely [36] 

 

                                                                [
    
   

    
]                                  (4.19) 

 

Generalized ChS given by [36] 

 

                                              
 

 
   

 

 
   (  

       
       

    )               (4.20) 

 

It can be seen as that such as             [36] 

 

                                                                 
 

 
                                                      (4.21) 

 whilst 

   
 

 
   

 

 
   (  

       
    )   

   
 

 
   

 

 
   (  

       
    )  

                                               
 

 
  

 

 
   (  

       
    )                                  (4.22) 
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4.2.1 Fractional KV 

 

  The equations of the fractional  KV are [36] 

 

                                                              
      

                                               (4.23) 

such that      
 

 denotes the fractional covariant derivative, namely 

 

                                                     
    

          
 

 
                                    (4.24) 

By direct calculations we conclude that [36] 

 

    
    

          
    

          
    

       

                                      
      

      
      

    
      

       

                                      
      

    
      

           
                        (4.25) 

                                      
      

    
      

           
        

 

respectively. It is easy to find the solution of     and   , therefore it is given below 

 

         ∑   

   

   

          

                                                                                                                               (4.26) 

        ∑   

   

   

          

which               are constants and          It is difficult to get a 

solution for     when      . When      , which means that      the  related 

equations be easy because [36] 

 

                                                
       

                                                      (4.27) 

In this case the common solution becomes 

 

                                                    ∑    ́
   

   
     ́                                     (4.28) 

such that   ́   ́ are constants [36]. 
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4.2.2.  Fractional KY tensors  

 

The fractional KY tensors can be computed by solving [36] 

 

                                                                  
        

                                        (4.29) 

where        
  defined the fractional covariant derivative of the KY tensors     

 , 

namely [36]  

 

                                                  
    

           
 

 
        

 
 

                           (4.30) 

For      , the  ChS vanish, then we have [36]  

 

                                                                
                                                      (4.31) 

for      . Then the related solution is               , where              are 

 

         ∑   

   

   

          

                                                  ∑    ́
   

   
     ́                               (4.32) 

          ∑   

   

   

           

 

which         ́    ́       are constants. The fractional KY tensors can be produced 

new constant of motion [36].  
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CHAPTER 5 

  

THE DUNKLE-COULOMB PROBLEM IN THE PLANE  

 

Below we review the Dunkl-Coulomb (DC) system in the plan that is ruled by 

Hamiltonian  

                                                                 
 

 
  

  
 

 
                                           (5.1) 

 

Here       
    

   and    
    

    
   The Dunkl derivative terms it defined as 

[56] 

 

                                                      
 

  

  
                                              (5.2) 

and    refers to the reflection operator                 By using (5.1) the model   

is maximally superintegrable and completely solvable. Using the realization of 

        with Dunkl operators, the spectrum of the Hamiltonian will be algebraically 

derived. The exact solutions of the model will be given with the help of  the Laguerre 

polynomials and the Dunkl harmonic. The complete solutions of the model will be 

given on the circle [55].  

 

5.1. Algebraic solution of the spectrum 

 

 The Hamiltonian spectrum (5.1) describing the DC system can be gotten 

algebraically by using          dynamical  symmetry. First of all it explains the 

investigation of         presented in [57,58], then it is shown the connection  

between the DC problems and this realization [55]. 
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5.1.1. A realization of         within Dunkl operators  

 

The dilation operators is defined by        
      

         
 

 
 . Besides 

we have [55] 

                                                            
  

 

 
        

  
 

 
                    (5.3) 

respectively.  The operators       fulfills the         algebra, namely 

 

                                                                                             

 

          is the Casimir operator (CO) and it has the for 

 

                                                             
  

 

 
            

or 

                                                           
                

 

 
                         (5.4) 

   denotes the generator of Dunkl angular momentum, namely [55] 

 

                                                                                                             (5.5) 

It can be seen that in irreducible representation of the non-negative- discrete series of 

         CO acts as multiple of the identity 

 

                                                                                                             (5.6) 

 

so, the eigenvalue of the generator   , induced by    
    becomes [52] 

 

                                                                 
                                                   (5.7) 

 

Here   is positive integer [59,60,61,62]. It divides into  two sectors coinciding to the 

probable eigenvalues of the operator      that commutes with equation (5.5). When 

        , the corresponding eigenvalues of equation (5.5) defined by    

     are 

[55] 

 

                                               

       √                                           (4.8) 
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Here  denotes a positive  integer. For            the related eigenvalues denoted 

by     

     and corresponding to  (5.5) are  [55]  

 

                                            

       √                                                (5.9) 

Here   denotes a non-negative half-integer, that means   ,
 

 
  

 

 
  -  Observable 

corresponding to the eigenvalues such that    

       is regarded as non-degenerate. 

Combining (5.8) and (5.9), one can get that the eigenvalues of  CO (5.4) in  the  

representation  (5.3)  are  of  the  type (5.6) with                
 

 
   Thus   

is a positive integer for          and a non-negative half-integer for         . 

The  irreducible         representations  contained in  (5.3) that  has the form [55] 

 

                                                   
                  

 

 
                        (5.10) 

for the spectrum of    [55]. 

 

5.1.2. Connection with the DC problem  

 

Let us start with the equation of Schrödinger for  the Hamiltonian (5.1) of the DC 

system, namely 

 

                                                         ( 
 

 
  

  
 

 
)          

 

For bound cases, we  get (  
 

 
   

      )              For rescaling the 

coordinates based to    
  

√   
, the equation of eigenvalue is transformed to  

      
  

√   
    The energy spectrum of the Hamiltonian (5.1) for the  DC  

system  possess the expression, namely [55] 

 

                                                              
   

             
 

 
  

                              (5.11) 

Here   is a positive integer and   is a positive integer in the sector         and a 

non-negative half-integer in the sector         . Observe that Hamiltonian and  
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     can be diagonalized at the same time because of the commutation between 

Hamiltonian in (5.1) with both reflection operators. If         , the system of 

DC reduces to the standard Kepler–Coulomb problem [55].  

 

5.2. The invariance algebra and superintegrability 

 

Two algebraically independent operators commuting with the Hamiltonian are 

required. Assume        be the operators and defined  them as [55] 

 

                
  

 
 

  

 
     

 

  
{     }         

  

 
 

  

 
     

 

  
{     }        (5.12)  

 

 

such that                                                                                         (5.13) 

and  {   }        stands for the anticommutator. A direct calculation reveals 

that   ,     and   are first integrals of motion for the DC system, means, namely [55] 

 

                                                                                                   (5.14) 

 Since the commutation between (5.1) with the      ,  these operators are  the 

symmetries of the DC Hamiltonian. The first integrals of motion     and    are 

similar to the ingredients of the Lenz–Runge vector for the system of standard 

Kepler–Coulomb in two dimensions, namely 

 

          
 

  
      

                                                                        

                                                                                                         (5.15) 

The commutation relations including the reflections are expressed below [55] 

 

                                                 {    }     {    }     

                                                {     }                

                                               {     }                                                   (5.16) 

with            The CO is written as (5.15) 
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                                          (5.17) 

that commutes with all symmetries. A direct calculation reveals that the   is given 

by [55] 

 

                                                    
 

  (   
     

  
 

 
)                                  (5.18) 

We introduce  the renormalized operators with a given value of the energy  ,  

   √
  

   
         √

  

   
    [55] and we have 

 

                                                          [              

                                                  [                        

                                                  [                                                        (5.19) 

 

with 

                                     {      }  {     }  {     }  {     }     

                                                                           . 

 

So the CO becomes [55] 

 

                                       
    

    
                           

 

5.3.  Exact solutions 

 

The corresponding Schrödinger equations is given by 

 

                                                                                                                    (5.20) 

In  polar  coordinates, by  using  separation  of  variables, it can  be  exactly solved. 

Considering             and              then   ,     have these actions 

                                           since the commutation between 

  with both    and       Thus, it is suitable to search for the joint eigen functions of 

Hamiltonian and reflections        .  The Hamiltonian  (5.1) in  polar coordinates, 

becomes        
 

       where     is [55] 
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and  

   
 

 
  

                      
         

      
 

         

      
   

 

respectively. By taking             it can discovered that (5.20) becomes  

 

 

                                                     (     
  

   )                                       (5.21a) 

 

                                                          
  

 
                                             (5.21b) 

 

where the separation constant reads as 
  

 
 [55]. So, (5.21b) is the same to the 

one that arises in the study of the two dimensional system of Dunkl 

harmonic oscillator [60]. The solutions are described by         associatedto  

the  eigenvalues  which are                 of the         where 

    {   }    Thus, we conclude that 

 

         
       

      
       

                
  

  
 

 
  
 

    
 

 
       

 

 
    

                  (5.22) 

with    
      

    denote the Jacobi polynomials [63]. We have that 

 

          
       

 √ 
        

 
    

     

 
   √

          
     

 
 

       
       

 
        

       
 

 
        (5.23) 

Here      refers to the classical Gamma function [64], and this emphasis 

that the orthogonality relation is satisfied for the wave functions, namely 

      ∫   
         

 
     ̇

   ́   ́ 
   |     |    |     |         ́     ́

     ́
         (5.24)   

We report that    is linked to   , namely   
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Nevertheless, it is easily shown that the wave functions (5.22) coincide to 

that named Dunkl harmonics oscillators on the circle [65]. The separation 

constant to the solutions (5.22) has the formula               . One 

finds that [55]   

 

                                           
   

         
            

                          (5.25) 

 

Thus, the Laguerre polynomials are   
   

    [66]. We have    √         

, so        is taken by (5.11). The normalization factor reads as 

 

                             √
  

                 
 √

          

                 
                        (5.26) 

thus 

                                         ∫          ̇                

 
      ̇                         (5.27) 

 

According the results that above,             which is the eigenfunctions of the DC 

Hamiltonian (5.1) coinciding to the         which is energy values given by (4.64), 

namely [55] 

 

                                                                  
       

                               (5.28) 

 

Thus, the radial part is given by (5.22) while the angular parts is given by (5.25). The 

wave functions under the scalar product are perpendicular taking into account [55]  

 

                     ∫ ∫     

 

 

 
           |     |    |      |             (5.29) 
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The Laplace–Dunkl operator is self-adjoint [60]. By taking           the regular 

wave functions of the two dimensional Kepler–Coulomb system are returned from 

(5.28). The equation of Schrödinger is  linked to the DC system does not appear to 

allow the separation of the variables in any another coordinate system. This is in 

contrast with the classical two dimensional Kepler–Coulomb Hamiltonian 

[55,66,67]. 
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CHAPTER 6 

 

CONCLUSION 

 

We recall that the superintegrable systems have huge applications in science and 

engineering. In my thesis, I presented a review on the superintegrability concepts and 

some of their applications.  

 

At first I reviewed some basic definitions of the Hamiltonian approach  and 

integrable systems. Particularly, the integrability with action angle variable was 

explained in detail. 

  

After that the preliminaries of the two-dimensional cubically superintegrable systems 

were reviewed. We presented the analyses of the trigonometric state by integrating 

(3.3) (a) to obtain an explicit local formula of the metric together with the cubic 

integrals. The global issues are reviewed and it was shown that there is no closed 

manifold on which the superintegrable model can be defined. It was shown  that the 

trigonometric state never leads to superintegrable systems defined on a closed 

manifold. Then, we showed the investigation  of the hyperbolic state (purely 

imaginary eigenvalues) and we recall the integration of the differential equation 

(3.3)(b) providing an explicit formula for the related  metric and the cubic integrals 

as well. The analysis of the affine state was reviewed.  

 

After that, I reviewed the existence of fractional Killing vector and Killing-Yano 

tensors for the geometry induced by fractionalizing the classical free Lagrangian. I 

reviewed the result of one and two dimensional curved spaces. The expressions of 

the fractional ChS within Caputo derivative and the explicit solution to the fractional 

KY tensors and KV are displayed. 

 

 Finally, I reviewed the Dunkl-Coulomb (DC) system in the plane. I concluded that 

this model is exactly solvable and also superintegrable. The first integrals of motion 
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were gained and the symmetry algebra they satisfy was presented and the separated 

solutions were showed explicitly in polar coordinates.  

 

 I hope my master thesis will be very useful for students and young researchers 

willing to study the new trends in superintegrable systems and their properties. 
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