

FAULT TOLERANT OVERLAY NETWORKS DESIGN

RAAD SADI AZIZ AL-AGELE

JULY 2015

FAULT TOLERANT OVERLAY NETWORKS DESIGN

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

RAAD SADI AZIZ AL-AGELE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

MATHEMATICS AND COMPUTER SCIENCE

INFORMATION TECHNOLOGY PROGRAM

JULY 2015

Title of the Thesis : Fault Tolerant Overlay Networks Design

Submitted by Raad Sadi Aziz AL-AGELE

Approval of the Graduate School of Natural and Applied Sciences, Çankaya

University.

 Prof. Dr. Taner ALTUNOK

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Billur KAYMAKÇALAN

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Melih ONUŞ

 Supervisor

Examination Date: 22.07.2015

Examining Committee Members:

Assist. Prof. Dr. Melih ONUŞ (Çankaya Univ.)

Assist. Prof. Dr. Abdül Kadir GÖRÜR

(Çankaya Univ.)

Assoc. Prof. Dr. Fahd JARAD (UTAA)

 iii

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name: Raad Sadi Aziz, AL-AGELE

Signature :

Date : 22.07.2015

 iv

ABSTRACT

FAULT TOLERANT OVERLAY NETWORKS DESIGN

AL-AGELE, Raad Sadi Aziz

M.Sc. Department of Mathematics and Computer Science / Information Technology

Program

Supervisor: Assist. Prof. Dr. Melih ONUŞ

July 2015, 39 pages

In this thesis designs a reliable and scalable overlay network with fault-tolerance

incorporation to support topic-based publish/subscribe communication. For

scalability and efficiency, it is important to keep the degree of the nodes in the

publish/subscribe system low. We proposes a new optimization problem named

Fault-Tolerant Overlay Networks Design, where the trade-offs among several key

dimensions such as fault tolerance, scalability, performance, and message

dissemination are captured by it. The Fault-Tolerant Overlay Networks design

problem is: given a set of nodes and their topic subscriptions connect the nodes to

create a topic 2-connected overlay for pub/sub systems with minimum maximum

degree, i.e., for each topic the sub-overlay induced by nodes interested in the topic is

2- connected. It presents an algorithm, namely GM3 for this problem which

guarantees that the overlay network will be topic 2-connected and which aims at

keeping the maximum node degree low.

 v

Experimental results show that GM3 algorithm is able to achieve low maximum

node degree of publish/subscribe overlay systems.

Keywords: Fault Tolerant Overlay Networks, Publish / Subscribe Systems, Topic 2-

Connected Overlay, Low Maximum Node Degree.

 vi

ÖZ

HATA TOLERANSLIBAŞKA BİR AĞIN ÜSTÜNE BİNA EDİLEN AĞ

TASARIMI

AL-AGELE, Raad Sadi Aziz

Yüksek Mühendis, Matematik ve Bilgisayar Bilimleri Bölümü / Bilgi Teknolojisi

Programı

 Danışman: Asist. Prof. Dr. Melih ONUŞ

Temmuz 2015, 39 sayfa

Bu tezde, konuya göre yayınlama/abone olma iletişimini destekleyecek, hatadan

etkilenmez bir bileşime sahip güvenilir ve ölçeklendirilebilir bir başka bir ağın

üstünde inşa edilecek ağ tasarlanmaktadır. Ölçeklendirilebilirlik ve verimlilik için,

yayınlama/abone olma sistemindeki düğümlerin derecesini düşük seviyede tutmak

önemlidir. Hata toleransı, ölçeklendirilebilirlik, performans ve mesaj yayılımı gibi

birkaç temel boyut arasındaki ödünleşimlerin (değiş tokuşların) bunun vasıtasıyla

yapıldığı Hata Toleranslı Başka bir Ağ üzerine inşa edilen Ağların Tasarımı adındaki

yeni bir optimizasyon problemi gösterılmektedir. Bu Hata Toleranslı Yer Paylaşımlı

Ağların tasarım problem şudur: verilen bir dizi ağ ve onların konu aboneliği,

minimum maksimum derecesi ile yayınlama/abone olma sistemi için 2. Konu ile

bağlantılı bir yer paylaşımı oluşturmak için ağları bağlar, ör: her konu için, bu konu

ile ilgili olan ağlar tarafından uyarılanalt-yer paylaşımı, 2.si ile bağlantılıdır. Yer

paylaşım ağının 2. Konuya bağlanmış olacağını temin eden ve maksimum

 vii

ağseviyesini düşük seviyede tutmayı amaçlayan bu problem için GM3 olarak

adlandırılan bir algoritma sunmaktayız.

Deney sonuçlarımız da, algoritmamızın yer paylaşımlı yayınlama/abone olma

sistemlerinin maksimum ağseviyesini düşük seviyede tutabildiğini göstermektedir.

Anahtar Kelimeler: Hata Toleranslı Yer Paylaşım Ağları, Yayınlama / Abonelik

Sistemleri, 2. Konuya bağlı Yer paylaşımı, Düşük Maksimum Ağ Seviyesi.

 viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assist. Prof. Dr. Melih ONUŞ for his

supervision, special guidance, suggestions, and encouragement through the

development of this thesis.

It is a pleasure to express my special thanks to my family for their valuable support.

 ix

TABLE OF CONTENTS

 STATEMENT OF NON PLAGIARISM.. iii

 ABSTRACT.. iv

 ÖZ... vi

 ACKNOWLEDGEMENTS……………………………………………………… viii

 TABLE OF CONTENTS………………………………………………………… ix

 LIST OF FIGURES……………………………………………………………… xi

 LIST OF ABBREVIATIONS……………………………………………………. xiii

 CHAPTERS:

 1. INTRODUCTION.. 1

 2. PEER TO PEER SYSTEM.. 4

 2.1. Background... 4

 2.2. Overview.. 4

 2.3. Basic Definition.. 6

 2.4. Peer to Peer Classification.. 6

 2.5. Peer to Peer Applications... 8

 2.6. Peer to Peer Characteristics.. 10

 2.7. Examples of well-known peer to peer systems............................. 11

 2.7.1. Napster.. 11

 2.7.2. Gnutella... 11

 2.7.3. Free Net... 12

 2.7.4. Search for Extra-terrestrial Intelligence (SETI@home).... 12

 2.7.5. Groove... 12

 2.7.6. JXTA... 13

 2.7.7. Chord... 13

 2.7.8. Content Addressable Network (CAN) 13

 2.7.9. Bit Torrent... 14

 2.7.9.1. Sharing by torrent.. 14

 2.7.9.2. Upload and share torrent files........................... 14

 3. PUBLISH/SUBSCRIBE SYSTEM... 15

 3.1. Existing Topic-based Publish/Subscribe Systems.......................... 16

 3.2. Existing Content-based Publish/Subscribe Systems..................... 19

 4. PROBLEM FORMULATION..…………………………………………. 22

 4.1. Preliminaries.. 22

 x

 4.2. Fault Tolerant Overlay Networks Design Problem and Greedy

Merge (GM) Algorithm... 23

 4.3. 2TCO Problem and GM2 Algorithm... 23

 4.4. Fault Tolerant Overlay Networks Design Problem and Our

Algorithm GM3... 25

 4.4.1. Example of GM3 Algorithm.. 26

 5. EXPERIMENTAL RESULTS... 33

 5.1. Maximum Node Degree.. 33

 5.2. Average Node Degree.. 35

 5.3. Subscription Size... 36

 6. CONCLUSION... 38

 REFERENCES... R1

 APPENDICES.. A1

 A. CURRICULUM VITAE........…...……….......………………………….. A1

 xi

LIST OF FIGURES

FIGURES

Figure 1 Types of computer system…………….……………………...... 5

Figure 2 Client-Server Model vs. different Peer to Peer Models ……….. 8

Figure 3 Basic Pub-Sub System... 16

Figure 4a Example of GM3 algorithm step1 nodes without any edge........ 26

Figure 4b Example of GM3 algorithm step 2 add edge 1 with max

intersection. ... 27

Figure 4c Example of GM3 algorithm step 3 add edge 2 with max

intersection. ... 27

Figure 4d Example of GM3 algorithm step 4 add edge 3 with max

intersection. ... 28

Figure 4e Example of GM3 algorithm step 5 add edge 4 with max

intersection. ... 28

Figure 4f Example of GM3 algorithm step 6 add edge 5 with max

intersection. ... 29

Figure 4g Example of GM3 algorithm step 7 add edge 6 with max

intersection .. 29

Figure 4h Example of GM3 algorithm step 8 add edge 7 with maximum

weight ... 30

Figure 4i Example of GM3 algorithm step 9 add edge 8 with maximum

weight ... 30

Figure 4j Example of GM3 algorithm step 10 add edge 9 with maximum

weight ... 31

Figure 4k Example of GM3 algorithm step 11 add edge 10 with

maximum weight .. 31

Figure 4l Example of GM3 algorithm step 12 add edge 11 with

maximum weight .. 32

Figure 4m Figure 4m Example of GM3 algorithm step13 add last edge

with maximum weight there is a 2-connected component in

each of the topics... 32

Figure 5 Maximum node degree for GM, GM2 and GM3 when number

of topics is 100... 34

Figure 6 Maximum node degree for GM, GM2 and GM3 when number

of topics is 200…………………………………………………. 34

Figure 7 Average node degree for GM, GM2 and GM3 when the

number of topics is 100 ……………………………………….. 35

Figure 8 Average node degree for GM, GM2 and GM3 when the

number of topics is 200………………………………………... 36

 xii

Figure 9 Maximum node degree for different subscription size (Number

of nodes (200) and number of topics is 100) ………………….. 37

Figure 10 Average node degree for different subscription size (Number

of nodes (200) and number of topics is 100)…………………... 37

 xiii

LIST OF ABBREVIATIONS

AOL America Online

BOINC Berkeley Open Infrastructure for Network Computing

CAN Content Addressable Network

CONN.COMPS Content Addressable Network

DHT Distributed Hash Tables

DOS Denial of Service

FLOPS Floating -Point Operations Per Second

FTP File Transport Protocol

GM Greedy Merge

KBR Key Based Routing

LAN Local Area Network

MIN AV-TCO Minimum Average Degree Topic Connected Overlay

MSN Microsoft Network

NNTP Network News Transfer Protocol

NP Nondeterministic Polynomial time

Pup / sub Publish / Subscribe

RSS Radio Service Software

SETI@home Search for Extra-Terrestrial Intelligence

TC Topic-Connected

TCO Topic Connected Overlay

TCP Transmission Control Protocol

TPSO Topic-Based Pub/Sub Overlay Network

UUCP Unix To Unix Copy Protocol

 1

CHAPTER 1

INTRODUCTION

Publish ⁄ subscribe allows to decouple the provider of some information with the

consumers of the same information. Publishers publish their messages through

logical channels and subscribers receive the messages they are interested in by

subscribing to the appropriate services, which deliver messages through these

channels.

A pub/sub system is called a topic-based, when the messages are published to

“topics”, where each topic is uniquely linked with a logical channel Publishers in

topic-based system post messages to any message broker or queue, for topic based

pub-sub model messages, belonging to a specified topic to which subscribers can

subscribe to. Subscribers can subscribe for the messages published by the publisher

system through topic based subscription by a message broker or a queue. The

responsibility of publisher is to define the classes of messages to which subscribers

can subscribe. In a content-based system, messages are delivered to a subscriber

whose their defined constraints are match the attributes of those messages only, for

each logical channel there is a subset of these attributes to characterize it. The

subscriber is responsible for categorizing the messages.

 Pub/sub communication systems provide the opportunity for better scalability and

easy application (see e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]). In

these systems there are many real-world applications that are built such as

highlighted abundance of accepted applications on the Internet, such as stock market

players monitor, RSS [13] games, on-line and many others .

In this thesis, we will design a (peer-to-peer) overlay network , in the sense that for

each topic, the subgraph made by the nodes interested in topic will be 2- connected.

 2

This system has completely decentralized topic based pub/sub system where will be

connected to any network-based overlay on a given topic, therefore nodes subscribed

in a specific topic does not need to rely on other nodes to direct their messages, such

this overlay network named a topic 2-connected.

Topic-connected overlay (TCO) defined, as an overlay, where all nodes interested in

the same topic are ordered in a connected distribution sub-overlay, Gregory Chockler

et al[14]. A TCO guarantees that nodes not interested in a topic not need to

contribute to distributing information on that topic. Publication routing TCOs keeps

bandwidth and computational resources otherwise lost on forwarding messages of no

interest to the node. The result of a simpler matching engine design, smaller

forwarding tables and more efficient routing protocols is a topic-connectivity. From

a security view, TCOs are wanted when messages are to be shared through a network

among a set of relied users without leaving this set.

The complexity of pub/sub overlay network can be estimated by the cost of

broadcast of the topic-based on the network. Like other systems, trade-off between

the space and time exists in two opposed measures: One of them, the total time taken

by the broadcast wanted to be as small as possible, the other one, is to save the total

degree of nodes small for memory and node bandwidth considerations. For instance,

if there are many of nodes subscribed to the same topic, the result is a star overlay

with best possible diameter but the degree for the node is so much . It is not easy to

achieve a balanced structure (e.g., a balanced binary tree) for each subject without

increasing the node degrees as the nodes subscription sets sizes.

Some of practical solutions failed in keeping the reduction of both the diameter and

the node degree. A cycle construction (or a tree or any other isolated overlay

structure) is a simple and popular solution where all nodes which interested in a topic

connected autonomously for each given topic [12]:

This structure may result in a network with node degrees proportional to the nodes’

subscription sizes, whereas a more careful structure, taking into account the

correlations among the node subscription sets might result in more smaller node

 3

degrees and total number of edges.

Low node degree is useful for both of process practices and bandwidth restrictions.

Nodes able to manage large numbers of its adjacent links For example, monitor the

availability of its neighbors, incurring in heartbeats and keep-alive state costs, and

connection state costs in TCP and each of the links pass through the traffic, with less

advantage token from totaling the traffic in spite of reducing the number of packet

headers, which could be responsible for important part of the traffic for small

messages [15].

Well-correlation among the subscriptions of node decreases the node degrees and

number of edges required by a topic 2-connected overlay network. To achieve that

connect two nodes which have many same topic subscription, in this case just one

edge fulfill connectivity of many topics for those two nodes. The suggestion of

several recent empirical studies is that correlated workloads are actually common in

practice [13].

In this work, we first study the creating topic-based pub/sub overlay networks

problem with low node degrees. The following problem that we consider exactly:

Fault Tolerant Overlay Networks Design Problem:

Given V as set of nodes, a set of topics T, and the node interest assignment I, connect

the nodes in V into a topic 2-connected overlay network G with least possible

maximum degree. We design an algorithm for this problem named GM3. We did

simulations and compared our algorithm with previous algorithms.

 4

CHAPTER 2

PEER TO PEER SYSTEMS

2.1 Background

Over the recent decades, a body of knowledge regarding technology has been

developed. Running various technological applications has never been easier as it is

in the modern era. The main aim of this chapter is to explain the technological

development of peer to peer systems. This is particularly useful for this thesis.

2.2 Overview

The Computer Systems are in many instances distributed across a wide range of

applications. However, there are some which remain on a central position as

illustrated in Figure 1.

The Distributed Systems fall into two classes of models. They include:

(i) Client-Server Model.

(ii) Peer to Peer Model.

Obtaining data is dependent on the protocol that dictates the communication policies

with the client-server model. To access data, a client has to ensure that they access

the main server. Some of the main servers include the web server or the FTP server.

There are some issues that bedevil the client-server model. The challenges include

fault tolerance and scalability. These challenges compel researchers to come up with

a peer to peer mode as the other option.

 5

Figure 1 Types of computer system.

Figure 1 is a visual representation of the peer to peer system. According to the

Figure, peer to peer system entails applications and systems that use distributed

resources to conduct many of its activities especially those that should be

decentralized. The resources entail the computing power, computers, data and the

network bandwidth among others. All these are necessary in such functions. Peer to

peer systems have existed for a long time. In fact, USENET is one of the ancient peer

to peer systems that provide a news group service. USENET depends on Unix to

Unix Copy Protocol (UUCP) when one needs to use the Unix machine to exchange

files, dial another peer or send emails. In addition, it uses the Network News Transfer

Protocol (NNTP). Through this, it can allow peers on Usenet network to spot a new

newsgroup and share messages and files with the group. A peer to peer system is

more advantageous when compared other centralized systems. Through the system, it

is possible to bring together resources used by users and produce large bits of

distributed information. The fact that it is possible for computers to communicate

together makes it easy to use a network bandwidth without much ado. Many of the

features of the peer to peer systems especially the file sharing application is popular

among internet users. Peer to peer systems permeates through science and other

academic fields. Hence, it is possible to use all the resources of a personal computer

with ease. The peer to peer system allows internet users to embed devices, and

accesses the real time data.

 6

2.3 Basic Definition

The peer to peer network that computers in the same network line use can perform

dual functions both as the provider and the customer at ago. Hence, each of the

devices in the network can request and still provide information from other

applications and devices attached to the network. A peer-to-peer network refers to a

local computer network LAN made up of many devices. These devices are equal and

do not have any provider server in each of the network’s devices. Such a network is

also referred to as the workgroup. The work group refers to a number of devices that

work together to perform a particular task. A work group is made up of at most ten

devices. A peer to peer network is recommended for small networks and users who

perform identical tasks. They are usually found in offices that use computers

extensively.

2.4 Peer to Peer Classification

Peer to peer systems are classified into structured and unstructured systems based on

the architecture of the distributed nodes. An unstructured peer to peer network has no

joint that joins the topology and data storage. None of the nodes in the network is

responsible for managing or controlling information from its immediate neighbors. A

blind search technique to unstructured peer to peer systems may breed quantifiable

results. This inundates in all peers with a request before solving it. Gnutella [16] is a

typical example of this type.

Structured peer to peer network functions as per the dictates of the Distributed Hash

Tables (DHT). This makes the searching operations better off when compared to the

experience when using the unstructured networks [17]. Files in such networks are

well organized in the nodes [18]. However, one ought to incur more expenses to

manage such information. In this case, it is necessary to maintain the routing table.

Some of the examples of such a Chord [19], CAN [20] and Kademlia [21]. They are

also classified into:

a. Tight.

 7

b. Loosely coupled system.

The two are utterly dependent on the degree of coupling. However, in tight systems,

there is only one set at a time. Therefore, the user may either use or leave it alone.

Identification logic is available for each of the peer. A unique mapping function is

used when there is a need to store and retrieve data. This function helps other peers

that are in the same group. The routing query is preferred over quiting an overlay

network because there is a need to maintain the overhead of a network structure. On

the other hand, loosely coupled systems beat tightly coupled limitation as it

constrains the population of the peer [22]. Some of the main examples of the first

class include Chord [19] and CAN [20]. On the contrary, Free Net [23] and Gnutella

are some of the examples of the second. A peer to peer system has three models.

These models include the decentralized, the hybrid and the super peer model as

illustrated in figure 2.

In decentralized model, all its members have equal capabilities and duties. Examples

include Free Net [23].

In the hybrid model, there exists an intermediary node which serves as the directory.

Its duty is to facilitate the collaborative efforts of the central server/directory. For

example Soft wax [24] and Napster [25]. They are referred to as the hybrid models

because they use both client/server model and the peer system.

Super-peer model is one of the broker solutions that intermediate between the hybrid

and the decentralized model. The super-peer model identifies the nodes which are

stronger than normal codes. These nodes are referred to as the search hub. They are

more effective as they retain a resource directory that can be used to resolve the

user’s queries.

The KaZaa (implements Fast-track protocol) [26] and Jxta [27] are some of the

examples which use the super peer model.

 8

 (a) Client-Server Paradigm (b) Pure Peer to Peer

 (c) Hybrid Peer to Peer (d) Super-node Peer to Peer

Figure 2 Client-Server Model vs. different Peer to Peer Models.

Note:

Some sources of information such as books, [28] brand the super peer model as being

one of the hybrids. This is because none of the peers match their roles. Notably, the

hybrid model is also known as the decentralized model.

2.5 Peer to Peer Applications

• Content Sharing

File sharing applications have become more popular among users. Peer to peer

systems’ file sharing applications makes it easy for people using a similar network to

share the files. Moreover, it allows them to search and share digital files. Using a

 9

peer to peer network is possible through the use of a software that allows one

download a file from a computer on the network. Research indicates that 30% (day-

time) and 70% (nighttime) of all the internet traffic in Germany in October emanated

from applications that enable sharing of files. The study was conducted by the

IPOQUE survey. Statistics indicate that eDonkey and Bit Torrent are some of the

most popular file sharing applications as they generate 95% of all the traffic. In fact,

they have become more popular than other popular networks such as Kazaa’s Fast-

track [29] .

• Distributed Computing

 Distributed computing refers to a technique that empowers the peer network to work

jointly to solve a computational problem. The aim of distributed computing is to

make use of the idle resources and computers in other networks. Reports indicate that

at the end of 2006, SETI@home computed for at least was 274.0. TFLOPS [30] (1

TFLOPS has a similar value to 10
12

 FLOPS). Notably, the fastest super-computer

computed 280 TFLOPS.

• Collaborative Systems

Collaborative systems make it easier for the peers to share on-line games. It is also

ideal when there is a need to use instant messaging programs such as MSN and AOL

Messengers alongside the use of communications programs such as Skype that allow

users to video chat.

• Platforms

A platform is not an application. It is an architectural design popular in many

network applications. A platform allows one to share files across the network. A

platform supports the main components of peer to peer systems. These components

include naming, security, communication, peer discovery and resource aggregation.

Furthermore, they make it easy for one to operate many platforms at ago. Some of

the major examples of the peer to peer platform include the Extra and Net.

 10

2.6 Peer to Peer Characteristics

The following are the characteristics of peer to peer

 Symmetry

Symmetry refers to the nodes’ ability to serve the functions of both a server and a

client at ago. The symmetry feature enables the peer to peer system to function in a

decentralized system. It makes the peer to peer system exclusive among other

systems depending on their position on the client/server model.

 Decentralization

This is the most popular of all the features of peer to peer systems. This feature does

not have any central node. Hence, it does away with the boundaries that differentiate

the server from the client. It is advantageous as it is more flexibility and has a better

capacity to counter faults [31].

 Scalability

The scalability feature allows the servers and the nodes to interact with each other

freely. Despite this, it does not affect the performance of the network.

 Fault tolerant

Disappearance of too much load on nodes and failure of the central node minimizes

the network’s performance. The loss of a peer is compensated by the pure and the

super peer model.

 Self-Organization

Self-organization is quite useful as it controls the behavior of the system and its

features. This is particularly useful for adaptability and self-maintenance. Self-

 11

organization is a critical issue for the peer to peer systems as the nodes join the

system spontaneously. Ledlie et.al. [32] observe that 80% of all the nodes stay in the

peer to peer system for at least an hour. One of the causes of failure is the

unpredictable number of users. Hence, management of such a fluctuating

environment is not easy.

 Resources Sharing

Peer to peer network makes it easy to share sensor information through its many

applications and services. File sharing applications allow the user to share many

forms of information. The network’s computing power increases with the number of

participants.

 Fast Resource Location to Determine Where to Find The Resource

In the client/server model, the address of the server is not strange. Hence, requests

are directed server without an interval. Peer to peer systems create overlay networks

whose requests is to route any node efficiently. This means that means peers can

discover and locate any roaming resources.

2.7 Examples of well-known peer to peer systems

2.7.1 Napster

Napster in 1999 [25] was one of the earliest peer to peer services that made file

sharing easy. The Napster’s central directory contains all the information that one

searches for. It is the boots trap node which ensures that each node takes part in the

network. A single point’s failure may attack the system when there is a Denial of

Service (DoS).

2.7.2 Gnutella

Gnutella [16], [33] is one of the applications that provide a reliable distributed

 12

system. The (V.6 or Gnutella2) uses the super peer model to improve the search

experience. On the other hand, Gnutella (V.4) depends on query flooding for

searching information across a range of networks. However, in Gnutella, it is not

possible to control the peers. It is branded as being a peer to peer system due to its

self-organization. It is evident that flood routing impacts negatively on the Gnutella

network. Hence, it is likely to limit its scalability to thousands of peers.

2.7.3 Free Net

Free Net is one of the peer to peer systems used for distributing, replicating and

retrieving files. Its aim is to maintain an anonymous nature of the readers and authors

of the data. Free Net creates an exploratory Document Routing Model used for

maintaining the decentralized mode. This mode is also referred to as the Key Based

Routing (KBR). Free Net has an excellent scalability as it does not have a central

node. They are self-organized as the nodes are not easy to control.

2.7.4 Search for Extra-terrestrial Intelligence (SETI@home)

SETI@home [34] is an ancient, large distributed computed project that joins many

computers to the independent equations. Since December 2005, SETI@home uses

BOINC. BOINC is one of the distributed platforms that support many applications in

different scientific fields such as Biology and Astronomy. The BOINC architecture

depends on the client server including the client software and the server system. Lack

of direct communication has been blamed for the occurrence of conflicts between the

peer to peer systems and the client server.

2.7.5 Groove

Groove Virtual Office is an excellent method of creating a pool of workers on the

same page. Groove refers to a desktop windows based on shared and direct

messaging to peer to peer application targeted to the Internet users. Groove is one of

the bastard models. It uses a centralized server for supporting centralized services.

 13

2.7.6 Jxta

Jxta refers to an overlay network that may create a decentralized peer to peer system.

It makes it possible for distributed computing applications to function normally on

many of the devices of the cellular devices such as Personal computers, personal

digital assistants and cell phones. Unlike others Jxta is network independent. It is

ideal for computing infrastructure and networking programming.

2.7.7 Chord

Chord is one of the structured overlay networks that is found on the DHT. It is a

decentralized system that can retrieve data using an O (log (N)) messages. In this

case, N represents the number of nodes in a certain system. For a system to join or

leave expensive operations in the chord overlay network, they demand O (log (N) 2)

messages. Chord network’s codes have a 2m ring. In this case, m is the constant

integer that can retrieve data in O (log (N). Each of the nodes may retain all the

information of both successors and the predecessors.

2.7.8 Content Addressable Network (CAN)

CAN is one of the decentralized peer to peer systems. CAN provides a DHT function

as one of the algorithms that is used as a document routing model. It is a peer system

that organizes the nodes into a toroidal space. Each of the nodes is directly linked to

a hypercube. Therefore, its neighbors influence the neighboring ice cubes. The CAN

algorithm depends on an hash function to draw a determinate point on the coordinate

space. The node at the mid-zone is where the point lies as the data element. The point

may be retrieved through a greedy forwarding pattern. CAN is potentially capable of

routing a message in the neighboring peer depending on the target coordinates that

are strategically located in O(d.N1/d). In this case, N represents all the nodes in an

overlay network. On the other hand, d represents the dimensions.

 14

2.7.9 Bit Torrent

The Bit Torrent refers to a protocol that may be used for distributing large volumes

of data through the internet to the users of peer to peer systems. Exchanging the files

among a group of users does not necessarily need a broker. It only needs a tracker. A

tracker refers to a program that is normally housed at the server. The tracker

coordinates the communications between the peer users. All the data downloaded or

uploaded is transmitted to the users without much ado.

 Bram Cohen is the programmer who designed the Bit Torrent protocol back in the

first quarter of 2001. However, the program was used for the first time in 2
nd

 July

2001. The python was used as the programming language for the Bit Torrent

Protocol.

2.7.9.1 Sharing by Torrent

The availability of the tracker determines whether the torrent can share the protocol

or not. The duty of the tracker is to coordinate communication between the torrent

program and the participants. The torrent is responsible for the assimilation process

when there is a need to connect the tracker to the main ideal for purposes of

developing a file extension. However, the file should not exceed 4MB and it should

not be less than 64KB. Such a file is made available to the users of the software as

one may download the files using the tracker and a torrent program.

2.7.9.2 Upload and Share Torrent Files

Internet users browse to search for torrent files that match with their most preferred

downloads. The torrent program supports formulas such as the bit torrent, utorrent

and the bit connect. The formulas are also referred to as the client in an instance

where the program is linked with a tracker in a previous torrent file. Through this, the

user may share the files with a group in the peer system.

 15

CHAPTER 3

PUBLISH / SUBSCRIBE SYSTEM

The subscribe system is one of the newest paradigms used for creating large scaled

applications for various systems. A pub-system is mainly used on an overlay network

to enable the publisher distribute information to the subscribers. Surprisingly, there is

a crop of publishers who do not know that there are many consumers who use the

published information. Some of them publish information without the knowledge

that there are consumers who assess it through the system. They publish the

information through examining the characteristics of the information that it yet to be

published. Consumers/subscribers engage in various subscription mechanisms when

they are interested in some form of information. They subscribe and wait to be

informed of an upcoming event. Subscribe infrastructure has the duty of ensuring

that the events match. Moreover, it links the consumer’s subscriptions and sends the

matching events that they express interest in receiving.

There are two subscribe systems models. One of the models is content based while

the other one is topic based. A topic based model is identical to the newsgroups.

Hence, each of the users may express their wishes through linking their topics of

interest to a group. Notably, all the messages on a certain topic is available to the

users of a group that subscribes to it.

On the other hand, content based systems introduce a scheme of subscriptions.

Arguably, it is more desirable over the topic-based model. It has a competitive

advantage over the topic-based model as its schemes are related to the real content. It

is easier for users to express their concerns through creating special predicates of a

certain number.

 16

Figure 3 Basic Pub-Sub System

3.1 Existing Topic-based Publish/Subscribe Systems

The old architectural designs for subscribed systems are based on the client and the

broker. Therefore, its models are both broker and client based. A system that is

operational on the basis of either of the models is dependent on the server.

Essentially, a publisher transmits these events through the server. The serves as the

joint where events are channeled to the various subscribers and directed to them for

ease of use.

System solutions such as Siena [35], Gryphon [36], Hermes [37] or Corona [38] fall

in this category. The latest architectural designs for the subscribe systems utilize the

peer overlay model. They prefer it over the broker based and client based models.

This makes it easy to use the internet scale applications with ease to many users and

across a range of topics. The peer overlays fall into two major categories. They

include the unstructured and structured overlays.

Systems solutions such as Scribe [39] and Bayeux [40] are some of the major

examples of structured overlay networks. On the other hand Tera [4], Rappel [41],

StAN [42] and Spider Cast [43] are in the second category. There are some solutions

such as Quasar [44] or our solution, Vitis. These solutions utilize gossiping to create

high profile structured and unstructured overlays disseminate the events.

Constructing an overlay is a challenging activity. One of the major challenges that

bedevil this activity is to ensure that the subscribers receive the events which they

 17

have subscribed to receive. They find it quite difficult to maintain an average load as

there are many connections due to an extreme overhead.

Tera [4], Rappel [41], StAN [42], and SpiderCast [43] construct create a different

overlay for either of the topics. A node joins the overlay when it becomes a

subscriber of the topic. Hence, all the published events for a certain topic is

transmitted to the subscriber nodes. In this case, the traffic overhead is eliminated.

The nodes should be linked to the overlays depending on the number of topics which

the users have subscribed to. Hence, the degree of the node alongside the

maintenance paradigm of the overhead is linear when compared to the node

subscription. However, it cannot be used in Internet scale applications especially

when subscribers are signatories to many topics. An issue emergence when there is a

need to address the Vitis. This is because the nodes maintain some of the connections

regardless of the active subscriptions. To minimize the problems of the scale, Spider

Cast [43] compares the nodes in regard to the similarity of the nodes. The Spider

Cast authors argue that one link may be used to connect a node to many topic

overlays depending on the subscription associations. Hence, the connection needed

in each of the nodes is minimal. The user subscriptions can be presented through

relating the traces [13], [45]. This is utterly successful when handling minimal node

subscriptions. Despite this, the scalability of the Spider Cast is yet to be established

especially if there are many subscriptions. To complete many of the subscriptions

using Spider Cast, the application should have enough knowledge of other nodes that

have been in the system. It should have at least 5% of all the information. On the

other hand, the Vitis nodes do not utilize linear bits of information regarding other

nodes operating in the system. Hence, it is possible to subscribe to a wide range of

topics. There are other systems’ solutions that may be used to account for the

scalability. Some of them include bounding the node connections. For instance

Quasar [44], which is a gossip-based solution, or Scribe [39] and Bayeux [40], which

are DHT-based can be bounded.

For Quasar [44], each of the nodes may be exchanged with its neighboring nodes. It

is a form of subscription where the neighboring nodes may move away. Hence, all

the members of each of the nodes are available in the overlay. The node transmits

 18

many copies of the event randomly. Quasar can function without an overlay structure

used to encode information regarding the members of a group. Arguably, it does not

deviate from its design model regardless of the immediate environment. Moreover, it

records high traffic because it is not aware that there are node subscriptions.

Similarly, it includes many other nodes when transmitting an event to the

subscribers. On the other hand, in Vitis, it reaches the maximum ratio and reduces

the traffic through organizing related nodes into a series of clusters.

In Scribe [39] or Bayeux [40], nodes appear in a Distributed Hash Table (Pastry [35]

and Tapestry [46], respectively). Similarly, each of the nodes retains O (logN)

connections. Each of the topics should have a spanning tree and one rendezvous node

next to the root. The rendezvous node communicates to other nodes connected to the

spanning tree. However, using a spanning tree is not recommended as it compels the

nodes to transmit information which the subscribers have not subscribed for because

they appear on the path on the way of the rendezvous node. Hence, such a system

records a high traffic overhead. On the other hand, Vitis nodes have a minimal

degree and create a structure that resembles a tree for each topic. Noteworthy is the

fact that Scribe and Bayeux do not have group nodes. Instead, they form single nodes

depending on the topic’s subscriptions.

Using Magnet [47], [48] is one of the solutions that avails identical ideas in a

subscription link depending on the nodes being used. The magnet has to be

strategically placed in an overlay as it cannot trap the subscription’s link with ease.

Therefore, it is bounded on one of the dimensional spaces. The space should be a

point where a structured overlay originates from. The performance of a magnetic is

limited in a volatile environment. Some such volatile environments which the

magnet may not perform exceptionally well include the internet. On the contrary, the

Vitis may perform well in any of the dimensions and maintain the subscription

correlation owing to the fact that clustering is performed structurally. Lastly, research

to determine the location of resources for clouds [49], is ongoing. The study is

expected to reveal more information to enhance the understanding of the subscribe

system and clear away the ambiguities.

 19

3.2 Existing Content-based Publish / Subscribe Systems

Content-based subscribe system is one of the best platforms that may be used to

determine the events which many subscribers prefer. Therefore, it may be used to

determine which topics that should be published and delivered to the users.

Understanding this enhances content delivery to the interested users. Ongoing

research indicates peer to peer network is critical when handling technology based

research that involves tolerance of faults and scalability. Research indicates that

mixing subscriptions could be one of the ways of enhancing the performance of peer

nodes.

There are many solutions that could be used to enhance the efficiency of the

subscribe model [50], [47], [43], [4]. Many of the solutions enhance the performance

of the content based subscriptions to its users. For example, in Meghdoot [51], each

of the nodes emanates from a 2d dimensional space. Hence, each of the node

subscriptions is directly attached to a certain point. In this case, d represents the route

of the dimensional pattern. On the other hand, the CAN [52] overlay is useful when

there is a need to route the messages. One of the major criticisms laid against the

Meghdoot is its incompetent routing as there are many challenges that bedevil the

CAN overlay. However, Meghdoot is ideal when there is a need to match the

subscriptions. In addition, the node degree could liaise with many other features

linearly. The load on some of the nodes is not stable. This depends on the location of

the node in the CAN overlay.

Sub-2-Sub [53] is quite different from others. Unlike others, it divides the

subscription space into many units. In each of the units, there are only nodes that

have been subscribed into by the users. Each of the units function as a distinct topic

when using the topic based approach. A ring is used in each of the units to

disseminate the events that take place in each of the units. However, there are two

types of problems which emerge. One of the problems emanate from the fact that it is

difficult to create the units for complex subscriptions. Hyper [54], is one of the non-

peer-to-peer solutions used to solve problems for the content-based

publish/subscribe.

 20

The NP complete is one of the most challenging problems especially in the peer to

per network as it has a churn. In addition, retaining a ring in each of the units is not

easy as there are many overlays connected to the same node. Therefore, the cost of

maintaining it is exceptionally high.

Ferry [55] is one of the approaches that may be used to solve problems that occur in

the structured overlay network. It is particularly ideal when there are multiple

subscriptions on the overlay network. In this case, each of the nodes creates hash

values. Through this, it is possible to maintain the subscriptions that occur at the

rendezvous nodes. Once the event is published, it is distributed to the rendezvous

nodes and channeled to the subscribers in line with their subscriptions.

A procedure of solving the problems in Ferry is available in the eFerry [56]. The

procedure is applicable when the problem is complex depending on the subscription

registration. Other loadable properties can be identified through the use of certain

proposed mechanisms when handling the normal systems.

CAPS [57] is one of the solutions that demand a restricted node degree. Just like

Ferry, CAPS transmits the events to the subscribers. Similarly, it uses the meeting

model to sort out its installation issues to its subscribers. The difference between

Ferry and CAPS is that the latter generates values depending on each of the

subscriptions. Moreover, the meeting points for the nodes are installed for each of the

subscriptions. Later on, it matches them to the meeting nodes in the overlay link

depending on the subscriptions. One of the problems of using CAPS emanates from

the fact that it is easy to convert them to several other keys before installation.

Hence, chances of having high traffic turnover for the network are very high.

Moreover, matching can only be done centrally as there is no reliable method of

balancing the load.

Unlike the Meghdoot and Sub-2-Sub, the Vinifera nodes retain a fixed number of

connections. In this case, each of the nodes can only accommodate a small additional

load. Just like eFerry, Ferry and CAPS, Vinifera depends on a restricted node degree.

 21

Similarly, it uses an identical routing mechanism when installing subscription and

delivering events to the subscribers. However, it does not hash the feature names. It

only hashes the feature values using the order preserving hash function [58], [59].

This makes it easy to balance the load and distribute it through sharing the nodes

uniformly.

 22

CHAPTER 4

PROBLEM FORMULATION

4.1 Preliminaries

Let V represent the node sets while T represents the topics. Let n = |V |. The function

of interest I may be defined as I: V × T → {0, 1}. For the node v ∈ V and topic t ∈ T,

I (v, t) = 1 if and only if node v has a valid subscription to a certain topic (t) and I

(v, t) = 0 otherwise. For a set of nodes V , an overlay network G(V,E) is an

undirected graph on the node set V with edge set E ⊆ V ×V . For a topic t ∈ T, let

Vt = {v ∈ V |I(v, t) = 1}.

Given a topic t ∈ T and an overlay network G(V,E), the number of topic-connected

components of G for topic t is equal to the number of connected components of the

subgraph of G induced by Vt. An overlay network is called topic-connected if for

each topic t ∈ T, G has at most one topic-connected component. The graph’s

diameter refers to the length of the longest shortest path in the graph. The v node’s

degree in an overlay network G(V,E) has equal value to the sum of the edges

adjacent to v in G.

Fault Tolerant Overlay Networks design problem: Given a set of nodes V, a set

of topic T, and the interest function I, construct a topic 2-connect overlay network G

that has the least possible maximum degree .

 23

4.2 Fault Tolerant Overlay Networks Design Problem and Greedy Merge (GM)

Algorithm

 Chockler et. al. [60] introduced the Min Av-TCO problem. Their main aim was to

minimize the average degree of the node. In this chapter, the researcher presents the

widely accepted definition of the Min Av-TCO problem. Moreover, they outline

some of the major techniques that correspond to the Merge (GM) algorithm. The

algorithm is useful in this approach when looking for solutions to Min Max-TCO.

First, the researcher examines the accepted definition of the problem of Min Av-

TCO. When one has a set of nodes V, a set of topics and an interest assignment I, one

should connect the V nodes to a topic-connected G overlay network. They should

ensure that the overlay network has a minimum number of edges as they have a

minimum average node degree.

The Greedy Merge (GM) Algorithm [60]: Initially we have a set of nodes V and no

edges in between the nodes. In each of the steps, one should add the edge which

reduces the number of topic-connected components maximally

 The GM algorithm is not recommended for the Min Max- TCO problem as it does

not find good solution. The maximum ratio and the approximate ratio of the GM

algorithm may reach critical levels of Θ (n).

4.3 2TCO Problem and GM2 Algorithm

The Greedy Merge algorithm for the 2TCO is one of the effective methods applied to

the Min Avg-2TCO problem, GM2 for short. Although GM2 has an identical

structure as GM and other centralized algorithms that are used to build TCO [8], [9],

[60], GM2 has a different progress measure.

When given a TPSO (V,T, In t, E), the topic 2- connected of topic ∈ T, is identical

to a maximal that is 2-connected sub-graph directed towards a topic (i.e, it is not

available in large 2-connected sub-graph that are induced on t). It is also referred to

as the topic-connected component or topic-connected block. Therefore, each of the

 24

TC blocks in t ∈ T may either have a maximum 2 –TC sub-graph a bridge. The

bridge includes all the endpoints. There are instances where it may also have a lone

node in G (t). In addition, each the sub-graphs in G (t) is a TC block. The maximum

property of the TC blocks of on t ∈ T, they overlap with at least one of the nodes in

G (t). Therefore, each of the edges e ∈ E (t) is available on the TC block on G (t).

As illustrated in the Alg. 1, TPSO(V; T; Int ;E) starts in GM2 in an overlay

network. In this case, E = ∅. Hence, there are v|Int(v; t)}│ singleton TC-blocks for

each of the topics t ∈ T.

The sum of the TC-blocks at the beginning is

Bstart ∑ ∈
 ∈

 (1)

The algorithm computes for the edge of E iteration through iteration until TPSO (V;

T; Int; E) remains with one TC-block for each t ∈ T, i.e, 2 -topic-connected. Hence,

the sum of the TC blocks is minimized into being

Be ∈ ∈

4.4 Fault Tolerant Overlay Networks Design Problem and Our Algorithm GM3

Here, we presents our algorithm GM3 which is used to provide a solution to the

fault-tolerant overlay networks design problem. GM3 starts with an overlay network

G(V, ∅) at each iteration of GM3, an edge with maximum weight - where the edge's

weight (u, v) is given by decrease the number of topic 2-connected components

which would result from the addition of (u, v) to the current overlay network -

among the ones which minimally increases maximum degree of the current graph is

added to the overlay network's edge set. Let NC (V, E) indicate the sum of topic 2-

connected components in an overlay network represented by (V, E).

The first sixth steps of GM3 create an initial weighted graph G (V, Eˊ, w) on V ,

where Eˊ = V × V and w({u, v}) has equal value of amount of reduction in the

 25

number of topic 2-connected components causing by the addition of the edge (u, v)

to the current overlay network (represented by the edges in (OverlayEdges). At first,

this amount and the number of topics that nodes u and v have in common are equal.

Algorithm 1: Fault Tolerant Overlay Networks Design Algorithm (GM3)

1: Overlay Edges ← ∅

2: V ← Set of all nodes

3: G(V,Eˊ) ← Complete graph on V

4: for {u, v} ∈ Eˊ do

5: w {u, v} ← Number of topics that both of nodes u and v have

6: end for

7: while G (V, Overlay Edges) is not topic-connected do

8: Find maximum-weighted edge e on Gˊ(V,Eˊ, w) among the ones which increase

the maximum degree of G(V, Overlay Edges) minimally.

9: Overlay Edges = Overlay Edges∪ e

10: Eˊ ←Eˊ ∪e

11: for {u, v} ∈ Eˊ do

12: w{u, v} ← NC(V , Overlay Edges) - NC(V ,Overlay Edges ∪{u, v})

13: end for

14: end while

A look at GM3 similar that it is similar to GM. In fact, it can be presented in phases

with each of the phases being a number of edges that match with the nodes in the

sub-system connected to the connected components of various topics as illustrated

below. Matching of the selected edges used for an approximate ratio analysis cannot

be used for the GM.

It is evident that an algorithm is altered in O (|V |
4
|T|) time.

 26

 N6

 N3

4.4.1 Example of GM3 Algorithm

a. Start off with a singleton in a component of each of them (v, t)  V  T

Figure 4(a-g).

b. At each iteration: add an edge with maximum-weight among the ones which

increase the maximum degree minimally figure 4(h-m).

c. Halt the process when there is a 2-connected component in each of the topics

figure 4(m).

Figure 4a Example of GM3 algorithm step 1 nodes without any edge.

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 27

 N6

 N3

 N6

 N3

Figure 4b Example of GM3 algorithm step 2 add edge 1 with max intersection.

Figure 4c Example of GM3 algorithm step 3 add edge 2 with max intersection.

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 28

 N6

 N3

 N6

 N3

Figure 4d Example of GM3 algorithm step 4 add edge 3 with max intersection.

Figure 4e Example of GM3 algorithm step 5 add edge 4 with max intersection.

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 29

 N6

 N3

 N6

 N3

Figure 4f Example of GM3 algorithm step 6 add edge 5 with max intersection.

Figure 4g Example of GM3 algorithm step 7 add edge 6 with max intersection.

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

Topic
of 2-

conn. comps

A 3

B 3

C 4

D 5

E 3

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 30

 N6

 N3

 N6

 N3

Figure 4h Example of GM3 algorithm step 8 add edge 7 with maximum weight.

Figure 4i Example of GM3 algorithm step 9 add edge 8 with maximum weight.

Topic
of 2-

conn. comps

A 3

B 3

C 2

D 1

E 3

Topic
of 2-

conn. comps

A 1

B 3

C 2

D 1

E 3

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 31

 N6

 N3

 N6

 N3

Figure 4j Example of GM3 algorithm step10 add edge 9.

Figure 4k Example of GM3 algorithm step11 add edge 10 with maximum weight.

Topic
of 2-

conn. comps

A 1

B 3

C 2

D 1

E 3

Topic
of 2-

conn. comps

A 1

B 3

C 2

D 1

E 1

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 32

 N6

 N3

 N6

 N3

Figure 4l Example of GM3 algorithm step12 add edge 11 with maximum weight.

Figure 4m Example of GM3 algorithm step13 add last edge with maximum weight

there is a 2-connected component in each of the topics.

Topic
of 2-

conn. comps

A 1

B 1

C 2

D 1

E 1

Topic
of 2-

conn. comps

A 1

B 1

C 1

D 1

E 1

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

{A,B,D}

{C,E}

{A,B,C,D}

 N4

 N2

 N1

{A,D,E}

{B,C,D}

N5

{C,D,E}

 33

CHAPTER 5

EXPERIMENTAL RESULTS

There are three major algorithms. They include the GM [60], the GM2 algorithm and

our GM3 algorithm. We used C++ language for simulation. Comparing them

depends on the degree generated by the overlay graph. The results of the experiments

indicate that the GM3 decreases the maximum degree of an overlay network .

5.1 Maximum Node Degree

In the experiment, the nodes do not exceed 400. The minimum number of the nodes

is 200. For the first experiment, (Figure 5) has a total of 100 topics. In the second

experiment, (Figure 6) has a total of 200 topics. Number of the subscriptions fixed to

s = 10. Each node is interested in each topic uniformly at random. The setting of this

experimental looks like previous studies [60].

Figure 5 indicates that the maximum degree by comparing the three algorithms

(GM, GM2 and GM3). A rise in the number of nodes translates into a decrease in the

graph’s maximum degree for the GM3. This is because the GM3 algorithm may

move up to the edges that have a higher correlation when the number of the nodes

rises. Noteworthy is the fact that an increase in the number of nodes causes the

graph’s maximum degree for the GM and GM2 algorithm to increase. Therefore,

there are many nodes that have a higher correlation. In this case, the GM and GM2

algorithms assign edges to the nodes when their number rises. The GM3 optimizes

the GM 38% and GM2 56% on max degree. This is only possible in an instance

where the results of the GM3 and those of the GM and GM2 are compared in (Figure

5). Similar results are illustrated in (Figure 6). Both in Figure 5 and Figure 6, the

maximum degree increase slightly for GM and GM2. On the other hand, the

 34

maximum degree decreases for our algorithm the GM3. This is because there is

minimal correlation because the topics have increased.

Figure 5 Maximum node degree for GM, GM2 and GM3 when number of topics is

100.

Figure 6 Maximum node degree for GM, GM2 and GM3 when number of topics is

200.

0

5

10

15

20

25

30

35

0 100 200 300 400 500

M
ax

im
u

m
 D

e
gr

e
e

Number of nodes

GM algorithm

GM2 algorithm

GM3 algorithm

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400

M
ax

im
u

m
 D

e
gr

e
e

Number of nodes

GM algorithm

GM2 algorithm

GM3 algorithm

 35

5.2 Average Node Degree

The settings of the experiment for this section are identical as those of the previous

sub-section. Figure 7 shows the GM, GM2 and the GM3 algorithms. The comparison

is dependent on their average degree. The algorithms prefer the edges that have a

larger node correlation. This is done when the nodes increase because the graph’s

average degree decreases for all the three algorithms. This is expected when the

nodes increase.

GM is better off when compared to GM2 and the GM3, 40% on average (Figure 7).

Similar results are valid for Figure 8.

Figure 7 Average node degree for GM, GM2 and GM3 when the number of topics

is 100.

0

2

4

6

8

10

12

0 100 200 300 400 500

A
ve

re
ge

 D
e

gr
e

e

Number of nodes

GM algorithm

GM2 algorithm

GM3 algorithm

 36

Figure 8 Average node degree for GM, GM2 and GM3 when the number of topics is

200.

5.3 Subscription Size

In this experiment, the number of nodes is 200. In addition, the number of topics are

fixed; that is, 100. The size of the subscription does not exceed 40. On the other

hand, it is not less than 10. Research indicates that each of the nodes has an equal

interest in the available topics despite their random nature.

Figure 9 compares the GM, GM2 and the GM3 algorithms depending on the

maximum degree. The rise of the size of the subscription increases the correlation of

the node. In this case, the overlay network’s maximum degree for the GM, GM2 and

the GM3 algorithms decrease. They are mainly affected by the rise of the

subscription rise. GM3 becomes better than a GM by 13% and GM2 by 34% when

compared to other algorithms Figure 9.

Figure 10 compares the GM, GM2 and GM3 algorithms depending on their average

degree. The degree of the average overlay network decreases when the algorithms

spot edges that have a higher correlation. This is applicable for all the three

algorithms. GM beats them by 36% when compared to the GM2 and GM3 algorithm

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

A
ve

rg
e

 D
e

gr
e

e

Number of nodes

GM algorithm

GM2 algorithm

GM3 algorithm

 37

as illustrated in Figure 10.

Figure 9 Maximum node degree for different subscription size (Number of nodes

(200) and number of topics is 100).

Figure 10 Average node degree for different subscription size (Number of nodes

(200) and number of topics is 100).

0

5

10

15

20

25

30

0 10 20 30 40 50

M
ax

im
u

m
 D

e
gr

e
e

Number of subsicription

GM algorithm

GM2 algorithm

GM3 algorithm

0

2

4

6

8

10

12

0 10 20 30 40 50

A
ve

re
ge

 D
e

gr
e

e

Number of subsicription

GM algorithm

GM2 algorithm

GM3 algorithm

 38

CHAPTER 6

CONCLUSIONS

In this thesis, we study a new optimization problem (Fault Tolerant Overlay

Networks Design) that constructs a practical and scalable overlay network for

publish/subscribe communication with many topics. We presented a topic 2-

connected overlay network design algorithm GM3 which is heuristic for the Fault

Tolerant Overlay Networks Design problem.

We presented a polynomial-time overlay design algorithms, GM and GM2, we

design our algorithm for the Fault-Tolerant Overlay Networks Design problem,

namely the GM3 algorithm, especially for highly correlated pub/sub workloads.

Our experimental results validate our formal analysis for our algorithm (GM3), the

obtain result show that the maximum degree resulting from our algorithm GM3 is

best than which obtained by GM and GM2 algorithms. When we compare the results of

GM, GM2 and GM3 algorithms, GM3 improves GM by 38% and GM2 by 56%.

When we compare GM, GM2 and GM3 algorithms according to average node

degree, average node degree produce by GM is better than that generated by the

GM2 and GM3 by 40% .

In subscription experiment, first we compare GM, GM2 and GM3 algorithms

according to the maximum degree. When the size of the subscription increase , the

overlay network’s maximum degree decrease for the GM, GM2 and the GM3

algorithms. GM3 is better than a GM by 13% and GM2 by 34%. Second comparison

on the average degree of the overlay network. GM beats GM2 and GM3 algorithms

by 36%.

 39

There are several things important lines in the work to be design efficient distributed

algorithms for the MinMax-2TCO problem, and to look at this problem under the

line of a dynamic configuration of the node set V and the interest assignment I, our

designed algorithms are capable of achieving more reliable topic 2-connectivity by

compromising the maximum node degree and average node degrees insignificantly.

 R1

REFERENCES

1- Eugster P. T., (2003), “The Many Faces of Publish/Subscribe”, ACM

Computing Surveys (CSUR), vol.35, no.2, pp. 114-131.

2- Anceaume E., (2006), “A Semantic Overlay for Self-Peer-to-Peer

Publish/Subscribe”, Distributed Computing Systems ICDCS, 26th IEEE

International Conference, pp. 22-22.

3- Baehni S., (2004), “Data-Aware Multicast”, IEEE, DSN, International

Conference, pp. 233-242.

4- Baldoni R., (2007), “TERA: Topic-Based Event Routing for Peer-To-Peer

Architectures”, 1st international conference on Distributed event-based

systems (DEBS), ACM, vol.6, pp. 2-13.

5- Banerjee S., (2002), “ Scalable Application Layer Multicast”, ACM, vol.32,

no.4, pp. 205-217.

6- Bhola S., (2002), “Exactly-Once Delivery in A Content-Based Publish-

Subscribe System”, IEEE, Dependable Systems and Networks, DSN,

International Conference, pp. 7-16.

7- Carzaniga A., (2004), “A Routing Scheme for Content-Based Networking”,

INFOCOM, Twenty-third Annual Joint Conference of the IEEE Computer

and Communications Societies, vol.2, pp. 918-928.

8- Castro M., (2002), “Scribe: A Large-Scale and Decentralized Application-

Level Multicast Infrastructure”, Selected Areas in Communications, IEEE

Journal, vol.20, no.8, pp. 1489-1499.

 R2

9- Chand R., (2005), “Semantic Peer-To-Peer Overlays for Publish/Subscribe

Networks”, Euro-Par 2005 Parallel Processing, Springer Berlin Heidelberg,

vol.3648, pp. 1194-1204.

10- Guerraoui R., (2004), “Gossip: A Gossip-Based Structured Overlay

Network for Efficient Content-Based Filtering”, No. LPD-REPORT-005).

11- Levis R., (1999), “Advanced Messaging Applications with MSMQ and

MQSeries”, QUE.

12- Voulgaris S., (2006), “Sub-2-Sub: Self-Organizing Content-Based Publish

Subscribe for Dynamic Large Scale Collaborative Networks”, IPTPS.

13- Liu H., (2005), “Client Behavior and Feed Characteristics of RSS, A

Publish-Subscribe System for Web Micronews”, The 5th ACM SIGCOMM

conference on Internet Measurement, pp. 3-3.

14- Chockler G., (2007), “Constructing Scalable Overlays for Pub-Sub with

Many Topics: Problems, Algorithms, and Evaluation”, the twenty-sixth

annual ACM symposium on Principles of distributed computing, PODC, pp.

109-118.

15- Chockler G., (2007), “SpiderCast: A Scalable Interest-Aware Overlay for

Topic-Based Pub/Sub Communication”, 1st International Conference on

Distributed Event-Based Systems (DEBS). ACM, vol.6, pp. 14-25.

16- Hughes D., (2005), “Free Riding on Gnutella Revisited: The Bell Tolls?”,

Distributed Systems Online, IEEE, vol.6, no.6, pp. 1.

17- Bo CW., (2003), “Peer-to-Peer Overlay Networks: A Survey”, Department

of Computer Science, The Hong Kong University of Science and

Technology, Hong Kong, Available from: citeseer.ist.psu.edu/706822.html,

pp. 9.

18- Cohen E., (2002), “Replication Strategies in Unstructured Peer-to-Peer

Networks”, ACM SIGCOMM Computer Communication Review, vol.32,

no.4, pp. 177-190.

 R3

19- Stoica I., (2001), “Chord: A Scalable Peer-to-peer Lookup Service for

Internet Applications”, ACM SIGCOMM Computer Communication

Review, vol.31, no.4, pp. 149-160.

20- Ratnasamy S., (2001), “A Scalable Content Addressable Network”, ACM

SIGCOMM, vol.31, no.4, pp. 161-172.

21- Maymounkov P., (2002), “Kademlia: A Peer-to-Peer Information System

Based on The XOR Metric”, 1st International Workshop on Peer-to-Peer

Systems, Springer Berlin Heidelberg, pp. 53-65.

22- Hauswirth M., (2005), “Peer-to-Peer: Grundlagen und Architektur”,

Datenbank-Spektrum, vol.5, no.13, pp. 5–13.

23- http://freenetproject.org, (Data Download Date: 05.04.2015).

24- http://www.softwax.com, (Data Download Date: 01.05.2015).

25- http://www.napster.com, (Data Download Date: 01.05.2015).

26- http://www.kazaa.com/us/index.htm, (Data Download Date: 02.05.2015).

27- http://www.jxta.org, (Data Download Date: 04.05.2015).

28- http://www.intel.com, (Data Download Date: 05.05.2015).

29- http://www.ipoque.com/en/p2p_filter.html, (Data Download Date:

01.05.2015).

30- http://www.boincstats, (Data Download Date: 01.05.2015).

31- Mauthe A., (2003), “Peer-to-Peer Computing: Systems, Concepts and

Characteristics”, Praxis der Informationsverarbeitung & Kommunikation,

vol.26, no.2, pp. 60-64.

http://freenetproject.org/
http://www.softwax.com/
http://www.com/
http://www.kazaa.com/us/index.htm
http://www.jxta.org/
http://www.intel.com/
http://www.ipoque.com/en/p2p_filter.html
http://www.boincstats/

 R4

32- Ledlie J., (2002), “Self-Organization in Peer-to-Peer Systems”, The 10th

workshop on ACM SIGOPS European workshop, pp. 125-132.

33- Milojicic DS., (2002), “Peer to Peer Computing”, HP Laboratories Palo

Alto, vol.1.

34- http://setiathome.ssl.berkeley.edu/, (Data Download Date: 01.05.2015).

35- Carzaniga A., (2000),“Achieving Scalability and Expressiveness in An

Internet-Scale Event Notification Service”, The nineteenth annual ACM

symposium on Principles of distributed computing, pp. 219-227.

36- Strom R., (1998),“Gryphon: An Information Flow Based Approach to

Message Brokering”, in International Symposium on Software Reliability

Engineering, Citeseer.

37- Pietzuch P., (2002),“Hermes: A Distributed Event-Based Middleware

Architecture”, Distributed Computing Systems Workshops, 22nd

International Conference, IEEE, pp. 611-618.

38- Ramasubramanian V., (2006), “Corona: A High Performance Publish-

Subscribe System for The World Wide Web”, NSDI, Vol.6, pp. 2-2.

39- Castro M., (2002), “Scribe: A Large Scale and Decentralized Application-

Level Multicast Infrastructure”, Selected Areas in Communications, IEEE

Journal, vol.20, no.8, pp. 1489-1499.

40- Zhuang S., (2001), “Bayeux: An Architecture for Scalable and Fault-

Tolerant Wide-Area Data Dissemination”, ACM, The 11th international

workshop on Network and operating systems support for digital audio and

video, pp. 11-20.

41- Patel J., (2009),“Rappel: Exploiting Interest and Network Locality to

Improve Fairness in Publish-Subscribe Systems”, Computer Networks,

vol.53, no.13, pp. 2304–2320.

42- Matos M., (2010), “Stan: Exploiting Shared Interests without Disclosing

Them in Gossip-Based Publish/Subscribe”, IPTPS, pp. 9.

http://setiathome.ssl.berkeley.edu/

 R5

43- Chockler G., (2007), “Spider Cast: A Scalable Interest-Aware Overlay for

Topic-Based Pub/Sub Communication”, ACM, Inaugural international

conference on Distributed event-based systems, pp. 14-25.

44- Wong B., (2008), “ Quasar: A Probabilistic Publish-Subscribe System for

Social Networks”, IPTPS, pp. 2.

45- Tock Y., (2005),“Hierarchical Clustering of Message Flows in A Multicast

Data Dissemination System”, IASTED PDCS, pp. 320-326.

46- Zhao B., (2001),“Tapestry: An Infrastructure for Fault-Tolerant Wide-Area

Location and Routing”, Computer, vol.74, pp. 11–20.

47- Girdzijauskas S., (2010), “Magnet: Practical Subscription Clustering for

Internet-Scale Publish/Subscribe”, ACM, The Fourth ACM International

Conference on Distributed Event-Based Systems, pp. 172-183.

48- Girdzijauskas S., (2008), “Gravity: An Interest-Aware Publish/Subscribe

System Based on Structured Overlays”, DEBS, vol. 8.

49- Alveirinho J., (2010),“Flexible and Efficient Resource Location in Large-

Scale Systems”, ACM, The 4th International Workshop on Large Scale

Distributed Systems and Middleware, pp. 55-60.

50- Rahimian F., (2011), “Vitis: A Gossip-Based Hybrid Overlay for Internet-

Scale Publish/Subscribe Enabling Rendezvous Routing in Unstructured

Overlay Networks”, IEEE, Parallel & Distributed Processing Symposium

(IPDPS), pp. 746-757.

51- Gupta A., (2004),“Meghdoot: Content-Based Publish/Subscribe over P2P

Networks”, The 5th ACM/IFIP/ USENIX international conference on

Middleware, Springer-Verlag New York, Inc, pp. 254-273.

52- Ratnasamy S., (2001), “ A Scalable Content-Addressable Network”, ACM.

Chicago, vol.31, no.4, pp. 161-172.

 R6

53- Voulgaris S., (2006), “Sub-2-Sub: Self-Organizing Content-Based Publish

and Subscribe for Dynamic and Large Scale Collaborative Networks”,

IPTPS, The fifth International Workshop on Peer-to-Peer Systems, Citeseer,

pp.16 .

54- Zhang R.,(2005), “Hyper: A Hybrid Approach to Efficient Content-Based

Publish/Subscribe”, IEEE, Distributed Computing Systems, ICDCS, The

25th IEEE International Conference, pp. 427-436.

55- Zhu Y., (2005), “Ferry: An Architecture for Content-Based

Publish/Subscribe Services on P2P Networks”, IEEE, Parallel Processing,

ICPP, International Conference, pp. 427-434.

56- Yang X., (2007), “Scalable Content-Based Publish/Subscribe Services over

Structured Peer-to-Peer Networks”, IEEE, Parallel, Distributed and

Network-Based Processing, PDP'07, The 15th EUROMICRO International

Conference , pp. 171-178.

57- Pujol-Ahullo J., (2009), “Towards A Lightweight Content-Based

Publish/Subscribe Services for Peer-to-Peer Systems”, International Journal

of Grid and Utility Computing, vol.1, no.3, pp. 239-251.

58- Fox E., (1991),“Order-Preserving Minimal Perfect Hash Functions and

Information Retrieval”, ACM Transactions on Information Systems (TOIS),

vol.9, no.3, pp. 281–308.

59- Czech Z., (1992), “An Optimal Algorithm for Generating Minimal Perfect

Hash Functions”, Information Processing Letters, vol.43, no.5, pp. 257-264.

60- Chockler G., (2007), “Constructing Scalable Overlays for Pub-Sub with

Many Topics”, ACM, The Twenty-Sixth Annual ACM Symposium On

Principles Of Distributed Computing, pp. 109-118.

 A1

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: AL-AGELE, Raad

Date and Place of Birth: 28 November 1981, Waset

Marital Status: Married

Phone: +90 5346198116

Email: raad1aziz@yahoo.com

EDUCATION

Degree Institution Year of Graduation

M.Sc.

Çankaya University

Mathematics and Computer

Science

2015

B.Sc.
Al-Rafidain University

College, Computer Science
2005

High School Al-Suwayra High School 2000

WORK EXPERIENCE

Year Place Enrollment

2006- Present Technical Institute Al-Suwayra Technical Trainer

FOREIN LANGUAGES

 English.

HOBBIES

Books, Football, Travel, Swimming.

mailto:raad1aziz@yahoo.com

