

ACCELERATING STENCIL COMPUTATION IN MULTI-CORE

ARCHITECTURE

AMAR RAEED KHORSHID AL-HILALI

 JANUARY 2015

ACCELERATING STENCIL COMPUTATION IN MULTI-CORE

ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

AMAR RAEED KHORSHID AL-HILALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

JANUARY 2015

 iii

 iv

 v

ABSTRACT

ACCELERATING STENCIL COMPUTATION IN MULTI-CORE

ARCHITECTURES

AL-HILALI, Amar

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre SERMUTLU

January 2015, 60 pages

Stencil computations are common in linear systems of equations, numerical solutions

of partial differential equations, molecular dynamics and many other scientific

problems. For large structures, long computation times are an important problem.

Increasingly higher number of cores are used in parallel for such computations, but

still, the speedups are not sufficiently satisfactory. The main aim of this thesis is

increasing the cache reuse and minimizing number of memory accesses by

optimizing loop structures. We present and test several algorithms and

improvements on them to get an optimal runtime.

Keywords: Stencil Code, Multicore, Jacobi, Cache Reuse, Convergence, Tiling,

Iteration.

 vi

ÖZ

ÇOK ÇEKİRDEKLİ MİMARİLERDE ŞABLON HESAPLAMALARININ

HIZLANDIRILMASI

AL-HILALI, Amar

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Emre SERMUTLU

Ocak 2015, 60 sayfa

Şablon hesaplamaları doğrusal denklem sistemlerinde, kısmi diferansiyel

denklemlerin sayısal çözümlerinde, moleküler dinamikte ve daha başka pek çok

bilimsel problemde yaygın olarak karşımıza çıkarlar. Büyük yapılar için uzun

hesaplama süreleri önemli bir problemdir. Bu tür parallel hesaplamalar için giderek

artan sayıda çekirdek kullanılmaktadır ancak hala hızlanmalar yeterince tatmin edici

değildir.

Bu tezin ana amacı döngü yapılarını iyileştirerek işlemci belleğinin tekrar

kullanımını arttırmak ve sistem belleğine erişim sayısını en aza indirmektir. En iyi

işlem zamanını elde etmek amacıyla birden fazla algoritma ve onların iyileştirilmiş

halleri sunulmuş ve test edilmiştir.

Anahtar Kelimeler: Şablon Kodu, Çok Çekirdek, Jacobi, Bellek Yeniden

Kullanımı, Yakınsama, Hücreleme, Döngü.

 vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assist. Prof. Dr. Emre SERMUTLU

for his supervision, special guidance, suggestions and encouragements through the

development of this thesis.

It is pleasure to express my special thanks to my family who stood by my side during

difficult times and then to all my friends.

 viii

TABLE OF CONTENTS

 STATEMENT OF NON PLAGIARISM.. iii

 ABSTRACT.. iv

 ÖZ………………………………………………………………………………….. v

 ACKNOWLEDGEMENTS………………………………………………………... vi

 TABLE OF CONTENTS………………………………………………………….. vii

 LIST OF FIGURES………………………………………………………………... ix

 LIST OF TABLES………………………………………………………………… xi

 LIST OF ABBREVIATIONS……………………………………………………... xii

 CHAPTERS:

 1. INTRODUCTION.. 1

 1.1. Background... 1

 1.2. Overveiw..……………………... 3

 1.3. Motivation……………….……….. 3

 1.4 Organization of Thesis…………………………………………… 4

 2. STENCIL CODE…………………... 5

 2.1. Stencil Code……………………………………………................ 5

 2.2. Basic Iterative Method …………………………………………… 6

 2.3. Multi-Core Processor…... 8

 2.4. Cache Memory …………………………………………………….. 12

 2.5 Jacobi Method.. 13

 2.5.1. Description of Jacobi …………………………………… 17

 2.5.2. Algorithm and convergence of Jacobi ……………….… 19

 2.5.3 Jacobi eigenvalue algorithm.. 20

 2.5.4 Block Jacobi method (tiling)…………………………… 21

 2.6 Optimization of Stencil Codes…………………......………............. 22

 2.6.1 Single sweep blocking ………………………………… 22

 ix

 2.6.2 Time skewing…………………………………………… 23

 2.6.3 Single sweep parallelization……………………………. 24

 2.6.4 Pipeline parallelization…………………………………. 25

 2.6.5 Wave-Front parallelization…………………………….. 26

 2.7 Three Dimension Jacobi………………………………...…........... 28

 2.8 Tiling Three Dimension………………………………….............. 31

 2.9 Gauss Seidel Method………………………………………........... 32

 2.10 Amendment Jacobi……………………………………...........…... 35

 3. PRELIMINARY EXPERIMENT... 37

 3.1. Open-MP in C++ Language…………………………….................. 37

 3.2. Open-MP Creation………………….. 40

 3.3. Open-MP Usage... 44

 3.4 Summary... 47

 4. EXPERIMENT & RESULTS …………………………………………….. 48

 4.1. Thesis Project…………………………………………………...... 48

 4.2. Theory Part of Thesis……………………………………....…….. 48

 4.3. Software of Thesis…………………………………………………. 50

 4.3.1. Standard Jacobi without tiling…………..…...……….... 50

 4.3.2 Two dimension Jacobi tiling method …………...……. 52

 4.4 Experiments Software……………………………………………. 53

 4.5 Experiment Results………………………………………………. 54

 4.6 Summary………………………………………..………………... 58

 5. CONCLUSION AND FUTURE WORKS………….................................... 59

 5.1. Conclusion………………………….. 59

 5.2. Future Works….. 60

 REFERENCES... R1

 APPENDICES..

 A. CURRICULUM VITAE........…...……….......………………………………

A1

A1

 x

LIST OF FIGURES

FIGURES

Figure 1 Single-core and multi-core processors ………………………... 2

Figure 2 Memory performance on Jacobi program...…………………… 10

Figure 3 Memory performance on Jacobi program...…………………… 11

Figure 4

Memory hierarchically of an AMD bulldozer

Server...

13

Figure 5 The boundary and body point in Jacobi…………………......... 14

Figure 6 Data dependencies of selected cell in the 2D array…………... 15

Figure 7 2D Jacobi with four neighbor …………………………….…... 15

Figure 8 Data iteration on an array ……….......………………….. 16

Figure 9 7&27 Point stencil……………………………………..……... 17

Figure 10 Blocking in 2D method……….……………………………… 22

Figure 11 The loop k and loop x, i, and j……………………................. 23

Figure 12 K loop time steps………………………….....………………. 24

Figure 13 Single sweep parallelization…………………………..……… 25

Figure 14 Pipeline parallelization………………………………………… 26

Figure 15 Wave front parallelization…………………………...………... 27

Figure 16 Clovertown system………………………………………….… 28

Figure 17 7 Point of 3 dimension in Jacobi method………………...…… 29

Figure 18 The sweeping in three dimension Jacobi……………………… 30

Figure 19 The field-out in three dimension method……………………... 32

Figure 20 The lower triangle…………………………………………….. 33

Figure 21 Solving temperature by Gauss Seidel method……………….. 36

Figure 22 Symmetric multiprocessing…………………………………... 37

Figure 23 Loop-Level and parallel region……………………………… 39

 xi

FIGURES

Figure 24 Illustration of multithreading. Where the master thread forks

off a number of threads which execute blocks of code in

parallel………...

40

Figure 25 Chart of open-MP constructs………………………………... 40

Figure 26 Cores status after running open-MP program……………...... 42

Figure 27 Tiling Jacobi by column……………………………………... 49

Figure 28 Tiling Jacobi by block……………………………………….. 50

Figure 29

Over performing the runtime of the experiment to other

algorithms……………………………………………………...

56

Figure 30

Over performing of I7 INTEL processor to I3 INTEL

processor……………………………………………………….

58

Figure 31

Over performing the experiment runtime to other algorithm by

chart……………………………………………………………

59

Figure 32

Over Performing the INTEL I7 to INTEL I3 in runtime by

chart……………………………………………………………

60

 xii

LIST OF TABLES

TABLES

Table 1

Number of Cores and Brand Name of Each

Company..…

9

Table 2

Test Machine Specification, Cache Line Size is 64 bytes , All

Processor and Cache Levels………………………………….

12

Table 3

The Location of Three Dimension Arrays in

Memory…..………….

34

Table 4

The Difference Between Intel I3 and Intel I7 Executing Jacobi

Program with 5 Iteration………………...................................

44

Table 5 Over Performing Result of Experiment to Other Results…..... 55

Table 6

INTEL I7 Over Performing to INTEL I3 in Runtime on

Experıment …………………………………………………

57

 xiii

LIST OF ABBREVIATIONS

PDE Partial Differential Equation

SOR Successive Over – Relaxation

TLB Translation Look aside Buffer

CMP Chip Multiprocessor

API Application Programming Interface

CPU Central Processing Units

PDE Partial Differential Equation

SOR Successive Over – Relaxation

TLB Translation Look aside Buffer

CMP Chip Multiprocessor

API Application Programming Interface

CPU Central Processing Units

ccNUMA Cache Coherent Non-Uniform Memory Architecture

ARB Architecture Review Board

LRU Least Recentally Used

FIFO First In First Out

http://en.wikipedia.org/wiki/Translation_lookaside_buffer

 1

CHAPTER 1

INTRODUCTION

1.1 Background

The ability of performing multiple tasks at same time is calling parallel computing or

parallel processing. This term is used in context of human cognition, which dialed

with the ability of brain to solve several problems simultaneously. For example the

brain is divided what sees into many contents: color, motion, shapes and depth.

These content which brain divided are individually analyzed and then compared to

stored inside memory, in order to used to identify what you viewing. The second

using of parallelism will be in the parallel computing which simultaneous using more

than one CPU or processor core in order to execute multiple program or solving huge

number of equations. Optimally, parallel processing makes result appearance faster,

because there is more engine (CPUs, processing COREs) executing it see fig. 1(A).

Actually, it is often difficulty to divide a program in such a way that split up (CPUs

and COREs) execute different portion without middling some each other. In the past

most computers has single – CPU single CORE , but there was possibility to perform

parallel processing by connecting two or more computer each other by setting up

network. Today the computer has more than one core, so we can use the parallelism

easily. In this thesis I prefer to notice that parallelism is differ from concurrency ,

because concurrency is a term used in operating systems and database

communications logically which indicate to the property of systems in which

multiple tasks are still logically active, and progress at same time by interfering

system implementation task order, thus creating illusion of implementing instructions

simultaneously. While, parallelism is used by computer community to identify

executing simultaneously, and it is goal is solving problems in an optimal time or

solving huge number of equations at less time, see fig. 1(B) .

 2

(A)

Figure 1 (A and B) Difference between single-core and multi-core

(B)

 3

1.2 Overview

This thesis try to present the classical methods of stencil code, which deals with

solving partial differential equation in less time. Actually these methods have

been very classic, old, simple understanding and implementation as mentioned in

section 2.2. At the same time it present some topics which deals with these

methods and the related works with these methods. The structure of arrays

calibrate stencil codes as apart from other methods like finite element method,

finite difference codes which invest on consistent grids can be subedit a stencil

codes. Thesis content figures, tables, schemes, clarification, parts of codes, and

appendices. Thesis dropping light on stencil codes which found commonly in

codes of computer simulations, the Jacobi kernels, the Gauss-Siedle method,

image processing and cellular automata. The main idea of this thesis is to

improve on algorithm to be able to competitive with existed methods, by using

optimal time for solving the problems by best of implementing of cache and

reusing data in array. The methodology which used in this thesis is varied from

the others in reusing data, modality of implementing of cache, separating of

values in an array and solving these values in array. The critical case for stencil

performance is exploiting locality in the time dimension .The reason of this

criticality is data grid size in real application exceed the capacity of L1,L2 cache

on current. The problem of performance are largely, because of enough cache

requiring, and can reducing this by tiling method. This thesis consider the most

common classical iterative techniques for the linear systems: the Jacobi, and

Gauss-Seidel methods. These method are constantly denoted as stencil code, and

the reason is updating of array elements according some stable patterns.

1.3 Motivation

The main idea of this study was to develop an algorithm which could

competitive and overcome to another algorithm to improving executing of large

equation runtime. This motivation leads to working and completion this

experiment and do the best to reach to an enhancement which could to

competitive with new algorithms and overcome on it.

 4

1.4 Organization of Thesis

Thesis is comprises 4 chapter organized to be Reference to who deal with this

study, first chapter is starting with introduction of this work then followed by

overview and motivation, in the second chapter it started talking about related

work, dealing with stencil code and the explaining basic iterative method in this

section study explain three main method of iterative, then the study turns to

talking about multi-processor systems and the type of multi-processor systems,

continuing in other section subject of caching memory, giving way to enter in

Jacobi method by cross-cutting methods by detail, then talking about tiling

Jacobi to open minds to up-to-date methods of blocking by detailing and giving

an example or figure illustration for each one. Then start with three dimension

Jacobi method and blocking of three dimension method, to finish this chapter by

explaining the Gauss Seidel method and compare it with Successive Over –

Relaxation method. In the third chapter, the study starting to clarification of

important tool to performing this experiment to the fullest, so it starting from

clarification of open-MP, then transmitted to the usage of this (API), then starts

to talking about thesis project to divides the work into two part, first is theory

part and the second is software part to getting the result and produce the result to

reader. The last chapter simply is conclude the new improvement from this work

and recommend some suggestions for feature working.

 5

CHAPTER 2

STENCIL CODE

2.1 Stencil Code

Stencil computations appeared in an extensive field of applications of computational

sciences. This is an important part of run time in many scientific simulation codes. A

primary application of stencil-based computations are numerical Partial Differential

Equation solvers that implement a finite difference or multi-grid method. Where

Stencil computation is used to solve in Partial Differential Equation solving it is also

using in image manipulation. These kernels are used in outermost time loop to make

a huge number of sweeps on multi-dimensional grid so that the valuations of any grid

point are modified according the valuation of neighboring points.

Partial Differential Equations can be simplified numerically by first discretizing the

computational domain, e.g., a regular Cartesian grid together with a stencil

depending on ƒ and then using a Newton –Raphson – type algorithm, this will

require evaluating the sparse Jacobian of ƒ on the discretized domain, which is a very

computation intensive operation for complicated Partial Differential Equations [1].

High degree of temporal locality are exhibited in most of stencils, because any

update operation needs to access neighboring values. The critical case for stencil

performance is exploiting locality in the time dimension. The reason of this criticality

is that, data grid size in real applications usually exceed the capacity of L1 and L2

cache on current systems[2].

Systems of linear equations for which numerical solutions are needed are often very

large, making the computational effort of direct methods, such as Gaussian

elimination, prohibitively expensive. For systems that have coefficient matrices with

appropriates structure- especially large, spare systems (i.e., systems with many

coefficient whose value is zero) – iterative techniques may be preferable. Iterative

 6

solvers such us Jacobi and Gauss-Seidel are very important because they are the

building blocks of many other methods. Their computational properties are similar.

This thesis considers the most common classical iterative techniques for the linear

systems: the Jacobi method. This method are constantly denoted as stencil code, and

the reason is updating of array elements according some stable patterns. The

performance of each technique is illustrated for several small systems and for linear

system in example from Poisson’s equation. Some theoretical results are presented to

give guidance in determining when the method may be useful. In Open-MP API

specification for parallel programming is provided for each technique. In stencil-

based computations, each node in a multi- dimensional grid is updated with weighted

values contributed by neighboring nodes [3].

2.2 Basic Iterative Method

Iterative scheme according to formula of stencil computations in three spatial

domains are applied a lot of math practice e.g. linear problems solving and multi-grid

techniques. The optimal prototype for Poisson problems is Jacobi method, while

Gauss-Seidel tries to solve Laplace problems. The big size of data sets probability

may be the reason for using these methods which are known as data- dense and

accessible main memory bandwidth forces upper limit of execution.

Relaxation of coordinate was the first method which used in solving of large linear

systems starting with a gained approximated solution. The methods which I deal with

in this thesis modify the component of the approximation a few at time a certain

order, until convergence. Any step in this operation is called relaxation steps.

Iterative methods formally produce the solution of linear system after ultimate

number of steps. At each step it demand calculation the remaining of the system. In

full matrix case, the computation (calculation) cost is based on the order of

operation for every iteration, in order to comparing it with an overall costs of their

order of operation which required by direct methods. Iterative method can be

competitively with direct methods as long as the number of iteration that needed to

convergence is either independent of or scales sub linearly [4]. In the scattered

matrices case direct method may be inappropriate because the content which filled

 7

the matrices. Although the direct solvers extremely could be innovated on scattered

matrices characteristics. The main idea of iterative method is to build square of the

vector that deal with the property of convergence:

x=

Practically iterative process is layover at minimum value of (such us

|| ||<ɛ,

While ɛ is a constant tolerance ||.|| is any appropriate vector norm. Yet, since the

same solution is clearly not available, it is indispensable to identify appropriate

stopping criterion to monitor the convergence of iteration. There are many options in

iterative solutions such as pure iteration which compute each from -

(This is called stationary, because the application at every step is the

same. Convergence to , shown below, acceleration when all eigenvalues

of are small. The second options of iteration is multi-grid for one

job in Gauss Seidel and Jacobi is very well, they takeaway high frequency

component to drop a smooth error. The main idea is to shift to a coarser grid- where

the reminder of error can be destroyed. It is often significantly successful. The third

option is Krylov spaces, which consist of all combination of b, Ab, and

Krylov methods expect the best combination.

However Iterative term is mention to a wide range of techniques that implement

successive approximation to gain more accurate solution to linear system at each

step. In this thesis will touch two types of iterative methods. As thesis referred in this

section, direct method can be older, simpler to understand and more implementable,

but it still not efficient to use nowadays. While in direct (no stationary) methods are

comparatively recent development the analyzing of indirect (no stationary) methods

is usually hard to understand, but these methods are still more efficient. These

methods are based on the idea of sequences of perpendicular vectors. The rate at

which an

iterative method converges depends primarily on the spectrum of the matrix

coefficient [5]. Therefore, iterative methods generally include another matrix that

transforms the coefficient into one with a more appropriate spectrum. This

transformation is called preconditioning. In fact the iteration methods fail without

preconditioned. This chapter will introduce the both methods with full detail.

 8

2.3 Multi-Core Processor

A multi-core processor is single computing component with multi or more freelance

actual (central processing units) which have units for reading and executing the

instructions. This instruction or order is normal CPU instruction like move data,

adding and branching, while multi- cores try to apply multi instructions

simultaneously. Manufacturers usually try to combine the cores onto a single

integrated circuit die (known as a chip multiprocessor or CMP), or onto multiple dies

in a single chip package [6]. Processors were in general developed with one core

only. Rockwell International in middle of 1980 produced versions of the 6502 with

two 6502 cores on one chip as the R65C00, R65C21, and R65C29, joining the chip’s

pins stand by clock stages [5]. In 2000 AMD and Intel were produced the other multi

core styles. The company starts with two cores and continue to work to increase the

number cores till nowadays Table 1 explain number of cores and the name of

company, which has developed this product and the brand name of these product.

Aboard selection of model m86 which based on multi-core processor has selected to

attempt variants of wave front parallelization model see section 2.5.5, to explain its

performance efforts. Most of these chips properties a large outer level cache which is

portion by two (Intel Harpertown), four (Intel Nelham EP), six (Intel Westmere EP)

or eight cores (Intel Nelham ex) [see Table 2]. An extreme numbers of Cores which

are joined outer level are L2/L3 cache which mentioned as “L2/L3” group see Fig.

(2).

Number of cores Brand name of Intel Brand name of AMD

Two Cores Intel Core Duo AMD Phenom II X2

Four Cores Intel's i5 and i7 processors AMD Phenom II X4

Six Cores Intel Core i7Extreme Edition 980X AMD Phenom II X6

Eight Cores Intel Xeon E7-2820 AMD FX-8350

Table 1. Number of Cores and Brand Name of Each Company

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Rockwell_International
http://en.wikipedia.org/wiki/6502
http://en.wikipedia.org/wiki/Intel_Core_Duo
http://en.wikipedia.org/wiki/List_of_AMD_Phenom_microprocessors#.22Callisto.22_.28C2.2FC3.2C_45_nm.2C_Dual-core.29
http://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#.22Westmere-EX.22_.2832_nm.29
http://en.wikipedia.org/wiki/List_of_AMD_FX_microprocessors

 9

In Harpertown processors, which run onto two cores is denoted as a quad-core chip,

because four cores are placed in package as shown in Fig. (3). In this case it is

accumulate as two according L2 groups without using L3 for all four cores.

Additionally a whole remodeling of memory sub-system permit for a substantial to

raise up in memory at the cost of identifying a ccNUMA. It is type of memory style,

which used in multi-processor systems, when memory location relative to processor

are control memory access time.

 10

Figure 2 (A and B) The memory performance on Jacobi program written by C++

 11

(B) Nehalem EP

Figure 3 Microarchitecture of core 2 quad and Nehalem EP

(A) Core 2 Quad

 12

Microarchitecture Intel

Core2

Intel

Nehalem

Ep

Intel

Westmere

Intel

Nehalem

EX

AMD

ISTANBUL

Model Xeon

X5482

Xeon

X5550

Xeon

X5670

Xeon

X7560

Opteron

2435

Clock [GHz] 3.2 2.66 3.93 2.26 2.6

Core per socket 4 4 6 8 6

SMT threads per

core

N/A 2 2 2 N/A

L1 cache 32kB 32kB 32kB 32kB 64kB

associativity 8 8 8 8 2

L2 cache 2x6

MB(shared)

4x256

kB

6x256 kB 8x256

kB

6x512 kB

associativity 24 8 8 8 16

L3 cache - 8MB 12MB 24MB 6MB

associativity - 16 16 24 48

Bandwidth[GB/s] - - - - -

Theorical socket

BW

12.8 32.0 32.0 17.1 17.1

STREAM 1

thread

4.6 11.9 11.0 5.3 7.2

STREAM socket

NT/no NT

4.8/5.6 18.5/23.7 21.0/23.6 9.1/13.6 9.8/11.4

Table 2 Test Machine Specification, The Cache Line Size is 64 Bytes for All

Processor and Cache Levels.

 13

2.4 Cache Memory

Central processor cache is generally used to decrease time ratio of data accessing to

main memory. At the same time it is a smaller and faster memory, which stored data

copies of data which extremely used by main memory locations. A case which

considered an essential tradeoff between cache latency and hit is that a larger cache

have better hit rate but longer latency. When processor required to write or read

something from main memory its check first if it is stored on cache or not, the

processor as soon as read from or write to cache, that faster than reading from and

writing to in main memory. Most of CPUs have three free cache: instruction cache

use to accelerate runnable instruction fetch. The second one is data cache accelerate

data fetch and store and Translation Look aside Buffer (TLB) which is used to

accelerate virtual to physical address translation for both instruction and data. The

data cache usually used for pecking order of multi cache level (L1, L2…) see fig (4).

The ratio of accessing that produce in cache is called hit rate, which can evaluate the

influence of cache for given algorithm or program. Reading misses beads running

because they needed data to be transmitted from main memory, which is slower than

reading from cache, while writing happened without this delaying, because processor

can make running while the data copied to main memory in background.

Figure 4 Memory hierarchy of AMD bulldozer.

http://en.wikipedia.org/wiki/Translation_lookaside_buffer

 14

The advantage of cahce in “temporal locality” , when used constants data like

messages, column and high low limits, which are used repeadtly in cache. The other

advantage is from “Spatial Locality”, in order to run the next instruction or to process

the set of data, it has oftened in next line. The more sequential they are, the greater

chance is when the next item is indeed existed in the cache “cache hit”, if the next

item is not existed in the cache “cache miss” will happened , retrivung data from

main memory should be in this case , that makes process slower. There are several

design fo cache memory. This study is point out on these design, cache fetch

algorithm is one of these design type, which used to decided when it realy needed to

fetch data to cache. This algorithm has many scenario's, one of these scenario’s is

guessing that the information will be needed in the next instruction, so it fetching

information this process called “prefetching”. The other design algorithm is cache

placement algorithm, this algorithm are depended on associatively of information,

some are largely associative memories be expensive and somewhat are slow, so in

genral the cache is organized as a group of smaller associative memories. In this

case only one of the associative memories has to determine if the desired data is

existed in cache. Replacement algorithm, when cache memory is fulled , and

information is remaded from main memory by CPU, so unnecessary information

must be removed from cache in order to replacemented by remanded information, for

this process there are many methods, FIFO(First In First Out) or LRU(Least

Recentally Used) .

2.5 Jacobi Method

Jacobi method is a famous algorithm for solving different equation on square domain

by fixed patterns solving. Jacobian method has many strategies for solving the partial

differential equations (e.g. 2D Jacobi, 3D Jacobi). Let us consider 2D array as

example. In this example we divided an array in to two part: the first part is the

constant part which is represent the boundary part of array, the second part is the

variable part which represent body of array. Any element of body contract with fixed

value of temperature on four boundary and partial differential equations is solved for

elements of body to determine their temperature as average of the four neighbor as

well as the value itself. (Fig.(5)). This task is taken as the computational task,

 15

number of iteration are applied on data to recomputed the average repeatedly, and we

reach final result when desired accuracy is obtained. (Fig. (6)). In this case by

starting from initial solution of 0, The right to left are fixed at 1, while upper and

lower case will be 0, after number of iteration the system converge against saddle-

shape [7] (Fig.(7)). In Jacobi method the amount of data re-employ is depend on the

number of its neighbor values for example 7- point stencil which are most commonly

a depend on up, down, right and left neighbors as shown in Fig.(8) In this 7-point

stencil four of seven data values are re-employed in every iteration. While in 27 point

stencil eight of twenty seven point of stencil are re-employed at every iteration see

Fig. (9) . The term of high order stencil is not common like the previous which

referred to in this thesis. For example 9-point stencil denote in ultimate variation

methods, while 27-point stencil denoted in multi-grid solvers and advection code [8].

Boundary point

Body point

Figure 5 The boundary and body points

 16

For (t=0; t<time step; t++)

 {

 For (i=1 ; i<n-1; i++)

 {

 For (j=1 ; j<n-1 ; j++)

 {

 A1[i,j] = A0[i,j] +

A0[i+1,j]+

 A0[i-1,j]+A0[i,j+1]+A0[i,j-1] ;

 }

 }

Temp=A0;

A0=A1;

A1=temp;

 }

Figure 7 2D Jacobi with four neighbor.

Figure 6 Data dependencies of selected cell in the 2D array.

(i,j) (i+1,j) (i-1,j)

(i,j-1)

(i,j+1)

 17

Figure 8 Data iteration on a array

Figure 9(A) 7-point stencil

 18

2.5.1 Description of Jacobi

In this thesis I will try to describe Jacobi method by given example below, if we

suppose that we have square system of n linear equation:

Where

 ………………..… ,

 …….…………… ,

 A = .

.

.

 …….……………

 ,

Figure 9(B) 27-point stencil

 19

 b = ,

The solution will be obtained iteratively by:

The element based will be:

For example if we have this system

………………..… = ,

+ +…….…………… = ,

.

.

+ +…….…………… = ,

Has single solution

The coefficient matrix a has no zeros on its main diametrical, namely , , ;

are nonzero, To solve the first equation for , the second equation for , and so on

to gain rewritten equations:

(,

 - … -

,

This accomplishes considered as one iteration only.

2.5.2 Algorithm and convergence of Jacobi

The initial of Jacobi method will start with:

K=0;

 20

While convergence will not reached do

 for i := 1 step until n do

 σ=0

 for j := 1 step until n do

 if j ≠ i then

 σ= σ+

 end if

 end (j-loop)

=

While bounded linear operator of matrix iteration is smaller than 1 the standard

convergence condition will be:

P(R)<1

Converge in the method will be guaranteed if the A matrix accurately

diametrical dominate, the absolute value of diametrical term is greater than the

sum of absolute values of other terms [9]

2.5.3 Jacobi eigenvalue algorithm

Eigenvalue means each of a set of values of a parameter for which a differential

equation has a nonzero solution (an Eigen function) under given condition. In

general Jacobi Eigenvalue algorithm is used in numerical linear algebra it is an

iterative method used for calculating eigenvalues and eigenvectors of real square

matrix is named then Carl Gustavo Jacob Jacobi , who first suggest Jacobi theory

in 1948, but it has been famous in 1950’s with appearance of computers. The

simulation of the algorithm is shown below

Let S be a square matrix, and G = G(i,j,θ) be a Givens rotation matrix. Then:

Is symmetric and similar to S.

Furthermore, S′ has entries:

http://en.wikipedia.org/wiki/Bounded_linear_operator
http://en.wikipedia.org/wiki/Givens_rotation

 21

=

 k≠i,j

 k≠i,j

 k,l≠i,j

When s = Sin(θ) and c =Cos(θ).

Since G is orthogonal, S and S′ have the same Fresenius norm ||·||F (the square-

root sum of squares of all components), however we can choose θ such that S′ij

= 0, in which case S′ has a larger sum of squares on the diagonal [10]:

Set this equal to 0, and rearrange:

tan (2∅) =

if

∅

In order to enhance this effect, should be biggest –off diametrical component

are parataxis (real) eigenvalue of S.

2.5.4 Block Jacobi Method(Tiling)

The previous methods were refers to point or (line) iterations at Mostly, but in this

section we will deal with devising block method , by providing that D is referring to

the blocking diametrical matrix ,which used by entering M*M diametrical block on

the matrix , the block Jacobi method is gained taking again P=D and N=D-A . This

iteration is well- identified only when the diametrical blocks are nonsingular. When

A is resolved in P*P square blocks the Jacobi method is

= - , i=1…….,P ,

http://en.wikipedia.org/wiki/Frobenius_norm

 22

Having also solution vector and right side in blocks of size p is referred by and

individually, finally the outcome, at any step see Fig. (10). Block versions of Jacobi

preconditioner can be concluded from a portioning of variables. The block of Jacobi

method requires solving p linear systems matrices of The term of blocking

iterative is known an advance optimization technique which can decreasing the

pressure on memory bus manifestly. Jacobi block preconditioner need little storage

and it is simple to implement. The regular temporal blocking performs dual reuse on

tiny block of the computational domain before getting start to the next block see Fig.

(11).

Figure 10 Blocking in 2D method.

 23

2.6 Optimization of Stencil Codes

2.6.1 Single sweep blocking

As shown in Fig. (11) Particularly, with single iteration of time step loop

(K), the (i), (j) and (x) loop are represented blocks so that any array points

that are approximate each other are gathered to modify. This is permit

point exist in code in order to the same iteration of time – loop.

2.6.2 Time skewing

This term means that the multiple sweeps of an array jointly portioned into skewed

deltoid and parallel piped blocks. The distinction between time skew and single

sweep blocking is dwell in the iteration of (k) as shown in Fig.(12) . The iteration of

for (k = 0; k < timesteps; k++)

 {

 for (kk = 1; kk < nz-1; kk+=tz)

 {

 for (jj = 1; jj < ny-1; jj+=ty)

 {

 for (ii = 1; ii < nx-1; ii+=tx)

 {

 for (x=1; x<Min(nz-1,kk+tz);x++)

 {

 for (j=1; j<Min(ny-1,jj+ty);j++)

 {

 for (i=1; i<Min(nx-1,ii+tx);i++)

 {

 Anext[i,j,k] = A0[i,j,k+1] + A0[i,j,k-1]

+A0[i,j+1,k] + A0[i,j-1,k] + A0[i+1,j,k] + A0[i-1,j,k] - alpha *

A0[i,j,k];

 }

 }

 }

 }

 }

 }

Sweeping;

 }

Figure 11 The loop k and loop x, i, and j.

 24

(k) loop in the skew are inclusive as operation of every computation block. Because

re-modeling the constraints in the midst of neighboring a new point via ultimate

iterations of the (k) loop if we suppose that the number of iteration are unknown.

Every computation block must shift its group of points backward by fixed number of

shifting each iteration until it cover the whole array.

for (kk=1; kk < nz-1; kk+=tz)

 for (jj = 1; jj < ny - 1; jj+=ty)

 for (ii = 1; ii < nx - 1; ii+=tx)

 for (k = 0; k < timesteps; k++)

 for (n=min_z; n<max_z; n++)

 for (j=min_y; j<max_y; j++)

 for (i=min_x; i<max_x; i++) {

 Anext[i,j,k] = A0[i,j,k+1] + A0[i,j,k-1] +

A0[i,j+1,k] + A0[i,j-1,k] + A0[i+1,j,k] + A0[i-1,j,k] -alpha * A0[i,j,k];

 }

s = A0;

A0 = A1

A1 =s;

Figure 12 K loop time steps.

 25

2.6.3 Single sweep parallelization

 As shown in the Fig.(13) this strategy multiple threads are employed to guess its

iterations, all threads concurring before getting in the second iteration of

encirclement (K) loop.

In the Fig.(13) the array points that belong to the same block are joined together. The

computation blocks that have the same color in this figure are guessed by varied

threads.

2.6.4 Pipeline parallelization

This strategy parallelize the external (KK) loop by obviously spawning new threads

to guess fixed zone of its iteration in parallel. To be sure the guessing’s is right,

before guessing any computation block, every thread obviously concurs with the

others and wait for all pre-request computation block have been stopped as shown in

Fig.(14). After guessing every block, each thread concur with its neighbor threads to

enable guessing of following blocks. As a result of this concurring scheme, every

computation block is guessed immediately when it has been ready and neighboring

computation block are guessed by varied threads in pipelined style.

Figure 13 Single sweep parallelization.

 26

The array points which are closed each other in the same block are gathered in a

group, same color in Computation blocks are guessed concur by varied threads.

2.6.5 Wave-Front parallelization

 This method is differs from pipeline parallelization by guessing time- skewed blocks

by fixing concurring , the time – skewed blocks are added up to a jointly in wave

front style. Inclosing specific spatial domain sequential wave-fronts are performs by

threads scheduling to multi-core processor chip with joined outer level cache. The

Fig. (15) used two dimension Jacobi to shows the efficiency and effectiveness of this

method. Also this method can be used in three dimension style.

Figure 14 Pipeline parallelization.

Figure 15 Wave front parallelization.

 27

As shown in Fig. (15) The array points which are closed each other in the same block

are gathered in a group, same color in computation blocks are guessed concur by

varied threads. At the same time single Jacobi carding over full grid is restrictive by

memory. Naturally all threads should be concurred after each K iteration to avoid

race conditions. When the cache is significant enough to load sequential (i, j) tiles of

either x and y, the full scale data can be lessen by one third. Instead of two load and

one store for single station update, the requirement still for two (spatially blocked

applying containing reading for ownership), then it requires two load (load x and

read for ownership on y) and two store (cache line extortion on x and y) in order to

make two update.

Figure 16 Clovertown system: Single chip (2 cores) performance running

two wave-fronts and using different blocking factors in j-direction.

 28

2.7 Three Dimension Jacobi

Three dimension stencil codes become outspread significantly, numerical

computation discovery that they have destitute memory conduct with considering

microprocessor cache. Optimally software’s can lessees cache misses by fetching

data in to cache only one time for all iteration accesses. Three dimension partial

differential equation solvers have trouble with cache performance, because incoming

some data are generally too away apart, needing array elements to brought into cache

repeatedly per array update. This problem of cache appeared clearly in three

dimension codes more than two dimension codes.

Three dimension kernel as shown in Fig.(17) has 7 stencil points that access to seven

columns in three boundary planes at the same time, with the distance 2 , which

leading toward (x,y,z+1) and (x,y,z-1) array signal, two whole b*b plans request to

stay in cache see Fig.(18), so just three dimension which has size 32*32*Z have

ability to take complete advantage of 16KB / L1 cache.

Figure 17 (7) Point of 3 dimension

 29

 Also for larger secondary memory L2 cache, the group reusing data wasted for three

dimension array more than 358*358*Z. An array will request to bring data into cache

twice or more time in order to execute by kernel, and this decreases the performance

significantly. From this point the tiling (blocking) which referred in 1.2 section is an

optimal solving, it is improving the locality by moving reuses to the same data

contiguous in time.

Figure 18 Three dimension Jacobi 7-point.

 30

for (int r=1;r<4;r++) //number of iteration

{

 for (int x=1;x<high-1 ;x++)

 {

 for (int y=1;y<width-1 ;y++)

 {

 for (int z=r-1;z<length-1;z++)

 {

 A1[x][y][z]=(A0[x][y][z]+A0[x-1][y][z]+A0[x+1][y][z]+A0[x]

[y-1][z]+A0[x][y+1][z]+A0[x][y][z+1]+A0[x][y][z-1])/7.0;

 }

 }

 }

}

Then the sweeping will be in

for(x=1;x<high-1;x++){

 for(y=1;y<width-1;y++){

 for (z=1;z<=length-1;z++){

 t=A0[x][y][z];

 A0[x][y][z]=A1[x][y][z];

 A1[x][y][z]=t;

 cout<<A0[x][y][z];

 }

 }

 }

// t is the temperature

//width is x-coordinator

//high is y- coordinator

// length is z- coordinator

Figure 19 The sweeping in three dimension Jacobi.

 31

2.8 Tiling Three Dimension

 The main transformation blocks (tiles) as little loops as required to safeguard group

reuse in three dimension loop nests. The main idea of blocking is to enable reusing

data effectively decreasing size of surface through procedure of the K loop. This is

completed by blocking the domestic (X, Y) loops see the Table 3. Firstly x and y are

sector-mined to shape block monitoring loops XX and YY. Then XX and YY will be

outermost permuted plane. Blocking is very popular method, used enhancing data

locality and minimize accessing to main memory and this will increase the speed of

computing data. The 27 point three dimension stencil code across three dimension

array in methodical style. Each point in array are computed in accumulative weighted

according to array point its direct neighbors which are 26 point [11]. The summation

is stored in the corresponding array- point in the following three dimension (array

field) as shown in the Fig. (19).

Figure 20 Field-out in three dimension method.

 32

2.9 Gauss-Seidel Method

 This is an iterative method , which used in numerical linear algebra , it’s also called

Liebmann method or method of successive displacement, this method which named

by Carl Friedrich Gauss and Philip Ludwing Von Seidel, who were German

mathematicians. It has an ability to applying any array with non-zero ingredient on

diametric. Convergence which thesis deal with in Jacobi method is the main element

in this method warranted if an array “Either diametric dominant or symmetric and

positive” [12].

If we suppose that the square linear system is n with unknown x:

AX=b;

It is releasing by iteration in:

=b-U

Where the matrix A is resolved by lower triangle as showed in Fig.(20)

 , x= , b= ,

Figure 21 The lower triangle.

 33

Grid size of

one

row

fit in

cache

size of

one

plane

fit in

cache

size of

3D grid

FIT in

cache

16x16x16 128

byte

primary 2 kbyte primary 32

kbyte

primary

32x32x32 256

byte

primary 8 kbyte primary 256

kbyte

secondary

40x40x40 320

byte

primary 13

kbyte

primary 512

kbyte

secondary

64x64x64 512

byte

primary 32

kbyte

primary 2

Mbyte

secondary

100x100x100 800

byte

primary 80

kbyte

secondary 8

MByte

memory

128x128x128 1

kbyte

primary 128

kbyte

secondary 16

Mbyte

memory

256x256x256 2

kbyte

primary 512

kbyte

secondary 128

Mbyte

memory

512x512x512 4

kbyte

primary 2

Mbyte

secondary 1 Gbyte memory

1024x1024x1024 8

kbyte

primary 8

Mbyte

memory 16

Gbyte

memory

Table 3. The Location of Three Dimension Arrays in Memory According to Size

And after that, the resolution of A into its lower triangle component, and its upper

triangle content accurately given by :

A=L*+U , , U= ,

Then the Linear system could written by:

L*x= b-Ux ,

Then now Gauss Seidel solving the left side of expression of x depending on

preceding element of right side

=

In general, by getting the benefits of triangular from of , the value of can be

computed successively using forward substitution:

 (- -) i,j = 1,2,…………………..n

.

 34

The value- wise for Gauss Seidel very similar to Jacobi method, the , uses

just the element which is previously have been computed. And just the value

of that have not so far to be proceeded to iteration k+1. This means that the

Gauss Seidel is unlike Jacobi method only in storage Fig. (21). The large advantages

of Gauss Seidel is that is the vector demanded as elements could be overwritten

when they are computed. However Gauss Seidel can be similar to (SOR Successive

Over – Relaxation) if the .

2.10 Amendment Jacobi

 Jacobi iterative is math strategy science 169 years-old. This relic from long before

super computer, is widely outcast nowadays as so slow comparing with the other

methods. Before few month ago from writing this thesis Xiang. Y and Mittal.R,

present a strategy that make Jacobi iterative faster about 100 time than classic Jacobi

iterative, when they used a fixed difference parataxis of elliptical equations on large

grid. The method preserves the main naivety of classical Jacobi method and it is

based on a scheduling of over-and under relaxation by mathematical term containing

a maximization of convergence proportion are derived and ideal scheme are

identified. The convergence ratio prophesy from the testing is validated by numerical

proof. The essential accelerating of the Jacobi method approved current method has

the potentiality to significant accelerating large-range imitation in computer machine,

additionally using this technique in elliptic equation [13].

 35

Figure 22 Solving temperatures by Gauss Seidel Method

 36

CHAPTER 3

PRELIMINARY EXPERIMENT

3.1 Open-MP in C++ Language

Open-MP is an application programming interface (API) for multi-core

parallelization Consisting Source code directives, Functions and Environment

variables. The advantage of this (API) is too much for example, easy for using,

incremental parallelization, flexible (loop-level or coarse-grain) and portable (it

works on SMP machine too). Actually there is a disadvantage for this (API) and that

disadvantage is it work only with shared memory systems and shared memory

system is single address space for all processors shared memory system also called

Symmetric Multiprocessing (SMP) as showed in Fig.(22). The goal of Open-MP is

distributing works among threads, and this thesis will discuss two method in this

section, first is loop level which specified the loops are parallelized and this method

is used by automatic parallelizing tools. The second one is parallel region and also

known as coarse-grained usually used in message passing (MPI) see Fig. (23)A&B.

The cause of using Open-MP in this thesis is that it is most high level parallel

Figure 23 Symmetric multiprocessing

 37

language. It is designed for three general purpose language: C, C++ and

FORTRAN language. [14] The open-MP Architecture Review Board

(ARB) broadcast its essential API in Fortran language v1.0 in 1997, after one year

they make projection for C/C++ standard, in 2000th year open-MP shared with

Fortran v2.0 with many specifications, in 2002 year the specification shifted to

C/C++ standard, in 2005 the joined the specification of Fortran and C/C++ in version

2.5. In May 2008 they involved new characteristics to open-MP in FORTRAN and

C/C++ about task and task construct known as version 3.0. The last update appeared

in July 2013 by publishing version 4.0 and putting new feature inside such as support

accelerate atomic, error handling, task extensions, user defined reductions, SIMD

support, and Fortran 2003 support. Open-MP is accomplishment of multithreading,

a parallelizing style which by master thread embranchment fixed number of slave

threads and the system separates among them. As shown in Fig. (24), these thread

then executed simultaneously, with the runtime medium allocating threads to

different processors. The part of code that is meant to execute in parallel is marked

accordingly, with a preprocessor instructive that will a reason the thread be formed

before the part is run. There is an ID number for each thread linked to it which can

produced using function called (omp_get_thread_num ()). The ID of thread should

be integer and ID of 0 should included in the master of thread. The thread combined

back into the master thread that carry on towards the end of program. By the way,

each threads run the parallelized part of code separately. Work participation structure

could involve dividing task among the threads, so each thread runs its allocated

section of code. Using open-MP both task parallelism and data parallelism carried

out.

According on usage the runtime medium allocates threads to processors, such as

machine factors and another factors. The runtime medium can specify the number of

threads according to medium variables, or it can do so using function in codes. In

C/C++ language using function in open-MP are involved header file (omp.h).

 38

Figure 24 (A and B) Loop-Level and Parallel Region systems.

(A) Loop-Level

(B) Parallel Region

 39

Figure 25 An illustration of multithreading. Where the master thread forks off a

number of threads which execute blocks of code in parallel.

Figure 26 The chart of open-MP constructs.

 40

3.2 Open-MP Creation

As noted in section 3.1 the open-MP is API so the creation of thread caused by the

core elements, like another operations such as workload distributions, data medium

management, thread concurrence, user level runtime and medium variables see

Fig.(25).

Before start explaining the creation of open-MP there are some rules for writing the

reader should takes it in to account in this chapter :

1. The codes start by (+), and finish by (+).

2. The codes written in Italic.

3. The explanation of codes will proceeded by //.

4. The codes given is not whole codes in this thesis project thesis owner keep

the important parts of codes for himself, and some codes given is to explain

the open-MP publically(not used in thesis project).

5. This section explain the how to apply open-MP step by step and how to use it

in optimal usage by closing unnecessary windows services.

6. The thesis worked on Visual studio 2012.

7. The experiment carried out on two computer (Intel I3, Intel I7) will defined

the specification in detail below.

After writing the rules should be written, this section start explaining the

codes by giving at least an example for the codes, after using the header

omp.h, it should programming language like C/C++ should prepared to use

open-MP codes and that will be by opening C++.Then opening a program

which use the open-MP after printing omp.h on headers section, click on

(project)(properties) . After clicking properties a new windows appear have

many options choose the open-MP section and put yes inside the field, that

means the open-MP (API) is running in the computer, in this case the cores

are opened according to the size of needing.

This problem faces many programmers, who think that there coding are not

right or there is some problem in code writing, after opening the open-MP

(API) in the computer, they should be check that the all cores are working

without (Parking) as showed in the Fig.(26). To avoid this problem in Jacobi

 41

method it can increase number of iteration in order to make a big press to the

processor and forced using all core in order to comparing it with other type.

For instance if the comparing between two computers actually happened first

computer has the following Specifications:

1. Core I3 4 Cores.

2. Frequency 2.13 GH.

3. RAM  4GB.

4. System type  64 bit.

And the Second computer has the Following specifications:

1. Core I7  8 Cores.

2.

3.

4. Frequency 2.00GH.

5. Ram 6 GB.

6. System type 32 bit.

.

.

Figure 27 Cores status after running open-MP program

 Means that this core is working now

 Means that the core is parked

.

 42

So if the programmer try to solve normal equation even with open-MP (API)

in program it will not open all the cores for working because the program not

needing for that. And the essential result comparing two computers which

over the mentioned of this thesis will be a proofing for this theory. So may be

(Intel I3) which have 4 Cores will execute the program faster the (Intel I7)

which have 8 Cores, the reason is that if the 4 Cores are opened to running

they will be equal but there is many another factors will win the (Intel I3) to

(Intel I7). The table [001] shows the comparing of (Intel I3) using all cores

which is 4 Cores and (Intel I7) which half number of cores (4 cores) because

it is not need to use 8 Core for small computation, And the result is amazing

because the result is not benefit of (Intel I7), this table is the Approximately

result for Jacobi iteration 5-Points (standard Jacobi, and tiling Jacobi 2

Dimensions) Because the thesis is deal with this two experiments. It is worth

mentioning that this table is only to support the theory described in this

section and it has not relation with the real result of main experiment and the

essence of thesis. At the same time this result is very important in

understanding how the cores work.

As seen in Table 4 the small iteration is not gives the real results which we

want because it is not use whole efforts of processor, and this means that the

difference number of cores between two computer will not appeared unless

forced all cores to run. The results show us that whenever the array size is

grow the computation result will be more significantly than the smaller array

size, the selected green part is the part of Intel I7 overcome to Intel I3,

Because it used all cores which are 8 cores to solve the re-computations,

while the gray part in table 001 is the part of outdo Intel I3 to Intel I7, as

mentioned in this section the overperforming of Intel I3 to Intel I7 is that they

are equal in cores in some operation at that time another factors Intervenes in

the run time like cache memory, frequency and Ram memory. At measuring

to the performance of open-MP in the computer system it take 5.4, while the

user performance is 3.2 and the system will take 2.0 from the general

performance. These value is differ according many factors such as:

 43

Table 4 The Difference Between Intel I3 and Intel I7 Executing Jacobi

Program with 5 Iteration for Every Elements.

1. Behavior: Which memory is accessed by single thread?

2. Open-MP parallelization costs: What’s the amount of time are spent to

handling the open-MP constructs?

3. Synchronization costs: What’s the wasted time to accessing the critical

regions?

4. Sequential costs: What’s the costs of sequential work that replicated?

Array Size Tiling Size Intel I3

(Running per

sec)

Intel I7

 (Running per

sec)

120*120 No block 35.6 sec 60.1 sec

120*120 3*3 12.3 sec 12.6 sec

120*120 4*4 10.3 sec 11.9 sec

120*120 5*5 9.2 sec 10.3 sec

240*240 No block 147.5 sec 211.4 sec

240*240 3*3 81.4 sec 85.8 sec

240*240 4*4 49.4 sec 52.0 sec

240*240 5*5 44.9 sec 45.4 sec

480*480 No block 641.6 sec 969.5 sec

480*480 3*3 575.8 sec 519.2 sec

480*480 4*4 395.4 sec 330.1 sec

480*480 5*5 273.4 sec 227.0 sec

480*480 10*10 185.5 sec 170.2 sec

960*960 No block 2252.4 sec 2780.2 sec

960*960 5*5 Not responding 1709.4 sec

960*960 10*10 Not responding 995.1 sec

 44

5. Load imponderables costs: What’s the costs imbalance between the

concurrence points?

3.3 Open-MP Usage

The thesis get up on open-MP, most experiments and analyzing and studying

in this thesis is deal with open-MP (API), so the explaining this (API) is

appropriate for this section at least. This (API) is extend at last 10 years

rapidly, many algorithm is developed to deal with this (API), the usage of

open-MP is one of factors which focused on in this section. As mentioned in

previous section that before writing open-MP program, it must note down the

omp.h, in header class. Then opening the open-MP properties inside

programming language then start writing the code. There is many codes for

open-MP this section will explain it in details. The first code which this thesis

deal with is directive format this syntax is be formally with open-MP as

following:

 (+)#pragma omp directive-name [clause [[,] clause]...] new-line(+)

 //each directive start with #programa omp

Several directive in open-MP may be form of sequential #pragma

preprocessing while specified their syntax. The second code which the thesis

deal with is Loop Construct which written by following sentences:

(+)#pragma omp for [clause [[,] clause] ...] new-line(+)

For-loops

// where clause is one of the following:

Private (list)

Firstprivate (list)

Lastprivate (list)

Reduction (reduction-identifier: list)

Schedule (kind [, chunk_size])

Collapse (n)

Ordered

Nowait

This syntax of loop constructer specified the iteration of one or more loops

will be executed in parallel by threads in the group in the context of their tacit

tasks. The iteration separated across threads that existed in the group of

 45

running parallel region to the loop region links [15]. The third code is Section

Construct it is non iteration work-sharing that involved set of structure

blocks which distributed among and run by threads in group. Any block

structure is run once by one of thread in the group of its tacit tasks.

(+)#pragma omp sections [clause[[,] clause] ...] new-line

{

[#pragma omp section new-line]

 structured-block

[#pragma omp section new-line

 Structured-block]

 ...

} (+)

// where clause is one of the following:

private (list)

firstprivate (list)

Lastprivate (list)

Reduction (reduction-identifier: list)

Nowait

The fourth one is Single Construct its construct specifies which deal with

structured block that run by only one thread in group, but it should be notes

that is not important if run by master or slave threads, in the context of its

tacit tasks [16].

(+)#pragma omp single [clause[[,] clause] ...] new-line

 Structured-block(+)

//where clause is one of the following:

Private (list)

Firstprivate (list)

Copyprivate (list)

no wait

The last one is Simd Construct which can be run on the loop to mention that

the loop could be transformed in to SIMD loop that multiple instruction of

loop can be run sequentially using SIMD structure [17].

(+)#pragma omp simd [clause[[,] clause] ...] new-line

 For-loops(+)

 46

// where clause is one of the following:

Safelen (length)

Linear (list[:linear-step])

Aligned (list[:alignment])

Private (list)

Lastprivate (list)

Reduction (reduction-identifier: list)

Collapse (n)

The SIMD directive local’s limitations on the structure which deal with for

loops.

After the explaining of the constructs of codes it should be notes that the

optimal run time will occur according the type of operating systems, and an

optimal operating system which not have taken efforts from CPU is MS-DOS

without using windows, Kernel of Ubuntu in Linux. However, if Windows is

used in computing run time or in applying the program we should be careful

about the effects of services running in background and close them if

possible.

3.4 Summary

This chapter try to proof the whole running of cores needs to be greater

pressures on the processor to forced the whole core to works, by given

example in this chapter 5 iteration for all matrix element is very small to

using all cores so four cores are working comfortingly and parked another

four cores as showed in Fig. (26) In 8 cores case (Intel I7) but in 4 cores case

it work all cores. Next chapter avoid this problem by increasing the number

of iteration rising up an array size and block size, enough to run the 8 cores in

(Intel I7) to getting an optimal runtime for the experiments and getting really

result to proofing an experiment, by the way this chapter was a preamble to

intromission to next chapter.

 47

CHAPTER 4

EXPERIMENT & RESULTS

4.1 Thesis Project

The thesis is focused on many things, some of them are attached to the theory

of algorithm which solved by software and the other things are related with

architecture of processor and cache memory as mentioned in previous

section, this section is discuss the theory of the thesis (mathematic

computations, tiling movement on array, the result of this experiment, the

ration of distance between this experiments and previous experiment), and on

the other hand discuss the software using in this thesis (open-MP codes, the

difference between the previous codes and this code, the iteration numbers

effective to proof that the core number influence to the computing runtime).

4.2 The Theory Part of Thesis

As mention in the Chapter Two the Jacobi method has many algorithm to gets

a result but not all of it is efficient, or in other word the runtime of these

execution is not an optimal time, and because this thesis try to accelerate

these operation by using all resource of computer like (using all cores,

optimal reusing data in cache memory etc..), so it was supposed to adding a

new algorithm or at least, enhancing an existed algorithm. This thesis select

the second one actually, by enhancing a tiling two dimension Jacobi. As

showed in Fig.(27) two dimension Jacobi tiling is work by moving block

(tile) step by step, and this operation make delaying in the program, because

it is re-compute some elements which was inside in previous tiling. The re-

computing operation is made the delaying in the computation because the

algorithm forced it to re-compute the element. This operation is varied

according the block (tile) size, for instance in the big sizes block, the delay

 48

time will be very large comparison with small size block. To avoid this

problem we suggest an enhancement to this algorithm. The enhancement will

deal with block movement, and this shifting will not be by column or row for

each sweep. The shifting will be by (block-1) this mean it will shift by block,

but it moves backward by one step to sure that the boundary of first block

will be involved in the second block because Jacobi is not computed in the

boundary see Fig.(28). This operation will avoid to re-computing the previous

block elements and this leads to a decrease of work time and keeps more

reused data in memory cache.

The ratio of enhancement is different according blocking size and array size,

and sometimes the ratio may be one. For example (3*3) block is like this

because there is no more element in the block to re-compute, so this

experiment takes big block such us (5*5), or (10*10). The difference between

the standard stencil code (Jacobi without tiling), and Jacobi tiling by (block-

1) are shown in the figure below:

First block

First shifting for block

Second shifting for block

Figure 28 Tiling Jacobi by one step

 49

4.3 Software of Thesis

This part of the thesis is present the software are used in the program according three

pivots: the first one will be standard Jacobi software without tiling, the second pivot

will dealing with the simple tiling Jacobi and the last one will explaining by the

codes the main experiment of this thesis.

4.3.1 Standard Jacobi without Tiling

This algorithm is mention in theory in the second chapter, but now this section will

deal with the software and practically. Actually it is very slow comparing with the

other algorithm significantly, sometimes the result of running time comparing with

other algorithm is reached to half. This experiment is insure these number

practically. First of all run open-MP, then follow the steps as mentioned in previous

sections, then:

First block

Second block

Third block

Figure 29 Tiling Jacobi by block-1

 50

 #include <omp.h> // A header code help to run open-MP codes

And it is important to compute the time so it is important to

putting the time header.

 #include <ctime> // Time header

 In the main part, in order to Fork a team of threads giving them

their own copies of variables should use:

 #pragma omp parallel private(nthreads, tid) // of course you should

defined nthreads and tid as int before this code

 Then to get threads number it can writing this code:

 tid = omp_get_thread_num();

 printf("hi, the thread no.is = %d\n", tid);

Note: all these steps before starting to write a program.

The program of Standard Jacobi is:

#pragma omp parallel //Defines a parallel region, which is code that will be

executed by multiple threads in parallel.

 #pragma omp for //Loop Construct

 for(r=0;r<8;r++) // No of iteration

 {

 for(i=1;i<max-1;i++) // shifting by element, max is refer to an array

size

 {

 for(j=1;j<max-1;j++) //shifting by elements, max is refer to

an array size

 {

 a1[i][j]=(a0[i][j]+a0[i+1][j]+a0[i-

1][j]+a0[i][j+1]+a0[i][j-1])/5; // Jacobi computation

 }

 }

 #pragma omp parallel

 #pragma omp for

 for(i=1;i<max-1;i++)

 {

 for(j=1;j<max-1;j++)

 51

 {

 s=a0[i][j]; //sweeping

 a0[i][j]= a1[i][j];// sweeping

 a1[i][j]=s; //sweeping

 cout<<a0[i][j]<<" ";

 }

 }

 }

4.3.2 Two Dimension Jacobi Tiling Method

This section deal with the software of normal tiling in Jacobi method, as mentioned

in previous sections the disadvantage of this method, but it still faster in computation

than Jacobi without tiling. The codes of this method is as explaining below:

 #pragma omp for

 for(r=0 ; r<8 ;r++) // no. of iteration

 {

 for(i=1; i<max-1; i++)

 {

 for(j=1; j<max-1; j++)

 {

 for(ii=1;ii<max-1;ii+=min-1) // shifting block toward

x, max is represent an array

 {

 for(jj=1;jj<max-1;jj+=min-1)// shifting

block toward y, max is represent an array

 {

a1[ii][jj]=(a0[ii][jj]+a0[ii+1][jj]+a0[ii-1][jj]+a0[ii][jj+1]+a0[ii][jj-1])/5;

 }

 }

 }

 }

 }

The sweeping will be as showed below:

#pragma omp parallel

 #pragma omp for

 for(ii=1; ii<max-1; ii++)

 {

 for(jj=1; jj<max-1; jj++)

 52

 {

 s=a0[ii][jj];

 a0[ii][jj]= a1[ii][jj];

 a1[ii][jj]=s;

 cout<<a0[ii][jj]<<" ";

 }

 }

4.4 Experiment Software

The experiment focused on the shifting style, the shifting is very important factor to

increasing the speed of runtime. This factor changes the program speed significantly,

but the code is not changed as the changing of result is a small specification on code

which change software’s destination and make the software run faster than the

previous two methods.

#pragma omp parallel

 #pragma omp for

 for(r=0 ; r<8 ;r++) // no. of iteration

 {

 for(i=1; i<max-1; i++)

 {

 for(j=1; j<max-1; j++)

 {

 for(ii=1;ii<max-min+1;ii+=min-1) // shifting by x

block, max is an array, min is a block

 {

 for(jj=1;jj<max-min+1;jj+=min-1) //

shifting by y block, max is an array, min is a block

 {

a1[ii][jj]=(a0[ii][jj]+a0[ii+1][jj]+a0[ii-1][jj]+a0[ii][jj+1]+a0[ii][jj-1])/5;

 }

 }

 }

 }

 }

The sweeping will be as below:

 #pragma omp parallel

 #pragma omp for

 for(ii=1; ii<max-1; ii++)

 {

 for(jj=1; jj<max-1; jj++)

 {

 s=a0[ii][jj];

 53

 a0[ii][jj]= a1[ii][jj];

 a1[ii][jj]=s;

 cout<<a0[ii][jj]<<" ";

 }

 }

4.5 Experiment Results

The result of this experiment should be divided into two types, the first one should

discuss the succession of the experiments by proving overcoming of this experiment

to the other two methods, and this become a reality by a table for all this method run

time see Table 5 Fig.(29). The second part of this experiment should prove

effectiveness of use larger number of cores to show that the runtime be faster the less

number of core and this experiment uses two computer (Intel I3, Intel I7), the

properties of these two computer is existed in previous sections in this chapter, then

the experiment make a table for this part to proof that the Intel I7 working is better

than Intel I3, because Intel I7 uses 8 Cores while the second one is uses 4 Cores see

Table 6 Fig.(30).

 54

Array size

Block size if

existed

Standard

Jacobi Runtime

2D Jacobi

Tiling step by

step Runtime

Experiment

Jacobi

algorithm

Runtime

120*120

5*5

96.1 Second

Not Block case

15.3 Second

Block 5*5

11.6 Second

Block 5*5

120*120

10*10

96.1 second

Not block case

13.9 Second

Block 10*10

8.4 Second

Block 10*10

240*240

5*5

392.9 Second

Not block case

105.2 Second

Block 5*5

50.9 Second

Block 5*5

240*240

10*10

392.9 Second

Not block case

99.8 Second

Block 10*10

46.6 Second

Block 10*10

480*480

5*5

1571 Second

Not block case

1175.1 Second

Block 5*5

262.6 Second

Block 5*5

480*480

10*10

1571 Second

Not block case

1096.0 second

Block10*10

210.1Second

Block 10*10

Table 5 Over Performing the Result of Experiment to Other Results.

 55

0

50

100

150

200

250

300

350

400

450

120*120
blocking 5*5

120*120
blocking 10*10

240*240
blocking 5*5

240*240
blocking10*10

R
u

n
ti

m
e

Axis Title

Standard Jacobi Runtime

2D Jacobi Tiling by column or row Runtime

Experiment Jacobi algorithm Runtime

Figure 30 Over performing the runtime of the experiment to other algorithms.

 56

Array size

Block size

INTEL I3 Runtime INTEL I7 Runtime

240*240

3*3

99.8 Second 61.5 Second

240*240

4*4

79.0 Second 52.8 Second

240*240

5*5

70.3 Second 50.9Second

240*240

10*10

58.9 Second 46.6 Second

480*480

3*3

926.3 Second 473.5 Second

480*480

4*4

870.9 Second 287.7 Second

480*480

5*5

569.7 Second 262.6 Second

480*480

10*10

223.5 Second 210.1 Second

Table 6 INTEL I7 Over Performing to INTEL I3 in Runtime on Thises Theory

Program.

 57

4.6 Summary

The main aim of this thesis is highlight to two dimension Jacobi method by

improving it, to give an optimal runtime by using enhancement method of blocking,

this experiment is focused on optimal using of CPU usage by using all cores, and

optimal using of cache memory. Then we compare between Intel I7 and Intel I3

processors and prove that the Intel I7 is faster in executing and computing a big array

than Intel I3. In the second part of the experiment we try to prove the software

effectiveness comparing it to other two algorithm We find that this enhancement

ratio is different according to size of an array and size of block.

Figure 31 Over Performing of I7 INTEL Processor to I3 INTEL Processor on

Thesis Theory.

 58

CHAPTER 5

CONCLUSION & FUTURE WORKS

5.1 Conclusion

This study proves the ability to enhancement of the Jacobi algorithm using stencil

codes and bringing data to the cache in aspecific order. We obtained improvements

up to %50 to 60% in big arrays as shown in Fig.(31).

These properties lead this study to get successful results. This study focused on three

pivots: The first algorithm. Then make a comparison between Intel I7 which has

Figure 32 Over performing the experiment runtime to other algorithm.

 59

 (8 cores) and Intel I3 which has (4 cores) and getting the result which support our

theory as shown in Fig. (32). The third one is the difference between running

program with or without open_MP(API) a hidden one in experiment (not mentioned

in the results), because it is axiomatic to give a good result although the starting of

this thesis was according that result and from this point the experiment started .

Figure 33 Over Performing the INTEL I7 to INTEL I3 in runtime.on thesis theory.

(2 4 0 *2 4 0)
B L O CK ING

3 * 3

(2 4 0 *2 4 0)
B L O CK ING

4 * 4

(2 4 0 *2 4 0)
B L O CK ING

5 * 5

(2 4 0 *2 4 0)
B L O CKING

1 0 * 1 0

(4 8 0 *4 8 0)
B L O CKING

3 * 3

(4 8 0 *4 8 0)
B L O CK ING

4 * 4

(4 8 0 *4 8 0)
B L O CK ING

5 * 5

61.5 52.8 50.8 46.6
473.5

287.7
260

99.8 79 70.3 58.9
926.3

870.9
590

R
u

n
ti

m
e

INTEL I7 Runtime INTEL I3 Runtime

 60

5.2 Future Works

Since Jacobi method is more flexible than the other algorithm then it can be easy to

apply this study which contain an enhancement on 2D Jacobi tiling algorithm to

another Jacobi algorithm type for instance 3D Jacobi tiling algorithm. It will be very

bestowal in the result more than this experiment, this experiment can be leap to

discover new algorithm, and it is giving way to open up prospects to enhancement in

various trends, as mentioned in chapter two, there are many methods such as Jacobi

itself. Therefore this enhancement can be applied to any method in order to get

improved results [18].

 iii

 R1

REFERENCES

1. Lülfesmann M. and Kawarabayashi K. I., (2014), “Sub-Exponential Graph

Coloring Algorithm for Stencil-Based Jacobian Computations”, Journal of

Computational Science, vol.5 no.1, pp. 1-11.

2. Datta K., Kamil S., Williams S., Oliker L., Shalf J. and Yelick K., (2009),
“Optimization and Performance Modeling of Stencil Computations on

Modern Microprocessors”, SIAM Review, vol. 51 no. 1, pp. 129-159.

3. Christen M., Schenk O., Messmer P., Neufeld E. and Burkhart H.,

(2008), “Accelerating Stencil-Based Computations by Increased Temporal

Locality on Modern Multi-and Many-Core Architectures. In High-

Performance and Hardware-Aware Computing”, Proceedings of the First

International Workshop on New Frontiers in High-performance and

Hardware-aware Computing, pp. 47-54.

4. University of Nice Sophia Antipolice,

http://math.unice.fr/~frapetti/CorsoF/ cours3.pdf, (Data Download Date:

2/11/2014).

5. Barrett R., Berry M. W., Chan T. F., Demmel J., Donato J., Dongarra J.

and Van der Vorst H., (1994), “Templates for The Solution of Linear

Systems Building Blocks for Iterative Methods”, SIAM, vol. 43, pp. 33.

6. Rahman S. M. F., Yi Q. and Qasem A. (2011), “Understanding Stencil

Code Performance on Multicore Architectures”, In Proceedings of the 8th

ACM International Conference on Computing Frontiers, pp. 30.

7. Datta K., Murphy M., Volkov V., Williams S., Carter J., Oliker L. and

Yelick K. (2008), “Stencil Computation Optimization and Auto-tuning on

State-of-the-Art Multicore Architectures”, In Proceedings of the 2008

ACM/IEEE Conference on Supercomputing, pp. 4.

 R2

8. Li R. and Saad Y., (2013), “GPU-Accelerated Preconditioned Iterative

Linear Solvers”, The Journal of Supercomputing, vol.63, no.2, pp.443-466.

9. Krishnamoorthy S., Baskaran M., Bondhugula U., Ramanujam J.,

Rountev A. and Sadayappan P., (2007, June), “Effective Automatic

Parallelization of Stencil Computations”, In ACM Sigplan Notices, vol. 42,

no. 6, pp. 235-244.

10. Rutishauser H., (1966), “The Jacobi Method for Real Symmetric Matrices”,

Numerische Mathematik, vol.9, no.1, pp.1-10.

11. Marin G. and Mellor-Crummey J., (2008), “Pinpointing and Exploiting

Opportunities for Enhancing Data Reuse”. In Performance Analysis of

Systems and Software, ISPASS 2008, IEEE International Symposium, pp.

115-126.

12. Huang H. and Chang S., (2003), “Gauss-Seidel-Type Multigrid Methods”.

Journal of Computational Mathematics-International Edition, vol.21, no.4,

pp. 421-434.

13. Yang X. I. and Mittal R., (2014), “Acceleration of The Jacobi Iterative

Method by Factors Exceeding 100 Using Scheduled Relaxation”. Journal of

Computational Physics, vol. 274, pp. 695-708.

14. OpenMP, http://openmp.org/wp/2014/11/code-challenge-announced-at-sc14/

(Data Download Date: 1/12/2014).

15. Dagum L. and Menon R., (1998), “OpenMP: An Industry Standard API for

Shared-Memory Programming”, Computational Science & Engineering,

IEEE, vol.5, no.1, pp. 46-55.

16. Darlington J., Ghanem M. and To H. W., (1993), “Structured Parallel

Programming”, In Programming Models for Massively Parallel Computers

Proceedings, IEEE, pp. 160-169.

http://openmp.org/wp/2014/11/code-challenge-announced-at-sc14/

 R3

17. Chapman B., Jost G. and Van Der Pas R., (2008), “Using OpenMP:

Portable Shared Memory Parallel Programming”, MIT Press, Vol. 10, pp.

23.

18. Rivera G. and Tseng C. W., (2000), “Tiling Optimizations for 3D Scientific

Computations”, In Supercomputing, ACM/IEEE 2000 Conference, pp. 32-

32.

 A1

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: ALHILALI, AMAR

Date and Place of Birth: 19 May 1986, KERKUK

Marital Status: Single

Phone: +90 507-440 94 36

Email: Amarkhorshid@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.Sc.
Çankaya University, Computer

Engineering
2015

B.Sc.
Kerkuk Technique University,

Software Engineering
2009

High School Kerkuk High School 2005

WORK EXPERIENCE

Year Place Enrollment

2011-2012

Al-QALAM University

Computer Engineering

Department

Assistant

2009-2011
Al-NASR Company for

Reaserch and Study.
Coordinator

 A2

FOREIN LANGUAGES

Advanced English, Arabic, Beginner French.

HOBBIES

Wing Chun, Travel, Novel, Swimming, Poetry.

