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Stencil computations are common in linear systems of equations, numerical solutions 

of partial differential equations, molecular dynamics and many other scientific 

problems. For large structures, long computation times are an important problem. 

Increasingly higher number of cores are used in parallel for such computations, but 

still, the speedups are not sufficiently satisfactory. The main aim of this thesis is 

increasing the cache reuse and minimizing number of memory accesses by 

optimizing loop structures.  We present and test several algorithms and 

improvements on them to get an optimal runtime. 
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Şablon hesaplamaları doğrusal denklem sistemlerinde, kısmi diferansiyel 

denklemlerin sayısal çözümlerinde, moleküler dinamikte ve daha başka pek çok 

bilimsel problemde yaygın olarak karşımıza çıkarlar. Büyük yapılar için uzun 

hesaplama süreleri önemli bir problemdir. Bu tür parallel hesaplamalar için giderek 

artan sayıda çekirdek kullanılmaktadır ancak hala hızlanmalar yeterince tatmin edici 

değildir. 

 

Bu tezin ana amacı döngü yapılarını iyileştirerek işlemci belleğinin tekrar 

kullanımını arttırmak ve sistem belleğine erişim sayısını en aza indirmektir. En iyi 

işlem zamanını elde etmek amacıyla birden fazla algoritma ve onların iyileştirilmiş 

halleri sunulmuş ve test edilmiştir.  

 

 

Anahtar Kelimeler: Şablon Kodu, Çok Çekirdek, Jacobi, Bellek Yeniden 

Kullanımı, Yakınsama, Hücreleme, Döngü.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

The ability of performing multiple tasks at same time is calling parallel computing or 

parallel processing. This term is used in context of human cognition, which dialed 

with the ability of brain to solve several problems simultaneously. For example the 

brain is divided what sees into many contents: color, motion, shapes and depth. 

These content which brain divided are individually analyzed and then compared to 

stored inside memory, in order to used to identify what you viewing. The second 

using of parallelism will be in the parallel computing which simultaneous using more 

than one CPU or processor core in order to execute multiple program or solving huge 

number of equations. Optimally, parallel processing makes result appearance faster, 

because there is more engine (CPUs, processing COREs) executing it see fig. 1(A).  

Actually, it is often difficulty to divide a program in such a way that split up (CPUs 

and COREs) execute different portion without middling some each other. In the past 

most computers has single – CPU single CORE , but there was possibility to perform 

parallel processing by connecting two or more computer each other by  setting up 

network. Today the computer has more than one core, so we can use the parallelism 

easily. In this thesis I prefer to notice that  parallelism is differ from concurrency , 

because concurrency is a term used in operating systems and database 

communications logically which indicate to the property of systems in which 

multiple tasks are still logically active, and progress at same time by interfering 

system implementation task order, thus creating illusion of implementing instructions 

simultaneously. While, parallelism is used by computer community to identify 

executing simultaneously, and it is goal is solving  problems in an optimal time or 

solving huge number of equations at less time, see fig. 1(B) . 
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(A) 

Figure 1 (A and B) Difference between single-core and multi-core 

(B) 
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1.2 Overview 

 

This thesis try to present the classical methods of stencil code, which deals with 

solving partial differential equation in less time. Actually these methods have 

been very classic, old, simple understanding and implementation as mentioned in 

section 2.2. At the same time it present some topics which deals with these 

methods and the related works with these methods. The structure of arrays 

calibrate stencil codes as apart from other methods like finite element method, 

finite difference codes which invest on consistent grids can be subedit a stencil 

codes. Thesis content figures, tables, schemes, clarification, parts of codes, and 

appendices. Thesis dropping light on stencil codes which found commonly in 

codes of computer simulations, the Jacobi kernels, the Gauss-Siedle method, 

image processing and cellular automata. The main idea of this thesis is to 

improve on algorithm to be able to competitive with existed methods, by using 

optimal time for solving the problems by best of implementing of cache and 

reusing data in array. The methodology which used in this thesis is varied from 

the others in reusing data, modality of implementing of cache, separating of 

values in an array and solving these values in array. The critical case for stencil 

performance is exploiting locality in the time dimension .The reason of this 

criticality is data grid size in real application exceed the capacity of L1,L2 cache 

on current. The problem of performance are largely, because of enough cache 

requiring, and can reducing this by tiling method. This thesis consider the most 

common classical iterative techniques for the linear systems: the Jacobi, and 

Gauss-Seidel methods. These method are constantly denoted as stencil code, and 

the reason is updating of array elements according some stable patterns. 

 

1.3 Motivation 

 

The main idea of this study was to develop an algorithm which could 

competitive and overcome to another algorithm to improving executing of large 

equation runtime. This motivation leads to working and completion this 

experiment and do the best to reach to an enhancement which could to 

competitive with new algorithms and overcome on it. 
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1.4 Organization of Thesis 

 

Thesis is comprises 4 chapter organized to be Reference to who deal with this 

study, first chapter is starting with introduction of this work then followed by 

overview and motivation, in the second chapter it started talking about related 

work, dealing with stencil code and the explaining basic iterative method in this 

section study explain three main method of iterative, then the study turns to 

talking about multi-processor systems and the type of multi-processor systems, 

continuing in other section subject of caching memory, giving way to enter in 

Jacobi method by cross-cutting methods by detail, then talking about tiling 

Jacobi to open minds to up-to-date methods of blocking by detailing and giving 

an example or figure illustration for each one. Then start with three dimension 

Jacobi method and blocking of three dimension method, to finish this chapter by 

explaining the Gauss Seidel method and compare it with Successive Over – 

Relaxation method. In the third chapter, the study starting to clarification of 

important tool to performing this experiment to the fullest, so it starting from 

clarification of open-MP, then transmitted to the usage of this (API), then starts 

to talking about thesis project to divides the work into two part, first is theory 

part and the second is software part to getting the result and produce the result to 

reader. The last chapter simply is conclude the new improvement from this work 

and recommend some suggestions for feature working. 
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CHAPTER 2  

 

STENCIL CODE 

 

2.1  Stencil Code  

 

Stencil computations appeared in an extensive field of applications of computational 

sciences. This is an important part of run time in many scientific simulation codes.  A 

primary application of stencil-based computations are numerical Partial Differential 

Equation solvers that implement a finite difference or multi-grid method. Where 

Stencil computation is used to solve in Partial Differential Equation solving it is also 

using in image manipulation. These kernels are used in outermost time loop to make 

a huge number of sweeps on multi-dimensional grid so that the valuations of any grid 

point are modified according the valuation of neighboring points.  

Partial Differential Equations can be simplified numerically by first discretizing the 

computational domain, e.g., a regular Cartesian grid together with a stencil 

depending on ƒ and then using a Newton –Raphson – type algorithm, this will 

require evaluating the sparse Jacobian of ƒ on the discretized domain, which is a very 

computation intensive operation for complicated Partial Differential Equations [1]. 

 

High degree of temporal locality are exhibited in most of stencils, because any 

update operation needs to access neighboring values. The critical case for stencil 

performance is exploiting locality in the time dimension. The reason of this criticality 

is that, data grid size in real applications usually exceed the capacity of L1 and L2 

cache on current systems[2].  

 

Systems of linear equations for which numerical solutions are needed are often very 

large, making the computational effort of direct methods, such as Gaussian 

elimination, prohibitively expensive. For systems that have coefficient matrices with 

appropriates structure- especially large, spare systems (i.e., systems with many 

coefficient whose value is zero) – iterative techniques may be preferable. Iterative 
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solvers such us Jacobi and  Gauss-Seidel are very important because they are the 

building blocks of many other methods. Their computational properties are similar.   

 

This thesis considers the most common classical iterative techniques for the linear 

systems: the Jacobi method. This method are constantly denoted as stencil code, and 

the reason is updating of array elements according some stable patterns. The 

performance of each technique is illustrated for several small systems and for linear 

system in example from Poisson’s equation. Some theoretical results are presented to 

give guidance in determining when the method may be useful. In Open-MP API 

specification for parallel programming is provided for each technique.  In stencil-

based computations, each node in a multi- dimensional grid is updated with weighted 

values contributed by neighboring nodes [3]. 

 

2.2 Basic Iterative Method  

 

Iterative scheme according to formula of stencil computations in three spatial 

domains are applied a lot of math practice e.g. linear problems solving and multi-grid 

techniques. The optimal prototype for Poisson problems is Jacobi method, while 

Gauss-Seidel tries to solve Laplace problems. The big size of data sets probability 

may be the reason for using these methods which are known as data- dense and 

accessible main memory bandwidth forces upper limit of execution.  

Relaxation of coordinate was the first method which used in solving of large linear 

systems starting with a gained approximated solution. The methods which I deal with 

in this thesis modify the component of the approximation a few at time a certain 

order, until convergence. Any step in this operation is called relaxation steps.   

Iterative methods formally produce the solution of linear system after ultimate 

number of steps. At each step it demand calculation the remaining of the system. In 

full matrix case, the computation (calculation) cost is based on the order of  

operation for every iteration, in order to comparing it with an overall costs of their 

order of  operation which required by direct methods. Iterative method can be 

competitively with direct methods as long as the number of iteration that needed to 

convergence is either independent of  or scales sub linearly [4]. In the scattered 

matrices case direct method may be inappropriate because the content which filled 
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the matrices. Although the direct solvers extremely could be innovated on scattered 

matrices characteristics. The main idea of iterative method is to build square of the 

vector  that deal with the property of convergence:   

x=  

Practically iterative process is layover at minimum value of (  such us 

|| ||<ɛ, 

While ɛ is a constant tolerance ||.|| is any appropriate vector norm. Yet, since the 

same solution is clearly not available, it is indispensable to identify appropriate 

stopping criterion to monitor the convergence of iteration. There are many options in 

iterative solutions such as pure iteration which compute each   from - 

(   This is called stationary, because the application at every step is the 

same. Convergence to  , shown below, acceleration when all eigenvalues 

of  are small. The second options of iteration is multi-grid for one 

job in Gauss Seidel and Jacobi is very well, they takeaway high frequency 

component to drop a smooth error. The main idea is to shift to a coarser grid- where 

the reminder of error can be destroyed. It is often significantly successful. The third 

option is Krylov spaces, which consist of all combination of b, Ab,  and 

Krylov methods expect the best combination.  

However Iterative term is mention to a wide range of techniques that implement 

successive approximation to gain more accurate solution to linear system at each 

step. In this thesis will touch two types of iterative methods. As thesis referred in this 

section, direct method can be older, simpler to understand and more implementable, 

but it still not efficient to use nowadays. While in direct (no stationary) methods are 

comparatively recent development the analyzing of indirect (no stationary) methods 

is usually hard to understand, but these methods are still more efficient. These 

methods are based on the idea of sequences of perpendicular vectors. The rate at 

which an  

iterative method converges depends primarily on the spectrum of the matrix 

coefficient [5]. Therefore, iterative methods generally include another matrix that 

transforms the coefficient into one with a more appropriate spectrum. This 

transformation is called preconditioning.  In fact the iteration methods fail without 

preconditioned. This chapter will introduce the both methods with full detail.  
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2.3  Multi-Core Processor 

 

A multi-core processor is single computing component with multi or more freelance 

actual (central processing units) which have units for reading and executing the 

instructions. This instruction or order is normal CPU instruction like move data, 

adding and branching, while multi- cores try to apply multi instructions 

simultaneously. Manufacturers usually try to combine the cores onto a single 

integrated circuit die (known as a chip multiprocessor or CMP), or onto multiple dies 

in a single chip package [6]. Processors were in general developed with one core 

only. Rockwell International in middle of 1980 produced versions of the 6502 with 

two 6502 cores on one chip as the R65C00, R65C21, and R65C29, joining the chip’s 

pins stand by clock stages [5]. In 2000 AMD and Intel were produced the other multi 

core styles. The company starts with two cores and continue to work to increase the 

number cores till nowadays Table 1 explain number of cores and the name of 

company, which has developed this product and the brand name of these product. 

 

Aboard selection of model m86 which based on multi-core processor has selected to 

attempt variants of wave front parallelization model see section 2.5.5, to explain its 

performance efforts. Most of these chips properties a large outer level cache which is 

portion by two (Intel Harpertown), four (Intel Nelham EP), six (Intel Westmere EP) 

or eight cores (Intel Nelham ex) [see Table 2]. An extreme numbers of Cores which 

are joined outer level are L2/L3 cache which mentioned as “L2/L3” group see Fig. 

(2). 

 

Number of cores Brand name of Intel Brand name of AMD 

Two Cores   Intel Core Duo AMD Phenom II X2 

Four Cores  Intel's i5 and i7 processors AMD Phenom II X4 

Six  Cores   Intel Core i7Extreme Edition 980X AMD Phenom II X6 

Eight Cores  Intel Xeon E7-2820 AMD FX-8350 

 

Table 1. Number of Cores and Brand Name of Each Company 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Rockwell_International
http://en.wikipedia.org/wiki/6502
http://en.wikipedia.org/wiki/Intel_Core_Duo
http://en.wikipedia.org/wiki/List_of_AMD_Phenom_microprocessors#.22Callisto.22_.28C2.2FC3.2C_45_nm.2C_Dual-core.29
http://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#.22Westmere-EX.22_.2832_nm.29
http://en.wikipedia.org/wiki/List_of_AMD_FX_microprocessors
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In Harpertown processors, which run onto two cores is denoted as a quad-core chip, 

because four cores are placed in package as shown in Fig. (3). In this case it is 

accumulate as two according L2 groups without using L3 for all four cores. 

Additionally a whole remodeling of memory sub-system permit for a substantial to 

raise up in memory at the cost of identifying a ccNUMA. It is type of memory style, 

which used in multi-processor systems, when memory location relative to processor 

are control memory access time. 
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Figure 2 (A and B) The memory performance on Jacobi program written by C++ 
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(B) Nehalem EP 

 

Figure 3 Microarchitecture of core 2 quad and Nehalem EP 

(A) Core 2 Quad 
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Microarchitecture Intel 

Core2 

Intel 

Nehalem 

Ep 

Intel 

Westmere 

Intel 

Nehalem 

EX 

AMD 

ISTANBUL 

Model Xeon 

X5482 

Xeon 

X5550 

Xeon 

X5670 

Xeon 

X7560 

Opteron 

2435 

Clock [GHz] 3.2 2.66 3.93 2.26 2.6 

Core per socket 4 4 6 8 6 

SMT threads per 

core 

N/A 2 2 2 N/A 

L1 cache 32kB 32kB 32kB 32kB 64kB 

associativity 8 8 8 8 2 

L2 cache 2x6 

MB(shared) 

4x256 

kB 

6x256 kB 8x256 

kB 

6x512 kB 

associativity 24 8 8 8 16 

L3 cache - 8MB 12MB 24MB 6MB 

associativity - 16 16 24 48 

Bandwidth[GB/s] - - - - - 

Theorical socket 

BW 

12.8 32.0 32.0 17.1 17.1 

STREAM 1 

thread 

4.6 11.9 11.0 5.3 7.2 

STREAM socket 

NT/no NT 

4.8/5.6 18.5/23.7 21.0/23.6 9.1/13.6 9.8/11.4 

 

Table 2 Test Machine Specification, The Cache Line Size is 64 Bytes for All 

Processor and Cache Levels. 
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2.4 Cache Memory  

 

Central processor cache is generally used to decrease time ratio of data accessing to 

main memory. At the same time it is a smaller and faster memory, which stored data 

copies of data which extremely used by main memory locations. A case which 

considered an essential tradeoff between cache latency and hit is that a larger cache 

have better hit rate but longer latency. When processor required to write or read 

something from main memory its check first if it is stored on cache or not, the 

processor as soon as read from or write to cache, that faster than reading from and 

writing to in main memory. Most of CPUs have three free cache: instruction cache 

use to accelerate runnable instruction fetch. The second one is data cache accelerate 

data fetch and store and  Translation Look aside Buffer (TLB) which is used to 

accelerate virtual to physical address translation for both instruction and data. The 

data cache usually used for pecking order of multi cache level (L1, L2…) see fig (4). 

The ratio of accessing that produce in cache is called hit rate, which can evaluate the 

influence of cache for given algorithm or program. Reading misses beads running 

because they needed data to be transmitted from main memory, which is slower than 

reading from cache, while writing happened without this delaying, because processor 

can make running while the data copied to main memory in background.  

 

 

Figure 4 Memory hierarchy of AMD bulldozer. 

http://en.wikipedia.org/wiki/Translation_lookaside_buffer
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The advantage of cahce in “temporal locality” , when used constants data like 

messages, column and high low limits, which are used repeadtly in cache. The other 

advantage is from “Spatial Locality”, in order to run the next instruction or to process 

the set of data, it has oftened in next line. The more sequential they are, the greater 

chance is when the next item is indeed existed in the cache “cache hit”, if the next 

item is not existed in the cache “cache miss” will happened , retrivung data from 

main memory should be in this case , that makes process slower. There are several 

design fo cache memory. This study is point out on these design, cache fetch 

algorithm is one of these design type, which used to decided when it realy needed to 

fetch data to cache. This algorithm has many scenario's, one of these scenario’s is 

guessing that the information will be needed in the next instruction, so it fetching 

information this process called “prefetching”. The other design algorithm is cache 

placement algorithm, this algorithm are depended on associatively of information, 

some are largely associative memories be expensive and somewhat are slow, so in 

genral the cache is organized as  a group of smaller associative memories. In this 

case only one of the associative memories has to determine if the desired data is 

existed in cache. Replacement algorithm, when cache memory is fulled , and 

information is remaded from main memory by CPU, so unnecessary information 

must be removed from cache in order to replacemented by remanded information, for 

this process there are many methods, FIFO(First In First Out) or LRU(Least 

Recentally Used) . 

 

2.5 Jacobi Method  

 

Jacobi method is a famous algorithm for solving different equation on square domain 

by fixed patterns solving. Jacobian method has many strategies for solving the partial 

differential equations (e.g. 2D Jacobi, 3D Jacobi). Let us consider 2D array as 

example. In this example we divided an array in to two part: the first part is the 

constant part which is represent the boundary part of array, the second part is the 

variable part which represent body of array. Any element of body contract with fixed 

value of temperature on four boundary and partial differential equations is solved for 

elements of body to determine their temperature as average of the four neighbor as 

well as the value itself. (Fig.(5)). This task is taken as the computational task, 
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number of iteration are applied on data to recomputed the average repeatedly, and we 

reach final result when desired accuracy is obtained. (Fig. (6)). In this case by 

starting from initial solution of 0, The right to left are fixed at 1, while upper and 

lower case will be 0, after number of iteration the system converge against saddle-

shape [7] (Fig.(7)). In Jacobi method  the amount of data re-employ is depend on the 

number of its neighbor values for example 7- point stencil which are most commonly  

a depend on up, down, right  and left neighbors as shown in Fig.(8) In this 7-point 

stencil four of seven data values are re-employed in every iteration. While in 27 point 

stencil eight of twenty seven point of stencil are re-employed at every iteration see 

Fig. (9) . The term of high order stencil is not common like the previous which 

referred to in this thesis. For example 9-point stencil denote in ultimate variation 

methods, while 27-point stencil denoted in multi-grid solvers and advection code [8].   

 

 

 

 

Boundary point 

Body point 

Figure 5 The boundary and body points 
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For (t=0; t<time step; t++) 

      { 

          For (i=1 ; i<n-1; i++) 

               { 

                  For (j=1 ; j<n-1 ; j++)  

                        { 

            A1[i,j] = A0[i,j] + 

A0[i+1,j]+ 

 A0[i-1,j]+A0[i,j+1]+A0[i,j-1] ; 

                           } 

                } 

Temp=A0; 

A0=A1; 

A1=temp; 

     } 

Figure 7 2D Jacobi with four neighbor. 

Figure 6 Data dependencies of selected cell in the 2D array.  

(i,j) (i+1,j) (i-1,j) 

(i,j-1) 

(i,j+1) 
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Figure 8 Data iteration on a array 

Figure 9(A) 7-point stencil  
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2.5.1 Description of Jacobi  

In this thesis I will try to describe Jacobi method by given example below, if we 

suppose that we have square system of n linear equation: 

 

Where  

           ………………..…  , 

          …….……………  , 

                                 A =                             .                                       

. 

. 

          …….……………  

 

 

 

  , 

 

Figure 9(B) 27-point stencil 
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 b  =       , 

The solution will be obtained iteratively by:  

 

 

 

 

The element based will be: 

 

 
 

 

For example if we have this system 

 

………………..… =  , 

+ +…….…………… =  , 

. 

. 

+ +…….…………… =  , 

Has single solution  

The coefficient matrix a has no zeros on its main diametrical, namely , , ; 

are nonzero, To solve the first equation for  , the second equation for , and so on 

to gain rewritten equations:  

( , 

 - … -  

, 

This accomplishes considered as one iteration only. 

 

2.5.2 Algorithm and convergence of Jacobi  

 

The initial of Jacobi method will start with: 

K=0; 



 

 20 

 

 

While convergence will not reached do  

          for i := 1 step until n do 

              σ=0 

                  for j := 1 step until n do 

                      if j ≠ i then 

                        σ= σ+    

                     end if 

           end (j-loop) 

 

=  

 

While bounded linear operator of matrix iteration is smaller than 1 the standard 

convergence condition will be: 

P( R)<1 

 

Converge in the method will be guaranteed if the A matrix accurately 

diametrical dominate, the absolute value of diametrical term is greater than the 

sum of absolute values of other terms [9]  

 

 

2.5.3 Jacobi eigenvalue algorithm 

 

Eigenvalue means each of a set of values of a parameter for which a differential 

equation has a nonzero solution (an Eigen function) under given condition. In 

general Jacobi Eigenvalue algorithm is used in numerical linear algebra it is an 

iterative method used for calculating eigenvalues and eigenvectors of real square 

matrix is named then Carl Gustavo Jacob Jacobi , who first suggest Jacobi theory 

in 1948, but it has been famous in 1950’s with appearance of computers. The 

simulation of the algorithm is shown below  

 

Let S be a square matrix, and G = G(i,j,θ) be a Givens rotation matrix. Then:     

  

  

 

Is symmetric and similar to S. 

Furthermore, S′ has entries: 

 

http://en.wikipedia.org/wiki/Bounded_linear_operator
http://en.wikipedia.org/wiki/Givens_rotation
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=  

 

 
 

               k≠i,j 

 

             k≠i,j 

 

                                     k,l≠i,j 

 

When s = Sin(θ) and c =Cos(θ). 

Since G is orthogonal, S and S′ have the same Fresenius norm ||·||F (the square- 

root sum of squares of all components), however we can choose θ such that S′ij 

= 0, in which case S′ has a larger sum of squares on the diagonal [10]: 

 

 
 

Set this equal to 0, and rearrange: 

 

tan ( 2∅) =  

if 

 
 

∅  

 

In order to enhance this effect,  should be biggest –off diametrical component 

are parataxis (real) eigenvalue of S. 

 

2.5.4 Block Jacobi Method(Tiling) 

 

The previous methods were refers to point or (line) iterations at Mostly, but in this 

section we will deal with devising block method , by providing that D is referring to 

the blocking diametrical matrix ,which used by entering M*M diametrical block on 

the matrix , the block Jacobi method is gained taking again P=D and N=D-A . This 

iteration is well- identified only when the diametrical blocks are nonsingular. When 

A is resolved in P*P square blocks the Jacobi method is  

= -  , i=1…….,P  , 

http://en.wikipedia.org/wiki/Frobenius_norm
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Having also solution vector and right side in blocks of size p is referred by and  

individually, finally the outcome, at any step see Fig. (10). Block versions of Jacobi 

preconditioner can be concluded from a portioning of variables. The block of Jacobi 

method requires solving p linear systems matrices of  The term of blocking 

iterative is known an advance optimization technique which can decreasing the 

pressure on memory bus manifestly. Jacobi block preconditioner need little storage 

and it is simple to implement. The regular temporal blocking performs dual reuse on 

tiny block of the computational domain before getting start to the next block see Fig. 

(11). 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Blocking in 2D method. 
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2.6 Optimization of Stencil Codes   

 

2.6.1 Single sweep blocking  

As shown in Fig. (11) Particularly, with single iteration of time step loop 

(K), the (i), (j) and (x) loop are represented blocks so that any array points 

that are approximate each other are gathered to modify. This is permit 

point exist in code in order to the same iteration of time – loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.2 Time skewing 

 

This term means that the multiple sweeps of an array jointly portioned into skewed 

deltoid and parallel piped blocks. The distinction between time skew and single 

sweep blocking is dwell in the iteration of (k) as shown in Fig.(12) . The iteration of 

for (k = 0; k < timesteps; k++) 

        { 

            for (kk = 1; kk < nz-1; kk+=tz)  

                { 

                  for (jj = 1; jj < ny-1; jj+=ty)  

                        { 

                          for (ii = 1; ii < nx-1; ii+=tx) 

                            { 

                              for (x=1; x<Min(nz-1,kk+tz);x++) 

                                { 

                                 for (j=1; j<Min(ny-1,jj+ty);j++) 

                                   { 

                                    for (i=1; i<Min(nx-1,ii+tx);i++) 

                                      { 

                                     Anext[i,j,k] = A0[i,j,k+1] + A0[i,j,k-1] 

+A0[i,j+1,k] +      A0[i,j-1,k] + A0[i+1,j,k] + A0[i-1,j,k] - alpha * 

A0[i,j,k]; 

        } 

                 } 

                         } 

                             } 

                               }  

                                  } 

Sweeping; 

                                     } 

 

Figure 11 The loop k and loop x, i, and j. 
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(k) loop in the skew are inclusive as operation of every computation block. Because 

re-modeling the constraints in the midst of neighboring a new point via ultimate 

iterations of the (k) loop if we suppose that the number of iteration are unknown. 

Every computation block must shift its group of points backward by fixed number of 

shifting each iteration until it cover the whole array.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for (kk=1; kk < nz-1; kk+=tz)  

          for (jj = 1; jj < ny - 1; jj+=ty)  

                 for (ii = 1; ii < nx - 1; ii+=tx)  

                      for (k = 0; k < timesteps; k++)  

                               for (n=min_z; n<max_z; n++)  

                                   for (j=min_y; j<max_y; j++)  

                                        for (i=min_x; i<max_x; i++) { 

                                                  Anext[i,j,k] = A0[i,j,k+1] + A0[i,j,k-1] + 

A0[i,j+1,k] +      A0[i,j-1,k] + A0[i+1,j,k] + A0[i-1,j,k] -alpha * A0[i,j,k];           

                                                 } 

s = A0; 

A0 = A1 

A1 =s; 

 

Figure 12 K loop time steps. 
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2.6.3 Single sweep parallelization 

 As shown in the Fig.(13) this strategy multiple threads are employed to guess its 

iterations, all threads concurring before getting in the second iteration of 

encirclement (K) loop.  

 

In the Fig.(13) the array points that belong to the same block are joined together. The 

computation blocks that have the same color in this figure are guessed by varied 

threads. 

 

2.6.4 Pipeline parallelization  

 

This strategy parallelize the external (KK) loop by obviously spawning new threads 

to guess fixed zone of its iteration in parallel. To be sure the guessing’s is right, 

before guessing any computation block, every thread obviously concurs with the 

others and wait for all pre-request computation block have been stopped as shown in 

Fig.(14). After guessing every block, each thread concur with its neighbor threads to 

enable guessing of following blocks. As a result of this concurring scheme, every 

computation block is guessed immediately when it has been ready and neighboring 

computation block are guessed by varied threads in pipelined style. 

Figure 13 Single sweep parallelization. 
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The array points which are closed each other in the same block are gathered in a 

group, same color in Computation blocks are guessed concur by varied threads.  

 

2.6.5 Wave-Front parallelization  

 

 This method is differs from pipeline parallelization by guessing time- skewed blocks 

by fixing concurring , the time – skewed blocks are added up to a jointly in wave 

front style. Inclosing specific spatial domain sequential wave-fronts are performs by 

threads scheduling to multi-core processor chip with joined outer level cache. The 

Fig. (15) used two dimension Jacobi to shows the efficiency and effectiveness of this 

method. Also this method can be used in three dimension style. 

 

Figure 14 Pipeline parallelization. 

Figure 15 Wave front parallelization. 
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As shown in Fig. (15) The array points which are closed each other in the same block 

are gathered in a group, same color in computation blocks are guessed concur by 

varied threads. At the same time single Jacobi carding over full grid is restrictive by 

memory. Naturally all threads should be concurred after each K iteration to avoid 

race conditions. When the cache is significant enough to load sequential (i, j) tiles of 

either x and y, the full scale data can be lessen by one third. Instead of two load and 

one store for single station update, the requirement still for two (spatially blocked 

applying containing reading for ownership), then it requires two load (load x and 

read for ownership on y) and two store (cache line extortion on x and y ) in order to 

make two update.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Clovertown system: Single chip (2 cores) performance running 

two wave-fronts and using different blocking factors in j-direction. 
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2.7 Three Dimension Jacobi 

 

Three dimension stencil codes become outspread significantly, numerical 

computation discovery that they have destitute memory conduct with considering 

microprocessor cache. Optimally software’s can lessees cache misses by fetching 

data in to cache only one time for all iteration accesses. Three dimension partial 

differential equation solvers have trouble with cache performance, because incoming 

some data are generally too away apart, needing array elements to brought into cache 

repeatedly per array update. This problem of cache appeared clearly in three 

dimension codes more than two dimension codes.  

Three dimension kernel as shown in Fig.(17) has 7 stencil points that access to seven 

columns in three boundary planes at the same time, with the distance 2  , which 

leading toward (x,y,z+1) and  (x,y,z-1) array signal, two whole b*b plans request to 

stay in cache see Fig.(18), so just three dimension which has size 32*32*Z have 

ability to take complete advantage of 16KB / L1 cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 (7) Point of 3 dimension 
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 Also for larger secondary memory L2 cache, the group reusing data wasted for three 

dimension array more than 358*358*Z. An array will request to bring data into cache 

twice or more time in order to execute by kernel, and this decreases the performance 

significantly. From this point the tiling (blocking) which referred in 1.2 section is an 

optimal solving, it is improving the locality by moving reuses to the same data 

contiguous in time.   

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Three dimension Jacobi 7-point. 
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for (int r=1;r<4;r++) //number of iteration 

{ 

 for (int x=1;x<high-1 ;x++) 

 { 

  for (int y=1;y<width-1 ;y++) 

  { 

   for ( int z=r-1;z<length-1;z++) 

   { 

    A1[x][y][z]=(A0[x][y][z]+A0[x-1][y][z]+A0[x+1][y][z]+A0[x] 

[y-1][z]+A0[x][y+1][z]+A0[x][y][z+1]+A0[x][y][z-1])/7.0; 

             

   } 

                          } 

                } 

} 

Then the sweeping will be in  

for(x=1;x<high-1;x++){ 

 for(y=1;y<width-1;y++){ 

  for (z=1;z<=length-1;z++){ 

 

                                     t=A0[x][y][z]; 

   A0[x][y][z]=A1[x][y][z]; 

   A1[x][y][z]=t; 

   cout<<A0[x][y][z]; 

                              

                                       } 

                                } 

                        } 

// t is the temperature 

//width is  x-coordinator  

//high is  y- coordinator 

// length is z- coordinator 

 

 

 

 

Figure 19 The sweeping in three dimension Jacobi. 
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2.8 Tiling Three Dimension 

 

 The main transformation blocks (tiles) as little loops as required to safeguard group 

reuse in three dimension loop nests. The main idea of blocking is to enable reusing 

data effectively decreasing size of surface through procedure of the K loop. This is 

completed by blocking the domestic (X, Y) loops see the Table 3. Firstly x and y are 

sector-mined to shape block monitoring loops XX and YY. Then XX and YY will be 

outermost permuted plane. Blocking is very popular method, used enhancing data 

locality and minimize accessing to main memory and this will increase the speed of 

computing data. The 27 point three dimension stencil code across three dimension 

array in methodical style. Each point in array are computed in accumulative weighted 

according to array point its direct neighbors which are 26 point [11]. The summation 

is stored in the corresponding array- point in the following three dimension (array 

field) as shown in the Fig. (19). 

 

 

 

 

Figure 20 Field-out in three dimension method. 
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2.9 Gauss-Seidel Method  

 

 This is an iterative method , which used in numerical linear algebra , it’s also called 

Liebmann method or method of successive displacement, this method which named 

by Carl Friedrich Gauss and Philip Ludwing Von Seidel, who were German 

mathematicians. It has an ability to applying any array with non-zero ingredient on 

diametric. Convergence which thesis deal with in Jacobi method is the main element 

in this method warranted if an array “Either diametric dominant or symmetric and 

positive” [12].  

If we suppose that the square linear system is n with unknown x:   

AX=b; 

It is releasing by iteration in:  

=b-U  

Where the matrix A is resolved by lower triangle as showed in Fig.(20) 

 

       ,  x= ,         b=          , 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 The lower triangle. 
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Grid size of 

one 

row 

fit in 

cache 

size of 

one 

plane 

fit in 

cache 

size of 

3D grid 

FIT in 

cache 

16x16x16 128 

byte 

primary 2 kbyte primary 32 

kbyte 

primary 

32x32x32 256 

byte 

primary 8 kbyte primary 256 

kbyte 

secondary 

40x40x40 320 

byte 

primary 13 

kbyte 

primary 512 

kbyte 

secondary 

64x64x64 512 

byte 

primary 32 

kbyte 

primary 2 

Mbyte 

secondary 

100x100x100 800 

byte 

primary 80 

kbyte 

secondary 8 

MByte 

memory 

128x128x128 1 

kbyte 

primary 128 

kbyte 

secondary 16 

Mbyte 

memory 

256x256x256 2 

kbyte 

primary 512 

kbyte 

secondary 128 

Mbyte 

memory 

512x512x512 4 

kbyte 

primary 2 

Mbyte 

secondary 1 Gbyte memory 

1024x1024x1024 8 

kbyte 

primary 8 

Mbyte 

memory 16 

Gbyte 

memory 

 

Table 3. The Location of Three Dimension Arrays in Memory According to Size 

 

And after that, the resolution of A into its lower triangle component, and its upper 

triangle content accurately given by : 

A=L*+U ,    ,         U=  , 

Then the Linear system could written by: 

L*x= b-Ux , 

Then now Gauss Seidel solving the left side of expression of x depending on 

preceding element of right side  

=  

In general, by getting the benefits of triangular from of  , the value of  can be 

computed successively using forward substitution: 

 (   -   -       )  i,j = 1,2,…………………..n 

. 
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The value- wise for Gauss Seidel very similar to Jacobi method, the  , uses 

just the element which is previously have been computed. And just the value 

of that have not so far to be proceeded to iteration k+1. This means that the 

Gauss Seidel is unlike Jacobi method only in storage Fig. (21). The large advantages 

of Gauss Seidel is that is the vector demanded as elements could be overwritten 

when they are computed. However Gauss Seidel can be similar to (SOR Successive 

Over – Relaxation) if the . 

 

2.10 Amendment Jacobi 

 

 Jacobi iterative is math strategy science 169 years-old. This relic from long before 

super computer, is widely outcast nowadays as so slow comparing with the other 

methods. Before few month ago from writing this thesis Xiang. Y and Mittal.R, 

present a strategy that make Jacobi iterative faster about 100 time than classic Jacobi 

iterative, when they used a fixed difference parataxis of elliptical equations on large 

grid. The method preserves the main naivety of classical Jacobi method and it is 

based on a scheduling of over-and under relaxation by mathematical term containing 

a maximization of convergence proportion are derived and ideal scheme are 

identified. The convergence ratio prophesy from the testing is validated by numerical 

proof. The essential accelerating of the Jacobi method approved current method has 

the potentiality to significant accelerating large-range imitation in computer machine, 

additionally using this technique in elliptic equation [13]. 
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Figure 22 Solving temperatures by Gauss Seidel Method 
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CHAPTER 3 

 

PRELIMINARY EXPERIMENT 

 

3.1 Open-MP in C++ Language 

 

Open-MP is an application programming interface (API) for multi-core 

parallelization Consisting Source code directives, Functions and Environment 

variables. The advantage of this (API) is too much for example, easy for using, 

incremental parallelization, flexible (loop-level or coarse-grain) and portable (it 

works on SMP machine too). Actually there is a disadvantage for this (API) and that 

disadvantage is it work only with shared memory systems and shared memory 

system is single address space for all processors shared memory system also called 

Symmetric Multiprocessing (SMP) as showed in Fig.(22). The goal of Open-MP is 

distributing works among threads, and this thesis will discuss two method in this 

section, first is loop level which specified the loops are parallelized and this method 

is used by automatic parallelizing tools. The second one is parallel region and also 

known as coarse-grained usually used in message passing (MPI) see Fig. (23)A&B. 

The cause of using Open-MP in this thesis is that it is most high level parallel  

 

Figure 23 Symmetric multiprocessing 
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language. It is designed for three general purpose language: C, C++ and 

FORTRAN language. [14] The open-MP Architecture Review Board 

(ARB) broadcast its essential API in Fortran language v1.0 in 1997, after one year 

they make projection for C/C++ standard, in 2000th year open-MP shared with 

Fortran v2.0 with many specifications, in 2002 year the specification shifted to 

C/C++ standard, in 2005 the joined the specification of Fortran and C/C++ in version 

2.5. In May 2008 they involved new characteristics to open-MP in FORTRAN and 

C/C++ about task and task construct known as version 3.0. The last update appeared 

in July 2013 by publishing version 4.0 and putting new feature inside such as support 

accelerate atomic, error handling, task extensions, user defined reductions, SIMD 

support, and Fortran 2003 support.   Open-MP is accomplishment of multithreading, 

a parallelizing style which by master thread embranchment fixed number of slave 

threads and the system separates among them. As shown in Fig. (24), these thread 

then executed simultaneously, with the runtime medium allocating threads to 

different processors. The part of code that is meant to execute in parallel is marked 

accordingly, with a preprocessor instructive that will a reason the thread be formed 

before the part is run. There is an ID number for each thread linked to it which can 

produced using function called (omp_get_thread_num ()). The ID of thread should 

be integer and ID of 0 should included in the master of thread. The thread combined 

back into the master thread that carry on towards the end of program. By the way, 

each threads run the parallelized part of code separately. Work participation structure 

could involve dividing task among the threads, so each thread runs its allocated 

section of code. Using open-MP both task parallelism and data parallelism carried 

out. 

 

According on usage the runtime medium allocates threads to processors, such as 

machine factors and another factors. The runtime medium can specify the number of 

threads according to medium variables, or it can do so using function in codes. In 

C/C++ language using function in open-MP are involved header file (omp.h).  
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Figure 24 (A and B ) Loop-Level and Parallel Region systems. 

 

(A) Loop-Level 

 

 

(B) Parallel Region 
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Figure 25 An illustration of multithreading. Where the master thread forks off a 

number of threads which execute blocks of code in parallel. 

Figure 26 The chart of open-MP constructs. 
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3.2 Open-MP Creation 

As noted in section 3.1 the open-MP is API so the creation of thread caused by the 

core elements, like another operations such as workload distributions, data medium 

management, thread concurrence, user level runtime and medium variables see 

Fig.(25).  

 

Before start explaining the creation of open-MP there are some rules for writing the 

reader should takes it in to account in this chapter :  

1. The codes start by (+), and finish by (+). 

2. The codes written in Italic. 

3. The explanation of codes will proceeded by //. 

4. The codes given is not whole codes in this thesis project thesis owner keep 

the important parts of codes for himself, and some codes given is to explain 

the open-MP publically(not used in thesis project). 

5. This section explain the how to apply open-MP step by step and how to use it 

in optimal usage by closing unnecessary windows services.  

6. The thesis worked on Visual studio 2012. 

7. The experiment carried out on two computer (Intel I3, Intel I7) will defined 

the specification in detail below.  

 

After writing the rules should be written, this section start explaining the 

codes by giving at least an example for the codes, after using the header 

omp.h, it should programming language like C/C++ should prepared to use 

open-MP codes and that will be by opening C++.Then opening a program 

which use the open-MP after printing omp.h on headers section, click on 

(project)(properties) . After clicking properties a new windows appear have 

many options choose the open-MP section and put yes inside the field, that 

means the open-MP (API) is running in the computer, in this case the cores 

are opened according to the size of needing.  

 

This problem faces many programmers, who think that there coding are not 

right or there is some problem in code writing, after opening the open-MP 

(API) in the computer, they should be check that the all cores are working 

without (Parking) as showed in the Fig.(26). To avoid this problem in Jacobi 
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method it can increase number of iteration in order to make a big press to the 

processor and forced using all core in order to comparing it with other type. 

For instance if the comparing between two computers actually happened first 

computer has the following Specifications: 

 

 

1. Core I3 4 Cores.  

2. Frequency 2.13 GH. 

3. RAM  4GB. 

4. System type  64 bit. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And the Second computer has the Following specifications: 

1. Core I7  8 Cores. 

2.  

3.  

4. Frequency 2.00GH. 

5. Ram 6 GB. 

6. System type 32 bit. 

 

 

. 

. 

Figure 27 Cores status after running open-MP program 

 
                          Means that this core is working now 
 
                         Means that the core is parked 

 
. 
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So if the programmer try to solve normal equation even with open-MP (API)  

in program it will not open all the cores for working because the program not 

needing for that. And the essential result comparing two computers which 

over the mentioned of this thesis will be a proofing for this theory. So may be 

(Intel I3) which have 4 Cores will execute the program faster the (Intel I7) 

which have 8 Cores, the reason is that if the 4 Cores are opened to running 

they will be equal but there is many another factors will win the (Intel I3) to 

(Intel I7). The table [001] shows the comparing of (Intel I3) using all cores 

which is 4 Cores and (Intel I7) which half number of cores (4 cores) because 

it is not need to use 8 Core for small computation, And the result is amazing 

because the result is not benefit of (Intel I7), this table is the Approximately 

result for Jacobi iteration 5-Points (standard Jacobi, and tiling Jacobi 2 

Dimensions) Because the thesis is deal with this two experiments. It is worth 

mentioning that this table is only to support the theory described in this 

section and it has not relation with the real result of main experiment and the 

essence of thesis. At the same time this result is very important in 

understanding how the cores work.  

   

As seen in Table 4 the small iteration is not gives the real results which we  

want because it is not use whole efforts of processor, and this means that the 

difference number of cores between two computer will not appeared unless 

forced all cores to run. The results show us that whenever the array size is 

grow the computation result will be more significantly than the smaller array 

size, the selected green part is the part of Intel I7 overcome to Intel I3, 

Because it used all cores which are 8 cores to solve the re-computations, 

while the gray part in table 001 is the part of outdo Intel I3 to Intel I7, as 

mentioned in this section the overperforming of Intel I3 to Intel I7 is that they 

are equal in cores in some operation at that time another factors Intervenes in 

the run time like cache memory, frequency and Ram memory. At measuring 

to the performance of open-MP in the computer system it take 5.4, while the 

user performance is 3.2 and the system will take 2.0 from the general 

performance. These value is differ according many factors such as: 
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Table 4 The Difference Between Intel I3 and Intel I7 Executing Jacobi 

Program with 5 Iteration for Every Elements. 

 

1. Behavior: Which memory is accessed by single thread? 

2. Open-MP parallelization costs: What’s the amount of time are spent to 

handling the open-MP constructs? 

3. Synchronization costs: What’s the wasted time to accessing the critical 

regions? 

4. Sequential costs: What’s the costs of sequential work that replicated? 

Array Size Tiling Size  Intel I3 

(Running per 

sec) 

Intel I7 

 (Running per 

sec) 

120*120 No block 35.6 sec 60.1 sec 

120*120 3*3 12.3 sec 12.6 sec 

120*120 4*4 10.3 sec 11.9 sec 

120*120 5*5 9.2 sec 10.3 sec 

240*240 No block 147.5 sec 211.4 sec 

240*240 3*3 81.4 sec 85.8 sec 

240*240 4*4 49.4 sec 52.0 sec 

240*240 5*5 44.9 sec 45.4 sec 

480*480 No block 641.6 sec 969.5 sec 

480*480 3*3 575.8 sec 519.2 sec 

480*480 4*4 395.4 sec 330.1 sec 

480*480 5*5 273.4 sec 227.0 sec 

480*480 10*10 185.5 sec 170.2 sec 

960*960 No block 2252.4 sec 2780.2 sec 

960*960 5*5 Not responding 1709.4 sec 

960*960 10*10 Not responding 995.1 sec 
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5. Load imponderables costs: What’s the costs imbalance between the 

concurrence points? 

 

3.3 Open-MP Usage  

 

The thesis get up on open-MP, most experiments and analyzing and studying 

in this thesis is deal with open-MP (API), so the explaining this (API) is 

appropriate for this section at least. This (API) is extend at last 10 years 

rapidly, many algorithm is developed to deal with this (API), the usage of 

open-MP is one of factors which focused on in this section. As mentioned in 

previous section that before writing open-MP program, it must note down the 

omp.h, in header class. Then opening the open-MP properties inside 

programming language then start writing the code. There is many codes for 

open-MP this section will explain it in details. The first code which this thesis 

deal with is directive format this syntax is be formally with open-MP as 

following: 

 (+)#pragma omp directive-name [clause [ [,] clause]...] new-line(+) 

 //each directive start with #programa omp 

 

Several directive in open-MP may be form of sequential #pragma 

preprocessing while specified their syntax. The second code which the thesis 

deal with is Loop Construct which written by following sentences: 

(+)#pragma omp for [clause [[,] clause] ...] new-line(+) 

For-loops 

// where clause is one of the following: 

Private (list) 

Firstprivate (list) 

Lastprivate (list) 

Reduction (reduction-identifier: list) 

Schedule (kind [, chunk_size]) 

Collapse (n) 

Ordered 

Nowait 

 

This syntax of loop constructer specified the iteration of one or more loops 

will be executed in parallel by threads in the group in the context of their tacit 

tasks. The iteration separated across threads that existed in the group of 
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running parallel region to the loop region links [15]. The third code is Section 

Construct it is non iteration work-sharing that involved set of structure 

blocks which distributed among and run by threads in group. Any block 

structure is run once by one of thread in the group of its tacit tasks.  

 

(+)#pragma omp sections [clause[[,] clause] ...] new-line 

{ 

[#pragma omp section new-line] 

 structured-block 

[#pragma omp section new-line 

 Structured-block] 

 ... 

} (+) 

 

// where clause is one of the following:  

private (list) 

firstprivate (list) 

Lastprivate (list) 

Reduction (reduction-identifier: list) 

Nowait 

  

The fourth one is Single Construct its construct specifies which deal with 

structured block that run by only one thread in group, but it should be notes 

that is not important if run by master or slave threads, in the context of its 

tacit tasks [16]. 

(+)#pragma omp single [clause[[,] clause] ...] new-line 

 Structured-block(+) 

 

//where clause is one of the following: 

Private (list) 

Firstprivate (list) 

Copyprivate (list) 

no wait 

 

The last one is Simd Construct which can be run on the loop to mention that 

the loop  could be transformed in to SIMD loop that multiple instruction of 

loop can be run sequentially using SIMD structure [17]. 

  

(+)#pragma omp simd [clause[[,] clause] ...] new-line 

 For-loops(+) 
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// where clause is one of the following: 

Safelen (length) 

Linear (list[:linear-step]) 

Aligned (list[:alignment]) 

Private (list) 

Lastprivate (list) 

Reduction (reduction-identifier: list) 

Collapse (n) 

 

The SIMD directive local’s limitations on the structure which deal with for 

loops. 

After the explaining of the constructs of codes it should be notes that the 

optimal run time will occur according the type of operating systems, and an 

optimal operating system which not have taken efforts from CPU is MS-DOS 

without using windows, Kernel of Ubuntu in Linux. However, if Windows is 

used in computing run time or in applying the program we should be careful 

about the effects of services running in background and close them if 

possible.  

 

3.4 Summary 

 

This chapter try to proof the whole running of cores needs to be greater 

pressures on the processor to forced the whole core to works, by given 

example in this chapter 5 iteration for all matrix element is very small to 

using all cores so four cores are working comfortingly and parked another 

four cores as showed in Fig. (26) In 8 cores case (Intel I7) but in 4 cores case 

it work all cores. Next chapter avoid this problem by increasing the number 

of iteration rising up an array size and block size, enough to run the 8 cores in 

(Intel I7) to getting an optimal runtime for the experiments and getting really 

result to proofing an experiment, by the way this chapter was a preamble to 

intromission to next chapter. 
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CHAPTER 4 

 

EXPERIMENT & RESULTS 

 

4.1 Thesis Project  

 

The thesis is focused on many things, some of them are attached to the theory 

of algorithm which solved by software and the other things are related with 

architecture of processor and cache memory as mentioned in previous 

section, this section is discuss the theory of the thesis (mathematic 

computations, tiling movement on array, the result of this experiment, the 

ration of distance between this experiments and previous experiment), and on 

the other hand discuss the software using in this thesis (open-MP codes, the 

difference between the previous codes and this code, the iteration numbers 

effective to proof that the core number influence to the computing runtime). 

 

4.2 The Theory Part of Thesis  

 

As mention in the Chapter Two the Jacobi method has many algorithm to gets 

a result but not all of it is efficient, or in other word the runtime of these 

execution is not an optimal time, and because this thesis try to accelerate 

these operation by using all resource of computer like (using all cores, 

optimal reusing data in cache memory etc..), so it was supposed to adding a 

new algorithm or at least, enhancing an existed algorithm. This thesis select 

the second one actually, by enhancing a tiling two dimension Jacobi. As 

showed in Fig.(27) two dimension Jacobi tiling is work by moving block 

(tile) step by step, and this operation make delaying in the program, because 

it is re-compute some elements which was inside in previous tiling. The re-

computing operation is made the delaying in the computation because the 

algorithm forced it to re-compute the element. This operation is varied 

according the block (tile) size, for instance in the big sizes block, the delay 
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time will be very large comparison with small size block. To avoid this 

problem we suggest an enhancement to this algorithm. The enhancement will 

deal with block movement, and this shifting will not be by column or row for 

each sweep. The shifting will be by (block-1) this mean it will shift by block, 

but it moves backward by one step to sure that the boundary of first block 

will be involved in the second block because Jacobi is not computed in the 

boundary see Fig.(28). This operation will avoid to re-computing the previous 

block elements and this leads to a decrease of work time and keeps more 

reused data in memory cache.  

 

The ratio of enhancement is different according blocking size and array size, 

and sometimes the ratio may be one. For example (3*3) block is like this 

because there is no more element in the block to re-compute, so this 

experiment takes big block such us (5*5), or (10*10). The difference between 

the standard stencil code (Jacobi without tiling), and Jacobi tiling by (block-

1) are shown in the figure below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First block 

First shifting for block 

Second shifting for block 

 

Figure 28  Tiling Jacobi by one step 
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4.3 Software of Thesis 

 

This part of the thesis is present the software are used in the program according three 

pivots: the first one will be standard Jacobi software without tiling, the second pivot 

will dealing with the simple tiling Jacobi and the last one will explaining by the 

codes the main experiment of this thesis. 

 

4.3.1 Standard Jacobi without Tiling   

 

This algorithm is mention in theory in the second chapter, but now this section will 

deal with the software and practically. Actually it is very slow comparing with the 

other algorithm significantly, sometimes the result of running time comparing with 

other algorithm is reached to half. This experiment is insure these number 

practically. First of all run open-MP, then follow the steps as mentioned in previous 

sections, then: 

 

First block 

Second block 

Third block 

Figure 29 Tiling Jacobi by block-1 
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                           #include <omp.h> // A header code help to run open-MP codes 

 

And it is important to compute the time so it is important to 

putting the time header. 

 
                           #include <ctime> // Time header  

 

                             In the main part, in order to Fork a team of threads giving them 

their own                    copies of variables should use:  

 

 

                          #pragma omp parallel private(nthreads, tid) // of course you should 

defined      nthreads and tid as int before this code  

 

                                 Then to get threads number it can writing this code:  

                         tid = omp_get_thread_num(); 

                        printf("hi, the thread no.is = %d\n", tid); 

 

Note: all these steps before starting to write a program. 

 

     

 

 

The program of Standard Jacobi is: 

#pragma omp parallel //Defines a parallel region, which is code that will be 

executed by multiple threads in parallel. 

   #pragma omp for //Loop Construct 

 for( r=0;r<8;r++) // No of iteration 

                       {  

  for( i=1;i<max-1;i++) // shifting by element, max is refer to an array 

size 

                                  {  

   for( j=1;j<max-1;j++) //shifting by elements, max is refer to 

an array size 

                                              { 

     a1[i][j]=(a0[i][j]+a0[i+1][j]+a0[i-

1][j]+a0[i][j+1]+a0[i][j-1])/5; // Jacobi computation 

   

  } 

                                } 

                                                                         

 

      #pragma omp parallel  

   #pragma omp for 

 for(i=1;i<max-1;i++) 

                   { 

  for(j=1;j<max-1;j++) 
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                              { 

   s=a0[i][j]; //sweeping  

  a0[i][j]= a1[i][j];// sweeping 

  a1[i][j]=s; //sweeping  

 cout<<a0[i][j]<<"     "; 

 

     } 

     } 

                                            } 

 

4.3.2 Two Dimension Jacobi Tiling Method 

 

This section deal with the software of normal tiling in Jacobi method, as mentioned 

in previous sections the disadvantage of this method, but it still faster in computation 

than Jacobi without tiling. The codes of this method is as explaining below: 

 

 

 

 #pragma omp for 

               for(r=0 ; r<8 ;r++) // no. of iteration 

             { 

               for( i=1; i<max-1; i++)  

              { 

              for( j=1; j<max-1; j++)  

              { 

                for( ii=1;ii<max-1;ii+=min-1) // shifting block toward 

x, max is represent an array  

            { 

            for(jj=1;jj<max-1;jj+=min-1)// shifting 

block toward y, max is represent an array 

         { 

            

a1[ii][jj]=(a0[ii][jj]+a0[ii+1][jj]+a0[ii-1][jj]+a0[ii][jj+1]+a0[ii][jj-1])/5; 

                                     } 

                    } 

                         } 

              } 

              } 

 

The sweeping will be as showed below: 

 

#pragma omp parallel  

   #pragma omp for 

                   for(ii=1; ii<max-1; ii++)     

                      { 

                      for( jj=1; jj<max-1; jj++) 
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                         { 

                         s=a0[ii][jj]; 

                            a0[ii][jj]= a1[ii][jj]; 

                            a1[ii][jj]=s; 

                            cout<<a0[ii][jj]<<"     "; 

             } 

      } 

 

4.4 Experiment Software 

 

The experiment focused on the shifting style, the shifting is very important factor to 

increasing the speed of runtime. This factor changes the program speed significantly, 

but the code is not changed as the changing of result is a small specification on code 

which change software’s destination and make the software run faster than the 

previous two methods.  

 

#pragma omp parallel  

   #pragma omp for 

               for(r=0 ; r<8 ;r++) // no. of iteration 

             { 

               for( i=1; i<max-1; i++)   

              { 

              for( j=1; j<max-1; j++)  

              { 

                for( ii=1;ii<max-min+1;ii+=min-1) // shifting by x 

block, max is an array, min is a block 

            { 

            for(jj=1;jj<max-min+1;jj+=min-1) // 

shifting by y block, max is an array, min is a block 

 

         { 

            

a1[ii][jj]=(a0[ii][jj]+a0[ii+1][jj]+a0[ii-1][jj]+a0[ii][jj+1]+a0[ii][jj-1])/5; 

                                     } 

                   } 

                         } 

              } 

     } 

The sweeping will be as below: 

      #pragma omp parallel  

   #pragma omp for 

                   for(ii=1; ii<max-1; ii++)     

                      { 

                      for( jj=1; jj<max-1; jj++) 

                         { 

                         s=a0[ii][jj]; 
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                            a0[ii][jj]= a1[ii][jj]; 

                            a1[ii][jj]=s; 

                            cout<<a0[ii][jj]<<"     "; 

                         } 

            }   

 

4.5 Experiment Results 

 

The result of this experiment should be divided into two types, the first one should 

discuss the succession of the experiments by proving overcoming of this experiment 

to the other two methods, and this become a reality by a table for all this method run 

time see  Table 5 Fig.(29). The second part of this experiment should prove 

effectiveness of use larger number of cores to show that the runtime be faster the less 

number of core and this experiment uses two computer (Intel I3, Intel I7), the 

properties of these two computer is existed in previous sections in this chapter, then 

the experiment make a table for this part to proof that the Intel I7 working is better 

than Intel I3, because Intel I7 uses 8 Cores while the second one is uses 4 Cores see 

Table 6 Fig.(30). 
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Array size 

Block size if 

existed 

Standard 

Jacobi Runtime 

2D Jacobi 

Tiling step by 

step Runtime 

Experiment 

Jacobi 

algorithm 

Runtime 

120*120 

5*5 

96.1 Second 

Not Block case 

15.3 Second 

Block 5*5 

11.6 Second  

Block 5*5 

120*120 

10*10 

96.1 second  

Not block case 

13.9 Second 

Block 10*10 

8.4 Second 

Block 10*10 

240*240 

5*5 

392.9 Second 

Not block case 

105.2 Second 

Block 5*5 

50.9 Second 

Block 5*5 

240*240 

10*10 

392.9 Second 

Not block case 

99.8 Second 

Block 10*10 

46.6 Second 

Block 10*10 

480*480 

5*5 

1571 Second 

Not block case 

1175.1 Second 

Block 5*5 

262.6 Second 

Block 5*5 

480*480 

10*10 

1571 Second 

Not block case 

1096.0 second 

Block10*10 

210.1Second 

Block 10*10 

 

Table 5 Over Performing the Result of Experiment to Other Results. 
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Figure 30 Over performing the runtime of the experiment to other algorithms. 
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Array size 

Block size 

INTEL I3 Runtime INTEL I7 Runtime 

240*240 

3*3 

99.8 Second 61.5 Second 

240*240 

4*4 

79.0 Second  52.8 Second 

240*240 

5*5 

70.3 Second 50.9Second 

240*240 

10*10 

58.9 Second 46.6 Second 

480*480 

3*3 

926.3 Second 473.5 Second 

480*480 

4*4 

870.9 Second 287.7 Second 

480*480 

5*5 

569.7 Second 262.6 Second 

480*480 

10*10 

223.5 Second 210.1 Second  

 

Table 6 INTEL I7 Over Performing to INTEL I3 in Runtime on Thises Theory 

Program. 
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4.6 Summary 

 

The main aim of this thesis is highlight to two dimension Jacobi method by 

improving it, to give an optimal runtime by using enhancement method of blocking, 

this experiment is focused on optimal using of CPU usage by using all cores, and 

optimal using of cache memory. Then we compare between Intel I7 and Intel I3 

processors and prove that the Intel I7 is faster in executing and computing a big array 

than Intel I3. In the second part of the experiment we try to prove the software 

effectiveness comparing it to other two algorithm We find that this enhancement 

ratio is different according to size of an array and size of block. 

 

 

 

 

Figure 31 Over Performing of I7 INTEL Processor to I3 INTEL Processor on 

Thesis Theory. 
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CHAPTER 5 

 

CONCLUSION & FUTURE WORKS 

 

5.1 Conclusion 

 

This study proves the ability to enhancement of the Jacobi algorithm using stencil 

codes and bringing data to the cache in aspecific order. We obtained improvements 

up to %50 to 60%  in big arrays as shown in Fig.(31). 

 

These properties lead this study to get successful results. This study focused on three 

pivots: The first algorithm. Then make a comparison between Intel I7 which has 

 

Figure 32 Over performing the experiment runtime to other algorithm. 
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 (8 cores) and Intel I3 which has (4 cores) and getting the result which support our 

theory as shown in Fig. (32). The third one is the difference between running 

program with or without open_MP(API) a hidden one in experiment (not mentioned 

in the results), because it is axiomatic to give a good result although the starting of 

this thesis was according that result and from this point the experiment started . 

 

 

 

 

 

 

 

 

Figure 33 Over Performing the INTEL I7 to INTEL I3 in runtime.on thesis theory. 
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5.2 Future Works 

 

Since Jacobi method is more flexible than the other algorithm then it can be easy to 

apply this study which contain an enhancement on 2D Jacobi tiling algorithm to 

another Jacobi algorithm type for instance 3D Jacobi tiling algorithm. It will be very 

bestowal in the result more than this experiment, this experiment can be leap to 

discover new algorithm, and it is giving way to open up prospects to enhancement in 

various trends, as mentioned in chapter two, there are many methods such as Jacobi 

itself. Therefore this enhancement can be applied to any method in order to get 

improved results [18]. 
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