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ABSTRACT

LYAPUNOV STABILITY THEORY WITH SOME APPLICATIONS

BAGELANY, Ronak
M.Sc., Department of Mathematics and Computer Science
Supervisor: Assist. Prof. Dr. Dumitru BALEANU

December 2015, 64 pages

In this thesis, a detailed overview of Lyapunov stability theorems of linear and
nonlinear systems is presented. The Lyapunov first and second methods are
investigated and the stability analysis of fractional differential systems is highlighted.
A new Lemma for the Caputo fractional derivative is reviewed and a class of
fractional-order gene regulatory networks is investigated. Besides the stabilization of
continuous-time fractional for positive linear systems is reviewed. An elementary
Lemma which estimates the fractional derivatives of Volterra-type Lyapunov
functions is also put forward, in order to see how it can satisfy the uniform

asymptotic stability of Caputo-type epidemic systems.

Keywords: Lyapunov stability, linear and nonlinear systems, Lyapunov function,
Lyapunov equation, Riemann-Liouville derivative, Caputo derivative, Mittag-Leffler

function.
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BAZI UYGULAMALARIYLA LYAPUNOV KARARLILIK TEORISI

BAGELANY, Ronak
Yiksek Lisans, Matematik-Bilgisayar Anabilim Dali
Tez Yoneticisi: Yrd. Dog. Dr. Dumitru BALEANU

Aralik 2015, 64 sayfa

Bu tezde, dogrusal ve dogrusal olmayan sistemlerin Lyapunov kararlilik teoremleri
detayli bir sekilde gozden gecirilmistir. Birinci ve ikinci Lyapunov metodlart
incelenmis ve kesirli tiirevli sistemler i¢in kararlilik analizi vurgulanmistir. Caputo
kesirli tirevi icin yeni bir Lemma g0zden gecirilmis ve kesirli dereceli gen
diizenleyici aglarin bir sinifi incelenmistir. Ayrica pozitif dogrusal sistemler igin
sirekli zaman Kkesirlerin stabilizasyonu gozden gegirilmistir. Caputo tipi epidemik
sistemlerin diizglin asimptotik kararliligi nasil sagladigin1 gérmek igin, Volterra-tipi
Lyapunov fonksiyonlarin kesirli tirevlerini kestiren bir temel Lemma gbzden

gecirilmistir.

Anahtar Kelimeler: Lyapunov kararlilik, dogrusal ve dogrusal olmayan sistemler,
Lyapunov fonksiyonu, Lyapunov denklemi, Riemann-Liouville tiirevi, Caputo tlrevi,

Mittag-Leffler fonksiyonu.



DEDICATION

To the soul of my mother, that I'm missing her

To the soul of my sister, who has been credited to my joining to the school.

To my dear father, who did not make me feel for my mother's absence.

To my brothers and sisters, who supported and encouraged me.

Vi



ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude in the completion of this research to
my supervisor Assist. Prof. Dr. Dumitru BALEANU for his special guidance,
suggestions, support and encouragement during the period of preparing my thesis.
I am indebted for his suggestions and valuable remarks and allocating me a lot of

time. His patience and willingness to guide me to this level will never be forgotten.

Special thanks to Prof. Dr. Billur KAYMAKGCALAN, the Head of the Department of
Mathematics and Computer Science. She offers me all the requirements to facilitate
in carrying out this work. | take this opportunity to express my admiration for her

excellence, unassuming on a personal level and good management of the department.

Also, | want to express my thanks to all the academic staff of Cankaya University for

giving me all I have needed for the study requirements.
I do not forget to thank all the academic staff of Kirkuk University, especially the
University president for their encouragement throughout the period of my stay in

Ankara.

Finally, 1 would like to thank my friends Sedat, Nadia, Imad, Deemen and Dalia, as

well as my sister Amirra for their encouragement throughout this period.

My God bestows health and happiness to all of them.

vii



TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM......coooiiiiiiiiieiieit e ii
ABSTRACT -ttt bbbt bttt b bbb nn e iv
O Z .o Vv
DEDICATION. . .ttt e e vi
ACKNOWLEDGEMENTS. ..., vii
TABLE OF CONTENT S. ... e e viii
LIST OF SYMBOLS . ..o e X
CHAPTERS:
1. INTRODUCTION. . ..coiiiiiieie ettt 1
2. PRELIMINARIES ... ot 4
2.1, DefinitionsS. .. .o.eiuiiei i 4
2.2, Comparison funCLioNS. ...t 6
2.3  Matrices and VECTOT NOTMS. ......uuutetenettiiite et ettt et eaeaaeenaans 6
3. LYAPUNOV STABILITY THEORY OF CONTINUOUS TIME
SY ST E M S . L 8
3.1 Lyapunov FUNCLION. .......coeiiiieieieieste et 8
3.2.  Sign definite functions.............ooiiiiiiiiiii 9
3.3.  Definitions of stability............ccoiiiiiiiiiii i 9
3.4. Lyapunov direct method..............coooiiiiiiiiiiiiii e, 10
3.5.  Phase plane diagrams for linear systems.................ccoeviiieininnnnn. 19
3.5.1. Classification of stability................ccooiiiiiiiiiiiiiiin 20
3.5.2. Classification of the eigenvalues in cases...................... 21
3.6.  Analysis of linear time-invariant Systems ...................cooeveiininn. 22
3.7.  Lyapunov indirect method..............coooiiiiiiiiii 24
3.8.  Instability theorems. ..........ooeiiuiiiiiiii e 26

viii



4. LYAPUNOV STABILITY FOR DISCRETE TIME SYSTEMS..............
4.1, NONINEAr SYSIEMS. ... .ttt
4.2, LINEAI SYSIEIMS. . .uttint ittt s et

5. STABILITY ANALYSIS OF FRACTIONAL ORDER SYSTEMS..........
5.1, Preliminaries .......c.ooviiniiniiii i
5.2.  Stability analysis by Caputo fractional system.................ccccc........
5.3.  Stability analysis by Riemann—Liouville fractional systems.............
5.4.  Stability analysis of Bihari's and Bellman-Groénwall's inequality.........
5.5. Mittag-Leffler stability ...
5.6. Lyapunov —Krasovskii stability theory with time-delay ..................

5.6.1. Nonlinear time-delay SYStemS.........ccccccvvivrinininiene s
5.6.2. Lyapunov- Krasovskii stability theorem ........................

6. APPLICATIONS OF LYAPUNOV STABILITY THEORY

6.1. Finding the Lyapunov candidate.................c.ooooiiiiiiiiiiiinn,

6.2.  Fractional-order g

ene regulatory networks..... ...l

6.3.  Stabilization for continuous-time fractional systems ....................

6.4. The epidemic systems

7. CONCLUSION...........

REFERENCES...........cccooviienne

APPENDICES...........ccocoiiiienne
A. CURRICULUM VITAE

27
28
31
31
32
34
36
41

43
43
45
48
48
50
55
57
63

R1
Al
Al



LIST OF SYMBOLS

N The set of the natural numbers {1,2,3,...}
The set of real numbers

R" The vector space of the real vectors of length n

R, = [O,+oo)c R The set of all non-negative humbers

RxR" The Cartesian product of R and R"

R ™M The set of the real (nxm)matrices

Z Set if integers

Z, Set of non-negative

Z, Positive

X(t,t,%,) A motion of a syste at t e R iff X(t, =X,)

A’ The transpose of the matrix Ae R™™

X The Euclidean norm of x in R"

1A = max {||Ax|: |x| =1}, the induced norm of the matrix
A = Rnxm

A () The ith eigenvalue of a matrix (.)

A (s A () (Maximal,minimal) eigenvalues of a matrix (.)

B, = {x eR":|x| < g} Open ball with center at the origin and radius & >0

f:S—>R A vector function mapping from domain S < R" into R"



CHAPTER 1

INTRODUCTION

Stability is one of the most important subjects in Mathematics and Engineering. It
has an essential role in the system theory as well as in the engineering systems. There
are many kinds of stability problems which appear through the study of the dynamic
systems, for instance, the stability of equilibrium points, Lyapunov stability, finite
time stability, practical stability, technical stability, stability of the periodic orbits
and input-output stability [1,2,3].

In 1892, in his doctoral thesis entitled "A general task about the stability of motion”,
a Russian academician, Aleksandr Mikhailovich Lyapunov established the modern
stability theory. More than 100 years later this technique helps us to achieve the
stability analysis of the equilibrium points or states in any dynamic nonlinear or
linear systems [4-10]. Lyapunov not only gave a formal statement of the problem but
also proposed the methods serving as the key instruments for treating the stability
problems even today, Primarily developed for a family of motions and defined for
ordinary differential equations [11,12]. Nowadays Lyapunov stability concept for
continuous and discrete time were applied to dynamical systems in more abstract
spaces and even to the general motions which are not described by the equations
studied in classical analysis [13-18]. Therefore, Lyapunov concepts were adopted to
achieve more complicated phenomena in the behavior of dynamical systems such as
bifurcation and chaos theory [19,20,21]. The techniques of Lyapunov have been
successfully applied in many areas such as examining motion in space, technological
devices, automated systems, problems in mechanics, demography, biomedical
problems, environmental studies, behavioral science and economics and other fields.
Lyapunov concepts of stability are widely used in the other states of equations such
that integrals, functional differential equations, nonlinear parabolic equations,
difference equations, discrete dynamical systems, fractional calculus and in the

fractional dynamic systems [22,23].



Lyapunov methods are classified as the Lyapunov indirect or first method and
Lyapunov direct or second method. Lyapunov indirect method gives conditions from
a nonlinear system to achieve the local stability near any equilibrium point.
Lyapunov direct method is a mathematical directness of the physical properties and
the most important method for the analysis of the nonlinear systems and it can be
directly applied to a nonlinear system without the need of linearization or solve the
system and achieve the global stability. The concept of direct method is if a total
energy in a system disappeared, then, the states of this system will reach to the
equilibrium point [24,25,26]. In other words, the basic idea behind this method is that
if there is a kind of scalar such as energy function and test this (energy) diminishes
along the trajectory of the system, then we can determine whether the system is
stable or not. Today, Lyapunov linearization method is used to show the theoretical
justification of linear system and Lyapunov direct method has become one of the
most important methods for nonlinear system analysis [27-31]. By the same methods
the stability criteria can be obtained for the discrete-time systems [32,33].

I reviewed in this thesis some basic concepts of the fractional calculus in order to
analyze the stability of the nonlinear systems [34,35,36]. The concept of fractional
calculus has been known during the stages of the development of the classical
calculus founded by Leibnitz and L'Hopital in 1695, when they mentioned half-order
derivative [37-42].

The applications of fractional calculus by using Lyapunov methods are very wide
nowadays in various branches of applied sciences as well as in engineering, namely,
signal and image processing, physics, biology, control theory, chemistry and
economics [43-57].

In the last decades, Lyapunov direct method has been a popular technique to study
the stability properties of the mathematical models, in which this method is applied
in several areas e.g. biological and biomedical science [58-70].

The aim of this thesis is to present a comprehensive review of the uses of Lyapunov
theorems and methods for the continuous and discrete time analysis systems in order
to achieve the stability properties. On the other hand we have used the fractional
calculus to analyze the stability of nonlinear or linear systems. In the applications
part of the thesis we presented a new Lemma for the Caputo fractional derivative,
a class of fractional-order gene regulatory networks, the stabilization of continuous-

time fractional for positive linear systems, an elementary Lemma which estimates the



fractional derivatives of Volterra-type Lyapunov functions and the uniform

asymptotic stability of Caputo-type epidemic systems.

This thesis contains seven chapters.

Chapter 1 deals with the concept of stability, Lyapunov theorems together with the
methods of stability of nonlinear and linear systems as well as their applications in
different fields.

Chapter 2 includes some preliminaries and definitions utilized in this thesis.

Chapter 3 introduces the analysis of stability in the sense of Lyapunov by presenting
the basic definitions of the direct and indirect methods to determine the stability. We
present the way how to construct the Lyapunov function and explaine the Lyapunov
theorems to obtain the local or global stability, asymptotic stability or instability for

the systems.

In Chapter 4 the Lyapunov stability theorems for discrete time systems are

investigated.

Chapter 5 presents the stability analysis of fractional systems by using Caputo and
Riemann-Liouville fractional derivatives, Bihari's and Bellman-Gronwall's
inequality, Mittag-Lefller stability and Lyapunov —Krasovskii theorem are also

reviewed.

Chapter 6 deals with four new and interesting applications of Lyapunov stability

theorems.

Chapter 7 presents the conclusion part.



CHAPTER 2

PRELIMINARIES

2.1 Definitions

Definition 1[8]: A system of the first order of ordinary deferential equation is

defined as:
dx )
e =0, (0% X,
dx ,
d_tlzxz :gz(t,X1’X21"'Xn)7 (21)
dx

dtn = Xn = gn(t1xl’ X27"'Xn)’

where ¢,,9,,...,d, are real valued continuous function on an interval .

Definition 2 [14]: The system (2.1) is called time-invariant or autonomous system if

g does not depend on timet, this nonlinear system can be written as

Xx=9g(x). (2.2)
If the function g depends explicitly of t then, the system (2.1) is written as
x=g(t, x). (2.3)

This system is called non-autonomous system.

Definition 3 [9]: A differentiable mapping of g of an open set of S R" to R"is

said to be continuous differentiable in Sif g'is such that

9'(%)-g'(x)| <&
provided that x;,x, € Sand |x, — x| <& .

Definition 4 [9]: A set of V in the plane is a neighborhood of a point cif a small

disk around cis contained in V .



Definition 5 [9]: A set of S < R"is named as bounded set if there is a real number

L>0 leadsto x| <L, VxeS.

Definition 6 [9]: Let B  R™" be a square constant matrix, a scalar A € R is said to
be an eigenvalue and x is a nonzero vector called eigenvector of B associated with
A, ifBx = AX.

Definition 7 [9]: A function of g:R" — R™ is said a locally Lipschitz on S if every
point of S has a neighborhood S, = Sin gwith domain S, which satisfies

la04) —g(x)| < L% =, (2.4)
it is called as Lipschitz on an open set S — R"if it achieves (2.4) for all x,,X, €S

with the Lipschitz constantL . It says to be globally Lipschitz if the condition (2.4)
holds onR".

Definition 8 [8]: X~ is said to be the equilibrium point of (2.3), with x(t,) = X, if

g(t,x)=0forallt>0.

Definition 9 [8]: If g(t, x) is the trajectories of (2.2) with initial condition x at t =0,
the region of attraction to the equilibrium point x™ denoted R_, is defined by

R, ={xeS,ScR?g(t,x) > x as t — oo}.

Definition 10 [8]: A square real matrix A is called Hurwitz if all eigenvalues of A

have negative real part.

Definition 11 [10]: A family of phase plane trajectories corresponding to various

initial conditions is called a phase portrait of (2.3).

Definition 12 [10]: A matrix A is called a Schur matrix if (maxi|ﬂ,, (A)| <1).



2.2 Comparison functions

In this subsection, we introduce a new class of functions named class (K ) and

(KL) [8]

Definition 13 [10]: A continuous function & :[0,a)— R™ is said to belong to class
X if
i) o(0) =0,

i) it is strictly increasing.

Definition 14 [10]: A continuous function o:R"™ — R" is said to belong to class

X if it is achieved in addition to (i),(ii) condition () > as | —» .,

Definition 15 [10]: A continuous function o:R* — R" is belongsto a class L if
i) it is strictly decreasing,

ii) (1) — Owhen | — oo

Definition 16 [10]: A continuous function o : [0, a)x R* — R" is belongs to a class
XKL if:

i) for each fixed s,the mapping o(I,s) belongs to a class K according to |.

i) for each fixed I, the mapping o(l,s) is decreasing accordingto s.

iii)o(l,s) >0as s —> oo .
2.3 Matrices and vector norms

Definition 17 [21]: A vector norm on R" is a function|/|, from R" — Rwith the

characteristics

i) |s|>0 VseR" and |s| =0ifand only if s=0
i) |as| =|a]|s| YaeRand seR"

ii) |5 + k| <[5+ k| s,k R"



Definition 18 [21]: The definition of the Euclidean norm |, and the infinity norm |

for the vector s =(s,,s,,...,S,)" IS

n vz
sh={Ss) o 1o -

s,|.

Definition 19 [21]: A matrix norm is a real valued function from R™ to R Let
K e R™"be a matrix, its norm is symbolize by |[K| which satisfies a certain number
of properties

i) |K|=0Forall KeR™and |K|=0ifand only if K =0,
i) |aK]| = [a]|K| For any scalar aand K € R™,
i) |[K + L[| <|K][ + L[ for all K,LeR™,

iv) |KL| < |K]||L| For all K,L eR™".

Definition 20 [21]: If || is a vector norm, the induced matrix norm is given by

) = max]s] =max L.
i LN



CHAPTER 3

LYAPUNOV STABILITY THEORY OF CONTINUOUS TIME SYSTEMS

There is a simple definition of Lyapunov stability of systems, stating that if the
solutions starting around an equilibrium point stay there forever, we can say that the
equilibrium point is Lyapunov stable. If the equilibrium point is Lyapunov stable and
all the solutions that starting near the equilibrium point converge to it , we say that
this equilibrium point is asymptotically stable [9].

Lyapunov work includes two methods for stability analysis Lyapunov direct and
indirect methods.

3.1 Lyapunov function

Lyapunov function is a stronger and robust method to determine the stability or

instability in any equilibrium of nonlinear systems. Lyapunov function means that if
we select a positive function V(.) and take its derivative V which should be negative

definite or negative semi definite. Then we can say that V is a Lyapunov candidate
function [8,9].

Definition 1 [8]: Suppose V :S — R be a continuously differentiable function
defined in a domain S < R" and contains the origin, then the derivative of V along

the trajectories of (2.2) is denoted by V (x), such that

d . N, oV ,
EV (X(t)) = VV (x(1))-x(t) = ,le& (x(t))%; (t). (3.1)
9,(X)
V(X) {a_v’a_vma_v} : : (3.2)
X, OX,  OX,
9,(x)



3.2 Sign definite functions

We now introduce the notion of positive definite functions and the conditions

required for the function V (x). In the following S denotes for a connected and open

subset of R"[9].

Definition 2 [9]: A scalar function V : S — R is named as positive semi definite for
S when achieves the following conditions

aVv(0)=0,

b)V(x) =0, V xin S —{0}.

If we replace the condition (b) with(V (x) >0inS — {O}) ,then, V : S — Ris said to be

positive definite in S.

Definition 3 [9]: A scalar function V : S — Ris named as negative semi definite in
Sifitisachieved

a) V(0)=0,

b)V (x) <0.

If we replace the condition (b) with (V(x) <0in S —{0}), then, V :S — Ris called

negative definite in S.

3.3 Definitions of stability

Let us consider [9]

X=9(x), 3.3)
withg:S — R" be a locally Lipschitz map inS < R". Let as assume that x, € S is
the equilibrium point of (3.3), thus g(x,) =0.Our aim is to study the stability of x,,

therefore, we state all the definitions and theorems for the case when the equilibrium

points are in the origin, meaning that x, =0

Definition 4 [10]: The system (3.3), when x =0, is called Lyapunov stable, if &>0

,and o =o(g) > 0then

x(0)| < o, and [x(@)| < &, t=0. (3.4)
[x©)] x|



Definition 5 [10]: The equilibrium point x=0 of the system (3.3) is called
asymptotically stable if it is Lyapunov stable and there isa o > 0 such that

[x(©)] <o, and lim x(t) =0 . (35)
Definition 6 [10]: The equilibrium point x =0 of the system (3.3) is called a locally

exponentially stable if there are positive real constants u, A as well as o, such that
[x(0)| < & then

()] < 4x(Q)e™, t=0. (3.6)
Definition 7 [10]: The equilibrium point x=0 of the system (3.3) is called
a globally exponentially stable, if we have positive real constants z, A achieved

IX@)] < ]x(@)e*, t=0. Wx(0)R", 3.7)

Definition 8 [10]: The system (3.3), with x =0 is unstable, if it is not Lyapunov

stable.

Definition 9[8]: Suppose V :S — R be a continuously differentiable function, then

the function V (x) is called radially unbounded if

V(X) > ooas ||X||—)oo

3.4 Lyapunov direct method

Lyapunov direct method is a strong method to investigate the stability properties of
the equilibrium point for both autonomous and non-autonomous nonlinear systems
without the need to solve the nonlinear differential equations. If we construct a scalar
function V of a system state x, and derive V with respect to time, we see that V is
positive everywhere except at the equilibrium point x=0and V <O0for every x,
then, we say that the point x=0 is a stable equilibrium point. This result can be
extended to provide criteria for determining the equilibrium if it is asymptotically or
exponentially stable for global stability analysis [9]. The following theorems deal
with Lyapunov direct method and explain the conditions to obtain the types of

stability.

10



Theorem 1 [8]: Suppose x=0 be an equilibrium point for (3.3) and S = R"is a
domain including the point x=0. Let V:S—R be a continuous differential
function, then

a) V(0)=0,

b) V(x) > 0in a domain S — {0},

¢) V(x) <0in a domain S —{0}.

Thus, x=0is called stable point.

Proof [8]: Lets >0, select | (0, £]such that the closed ball
B, ={xeR"x|<1jcs

is continuous in S, Let 7 =minV(x). Thus,n > 0by condition (a) and (b) of

x|~
Theorem 1, take u € (0,77)and let
Y, = {X € B,[\/(X) < ,u}.
Then, ¥, is in the interior of B,. The set ¥, carry the characteristic that each
trajectory starts in ¥, at t =0remains in ¥, when t > 0. This follows from part (c)
of the Theorem 1, since
V (x(t)) <0 -V (x(t)) <V (x(0)) <, forall t >0.
It then follows that any trajectory begins in ¥, at t=0 remains inside ‘P, for all
t > 0. Thus V (x)is continuous, it follows that 3y > Osuch that

IX| <7 =>V(X) < p,

then
By c ‘Pﬂ c B,
and
x(0) € B,. This leads to x(0) € ¥,,and x(t) e ¥, thus x(t) € B,
s,

Xt) <y — |x@)|<l<e, Vt20.

This means that the equilibrium point is stable at the pointx =0.

11



Theorem 2 [9]: In addition to all the conditions in Theorem 1, withx =0, if V() is
such that

i) V(0)=0,

i) V(x) > 0in a domain S — {0},

iii)V (x) < 0in a domain S —{0}.

Then, we have asymptotically stable at the pointx =0.

Proof [9]: Under all these statements of the theorem, V (x)actually decreases along
the trajectory of g(x). Using the same state utilized in Theorem 1, if each reala >0
can be choosen b >0 thus, ¥, < B,, whenever the initial condition is inside ‘¥, , the
solution will remain inside ‘¥, . Therefore, to prove the asymptotic stability, all we

need to show is that ‘¥, reduces to Oin the limit. In other words, ‘P, shrinks to a

single point as t — oo. However, this is simple, since by assumption V(x) <0 inS.

Thus, V (x)tends to steadily reach zero along the solutions of g(x) .

Example 1 [8]:
We consider a simple pendulum with friction, namely [8]
X=Y,

) g . k (3.8)
y=—=sinx——y.
| m

The equilibrium points are (0,0) and (z,0), in this example it deals with energy, then,
the total energy in this system equal to our Lyapunov candidate function V (x)[8],

namely
E =V (x) = mgl(L- cos X) +%m|2y2 >0.
So, if we take the derivative of the function V (x) we get

.
V(X) = [mglsin X, mlzy[y,—%sin VL y} = —kl?y
m

2

Here V (X) is not negative definite, but negative semi-definite, thus, the origin is not

asymptotic stable but is stable.
Here Lypunov candidate function fails to identify the asymptotically stability in the

origin.

12



LaSalle's invariance principle [9] was developed in 1960 by J.P. LaSalle. It
effectively develops a method of obtaining asymptotic stability without the need of
the time derivative of the Lyapunov function to be negative definite function, but
only needs to be negative semi definite function. The principle essentially says that if
a Lyapunov function exists in a neighborhood of the origin, with a negative semi

definite time derivative along the trajectories of the system, it can be established that
no trajectory can stay identically at the points whereV (t) =0, except at the origin,

therefore, the origin is asymptotically stable. In order to understand better we present

a definition and theorems related to the LaSalle's invariance principle [13].

Definition 10 [9]: If Sis an invariant set belonging to (3.3), then,
X(0)eS > x(t)eS VteR".

Theorem 3 [9]: (LaSalle's Theorem). Suppose V :S — Rbe a differentiable

continuous function, such that:

a) B < Sisacompact set invariant according to the solution of (3.3).
b) V(x)<0in B.
¢) M :{x:xeB, and V = 0}; that is, M is the set of points of B such that V =0.

d) N : is the largest invariant set in M.

Therefore, each solution starts in B approachesto N as t —oo.

Proof [9]: Suppose that a solution x(t)in (3.8) starts inB . Since V(x)<0e B, we
have a decreasing function V (x) of tand V (.) is a continuous function, it is bounded
from below in the compact set B. It can be said that V(x(t)) has a limit when
t > . Let wbe a limit set of this trajectory. It follows that @ < Bsince Bis an
invariant closed set, for each sew there is a sequence t, with t, — ccand
X(t,) — s. By continuity of V (x), we conclude

V(s)= rI]iLrJOV(x(tn)) =a (aconstant).

13



Note that V(x)=a onw. Also, by Lemma 3.5 in [9], we consider that » be an

invariant set, and V (x) =0onw because V (x) is constant on &, then, we obtain

ocNcMcB

Thus, x(t) is boundness by Lemma 3.4 in [9]. This means that x(t) approaches w

and it is positive limit setas t — o. So, x(t) approaches N as t — .

Remark 1 [9]:
LaSalle's theorem goes beyond the Lyapunov stability theorems in an important

aspect, which is that, V (.) is required to be continuously differentiable and bounded,

but it is not required to be positive definite.

Theorem 4 [9]: The system (3.3), when x =0 is asymptotically stable if

a) V(x) is a positive definite function for all x € S, we suppose that 0 € S,
b) V (x)is a negative semi definite,
c¢) V(x)does not vanish identically along the trajectory in R, other than the null

solution x=0.

Proof [9]: By Lyapunov stability theorem, we know that for each ¢ > Othere exists

o >0, such that

Pl <o -] <e.
If a solution starting inside the closed ball B_, it will stay within the closed ball B, .
Hence any solution X(t, X,,t,) of (3.8) that starts in B_ is bounded and tends to its
limit set of N that is contained in B, . Also V (x) can be a continuous function on the
set B, and bounded from below in B,. It is also non-increasing according to the
assumption, thus, it tends to a non-negative limit Las t — oo. Notice that V(x) =L

for all xinthe limitset N . If N is an invariant set according to (3.3), meaning that

if a solution starts in N, it will remain there forever. However, along that solution of
V (x) = 0it can be said that V (x) is a constant (= L)in N . Thus, by assumption, N
Is the origin of the state space. We can conclude that the solution starts in R < B_

convergesto x=0as t »> 0.
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Let us refer back to example of pendulum, when the origin of the nonlinear system
has stable by using Lyapunov direct method. However, the asymptotically stability

could not be obtained [9]. Taking in to account that
V(x)=mg|(1—cosx)+%ml2y2 >0 (3.9
we obtain
V (x) = —kI?y2. (3.10)

Here V (x) = Ois negative semi definite, for (x,0), if we apply Theorem 4, conditions
X
(@),(b) we obtain that the origin R = L]} .

Here —7<x<m, —a<y<a,forany aeR". By checking the condition (c) if V
vanish identically along the trajectories trapped in R, other than the null solution.

Using (3.10) we conclude
V =0, then —kI’y* =0 and y =0forall tand y=0.

By using (3.8) we get 0= Igsin X _k y. Since y =0, this leads tosin x =0.
m

Locating x to x e (—z, ) condition (c) is satisfied if and only if x=0. So, V(x) =0
does not vanish identically along any trajectory other than x =0, therefore, x=0 is

an asymptotic stable by Theorem 4 [9].

Theorem 5 [8]: Suppose X =0 be an equilibrium point for (3.3) if V:R" - Ris a
continuous differentiable function satisfying

a)VvV(0)=0,

b) V(x) >0

c) [x| > 0=V (X) >0,

d) V(x) <0.

Thus, x =0 is globally asymptotically stable.

Proof [9]: the proof follows as in the proof of theorem 2, we just need to prove for
given an arbitraryb > 0, the condition

Y, ={X€ R" :V(x)sb}.
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It defines a set which is contained in a ball B, = {x eR":|x| < I}, when | > 0. To see
this, it should noticed that the radial unboundedness of V (.) implies for any b >0,
3l > Osuch that V (x) > bwhenever|x|>1 for some | >0. Thus, ¥, = B,, which

means that ¥, is bounded.

Theorem 6 [8]: Suppose the equilibrium point X =0 for the non-autonomous system
(2.3), and S<R" is a domain including this point, let V :[O,oo)xS —>R be a

continuously differentiable function such that

G, (x) <V (t, x) £G,(x), (3.11)
%+%g(t,x)g—63(x). (3.12)

For all t>0and for all xeS, where G,,G,and G, are positive continuously

differential functions on S, then, x=0is uniformly asymptotically stable. In

addition, if | and k are selected such that B, = ﬂ|x|| < I}c Sandk < min G,(x), then,

=t
each trajectory starting in {x e B, |G2 (x) < k}achieves
)] < x|t —t,), forall t>t, >0, (3.13)

for some class KL function x . Finally, if S=R"and G,(x)is radially unbounded,

then, x =0 is a global uniform asymptotic stable.
Proof : See [8].
Before we present the exponential stability theorem, it is better to explain Lemma 1.

Lemma 1 [9]: The function V : S — Ris positive differentiable function if and only

if there are the functions o, o, in class K such that
o, (X]) <V (x) < o, (|x|), vxeB, cS. (3.14)
In addition, if S =R"and V (.)is radially unbounded then, o,, o, belong to the class

K

0"
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Proof [9]: GivenV(x):ScR" — R, we show that V(x) is a positive definite
function if and only if there is o, € K achieves

a,(X))<V (%), vxes.
It is obvious that o, is a sufficient condition for the positive definiteness of V . To

prove the necessity condition, we use the definition

G(y)=minV(x),for 0<y<I.

vl
The function G(.)is well defined since V(.)is continuous and y < x| <1 defines a

compact set in R". Moreover, this function G(.) has the following characteristics:
i) G<V(x) 0<|x<I,
i) Itis continuous,
iii) It is a positive definite (sinceV (x) > 0),
iv) It satisfies G(0) =0.
So, G is almost in the class K . It is not, in general, in JK because it is not strictly
increasing. We also have that:

G(|x|) <V (x), for 0 <|x| <1 (3.15)
However G(x) is not in class K since, in general, it is not strictly increasing. Let
o,(y) be in class XK function such that o;(y) <kG(y)withO <k <1. Thus, we
conclude

o, (X)) < G(¥) <V (x), for x| <1 (3.16)

The function o, can be constructed as follows:

al(r)zmin{LG(y)} r<y<l. (3.17)
y
This function is strictly increasing. To see this notice that:
ﬂ=min{w} r<y<l. (3.18)
r y

It is positive and also non-decreasing since I increases, the set over which the

minimum is computed keeps "shrinking". Thus, from (3.18), o is strictly increasing.
So, this proves that there is o, (.) € K such that

a,(|X])<V(x), for each|x| <1. (3.19)
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By the same way, the existence of o,(.) € K such that
V(x) < 02(“x||), when [x| <1. (3.20)

We can be proved similarly.

Theorem 7 [9]: Consider that the conditions of Theorem 2 are achieved, moreover,

there are positive constants B, B,,B, and o such that
B,X|” <V (t,x) <B,[x]|",
V(x) < -B,|x]|".

So, the origin is exponentially stable, in addition, if the condition occurs globally,

then, when x =0 is globally exponentially stable.

Proof [9]: According to the suppositions of Theorem 7, also the function V (x) that

achieved Lemma 1, when o,, o, satisfied some conditions. We have the followings

B.X|” <V (t,x) <B,|x|" ,

. ., B
V(X) <-By[x|” < —B—3V(x) .

2

Since,
V(x) <22y (x).
BZ
This leads to
(B
V) <V(x)e
then
1
! Tl
e <| Y < V0o
- Bl - Bl ’
or
1
— (B
psbf 2] ')
Bl
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Remark 2 [9]: Exponential stability is the powerful form of stability, because of its
precise rate which makes the trajectory converges to the equilibrium point.
Moreover, the exponential stability means an asymptotic stability, but the converse is
incorrect. In the linear systems, the uniform asymptotic stability and uniform
exponential stability is similar.

During our study of Lyapunov direct methods, we observed that some virtues can be
mentioned in this section. For example, in this method we can use an energy-like
function to study the behavior of the dynamical systems, reflecting in many cases of
the physical properties of the system. This method can determines the stability of the
nonlinear systems without need to solve the differential equations and it is a powerful
method for stability analysis and the control theory by determining the stability,
asymptotic stability, exponential stability and instability properties. It is also uses to
estimate global stability of the domain of attraction.

On the other hand, there are many flaws of the Lyapunov direct methods, such that,
the construction of the Lyapunov function is not easy for general nonlinear systems it
is usually a trial-and-error process. Furthermore, there is a lack of systematic
methods, and sometimes Lyapunov candidate function fails to identify an asymptotic
stable equilibrium, although the system is asymptotic stable. If Lypunov candidate
function sometimes fails to achieve the conditions for the stability, this does not
means that the equilibrium is not stable or asymptotic stable, but only means that

such stability properties cannot be found by using Lyapunov functions [7].

3.5 Phase plane diagrams for linear systems

Consider the nonlinear system in (3.3), with the conditiong(0) =0. If we apply
Taylor's theorem of g we obtain that [9]

9(x) = A(X) + y(x). (3.21)
Here y(x)denotes the sum of higher order terms, Arepresents the Jacobian matrix of

g evaluated at x =0, namely

X, oX,,

B8] o F
Xlwo |09, a9,
0%, oX,,
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Neglecting the higher-order terms, then, the linearization of (3.3) about x=0
becomes [9]

X =AX. (3.22)
Therefore, the system (3.22) is called the linearization of the system (3.3).
We would like to obtain some information about what happens near the origin for the
linear system (3.22). Let us explain some details for a real two dimensional system,

namely [22]

!

HERH M}
ot

If we computed the characteristic polynomial we can conclude [22].

p(A) =2 —(a+d)A+ad —bc = 4> —tr(A) + det(A). (3.24)

The entries of the matrix are:

We have 4, and A, are eigenvalues of Aand the characteristic polynomial become

P(A) = (A=) A~ 2,) = X = (A + A)A+ 1Ay (3.25)
Thus, we can compute that [22]
A+ A, =tr(A),
A4, = det(A). (3.26)
If the matrix trace of A is denoted by T, =tr(A)and the determinant is denoted by

D, =det(A), then, the values of the eigenvalues are [22]

T +T?-4D,

Ay =—
A .

Let us denotes A =T —4D,,.

3.5.1 Classification of stability
By returning to the system (3.23), we can classify the stability as follows [22].

1. Stable origin, if [22]
i) A>0,D,=0,T, <0,

ii)A<0, T. =0.
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2. Asymptotic stable origin, if [22]
i) A>0, T, <0,
i) A=0,T, <0,
i)A<0, T, <0.

3. Unstable origin, if [22]
i) A>0,D,=0,T, >0,
i) A=0, T, >0,
ii)A<0, T, >0.

Now, we classify the behavior of the system (3.23) to various cases for eigenvalues.

3.5.2 Classification of the eigenvalues in cases

Case 1. Distinct real eigenvalues: 4, # 4, [8]
i) Both eigenvalues are negative (4, < 4, <0). As t — +oo, all trajectories flux into

the origin, therefore the trajectories are asymptotically stable and in x=0 we

have a node.
ii)When eigenvalues are positive (4, > 4, > 0) . As t — +oo, all trajectories flux away

from the origin to become arbitrarily large and the equilibrium point x=0

indicates an unstable node.

iii)One negative eigenvalue and one zero eigenvalue (4, <0),(4, =0). The phase
portrait is in some sense of decay, and the matrix Ahas a null space. The points
on the x, —axis are fixed, then, the origin is stable, but not asymptotic stable.

iv)One positive eigenvalue and one zero eigenvalue (4, > 0), (4, =0). Here some
points on the X, —axis are fixed, and the others ran away to infinity along the
vertical line.

v) Both eigenvalues are zero (4, =0), (4, =0). In this case the trajectories start from
the equilibrium subspace and move parallel to it.

vi)One negative and one positive eigenvalue (4, <0< A4,). The points on the
X, —axis approach the origin, whereas, the points on X, —axis go away from the

origin.
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Case 2. Nonzero multiple eigenvalues: A, =4, =4 = 0[24].

i) If 1 <0, then the origin is a stable node.
i) If >0, then the origin is unstable, the orbits are like the stable case reversing the

time direction.

Case 3. Complex eigenvalues: 4,, =c i3 [8]

i) If o=0, solutions are periodic, and the trajectories are ellipses centered at the
origin .

ii) If o <0, the trajectories are spiral converging to the origin as time increase.

ii)Ifo > 0, the trajectories are spiral moving away from the origin as time increases.

3.6 Analysis of linear time-invariant systems

Consider an autonomous linear time-invariant system given in the system (3.22) and

we can define the Lyapunov function V (x) is a quadratic function candidate, namely
[8]

V (X) = x"kx. (3.27)
We can choose k € R™" satisfying the conditions:
i) Symmetric, k =k',
ii) Positive definite,
iii) k is constant.
Thus, V (x)is positive definite, then, the derivative for the function V (x) along the
trajectories of (3.22) gives

V = X"kx+ x"kx.

By using (3.22), x" =x" A", we report V = X" ATkx+ x"kAx = x" (ATk + kA)x
if

KA+ ATk = -G. (3.28)
Choose G a symmetric matrix, then, we report
V =—x"Gx. (3.29)
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If G is a positive definite matrix, then, V (x) is negative definite, then, as a result the
origin is asymptotic stable, to analyze the positive definiteness of the matrices (k,G)

we present in the following two steps:
1. Select a symmetric, positive definite matrixG .
2. Find k achieving the equation (3.28) and must be positive definite.

We can consider that V (x) is a Lyapunov function, then, the equation (3.28) is called

the matrix of Lyapunov equation. These above steps described as the stability

analysis depends on the pair (k,G) which in turn rely on the existence of a unique

solution of Lyapunov equation for the matrix A. The following theorem explains the

stability in Lyapunov equation.

Theorem 8 [8]: A matrix AeR™is called Hurwitz (if ReA <0). For all

eigenvalues of A, if and only if for every given positive definite symmetric matrix
G we find a positive definite symmetric matrix K that achieves Lyapunov equation
(3.28). In addition, if Ais Hurwitz, then, K is a unique solution of (3.28).

Proof [8]: Suppose that G >0 then, there exists k >0 satisfies (3.28). Since
V(x) = x"kx>0with V(x) =—x"Gx <0, the asymptotic stability follows Theorem

2. For the converse, assume that Re 4, < 0and given G, define k as follows:
k = j eM'GeMdt . (3.30)
0

This kis well defined, given the assumptions on the eigenvalues of A. The matrix

k is also symmetric, since (e"*)” =e*. We assume that kis positive definite. To
satisfy this case, we reason by contradiction and assume that the opposite is true, that

is, 3 x = 0such that x"kx=0, but if x"kx=0it leads to [8]
ijeAT‘GeA‘xdt =0.
0

Then, we have
.[yTGydt =0, ify=e"x,
0

where
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y=e"x=0 forall t >0, then,x =0.

e*is nonsingular Vvt . This contradicts the assumption, and we think that k is indeed

a positive definite. Now, we show that k achieves the Lyapunov equation [8]
kA+ ATk = Ie"TtGeAt Adt + '[ATeAT‘GeAtdt
0 0

o0

= 9 eiGetydt = eMGe | = -G,
) dt 0

proving that, k is indeed a solution of Lyapunov equation. To finalize this, it remains

to display that this kis unique. To understand this, assume that there is another
solution K =k, such that
(k—K)A+ A" (k—-K)=0,
then, we conclude that
et [(k-K)A+ AT (k-K)p* =0.
Thus, we obtain

%[e“‘(k ~kye*]=o0,

meaning that eAT‘(k—IFZ)eAt is a constantVt. This can be the case if and only if

~

k—k=0,0r k=k.
3.7 Lyapunov indirect method

Lyapunov indirect method gives conditions from a nonlinear system to achieve the
local stability near any equilibrium point by examining the equilibrium point of the

linearized system [10]. The following theorem achieves this property.

Theorem 9 [8]: Let x=0 be an equilibrium point of (3.3), whereg:S — R"is

differential continuous and S is a neighborhood when x =0, then
&Y
B=—(x .
aX ( )|x:0

Thus we have:

i) Asymptotically stable origin if Re 4, < Ofor all eigenvalues of matrix B .
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if) Unstable origin if Re A4, >0 for all eigenvalues of B .

Proof [8]: First, we prove (i). Suppose that Bis a Hurwitz matrix, by Theorem 7,

since for every symmetric positive definite matrixO, the solution k of Lyapunov
equation (3.28) is a positive definite. If we suppose that V (x) = x' kxis a Lyapunov

candidate function, then, to derive this function along the trajectories of the system,

we conclude
V(x) = X"kg(x) + g7 (X)kx
= X"K[BX + y(X)]+ [X"B" + y" (X)]kx
=x" (kB+ B"k)x + 2x"ky(x)
=X Ox+ 2x"ky(X).
As it can be seen, the first term (—x"Ox)is negative definite, but the other term
(2x"ky(x) is an indefinite sign, so the function y(x) satisfies [8]

[yoal,

—>0as||x||2 —0.

So, for each o >0, there is | = 0then
IyOl, <ol ¥, <1.

Hence, it implies that

V(x) < —x"Ox + 20||k||2||x||§, v x|, <I,
but
X"OX 2 Ay, (O]
Here A

(.) refers to the minimum eigenvalue of B, and A4, (O) s positive and real,

'min min

since Ois a symmetric and posative definite , we have [8]
V() < {4 (0) ~ 20K, X for aitx], <1
Selecting o < (1/2) A, (0)/|K|, note that V (x) is a negative definite. By Theorems 1

and 2, we achieved that the origin is asymptotically stable.
There are some flaws of the Lyapunov indirect methods. For example, it can estimate

just the local stability and determine the asymptotic stability properties only [8].
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3.8 Instability theorems

Theorem 10 [12]: If we have the system (3.3), let

-2
X x=0

It is the system which Jacobian has estimated at x=0. Then, if at least one of the
eigenvalues of the matrix J carries a positive real part, here we can say that X =0 is

unstable.

Theorem 11 [9]: Suppose x=0 is an equilibrium of (3.3), let V:S —>R be a

continuous differentiable function and V(0)=0, V(x,) >0 for any x, with the
arbitrarily small |x,|, if we define the set H such that

H={xeBV(x) >0},

and
X<t}

It can be considered that V(x) >0 in H, then, the system (3.3) is unstable at the

B, = {xeR"

equilibrium pointx =0.

Proof [8]: Suppose the point X, is inside Hand V(x,)=b >0, then the trajectory
X(t) which starts at x(0) = x, should leave the set H, since x(t) is inside H and
V(0) >0 in H, moreover V (x(t)) > b, let

o =min{V (x)|x e HandV (x) b},
which exists as long as V (x) has a minimum value over the compact set {x e H and

V(x) > b}={x e B,and V(x) > b}, so, o > 0and [8]

V (x(t)) :V(x0)+j.\/'(x(s))ds > b+jods =b+ot.
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This shows that x(t) does not stay for a long time in H because V (x) is bounded on

H,and x(t) cannot leave H through the surface V (x) =0. As we know V (X) > b, it

must leave H through the sphere |x| =1, because this occurs for the arbitrarily small

1% Therefore, the origin is unstable [8].

CHAPTER 4
LYAPUNOV STABILITY FOR DISCRETE TIME SYSTEMS
4.1 Nonlinear systems

Suppose the nonlinear discrete time system [10] is namely

X, =0(X,) . (4.2)
If x(k)eScR",and reZ_, and g:R" — R"be a differentiable continuous in a
neighborhood of the origin, an equilibrium point x_ e R"satisfies g(x,)=x,. The

equilibrium point of the system (4.1) can be defined bellow [10].

Definition 1 [14]: If g(x) =0in the nonlinear discrete time system (4.1), then, the
point x_is an equilibrium point. Consider the origin x, = 0as the equilibrium point.

In the next definition, we define the types of stability of the equilibrium point.

Definition 2 [10]: If the point X, = Qis the equilibrium point of (4.1), then, it is
1- Stable, for every ¢ > Othere is &(&) > 0such that
| <& =[x <&, r=0
2- Locally asymptotic stable, if it achieves the condition of stability and
x| <& —limx, =0.
3- Globally asymptotic stable, if it is asymptotic stable for all x, € R".

4- Unstable, when it is not Lyapunov stable.
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Theorem 1 [12]: Let x, =0be an equilibrium point for the system (4.1), then, the
system is asymptotic stable near the zero equilibrium point. If there is a function
V (x,) defined in a domain S and continuous in X, and satisfy

aVv(0)=0,

b)V(x,) >0 V x, #0in S,

C) AV (x(r)) =V (x(r +1)) =V (x(r)) For all X(r)€S.

So, X, = 0is asymptotically stable, if further

d)V — coas|x | — oo.

Then, the point x, =0 is globally asymptotically stable.

4.2 Linear systems

Suppose a discrete time linear system [8], namely
x(r +1) = Bx(r). 4.2)

Here B e R™", is said to be symmetric if B = B" and the asymptotic stability of such
a system is determined by the eigenvalues found directly in the interior the unit circle
in the complex plane.

Definition 3 [8]: A matrix Bis called asymptotically stable, for all|4|<1, and

Vi=12,.,n. Here A;'sare refer to the eigenvalues of the matrix B, moreover it

called a Schur matrix, if all its eigenvalues lay inside the unit circle in the complex
plane. For the discrete time linear system (4.1) the Lyapunov function has a quadratic
form [8]

V (x(r)) = x" (Nkx(r) >0,
AV (X(r)) =V (X(r +1) =V (x(r)) < 0.
We have
V (X(r +1)) =V (x(r)) = X" (r + Dkx(r +1) — x" (r)kx(r)
=X (r)(B'kB-k)x(r)<0. 4.3)
We should note that the relation between the continuous time argument and discrete-

time referring to (4.3) as the algebraic Lyapunov equation is similar. We consider the

following equation
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B'kB—k =-G. (4.4)
The equation (4.4) is named Lyapunov matrix equation for the discrete time system
(4.1), and the matrix G is positive definite. Thus, the system is asymptotic stable, if
we can pick that G = |, then, the identity matrix can solve

B'kB—k =—I. (4.5)

Related to k, then, we see that if K is a positive definite.

Theorem 2 [8]: Suppose the linear discrete time system in (4.1), the conditions are
equivalent
1- The matrix B is asymptotically stable.
2- Given any matrix G=G" > Othere is a positive matrix k =k'achieving the
discrete-time of Lyapunov matrix equation:

B'kB—k =-G.
Proof [8]: Firstly show that 1—2. Let B be asymptotically stable and choose any

matrixG = G" > 0. Take the matrix
k=>(B")'GB'. (4.6)
i=0

It is well defined by the asymptotically stability of B, and k =k' = 0 by definition.

Now, let us substitute k in the Lyapunov matrix equation (4.4), we obtain

B'kB—k = BT(i(BT )iGBijB—i(BT JGB'

i=0
-3 (8"JeB' -3 (B")GB' =G
i=0 i=0
In order to show the unigqueness, suppose that there is another matrix K that satisfies
the Lyapunov equation. After some steps, we can show that
(B")" (k-Kk)B" =k -k
Letting M — oo gives the desired result.
In order to show that 2— 1, suppose the Lyapunov function V (x) = x"kx, fix x(0)to

be an initial state. We obtain

V(x(M)) -V (x(0)) < —Z x(i)" Gx(i) < A5, (G)i”x(i)”z . 4.7

o0
i=0
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Therefore, the sequence [\/(x(r))]reM is strictly decreasing and bounded from below,
therefore, it attains a non-negative limit. Moreover, we can show by contradiction

that this limit is actually 0, or equivalently lim|x(i)| =0, since this holds for any

choice of x(0), so, B is asymptotically stable.

Theorem 3 [12]: Suppose that x” =0 is an equilibrium point of the system (4.1),

where g:S — R" is continuous differentiable near a neighborhood of the origin,

\] = |:a_gj| y
0% | o

be the Jacobian of the above system at the equilibrium pointx™ =0. If all the

S < R", consider

eigenvalues of the Jacobian matrix J are less than one in absolute value, therefore

the system (4.1) is named asymptotically stable near this zero equilibrium point.

Proof: See [12].
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CHAPTER 5

STABILITY ANALYSIS OF FRACTIONAL ORDER SYSTEMS

Fractional calculus is related to the calculus of integrals and derivatives of orders that
may be real or complex. Nowadays the applications of fractional calculus are very
wide in various fields of sciences and engineering, such as signal and image
processing, chemistry, physics, biology, economics, chaos theory and control theory
[37,41]. One of the features of using fractional-order derivatives instead of integer-
order derivatives for solving a system, is that some times when we solve a system
which is of the kind of integer-order derivative, this system turned to be unstable.
But if we solved this system by fractional-order derivative, the system turned out to
be stable [46].

5.1 Preliminaries

The formula of a fractional integral with o € (0,1) is given bellow [38]

9() 4

N
D90 = s T o

T, (5.1)

where g(t) is an arbitrary integrable function. D, represents the fractional integral

of orderc on [a,t], and T() is the Gamma function which is defined as:
I(z) = [te'dt .
0

The Riemann-Liouville derivative of fractional order o can be defined by [39]:
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"prgy=_ + 9 [ 90)
D080 = r(n-o) dt" J;(t—r)”_”“ i 52

for (n—-1<o<n).
The Grunwald-Letnikov derivative is defined by [39]:
[M
h (o
SD7g() = lim g7 (t) = limh~* (—1)'(. Jg(t ~ih), (5:3)
— —> ]

i=0
in which [] refers to the integer part.

The Caputo fractional derivative has the form [39]:

Cro _ 1 t gn(z—) _
°D, g(t)_F(n_a)l(t_r)a_mdr, n-l<o<n. (5.4)

The Mittag-Leffler function has the form [36]:

®© H k
Eo(H) =§F(ka+l)’ (5:5)

whereo >0, H € R. The definition of Mittag-Leffler function of two—parameters is
[36]:

Eos(M) =2 ricvm F(k0+ B)’

k=0
(5.6)
whereo >0, feR, HeR.

The Laplace transform of g(t) can be defined as [48]:
G(s) = L{g(t);s}= [s™g(t)dt. (5.7)
0

L{}stands for the Laplace transform.

The Laplace transform for Mittag-Leffler function has the form [36]:
1 G ﬁ
e, , (J_r/it“)}: = (R@s)> |z| ). (5.8)

Here, sis the variable in Laplace domain, R(s) is the real part ofs, A € R.

The Laplace transform of the Caputo derivative is written as [48]:

n-1
L7 g(t)f=5"G(s) - 3 s *Ig®(0), n-1<o<n. (5.9)
k=0

5.2 Stability analysis by Caputo fractional system
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Consider the fractional system [38], namely

L DYX(t) = g(t, x). (5.10)
X(t,) denoting the initial condition, whereo € (0.1), g:[t,,o0]xQ — R" is a locally
Lipschitz in x, it is continuous in t on [t,,0]xQ, and QeR" is a domain

containing the equilibrium point x =0[38].

Definition 1 [36]: If X, is the equilibrium point of the Caputo fractional system

(5.10), then, it is true if and only if g(t, x,) =0.

Definition 2 [36]: If & :[0,t)—[0,0) is a continuous function is said to belong to

class X ifitis strictly increasing and o(0) =0.

Lemma 1 [36]: (Fractional Comparison Principle): Suppose ¢D/g(t)>5D/h(t) and
g(0) =h(0), where g € (0,1), then, g(t) > h(t).

Proof [36]: From D/ g(t)>;D/h(t) , there is a nonnegative function w(t) achieves

°D/g(t) = w(t)+SDZh(t). (5.11)
Taking the Laplace transform of equation (5.11), we get

s’G(s) —s”g(0) = w(s) + s”H(s) —s”*h(0) .

It is followed by g(0) = h(0) that

G(s) =sw(s) + H(s). (5.12)
Using the inverse transform to (5.12), it gives us that [36]:

g(t)=,D,”w(t) + h(t) .

At last, from w(t) > 0and (5.1), we conclude that g(t) > h(t).

Theorem 1 [38]: Suppose that x =0 is the equilibrium point for the system (5.10),

consider a Lyapunov function V (t, x(t)) with functions o;,0,,c, belong to class K
satisfying
ayX| <V (t,x) <oy, (5.13)
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o DAV (t, X(1)) < —o5|X] . (5.14)

Where 1 €(0,1), so, the system (5.11)is asymptotic stable .

Proof [38]: From (5.13) and (5.14), we obtain that

DAV (t, x(1)) < — 22 (V).
(o2

2

If we look at Lemma 1, we can see that V(t,x(t))is bounded by the unique

nonnegative solution of the scalar differential equation

SDrg(t) < -2 (g(1). 9(0)=V(0,x(0)), (5.15)

O,

from definition 1, g(t) =0 for t >0, g(0) = Obecause 93 jsaclass K function, or
0,

g(t) > 0on te0,:0), then from (5.15) we get SD/g(t) <0. By Lemma 1, we get

g(t) < g(0), then for te[O,oo) we prove that (5.15) is asymptotic stable by

contradiction. The second part of the proof can be found in [38].

Example 1 [40]: Consider the system
“DZx(t) =sin x + gx. (5.16)
The aim is to find the values of parameter gto satisfy the system that will be

asymptotic stable of the system (5.16).

Firstly, we choose V (x) = % x*to be Lyapunov candidate function, then, we get

D7V (t)=Df % x? =%C D x? < x °D7 x(t)

=xsin X+ gx* =~ x* + gx* = (g +)x°. (5.17)
Here we considered that sin x =X for everyx e (—3—7;,%). Suppose that xis in the
given interval, we have for g < —1 and it is corrected when (g +1)x* <0 . So, the

origin is locally asymptotically stable forg < -1.

5.3 Stability analysis by Riemann-Liouville fractional systems
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At first we review several properties of Riemann—Liouville and Caputo derivatives.

Property 1[42]: If0<o <1, we get

ED7K(O=, DO~ P ()

If x(t,) = 0, we conclude that
tf Dtax(t):to Dtgx(t) :
Property 2 [42]: Whenu > -1, we have

tth (t_to) _F(1+U—O')(t to) :

If 0<o <landx(t)=(t-t,)", then, from Property 1, we get

- " I'l+u o
tth (t-t,) :r( ) (t—t,)".

l+u-o)
Property 3 [42]:

t(O: D7 (ax(t) +by(t)) :at(O:DtGX(t) +bt(0: D7 y(@).

Property 4 [42]: From (5.4), if 0 < o <1we conclude
17§ DIX(1) = X(t) — x(t,),
and

1 ¢ g(s)ds

(179055 Ty

, T 1.
Property 5[48]: If o, feR, neZand-1< g <n.

D7 (., D’g()=. D" g - [. D/ g(v)]
j=1 t

(t_to)iaij
Ta-o-j)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

Remark 1 [51]: The derivative for a constant by Caputo is zero, whereas the

derivative for a constant by Riemann—Liouville is not zero. However it is equal to

AC = C(t _to)_ﬁ .
NS

Lemma 2 [36]: Let S (0)and W(t)be a non-negative arbitrary function on

te [O, oo), then
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SD/W (t)<,D/W (t). (5.25)

Here “Dand D are the fractional operators of Caputo and Riemann-Liouville types.

Proof [36]: If we use (5.24), we can conclude that
d
dt
Because £ < (0,1)and W(t) >0, we have

w ()7

g DtﬂW (t):o Dtﬁ_l s
rd-z)

W (t)=,D/W (t) — (5.26)

D/W (1)<, DAW () .

Theorem 2 [38]: If the suppositions in Theorem 1 are achieved when we replace

°D/by ,D/, so we have lim x(t) = 0.
Proof [38]: By Lemma 2, with V (t, x) > Owe have

SDAV (L, (1)<, DYV (t, x(1)),
meaning
o DAV (t, (1)<, DAV (t, x(t)) < —o3 (|X]) -
If we follow the same proof is in Theorem 1, we get

lim x(t) = 0.

t—o0
5.4 Stability analysis of Bihari's and Bellman-Gronwall's inequality

In this section we use Bellman-Gronwall's and Bihari's inequality to study some
theorems that explain the stability of fractional order systems by using Lyapunov

second method.

Theorem 3 [43]: (Bihari's Inequality). Suppose v and g be non-negative continuous
functions on [0,00), Let kbe a continuous increasing function on [0,), where

k(t) >0 in (0,0), if there is a positive constant a >0 , such that v satisfy

vit) <a + 'tf g(s)k(v(s))ds, t >0. (5.27)
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Then,

v(t) < H{H(a)+j‘g(s)ds}, 0<t<T.

(5.28)

Here, His defined by H(X)= J% X,X, > 0. Whereas H™is inverse of H,
y
Xo

when T is chosen such that

t
H(a)+jg(s)ds e Domain H *for 0<t<T.
0

Proof [43]: Let
y(t) < @ + [ g(s)k(v(s))ds,

Since g,vand k are continuous functions, then

y'(t) < g(Ok(v(D)).

Since
O<v(it)<a+ j g(s)k(v(s))ds = y(t),

and K is increasing function, then
k(v()) <k(y(t)).
Since, g(t) >0, then we obtain
y'(t) = g(Ok(v(t)) < g(Ok(y(®)).
Then
y'(®)
k(y(®)

<g(.

If g(0) =«, then
y(t

Then, we have

)

ki _ I y((S))) d(s) < I g(s)ds. Suppose r = y(s)

v(t) o v(t)
H(v(t) — H (@) = k(l) —J%m:j%m
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y(t)

< l. mdr , since v(t) < y(t)

t
< I g(s)ds.
0
That is
t
H(v(t)) < H(a) + [ g(s)ds.
0
Since H is increasing function, then H™ in increasing function. So,

v(t) < H{H(a)+j‘g(s)ds}, 0<t<T.

Theorem 4 [43]: (Bellman-Gronwall integral inequality). Suppose g(t) fulfills
t
g(t) < [h(r)g(x)d7 +k(b), (5.29)
0
with h(t)and k(t)that are real functions, then, we can conclude that

g(t) < jh(r)k(r) expﬁ h(r)dr}dr +k(t).

(5.30)
If k(t) is differentiable, then

g(t) <k(0) expﬁ.h(r)dr} +jk(r) expﬁh(r)dr}dr. (5.31)

Particularly, if k(t)is a constant, then, we have

g(t) < k(0) exp H h(z)d r} . (5.32)

Proof [18]: To prove this Theorem we want to define a new variable and transform

the integral inequality into a differential equation. Suppose that
t
V(t) = j h(r)g(z)dz. (5.33)
0

Now if we take the derivative of V and using (5.29), we get
V =h(t)g(t) < h(t)V (t) + h(t)k(t).
Suppose that
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s(t) = h()g(t) —h()V (t) - h(O)k(®)

Which is non-positive function, then V (t) achieves
V (t) —h(t)V (t) = h(t)k(t) + s(t).

To solve this equation with the initial condition V (0) = 0, we get
t t
V(t) = [ep [ [ h(r)dr}[h(r)k(r) +s(r)]d. (5.34)
0 T
Since s(t) is non-positive function, we conclude
t t
V(t) < j exp{ j h(r)dr}h(r)k(r)dr.
0 T
From the definition of V in (5.32) and (5.29) we conclude
t t
g(t) < Iexp{jh(r)dr}h(r)k(r)dr + k(7).
0 T

If k(z) =k(t) and 0 <7 <t, then

. . . d expﬁh(r)dr}
g(t)sk(t)(1+!h(r)exp{!h(r)dr}drj =k(t) 1-! ér
= k(t)[l—expﬁ h(r)dr} J = k(t)[1—1+ exp“h(r)er

=k(t)exp [j h(r)dr} .

In the following Theorem, we extend the Lyapunov second method for Caputo type
by using Bellman-Gronwall and Bihari's inequality.

Theorem 5 [43]: Suppose that we have the equilibrium point x =0 if
°Dx(t) =g(t,x), S<R",
is a domain containing x=0. Suppose V(t,x):[o,oo)xS — Rbe a continuously

differentiable function such as
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M, (X) £V (t, xX) <M, (x),

DV (t, x) < —M,(x).
(5.35)
For all t>0and for allxeS,0<o <1, where M,(x),M,(x) and M,(x)are
continuous positive definite functions on S, then, x=0 is uniform asymptotic

stable.
Proof: See [43].

Example 2 [43]: Suppose a fractional order derivative system as given bellow
D?(H(t)) =-cson(H(t)), 0<o<1 c>0. (5.36)
Then, we select the function
VO = (HOY, (5.37)
to be a Lyapunov candidate function, we have
X(t) > 0D x(t) > 0.
So,
X(t) <0->°Dx(t) <0 (5.38)
Therefore, we get
V({t)=HM®H() (5.39)
From (5.36) it is implied that
H(t) =D""(-csgn(H(t)) 0<o <1 (5.40)

If we use the signum function definition, namely

1 if x>0,

sgn(x) =40 if x=0, (5.41)
-1 x <0.
Then, we have
sgn(D™7 (=csgn(H (1)) = —sgn(H (1)), ¢>0. (5.42)
Thus, we conclude that
V({©)=H®OH(®) =H(@®D™ (~csgn(H (1)) (5.43)

Using the signum function,
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sgn(V (1)) = sgn(H () H (1)) = sgn(H (1)) sgn(D* (=csgn(H (1)),
=—sgn(H (t)son(H (t)) = -1, (5.44)
we prove that
V(t) <0, then, DV (t) <0.
If we use the Theorem 4, we conclude

V(1) = % (H(t))? > 0, which implies that D°V (t) < 0. (5.45)

Therefore, the system (5.36) is stable.
5.5 Mittag-Leffler stability

Definition 3 [38]: The solution of (5.10) is Mittag-Leffler stable if
)] < WXt E, (-t —t,)° | . (5.46)
Whereas t; is the initial time, o €(0,1), A >0, ¢>0, w(0)=0, w(x)>0and w(x)

is locally Lipschitz on x € B e R"with Lipschitz constant w,.

Definition 4 [38]: The solution of (5.10) is generalized Mittag-Leffler stable if
X)) < WxE) )t o) " E, s (A1) (5.47)
where tyis the initial time, o0 €(01), —0<o6<1l-o0, 420, ¢>0, w(0)=0,

w(x) >0and w(x)is locally Lipschitz on x € B € R"with Lipschitz constant w,,.

Theorem 6 [38]: If x=0is an equilibrium point for (5.10), S < R"is a domain
contains the origin. Suppose that V (t, x(t)) : [0, oo)x S — Ris a locally Lipschitz and

continuous differentiable function depends on x such that
SX" <Vt x@) < &[x|™, (5.48)
DV (t, x(t) < 53X (5.49)
For all t>0andxeS, oe(01) where 9,,6,,5,,hand rare arbitrary positive

constants, therefore x =0 is Mittag-Leffler stable. If it is happen globally onR",
then, x =0is globally Mittag-Leffler stable.
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Proof [38]. With the equation (5.48) and (5.49) we obtain

DYV (t, x(t)) < —g—zv (t, x(t)).
If there is a nonnegative function K(t) achieves
DV (t, x(t)) + K(t) = —g—zv (t, x(t)). (5.50)
If we take the Laplace transform of (5.50), we get
SV (s) =V (0)s” " + K (t) = —%V(s), (5.51)

2
since the nonnegative constant V (0) =V (0, x(0))and V(s) = L{V (t, x(t))} We can
understand that [38]

V(s) = V (0)s7 ' — K(s) .

s7+-2
52

If x(0)=01leads to V(0) =0, then, the solution of (5.10) is x=0. If x(0) =0 leads
to V(0) > 0, because V (t, x) is locally Lipschitz according to x, from (Existence and

uniqueness Theorem [38]), and taking the inverse Laplace transform of (5.51), we
get

53 o |_ *| $o0-1 _é o
V(t)=V(O)EU(—5—t) K (t) {t Ew( St ﬂ

2 2

: 0, : .
Since t”*and Ew(git"jare nonnegative functions, then
2

V(t) SV(O)EG[—%VJ. (5.52)
If we substitute (5.52) in to (5.48), we get
el 3

V()
V(0) _V(0.X(0))

1 1

for x(0) # 0, then, >0.

Suppose that k = >0, then, we obtain
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Ixt)] < {kEC{— g—zt“ﬂh .

Here it can said that k =0holds if and only if x(0) =0. Because V (t, x) is locally

Lipschitz according to x and V(0,x(0)) =0if and only if x(0)=0. Therefore

_V(0,x(0))
1

system (5.10) is Mittag-Leffler stable.

k is also Lipschitz according to x(0) and k(0) =0, meaning that the

Example 3 [38]: Suppose we have the following system
D7 Jg) =-g(®). (5.53)
in which o €(0,1). Let us consider the function candidate Lipschitz V(t, g) = |g| By
Lemma 2 we have
5DV =¢D7|g|<,D7|g]=,DfV < g (5.54)
Let o, =0, =land o, = -1, if we apply the Theorem 6, we obtain

9() <|9(0)E, (-17).
This implies that the system (5.53) is Mittag-Leffler stable.

5.6 Lyapunov-Krasovskii stability theory with time-delay

Through this part we study the stability of fractional order time-delay nonlinear
systems by using the Lyapunov—Krasovskii theory. The definition of time delay can
be as time interval of an event starting in one point to another point in the output
within the system, which can occur in several areas, especially in chemical,
biological, physical and economic systems, in addition in the processes of
computation and measurement [52]. The existence of a Lyapunov—Krasovskii
functional is a necessary as well as sufficient condition for the globally exponential
stability and the uniform globally asymptotically stability of autonomous systems
[52].

5.6.1 Nonlinear time-delay systems
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Let us consider a Caputo fractional time-delay nonlinear system [42], namely

D7) = g(t.x,). (5.55)
Whereas x(t) e R",0<o <l and g:RxU — R", so, to achieve the evolution of the
state, we can determine the initial case variables x(t)in the interval of a time of
length |, starting from t, —Ito t,, such that [42]

X, =0. (5.56)

Herep eU , and Xx(t, +6) =p(0), -1 <60 <0.
To explain the next definitions, let U([h, k], R“) be the set of continuous functions
mapping the interval [h, k]to R". If we want to identify | as a maximum time delay
of a system, we can define the set of continuous closed interval function mapping
[-1,0] toR". Let U :U([—I,O],R“). For every B>0and a continuous function
¥ eU(ft, -1,t, + BLR"), for t, <t<t, +B, let ¥, €U be a part of function ¥ and

the definition W, (@) =¥, (t+6), —-1<6<0.

Definition 5 [52]: Letp e U ([h k], R"), the uniform norm of ¢ can be defined as

l¢l,, = maxfe()]. (5.57)

h<o<k
Definition 6 [52]: Suppose the time-delay system (5.55), therefore the solution at
x(0) = O can be:
1. Stable, if for everyt, >0, for eache >0, there is 0 =0(t,, &) >0 that achieves
[52]
X)), <6 - [x®) <&, if t>t,. (5.58)
2. Attractive, if for every t,>0and anye >0, there is &, =0,(t,,¢) >0 that
achieves the property [52]
), <5, - lim|(t)|=0.
(5.59)

3. Asymptotic stable, since it is stable as well as attractive [52].

4. Uniformly stable, in addition, it is stable, and 6 = 6(¢) > 0 can be selected in an

independent form of t, [52].

44



5. Uniformly asymptotic stable, in addition to it is uniform stability, there isa 6, >0
and function 5(¢) , T(¢) as tho H < g,and t=t, +T (&) for [x(t)| < & [52].
6. Globally uniformly asymptotic stable, in addition to the fact that it is uniformly
asymptotically stable, so, &, can be finite number and arbitrary large [52].
7. Exponentially stable, if there are &, > 0and x >1such that [52]
X)), <6 — [x)]| < 2%, (5.60)

5.6.2 Lyapunov-Krasovskii stability theorem

Before we begin to prove the theorem, it is better to mention that if V(t,¢)is
a differentiable function, we can suppose that x,(z,¢) is the solution of (5.55) at the
time twith initial conditionx, =¢. We can define the Caputo derivative of the
function V (t, x,) according to t and evaluate it at t =7, for 0 <o <1, then, we get
[42]

1 jv'(s,xs)OIS

WOV @ =DV X @ s = Ty 1 ()7

(5.61)

t=r,X%=¢ *
to

The requirement for the time-delay system of the state at time t can be the value of

x(t) in the interval [t —I,t], and the Lyapunov function V (t, x,) depending on X, [42].

Theorem 7 [42]: Let g:RxU — Rin (5.19) maps R x (bounded sets in U) to be
bounded sets inR", and p,p,,p,:R, — R, are continuous non-decreasing
functions, where additionally p,(s), p,(s) are positive for s>0 and

£,(0) = p,(0) =0, there is a continuous differentiable function V : RxS_ — R,where
S, = {(p eU:|g, < a}, then,

A e <V t.0) < o, ) (5.62)

DV (L ¢) < —p3(le(0)]). 0<o <1, (5.63)

Therefore, the system (5.55) is uniformly stable, whereas if p,(s)>0for (s)>0

then, it is uniformly asymptotic stable. Moreover, if lim p,(s) =, therefore, it is
S—0

globally uniformly asymptotic stable.
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Proof [42]: Since p, is continuous and p,(0) =0. Let us say that &> Owe can find
a sufficiently small & =6(¢) >0, such that p,(d) < p,(€). It is important to note
that for any initial time t, and any initial condition x,_=¢ with |¢| <&, we have
tf DSV (t,x,) <0 and from property 4, V(t,X,) <V (t,, ), for eny t >t,. This means
that

A(xO) <V x) <V . 0) < 21, )< £2(5) < pi(e), (5.64)
where |x(t)| <& for t>t,. Then the system (5.55) is uniform stable. To prove

that the system being uniform asymptotic stable, suppose that 0<e<a

and 5 =0(g)>0correspond to uniform  stability, select &, <«aand

appointed by o, =0J(g,)>0and fixed ¢,. Now, we choose thous@)and

T(¢) ={ P2(%) ra+ G)T’ thus &(&) corresponds to uniform stability, consider
P5(6(€))

tho H <3, , if we have |x(t)| > 5(e)forall t>t,, then

- PO < =p,(5()) (5.65)
In addition we have
CDV(t, ) < —p;(5(2)), for t =t . (5.66)
Then, by properties 2 and 3 we get
N Df[v (t, x) + 05 (5(£)) (t=t)” j <0. (5.67)
I'l+o)

If we use the property 4, we conclude

(t_to)g

V(t,x) + p;(6(2)) rd+o)

<V (ty, 9). (5.68)
So, we have

V(t %) <Vt 0)— py(65(e)) o)

I'l+o)

t—t,)°
<pulll,)- putoen 2
sz(ao)—pg(a(e))%. (5.69)
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If forany t=t,+T(g), we get

o)
0= P (5N <V (b + T % 1) < £,(6)) —%T“ -0 (5.70)

This contradiction proves that there is a t € [t,,t, +T(&)], [x(t)] < 5(¢) . We have
[xt)| < eand t=t,+T(s), when HX%H < §5,,50, the system (5.55) is uniform

asymptotic stable.

To prove globally, let us suppose lim p,(s) = «, then, &, that we selected is arbitrary
S—0

large, so, we choose ¢ after ¢, that can satisfy p,(J,) < p,(€). Thus we can

conclude that the system is globally uniform asymptotic stable.
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CHAPTER 6

APPLICATIONS OF LYAPUNOV STABILITY THEORY

This chapter reviews the Lyapunov direct method and shows the stability properties

of mathematical models in biology using the fractional order systems.

6.1 Finding the Lyapunov candidate

In this section we show a new Lemma to achieve the stability of fractional
derivatives by quadratic Lyapunov functions in the sense of Caputo when0< o <1.
This new Lemma helps to prove the stability of the diseases equilibrium in

fractional-order, for example, epidemic systems [41,60].

Lemma 1 [41]: Let us consider x(t) € R is a continuously differentiable function. If
for every time instant t > t,we conclude that

1
2
Proof [41]: Suppose that expression (6.1) is true, so, it is equivalent to prove that,

EDIX(t) < x(t)CDX(E) | Vo e (0)). (6.1)

X(H) D7 X(t) —%g Dex2(t) =0 , Vo e (0). 6.2)

Using the definition of Caputo fractional derivative (5.4)

prgy =t [ X0
<DV =505 j g o" (6.3)

and in the same way we conclude

1 ED{’XZ (t) = 1 j- X(7)X(7) dr

2! r-o); (t-7)° ©4)
So, the expression (6.4) is defined as
1 X = x(@)1x()
F(l—a);[ (- =0 (6.5)
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If we define the auxiliary variable 9(7) = X(t) = X(z), meaning that
dg(r) __ dx(2)

9'@)= dr dr
then, the expression (6.5) becomes
t ’
L 19090y, g (6.6)

I'dl-o0); (t-1)°

Here we apply the integration by parts on expression (6.6). So, we get [41]

du=g()g'(dr . u =%g2,

L -0, dv=

o o .
V= t—17), respectivel
rl-o) ri_o) 77 PECHVEY

In that way, the expression (6.6) is defined as:

_ 9°(r)
2l-o)(t-17)°

If we check the first term of expression (6.7), which has an indetermination at 7 =t.

t

,_t+[ 9 } g jgz(f)ldrzo. 6.7)
Al(L-o)(t-t,)° | 2Tl-o)! (t—17)°"

f

Let us analyze the corresponding limit, namely

') _ 1 O -x@F
ot QML= o)t—7)° 2[(1-0) =t (t-7)°
. [x2(t) - 2x(®)x(z) + X*(7)] | 63)
2I'(l-o) —t (t-17)°

Given that the function is derivable, L'Hopital's rule can be applied, then [41]:
. [X2(t) - 2x(®)x(z) + X*(7) ]
2 (l- o) =t (t-12)°
N S [ 2x(t)%(2) + 2x(z) + X(7)]
2I'(l-o) =t ~o(t-7)7"

__ 1 xOx@ - 22x@x@)t -0 (6.9)
2I'l-o) — o

So, the expression (6.7) is reduced to [41]

9 ,_© jgz(r) dz>0
rL-o)t-t,)° 2Ml-0); t-o)°*

)

(6.10)

Expression (6.10) is clearly true, and this concludes the proof [41].
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Example 1 [41]: Suppose the fractional order nonlinear system withO < o <1,
oD z(t) =—z(t) + y* (1),
oD7y() =~z(t) - y(v).

We choose the Lyapunov candidate function as

(6.11)

1 1
V(z(t), y(1)) zzzz(t)+zy4(t)- (6.12)
So, applying the Lemma 1, we conclude that

lems e,
SDV (z(t), y(t) =§§Dt Z2(t) +Z‘5Dt y*(t)

e} l (e}
<2572 +5 Y'Y’

<z()5D7z(t) + y*()5D7 () =-2° (1) - y* (1) < 0. (6.13)
If we notice (6.13) we can prove that the fractional derivative of Lyapunov function

is negative definite function. Then, the system (6.11) is asymptotically stable.
6.2 Fractional-order gene regulatory networks

In this section we present the fractional-order gene regulatory networks and we
check the global Mittag-Lefller stability as well as the global generalized Mittag-
Lefller stability. The mechanism improved to regulate the expression of genes is
called the gene regulatory networks [58].

A gene regulatory network includes a number of genes that can regulate the
expression of every gene by proteins. Changes of these genes are governed by the
translational processes and stimulation of proteins in transcriptional [58].

We consider fractional-order gene regulatory networks [58]

D%y, (t) =—ey, (t)+zri:kijgi(pj(t))+A‘ (6.14)

D7, (t) = . p, (t) + Ly, (t),i =1.2,...,n.

If o<(02), y,(t), p;(t) R are the concentrations of messenger regulatory network

acid (mRNA : is a transcription of prokaryotic protein-coding genes making

50



messenger RNA ready to moves into protein), where the protein of the ith is node,

and e, r,are the vanish rates of mMRNA and the protein, when |, > Ois the translation

0,00 = (ﬂJ / HﬂJ }

This function can be monotonically increasing function and G, is the Hill

rate, such that

coefficients, u;is the positive constant A = Zaij , @ are bounded constant, and 1,

jel;
can be the set of all jthat is a repressor of gene i. We have the matrix

K = (k;) € R™ which is the coupling matrix of the gene network, defined as [58]

a;, ifreproduction factor ;j is an animator of gene

k. = - g

ij if reproduction factor ; is an repressor of gene i,
0,

if there is no link from node ; to i.

One gene or mMRNA vy,is generally activated by multiple proteins

p=(p,, P, P,)" in the transcription process for (6.14) [58].

Definition 1 [58]: The vectorsy™ =(y,,...¥.)", p =(p;,..., p,)" is an equilibrium
point of fractional gene regulatory networks (FGRNs) if and only if [58]:

—evV + N k.g(p:)+A =0,
Y, ; 19 (P + A (6.15)

—-rp +Ly,(t)=0,i=12,..,n,

To prove the theorems of global Mittag-Lefller stability and global generalized

Mittag-Lefller stability of an equilibrium point for (6.14), we should present the next
Lemma.

Lemma 2 [58]: Suppose V (t) be a continuous function on [0, oo) and satisfies

DV (1) < —pV (1).
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Let o €(0,) and pis a constant, then
V({t)=V()E,_ (—pt), t=0.

Definition 2 [58]: If there are positive constants g (i =1,2,...,2n), then, we have

5i = ei _hll > 01
Hi .
' i=12,..n. (6.16)
Onii =1, _ZL‘Wji‘ki >0.
j=1 Hisi

Here we shift the equilibrium point (y*T : p*T )" of fractional gene regulatory networks
in (6.14) to the origin, by using [58]:
u®=y,®O-y, vO=p®-p,i=12..,n

Then, fractional gene regulatory networks in (6.14) can be transformed as

DU, (1) = &0, () + 3. ky @, (v, )

D, (t) =—nv,(t) + Lu, (t),i =12,...,n.

(6.17)

Here gj(vj (t)) = fj(vj (t)"' p:)_ f|(pj)

The above Lemma is useful to prove the next Theorem

Theorem 1 [58]: Assume that definition 2 holds, then, the fractional gene regulatory

networks of (6.14) is globally Mittag-Leffler stable.

Proof [58]: Ler construct the function V (t) as
V()= Z Hi |ui (t)| +Z Hisi |Vi (t)| .
i=1 i=1

From [66] we had D“|u; (t)| = sgn(u; (t)) Du; (¢).

Taking the fractional order derivative of V (t) along the solution of (6.17), we get
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DV(®) =3 4D%u 0]+ 4,07, 0)
- Z 4 son(u; (t)){— eu;(t) + Z ki £, (v, (t))} +Z o San(V, )= (v, (1) + L, (1)}
< i’“’i {— e Ju; (©)] + Zn_:\k” w; (v, (t))\} +Z fin 1N O]+ 1 Jus )]

= _i {luiei |Ui (t)| = ol |Ui (t)|}— i {ﬂmi f |Vi (t)| - i‘kii ‘Wi |Vi (t)|}

i=1

= _i:ui[ei - IL:H IiJ|ui(t)|_iﬂn+{ri _ii‘kjirvvi J|Vi (t)|

j=L My

< _p[i H; |ui (t)| + Zi: Hisi |Vi (t)|:|

<—pV(1).

According to Lemma 2, where p= rLr<1_i<n{pi,pn+i}, DV (t) < —pV (t). Which means

that
Sly©-vil+Xlp®-p sfl—méx@\yi ©-y|+X[p©-p ]Ea(—pt“),
therefore,

ly® =y |+ - 0| <Y(lyo -y +]po - P, (=t7). for t>0.
Here Y=%mx  So the fractional gene regulatory networks of (6.14) is globally
/umin
Mittag-Leffler stable.
Before proving the generalized Mittag-Leffler stability of the system (6.14), we
should define the next Lemma.

Lemma 3 [58]: Suppose V (t) is a continuous function on [0, oo) satisfying
DV () <oV (1),
and 0 <o <1, where @is a constant, then, there exist constant t, and y achieve

V() <VOXTE,, (&°), t>t,.

ol-y

Proof [58]: We find a nonnegative function Y (t) such that
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DV{E)+Y()<oV(t). (6.18)
Here we take the Laplace transform of (6.18) and we have
sV (S) =V (0)s  +Y(s) =&V (s).
Since V(s) = LYV (t)} and Y (s) = L{Y (1)},
let
L )} =5(s) =Y (s) -V (0)s7 +V (0)s”7, where & € [o,1+ o). We obtain that

V(- _YE) VO

If we use the inverse Laplace transform, then, the solution of (6.18) become

V(t) =VO17E, ,(@°)-Y ) *[t"*E, (&),

where * is a convolution operation and [58]

t*G t&*G*l

+V (0)

Y(t)=L"(Y(s)=Y(t)-V(0) o) Goo)

Since t°" and E, . (&7) are nonnegative functions [67], it follows from & < (0,1)

when & > 0and t, > Othat [58]

tE—o‘—l t— Lo i
{r(a'—O')_F(l—a) e @)]=o. (6.19)

forall t>t,and 6 € 1+ o0 —¢1+ o). Therefore,
Y(t)*ftE, , @%)]=0,
forall t>t,and 6 € 1+ 0 —¢,1+0), since
V() =V (O)t7E, - (&7) =Y () *t°E,  (&7).
Here, we obtain
V(t) <V E, (&%)
forall t>tand 6 e l1+o—¢l1+0), let —1=—y, then, we get [58]

V() <VO)X7E,, (&%).
Theorem 2 [58]: Assume that the Definition 2 holding, the view that there is a

constant t,such that fractional gene regulatory networks (6.14) is globally

generalized Mittag-Leffler stable, for t >t, .
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Proof: See [58].

6.3 Stabilization of continuous-time fractional systems

Through this section we explain the stabilization of continuous-time fractional for

positive linear systems.
1- Stability

Let us consider a linear fractional order continuous time system [59], namely
D?g(t) =Bg(t). (6.20)

Let 0<o <1, g, >0, suppose B is Metzler matrix.

Definition 3 [59]: A matrix B € R™ is named the Metzler if all of its off-diagonal

entries are nonnegative i.e. B = [bij]e R™,bij >0,i# j.

Lemma 4 [59]: We can say that the continuous-time fractional system (6.20) is

positive if and only if B is a Metzler matrix.

Proposition 1 [59]: The function V(g(t)) = p'g(t), p>0is a Lyapunov function
for the positive system (6.20) if and only if

p'B<0. (6.21)
Proof [59]:

Necessity: B is a Metzler matrix, then, by Lemma 4, the system is positive, it means
that g(t) >0, to prove the necessity condition. Suppose that V(g(t)) = p' g(t),
p >0, is a Lyapunov function for the system (6.20), D°V(g(t)) can be negative

definite. Taking the Riemann-Liouville fractional derivative with respect to (6.20),

then we get

_c Vv(0)
DV (g(®))="DV (1)) + rd-o)t

_ T(D° PG
=P (DO + = e
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_ T CHo go _ Ino _ T
=p {( D )g(t)+—r(1_a)t,,}—p Dg(t) = p Bg(t) <0.

This means that p"B < 0.

Sufficiency: We assume that the condition (6.21) is true. Suppose now the function

V(g(t)) = p' g(t)is positive definite, we compute its fractional derivative by the
same way in the necessity part of the proof, since DV (g(t)) = o' Bg(t). It follows

that DV (g(t)) < 0,then, by Theorem 1 in chapter 5, the function V (g(t)) = p' g(t) is
the Lyapunov function of the system (6.20).

2- Stabilizability

Suppose a linear fractional order continuous time system
D?g(t) = Hyg(t) + Bu(t). (6.22)
LetO<o <1, geR", g(0)=g,>0, ueR™and B is Metzler matrix. If we use a
state feedback controlu(t) = Kg(t), then, we get the closed-loop system as follows
D7g(t) = (H + BK)g(t), (6.23)
where0 < o <1, g(0)=g, =0.

Theorem 3 [59]: If we find a positive vector p € R"and vectors x,, X,,...,X, € R,

then

Gp+B) x <0, (6.24)

i=1

hyp; +bix; >0. 1= ] (6.25)
Whereas h; denotes the element (ij ) of the matrix G and b, are the raw vectors of B,

then (6.23) is asymptotic stable by remaining the state non negative Vg, =>0.

Proof: See [59].

Example 2 [59]: Consider a fractional continuous time system

D7g(t) = Gg(t) + Hy(t), (6.26)
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with0 <o <1, g(0) =g, >0and o =0.5. If we have the following system matrices:

-1 -05 0.4
G = ) H = 1
-03 -05 0.2
we can see in the matrix G, the open-loop system is not positive, because there are
off-diagonal negative elements in G. We can design a case feedback controller
u = Kg, to stabilized the system and make the closed-loop cases nonnegative. We
take as [59]
K =[1.5707 1.5459].

Then, by multiply H with K, we get the closed-loop for the new matrix

—0.3717 0.1184 }

G+HK=G; =
¢ {0.0141 —0.1908

Thus, the matrix G.is Metzler, and the eigenvalues of the matrix G_are

{~0.3805 —0.1820}. By Theorem 3, the system (6.26) is asymptotic stable [59].

6.4 The epidemic systems

In this section we present a Lemma which estimates the fractional derivatives
of Volterra-type Lyapunov functions and study the uniform asymptotic
stability in the Caputo's sense if o € (0,1). this result is used in Caputo-type
epidemic systems. The epidemic systems are the Susceptible Infected Recovered
(SIR), Susceptible Infected Susceptible (SIS), Susceptible Infected Recovered-
Susceptible (SIRS) and Ross Macdonald models for vector-borne diseases;
consequently, if the basic reproductive number is greater than one, then, we can say

that the unique endemic equilibrium is uniformly asymptotically stable [60].

Lemma 5 [60]: Suppose that y(t) € R"be a derivable and continuous function. So,

for each time instant t > t;

N D{’[y(t) -y -y'In y(f)} S( —y—*j EDCy(t), Y eR*,Voe(0]). (6.27)
’ y y@t)) °

Proof [60]: By direct calculation we conclude
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D7y D7y -y DY {In y(f)} < ( Y-y’ j pry(t). (6.28)
' ' ’ y y® -

Here we apply the property 3 in (5.22), then, we conclude

y)ED7y(t) -y y(® 7| In yy(f) <(y®-y’) eDry(). (6.29)

Rewriting the inequality (6.29), we conclude

. o v YO |
D7y () -y DY | In yy(*) <0. (6.30)

Using the Caputo fractional derivative in (5.4), so, we can write that as [60]

choum_ 1 [ V()
DIYO= 15y tj T du. (6.31)

In the same way we conclude [60]

°Dy| | y(f)} L L W g, 6.32
cor|in’ F- o 00 -7 03

So, we can write the inequality (6.30), namely

r(l—axfi y(0) }(t—u)" e ©:39
Now, define the auxiliary variableW(;;):%, which means that

W () = % . In this way, the inequality (6.33) becomes [60]
y

du<0.

1 1 W (1)
o)) y(t)(l W) +1j (-1’

If we integrate the last integral by parts, we can get [60]

1 . ___ © o\
Ve A = s
= yO[L- gy W, -y OW G- G 4.

We have the followings [60]
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W(w) o _
ra- )Iy()[ W(mj(t 0

yOW (1) —InW () +1) | _| YOW (&) = In(W (&) +1))
Fl-o)(t-u)° - FA-o)(t-15)"

J YOW () = InW() +D)y . (6.34)

(t—p)

We notice that the first part of (6.34) is an indetermination at iz =t.

F(l o)

Now we analyze the corresponding limit [60]

L YOW ()~ IW () +1)
o TA- o)t )7

1 im YOW () ~ InW (4) +1))
- T(L-0) (t—)°

y(u)
. {y(y) y(t) - y(t)In (t)}

= lim
I(l-o) wt (t—u)”
Now, let us use L'Hopital's rule for the limit, differentiating both the numerator and

the denomonator, we can obtain [60]

y ()
[y(ﬂ) y(t)-y()In (t)}

lim
[(1-o) x>t (t—p)°

L y(t)}y()

TT-0) it oft—u)
1 - ( y(t)j' }:0
“T-0) H{ = ( vy S

So, the inequality (6.34) is reduced to [60]

_{y(t)(vvao)—ln(waml»

} Iy(t)(wm) InW (1) + 1)y,
rl-o)(t-t,)° F(l o); ’

(t—p)

or equivalenty
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) -y -yom 8y -yo - yomn Y

- yo | _ _ Y04, <0. (635)
f-o)t-m | o)  C-a)"

It is easy to see that the inequality (6.35) is true, and this concludes the proof.
Now, we review an example using this Lemma to investigate the stability of some

fractional-order differential equation models of infectious diseases.

Example 3 [60]: The differential equations for Susceptible-Infected-Susceptible

model are

K _A-D s,
dt X+Yy (6.36)

ﬂ:ﬂ—(a+ﬂ+5)y.
d x+vy
Let x be the number of susceptible individuals andy be the number of infected

individuals. Since the parameters and the initial conditions are positive values. If we

refer to the feasible region of (6.36) by
2 A
Q:{(x,y)e Rs. :sz,yzO,x+ysE},

and
RizkxyﬁHV:XZQyzo}
If the system (6.36) has a basic reproductive number given by [60]

Ry =————.
a+p+0o

Consequently, the system (6.36) has a disease-free (non-negative boundary)
equilibrium(%,O), and an endemic equilibrium is (x,y )whenR, > 0. Therefore
[60],

o A y o (R=DA
B+(@+p) (R, -1’ B+(a+pP) (R, -1

So, the integer order system (6.36) is asymptotic stable in the interior of the feasible

(6.37)

regionQ2, when the basic reproductive numberR, >1, then, we have a unique

endemic equilibrium (x7,y"). Note that if (x,y")is asymptotic stable it is also
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uniformly asymptotic stable. In addition, if we apply fractional order model on the
system (6.36) by using Caputo derivative, we get [60]

th{)X(t)=A—X——ﬁX+5y

(6.38)

CDPy(t)—%—(mm(S)y

With the same equilibrium points found in (6.36), to achieve the uniformly

asymptotically stable of the endemic equilibrium (X", y*), first we suppose Lyapunov

functionL = {(x,y)e Q: x>0,y >0} — R and define as [60]

(x+y>}
+y)

+(a+2ﬂ)(§*+y*)[y_y*_yqn%)

L(x,y) = {x+y X +y)=(xX"+y)In

If L(x,Yy) is positive definite, continuous function for all x>0,y >0, since (x,y’)

is an endemic equilibrium point of (6.38), then [60]

*

A=BX +y)+ay , (a+f+6)= Xfi‘ - (6.39)

Using Lemma 5, we get

thpL(x,y)S{ <x+y)}%Dp(X y)+(a+2ﬂ)(><+y)(1 y}thtpy,
X+y oy y

L0+ =) gy ay)s @20 ) -9
X+y oy y

[aﬂ—(5+ﬂ+a)y].

X+Yy

Now, we use (6.39) and we conclude

EDLL(x y)<[(X X))(+(yy y)]( Bx—x)~(a+ BNy -y)
+(a+2ﬂ§£x*+y*) (y—y*)( x X j

X+y X +Vy

Then, we have

SDYL(x, y) < o=y + 3 - y)]( Bx=x)=(a+pXy-y)

X+Yy
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L @2B)(X+y) (y_y*)(y (x=x7)—x (y‘”j,
y (X +y)x+y)

(x+x")?
X+Yy

<-p —[a+ﬂ+(a+2ﬂ)§—ijw.

X+Yy
We know that tf D/ L(x, y)is a negative definite if p e (0,1) (by theorem 5 in chapter

5), then, the system (6.38) is uniform asymptotic stable inside ofQ, with the
coordinates in (6.37) [60].

62



CHAPTER 7

CONCLUSION

In this thesis we have presented the concept of Lyapunov stability theory and some
of its applications in a detailed overview.

At the beginning of the thesis we recall some preliminaries and definitions that were
useful for the context of the study. After that we have defined the Lyapunov
function, methods and theorems to determine the stability properties of the
dynamical systems. In the example of pendulum, we have seen that the origin is
stable, but not asymptotic stable. In this case we have applied the Lasalle's invariance
principle to prove the asymptotic stability. In the indirect method we have showed
that the local stability of a system is studied through the Jacobian matrix. If the real
parts of its eigenvalues are all strictly negative, the equilibrium point, then, is locally
stable, but if at least one is strictly positive, then, it is unstable. The next topic was
about a review of the Lyapunov stability for discrete time systems. Also to review
the Lyapunov fractional stability, we have presented the stability analysis in the
Caputo and Riemann-Liouville senses. We have reviewed Bihari's and Bellman-
Gronwall's inequality, Mittag-Leffler stability and Lyapunov-Krasovskii theorem
with time delay.

Finally, we have presented some applications of Lyapunov stability theory. In the
first application we have recalled a new Lemma that helps to satisfy the stability of
fractional derivatives by quadratic Lyapunov functions in the sense of Caputo when
0< o <1. In the second one a class of fractional order gene regulatory networks
has reviewed. Some criteria of the Mittag—Leffler stability and generalized Mittag—
Leffler stability have been shown by utilising the fractional Lyapunov method for
these networks. In the third application, the stabilization problem for continuous-time
fractional linear systems with the additional condition of non negativity of the states
has been discussed. Finally, the Volterra-type Lyapunov functions has been used to
prove the stability of equilibrium points in integral order epidemic systems, to
estimate the uniform asymptotic stability of the Caputo-type epidemic systems.
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I hope that my thesis can be considered as a review about the Lyapunov function and
some of its applications, will help the young researchers in their studies about the

fascinating area of stability of the dynamics of complex systems.
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