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ABSTRACT 

 

LYAPUNOV STABILITY THEORY WITH SOME APPLICATIONS  

 

 

BAGELANY, Ronak 

M.Sc., Department of Mathematics and Computer Science  

Supervisor: Assist. Prof. Dr. Dumitru BALEANU 

 

December 2015, 64 pages 

 

 

In this thesis, a detailed overview of Lyapunov stability theorems of linear and 

nonlinear systems is presented. The Lyapunov first and second methods are 

investigated and the stability analysis of fractional differential systems is highlighted. 

A new Lemma for the Caputo fractional derivative is reviewed and a class of 

fractional-order gene regulatory networks is investigated. Besides the stabilization of 

continuous-time fractional for positive linear systems is reviewed. An elementary 

Lemma which estimates the fractional derivatives of Volterra-type Lyapunov 

functions is also put forward, in order to see how it can satisfy the uniform 

asymptotic stability of Caputo-type epidemic systems.   

 

 

 

 

 

Keywords: Lyapunov stability, linear and nonlinear systems, Lyapunov function, 

Lyapunov equation, Riemann-Liouville derivative, Caputo derivative, Mittag-Leffler 

function. 
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ÖZ 

 

BAZI UYGULAMALARIYLA LYAPUNOV KARARLILIK TEORİSİ 

 

 

BAGELANY, Ronak  

Yüksek Lisans, Matematik-Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Dumitru BALEANU 

 

Aralık 2015, 64 sayfa  

 

 

Bu tezde, doğrusal ve doğrusal olmayan sistemlerin Lyapunov kararlılık teoremleri 

detaylı bir şekilde gözden gecirilmistir. Birinci ve ikinci Lyapunov metodları 

incelenmis ve kesirli türevli sistemler için kararlılık analizi vurgulanmıştır. Caputo 

kesirli türevi için yeni bir Lemma gözden geçirilmiş ve kesirli dereceli gen 

düzenleyici ağların bir sınıfı incelenmiştir. Ayrıca pozitif doğrusal sistemler için 

sürekli zaman kesirlerin stabilizasyonu gözden geçirilmiştir. Caputo tipi epidemik 

sistemlerin düzgün asimptotik kararlılığı nasıl sağladığını görmek için, Volterra-tipi 

Lyapunov fonksiyonların kesirli türevlerini kestiren bir temel Lemma gözden 

geçirilmiştir.  

 

 

 

 

Anahtar Kelimeler: Lyapunov kararlılık, doğrusal ve doğrusal olmayan sistemler, 

Lyapunov fonksiyonu, Lyapunov denklemi, Riemann-Liouville türevi, Caputo türevi, 

Mittag-Leffler fonksiyonu. 
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CHAPTER 1 

 

INTRODUCTION 

 

Stability is one of the most important subjects in Mathematics and Engineering. It 

has an essential role in the system theory as well as in the engineering systems. There 

are many kinds of stability problems which appear through the study of the dynamic 

systems, for instance, the stability of equilibrium points, Lyapunov stability, finite 

time stability, practical stability, technical stability, stability of the periodic orbits 

and input-output stability [1,2,3]. 

In 1892, in his doctoral thesis entitled "A general task about the stability of motion", 

a Russian academician, Aleksandr Mikhailovich Lyapunov established the modern 

stability theory. More than 100 years later this technique helps us to achieve the 

stability analysis of the equilibrium points or states in any dynamic nonlinear or 

linear systems [4-10]. Lyapunov not only gave a formal statement of the problem but 

also proposed the methods serving as the key instruments for treating the stability 

problems even today, Primarily developed for a family of motions and defined for 

ordinary differential equations [11,12]. Nowadays Lyapunov stability concept for 

continuous and discrete time were applied to dynamical systems in more abstract 

spaces and even to the general motions which are not described by the equations 

studied in classical analysis [13-18]. Therefore, Lyapunov concepts were adopted to 

achieve more complicated phenomena in the behavior of dynamical systems such as 

bifurcation and chaos theory [19,20,21]. The techniques of Lyapunov have been 

successfully applied in many areas such as examining motion in space, technological 

devices, automated systems, problems in mechanics, demography, biomedical 

problems, environmental studies, behavioral science and economics and other fields. 

Lyapunov concepts of stability are widely used in the other states of equations such 

that integrals, functional differential equations, nonlinear parabolic equations, 

difference equations, discrete dynamical systems, fractional calculus and in the 

fractional dynamic systems [22,23]. 
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Lyapunov methods are classified as the Lyapunov indirect or first method and 

Lyapunov direct or second method. Lyapunov indirect method gives conditions from 

a nonlinear system to achieve the local stability near any equilibrium point. 

Lyapunov direct method is a mathematical directness of the physical properties and 

the most important method for the analysis of the nonlinear systems and it can be 

directly applied to a nonlinear system without the need of linearization or solve the 

system and achieve the global stability. The concept of direct method is if a total 

energy in a system disappeared, then, the states of this system will reach to the 

equilibrium point [24,25,26]. In other words, the basic idea behind this method is that 

if there is a kind of scalar such as energy function and test this (energy) diminishes 

along the trajectory of the system, then we can determine whether the system is 

stable or not. Today, Lyapunov linearization method is used to show the theoretical 

justification of linear system and Lyapunov direct method has become one of the 

most important methods for nonlinear system analysis [27-31]. By the same methods  

the stability criteria can be obtained for the discrete-time systems [32,33]. 

I reviewed in this thesis some basic concepts of the fractional calculus in order to 

analyze the stability of the nonlinear systems [34,35,36]. The concept of fractional 

calculus has been known during the stages of the development of the classical 

calculus founded by Leibnitz and L'Hopital in 1695, when they mentioned half-order 

derivative [37-42].  

The applications of fractional calculus by using Lyapunov methods are very wide 

nowadays in various branches of applied sciences as well as in engineering, namely, 

signal and image processing, physics, biology, control theory, chemistry  and 

economics  [43-57]. 

In the last decades, Lyapunov direct method has been a popular technique to study 

the stability properties of the mathematical models, in which this method is applied 

in several areas e.g. biological and biomedical science [58-70]. 

The aim of this thesis is to present a comprehensive review of the uses of Lyapunov 

theorems and methods for the continuous and discrete time analysis systems in order 

to achieve the stability properties. On the other hand we have used the fractional 

calculus to analyze the stability of nonlinear or linear systems. In the applications 

part of the thesis we presented a new Lemma for the Caputo fractional derivative,       

a class of fractional-order gene regulatory networks, the stabilization of continuous-

time fractional for positive linear systems, an elementary Lemma which estimates the 
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fractional derivatives of Volterra-type Lyapunov functions and the uniform 

asymptotic stability of Caputo-type epidemic systems.   

 

This thesis contains seven chapters. 

 

Chapter 1 deals with the concept of stability, Lyapunov theorems together with the 

methods of stability of nonlinear and linear systems as well as their applications in 

different fields. 

 

Chapter 2 includes some preliminaries and definitions utilized in this thesis. 

 

Chapter 3 introduces the analysis of stability in the sense of Lyapunov by presenting 

the basic definitions of the direct and indirect methods to determine the stability. We 

present the way how to construct the Lyapunov function and explaine the Lyapunov 

theorems to obtain the local or global stability, asymptotic stability or instability for 

the systems.   

 

In Chapter 4 the Lyapunov stability theorems for discrete time systems are 

investigated.  

 

Chapter 5 presents the stability analysis of fractional systems by using Caputo and 

Riemann-Liouville fractional derivatives, Bihari's and Bellman-Grönwall's 

inequality, Mittag-Lefller stability and Lyapunov –Krasovskii theorem are also 

reviewed.  

 

Chapter 6 deals with four new and interesting applications of Lyapunov stability 

theorems.  

 

Chapter 7 presents the conclusion part. 
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CHAPTER 2  

 

 PRELIMINARIES 

 

2.1 Definitions    

 

Definition 1[8]: A system of the first order of ordinary deferential equation is 

defined as: 

 

                                     

),,...,,(

),,...,,(

),,...,,(

21

2122
1

2111
1

nnn
n

n

n

xxxtgx
dt

dx

xxxtgx
dt

dx

xxxtgx
dt

dx















                                             (2.1) 

 

where nggg ,...,, 21  are real valued continuous function on an interval .I   

 

Definition 2 [14]: The system (2.1) is called time-invariant or autonomous system if 

g does not depend on time t , this nonlinear system can be written as   

                                                       )(xgx  .                                                          (2.2) 

If the function g depends explicitly of t  then, the system (2.1) is written as 

                                                       ),( xtgx  .                                                       (2.3) 

This system is called non-autonomous system. 

 

Definition 3 [9]: A differentiable mapping of g of an open set of nRS   to 
mR is 

said to be continuous differentiable in S if g  is such that <)()( 12 xgxg 
 

provided that Sxx 21, and <12 xx  . 

Definition 4 [9]: A set of V in the plane is a neighborhood of a point c if a small 

disk around c is contained in  V  . 
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Definition 5 [9]: A set of nRS  is named as bounded set if there is a real number 

0>L  leads to ,< Lx  Sx . 

 

Definition 6 [9]: Let nnRB  be a square constant matrix, a scalar R is said to 

be an eigenvalue and x  is a nonzero vector called eigenvector of B  associated with

 , if xBx  . 

 

Definition 7 [9]: A function of 
mn RRg :  is said a locally Lipschitz on S  if every 

point of  S  has a neighborhood SS 0 in g with domain 1S  which satisfies  

                                        2121 )()( xxLxgxg  ,                                           (2.4) 

it is called  as Lipschitz on an open set nRS  if it achieves (2.4) for all Sxx 21,  

with the Lipschitz constant L . It says to be globally Lipschitz if the condition (2.4) 

holds on
nR . 

 

Definition 8 [8]: *x   is said to be the equilibrium point of (2.3), with 00 )( xtx  if 

0),( * xtg for all 0t . 

 

Definition 9 [8]: If ),( xtg is the trajectories of (2.2) with initial condition x  at ,0t

the region of attraction to the equilibrium point *x  denoted aR , is defined by  

                            
*2 ),(,,{ xxtgRSSxRa   as }t . 

 

Definition 10 [8]: A square real matrix A  is called Hurwitz if all eigenvalues of A

have negative real part. 

 

Definition 11 [10]: A family of phase plane trajectories corresponding to various 

initial conditions is called a phase portrait of (2.3). 

 

Definition 12 [10]: A matrix A  is called a Schur matrix if ( 1<)(max Aii  ). 
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2.2 Comparison functions  

In this subsection, we introduce a new class of functions named class (K ) and

(KL)  [8].  

 

Definition 13 [10]: A continuous function    Ra,0:  is said to belong to class 

K  if 

i) 0)0(  , 

ii) it is strictly increasing. 

 

Definition 14 [10]: A continuous function 
  RR:  is said to belong to class 

K if it is achieved in addition to (i),(ii) condition )(l  as l . 

 

Definition 15 [10]: A continuous function    RR:  is belongs to a class L  if 

 i) it is strictly decreasing,  

ii) 0)( l when l   

 

Definition 16 [10]: A continuous function     RRa,0:  is belongs to a class 

KL  if: 

i)  for each fixed ,s the mapping ),( sl  belongs to a class K  according to l . 

ii) for each fixed ,l the mapping ),( sl  is decreasing according to s . 

iii) 0),( sl as s  . 

 

2.3 Matrices and vector norms 

 

Definition 17 [21]: A vector norm on 
nR  is a function . , from RRn  with the 

characteristics  

i)  0s nRs  and 0s if and only if 0s                 

ii) saas   Ra and nRs                        

iii) ksks 
nRks  ,                            
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Definition 18 [21]: The definition of the Euclidean norm 2l and the infinity norm l

for the vector T

nssss ),...,,( 21 is 

                             

21

1

2

2








 


n

i

iss  ,   i
ni

ss



1
max . 

 

Definition 19 [21]: A matrix norm is a real valued function from 
nnR 

 to R . Let

nnRK  be a matrix, its norm is symbolize by K  which satisfies a certain number 

of properties 

i)  0K For all 
nnRK  and 0K if and only if ,0K           

ii) KaaK   For any scalar a and ,nnRK                    

iii) LKLK  for all ,, nnRLK                           

iv) LKKL  For all ., nnRLK                                       

 

Definition 20 [21]: If  .  is a vector norm, the induced matrix norm is given by  

                       
K Ks

s 1
max


  

s

Ks

s 0
max


 . 
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CHAPTER 3 

 

LYAPUNOV STABILITY THEORY OF CONTINUOUS TIME SYSTEMS 

 

There is a simple definition of Lyapunov stability of systems, stating that if the 

solutions starting around an equilibrium point stay there forever, we can say that the 

equilibrium point is Lyapunov stable. If the equilibrium point is Lyapunov stable and 

all the solutions that starting near the equilibrium point converge to it , we say that 

this equilibrium point is asymptotically stable [9]. 

Lyapunov work includes two methods for stability analysis Lyapunov direct and 

indirect methods. 

 

3.1 Lyapunov function 

 

Lyapunov function is a stronger and robust method to determine the stability or 

instability in any equilibrium of nonlinear systems. Lyapunov function means that if 

we select a positive function (.)V and take its derivative V which should be negative 

definite or negative semi definite. Then we can say that V is a Lyapunov candidate 

function [8,9]. 

 

Definition 1 [8]: Suppose RSV :  be a continuously differentiable function 

defined in a domain nRS   and contains the origin, then the derivative of V along 

the trajectories of (2.2) is denoted by ),(xV such that   

                         .)())(()()).(())((
1


 




n

j

j

i

txtx
x

V
txtxVtxV

dt

d
                             (3.1) 

                                  







































)(

)(

,...,,)(

1

21
xg

xg

x

V

x

V

x

V
xV

n

n

 .                                       (3.2) 
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3.2 Sign definite functions 

 

We now introduce the notion of positive definite functions and the conditions 

required for the function )(xV . In the following S denotes for a connected and open 

subset of 
nR [9]. 

 

Definition 2 [9]: A scalar function RSV :  is named as positive semi definite for 

S when achieves the following conditions 

a) 0)0( V , 

b) 0)( xV ,  x in  0S . 

If we replace the condition (b) with 0>)(( xV in  )0S , then, RSV : is said to be 

positive definite in .S  

 

Definition 3 [9]: A scalar function RSV : is named as negative semi definite in 

S if it is achieved    

a) ,0)0( V  

b) .0)( xV  

If we replace the condition (b) with 0<)(( xV in  )0S , then, RSV : is called 

negative definite in S .  

 

3.3 Definitions of stability  

Let us consider [9] 

                                                           )(xgx  ,                                                      (3.3)      

with
nRSg :  be a locally Lipschitz map in nRS  . Let as assume that Sxe   is 

the equilibrium point of (3.3), thus .0)( exg Our aim is to study the stability of ex , 

therefore, we state all the definitions and theorems for the case when the equilibrium 

points are in the origin, meaning that 0ex  

 

Definition 4 [10]: The system (3.3), when 0x , is called Lyapunov stable, if  0  

, and 0>)(  then   

                                      <)0(x , and <)(tx , 0t .                                     (3.4)  
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Definition 5 [10]: The equilibrium point 0x  of the system (3.3) is called 

asymptotically stable if it is Lyapunov stable and there is a 0>  such that 

                                      <)0(x , and 0)(lim 


tx
t

 .                                           (3.5)  

Definition 6 [10]: The equilibrium point 0x  of the system (3.3) is called a locally 

exponentially stable if there are positive real constants ,  as well as  , such that 

<)0(x  then   

                                       textx   )0()( , 0t .                                               (3.6)  

Definition 7 [10]: The equilibrium point 0x  of the system (3.3) is called                

a globally exponentially stable, if we have positive real constants ,  achieved  

                           textx   )0()( , 0t .  
nRx  )0( .                                     (3.7)  

 

Definition 8 [10]: The system (3.3), with 0x  is unstable, if it is not Lyapunov 

stable.  

 

Definition 9[8]: Suppose RSV :  be a continuously differentiable function, then 

the function )(xV  is called radially unbounded if  

                                                )(xV as x . 

 

3.4 Lyapunov direct method 

 

Lyapunov direct method is a strong method to investigate the stability properties of 

the equilibrium point for both autonomous and non-autonomous nonlinear systems 

without the need to solve the nonlinear differential equations. If we construct a scalar 

function V of a system state x , and derive V with respect to time, we see that V is 

positive everywhere except at the equilibrium point 0x and  0V for every ,x

then, we say that the point 0x  is a stable equilibrium point. This result can be 

extended to provide criteria for determining the equilibrium if it is asymptotically or 

exponentially stable for global stability analysis [9]. The following theorems deal 

with Lyapunov direct method and explain the conditions to obtain the types of 

stability.   

 



11 

Theorem 1 [8]: Suppose 0x  be an equilibrium point for (3.3) and nRS  is a 

domain including the point 0x . Let RSV :  be a continuous differential 

function, then  

a) 0)0( V , 

b) 0>)(xV in a domain  0S , 

c) 0)( xV in a domain  0S . 

Thus, 0x is called stable point.  

 

Proof [8]: Let 0> , select  ,0l such that the closed ball  

                                                SlxRxB n

l                    

is continuous in S , Let )(min xV
lx 

 . Thus, 0 by condition (a) and (b) of 

Theorem 1, take ),0(  and let  

                                                )(xVBx l . 

Then,  is in the interior of lB . The set   carry the characteristic that each 

trajectory starts in  at 0t remains in  when 0t . This follows from part (c) 

of the Theorem 1, since  

                               ))0(())((0))(( xVtxVtxV , for all 0t . 

It then follows that any trajectory begins in  at 0t  remains inside  for all 

0t . Thus )(xV is continuous, it follows that 0> such that  

                                                    <)(< xVx  , 

then 

                                                       
lBB   , 

and  

                .)0( Bx  This leads to )0(x and )(tx , thus lBtx )( , 

so,  

                                         <)(tx  ltx <)( , 0t . 

This means that the equilibrium point is stable at the point 0x . 
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Theorem 2 [9]: In addition to all the conditions in Theorem 1, with 0x , if  (.)V  is 

such that   

i)   0)0( V , 

ii) 0>)(xV in a domain  0S , 

iii) 0<)(xV in a domain  0S . 

Then, we have asymptotically stable at the point 0x .  

 

Proof [9]: Under all these statements of the theorem, )(xV actually decreases along 

the trajectory of )(xg . Using the same state utilized in Theorem 1, if each real 0>a  

can be choosen 0>b  thus, ab B , whenever the initial condition is inside b , the 

solution will remain inside b . Therefore, to prove the asymptotic stability, all we 

need to show is that b reduces to 0 in the limit. In other words, b shrinks to a 

single point as t . However, this is simple, since by assumption 0)(  xV  in S . 

Thus, )(xV tends to steadily reach zero along the solutions of )(xg . 

 

Example 1 [8]: 

We consider a simple pendulum with friction, namely [8]  

                                          
.sin

,

y
m

k
x

l

g
y

yx









                                                      (3.8) 

The equilibrium points are )0,0( and )0,( , in this example it deals with energy, then, 

the total energy in this system equal to our Lyapunov candidate function )(xV [8], 

namely   

                             
0>

2

1
)cos1()( 22 ymlxmglxVE  . 

So, if we take the derivative of the function )(xV we get  

                        

  222 sin,,sin)( ykly
m

k
x

l

g
yymlxmglxV

T









 . 

Here )(xV  is not negative definite, but negative semi-definite, thus, the origin is not 

asymptotic stable but is stable.  

Here Lypunov candidate function fails to identify the asymptotically stability in the 

origin. 
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LaSalle's invariance principle [9] was developed in 1960 by J.P. LaSalle. It 

effectively develops a method of obtaining asymptotic stability without the need of 

the time derivative of the Lyapunov function to be negative definite function, but 

only needs to be negative semi definite function. The principle essentially says that if 

a Lyapunov function exists in a neighborhood of the origin, with a negative semi 

definite time derivative along the trajectories of the system, it can be established that 

no trajectory can stay identically at the points where 0)( tV , except at the origin, 

therefore, the origin is asymptotically stable. In order to understand better we present 

a definition and theorems related to the LaSalle's invariance principle [13]. 

 

Definition 10 [9]: If S is an invariant set belonging to (3.3), then, 

StxSx  )()0(   Rt .  

 

Theorem 3 [9]: (LaSalle's Theorem). Suppose RSV : be a differentiable 

continuous function, such that:  

 

a) SB  is a compact set invariant according to the solution  of (3.3). 

b) 0)( xV in B . 

c)  ,:: BxxM   and 0V ; that is, M is the set of points of B  such that .0V  

d) :N  is the largest invariant set in .M  

Therefore, each solution starts in B approaches to N as t . 

 

Proof [9]: Suppose that a solution )(tx in (3.8) starts in B . Since ,0)( BxV   we 

have a decreasing function )(xV of t and (.)V  is a continuous function, it is bounded 

from below in the compact set B . It can be said that ))(( txV  has a limit when 

t . Let  be a limit set of this trajectory. It follows that B since B is an 

invariant closed set, for each s  there is a sequence nt  with nt and 

stx n )( . By continuity of  )(xV , we conclude  

                                    atxVsV n
n




))((lim)(  ( a constant). 



14 

 Note that  axV )(  on . Also, by Lemma 3.5 in [9], we consider that   be an 

invariant set, and 0)( xV on  because )(xV  is constant on , then, we obtain 

                                              BMN   

Thus, )(tx  is boundness by Lemma 3.4 in [9]. This means that )(tx  approaches   

and it is positive limit set as t . So, )(tx  approaches N as t . 

 

Remark 1 [9]: 

LaSalle's theorem goes beyond the Lyapunov stability theorems in an important 

aspect, which is that, (.)V is required to be continuously differentiable and bounded, 

but it is not required to be positive definite. 

 

Theorem 4 [9]: The system (3.3), when 0x  is asymptotically stable if   

a) )(xV  is a  positive definite function for all ,Sx  we suppose that ,0 S  

b) )(xV is a negative semi definite, 

c) )(xV does not vanish identically along the trajectory in R , other than the null 

solution 0x . 

 

Proof [9]: By Lyapunov stability theorem, we know that for each 0> there exists

0> , such that   

                                                  <0x   <)(tx . 

If a solution starting inside the closed ball ,B it will stay within the closed ball B . 

Hence any solution ),,( 00 txtx of (3.8) that starts in B  is bounded and tends to its 

limit set of N that is contained in B . Also )(xV  can be a continuous function on the 

set B  and bounded from below in B . It is also non-increasing according to the 

assumption, thus, it tends to a non-negative limit L as t . Notice that LxV )(

for all x in the limit set N . If N  is an invariant set according to (3.3), meaning that 

if a solution starts in ,N  it will remain there forever. However,  along that solution of  

0)( xV it can be said that )(xV  is a constant )( L in N . Thus, by assumption, N  

is the origin of the state space. We can conclude that the solution starts in BR   

converges to 0x as t . 
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Let us refer back to example of pendulum, when the origin of the nonlinear system 

has stable by using Lyapunov direct method. However, the asymptotically stability 

could not be obtained [9]. Taking in to account that   

                                

0>
2

1
)cos1()( 22 ymlxmglxV                                       (3.9)                  

we obtain 

                                              
22)( yklxV  .                                                        (3.10) 

Here 0)( xV is negative semi definite, for )0,(x , if we apply Theorem 4, conditions 

(a),(b) we obtain that the origin 









y

x
R . 

Here  << x , aya << , for any Ra . By checking the condition (c) if V  

vanish identically along the trajectories trapped in R , other than the null solution. 

Using (3.10) we conclude  

                      ,0V  then 022  ykl  and 0y for all t and  0y . 

By using (3.8) we get  .sin0 y
m

k
x

l

g
  Since 0y , this leads to 0sin x . 

Locating x  to ),( x condition (c) is satisfied if and only if 0x . So,  0)( xV  

does not vanish identically along any trajectory other than 0x , therefore, 0x  is 

an asymptotic stable by Theorem 4 [9]. 

 

Theorem 5 [8]:  Suppose 0x  be an equilibrium point for (3.3) if RRV n : is    a 

continuous differentiable function satisfying    

a) 0)0( V , 

b) 0>)(xV  

c) x )(xV , 

d) 0<)(xV . 

Thus, 0x  is globally asymptotically stable.  

 

Proof [9]: the proof follows as in the proof of theorem 2, we just need to prove for 

given an arbitrary 0>b , the condition  

                                           bxVRx n

b  )(: . 
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It defines a set which is contained in a ball  lxRxB n

l  : , when 0>l . To see 

this, it should noticed that the radial unboundedness of (.)V implies for any 0>b , 

0>l such that bxV >)( whenever lx >  for some 0>l . Thus, ab B , which 

means that b is bounded. 

 

Theorem 6 [8]: Suppose the equilibrium point 0x  for the non-autonomous system 

(2.3), and nRS   is a domain including this point, let   RSV ,0:  be a 

continuously differentiable function such that  

                                                )(),()( 21 xGxtVxG  ,                                        (3.11) 

                                              )(),( 3 xGxtg
x

V

t

V










.                                     (3.12) 

For all 0t and for all Sx , where 21,GG and 3G  are  positive continuously 

differential functions on S , then, 0x is uniformly asymptotically stable. In 

addition, if l  and k are selected such that   SlxBl  and )(min< 1 xGk
lx 

, then, 

each trajectory starting in  kxGBx l  )(2 achieves  

                                    00 ,)()( tttxtx   , for all
 

00  tt ,                         (3.13) 

for some classKL  function  . Finally, if nRS  and )(1 xG is radially unbounded, 

then, 0x  is a global uniform asymptotic stable. 

 

Proof : See [8]. 

 

Before we present the exponential stability theorem, it is better to explain Lemma 1.  

 

Lemma 1 [9]:  The function RSV : is positive differentiable function if and only 

if there are the functions 21,  in class K such that  

                                      xxVx 21 )(   , SBx l  .                              (3.14) 

In addition, if nRS  and (.)V is radially unbounded then, 1 , 2  belong to the class

.K  
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Proof [9]: Given RRSxV n :)( , we show that )(xV  is a positive definite 

function if and only if there is K1  achieves  

                                              
  )(1 xVx  , Sx . 

It is obvious that 1  is a sufficient condition for the positive definiteness of V . To 

prove the necessity condition, we use the definition   

                                       )(min)( xVyG
lxy 

 , for ly 0 . 

The function (.)G is well defined since (.)V is continuous and lxy  defines a 

compact set in
nR . Moreover, this function (.)G has the following characteristics: 

i)   )(xVG   lx 0 , 

ii)  It is continuous, 

iii) It is a positive definite (since 0>)(xV ), 

iv) It satisfies 0)0( G . 

So, G is almost in the classK . It is not, in general, in K because it is not strictly 

increasing. We also have that: 

                                        )(xVxG  , for lx 0 .                                         (3.15) 

However )(xG  is not in class K since, in general, it is not strictly increasing.  Let 

)(1 y  be in class K  function such that )()(1 ykGy  with 1<<0 k . Thus, we 

conclude  

                                     )(1 xVxGx  , for lx  .                                      (3.16) 

The function 1 can be constructed as follows: 

                                  







 )(min)(1 yG

y

r
r  lyr  .                                        (3.17) 

This function is strictly increasing. To see this notice that: 

                                       









y

yG

r

)(
min1  lyr  .                                          (3.18) 

It is positive and also non-decreasing since r  increases, the set over which the 

minimum is computed keeps "shrinking". Thus, from (3.18), 1 is strictly increasing.  

So, this proves that there is K(.)1  such that  

                                        )(1 xVx  , for each lx  .                                       (3.19) 
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By the same way, the existence of K(.)2  such that       

                                          ,)( 2 xxV  when lx  .                                        (3.20) 

We can be proved similarly.  

 

Theorem 7 [9]: Consider that the conditions of Theorem 2 are achieved, moreover, 

there are positive constants 321 ,, BBB   and   such that  

                                           ,),( 21


xBxtVxB                                          

                                                   .)( 3


xBxV                                             

So, the origin is exponentially stable, in addition, if the condition occurs globally, 

then, when 0x   is globally exponentially stable. 

 

Proof [9]: According to the suppositions of Theorem 7, also the function )(xV that 

achieved Lemma 1, when 21, satisfied some conditions. We have the followings 

                                         


xBxtVxB 21 ),(   ,                                       

                                        


xBxV 3)(  )(
2

3 xV
B

B
 . 

Since,  

                                                )(xV )(
2

3 xV
B

B
 . 

This leads to  

                                                 
,)()(

)(

0
2

3 t
B

B

exVxV


  

then 

                                     


1

1

)(










B

xV
x  ,

)(

1

1

0
2

3 































B

exV
t

B

B

 

or  

                                     .2

3

1

1

2
0

t
B

B

e
B

B
xx

























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Remark 2 [9]: Exponential stability is the powerful form of stability, because of its 

precise rate which makes the trajectory converges to the equilibrium point. 

Moreover, the exponential stability means an asymptotic stability, but the converse is 

incorrect. In the linear systems, the uniform asymptotic stability and uniform 

exponential stability is similar.  

During our study of Lyapunov direct methods, we observed that some virtues can be 

mentioned in this section. For example, in this method we can use an energy-like 

function to study the behavior of the dynamical systems, reflecting in many cases of 

the physical properties of the system. This method can determines the stability of the 

nonlinear systems without need to solve the differential equations and it is a powerful 

method for stability analysis and the control theory by determining the stability, 

asymptotic stability, exponential stability and instability properties. It is also uses to 

estimate global stability of the domain of attraction. 

On the other hand, there are many flaws of the Lyapunov direct methods, such that, 

the construction of the Lyapunov function is not easy for general nonlinear systems it 

is usually a trial-and-error process. Furthermore, there is a lack of systematic 

methods, and sometimes Lyapunov candidate function fails to identify an asymptotic 

stable equilibrium, although the system is asymptotic stable. If Lypunov candidate 

function sometimes fails to achieve the conditions for the stability, this does not 

means  that the equilibrium is not stable or asymptotic stable, but only means that 

such stability properties cannot be found by using Lyapunov functions [7]. 

   

3.5 Phase plane diagrams for linear systems 

 

Consider the nonlinear system in (3.3), with the condition 0)0( g . If we apply 

Taylor's theorem of g  we obtain that [9] 

                                                   )()()( xyxAxg  .                                           (3.21) 

Here )(xy denotes the sum of higher order terms, A represents the Jacobian matrix of 

g evaluated at ,0x  namely 

                                      





















































n

nn

n

x

x

g

x

g

x

g

x

g

x

g
A







1

1

1

1

0

. 
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Neglecting the higher-order terms, then, the linearization of (3.3) about 0x  

becomes [9] 

                                                             Axx  .                                                     (3.22) 

Therefore, the system (3.22) is called the linearization of the system (3.3). 

We would like to obtain some information about what happens near the origin for the 

linear system (3.22). Let us explain some details for a real two dimensional system, 

namely [22] 

                                                    




























2

1

2

1

x

x

dc

ba

x

x
.                                         (3.23) 

The entries of the matrix are: 

                                                          









dc

ba
A . 

If we computed the characteristic polynomial we can conclude [22]. 

                            )det()()()( 22 AAtrbcaddap   .             (3.24) 

We have 1 and 2 are eigenvalues of A and the characteristic polynomial become  

                            2121

2

21 )())(()(  p .                     (3.25) 

Thus, we can compute that [22] 

                                                      )(21 Atr  ,                                                            

                                                          )det(21 A .                                             (3.26) 

If the matrix trace of A  is denoted by rT = )(Atr and the determinant is denoted by   

etD = ),det(A  then, the values of the eigenvalues are [22] 

                                                 
2

4
,

2

21

etrr DTT 
 . 

Let us denotes .42

etr DT    

 

3.5.1 Classification of stability  

By returning to the system (3.23), we can classify the stability as follows [22]. 

 

1. Stable origin, if [22] 

i) 0> , 0etD , 0<rT , 

ii) 0< , 0rT . 
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2. Asymptotic stable origin, if [22] 

i)  0> , 0<rT , 

ii) 0 , 0<rT , 

iii) 0< , 0<rT . 

 

3. Unstable origin, if [22] 

i)  0> , 0etD , 0>rT , 

ii) 0 , 0>rT , 

iii) 0< , 0>rT . 

Now, we classify the behavior of the system (3.23) to various cases for eigenvalues.  

 

3.5.2 Classification of the eigenvalues in cases 

 

Case 1. Distinct real eigenvalues: 21    [8] 

i) Both eigenvalues are negative )0<<( 21  . As t , all trajectories flux into 

the origin, therefore the trajectories are asymptotically stable and in 0x  we 

have a node. 

ii)When eigenvalues are positive )0>>( 21  . As t , all trajectories flux away 

from the origin to become arbitrarily large and the equilibrium point 0x  

indicates an unstable node. 

iii)One negative eigenvalue and one zero eigenvalue )0(),0<( 21  . The phase 

portrait is in some sense of decay, and the matrix A has a null space. The points 

on the axisx 1 are fixed, then, the origin is stable, but not asymptotic stable. 

iv)One positive eigenvalue and one zero eigenvalue )0(),0>( 21  . Here some 

points on the axisx 1  are fixed, and the others ran away to infinity along the 

vertical line. 

v) Both eigenvalues are zero )0(),0( 21   . In this case the trajectories start from 

the equilibrium subspace and move parallel to it. 

vi)One negative and one positive eigenvalue )<0<( 21  . The points on the 

axisx 1  approach the origin, whereas, the points on  axisx 2  go away from the 

origin. 
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Case 2. Nonzero multiple eigenvalues: 021   [24]. 

i)  If 0< , then the origin is a stable node. 

ii) If 0> , then the origin is unstable, the orbits are like the stable case reversing the 

time direction. 

 

Case 3. Complex eigenvalues:  i2,1
[8] 

i)  If 0 , solutions are periodic, and the trajectories are ellipses centered at the 

origin . 

ii) If 0< , the trajectories are spiral converging to the origin as time increase. 

iii)If 0> , the trajectories are spiral moving away from the origin as time increases. 

 

3.6 Analysis of linear time-invariant systems  

 

Consider an autonomous linear time-invariant system given in the system (3.22) and 

we can define the Lyapunov function )(xV  is a quadratic function candidate, namely 

[8] 

                                                       kxxxV T)( .                                                  (3.27) 

We can choose nnRk  satisfying the conditions: 

i)  Symmetric, ,Tkk   

ii) Positive definite, 

iii) k is constant. 

Thus, )(xV is positive definite, then, the derivative for the function )(xV  along the 

trajectories of (3.22) gives  

                                                xkxkxxV TT   . 

By using (3.22), ,TTT Axx   we report kAxxkxAxV TTT  xkAkAx TT )(   

if  

                                                 .GkAkA T                                                      (3.28) 

Choose G a symmetric matrix, then, we report   

                                                    GxxV T .                                                       (3.29) 
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If G  is a positive definite matrix, then, )(xV is negative definite, then, as a result the 

origin is asymptotic stable, to analyze the positive definiteness of the matrices ),( Gk

we present in the following two steps: 

1. Select a symmetric, positive definite matrixG . 

2. Find k achieving the equation (3.28) and must be positive definite.  

We can consider that )(xV is a Lyapunov function, then, the equation (3.28) is called 

the matrix of Lyapunov equation. These above steps described as the stability 

analysis depends on the pair ),( Gk which in turn rely on the existence of a unique 

solution of Lyapunov equation for the matrix A . The following theorem explains the 

stability in Lyapunov equation.  

 

Theorem 8 [8]: A matrix 
nnRA  is called Hurwitz (if

 
0<Re i ). For all 

eigenvalues of A , if and only if for every given positive definite symmetric matrix 

G  we find a positive definite symmetric matrix k that achieves Lyapunov equation 

(3.28). In addition, if A is Hurwitz, then, k is a unique solution of (3.28). 

 

Proof [8]: Suppose that 0G  then, there exists 0>k  satisfies (3.28). Since 

0>)( kxxxV T with 0<)( GxxxV T , the asymptotic stability follows Theorem 

2. For the converse, assume that 0<Re i and given ,G define k as follows: 

                                                    



0

dtGeek AttAT

.                                               (3.30) 

This k is well defined, given the assumptions on the eigenvalues of A . The matrix 

k is also symmetric, since AtTtA ee
T

)( . We assume that k is positive definite. To 

satisfy this case, we reason by contradiction and assume that the opposite is true, that 

is,  0x such that 0kxxT , but if 0kxxT it leads to [8] 

                                                         0
0




xdtGeex AttAT T

. 

Then, we have 

                                                        0
0




GydtyT
, if xey At , 

where 
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                                      0 xey At
 for all 0t , then, 0x . 

ate is nonsingular t . This contradicts the assumption, and we think that k is indeed 

a positive definite. Now, we show that k achieves the Lyapunov equation [8] 

                           kAkA T 


0

AdtGee AttAT




0

dtGeeA AttAT T

 

                                         



0

)( dtGee
dt

d AttAT

,
0

GGee AttAT




  

proving that, k is indeed a solution of Lyapunov equation. To finalize this, it remains 

to display that this k is unique. To understand this, assume that there is another 

solution kk 
~

, such that            

                                                0)
~

()
~

(  kkAAkk T , 

then, we conclude that  

                                           0)
~

()
~

(  AtTtA ekkAAkke
T

. 

Thus, we obtain 

                                                  0)
~

(  AttA ekke
dt

d T

, 

meaning that AttA ekke
T

)
~

(  is a constant t . This can be the case if and only if 

0
~
 kk , or kk

~
 . 

 

3.7 Lyapunov indirect method 

 

Lyapunov indirect method gives conditions from a nonlinear system to achieve the 

local stability near any equilibrium point by examining the equilibrium point of the 

linearized system [10]. The following theorem achieves this property.   

 

Theorem 9 [8]: Let 0x  be an equilibrium point of (3.3), where
nRSg : is 

differential continuous and S is a neighborhood when 0x , then  

                                                        0)( 



 xx

x

g
B .                                 

Thus we have:  

i)  Asymptotically stable origin if 0<Re i for all eigenvalues of matrix B . 
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ii) Unstable origin if 0>Re i  for all eigenvalues of B . 

 

Proof [8]: First, we prove (i). Suppose that B is a Hurwitz matrix, by Theorem 7, 

since for every symmetric positive definite matrix O , the solution k of Lyapunov 

equation (3.28) is a positive definite. If we suppose that kxxxV T)( is a Lyapunov 

candidate function, then, to derive this function along the trajectories of the system, 

we conclude  

                                    kxxgxkgxxV TT )()()(   

                                             )]([ xyBxkxT kxxyBx TTT )]([   

                                            )(2)( xkyxxkBkBx TTT   

                                            )(2 xkyxOxx TT  . 

As it can be seen, the first term )( OxxT is negative definite, but the other term 

)(2( xkyxT
is an indefinite sign, so the function )(xy  satisfies [8] 

                                            0
)(

2

2 
x

xy
as 0

2
x . 

So, for each 0> , there is 0l then  

                                           
22

<)( xxy  ,  lx <
2

. 

Hence, it implies that  

 

                               
2

22
2<)( xkOxxxV T  ,  lx <

2
, 

but 

                                             
2

2min )( xOOxxT  . 

Here (.)min refers to the minimum eigenvalue of B , and )(min O is positive and real, 

since O is a symmetric and posative definite , we have [8]  

                            
2

22min ]2)([<)( xkOxV   , for all lx <
2

. 

Selecting 
2min )()21(< kO note that )(xV is a negative definite. By Theorems 1 

and 2, we achieved that the origin is asymptotically stable. 

There are some flaws of the Lyapunov indirect methods. For example, it can estimate 

just the local stability and determine the asymptotic stability properties only [8].  
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3.8 Instability theorems 

  

Theorem 10 [12]: If we have the system (3.3), let  

                                                  
0















xx

g
J . 

It is the system which Jacobian has estimated at 0x . Then, if at least one of the 

eigenvalues of the matrix J  carries a positive real part, here we can say that 0x  is 

unstable.  

 

Theorem 11 [9]: Suppose 0x  is an equilibrium of (3.3), let RSV :  be a 

continuous differentiable function and  ,0)0( V  0>)( 0xV  for any 0x  with the 

arbitrarily small 0x , if we define the set H such that  

                                                0>)(xVBxH l , 

and 

                                               lxRxB n

l   .                          

It can be considered that 0>)(xV  in ,H  then, the system (3.3) is unstable at the 

equilibrium point 0x . 

 

Proof [8]: Suppose the point 0x  is inside H and 0>)( 0 bxV  , then the trajectory 

)(tx which starts at 0)0( xx   should leave the set H , since )(tx  is inside H and 

0>)0(V  in H , moreover btxV ))(( , let  

                                     HxxV  )(min{  and bxV )( }, 

which exists as long as )(xV  has a minimum value over the compact set Hx{  and 

})( bxV  = lBx{ and })( bxV  , so, 0 and [8] 

                        

t

dssxVxVtxV
0

0 ))(()())((   

t

tbdsb
0

 . 



27 

This shows that )(tx does not stay for a long time in H because )(xV  is bounded on 

H , and )(tx  cannot leave H  through the surface 0)( xV . As we know ,)( bxV  it 

must leave H  through the sphere lx  , because this occurs for the arbitrarily small 

0x . Therefore, the origin is unstable [8]. 

 

 

 

CHAPTER 4 

 

LYAPUNOV STABILITY FOR DISCRETE TIME SYSTEMS  

 

4.1 Nonlinear systems 

 

Suppose the nonlinear discrete time system [10] is namely 

                                                     )(1 rr xgx  .                                                      (4.1) 

If 
nRSkx )( , and Zr , and 

nn RRg : be a differentiable continuous in a 

neighborhood of the origin, an equilibrium point nRx  satisfies  xxg )( . The 

equilibrium point of the system (4.1) can be defined bellow [10]. 

 

Definition 1 [14]: If 0)( * rxg in the nonlinear discrete time system (4.1), then, the 

point *

rx is an equilibrium point. Consider the origin 0rx as the equilibrium point. 

In the next definition, we define the types of stability of the equilibrium point. 

 

Definition 2 [10]: If the point 0rx is the equilibrium point of (4.1), then, it is  

1- Stable, for every 0> there is 0)(  such that                                              

                                       <0x   <rx , 0r  

2- Locally asymptotic stable, if it achieves the condition of stability and                                           

                                             <0x   0lim 


r
r

x . 

3- Globally asymptotic stable, if it is asymptotic stable for all nRx 0
. 

4- Unstable, when it is not Lyapunov stable. 
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Theorem 1 [12]: Let 0rx be an equilibrium point for the system (4.1), then, the 

system is asymptotic stable near the zero equilibrium point. If there is a function

)( rxV  defined in a domain S and continuous in rx  and satisfy   

a) 0)0( V ,  

b) 0>)( rxV   0rx in S , 

c) ))(())1(())(( rxVrxVrxV  For all Srx )( . 

So, 0rx is asymptotically stable, if further 

d) V as rx . 

Then, the point 0rx  is globally asymptotically stable. 

 

4.2 Linear systems 

 

Suppose a discrete time linear system [8], namely 

                                                )()1( rBxrx  .                                                     (4.2) 

Here
nnRB  , is said to be symmetric if

TBB  and the asymptotic stability of such 

a system is determined by the eigenvalues found directly in the interior the unit circle 

in the complex plane. 

 

Definition 3 [8]: A matrix B is called asymptotically stable, for all 1<i , and

ni ,...,2,1 . Here si ' are refer to the eigenvalues of the matrix B , moreover it 

called a Schur matrix, if all its eigenvalues lay inside the unit circle in the complex 

plane. For the discrete time linear system (4.1) the Lyapunov function has a quadratic 

form [8]  

                                      0>)()())(( rkxrxrxV T , 

                                   0))(()1(())((  rxVrxVrxV . 

We have                                                             

                 )()()1()1())(())1(( rkxrxrkxrxrxVrxV TT   

                                                   0)())((  rxkkBBrx TT
.                                 (4.3)       

We should note that the relation between the continuous time argument and discrete-

time referring to (4.3) as the algebraic Lyapunov equation is similar. We consider the 

following equation  
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                                                     GkkBBT  .                                                 (4.4) 

The equation (4.4) is named Lyapunov matrix equation for the discrete time system 

(4.1), and the matrix G is positive definite. Thus, the system is asymptotic stable, if 

we can pick that IG  , then, the identity matrix can solve 

                                                    IkkBBT  .                                                   (4.5)                      

Related to ,k then, we see that if k is a positive definite. 

 

Theorem 2 [8]: Suppose the linear discrete time system in (4.1), the conditions are 

equivalent  

1- The matrix B is asymptotically stable. 

2- Given any matrix 0>TGG  there is a positive matrix Tkk  achieving the 

discrete-time of Lyapunov matrix equation: 

                                               GkkBBT  . 

Proof [8]: Firstly show that 12. Let B be asymptotically stable and choose any 

matrix 0>TGG  . Take the matrix 

                                                





0

)(
i

iiT GBBk .                                                    (4.6) 

It is well defined by the asymptotically stability of B , and 0Tkk  by definition. 

Now, let us substitute k in the Lyapunov matrix equation (4.4), we obtain 

                       

    

   


















00 i

iiT

i

iiTTT GBBBGBBBkkBB          

                                         

  

   









00 i

iiT

i

iiT GGBBGBB  

In order to show the uniqueness, suppose that there is another matrix k
~

that satisfies 

the Lyapunov equation. After some steps, we can show that  

                                                   kkBkkB MMT ~
)

~
(   

Letting M  gives the desired result. 

In order to show that 2 1 , suppose the Lyapunov function kxxxV T)( , fix )0(x to 

be an initial state. We obtain  

                    









0 0

2

2min )()()()())0(())((
i i

T ixGiGxixxVMxV  .                  (4.7) 
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Therefore, the sequence  
Mr

rxV


))(( is strictly decreasing and bounded from below, 

therefore, it attains a non-negative limit. Moreover, we can show by contradiction 

that this limit is actually 0, or equivalently 0)(lim 


ix
i

, since this holds for any 

choice of )0(x , so, B is asymptotically stable. 

 

Theorem 3 [12]: Suppose that 0* x  is an equilibrium point of the system (4.1), 

where 
nRSg :  is continuous differentiable near a neighborhood of the origin,  

nRS  , consider   

                                                       

0*















xxr
r

x

g
J , 

be the Jacobian of the above system at the equilibrium point 0* x . If all the 

eigenvalues of the Jacobian matrix J  are less than one in absolute value, therefore 

the system (4.1) is named asymptotically stable near this zero equilibrium point.  

 

Proof: See [12]. 
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CHAPTER 5 

 

STABILITY ANALYSIS OF FRACTIONAL ORDER SYSTEMS 

 

Fractional calculus is related to the calculus of integrals and derivatives of orders that 

may be real or complex. Nowadays the applications of fractional calculus are very 

wide in various fields of sciences and engineering, such as signal and image 

processing, chemistry, physics, biology, economics,  chaos theory and control theory 

[37,41]. One of the features of using fractional-order derivatives instead of integer-

order derivatives for solving a system, is that some times when we solve a system 

which is of the kind of integer-order derivative, this system turned to be unstable. 

But if we solved this system by fractional-order derivative, the system turned out to 

be stable [46]. 

 

5.1 Preliminaries 

 

The formula of a fractional integral with )1,0( is given bellow [38] 

                                     






t

a

ta d
t

g
tg 





 



1)(

)(

)(

1
)(D ,                                       (5.1) 

where )(tg  is an arbitrary integrable function. 
taD represents the fractional integral 

of order  on  ta, , and (.)  is the Gamma function which is defined as: 





0

1)( dtetz tz
 . 

The Riemann-Liouville derivative of fractional order   can be defined by [39]: 
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                                 


t

a

nn

n

t

R

a d
t

g

dt

d

n
tgD 





 



1)(

)(

)(

1
)(  ,                             (5.2) 

for )<<1( nn  . 

The Grunwald–Letnikov derivative is defined by [39]: 

                  







 

















h

t

i

i

h
h

h
t

G

a ihtg
i

htgtgD

)(

0
0

)(

0
)()1(lim)(lim)(






,                     (5.3) 

in which  .  refers to the integer part. 

The Caputo fractional derivative has the form [39]: 

                    ,
)(

)(

)(

1
)(

1 


t

a

n

n

t

C

a d
t

g

n
tgD 





 


 .<<1 nn                            (5.4)  

The Mittag-Leffler function has the form [36]: 

                                              


 


0 )1(
)(

k

k

k

H
HE


 ,                                             (5.5) 

where 0> , RH  . The definition of Mittag-Leffler function of two–parameters is 

[36]: 

                                           


 


0

,
)(

)(
k

k

k

H
HE


 ,                                            

(5.6) 

where 0> , R , RH  . 

The Laplace transform of )(tg can be defined as [48]: 

                                            dttgsstgsG st )();()(
0




 L .                                   (5.7) 

.L stands for the Laplace transform. 

The Laplace transform for Mittag-Leffler function has the form [36]: 

                             ,)(,

1












s

s
tEt


 L  )>)((

1

sR .                                (5.8) 

Here, s is the variable in Laplace domain, )(sR  is the real part of ,s R . 

The Laplace transform of the Caputo derivative is written as [48]: 

                       ,)0()()(
1

0

)()1(

0 





n

k

kk

t

C gssGstgD L   nn <<1  .                (5.9) 

 

5.2 Stability analysis by Caputo fractional system 
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Consider the fractional system [38], namely      

                                                  ).,()(
0

xtgtxDt

C

t                                                 (5.10) 

)( 0tx denoting the initial condition, where )1,0( ,   nRtg ,: 0
 is a locally 

Lipschitz in ,x  it is continuous in t  on   ,0t , and 
nR  is a domain 

containing the equilibrium point 0x [38]. 

 

Definition 1 [36]: If 0x  is the equilibrium point of the Caputo fractional system 

(5.10), then, it is true if and only if 0),( 0 xtg . 

 

Definition 2 [36]: If      ,0,0: t  is a continuous function is said to belong to 

class K  if it is strictly increasing and 0)0(  . 

 

Lemma 1 [36]: (Fractional Comparison Principle): Suppose )()( 00 thDtgD t

C

t

C    and

)0()0( hg  , where )1,0( , then, )()( thtg  . 

 

Proof [36]: From )()( 00 thDtgD t

C

t

C   , there is a nonnegative function )(tw  achieves   

                                           ).()()( 00 thDtwtgD t

C

t

C                                             (5.11) 

Taking the Laplace transform of equation (5.11), we get 

                               )0()()()0()( 11 hssHsswgssGs   
.                     

It is followed by )0()0( hg  that 

                                            )()()( sHswssG  
.                                            (5.12) 

Using the inverse transform to (5.12), it gives us that [36]: 

                                              )()()( 0 thtwDtg t   . 

At last, from 0)( tw and (5.1), we conclude that )()( thtg  . 

 

Theorem 1 [38]: Suppose that 0x  is the equilibrium point for the system (5.10), 

consider a Lyapunov function ))(,( txtV with functions 321 ,,   belong to class K

satisfying 

                                             xxtVx 21 ),(   ,                                            (5.13) 
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                                              xtxtVDt

C

30 ))(,(   .                                           (5.14) 

Where )1,0( , so, the system (5.11)is asymptotic stable . 

 

Proof [38]: From (5.13) and (5.14), we obtain that 

                                            
).())(,(

2

3
0 VtxtVDt

C



 
 

If we look at Lemma 1, we can see that ))(,( txtV is bounded by the unique 

nonnegative solution of the scalar differential equation 

                                 )),(()(
2

3
0 tgtgDt

C



   )),0(,0()0( xVg                            (5.15) 

from definition 1, 0)( tg  for 0t , 0)0( g because 
2

3




is a class K  function, or 

0)( tg on   ,0t , then from (5.15) we get .0)(0 tgDt

C   By Lemma 1, we get 

),0()( gtg   then for   ,0t  we prove that (5.15) is asymptotic stable by 

contradiction. The second part of the proof can be found in [38]. 

 

Example 1 [40]: Consider the system 

gxxtxDt

C  sin)( .                                                                                            (5.16) 

The aim is to find the values of parameter g to satisfy the system that will be 

asymptotic stable of the system (5.16). 

Firstly, we choose 2

2

1
)( xxV  to be Lyapunov candidate function, then, we get 

xxDxDtVD t

C

t

C

t

C <
2

1

2

1
)( 22   )(txDt

C   

              
2222 )1(sin xggxxgxxx  .                                                   (5.17) 

Here we considered that xx sin  for every )
36

,
36

(


x . Suppose that x is in the 

given interval, we have for 1< g  and it is corrected when  0<)1( 2xg   . So, the 

origin is locally asymptotically stable for 1< g . 

 

5.3 Stability analysis by Riemann–Liouville fractional systems   
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At first we review several properties of Riemann–Liouville and Caputo derivatives.  

 

Property 1 [42]:  If 1<<0  , we get 

                                 






 )(
)1(

)(
)()( 0

0

00
tt

tx
txDtxD ttt

C

t .                              (5.18)   

If 0)( 0 tx , we conclude that 

                                                )()(
00

txDtxD ttt

C

t

  .                                               (5.19) 

Property 2 [42]: When 1> u , we have  

                                







 uu

tt tt
u

u
ttD )(

)1(

)1(
)( 000

.                                 (5.20) 

If 1<<0  and utttx )()( 0 , then, from Property 1, we get  

                                .)(
)1(

)1(
)( 000









 uu

t

C

t tt
u

u
ttD                                 (5.21) 

Property 3 [42]: 

                               )()())()((
000

tyDbtxDatbytaxD t

C

tt

C

tt

C

t

  .                          (5.22)              

 

Property 4 [42]: From (5.4), if 1<<0  we conclude   

                                          
tI  )()()( 00

txtxtxDt

C

t  ,                                         (5.23) 

and  

                                     ( 
tI g)(t)  



t

a
st

dssg
 1)(

)(

)(

1
, .0tt       

Property 5 [48]:  If R , , Zn and n<1  . 

                 
)1(

)(
)()())(( 0

1
0

0000 j

tt
tgDtgDtgDD

j

tt

n

j

j

tttttttt









 



 .             (5.24) 

 

 Remark 1 [51]: The derivative for a constant by Caputo is zero, whereas the 

derivative for a constant by Riemann–Liouville is not zero. However it is equal to

)1(

)( 0











ttC
CD . 

 

Lemma 2 [36]: Let )1,0( and )(tW be a non-negative arbitrary function on 

  ,0t , then  
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                                                 )()( 00 tWDtWD tt

C   .                                            (5.25) 

Here DC and D are the fractional operators of Caputo and Riemann-Liouville types.  

 

Proof [36]: If we use (5.24), we can conclude that 

                        
)1(

)0(
)()()( 0

1

00









 tW

tWDtW
dt

d
DtWD ttt

C .                           (5.26) 

Because )1,0( and ,0)( tW  we have 

                                              )()( 00 tWDtWD tt

C    .                   

  

Theorem 2 [38]: If the suppositions in Theorem 1 are achieved when we replace 


t

C D0
by 

tD0
, so we have 0)(lim 


tx

t
. 

 

Proof [38]: By Lemma 2, with 0),( xtV we have   

 

                                         )),(,())(,( 00 txtVDtxtVD tt

C    

meaning  

                                 )())(,())(,( 300 xtxtVDtxtVD tt

C   . 

If we follow the same proof is in Theorem 1, we get  

                                                    0)(lim 


tx
t

. 

 

5.4 Stability analysis of Bihari's and Bellman-Grönwall's inequality  

 

In this section we use Bellman-Grönwall's and Bihari's inequality to study some 

theorems that explain the stability of fractional order systems by using Lyapunov 

second method. 

 

Theorem 3 [43]: (Bihari's Inequality). Suppose v  and g be non-negative continuous 

functions on  ,0 , Let k be a continuous increasing function on  ,0 , where 

0>)(tk   in  ,0 , if there is a positive constant 0  , such that v  satisfy  

                                      

t

dssvksgtv
0

))(()()(  , .0t                                    (5.27) 
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Then,  

                                







 



t

dssgHHtv
0

1 )()()(  , .0 Tt                               (5.28) 

Here, H is defined by  ,
)(

)(

0


x

x
yk

dy
xH .0>, 0xx  Whereas 

1H is inverse of H , 

when T is chosen such that  

                             

t

dssgH
0

)()(  Domain 
1H for .0 Tt   

 

Proof [43]: Let  

                 

                           

,))(()()( 

t

o

dssvksgty     

Since vg, and k are continuous functions, then  

                                                   )).(()()( tvktgty   

Since  

                                    

),())(()()(0
0

tydssvksgtv

t

 

 

and k is increasing function, then 

                                                     )).(())(( tyktvk   

Since, 0)( tg , then we obtain 

                                        )).(()())(()()( tyktgtvktgty   

Then  

                                                         ).(
))((

)(
tg

tyk

ty



 

If ,)0( g  then 

              

)(
))((

)(

)(

1
)(

0

 




ty t

sd
syk

sy
dr

rk



t

dssg
0

.)(   Suppose )(syr   

Then, we have 

                
 

)(

0 0
)(

1

)(

1
)())((

tv

x x

dr
rk

dr
rk

HtvH



 

)(

)(

1
tv

dr
rk


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                                          

)(

)(

1
ty

dr
rk



, since )()( tytv 

      

                                         

.)(
0


t

dssg

 

That is 

                               

 


t

dssgHtvH
0

.)()())((   

Since H is increasing function, then 
1H  in increasing function. So, 

                            









 



t

dssgHHtv
0

1 )()()(  ,  .0 Tt   

 

Theorem 4 [43]: (Bellman-Grönwall integral inequality). Suppose )(tg  fulfills  

                                         

t

tkdghtg
0

)()()()(  ,                                           (5.29) 

with )(th and )(tk that are real functions, then, we can conclude that 

                                 









t t

tkddrrhkhtg
0

)()(exp)()()( 


.                              

(5.30) 

If )(tk  is differentiable, then  

 

                        


















t tt

ddrrhkdhktg
00

)(exp)()(exp)0()( 


.                      (5.31) 

 

Particularly, if )(tk is a constant, then, we have    

                                            







   dhktg

t

0

)(exp)0()( .                                       (5.32) 

 

Proof [18]: To prove this Theorem we want to define a new variable and transform 

the integral inequality into a differential equation. Suppose that 

                                                
t

dghtV
0

)()()(  .                                            (5.33) 

Now if we take the derivative of V and using (5.29), we get 

                                         )()()()()()( tkthtVthtgthV  . 

Suppose that 
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                                      )()()()()()()( tkthtVthtgthts   

Which is non-positive function, then )(tV achieves  

                                    )()()()()()( tstkthtVthtV  . 

To solve this equation with the initial condition ,0)0( V we get 

                                

  .)()()()(exp)(
0

  









t t

dskhdrrhtV 


                           (5.34) 

Since )(ts is non-positive function, we conclude 

                                      

.)()()(exp)(
0

  









t t

dkhdrrhtV 


   

From the definition of V in (5.32) and (5.29) we conclude    

                                  

.)()()()(exp)(
0

  









t t

kdkhdrrhtg 


   

If )()( tkk   and t0 , then 

       





















  

t t

ddrrhhtktg
0

)(exp)(1)()( 


 





























 
t

t

d

drrhd

tk
0

)(exp

1)(




 

             






















 

t
t

drrhtk

0

)(exp1)(


 





















 

t

drrhtk
0

)(exp11)(

 

             









 

t

drrhtk
0

)(exp)( . 

 

In the following Theorem, we extend the Lyapunov second method for Caputo type 

by using Bellman-Grönwall and Bihari's inequality. 

 

Theorem 5 [43]: Suppose that we have the equilibrium point 0x  if  

                                         ),()( xtgtxDC 
, ,nRS   

is a domain containing 0x . Suppose   RSxtV ,0:),( be a continuously 

differentiable function such as  
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).(),(

),(),()(

3

21

xMxtVD

xMxtVxM

C 




                                      

(5.35)              

For all 0t and for all ,Sx 1<<0  , where )(),( 21 xMxM  and
 

)(3 xM are 

continuous positive definite functions on  ,S  then, 0x  is uniform asymptotic 

stable.  

  

Proof: See [43].  

 

Example 2 [43]: Suppose a fractional order derivative system as given bellow 

                           ))(sgn())(( tHctHD 
, 1<<0  , .0>c                             (5.36) 

Then, we select the function 
 

                                                   
,))((

2

1
)( 2tHtV                                                 (5.37) 

to be a Lyapunov candidate function, we have   

                                              .0>)(0>)( txDtx C   

So, 

                                              0)(0)(  txDtx C  .                                           (5.38) 

Therefore, we get  

                                                   )()()( tHtHtV   .                                               (5.39) 

From (5.36) it is implied that 

                                    ))(sgn(()( 1 tHcDtH  
, 1<<0  ,                              (5.40) 

If we use the signum function definition, namely   

 

                           












1

0

1

)sgn( x                

.0<

,0

,0>

x

x

x

                                                     (5.41) 

Then, we have  

                                 )),(sgn())(sgn((sgn( 1 tHtHcD 

 0>c .                      (5.42) 

Thus, we conclude that   

                                 ))(sgn(()()()()( 1 tHcDtHtHtHtV  
.                        (5.43) 

Using the signum function, 

if 

if 

if 
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              )))(sgn((sgn())(sgn())()(sgn())(sgn( 1 tHcDtHtHtHtV  
, 

                              1))(sgn()(sgn(  tHtH ,                                                  (5.44) 

we prove that   

                            0)( tV , then, 0)( tVD
. 

If we use the Theorem 4, we conclude  

                            
0))((

2

1
)( 2  tHtV , which implies that 0)( tVD

.             (5.45) 

Therefore, the system (5.36) is stable. 

 

5.5 Mittag-Leffler stability  

 

Definition 3 [38]: The solution of (5.10) is Mittag-Leffler stable if  

                                     c
ttEtxwtx 

  )(()()( 00  .                                      (5.46) 

Whereas 0t is the initial time, )1,0( , 0 , 0c , 0)0( w , 0)( xw and )(xw

is locally Lipschitz  on nRBx  with Lipschitz constant  0w . 

 

Definition 4 [38]: The solution of (5.10) is generalized Mittag-Leffler stable if  

                              c
ttEtttxwtx 


  )(()()()( 01,00  

 ,                          (5.47) 

where 0t is the initial time, )1,0( ,   1<< , 0 ,  0>c , 0)0( w , 

0)( xw and )(xw is locally Lipschitz on nRBx  with Lipschitz constant 0w . 

 

Theorem 6 [38]: If 0x is an equilibrium point for (5.10), nRS  is a domain 

contains the origin. Suppose that   RStxtV ,0:))(,( is a locally Lipschitz and 

continuous differentiable function depends on x such that  

                                             ,))(,( 21

hrh
xtxtVx                                       (5.48) 

                                               .))(,( 30

hr

t

C xtxtVD                                           (5.49)                                      

For all 0t and ,Sx  )1,0( , where 321 ,,  h, and r are arbitrary positive 

constants, therefore 0x  is Mittag-Leffler stable. If it is happen globally on
nR , 

then, 0x is globally Mittag-Leffler stable. 
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Proof [38]. With the equation (5.48) and (5.49) we obtain  

                                          
)).(,())(,(

2

3
0 txtVtxtVDt

C



 
 

If there is a nonnegative function )(tK achieves 

                                     
)).(,()())(,(

2

3
0 txtVtKtxtVDt

C



 
 
                            (5.50) 

If we take the Laplace transform of (5.50), we get  

                                    ),()()0()(
2

31 sVtKsVsVs


                                 (5.51) 

since the nonnegative constant ))0(,0()0( xVV  and  .))(,()( txtVsV L  We can 

understand that [38] 

                                           .
)()0(

)(

2

3

1














s

sKsV
sV  

If 0)0( x leads to ,0)0( V  then, the solution of (5.10) is .0x  If 0)0( x  leads 

to ,0>)0(V because ),( xtV is locally Lipschitz according to ,x  from (Existence and 

uniqueness Theorem [38]), and taking the inverse Laplace transform of (5.51), we 

get  

                        

























  












tEttKtEVtV

2

3
,

1

2

3 *)()0()( . 

Since 1t and 






 




tE

2

3
, are nonnegative functions, then 

                                              







 





tEVtV

2

3)0()( .                                        (5.52) 

If we substitute (5.52) in to (5.48), we get 

                                            
h

tE
V

tx

1

2

3

1

)0(
)( 

















 







, 

for 0)0( x , then, 0>
)0(

1

V
. 

Suppose that 0
))0(,0()0(

11




xVV
k , then, we obtain  
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h

tkEtx

1

2

3)( 
















 





. 

Here it can said that 0k holds if and only if .0)0( x  Because ),( xtV  is locally 

Lipschitz according to x  and 0))0(,0( xV if and only if .0)0( x  Therefore 

1

))0(,0(



xV
k   is also Lipschitz according to )0(x  and ,0)0( k  meaning that the 

system (5.10) is Mittag-Leffler stable. 

 

Example 3 [38]: Suppose we have the following system  

                                                   
)()(0 tgtgDt  ,                                             (5.53) 

in which )1,0( . Let us consider the function candidate Lipschitz ggtV ),( . By 

Lemma 2 we have  

                                      
gVDgDgDVD ttt

C

t

C  
0000 .                             (5.54) 

Let 121  and 13  , if we apply the Theorem 6, we obtain  

                                                  
)()0()( 

 tEgtg  . 

This implies that the system (5.53) is Mittag-Leffler stable. 

 

5.6 Lyapunov–Krasovskii stability theory with time-delay     

 

Through this part we study the stability of fractional order time-delay nonlinear 

systems by using the Lyapunov–Krasovskii theory. The definition of time delay can 

be as time interval of an event starting in one point to another point in the output 

within the system, which can occur in several areas, especially in chemical, 

biological, physical and economic systems, in addition in the processes of 

computation and measurement [52]. The existence of a Lyapunov–Krasovskii 

functional is a necessary as well as sufficient condition for the globally exponential 

stability and the uniform globally asymptotically stability of autonomous systems 

[52].  

 

5.6.1 Nonlinear time-delay systems 
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Let us consider a Caputo fractional time-delay nonlinear  system [42], namely 

                                              ),()(
0 tt

C

t xtgtxD  .                                                  (5.55) 

Whereas
nRtx )( , 1<<0   and nRURg : , so, to achieve the evolution of the 

state, we can determine the initial case variables )(tx in the interval of a time of 

length l , starting from lt 0 to 0t , such that [42] 

                                                             
0t

x .                                                     (5.56) 

Here U , and )()( 0  tx , 0 l . 

To explain the next definitions, let   nRkhU ,,  be the set of continuous functions 

mapping the interval  kh, to
nR . If we want to identify l  as a maximum time delay   

of a system, we can define the set of continuous closed interval function mapping 

 0,l   to
nR . Let   nRlUU ,0, . For every 0B and a continuous function

  nRBtltU ,, 00  , for Bttt  00 , let Ut  be a part of function  and 

the definition )()(   ttt , 0 l . 

 

Definition 5 [52]: Let   nRkhU ,, , the uniform norm of  can be defined as  

                                                    )(max 
 khU 

 .                                             (5.57) 

Definition 6 [52]: Suppose the time-delay system (5.55), therefore the solution at 

0)0( x can be: 

1. Stable, if for every 00 t , for each 0> , there is 0>),( 0  t  that achieves 

[52]  

                                      
c

tx )( 0   )(tx , if 0tt  .                                (5.58) 

2. Attractive, if for every 00 t and any 0> , there is 0>),( 0  thh   that 

achieves the property [52]   

                                          hU
tx )( 0   0)(lim 


tx

t
.                                    

(5.59) 

3. Asymptotic stable, since it is stable as well as attractive [52]. 

4. Uniformly stable, in addition, it is stable, and 0>)(   can be selected in an 

independent form of 0t [52]. 
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5. Uniformly asymptotic stable, in addition to it is uniform stability, there is a 0>0

and function )( , )(T  as 
0<

0
tx and )(0 Ttt   for <)(tx [52]. 

6. Globally uniformly asymptotic stable, in addition to the fact that it is uniformly 

asymptotically stable, so, 0 can be finite number and arbitrary large [52]. 

7. Exponentially stable, if there are 0>, and 1 such that [52] 

                                    
U

tx )( 0   0)( xetx t  .                                    (5.60) 

 

5.6.2 Lyapunov-Krasovskii stability theorem  

 

Before we begin to prove the theorem, it is better to mention that if ),( tV is                     

a differentiable function, we can suppose that ),( tx is the solution of (5.55) at the 

time t with initial condition tx . We can define the Caputo derivative of the 

function ),( txtV according to t  and evaluate it at t , for 10  , then, we get 

[42] 

           
 

txttt

C

tt

C

t xtVDVD ,),(,(),(
00  







t

t

xt
s

t
ds

st

xsV

0

,
)(

),(

)1(

1


.        (5.61) 

The requirement for the time-delay system of the state at time t  can be the value of 

)(tx in the interval  tlt , , and the Lyapunov function ),( txtV depending on tx [42]. 

 

Theorem 7 [42]: Let RURg : in (5.19) maps (R bounded sets in )U  to be 

bounded sets in
nR , and 

  RR:,, 321   are continuous non-decreasing 

functions, where additionally )(),( 21 ss   are positive for 0>s  and

,0)0()0( 21   there is a continuous differentiable function ,: RSRV   where 

  <:
U

US  , then,  

                                             ,),()0( 21 U
tV                                      (5.62) 

                                        )0(),( 30
 tVDt

C

t .   1<<0  .                          (5.63)             

Therefore, the system (5.55) is uniformly stable, whereas if 0>)(3 s for 0>)(s

then, it is uniformly asymptotic stable. Moreover, if 


)(lim 1 s
s

 , therefore, it is 

globally uniformly asymptotic stable. 
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Proof [42]: Since 2  is continuous and 0)0(2  . Let us say that 0 we can find 

a sufficiently small 0>)(  , such that )(<)( 12  . It is important to note 

that for any initial time 0t  and any initial condition 
0t

x  with ,< 
h

we have 

0),(
0

tt

C

t xtVD  and from property 4, ),,(),( 0 tVxtV t   for eny 0tt  . This means 

that  

                     ),(),()( 01  tVxtVtx t   ),(<)( 122  
h

                (5.64) 

where <)(tx  for 0tt  . Then the system (5.55) is uniform stable. To prove                 

that the system being uniform asymptotic stable, suppose that  <<0                 

and 0>)(  correspond to uniform stability, select  0 and                    

appointed by 0>)( 00   and fixed 0 . Now, we choose 
00

tx and 

,)1(
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1

3
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





 








T  thus )( corresponds to uniform stability, consider   

           
         00

tx  , if we have  )()( tx for all 0tt  , then  

                                                .)()( 33   tx
 
                                         (5.65)        

In addition we have  

                                      )(),( 30
 tVDt

C

t , for 0tt   .                                (5.66) 

Then, by properties 2 and 3 we get  

                                   .0
)1(

)(
))((),( 0

30



















 tt

xtVD tt

C

t                            (5.67) 

If we use the property 4, we conclude   

                                    ).,(
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So, we have  
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If for any )(0 Ttt  , we get 

                  ),())((0
001 TtxTtV .0

)1(

))((
)( 3

02 


 




 T                 (5.70) 

This contradiction proves that there is a  )(, 00 Tttt  , )(<)( 1 tx . We have 

<)(tx and
 

)(0 Ttt  , when
 0<

0
tx ,so, the system (5.55) is uniform 

asymptotic stable.  

To prove globally, let us suppose 


)(lim 1 s
s

 , then, 0 that we selected is arbitrary 

large, so, we choose   after 0  that can satisfy ).(<)( 102   Thus we can 

conclude that the system is globally uniform asymptotic stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

 

 

CHAPTER 6 

 

APPLICATIONS OF LYAPUNOV STABILITY THEORY 

 

This chapter reviews the Lyapunov direct method and shows the stability properties 

of mathematical models in biology using the fractional order systems.    

 

6.1 Finding the Lyapunov candidate 

 

In this section we show a new Lemma to achieve the stability of fractional 

derivatives by quadratic Lyapunov functions in the sense of Caputo when 1<<0  . 

This new Lemma helps to prove the stability of the diseases equilibrium in 

fractional-order, for example, epidemic systems [41,60]. 

  

Lemma 1 [41]: Let us consider Rtx )(  is a continuously differentiable function. If 

for every time instant 0tt  we conclude that 

                                 )()()(
2

1
00

2 txDtxtxD t

C

tt

C

t

  , ).1,0(                                 (6.1) 

Proof [41]: Suppose that expression (6.1) is true, so, it is equivalent to prove that,  

                              0)(
2

1
)()( 2

00
 txDtxDtx t

C

tt

C

t

  , ).1,0(                              (6.2) 

Using the definition of Caputo fractional derivative (5.4) 
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                                   (6.3) 

and in the same way we conclude  
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.                               (6.4) 

So, the expression (6.4) is defined as 

                                       0
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If we define the auxiliary variable ),()()(  xtxg   meaning that  

                                            ,
)()(

)(









d

dx

d

dg
g   

then, the expression (6.5) becomes 
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t

d
t

gg
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.                                       (6.6) 

Here we apply the integration by parts on expression (6.6). So, we get [41] 

 dggdu )()(   ,        2
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1
gu  , 
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tdv , respectively  

In that way, the expression (6.6) is defined as: 
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.     (6.7) 

If we check the first term of expression (6.7), which has an indetermination at t . 

Let us analyze the corresponding limit, namely  
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 .                       (6.8) 

Given that the function is derivable, L'Hopital's rule can be applied, then [41]: 
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So, the expression (6.7) is reduced to [41] 
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(6.10) 

Expression (6.10) is clearly true, and this concludes the proof [41]. 
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Example 1 [41]: Suppose the fractional order nonlinear system with 1<<0  , 
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                                                   (6.11)  

We choose the Lyapunov candidate function as   
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1
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1
))(),(( 42 tytztytzV  .                                         (6.12) 

So, applying the Lemma 1, we conclude that  
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t
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3

0 tyDtytzDtz t

C

t

C   0)()( 42 tytz  .           (6.13) 

If we notice (6.13) we can prove that the fractional derivative of Lyapunov function 

is negative definite function. Then, the system (6.11) is asymptotically stable. 

 

6.2 Fractional–order gene regulatory networks  

 

In this section we present the fractional–order gene regulatory networks and we 

check the global Mittag-Lefller stability as well as the global generalized Mittag-

Lefller stability. The mechanism improved to regulate the expression of genes is 

called the gene regulatory networks [58].  

A gene regulatory network includes a number of genes that can regulate the 

expression of every gene by proteins. Changes of these genes are governed by the 

translational processes and stimulation of proteins in transcriptional [58]. 

We consider fractional–order gene regulatory networks [58] 
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                                       (6.14) 

 

If )1,0( , Rtpty ii )(),(  are the concentrations of messenger regulatory network 

acid (mRNA : is a transcription of prokaryotic protein-coding genes making 
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messenger RNA ready to moves into protein), where the protein of the ith  is node, 

and ii re , are the vanish rates of mRNA and the protein, when 0>il is the translation 

rate, such that  
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This function can be monotonically increasing function and 
jG  is the Hill 

coefficients, 
j is the positive constant 




iIj

iji aA , 
ija are bounded constant, and iI

can be the set of all j that is a repressor of gene i . We have the matrix 

nn

ij RkK  )(  which is the coupling matrix of the gene network, defined as [58] 
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One gene or mRNA
 iy is generally activated by multiple proteins 

T

npppp ),...,,( 21 in the transcription process for (6.14) [58]. 

 

Definition 1 [58]: The vectors T

nyyy ),...,( **

1

*  , T

nppp ),...,( **

1

*  is an equilibrium 

point of fractional gene regulatory networks (FGRNs) if and only if [58]: 
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To prove the theorems of global Mittag-Lefller stability and global generalized 

Mittag-Lefller stability of an equilibrium point for (6.14), we should present the next 

Lemma.  

 

Lemma 2 [58]: Suppose )(tV be a continuous function on  ,0  and satisfies  

                                                  )()( tVtVD   . 

if reproduction factor is an animator of gene  

if reproduction factor is an repressor of gene  

if there is no link from node  to  
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Let )1,0( and  is a constant, then  

                                          )()0()( 
 tEVtV  , 0t . 

Definition 2 [58]: If there are positive constants ),2,...,2,1( nii   then, we have   
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Here we shift the equilibrium point TTT

py ),( ** of fractional gene regulatory networks 

in (6.14) to the origin, by using [58]: 

*)()( iii ytytu  , 
      

*)()( iii ptptv  , .,...,2,1 ni   

Then, fractional gene regulatory networks in (6.14) can be transformed as   
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Here ).())(())(( **

jijjjjj pfptvftvg   

The above Lemma is useful to prove the next Theorem 

 

Theorem 1 [58]: Assume that definition 2 holds, then, the fractional gene regulatory 

networks of (6.14) is globally Mittag-Leffler stable.  

 

Proof  [58]: Ler construct the function )(tV as  
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Taking the fractional order derivative of )(tV along the solution of (6.17), we get 
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therefore,  
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Here Y=
min

max




. So, the fractional gene regulatory networks of (6.14) is globally 

Mittag-Leffler stable.  

Before proving the generalized Mittag-Leffler stability of the system (6.14), we 

should define the next Lemma. 

 

Lemma 3 [58]: Suppose )(tV is a continuous function on  ,0  satisfying  

                                                  )()( tVtVD   , 

and 1<<0  , where  is a constant, then, there exist constant 1t and  achieve   
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Proof [58]: We find a nonnegative function )(tY such that 



54 

                                              )()()( tVtYtVD   .                                           (6.18) 

Here we take the Laplace transform of (6.18) and we have   

                                     )()()0()( 1 sVsYsVsVs   
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                              )(*)(
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
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  tEttYtEtVtV   , 

where * is a convolution operation and [58] 
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Since 1t  and  )(,


 tE are nonnegative functions [67], it follows from )1,0(

when 0> and 0>1t that [58] 
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for all 1tt  and )1,1(~   . Therefore,  

                                                 0)(*)(
~

,

1  


 tEttY , 

for all 1tt  and )1,1(~   , since  
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1
~,

1~ 
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


  tEttYtEtVtV   . 

Here, we obtain   

                                   )()0()( ~,

1~ 


 tEtVtV   

for all 1tt  and )1,1(~   , let  1~ , then, we get [58]  

                                   )()0()( 1,




 tEtVtV 

 . 

 

Theorem 2 [58]: Assume that the Definition 2 holding, the view that there is a 

constant 1t such that fractional gene regulatory networks (6.14) is globally 

generalized Mittag-Leffler stable, for 1tt  . 
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Proof: See [58]. 

6.3 Stabilization of continuous-time fractional systems     

 

Through this section we explain the stabilization of continuous-time fractional for 

positive linear systems.  

 

1- Stability  

 

Let us consider a linear fractional order continuous time system [59], namely 

                                                   )()( tBgtgD 
.                                                 (6.20) 

Let 1<0  , ,00 g  suppose B  is Metzler matrix. 

 

Definition 3 [59]: A matrix 
nnRB  is named the Metzler if all of its off-diagonal 

entries are nonnegative i.e.    jibijRbijB nn   ,0, . 

 

Lemma 4 [59]: We can say that the continuous-time fractional system (6.20) is 

positive if and only if B  is a Metzler matrix. 

 

Proposition 1 [59]: The function )())(( tgtgV T , 0> is a Lyapunov function 

for the positive system (6.20) if and only if  

                                                               0<BT .                                                (6.21) 

Proof [59]: 

 

Necessity: B  is a Metzler matrix, then, by Lemma 4, the system is positive, it means 

that 0)( tg , to prove the necessity condition. Suppose that  ),())(( tgtgV T  

0> , is a Lyapunov function for the system (6.20), ))(( tgVD
 can be negative 

definite. Taking the Riemann-Liouville fractional derivative with respect to (6.20), 

then we get     
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                                    









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






t

g
tgDCT

)1(
)()( 0 )(tgDT  0<)(tBgT . 

This means that 0<BT . 

 

Sufficiency: We assume that the condition (6.21) is true. Suppose now the function 

)())(( tgtgV T is positive definite, we compute its fractional derivative by the 

same way in the necessity part of the proof, since )())(( tBgtgVD T  . It follows 

that 0<))(( tgVD
,then, by Theorem 1 in chapter 5, the function )())(( tgtgV T is 

the Lyapunov function of the system (6.20). 

 

2- Stabilizability  

 

Suppose a linear fractional order continuous time system 

                                            ).()()( tButHgtgD 
                                           (6.22) 

Let 1<0  , ,nRg 0)0( 0  gg , mRu and B  is Metzler matrix. If we use a 

state feedback control )()( tKgtu  , then, we get the closed-loop system as follows 

                                           ),()()( tgBKHtgD 
                                           (6.23) 

where 1<0  , .0)0( 0  gg  

 

Theorem 3 [59]: If we find a positive vector 
nR and vectors m

n Rxxx ,...,, 21
, 

then  

                                                    ,0<
1





n

i

ixBG                                                (6.24) 

                                                 .0 jijij xbh    ji                                           (6.25) 

Whereas 
ijh denotes the element ( ij ) of the matrix G and ib are the raw vectors of ,B

then (6.23) is asymptotic stable by remaining the state non negative 00 g . 

 

Proof: See [59].  

 

Example 2 [59]: Consider a fractional continuous time system  

                                          ),()()( tHytGgtgD 
                                             (6.26) 
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with 1<0  , 0)0( 0  gg and 5.0 . If we have the following system matrices: 

                                  













5.03.0

5.01
G ,  

       










2.0

4.0
H , 

we can see in the matrix G , the open-loop system is not positive, because there are 

off-diagonal negative elements in .G  We  can design a case feedback controller 

Kgu  , to stabilized the system and make the closed-loop cases nonnegative. We 

take as [59] 

                                                       5459.15707.1K . 

Then, by multiply H with K , we get the closed-loop for the new matrix  

                                   














1908.00141.0

1184.03717.0
CGHKG . 

Thus, the matrix CG is Metzler, and the eigenvalues of the matrix
 CG are 

 1820.03805.0  . By Theorem 3, the system (6.26) is asymptotic stable [59].  

 

6.4 The epidemic systems  

 

In this section we present a Lemma which estimates the fractional derivatives           

of Volterra-type Lyapunov functions and study the uniform asymptotic             

stability in the Caputo's sense if   (   )   this result is used in Caputo-type 

epidemic systems. The epidemic systems are the Susceptible Infected Recovered 

(SIR), Susceptible Infected Susceptible (SIS), Susceptible Infected Recovered-

Susceptible (SIRS) and Ross Macdonald models for vector-borne diseases; 

consequently, if the basic reproductive number is greater than one, then, we can say 

that the unique endemic equilibrium is uniformly asymptotically stable [60]. 

  

Lemma 5 [60]: Suppose that 
Rty )( be a derivable and continuous function. So, 

for each time instant 0tt   
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 , )1,0(,*   Ry .      (6.27) 

 

Proof [60]: By direct calculation we conclude  
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Here we apply the property 3 in (5.22), then, we conclude  
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Rewriting the inequality (6.29), we conclude 
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Using the Caputo fractional derivative in (5.4), so, we can write that as [60] 
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In the same way we conclude [60] 
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So, we can write the inequality (6.30), namely   
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Now, define the auxiliary variable
)(
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
 , which means that
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y
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  . In this way, the inequality (6.33) becomes [60] 
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If we integrate the last integral by parts, we can get [60] 
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We have the followings [60] 
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We notice that the first part of (6.34) is an indetermination at t . 

Now we analyze the corresponding limit [60] 
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Now, let us use L'Hopital's rule for the limit, differentiating both the numerator and 

the denomonator, we can obtain [60] 
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So, the inequality (6.34) is reduced to [60] 
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or equivalenty  
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It is easy to see that the inequality (6.35) is true, and this concludes the proof.  

Now, we review an example using this Lemma to investigate the stability of some 

fractional-order differential equation models of infectious diseases. 

 

Example 3 [60]: The differential equations for Susceptible-Infected-Susceptible 

model are 

                                          .)(

,

y
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
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

                                        (6.36)                                                                  

                                                           

        

Let x  be the number of susceptible individuals and y be the number of infected 

individuals. Since the parameters and the initial conditions are positive values. If we 

refer to the feasible region of (6.36) by  
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
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

 
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0 ,  

and 

                          
 0,0:),( 22

0  yxRyxR . 

If the system (6.36) has a basic reproductive number given by [60]  

                           




0R . 

Consequently, the system (6.36) has a disease-free (non-negative boundary) 

equilibrium )0,(



, and an endemic equilibrium is ),( ** yx when 0>0R . Therefore 

[60],  
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.                       (6.37) 

So, the integer order system (6.36) is asymptotic stable in the interior of the feasible 

region , when the basic reproductive number 1>0R , then, we have a unique 

endemic equilibrium  ).,( ** yx  Note that if ),( ** yx is asymptotic stable it is also 
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uniformly asymptotic stable. In addition, if we apply fractional order model on the 

system (6.36) by using Caputo derivative, we get [60] 
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                                   (6.38)                                                                                                                                        

With the same equilibrium points found in (6.36), to achieve the uniformly 

asymptotically stable of the endemic equilibrium ),( ** yx , first we suppose Lyapunov 

function    RyxyxL  0>,0>:,  and define as [60] 
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If ),( yxL  is positive definite, continuous function for all 0>,0> yx , since ),( ** yx  

is an endemic equilibrium point of (6.38), then [60] 
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Using Lemma 5, we get  
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Now, we use (6.39) and we conclude  
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coordinates in (6.37) [60].  
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CHAPTER 7 

 

CONCLUSION 

 

In this thesis we have presented the concept of Lyapunov stability theory and some 

of its applications in a detailed overview. 

At the beginning of the thesis we recall some preliminaries and definitions that were 

useful for the context of the study. After that we have defined the Lyapunov 

function, methods and theorems to determine the stability properties of the 

dynamical systems. In the example of pendulum, we have seen that the origin is 

stable, but not asymptotic stable. In this case we have applied the Lasalle's invariance 

principle to prove the asymptotic stability. In the indirect method we have showed 

that the local stability of a system is studied through the Jacobian matrix. If the real 

parts of its eigenvalues are all strictly negative, the equilibrium point, then, is locally 

stable, but if at least one is strictly positive, then, it is unstable. The next topic was 

about a review of the Lyapunov stability for discrete time systems. Also to review 

the Lyapunov fractional stability, we have presented the stability analysis in the 

Caputo and Riemann-Liouville senses. We have reviewed Bihari's and Bellman-

Grönwall's inequality, Mittag-Leffler stability and Lyapunov-Krasovskii theorem 

with time delay.   

Finally, we have presented some applications of Lyapunov stability theory. In the 

first application we have recalled a new Lemma that helps to satisfy the stability of 

fractional derivatives by quadratic Lyapunov functions in the sense of Caputo when

1<<0  . In the second one a class of fractional order gene regulatory  networks  

has reviewed. Some criteria of the Mittag–Leffler  stability and generalized Mittag–

Leffler stability have been shown by utilising the fractional Lyapunov method for 

these networks. In the third application, the stabilization problem for continuous-time 

fractional linear systems with the additional condition of non negativity of the states 

has been discussed. Finally, the Volterra-type Lyapunov functions has been used to 

prove the stability of equilibrium points in integral order epidemic systems, to 

estimate the uniform asymptotic stability of the Caputo-type epidemic systems.  
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I hope that my thesis can be considered as a review about the Lyapunov function and 

some of its applications, will help the young researchers in their studies about the 

fascinating area of stability of the dynamics of complex systems.   
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