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In this thesis work we propose an algorithm for the successive cancellation decoding 

of the polar codes. The proposed algorithm is suitable for parallel processing 

operations and easy to implement in hardware. The proposed algorithm is simulated 

using Matlab programming and performance graphs are obtained for binary erasure 

channels.  The proposed decoding algorithm can be applied to any other discrete 

memoryless channel. 
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ÖZ 

 

 

KUTUP KODLARININ PERFORMANS ANALİZİ 

 

 

 

AL-IBRAHEEMI, Ali 

Yüksek Lisans,  Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr.  Orhan GAZİ 

 

Ocak 2015, 37 sayfa 

 

 

 

Bu tez çalışmasında kutup kodların ardışık olarak çözümlenmesi için bir yöntem 

önerdik. Önerilen yöntem paralel işlemcilerle gerçekleşebilir ve yüksek çözüm hızına 

sahip iletişim sistemlerinin yapılmasında kullanılabilir. Önerilen metodun 

donanımsal olarak gerçekleştirimi oldukça basittir. Önerilen algoritma Matlab 

programlama dili kullanılarak bilgisayar ortamında benzetilmiştir. Benzetim 

sonuçları ikili silinti kanallar için yapılmış ve performans grafikleri çizilmiştir. 

Önerilen algoritma diğer ayrık hafızasız kanallar için de kullanılabilir. 

 

 

 

 

 

 

 

Anahtar Kelimeleri: Kutup Kodları, Kanal Kutuplanması, Sıralı İptal Çözümü. 



 

 

vi 

 

ACKNOWLEDGEMENTS 

 

I would like to take this opportunity to pass my honest appreciation to Assoc. Prof. 

Dr. Orhan Gazi for the continuous backup and the valuable information and 

guidance, which helped me in completing this thesis through, varies stages. 

 

I want also to make use of this this chance to thank my father, the man who spends 

his life just to effort a better life for us no matter what I am going to say about him, it 

will not be enough, never. 

  

Mother, you are the brightness of my life, to be or not to be an important person in 

this world I am certain that you will always love me, support me and you will be 

proud of me. You are the kindest person in this world.   

 

I also wish to thank my friends and all those who supported me with my appreciation 

and respect for their encouragement and assistance. My heartfelt thanks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

TABLE OF CONTENTS 

 

 

 STATEMENT OF NON PLAGIARISM.................................................................. iii 

 ABSTRACT.............................................................................................................. iv 

 ÖZ………………………………………………………………………………….. v 

 ACKNOWLEDGEMENTS………………………………………………………... vi 

 TABLE OF CONTENTS………………………………………………………….. vii 

 LIST OF FIGURES………………………………………………………………... ix 

 LIST OF ABBREVIATIONS……………………………………………………... x 

   

 CHAPTERS:  

   

     1. INTRODUCTION........................................................................................ 1 

       1.1. Channel Coding......................................................................................... 1 

       1.2. Shannon’s Theorem.................................................................................. 3 

         1.2.1. Shannon-Hartley equation.................................................................... 4 

         1.2.2. Unconstrained Shannon Limit for AWGN channel…………………. 6 

       1.3. Discrete Memoryless Channel (DMC)..................................................... 7 

         1.3.1. Binary symmetric channel (BSC)........................................................ 8 

         1.3.2. Capacity of BSC)................................................................................. 9 

         1.3.3. Binary erasure channel (BEC).............................................................. 9 

         1.3.4. Capacity of BEC................................................................................... 10 

       1.4. Polar Codes……………………………….…………………………….. 11 

     2. CONSTRUCTION OF POLAR CODES..................................................... 12 

        2.1. Polar Codes……………………………………………………………... 12 

         2.1.1. GN-coset codes encoder…................................................................... 14 

         2.1.2. Successive cancellation (SC) decoder….............................................. 15 

         2.1.3. Decoding….......................................................................................... 16 

       2.2. Channel Polarization................................................................................. 19 

         2.2.1. Channel combining.............................................................................. 19 



 

 

viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         2.2.2. Channel splitting.................................................................................. 24 

     3. ANALYSIS OF DECODING ALGORTHIM............................................ 25 

       3.1. Distribution............................................................................................... 25 

       3.2. Combination…………………...………………………………………... 26 

       3.3. Numerical Example…………………...………………………………… 28 

       3.4. Simulation Results ……………………………………………………... 34 

     4. CONCLUSION AND FUTURE WORK..................................................... 36 

        4.1. Conclusion………………………..……………………..……………… 36 

        4.2.  Future Work……………………...…………………………………… 37 

 REFERENCES.......................................................................................................... R1 

 APPENDICES........................................................................................................... A1 

   A. CURRICULUM VITAE........…...……….......……………………………….. A1 



 

 

ix 

 

LIST OF FIGURES 

 

FIGURES   

 

       

  

Figure 1 Channel Capacity………...……………………………………….. 7 

Figure 2 Discrete Memoryless Channel……………………………………. 7 

Figure 3 Binary Symmetric Channel ……...……………..………………… 8 

Figure 4 Binary Erasure Channel...………………………………………… 10 

Figure 5 Channel W2 Combining…………….…………………………...... 20 

Figure 6 Channel W4 Combining …………………..…………………........ 21 

Figure 7 A Recursive Construction of WN…………………………………. 23 

Figure 8 Distribution in General ……………………………...…............... 26 

Figure 9 Combination in General ………………………………………...... 27 

Figure 10 Distribution Scheme ……………......…………………………….. 29 

Figure 11 Combination Scheme ……………………………......……………. 30 

Figure 12 Distribution of 1-bit……………………..…................................... 31 

Figure 13 Distribution of 2-bit ………………….........………....................... 32 

Figure 14 Distribution of 3-bit ……….…………….……………..……........ 33 

Figure 15 Performance of Polar Codes……………………………………… 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x 

 

 

 

LIST OF ABBREVIATIONS 

 

 

 

DMC  Discrete Memoryless Channel 

BCJR               Bahl Cocke Jelinek Raviv 

SNR                Signal to Noise Ratio  

PCM                Pulse Coded Modulation 

BEC  Binary Erasure Channel 

BSC  Binary Symmetric Channel 

B-DMC Binary-Discrete Memoryless Channel 

RM  Reed-Muller  

SC  Successive Cancellation  

DE  Decision Element 

AWGN Additive White Gaussian Noise 

BCH                Bose Chaudhuri Hocquenghem 

LDPC              Low Density Parity-Check 

 

 

 

 

 

 

 

 



 

 

1 

 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1. Channel Coding 

The primary research in the coding was found on an algebraic approach. The main 

attention was given to the development of linear binary codes which were huge 

minimum distance i.e., the least gap between two discrete code words and also good 

arithmetical properties. The main objective of these code words is to construct the 

data which is distorted by noise during the transmission. To make the decoding 

procedure simple at the receiver end, a two-step approach was adopted.  

i. The value of  single bits are fixed to either 0 or 1 by making use of 

channel outputs, provided whatever is more probable. It is known as a 

hard decision. 

ii. The second step uses the code constraints. The decoder chooses such a 

cord word which seems most nearby to the word received. Therefore, 

large least distances were needed as it makes possible to correct enormous 

number of errors. This procedure stands true only as long as the error 

count is less than 50% of the minimum distance. 

Hamming is known as first developer of the algebraic codes and that’s why these are 

named after him. He developed Hamming codes are used to rectify single error 

codes. Many other algebraic codes were also developed which are worth importance 

like, BCH codes, Golay codes, Reed-Solomon codes, Reed-Muller codes, etc. 

Proficient algebraic decoding algorithms have been developed for the above 

mentioned codes and these codes are vastly used in CD’s, DVD’s, modems, etc.  

Product codes were introduced by Elias and were the very first assemblies which 

achieved both non-vanishing relative distance and rate in the block length. The hint 

is to make large codes by joining two or more codes of lesser length.  
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One more construction which is based on combining codes is Code Concatenation as 

introduced by Forney. Hereby the data is encoded using the C1 the resulting outcome 

is encoded with C2. Probabilistic decoding also played a vital role in improving the 

steps of decoding performance. Elias introduced Convolutional codes which were 

very well suited for the probabilistic decoding. The structure of codes enabled the 

building of effective decoding algorithms [1].  

 

The Viterbi algorithm is well known to cut off the lock error probability and BCJR 

algorithm reduces the bit error probability and both operate with the complexity 

which is linear in the block length. Fano’s sequential decoding algorithm is used for 

practical purposes. Another course of codes presented in the 60’s were Low-density 

parity-check (LDPC) codes whose parity check matrix of codes has very less non-

zero entries. In fact, these matrices have a continuous figure of non-zero entries per 

row and column [2]. Gallager revealed that such codes have a non-zero comparative 

distance. He also presented a less-complex decoding algorithm but because of 

insufficient calculating and computational resources at that time, the real power of 

the codes and decoding algorithms was not truly realized. In the field of coding the 

development of turbo codes by Berrou, Glavieux and Thitimajshima was a great 

revolution. Using the linear complexity decoding algorithm, Turbo codes achieved 

values close to the size and that too at too reasonable than the cutoff rate. The code is 

built by joining character strings end-to-end i.e., concatenation of two convolutional 

codes but with a haphazard bit interleaver in between. The decoding algorithm 

functions in repetitions. In each reiteration the BCJR algorithm is executed on each 

of the module codes and the consistencies are swapped. Since the complexity of the 

BCJR algorithm is linear in the block length, the consequential decoding algorithm is 

also of linear complexity [3]. 

 

Codes founded on scarce matrices were constructed by MacKay and Neal and 

detected that they achieved very well and low complexity belief propagation 

algorithm. It was lately observed that codes were exceptional case of LDPC codes 

and the decoding algorithm was similar to the probabilistic decoding as have been 

recommended by Gallager. Meanwhile, Sipser and Spielman created the expander 
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codes which offered simple decoding algorithm that enabled rectification of linear 

fraction of combative errors. 

 

Wiberg, Loeliger and Kotter integrated turbo codes and LDPC codes beneath the 

outline of codes on graphs. The triumph of turbo codes followed by the rekindling of 

LDPC codes revitalized the curiosity in LDPC codes and message passing 

algorithms. 

 

1.2.  Shannon’s Theorem 

How much data rate can be carried or supported by the medium in one second is a 

diversified question.  The Shannon’s Theorem acknowledges communication 

systems design as an in vain, that have a huge debate about. Shannon’s theory 

reveals information about the quantity of data any medium can carry per second. 

This theorem determining the capacity of the channel can be stated simply as below 

[4]: 

 

 Each transmission system has its Channel capacity (C) which specifies the 

maximum rate of information it can carry. 

 

 Being transmition rate R, lower than C, the communication in the noise can 

happen with randomly trivial error possibilities by spending smart coding 

methods. 

 

 To reduce the error possibilities, the encoder needs to execute on longer 

blocks of the signal information but this will be requiring relatively longer 

postponements and crucial calculations. 

 

With randomly small errors, as the Shannon-Hartley theorem specifies, and with 

satisfactorily progressive coding techniques, transmission of data close to maximum 

capacity of the medium is possible to attain but as the data rate will increase, the 

chances of probable errors per second will also increases. 
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1.2.1. Shannon–Hartley equation 

 

The equation depicts a relationship between the maximum capacity C of a given 

medium with certain noise presence and bandwidth. According to Shannon- Hartley 

equation, for an AWGN the maximum capacity is specified as: 

 

 C=Blog2(1+SN) (1.1) 

 

B here denoted as a bandwidth and C considered as a highest capacity, capacity value 

counted in bits and bandwidth in hertz. These both attributes for a given channel calls 

as Shannon’s capacity limit. Although, single power here is S and noise power is N 

and both of them major value is watt respectively and together their ratio denotes as 

SNR (signal to noise ratio). A connection by which data can be communicated over 

with minor errors, limited signal, noise and bandwidth level as well, should be 

established. It actually defines the volume of data can be transferred within specified 

time frame, without errors and highest speed over the channel, especially when the 

signal power is in Watts.  This reveals this transmission Gaussian White 

(uncorrelated) Noise (Watts) of additive nature [5]. 

The limit of Shannon’s capacity is specifically designed for the given channel in this 

study. This channel is ideal to broadcast highest capacity that can be travelled 

smoothly with several coding combination and decoding structures. These above 

characteristics of channel capacity define the following communication rules: 

 

 The transmission time and bandwidth requirement for the data symbols to be 

transmitting over the channel. 
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 It defines SNR (signal noise ratio) as a communication function that measure 

signal quality, capacity and channel properties. It actually identifies the 

amount of information to be wrapped in each symbol to be transmitted. SNR 

ensures the reliability of transmitted data against errors and noise at receiver 

end. 

 

 In order to speed up the data transfer rate, the allocated bandwidth and the 

signal-to-noise ratio  have to be traded against each other 

 

 The infinite data transfer rate needs less bandwidth to avoid noise. 

 

Thus we may trade off bandwidth for SNR. However, the increment of the 

bandwidth value will cause an increment in the power noise. Whenever the 

bandwidth B converge to infinity, that will make the channel capacity to be finite. 

The communication channel defined by Shannon is based on following two points: 

 SNR and network speed can possibly have a trade-off. 

 

 SNR and network speed are the major sources on which information capacity 

relies. 

Edward Amstrong in 1936 presented his study in support of these above analysis, he 

stated that frequency modulation (FM) is an appropriate and feasible choice for 

trade-off between SNR and bandwidth. He also added that by utilizing the FM, it is 

possible to increase the SNR in transmission system by assigning the more 

bandwidth [6].  

W.M Miner also introduced a similar concept in 1903. In his study, he used time 

division and sampling methods. In 1973, A.H Reeves has also added in this concept 

by integrating a quantizer and introduced a technique called PCM (Pulse Coded 

Modulation). In his research, he includes some extra repeaters to combine the noise 

over channel in each transmission interval. In his case he required more network 

speed than usual. He utilized a quantizer with a large number of quantization levels, 
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with the goal of minimizing the quantization noise,. Reeves patent relies on two 

important facts: 

 An analog signal can be presented with an random accuracy, if an appropriate 

sampling frequency and quantized sample is applied properly in a pre-

decided levels of amplitude 

 

 The quantized samples can be possibly collected with less random errors, if 

SNR is large enough for it. 

According to Reeve’s patent, an unlimited  volume of data can be sent over a 

network which is noise free needs less bandwidth then it  is implicit. This links the 

information rate with SNR and bandwidth. 

 

1.2.2. Unconstrained Shannon Limit for AWGN channel 

Gaussian channel can be demonstrated by some general characteristics. The 

transmission rate denoted as R is similar to the capacity C: R=C. Let’s observe if you 

send some random binary digits over the channel known as AWGN. The average 

signal power here is S, thus the energy per bit can be derived as Eb=S/C, while bit 

duration here is 1/C per second. The total noise power would be N0BWatts, if the 

other hand noise power spectral density is N0/2Watts/Hertz (power regularized to 1Ω 

resistance). Thus the Shannon-Hartley equation becomes [7]. 

 CB=log2(1+EbN0CB) (1.2) 

Rearranging the equation, 

 EbN0=BC(2CB–1) (1.3) 

Assume C/B=η (in bits/seconds/Hz), the spectral efficiency 

 EbN0=2η–1η (1.4) 

In the Figure below, the red dashed line in the plot refers to the converge of Eb/N0 as 

the bandwidth B near to infinity. The asymptote is at Eb/N0=ln(2)=−1.59dB. The 

previous amount is named Shannon’s Limit (Shannon’s power efficiency limit).  
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Figure 1: Channel Capacity 

 

1.3. Discrete Memoryless Channel (DMC) 

 

DMC is a discrete channel with input variable {x € X} and output variable {y € Y} 

and the transition probability function  p(y/x)  for  {x € X} and {y € Y} ,both of input 

and output are random variable, the output of channel is theoretical to depend only 

on the present input ,because of that its known as Memoryless channel [3]. 

 

  [ | ] ( | )rP Y y X x P y x   (1.5) 

 

Channel

p ( y / x )

x y

 

 

Figure 2: Discrete Memoryless Channel 
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In an ideal channel, the output and the input are equal, but in a non-ideal channel the 

output and the input can be different from each other with a presented probability [8]. 

 

Popular models of DMC are:- 

 

1- Binary erasure channel (BEC). 

2-  Binary symmetric channel (BSC). 

 

1.3.1. Binary symmetric channel (BSC) 

 

BSC is the type of channel used in coding and information theory BSC is a popular 

communication channel model, it is one of the simplest channels to analyze. These 

channels work with binary input and binary output (0 and 1) and the transitional error 

probability (p). The possibility of getting a (1) if a (0) is sent and the possibility of 

getting a (0) if a (1) is sent are the same, that is why it called symmetric channel [9]. 

The conditional distribution of BSC is represented as follow: 

 

 
( 0 / 1) ( 1/ 0)

( 0 / 0) ( 1/ 1) 1

e

e

P y x P y x P

P y x P y x P

     

      
 (1.6) 

1-p

1-p

p

p

X
o
 = 0

X
1
 = 1

y
o
 = 0

y
1
 = 1

 

Figure 3:  Binary Symmetric Channel. 
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1.3.2. Capacity of BSC 
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( ; ) ( ) ( ) H(Y/X)
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( ; ) ( ) (0) H (p)+ (1) H (p)

( ; ) ( ) ( (0)+ (1)) H (p)
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p x

x

b b

b

b

c I x y

I x y H Y H Y X

I x y H Y p x

I x y H Y p p

I x y H Y p p

I x y H Y p p

I x y H Y


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 

 

 
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

( )

p)

max ( ; ) max ( ) H (p)p x bI x y H Y 

 

y Contain only (0, 1), so the maximum entropy of y  

 

log | | log | 2 | 1

max ( ) 1

max ( ; )

1 ( )b

Ry

H y

C I x y

C H p

 





 

 bits 

 

 

 

(1.7) 

 

When the input distribution is uniform, the equality is achieved. The capacity of the 

binary symmetric channel (BSC) with the probability of error P is: 

 1 ( )C H p   bits (1.8) 

 

1.3.3. Binary erasure channel (BEC) 

 

In BEC channel the transmitter transmits (0) or (1) and the receiving station receives 

bit or erasure bit (was not received), it is a popular communication channel model. 

BEC is used frequently in information theory and is also one of the simplest noisy 

channels to analyze. Sometimes the bit gets erased (with erasure probability) and this 

type of channels is not perfect and receivers have no idea what the transmitted bit. 

BEC is a discrete memoryless channel, it deals with two input and three output and 

the erasure probability ( ), let X be the transmitted random variable (0, 1) and Y the 

received variable (0, 1, e), then the conditional distribution will be [9]: 
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Figure 4: Binary Erasure Channel 

 

1.3.4. Capacity of BEC 
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(1.9) 

 

 

Maximum value of H(a) is log2=1 

 1C    bits (1.10) 
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1.4. Polar codes 

 

Polar codes invented by Arikan in [10], Polar codes deals with any symmetric 

binary-input discrete memoryless channel (B-DMC) these type of codes have low 

complexity in the encoding part and in the decoding part. Polar code is the first class 

of coding to achieve the provably capacity for any binary discrete memoryless 

channel (B-DMC). Where N refers to the block length, with the complexity

 logO N N . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

12 

 

 

 

 

CHAPTER 2 

CONSTRUCTION OF POLAR CODES  

2.1. Polar Codes 

 

The Arıkan’s earlier works on improving the computational cutoff rate of channels 

[11] are the source of the idea of polar codes which can be traced back in this paper. 

Before the transmission process starts, a meek linear inputs the channel and late a 

cancellation decoding node at the output by Arikan. By assuming ‘W’ as a real mode 

whereas  1W 2W   assumed as the modes to be decoded bit at first and second 

correspondingly. A larger average (over 1W  and 2W   ) cutoff rate compared to that of 

can be calculated through such a transformation. 

 

Process described above “recursively” can be repeated for the idea of polar codes. A 

linear transform on a larger number of bits at the encoder can be applied through the 

recursive process. 

  

The bits get decoded correspondingly in a defined sequence. Hence, consequently, 

some of the bits see some effective channels which are way better than W and can be 

worse sometimes. The effective channels as identified by bits interestingly incline in 

a direction of either a completely noisy channel or a clean channel with the fraction 

of clean channels approaching the capacity of as the block-length increases. Arıkan 

define it to be as channel polarization. Without any coding this explains a simple 

plan where we fix the inputs to the channels that are bad and transmit reliably over 

the clean channels. The capacity of the channel approaches the rate of such a 

scheme[12]. However, with low-complexity it relics to display recursive conversion 

while encoding and the successive cancellation decoder can be applied for the 

formula to work successfully. He also discovered that the decoding and encoding, 
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both procedures, can be realized by applying a Fast-Fourier-like conversion method. 

Thus, by using a low-complexity procedure, the capacity is finally attained by the 

sequence [13]. 

 

Arıkan’s contribution conversion matrix is agreed by 
2

nG   whereas 

2

1 0

1 1
G

 
  
 

 , 

And “ n ” stands for the n-th Kronecker product. An equivalent process to select 

some of the input bits to convert information and by fixing the remainder bits, is 

achieved by selecting the rows of 
2

nG    which make the author matrix of the code. 

These codes are mentioned as polar codes and are carefully connected to RM codes. 

From the rows of  
2

nG   the producer matrix of RM ciphers is also built. The 

instruction used for opting the rows of their generator matrices lays the vital variance 

between the two codes. The tiniest distance of the code is exploiting the RM codes 

which resemble to the choice. On the other hand for polar codes, the channel which 

is used the choice is dependent on it. The choice enhances the presentation under 

successive cancellation decoding [10] [12]. 

 

When 2 , 1,nN n   1 ,K N  a ( , )N K polar code is a block code and the 

generator matrix of polar codes is a  K N sub matrix of nF   structured in 

correspondence to the steps below. In the beginning, the vector 
,1 ,( ,...., )N N N Nz z z  

must be estimated by the recursion below: 

 

2

, ,

2 , 2

,

2       for 1 j k

               for k+1 j 2k

k j k j

k j

k j k

z z
z

z 

    
  

   

  
 

(2.1) 

 

The value of  2 11,2,2 ,....,2  ,nk   the initial  
1,1 0.5z   . After that, the 

permutation 1( ,...., )N Ni i   must be formed of the set (1,...., )N  so that, for any 

1 j k N    , the allowance 
, ,N ij N ikz z  is correct. The generator matrix of polar 

code G ( , )N K  is introduced as the sub-matrix of nF   depending on the rows with 
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indexes  1,...., ki i  . It is simple to notice that the complexity of the construction of 

the polar codes methodology is ( log ).O N N    

   

2.1.1. GN-coset codes encoder  

 

GN-coset codes encoders are more general and contain polar codes as well. The 

format of the block length is 2 ,  0nN n   and the decoding formula is: 

 

 1 1 ( ) ( )c

N N c

N NA
x u G A u G A   (2.2) 

 

NG  represents the creator array of N order, A represents an random subgroup of 

 1,...., ,N   NG A  represents a sub-matrix of NG  constructed with indexes in A. 

GN-coset codes must be decided via a  , , , cA
K N A u variable vector, K  represents 

the volume of A and the code. if the group A is selected as a K-subgroup of 

 1,....,N ,then a GN-coset code is named the polar code. 

 

Given B-DMC W , there are two channel parameters, for the measurement of 

reliability and rate these parameters can be used. The I(W) here is the maximum rate 

that can make the communication possible over W. it is possible by giving an input 

of W, which is equal to frequency. However, when W used only once to convey a 0 

or 1, then ( )W Z   is a bound input that have maximum-likelihood (ML) decision 

error, the symmetric capacity [12]: 

 

 

1 ( | )
( ) ( | ) log

1 12
( | 0) ( |1)

2 2
y Y x X

W y x
I W W y x

W y W y  
  

(2.3) 

 

 

The reliability factor (Bhattacharyya): 
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 ( ) ( | 0) ( |1)
y Y

Z W W y W y


  (2.4) 

 

From the above equations, it is clear that ( )W Z accept values in [0, 1] form. Hence, 

base-2 logarithm will be ideal to use here, because ( )I W also worked with [0, 1] 

values. The code rates and channel volumes unit is used in bits. Spontaneously, it 

would be as ( )I W  approaches to 1 if ( )Z W  approaches to 0, and ( )I W  approaches 

to 0 if ( )Z W  approaches to 1. 

 

 2.1.2. Successive cancellation (SC) decoder 

 

A GN-coset codes perform encoding of 1

Nu  input to 1 ,Nx  output. That later on, 

transfer to channel NW  and converts into 1

Ny   output. After that 1

Ny  decoding 

estimates the 1

Nu  as the real input. While, In the frozen part errors can be avoided in 

decoding part, however, the actual decoding measures Au  of Au  . The given an 

 , , , cA
N K A u  GN-coset code, here a SC decoding is performed that produces its 

decision 1

Nu  by calculating [14]:  

 

    ( ), , , c

i

e NA
i A

P N K A u Z W


  (2.5) 

 
1

1 1

        ,             if i A

( , ),     if i A

c

i

i N i

i

u
u

h y u 

 



 

 

(2.6) 

 

In the arrangement i from 1 to N, where 1: , ,N i

ih Y X X i A    are the functions 

of decision known as: 

 

( ) 1

1 1

1 ( ) 1

1 1 1 1

( , | 0)
0,        if 1

( , ) ( , |1)

1,         otherwise

i N i

N

N i i N i

i N

W y u

h y u W y u



 




 



 
 

(2.7) 

For all 1 1

1 1, .N N i Niy Y u X    a decoder block error occurred if 
1 1 .N Nu u   
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2.1.3. Decoding  

 

It considers successive cancellation (SC) decoding process for a parameter vector  

 , , , CA
N K A u  GN-coset code. It may be visualized the decoder as depending on 

number (N) of decision elements, each iu  (source element) has one. Whether 

,ci A   the iu  element is recognized. If ,i A i-th decision elements doesn’t 

process further unless received any direction that had done previously 1

1 ,iu   and as 

soon as it receives the instructions then the ratio is calculated as follows [14]: 

 

 

( ) 1
( ) 1 1 1

1 1 ( ) 1

1 1

( , | 0)
( , )

( , |1)

i N i
i N i N

N i N i

N

W y u
L y u

W y u





 

 

(2.8) 

 And generates it’s decision as: 

 

( ) 1

1 10,         if L ( , ) 1

1,          otherwise

i N i

N

i

y u
u

 
 


 
 

(2.9) 

And the recursive formulas give: 

 

( ) /2 2 2 2 2 ( ) 2 2

/2 1 1, 1, /2 /2 1 1,(2 1) 2 2

1 1 ( ) /2 2 2 2 2 ( ) 2 2

/2 1 1, 1, /2 /2 1 1,

( , ) ( , ) 1
( , )

( , ) ( , )

i N i i i N i

N o e N N ei N i

N i N i i i N i

N o e N N e

L y u u L y u
L y u

L y u u L y u

  

 

  



 


 
 (2.10) 

And 

 
2 11 2

(2 ) 2 1 ( ) /2 2 2 2 2 ( ) 2 2

1 1 /2 1 1, 1, /2 /2 1 1,( , ) ( , ) . ( , )
iu

i N i i N i i i N i

N N o e N N eL y u L y u u L y u


   


     (2.11) 

The mathematical operation remains continuously downward to block length 1, 

where LRs has the following form: 

 
(1)

1

( | 0)
( )

( |1)

i
i

i

W y
L y

W y
  (2.12) 

Hence, the values are computed directly. 

 



 

 

17 

 

The next example shows the decoding of a recursive successive cancellation 

decoding of polar codes. Let the input bits assumed to be 

[1 1]u   

 And the generator matrix is 
1 0

1 1
G

 
  
 

                    

So the encoded bits will be 

*x u G   

[0 1]x    

These encoded bits will send over a binary erasure channel with erasure probability 

0.01    

So the received bits will be 

[0 1]y    

Solution: 

1

1 1

        ,             if i A

( , ),     if i A

c

i

i N i

i

u
u

h y u 

 


  

( ) 1

1 1

1 ( ) 1

1 1 1 1

( , | 0)
0,        if 1

( , ) ( , |1)

1,         otherwise

i N i

N

N i i N i

i N

W y u

h y u W y u



 




 

  

1

( ) 1

1 1 1 11

1 1

1

1 1 1 1

1
( , | ) ( | )

2

( | ) ( | )

( | ) ( | )

N N i
i

i N i N N

N i NN

U X

N
N N

N i i

i

N N N N N

N

W y u u W y u

W y u W y x

W y u W y x




















   

For the first channel  i=1 

2

(1) 2 2 2

2 1 1 1 1

(1) 2

2 1 1 1 1 2 2

1
( | ) ( | )

2

1
( | ) [ ( | ) ( | )]

2

N

u

W y u W y x

W y u W y x W y x







  

1 1 2

2 2

x u u

x u

 


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(1) 2

2 1 1 1 1 2 2 1

1
( | ) [ ( | ) ( | )]

2
W y u W y u u W y u 

  
1

2

0

0,1

u

u





  
(1) 2

2 1 1 1 1 2 2 1 1 1 2 2 1

(1) 2

2 1

(1) 2

2 1

(1) 2

2 1

1
( | ) [ ( | ) ( | ) ( | ) ( | )]

2

1
( | 0) [ (0 | 0 0) (1| 0) (0 | 0 1) (1|1)]

2

1
( | 0) [(1 )(0) (0)(1 )]

2

( | 0) 0

W y u W y u u W y u W y u u W y u

W y W W W W

W y

W y

 

   

   

   



  

1

2

1

0,1

u

u





 
(1) 2

2 1 1 1 1 2 2 1 1 1 2 2 1

(1) 2

2 1

(1) 2

2 1

(1) 2

2 1

1
( | ) [ ( | ) ( | ) ( | ) ( | )]

2

1
( |1) [ (0 |1 0) (1| 0) (0 |1 1) (1|1)]

2

1
( |1) [(0)(0) (1 )(1 )]

2

( |1) 0.49

W y u W y u u W y u W y u u W y u

W y W W W W

W y

W y

 

   

   

   



 

(1)

2 1

(1)

2 1

1

 for u 0
1

 for u 1

0
0        1   is the first decoded bit

0.49

W

W

u






  
  

To compute the second decoded bit 

For the second channel  i=2 

(2) 2 2 2

2 1 1 2 2 1 1

(2) 2

2 1 1 2 1 1 2 2 2

1
( , | ) ( | )

2

1
( , | ) ( | ) ( | )

2

W y u u W y u

W y u u W y u u W y u



 
 

1

2

1 known

u 0

u 


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(2) 2

2 1

(2) 2

2 1

1
( ,1| 0) (0 |1 0) (1| 0)

2

( ,1| 0) 0

W y W W

W y

 


  

1

2

1 known

u 1

u 



 
(2) 2

2 1

(2) 2

2 1

1
( ,1|1) (0 |1 1) (1|1)

2

( ,1|1) 0.49

W y W W

W y

 


 

(2)

2 2

(2)

2 2

2

 for u 0
1

 for u 1

0
0        1   is the second decoded bit

0.49

W

W

u






  
 

Finally the decoded bits are the same input bits 

 

2.2. Channel Polarization 

 

A step by step guideline that construct out of N autonomous copies of binary discrete 

memoryless W , another group of N number of channels  ( ) :1i

NW i N   that 

disclose a division outcome in a manner,  where N turns to maximum, the symmetric 

volume terms  ( )( )i

NI W  incline to 0 or 1for all but a disappearing portion of indexes 

i  , called channel polarization. In short, this process is a combination of channel 

combining and splitting [15]. 

 

 

2.2.1. Channel combining 

 

Here, the B-DMC W combines in a recursive mathematical process to generate 

: N N

NW X Y  as vector channel v, N can be computed by, 2 , 0nN n   . The 

recursion mathematical procedure starts at level 0   0when n   with W’s single 

copy that creates set 1 .W W   1n   represents the first level of the recursion 
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combine two autonomous copies of 1W  as mention below in fig. 5 and finds the 

channel 
2 2

2 :W X Y  by the alteration likelihoods: 

      2 1 2 1 2 1 1 2 2 2, | , | |W y y u u W y u u W y u   (2.13) 

 

1
x

2
x

1
u

2
u

W

W

1
y

2
y

2
W

+

 

Figure 5: Channel W2 Combining 

Furthermore, the next phase presents the recursion, as shown in fig 2. Here,  2W  have 

two autonomous copies that together design the channel 
4 4

4 :W X Y  with 

transmission probability: 

 

      4 4 2 4

4 1 1 2 1 1 2 3 4 2 3 2 4| | , | ,W y u W y u u u u W y u u    (2.14) 
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1
x

2
x

1
u

2
u

W

W

1
y

2
y

2
W

3
x

4
x

3
u

4
u

W

W

3
y

4
y

2
W

+

+1
u

2
u

+

3
u

4
u

+

3
W

4
R

 

Figure 6:  Channel W4 Combining 

The fig. 6 presents 4R  that perform permutation process to plot  1 2 3 4, , ,s s s s  input 

into  4

1 1 2 3 4, , , .v s s s s  this plotting 4 4

1 1u x  out of the  4W  to the input 4W  can be 

mentioned as 4 4

1 1 4x u G  with: 

4

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

G

 
 
 
 
 
 

 



 

 

22 

 

 

Thus, the relation    4 4 4 4 4

4 1 1 1 1 4| |W y u W y u G  between the transition probabilities 

of  4W  and those of  4.W  

 

The fig. 7 shows the common form of recursion. where /2NW  have two autonomous 

copies  that together generate the channel .NW  1

Nu  the input vector to NW  is first 

altered into 1

Ns  then 2 1 2 1 2 i i is u u    and 2 2 i is u  for 1 / 2.i N   NR  factor in 

the figure is a variation that represent  the reverse mix process, and 1

Ns  perform on 

driven input from it to generate  1 1 3 1 2 4, ,..., , , ,..., ,N

N Nv s s s s s s  that  converts that 

driven input into the following two channels copies of /2NW  as the figure illustrate . 

 

With above calculations, it is founded  by plotting 1 1

N Nu v  as a linear over GF(2), 

It trails the entire plotted 1 1 ,N Nu x  by induction. the NW  from manufactured 

channel’s input to the underlined input of the group channels ,NW  is furthermore  

linear and may be signified by a NG  matrix so 1 1 .N N

Nx u G  NG  called the 

generator matrix of volume .N  the transmission probability of the channels NW  and 

NW  are relevant with: 

    1 1 1 1| |N N N N N

N NW y u W y u G  (2.15) 
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Figure 7: A Recursive Construction of WN 
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2.2.2. Channel splitting 

 

As NW
 
vector channel is derived from ,NW  which is shown above, so now the next 

step in channel polarization is to break the  NW  again in a group of number of N  

synchronized input (binary) channels 
( ) 1: ,1 ,i N i

NW X Y X i N     that are 

distinct via the transition probability: 

    
1

1

( ) 1

1 1 1 11

1
, | |

2N N
i

i N i N N

N i NN

u x

W y u u W y u










  (2.16) 

Here  1

1 1,N iy u   symbolizes the output of 
( )i

NW  and iu  represents the input of 
( )i

NW . 

To get an distinctive and meaningful channels  ( ) ,i

NW  that measured as a genie-

aided SC decoder (successive cancellation decoder) that will the ith decision 

component computes iu  and after detecting 1

Ny  and the data inputs of the previous 

channel such as 
1

1

iu 
 (it delivers properly  by the genie irrespective at earlier phases 

of any decision errors). If 1

Nu  is a-priori constant on ,NX  thus 
( )i

NW  is the actual 

channel seen by the ith decision component in this situation [11] [10]. 
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CHAPTER 3 

 

ANALYSIS OF DECODIND ALGORTHIM  

 

 

The chapter 3 comprises of the methodology of the study of decoding the polar 

codes. This decoding method is in such a way that the perceived arrangement is 

distributed to the nodules of the arrangement and then it sums up these bits with the 

help of formulae used for decoding the Polar codes. Thus, in short, the decoding 

procedure depends on following two steps: 

 

 Distribution. 

 Combination. 

 

These steps of decoding process are described shortly as below: 

 

3.1. Distribution 

 

Distribution is the first step of decoding procedure. The received sequence bits to 

such an arrangement is shown as below in figure. The usual sequence is fixed at the 

most top of the arrangement. The classification is divided as odd and even bits 

whereby the left line bits subsequent to odd and even bits and on the other hand, the 

right side aligned bits are called the even bits and it continues till the last layer of 

sequence. Now, the last bit must be secured to the L1-end if the bits sequence 

numeral is odd, and for even number the same steps as explained above will be 

repeated.  
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0-Node
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L
1

1-Node

L
1
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N
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EvenEven OddEvenEven Odd

 

Figure 8:  Distribution in General 

3.2. Combination 

 

Combining these distributed bits is the second step of the decoding process. Here the 

distributed bits are combined by inserting them to polar-codes decoding formulae. 

This step is basically reversing the process of distribution as the combination is 

started from the bottommost layer of the arrangement unlikely of that in distribution 

process. The combination is constructed as bellow inserting the bits arrangement to 

the formulae:  

 
(1)

1

( | 0)
( )

( |1)

i
i

i

W y
L y

W y
  (3.1) 
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The combination of the next layer is constructed by combining two values from the 

lower layer as shown below in fig. (9)  by the formulas below: 

 

 
(1 *2 ) 1

1
(1 2 )

st nd
F

st nd





 (3.2) 

    
1 2

2 1 * 2
u

F st nd


  (3.3) 

In this case, L-node should check, if there is a bit in L-node, so F1formula should 

use, and if there is no bit in L-node, so F2 formula should use. 

 

L20-Value

L21-Value

L22-Value

L
N
-Value

First Term Second Term

Second TermFirst Term

Second TermFirst Term

 

Figure 9: Combination in General  
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3.3. Numerical Example  

 

The following example is placed to show the way of decoding the polar codes by 

distributing the conventional encoded classification to manner to sort this process as 

complete.  It also elaborates how to fusion these bits via equations to receive the 

actual message by decoding those polar ciphers. 

 

1
st
 Step: Assume input data bits: 

Data=[1 0 0 1] 

And the generator matrix of polar codes for 4 channels is : 

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

G

 
 
 
 
 
 

 

The input data bits will multiply by the generator matrix to get the encoded bit 

sequence. 

*X data G   

1 0 0 0

1 1 0 0
[1 0 0 1]

1 0 1 0

1 1 1 1

X

 
 
 
 
 
 

 

 0 1 1 1X   The encoded sequence 

The sequence will send over discrete memoryless channel (in this example binary 

erasure channel will use), the erasure probability of binary erasure channel assume to 

be low value, and then the received sequence will be: 

 0 1 1 1Y   

First step of decoding process is distribution. The received sequence will distribute to 

the nodes of the scheme  

 

 

 

0 1 1 1

0 1

1 1

Y

odd bits

even bits



 

 
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Figure 10:  Distribution Scheme 

Second step of decoding part is combination. For the first layer L4, The value of L 

will get by using equation (3.1). By putting the received sequence bit to the formula 

above, the value of L4-value will be: 

 

 4 1000 0 0 0L value    

Note: large Number (1000) will put instead of infinity to make the solution easier. 

After that L2-node should check, there is no bit in L2-node, so the formula 1 of 

decoding will use to get L2-value: 

(1 *2 ) 1
1

(1 2 )

st nd
F

st nd





 

Where 1
st
 (first term) and 2

nd
 (second term) represented the values of the previous 

layer L4-value respectively.  

 2 1.0000 003 1.0000 009L value e e      

And the same steps for the last layer L1-value 
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Figure 11:  Combination Scheme 

The first decoded bit will solve by take the value of the last layer L1-value and put it 

to the formula of decision: 

 

 1 0.0010L value    

( ) 1

1 10,         if L ( , ) 1

1,          otherwise

i N i

N

i

y u
u

 
 


  

So the 1
st
 decoded bit is [1] 

To get the second decoded bit, the first decoded bit should distribute  
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Figure 12: Distribution of 1-bit 

L4-value and L2-value will be the same as in the previous steps 

 4 1000 0 0 0L value    

 2 1.0000 003 1.0000 009L value e e      

In L1-node there is a bit, so formula (2) should use in this case to get new L1-value, 

formula (2) is: 

   
1 2

2 1 * 2
u

F st nd


  

Where u=1, is the node-bit (L1-node) 

   
1 2(1)

2 1.0000 003 * 1.0000 009F e e


     

2 1.0000 012F e    

L1-value= 2F   

To get 2
nd

 decoded bit ,new  L1-value should put to the decision formula : 
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( ) 1

1 10,         if L ( , ) 1

1,          otherwise

i N i

N

i

y u
u

 
 


 
 

(3.4) 

So the 2
nd

 decoded bit is [0] 

To get the 3
rd

  decoded bit, the 1
st
  and the 2

nd
  decoded bit is distributed. 

L
1
-Node

L
2
-Node

L
4
-Node

10

01

 

Figure 13: Distribution of 2-bit 

L4-value will be the same as in the previous steps 

 4 1000 0 0 0L value    

In L2-node there is a bit, so formula (2) should use in this case to get new L2-value, 

formula (2) is: 

   
1 2

2 1 * 2
u

F st nd


   

 2 0 0L value    

By using formula (1) to get new L1-value: 

(1 *2 ) 1
1

(1 2 )

st nd
F

st nd





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 1 1.0000 009L value e     

To get 3
rd

 decoded bit , new  L1-value should put to the decision formula : 

( ) 1

1 10,         if L ( , ) 1

1,          otherwise

i N i

N

i

y u
u

 
 


  

So the 3
rd

 decoded bit is [0] 

To get the 4
th

   decoded bit, the 1
st
 , 2

nd
 and 3

rd
  decoded bit should distribute 
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Figure 14:  Distribution of 3-bit 

L4-value will be the same as in the previous steps 

 4 1000 0 0 0L value    

In L2-node there is a bit, so formula (2) should use in this case to get new L2-value, 

formula (2) is: 

 

   
1 2

2 1 * 2
u

F st nd


   
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 2 0 0L value    

There is a bit in L1-node bit, so by using formula (2) to get new L1-value: 

 

(1 *2 ) 1
1

(1 2 )

st nd
F

st nd





  

 1 0L value    

To get 4
th

  decoded bit ,new  L1-value should put to the decision formula 

( ) 1

1 10,         if L ( , ) 1

1,          otherwise

i N i

N

i

y u
u

 
 


  

So the 3
rd

 decoded bit is [1] 

Finally the decoded sequence is [1 0 0 1], same as the data. 

 

3.3. The Simulation Results  

 

In this part, the simulation results shows the performance of polar codes under 

successive cancellation decoder at block length (2
10

 and 2
11

) over a BEC (binary 

erasure channel) and the erasure probability (0.5) as shown in figure (15) below. As 

seen below that polar codes performance become better when the block length 

increases from  2
10

 to 2
11

 . 
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Figure 15:  Performance of Polar Codes  
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

 

Polar codes invented by Arıkan are capacity achieving codes for binary memoryless 

channels constructed using the idea of channel polarization. And these type of codes 

show good performance for long frame lengths which increases the decoding latency 

of communication systems. This drawback needs to be combated especially for delay 

sensitive systems, such as real time communication systems.  

 

Polar codes can be decoded using the successive cancellation algorithm. However, 

the computational amount of this algorithm is significant and smart decoding 

approaches are needed for the efficient implementation of the successive decoding 

algorithm for practical systems.  

 

In this thesis work an algorithm is proposed for the successive cancellation decoding 

of polar codes. The proposed algorithm is friendly for practical implementations and 

suitable for parallel processing applications. In addition the proposed algorithm can 

be efficiently implemented in FPGA devices. The proposed algorithm is simulated 

for binary erasure channels using Matlab programming environment and 

performance graphs are obtained. 
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4.2 Future work 

 

The proposed successive cancellation decoding technique can be implemented in 

hardware, such as on FPGA or DSP chips. And some early termination algorithms 

considering the node probabilities of successive layers can be studies as future work. 

In addition, the polarization concept can be extended to other class of channels such 

as wireless MIMO channels.  
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