

CLOUD STORAGE SECURITY

AND

CRUD SUPPORTED DATA POSSESSION

WITH

INTEGRITY AUDITOR

MAHMUT OFLAZ

APRIL 2016

CLOUD STORAGE SECURITY AND CRUD SUPPORTED DATA

POSSESSION WITH INTEGRITY AUDITOR

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

MAHMUT OFLAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

APRIL 2016

iii

iv

ABSTRACT

CLOUD STORAGE SECURITY AND CRUD SUPPORTED DATA

POSSESSION WITH INTEGRITY AUDITOR

OFLAZ, Mahmut

M.Sc., Department of Computer Engineering

Supervisor: Yrd. Doç. Dr. A. Nurdan SARAN

April 2016, 54 pages

Cloud and cloud security are becoming more important while cloud technology is

changing our lives in many ways. Because of data breaches, users and companies

worry about migrating to cloud systems. When a client store data at untrusted server,

verifying that the server possesses the original data is a challenging problem.

Substantial portion of data possession offering focus on performance rather than

security of the system. In this thesis, privacy focused data possession model has been

offered; which is balanced form of increased privacy and performance. A trusted third

party, an auditor, has been added to the system, which verifies the integrity of the data

while preserving the privacy of the data on the cloud. Thereby, this auditor takes the

burden from cloud user by delegating the user. In long term, integrity auditors can

audit cloud systems by standardizing equivalent services which offered by clouds. In

most cases, cloud users want to update/modify the stored data. The proposed data

possession implementation supports modifying data, which has been stored on cloud.

To measure the effects of the system parameters and general performance of the

system, a test bed has been created which includes cloud user, cloud and integrity

auditor. Experiments have been conducted to compare the proposal approach with the

previous works to evaluate the cost of putting third party integrity auditor in the

system, tests on encrypted data with different block and file sizes have been carried

out.

Keywords: cloud security, data possession, secure storage, integrity auditor

v

ÖZ

BULUT BİLİŞİMDE DEPOLAMA GÜVENLİĞİ VE BÜTÜNLÜK

DENETLEYİCİLİ GÜNCELLEME DESTEKLİ VERİ SAHİPLİĞİ

OFLAZ, Mahmut

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. A. Nurdan SARAN

Nisan 2016, 54 sayfa

Bulut bilişimin hayatımızdaki yeri arttıkça, bulut bilişim ve güvenliği önem

kazanmaktadır. Veri sızıntıları nedeniyle, kullanıcılar ve şirketler sağlayıcılara

güvenmemekte; veri güvenliği kaygılarından dolayı bulut bilişime geçmekten

korkmaktadırlar. Bir kullanıcı, güvenilmeyen bir ortamda veri depoladığında, bu

ortamda depolanmış olanan verinin orjinal halini idame ettiriyor olmasının

ispatlanabilmesi zorlu bir problemdir. Bulut bilişimde veri güvenliği ile ilgili yapılan

çalışmaların çoğu güvenlik yerine performans odaklı olarak gerçekleştirilmiştir. Bu

tez çalışmasında, güvenlik ve performans arasında denge kuran güvenli odaklı bir veri

sahipliği modeli sunulmaktadır. Sisteme eklenen üçüncü parti güvenlik denetleyicisi,

hem bulut sağlayıcılarını hem de bulut üzerindeki verilerin güvenliğini

denetlemektedir. Bütünlük denetleyicileri, kullanıcıların vekaletlerini almak yoluyla;

kullanıcıları, sürekli olarak verilerinin bütünlüğünü kontrol etmekten de

kurtarmaktadır. Uzun vadede, bulut sağlayıcılarının, bütünlük denetleyicilerin

kullanacağı ortak ve benzer servisleri sağlaması standart hale getirilerek; bulut

sağlayacıları da daha denetlenebilir hale getirilebileceği öngörülmektedir. Diğer bir

taraftan, bu veri sahipliği modeli, buluta yüklenmiş olan bir verinin daha sonradan

içeriğinin güncellenmesine de imkan vermektedir. Sistem parametrelerinin sistem

performansı üzerindeki etkilerini ve sistemin genel performansını ölçmek için

kullanıcıyı, bulutu ve bütünlük denetleyicisini içeren bir test uygulaması

geliştirilmiştir. Bu tez çalışmasında önerilen modele ek olarak, daha önceki

çalışmaların da performans testleri gerçekleştirilmiş ve bu tezde önerilen modelin

performansıyla kıyaslanmıştır. Test metrikleri, bütünlük denetleyicisinin varlığını,

paketlerin şifrelenmesini, paket ve blok boyutlarını içermekte; bu metriklerin sistem

üzerindeki etkilerini incelemektedir.

Anahtar Kelimeler: bulut güvenliği, ispatlanabilir veri sahipliği, güvenli depolama,

bütünlük denetleyicisi

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Yrd. Doç. Dr. A. Nurdan SARAN for

her supervision, special guidance, suggestions, and encouragement through the

development of this thesis.

It is a pleasure to express my special thanks to my fiancée for sharing my burden, to

my family for their valuable support and to dear friend Murat for proof checking of

the entire thesis.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE .. iii

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF ALGORITHMS .. x

LIST OF TABLES .. xi

LIST OF EQUATIONS ... xii

LIST OF ABBREVATIONS .. xiii

CHAPTERS

1.INTRODUCTION ... 1

1.1 Cloud Computing and Security Aspects ... 1

1.2 Literature Survey .. 13

1.3 Motivation ... 17

1.4 Outline .. 18

2.DESIGN of SCHEMES ... 19

2.1 Definition of Integrity Auditor and Purpose 19

2.2 Design of IIA .. 21

2.3 Design of IAaaS .. 21

2.4 Design of CIAaaS ... 23

3.IMPLEMENTATION of SCHEMES .. 25

3.1 Background ... 25

3.2 Implementation of IIA .. 28

3.3 Implementation of IAaaS .. 36

3.4 Implementation of CIAaaS ... 36

4.Test Bed ... 37

4.1 Test Bed Environment .. 37

viii

4.2 Test Bed Restrictions .. 38

4.3 Application Details ... 38

4.4 Experimental Results .. 42

5.Conclusion and Future Work ... 53

REFERENCES .. R1

APPENDIX A: COMPARISON OF PREVIOUS SYSTEMS A1

APPENDIX B: DETAILED FLOW OF SYSTEM B1

APPENDIX C: DETAILED TEST RESULTS ... C1

APPENDIX D: PSEUDOCODES .. D1

ix

LIST OF FIGURES

Figure 1: General Cloud Architecture [3] ... 2

Figure 2: SaaS, PaaS and IaaS [3]... 3

Figure 3: Separation of Responsibilities on Cloud Models [5] 4

Figure 4: Types of Cloud Computing aspect of deployment model [7] 5

Figure 5: Verification Agencies .. 17

Figure 6: IIA.. 21

Figure 7: IAaaS ... 22

Figure 8: CIAaaS .. 23

Figure 9: Merkle Hash Tree .. 25

Figure 10: Simple Skip List .. 26

Figure 11: Flows on System ... 30

Figure 12: Generating QID by hashing ID ... 31

Figure 13: Generating Ti ... 31

Figure 14: Generating Pi ... 32

Figure 15:Obtaining P ... 32

Figure 16: IIA Components on Test Bed .. 39

Figure 17: Components of IA ... 40

Figure 18: Components of Cloud .. 41

Figure 19:PrepareFile Step: Encryption Enabled, with IA, SL................................. 43

Figure 20: PrepareFile Step: Encryption Enabled, with IA, MHT 44

Figure 21: PrepareFile Step: Encryption Disabled, with IA, SL 45

Figure 22: PrepareFile Step: Encryption Disabled, with IA, MHT 46

Figure 23: Integrity Challenge Response Step, MHT ... 47

Figure 24: Integrity Challenge Response Step, SL ... 48

Figure 25: CheckIntegrity Step, MHT .. 49

Figure 26: CheckIntegrity Step, SL .. 50

Figure 27: PrepareFile Step (2048Mb File on IA Enabled System) 51

Figure 28: Detailed Flow of System .. B1

x

LIST OF ALGORITHMS

Algorithm 1: Pseudocode of Creation of V ... D1

Algorithm 2: Pseudocode of PrepareFile and PrepareBlock D3

Algorithm 3: Pseudocode of CheckIntegrity ... D3

xi

LIST OF TABLES

Table 1: HDD Benchmark Results .. 37

Table 2: Comparison of Previous Schemes ... A1

Table 3: Test Results for PrepareFile Phase... C1

Table 4: Test Results for Integrity Challenge Response .. C2

Table 5: Test Results for CheckIntegrity Step ... C3

xii

LIST OF EQUATIONS

Equation 1: Challenge with input file or block... 13

Equation 2:Equations to set right and down nodes .. 28

Equation 3:Equations to determine high and low values of right and down nodes.. 28

Equation 4:Generic Hash Function .. 28

Equation 5:Hash calculation of node .. 28

Equation 6: Definition of File ... 29

Equation 7: Multi-party Diffie-Helman Key Exchange ... 29

xiii

LIST OF ABBREVATIONS

CRUD Create, Read, Update, Delete

P2P Peer to Peer

NFS Network File Systems

CSP Cloud Server Provider

CS Cloud Server

IDE Integrated Development Environment

PDP Provable Data Possession

CHAL Challenge produced by CU

CU Cloud User

DPDP Dynamic Provable Data Possession

CPDP Cooperative Provable Data Possession

HomT Homomorphic Tags

MHT Merkle Hash Tree

SL Skip List

IA Integrity Auditor

VA Validation Agencies

CHAL Challenge

IIA Independent Integrity Auditor

IAaaS Integrity Auditor as a Service

CIAaaS Compound Integrity Auditor as a Service

sk Secret/Private Key

pk Public Key

IAM Integrity Auditor Manager

IAT Integrated Auditor Thread

IADB Integrity Auditor Database

IAFE Integrity Auditor Front End

MFT Master File Table

Bi Block of file

Ti Metadata of ith block

Hi Hash of ith block

CHAPTERS

1

CHAPTER 1. INTRODUCTION

1.1 Cloud Computing and Security Aspects

Internet is getting more popular after people started to meet with Web 2.0. Web

2.0 is a technology that provides user to publish their content over internet without

using HTML directly [1]. Nowadays, even 3 years old children are able to use tablets

and computers. People got used to 3g and smartphones, it also centralizes internet in

our lives. On one hand, increased usage of smart phones provides us mobility to access

information. On the other hand, even that phones are getting stronger, smart phones

have limited storage. In addition, since people may access internet by their mobile

phones, they do not want to carry every needed information on the phone. Therefore,

another technology "cloud computing" welcomes to our life. Cloud computing is a

model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be provisioned rapidly and released with minimal management effort

or service provider interaction [2].

Cloud technology is welcomed by popularity. While social media occupies

more block of life, people started to use cloud technology vaguely. Almost everyone

has Facebook or Twitter account; iPhone users use iCloud to store images, people

upload documents to GoogleDocs, share photos over Instagram, using Dropbox to

access or transfer files between their devices and sharing videos over YouTube. People

use that applications or websites with their personal computers, tablets and

smartphones. Once the information is uploaded to an account, it is accessible over any

device connected to internet just after being logged into that account. Even, friends,

co-workers or family members can access those resources.

Companies work on projects to migrate cloud; companies looking for advisors

to use cloud and hiring developers to publish cloud applications. By way of open

2

source cloud projects, famous companies like Amazon, Google and Microsoft makes

investments for cloud technology to acquire corners of cloud technology.

Figure 1 [3] shows the general architecture of cloud. Cloud architecture is

divided into two parts. Front end and Back End. Front End part includes whole

infrastructure of clients. Actually, that part includes any device or medium that serves

user to connect cloud over Internet. At the Back End side, there are many components,

which shape body of the cloud. Management and security layers must cover rest of the

layers since security is important aspect over all of the other layers. Security layers

include tools and mechanisms to ensure security of cloud. Management layers are

needed over rest of layers for high configurability and manageability. By using

management tools, many things can be managed like users and services. Infrastructure

layer is consisting hardware components, operating systems and middleware software

that run behind cloud system. Storage is the layer, which provides the ability to store

data over cloud. It can include disks and databases. Over infrastructure and storage

layers, service and cloud runtime layers runs. Cloud runtime includes bones of the

cloud. All the cloud business rules and systematic implemented under that layer.

Service layer includes cloud services while application layers consists other

applications that runs on the cloud.

Figure 1: General Cloud Architecture [3]

3

Depending on requirements and funds, many cloud models have been

introduced to satisfy needs of customers. These models are related to two perspectives:

Service model and deployment model.

As can be seen in the Figure 2, regarding to service model, clouds can be

categorized into three classes:

 Infrastructure as a service (IaaS)

 Platform as a service (PaaS)

 Software as a service (SaaS).

Figure 2: SaaS, PaaS and IaaS [3]

In the IaaS model, cloud consumers directly use infrastructure components

(storage, firewalls, networks, and other computing resources) provided by the cloud

provider. Virtualization is widely used in order to provide physical resources in an ad-

hoc manner to meet current resource demand of cloud consumers. This cloud model,

is generally being preferred by the companies in order to manage whole system.

Generally, a virtual machine is being isolated from underlying resources which is

offered to customer; and customer can use whole operation system to satisfy needs.

PaaS can be classified as the cloud model that offers application development.

Its features include programming languages, integrated development environments

(IDE), frameworks and programming models and various persistence layers [4].

Generally, IDE is isolated from operating system and other underlying resources

4

offered to cloud user. That IDE supports full of software development life cycle; also,

application server, configuration tools and so forth.

Figure 3: Separation of Responsibilities on Cloud Models [5]

Software as a Service (SaaS) is a platform that is various services deployed on

hosting environment and offered to clients from various clients [6]. Only the endpoint

for the service is offered to user and user accesses to end point using various clients

(like web interface, smartphones etc.). Rest of the cloud system is fully isolated from

cloud user and cloud user is only able to use that endpoint.

SaaS includes applications like GoogleApps, Facebook and Saleforce.com.

PaaS includes platforms like Microsoft Azure, Google AppEngine, and Amazon

Simple DB/S3. IaaS includes infrastructure and hardware like Amazon EC2, GoGrid,

FlexiScale and data centers.

Responsibilities of both CU and CSP change related to cloud models, as seen

on Figure 3. Whole of responsibilities are burden on user if subject is On-Premises. In

IaaS, part of that burden switched on to the CSP. User manages applications, data,

runtime, middleware even operating system while rest of responsibilities like

virtualization, servers, storage and networking belongs to CSP. In PaaS, users are only

responsible of applications and data while rest is burden of the CSP. In SaaS, user is

5

responsible of nothing. Namely, user only consumes services. Nevertheless, rest of

responsibilities is being managed by CSP.

Figure 4: Types of Cloud Computing aspect of deployment model [7]

Aspect of deployment model, cloud systems are categorized into three classes:

 Private cloud

 Public cloud

 Hybrid cloud.

As can be seen on Figure 4, these three classes have differences. Private clouds

are generally being used for single organization; but somehow can be served over

internal network or external network. Community clouds are intended to be shared

among several organizations. Even community clouds are served on external

networks, one of that organizations can serve cloud in its internal network. Public

clouds are served for open use for the public by a particular organization. Generally,

public cloud is hosted externally by that particular organization. Hybrid clouds are

mixed flavor of both private, public and community clouds. That flavor is achieved by

composing private clouds, public clouds and community clouds; however, all of

composed clouds are unique entities itself but bound together.

6

Even cloud systems are having widely usage area on our life; there are many

inquiries about security of cloud systems. Even some standards have been defined

related to cloud security, this subject is still open to question. The nature of cloud

systems already makes the systems vulnerable to most of attacks. At this point, while

evaluating the scale of security of cloud system many points must be taken into

account. If the weakness of informatics laws reckons too; lots of users and companies

that are eager to use or migrate into cloud, starts to be chafed. Lastly, also more

important than the others: Since black-market trends (popular viruses and malwares)

are related to popular systems, lots of black hat hackers are wringing their hands to

breach the opaque but not that strong walls of cloud systems.

Before mentioning about storage security, importance of information must be

understood. Information security is important for any platform. It must be planned and

applied for various cases and platforms. Information is valuable thing and

transformation between data to information needs processes. Information is money.

Both data and information must be stored securely and must be protected being beware

of unauthorized hands. If a company's secret product details have been revealed to

rival company, that company loses both prestige and lots of money. If a bank's credit

card archive has been stolen, that means bankruptcy of that bank. If a government's

intelligence team have been revealed in another country while on operation, it becomes

catastrophic situation. Information is valuable thing. That is why personal details of

people being sold to various customers in return for decent prices. That is why

information has secrecy levels.

There are few key concepts of information security. According to IAS-octave

that has been proposed (also evaluated by lots of authorities) as extension of CIA-triad

[8]. These concepts include

 Confidentiality

 Integrity

 Availability

 Accountability

 Auditability

 Authenticity

7

 Non-repudiation

 Privacy

Most important three concepts of that list will be discussed briefly, one by one.

Confidentiality is a concept that any information is being available to only

authorized users or parties. To provide confidentiality, authentication and

authorization are required steps and these steps will be mentioned. Unauthorized

access to any information must be prevented to provide confidentiality. Any party

which can able to access data must be authenticated and authorized for that data.

Confidentiality is like read permissions of files. Only authorized parties or users must

able to access that information. To provide confidentiality, data encryption methods

can be used.

Integrity is a concept that any information is being accurate and complete over

its life-cycle. Likewise, integrity and confidentiality must not be dizzied. Same user or

party can have different read and write permissions on same file. On the other hand,

same information can have different permissions for different users or parties.

Availability is a concept that any information is being available when its

needed to authorized parties. Any unavailability must be totally avoided. To provide

this availability; storing systems must work as intended; communication channels

must be working and secure; and security controls that protects information on any

level must be working.

Cloud security is another important subset of information security. Since data

has been stored on various servers separately; extra cases for security of the data must

be taken into account. One of those servers can be malfunctioned, disabled by attacks

or dirty hands can obtain whole information on server. This makes cloud data security

more noteworthy. At this point, all IAS-octave concepts must be taken into

consideration. Confidentiality case is very important; since, many users are using

cloud system and every user’s data hold on cloud separated over servers. This situation

makes access control privileges crucial, since any user does not want any other user to

access his/her information unless he/she purposely intended to share that information.

Integrity case is another important subject. Availability is another important point.

8

These three cases are most important point of view for cloud security. Moreover,

fragility of cloud security makes these cases more important. That is why replication

or backup technologies are having more important role on cloud to keep data integral

and available; also authentication mechanism to keep data confident.

While storing data on untrusted servers, it is very important to verify

authenticity of data. Since servers are untrusted, it is mandatory to verify the

authenticity of data. That problem is being conspicuous while discussing P2P storage

systems [9], NFSs [10], object stores services work on web and databases [11].

Integrity problem becomes more obvious while size of data is large. Even for small

size of data, it is soluble; while size of data increases, cost of accessing data and

transmit cost over network makes that problem serious [12]. To handle this problem,

a waypoint must be implemented in life cycle of integrity check of big files. In this

respect, a solution without transmitting the big data and without accessing entire data

must be applied. Thus, a solution must be applied which is not dependent to size of

data.

On the other hand, both transmitting big data over network and storing as one

block can be thorny because of interruptions and corruptions. Besides, due to limited

storage size, it would be beneficial to split data. Also storing data blocks at various

servers is nice practice. However, splitting data into blocks and transmitting those

blocks is desirable on account of bandwidth limitations too [13].

In a cloud system, distributed file system is used for allowing many clients to

access on same file by statutory operations like accessing, creating, updating and

deleting files. Each file uploaded to cloud can be split into files and can be stored on

different cloud servers. Since those clients must able to operate on the files, which

uploaded to cloud, there is massive access cost in a cloud for accessing to disk [14].

Even, this situation can be handled by lots of methods, the architecture of that system

is critical; since, architecture heavily influences performance and throughput of the

system [15]. Besides, any method also must ensure both security of system and

security of files.

9

In 2010, CSA (Cloud Security Alliance) listed “Data Loss or Leakage” as 5th

important threat [16] from 2010 to 2013. Further, “Data Loss or Leakage” is being

split into two new items in Notorious Nine [17]. Even CSA did not release newer

version of this document, these threats are still must be considered; since these threats

are still impends cloud systems. According to that document, top two of nine threats -

which mentioned above- are related to data security. Both of threats are relevant to all

models of cloud. “Data Breaches” includes unauthorized hands to access confidential

data in the cloud. This situation causes to information disclosure. Second serious

threats are “Data Loss”. Even this threat includes any type of data loss (like destroying

data, accidental deletions, disasters, forgotten encryption keys), destruction of the data

by unauthorized hands is security aspect of the threat. “Data Loss” is about data’s

availability and non-repudiation.

Even cloud providers are claiming to provide key concepts; many people still

hold suspicious overlook at storing important data over cloud. This mistrust forces

people to prefer external hard drives to cloud storages. By this way, people feels more

comfortable and secure. Because, data stored inside external hard drive is physically

secure; since owner can carry or hide that hard drive. In addition, if hard drive is not

plugged into any computer, it cannot be read or modified by anyone. On the other

hand, owner can easily plug that hard drive into computer and access those files. By

this way, confidentiality, integrity and availability is provided by the owner of data.

Nevertheless, this choice has lack of portability and mobility. To provide more users

to courage about using cloud, users must feel more comfortable than using their

external hard drive.

On a cloud or distributed storage system, data are split into blocks and scattered

over whole storage servers or cloud servers. It makes imperious to check integrity of

every block of data to ensure whole data is integral. This operation can be done by

both CSP (Cloud Server Provider) and CSs (Cloud Server) by sending feedback to

CSP about integrity of possessed data by each CS. Implementing second way means

being wiser. Because system does not spend resources for transmission, which to

transmit data between all CSs and CSP.

10

Integrity is a property that is independent of size of the data. The method used

to check integrity of a block is same with the method used to check integrity of a file.

Hash algorithms verify integrity; and time needed to calculate hash of a data is only

relevant to size of data. However, even data split into blocks, every block must be

integral itself to prove integrity of whole file. In other words, if all blocks of data are

integral itself, it means file is integral too. Hash algorithms are smart executions that

provide output by accessing block of a file or entire file. First hashing must be done

while file is integral; to provide base result for integrity checks. Since there is base

result of hashing, other hashing operations can be compared with base hash results. If

no difference between hash output and initial hash result, it means file is not changed.

However, hashing algorithms’ output will change even if single bit of block of file or

file has changed; even if two bits swapped on block or on file. Thus, hashing

algorithms are very suitable for integrity checking operations. To check integrity of

folder or file (which consists blocks), few methods can be used. Obviously, as a first

step, hash of each file (or part) must be calculated. The difference reveals at second

step. As a second step, there are two different methods. Hashes of files (or blocks) can

be combined into one hash by appending or using XOR for all hashes. Appending

many hashes is not smarty solution even this method is aware of integrity. By using

this way, fixed sizes of hashes are changed; also, it is size dependent solution, which

is not ideal for files (or blocks). Besides, this system is only aware of monolithic

integrity. Alternatively, hashes of files (or blocks) can be used to create more complex

structures like array lists or linked lists. This method can provide corrupted file to be

determined. However, it is costly to check all files’ or blocks’ hashes. At this point,

another method that can be assumed as hybrid of that two methods. One monolithic

hash is calculated with hashes of each blocks or files. After general integrity of folder

(or files) is checked, if any integral problem has been determined, each block’s or file’s

hashes can be checked. That method is the right thing for checking integrity of folders

(or files formed by blocks). To achieve this method, multi-level lists or trees are best-

suited data structures. Multi-level lists and trees will be compared and discussed

respect of checking data integrity in CHAPTER 3.

11

Provable data possession is a term about integrity of stored data on remote

servers. When user uploads a data to remote server, it means that server possesses that

data. While CU wants to be sure about integrity of the possessed data, CSP must ensure

about possessed data integrity. At this point, user challenges server to control

possessed data at server side and server replies. By checking reply sent by server, user

decides if data is integral or not. That entire cycle is named as PDP [18].

At most basic level, CU is creating some flags and adds that flags particularly

to file while uploading the data. Few of flags are being stored at CU side to check

integrity of the file by comparing those flags with response is being sent from CSP.

Flags sent to CSP by CU must be enough to generate flags. CU must able to check

anytime, that if data is integral or not. When user initiated a process to check integrity

of the file, CSP starts an execution to create response. CSP creates metadata from

scratch by accessing file. After CSP sends generated metadata as a response for CU’s

request, user checks equality of results sent by server and metadata, which is stored at

CU’s local. If the result sent by CSP equals to metadata stored locally, it means data

is integral on cloud.

For the single file, only one hash is needed to create metadata. For blocks of

file or a folder, initial metadata must be created for every blocks of file or every file.

Simple implementation of that method [18] is nice and naive but there is

probability for unauthorized hand to access file or block. First of all, this probability

must be minimized. Unless user exclusively states that file or block was public; that

data must stay private. Somehow, access of any other parties except exclusively

permitted to access that file or block must be hindered. Furthermore, files or blocks

can be stored after files become encrypted. By way of addition, a control mechanism

can be established as a layer between CU and CSP or secure tunnel can be used to

transmit file and responses. Otherwise, an eavesdropper has ability to create hash of

file after obtained original file. If CSP does not generate response from scratch by

reading file, unauthorized access can cause problems that are more serious. This

problem includes modifying file (or block) and hash of that file (and block).

Modification on a data is an operation that changes integrity of the data. At this point,

12

if metadata is not generated from scratch every time, CSP cannot realize that if file or

block has been changed. This is serious problem; and, if CSP is not cognizant about

changed content of file, CSP sends responses malfunctioned. Worse, malicious code

can be integrated into data. Especially, if the data includes executable blocks, problem

becomes fatal. Attacker can grant unwarranted permissions over that server or CU’s

computer to get more control. This unexpected power can cause complete data wipe

or more sensitive data being obtained by attacker. Attacker can delete that file by

modifying metadata sent to CSP and cause data loss. To provide more secure

implementation, a control mechanism to manage access rights over files on cloud must

be exists. As an addition, to provide CSP to build response from scratch for every

request, some kind of unique data like session keys must be added into request sent by

CU. CSP must serve the response related to that unique data [19]. To provide

singularity, this unique data will be mentioned as CHAL (challenge) at rest of the

document.

It is regular situation people to upload text files or pictures to cloud. It is very

common necessity people to change file, which is uploaded to cloud by themselves.

Significant part of schemes offered to check integrity of cloud is not dynamic. Those

solutions are not taking into consideration if files are changed or not. Those simpler

and older solutions are generating hash of uploaded data on CU side, and sending

challenge to obtain response from CSP. If user wants to modify files, which are

uploaded to cloud, these schemes do not have enough flexibility. Before file is

uploaded to cloud, initial hash at client side is calculated and CU only be able to check

if uploaded file is integral on cloud.

At this point, another concept is greeting. This concept allows CSP to ensure

integrity of the data, even data is being changed by CU. Moreover, it gives a capability

to CU: Updating or deleting file. CU also has ability to update the file partially.

PDP schemes generally include few steps to store data and few steps to

challenge and ensure data is integral and safe. Some of schemes provide extra or

extended steps to ensure getting something valuable like, decreased computation on

13

CU side, minimizing communication complexity, providing better reliability and

higher probability of detection.

Even schemes are different from others, main steps used to store and check

integrity of data can be characterized like these:

 System Setup: Generally, in this step, CU generates necessary keys,

creates hash for each block of file.

 Sending Data: Generally, in this step, file, keys and hashes are sent to

CSP by CU.

 Storing Data: In this step, received file is stored on cloud.

Challenge: In this step, integrity of file, which stored on cloud, has been

checked.

1.2 Literature Survey

Many provable data possession schemes have been offered until today. Few of

them focused on client performance, few of them focused on reliability of PDP

scheme, few of them tried to minimize overheads. Some of them based scheme on

HomT (Homomorphic Tags), some of them based on SL (Skip Lists) and some of them

used MHTs (Merkle Hash Tree).

Diffie-Helman based scheme is firstly proposed by Golle et al [20] which is

based on a n-Power Decisional Diffie-Helman. In that scheme, Server restrain a data

which has at least size of original file. Somehow, it is not necessary this data to be an

original file which user stored at cloud. It also refers to Merkle Hash Tree scheme

suggested by Wagner et al. [21] .

Deswarte et al. [19] have offered RSA based implementation for verifying data

integrity stored at untrusted server. It is a solution, which still creates a base for other

PDP solutions. This implementation is using two functions and keeping at least one of

those functions secret. F is defined as a function with one-way hash H’. C is the

challenge sent by user while R is the response sent back to CU by CSP.

𝑓(𝐶, 𝐻′(𝐼𝑛𝑝𝑢𝑡)) = 𝐻 (𝐶|𝐼𝑛𝑝𝑢𝑡) = 𝑅

Equation 1: Challenge with input file or block

14

Krohn et al. [22] have offered a scheme which uses homomorphic hash

functions. Filho et al. [23] have offered another RSA based solution for verifying

integrity of files stored at untrusted remote servers. This method is based on scheme

of Krohn et al. and Filho et al. improved implementation of Krohn et al. by extending

algorithm to support different sized message blocks. Filho et al. also consider that both

uploaders and downloaders are untrusted. However, Golle et al. [20] assume that

uploaders are trusted and downloaders are untrusted.

Schwarz and Miller have proposed another scheme [24], even the security

proofs of scheme is not provided. This scheme verifies data between multiple sites

over erasure-coded data. Erasure code is a method for data protection that data split

into blocks, enlarged and encoded with duplicate blocks and stored along various

storages. Both server side operations’ complexity and communication complexity

(between CU and CSP) of that scheme is linear. In addition, it makes that scheme less

relevant to implement on real system because of bringing forth low performance on

big files.

Sebe et al. [25] express a solution for integrity checking which sticks into

Diffie-Helman problem over ZN. Storage needed on client is O (n) since N (size of

RSA modulus) bits per block must be stored at client side. It makes this solution useful

for block size larger than N. However, that needs server to access whole file to check

integrity of file.

Batch verification adapted to use homomorphic hash functions for source

authentication is offered by Yamamoto [26].

Another authentication scheme that is using homomorphic hashing in which

generate single hash value is used for multiple blocks, is offered by Krohn et al. [27].

Another solution is offered by Oprea et al. [28]; which relies on tweakable

block ciphers that allows client to determine if file block has been modified on

untrusted server. That solution does not need any extra storage at server and client

needs to store very low amount of data if entropy of data is low. Nevertheless, entire

file must be retrieved in verification phase. Retrieving entire file on verification phase

makes server file access cost and communication cost linear to size of file for any

15

challenge. Actually, that solution is invented for data retrieval and not useful for data

possession verifying.

Erway et al. [29] and Ateniese et al. [12] simultaneously have offered PDP

models that support update operations.

First sampling model for PDP is defined by Ateniese et al [18]. It can verify

authenticity of stored file or blocks without needing server to retrieve and to access

entire data. Furthermore, this scheme has improved PDP model to support CRUD

(Create, Read, Update, Delete) operations. This model comes up with handling all

future challenges at setup phase and populating metadata that includes pre-computed

answers. However, model of Ateniese et al. is based on RSA scheme and it causes

exponential calculate operations. On the other hand, inserting block into blocks cannot

be handled with that scheme while only appending blocks are supported.

Erway et al. [29] have offered DPDP method which based on scheme offered

by Ateniese et al. [12]. Erway et al. compared those two method with previous

schemes. This model has been proposed closely related to memory checking; that

supports update operations over stored data using skip lists, which has decent

performance. They offer extra few procedures to prepare data for update, perform

update on the data, verifying updated data. Different from previous work, they

implement fully dynamic PDP first time. By using, rank based authenticated

dictionary, logarithmic performance has been satisfied and that scheme named as

DPDP I (Dynamic Provable Data Possession I). Other alternative scheme that named

DPDP II has been constructed with RSA tree using rank based authenticated

dictionary. Even DPDP II’s computation cost at server side is high; it provides higher

probability of detection. These models have been offered for a file, which stored on

cloud server as n blocks. Dynamic PDP supports insertion of new block, updating

block of stored file and deleting block of a file that stored on cloud.

Chen and Curtmola [30] have proposed a model based on spot-checking for

both PDP and PDP supports CRUD operations.

16

Y. Zhu et al. [31] [32] have offered a CPDP (Cooperative PDP) hash index

hierarchy and homomorphic verifiable response to provide better scalability of service

and data migration between clouds.

L. Wei et al. [33] have studied to compose storage and computation aspects of

security and privacy. By using verification agencies, storage and computation

operations have been audited. MHTs (Merkle Hash Tree) has been used to hold hash

values and they extend HDFS to compute tests. As their opinion, VAs are other party

that trusted by CUs. In addition, VAs have far better computation power compared to

CUs. Many complex operations that need high computation load and power needed to

validate CHAL (challenge) results. Wei et al.‘s solution needs CU to evaluate MHT

(Merkle Hash Tree) and compares CHAL response with that tree. They introduce this

idea to lower computation weight on CU side. Their method offers both parallel

storage and computation over clouds servers. CU uploads their data to cloud and asks

for computation. After data stored on CSs separately, each CS orders with some

function to evaluate own data stored on CS. Various hashing operations and flags have

been used and hashes of stored data have been used to populate MHT. After that

functions run on each server with data, MHT has been calculated. CU gives delegation

to VA and VA asks about data integrity to CSP. When challenge is ordered by VA,

partial MHT is sent to VA as response. VA creates same MHT with various keys and

controls if those partial MHTs have equal content or not. Furthermore, challenge

response is sent back to CS.

Illustration of model can be seen on Figure 5. Even lots of components exist in

cloud, related components are CSP and CSs. CSP is a front gate of the cloud. Any

storage and computation requests sent to CSP from CUs and storage and computation

responses sent to CU from CSP. Cloud users can use any device that can connect

internet through related protocol. VA (Validation Agency) has role related to

verification operations. After delegation of CU assigned to VA, verification request

sent to CSP by VA. Results of the verification request received by VA and necessary

feedback sent to CU by VA.

17

Figure 5: Verification Agencies

1.3 Motivation

There are many studies related to cloud storage security; however, very small

part of those workings have focused on security aspect. At this point, this thesis mostly

focuses on security aspect of cloud storage without losing a focus on performance

aspect. Besides, IA (the third party auditor that audits the integrity of files which stored

at cloud) is offered for making users’ life easier and providing extra security.

At this point, this thesis focuses on three different implementation aspect of

various approaches. Our model relies on breakthrough schemes offered by Ateniese et

al. [12], Erway et al. [29] and Wei et al. [33].

Scheme offered by Ateniese et al. is a state of art article, which is the base idea

for many of other schemes and studies. Erway et al. have improved Ateniese et al.‘s

work and offered PDP scheme, which supports CRUD operations. Wei et al. offers

another scheme focused on secure computation and storage over cloud using

verification agencies.

At this point, this thesis aims to offer a scheme that both includes verification

agencies and fully supports CRUD operations. Besides, this scheme aims to offer

18

various improvements for PDP scheme that supports CRUD operations. Further, third

party auditor inside PDP scheme is aimed to be integrated into scheme. Furthermore,

test results of adding verification agencies, using Merkle Hash Trees or Skip Lists;

also, effects of different file and block sizes over PDP scheme is aimed to be tested,

analyzed and analyzed.

1.4 Outline

In CHAPTER 2, different approaches of PDP will be presented related to

design aspect. Furthermore, in CHAPTER 3, implementation details will be discussed.

In CHAPTER 4, experiments will be analyzed with test bed and experiment results.

Also, test results will be introduced, imposed and evaluated. In CHAPTER 5

conclusion and future work will be mentioned.

19

CHAPTER 2. DESIGN of SCHEMES

Since cloud is living structure that users share, modify and delete their files on;

supporting these operations on cloud is crucial. In addition, integrity of data must be

ensured while these operations are being processed and after these operations being

completed. We aim to provide a service interface and parallel data integrity check done

by each of CS over the data that servers possess. Further, we aim to take data integrity

checking burden from CU to another third party. Also, we have an idea to offer

common interfaces for services which checks integrity of data and making their

scheme valid for multi cloud environment. If these common interface become

supported by standards, it can be useful hence increased privacy for users. On the other

hand, cloud providers can be audited about privacy performances related to integrity

aspect.

2.1 Definition of Integrity Auditor and Purpose

Integrity auditor is a mechanism to check integrity of files uploaded on cloud.

First, user must not be busy with such a technical security problem. Regarding to user,

if security and integrity of the data uploaded to cloud is provided by CSP; it is enough.

If security and integrity has been provided, user would not concern about their data.

On the other hand, it must not be necessity that user has technical knowledge to

understand integrity of data. Some curious users like computer engineers or technology

gurus or cybersecurity specialists keen on technical terms but significant part of cloud

users don’t have technical knowledge. If the user doesn’t have technical knowledge or

if the user isn’t familiar with technology; it’s a burden for him to check and understand

if data is integral and secure. User wants to ensure about security of data; not more.

Another aspect of view is about intervals between that checks. If any critical

information is stored on cloud, it may be needed to check integrity and security of the

data more often. In addition, user does not have to lose time for checking integrity and

security of the data that often.

20

Another aspect is about power needed to make a computation for checking. As

stated earlier, if complex computations are needed at CU side. It would be logical CU

to delegate this duty to another powerful party that can evaluate those computations

much faster.

Another important thing to be considered is that if cloud providers forced to

check integrity by third party, this will cause cloud providers to yield this subject more

tenderly. At this point, some standards are needed and these standards can be invented

inside ISO standards. By doing this, standards may force cloud providers to use

integrity auditors. By this way, every single cloud provider will be forced to focus on

keeping integrity of users’ data. If some standards have been adapted about using this

kind of mechanism, legal sanctions can be applied to cloud providers that don’t focus

on integrity as intended. Furthermore, this may provide integrity auditors to work

centralized. By this way, users can delegate to integrity auditor mechanism, and

integrity auditors do complete job while users will not be busy with checking or

thinking about data integrity.

We offer three model for integrity auditor:

 Independent Integrity Auditor outside cloud (IIA)

 Integrity Auditor as service inside cloud which is controlled by third party

agency (IAaaS)

 Compound Integrity Standardized mandatory IAaaS for cloud providers

which have same interface as a service (CIAaaS)

Three figures are given below to show general architecture for offered models.

All of these models include IA at different and improved approaches. First one is

including only external IA to check integrity. Second one is a service deployed inside

cloud to make integrity controls. Third one is standardized model of second model that

makes possible to check integrity controls over few clouds.

21

2.2 Design of IIA

Figure 6: IIA

This model is simplest IA model that runs outside of cloud. IA is a third party

application that acts like a bridge layer between CU and CSP. CU delegates to IA and

IA ask CSP about data integrity. After some evaluations and calculations, IA controls

CHAL response sent by CSP and determines if integrity is ensured or not. In this

model, CSP checks integrity of the data directly; without giving an endpoint as a

service. As foresaid, it is not needed to deploy extra service on cloud; but a business

flow must be implemented inside CSP business flow. This flow sends a response to

CHAL by performing integrity check on data, which is uploaded to cloud. Main

disadvantage of this approach is having no available service for third party users

outside of cloud. To put in another way, it is like internal flow between CSP and IA to

validate data integrity. Detailed flow of this model can be seen on Figure 6. Data

storage request and responses occur between CU and CSP directly. Data validation

request is sent to VA, which is delegated by CU. Data validation request is directed

to CSP and the response is received from CSP directed to CU.

2.3 Design of IAaaS

IIA is the simplest version for IA. It is noticeable that IIA has imperfections

and IIA may be improved further. Since, CSP is already responsible for many things

to manage. Processing high cost operations like integrity check would affect

22

scalability, availability and performance of CSP. So, the burden of CSP about checking

integrity can be switched to another layer, which is only dedicated for checking

integrity. General architecture of that idea can be seen on Figure 7. Data storage

request and responses occurs between CU and CSP directly. Data validation request is

sent to VA, which is delegated by CU. Data validation request is directed to IA by

consuming service and the response is received from IAaaS directed to CU.

Figure 7: IAaaS

On the other hand, implementation of integrity check has low scalability since

it is working as a part of CSP. It can be improved and obtain better usability by

developing a service in. It would be easier to manage that service. If updates and

maintenances of integrity check implementation taken into account, independent

service approach is better. It is needed cloud to go offline if integrity check operations

are implemented as a part of the CSP. While considering perspective related to

maintenance aspect, service can be switched off to maintain and can be switched on

again after necessary updates have been applied.

Furthermore, IIA is not generic solution since it is not same on all clouds; since

it is a business inside CSP. Different programming languages, different designs,

different architectures for different clouds. Cloud by cloud, business flow of integrity

check is changed, CHAL requests and responses are being changed. This prevents the

development of the suitable business workflow for integrity check for each cloud.

23

Somehow, if CSP is possessed by dirty hands; even, it seems like all cloud have

problems; a lock mechanism can be developed to encrypt very critical data on cloud.

By this way, data accessibility and integrity can be kept.

2.4 Design of CIAaaS

Last but not the least; after IAaaS become standardized; it means inputs and

outputs of IAaaS can be served with same interface over all clouds. This favor provides

an external auditor to manage data possession over more than one cloud. Another

application or party can be developed that undertakes controlling data integrity of lots

of data over lots of clouds. CUs can join that application or party by delegating their

integrity check rights to IAs.

Figure 8: CIAaaS

As seen on Figure 8, data storage request and responses occur between CU and

CSP directly. Data validation requests are sent to VA, which is delegated by CU. Data

validation request is directed to IA by consuming service, and the response received

24

from IAaaS is directed to CU. The difference between IAaaS and CIAaaS is that all

clouds may use same interface for data integrity checking services.

This standardization also makes easier to monitor integrity and security quality

of the cloud providers. This monitoring mechanism enables some legal actions against

cloud providers like, punishments and promotions. Some cloud providers that can’t

maintain integrity of definite ratio can be punished. On the other hand, some cloud

providers that can maintain integrity of definite ratio can be rewarded.

25

CHAPTER 3. IMPLEMENTATION of SCHEMES

3.1 Background

To provide better understanding on validating integrity of block of files,

Merkle Hash Trees vs Skip Lists will be discussed further.

Figure 9: Merkle Hash Tree

Merkle hash tree is a structure that has hashes on nodes except leaf nodes as

seen on Figure 9. MHTs provide secure and efficient way to check integrity of large

files.

H(m1) H(m2) H(m4) H(m3)

H(H(m3)+H(m4)) H(H(m1)+H(m2))

H((H(m1)+H(m2))

+

(H(m3)+H(m4)))

Block1(m1) Block2(m2) Block3(m3) Block4(m4)

L
ev

el
4

 L

ev
el

3

L

ev
el

2

L
ev

el
1
(R

o
o
t)

26

MHT has bottom to top approach while being constructed. To construct a

MHT, as a first step, leaves must be constructed. Leaves include many blocks of a file.

These nodes are constructed using hashes of each block and can be seen as Level4

nodes on Figure 9. As a second step, hashes of the blocks must be generated using

𝑁𝑜𝑑𝑒𝑉𝑎𝑙𝑢𝑒𝑙𝑒𝑎𝑣𝑒 = 𝑚 and 𝑁𝑜𝑑𝑒𝑉𝑎𝑙𝑢𝑒 = ⋁ 𝐶ℎ𝑖𝑙𝑑𝑉𝑎𝑙𝑢𝑒𝑛
1 .

Generated hashes of blocks can be seen on Figure 9 as Level3 nodes. To create

higher level nodes, for every node, values at child nodes must be concatenated before

hashing as seen as Level2 nodes on Figure 9. This operation finishes when root node

has been generated.

To evaluate an integrity of a file by MHTs; MHT for integral file must be

constructed using blocks. This MHT creates a base for integrity checks and it must be

stored as metadata. When integrity check process starts, up-to-date MHT must be

constructed using up-to-date file. Equality of root nodes determines if file is still

integral or not. If root nodes are not equal, it points that; file was not integral. The

advantage of MHT is that; it supports results with corrupted data. In other words,

corrupted block can be determined by chasing MHT from root to bottom nodes. If

node has same value with the node, which is at same location on base MHT; it means

that blocks under that node were integral. On the other hand, child nodes must be

checked until unequal value being found. If no inequality has been found until reaching

to leaves, it means file is integral.

Security of this scheme is related to security of hashing functions. In best case,

transmitting root node is enough for integrity check. If further controls needed, bottom

of the tree can be transmitted. To check integrity of a single block, log2n of hashes

needed [34].

Figure 10: Simple Skip List

3 5 8 11 15 18 19

27

Skip list is another option to check integrity of blocks of files [29]. A simple

version, which includes few numbers, can be seen on Figure 10. Skip lists can be

defined as optimized version of linked lists. Using linked list, insertion/deletion

operations are easy, however searching in less than O(n) is not possible. Skip lists have

log 𝑛 complexity for basic operations like inserting, removing and searching [35] since

every non-leaf node have two pointers that points another two nodes. It also seems like

garbled sorted multi-level list. Basic operations like insert, update and delete are

affecting only nodes on the search path. After these operations, ranks are re-computed

bottom nodes to top nodes. Ranks will be mentioned further.

For better understanding the structure of rank based skip list, available pointers

on structure (right and down), rank of node, low/high nodes of any node must be

discussed.

Each node, n, has two pointers for search operations as seen on Figure 10,

which points right (rgt(n)) and down (dwn(n)) nodes. The hash value of each node

is calculated using these two nodes.

Rank is the number of nodes at bottom levels that can be accessed from any

node. Let low(n) represents the left most node at bottom level can be reached by

node and high(n) represents the right most node at bottom level can be reached by

node. To clarify low/high nodes, an example using start node can be mentioned. Since

all nodes must be accessible from start node; high value of start node must be equal to

the number of bottom level nodes. However, low value of start node must be equal to

one.

High/low values determine traverse path over skip list. While traversing, low

and high values of current node are checked and decided to traverse though left pointer

or bottom pointer. To decide which node to traverse, high and low values of right and

down nodes must be determined (Equation 3).

Traversing a skip list is iterative process. In each step, there are current node

and next node. Current node (v) is the node which is pointed by pointer at time t while

next node (n) is the node which will be pointed by pointer at time t+1.

28

𝑤 = 𝑟𝑔𝑡(𝑛)

𝑧 = 𝑑𝑤𝑛(𝑛)

Equation 2:Set equations to set right and down nodes

ℎ𝑖𝑔ℎ(𝑤) = ℎ𝑖𝑔ℎ(𝑣)

𝑙𝑜𝑤(𝑤) = ℎ𝑖𝑔ℎ(𝑣) − 𝑟(𝑤) + 1

ℎ𝑖𝑔ℎ(𝑧) = 𝑙𝑜𝑤(𝑣) + 𝑟(𝑧) − 1

𝑙𝑜𝑤(𝑧) = 𝑙𝑜𝑤(𝑣)

Equation 3:Set equations to determine high and low values of right and down nodes

According to Equation 2, next node to be traversed is being determined. If

Equation 3 being satisfied, right pointer must be followed to determine next node;

otherwise down pointer must be followed to determine next node.

To calculate hashes, more generic hash function is defined as Equation 4.

ℎ(𝑥1 ⋯ 𝑥𝑘) = ℎ(ℎ(𝑥1)|| ⋯ ℎ(𝑥𝑘))

Equation 4:Generic Hash Function

After generic hash function defined, hashing can be discussed. The node

belongs to mi (i-th message) stores x(v)=T(mi). l(v) is the level of v node. F(v) is the

value of v node. This operation is marked as F(v) and determined by using Equation

5. T is the path which is generated to prove integrity of a block. For further information,

suggestion of Erway et al. [29] can be reviewed.

𝑓(𝑣) = {

0, 𝑖𝑓 𝑣 = 𝑛𝑢𝑙𝑙

ℎ(𝑙(𝑣), 𝑟(𝑣), 𝑓(𝑑𝑤𝑛(𝑣)), 𝑓(𝑟𝑔𝑡(𝑣)), 𝑖𝑓 𝑙(𝑣) > 0

ℎ(𝑙(𝑣), 𝑟(𝑣), 𝑥(𝑣), 𝑓(𝑟𝑔𝑡(𝑣)), 𝑖𝑓 𝑙(𝑣) = 0

Equation 5:Hash calculation of node

3.2 Implementation of IIA

CU wants to upload file (F) which stated on Equation 6 into cloud. Block size

is not generic and read from XML file for our implementation. A suggestion about

dynamic block size will be mentioned in last chapter. CU sends that file to CSP and

29

informs IA about this situation by delegating to IA. IA checks the integrity of the file

with intervals and informs user if any problem occurs. In addition, user can see IA’s

reports by client application installed on.

𝐹 = {𝐵1, 𝐵2, ⋯ , 𝐵𝑛}

Equation 6: Definition of File

In the entire lifecycle of data, confidentiality, integrity and other important

aspects must be considered and provided. In this scheme, integrity has highest priority.

Even main aspect and highest priority is integrity; for better protection, other aspects

must be considered while developing system. With other words, even goal is integrity,

other aspects of data security is considered and evaluated while developing this

system.

Before steps to begin, some agreements and exchanges must be executed.

These steps will be named as initialization steps.

CU must be registered to CSP. When CU requests CSP to register, CSP creates

ID for CU, which will be used as CU’s identity. ID has length of 256 bits. This ID is

proof of being owner of a file on cloud. On the other hand, this ID is integrated into

packet which will be sent to CSP. To put it another way, whole blocks of file being

signed by ID. Ownership of any file is determined by this ID; since CSP controls

metadata of each block while decrypting file and preparing file to store on cloud.

CU must be registered to IA. When CU requests IA to register, IA creates A

(ID of CU on IA) for CU. A has length of 256 bits.

After CU registers CSP and IA; three sides agree on a key. This agreement is

done by multi-party Diffie-Helman key exchange (To protect against MiM attack, a

PKI may be used). This key is named as K on entire flow. To extend Diffie-Helman

key exchange between two parties to three parties; generalization of discrete logarithm

problem must be utilized [36]. To achieve S through Equation 7, any party must send

generated data to two parties, rather than just sending to other and only one party.

𝐾 = ((𝑔𝑎)𝑏)𝑐 = ((𝑔𝑎)𝑐)𝑏 = ((𝑔𝑏)𝑎)𝑐 = ((𝑔𝑏)𝑐)𝑎 = ((𝑔𝑐)𝑎)𝑏 = ((𝑔𝑐)𝑏)𝑎

Equation 7: Multi-party Diffie-Helman Key Exchange

30

After CU becomes registered on IA, CU shares ID using K. However, CU

shares his/her ID with IA for delegating his/her rights to IA. This provides IA to

challenge CSP over files which uploaded to cloud by CU. IA also adds this ID to packet

while sending challenge to CSP, to prove that possessing delegation is provided by

CU.

Before CU to prepare packet which will be sent to CSP he/she requests to

upload the file.

Figure 11: Flows on System

CSP generates S which is session key; and sends it to CU after encrypts S with

K. S is also used as unique id of the file which proves the file is uploaded via this

session.

PrepareFile: In this step, user creates packet by processing file. Hashes of

blocks are generated and necessary parts are encrypted using K. Steps of this process

are mentioned below.

31

QID is generated by hashing ID by cryptographic hash algorithm such as SHA2.

This data is appended to metadata of each block. QID is the sign of the user which will

be checked by CSP to ensure packet is totally integral and sent by CU.

Figure 12: Generating QID by hashing ID

CU generates Hi (hash for each block of file, Bi) values. Hi values are obtained

by using SHA2 algorithm. Hi values will be included inside Ti (metadata); also used

to generate V (Validation data). V is obtained by storing whole Hi values on MHT or

SL. Both MHT and SL structures are implemented in test bed to compare results.

Ti values are obtained by encrypting data by K which is obtained by appending

i (order of block and operation type: 2 bits for operation type, 30 bits for block index),

Hi values, QID and S (session key). This metadata proves integrity and ownership of

the data. After Ti is processed by CSP, CSP ensures if received block is integral and

sent by specific user. Since S is generated for that session and file; also each block

includes r (random number); replay attacks are being ensured.

Figure 13: Generating Ti

Pi (Block of packet) is generated after Ti is obtained. Pi consists Bi and Ti. It is

obtained by appending Ti to Bi.

32

Figure 14: Generating Pi

To obtain P (Packet that will be sent to CSP), each Pi is appended after

metadata and packet is encrypted using K. M (Metadata of packet) includes V, original

file name and block size used in PrepareFile step. Metadata provides CSP to obtain

block size and split packet to obtain Pi data. On the other hand, it provides file to be

saved with proper name as intended user to upload with.

Figure 15:Obtaining P

B (Block size) has very important input about system performance. If B is being

kept small, number of blocks is being increased; and, it causes ratio of metadata in

packet to increase. On the other hand, cost of creating metadata for blocks are getting

expensive.

More details about this situation will be mentioned in CHAPTER 4.

UploadFile/UploadBlock: In this step, the packet prepared by CU is sent to

CSP. The reason behind both encrypting metadata and whole packet is that; if data

content is not sensitive, only metadata can be encrypted.

StoreFile: StoreFile step is reverse of the PrepareFile step. In this step, CSP

opens packet, controls hash of blocks, creates V and stores file on cloud. As first

operation, whole packet is decrypted using shared AES key. Since any incremental

schema is not being used, this operation doesn’t take so long time. After packet is

33

decrypted by CSP, metadata of packet file and packets of blocks (as single part) are

obtained. To obtain packets of blocks, single part must be split into blocks, using block

size which included inside metadata.

Before file is stored on cloud servers, CSP re-calculates hash values for each

file blocks. If any integrity issues are detected, CSP informs user about situation. If

there are not any issues related to integrity of the file, CSP informs user. After response

is received by user; if upload is successful, user sends a packet that includes V and S.

This packet is encrypted by K using AES. If file will not be changed, user can delete

V and F. If system supports modification and if any modification is planned, CU

continues to hold V and F.

IntegrityChallenge: As mentioned previously, IA delegates CU. Since IA has

ID and S, IA have sufficient rights and data to send C (Integrity challenge) to CSP. IA

prepares a packet for this step. This packet is encrypted with K. C includes ID and S

that encrypted with K by AES algorithm.

When CSP receives C, C is decrypted by CSP using K; then, ID and S pair is

confirmed. If this pair is meaningful for CSP, F is checked and VC (V that belongs to

F stored on cloud) is populated. RC (Result of challenge) is obtained by encrypting VC

with K using AES algorithm.

This step is executed by IA in custom intervals. File can be checked so often

and so rare. This interval must be chosen wisely; since there is a trade of between

network traffic and security. If file integrity is checked in shorter intervals, it may

cause overhead on both CSP, network and IA. If file integrity is checked in longer

intervals, corruption of file could be realized so lately.

CheckIntegrity: In this step, V stored on IA that belongs to F is compared

with V which is received as a response for challenge request. A Boolean value RI is

obtained by comparing V with VC. If content of V and VC is equivalent, it means file

stored integral at cloud servers (RI=true); otherwise not. If file is integral, this

34

information is stored on IA with a timestamp. Otherwise (RI=false), CU and CSP is

somehow being informed.

IntegrityStatus: This step is initiated by user. When user wants to check

integrity of the F; it creates a packet that includes A (Id of CU on IA system) S and N

(Currentness flag determines if IA to request latest RI or IA to send challenge to CSP).

After this packet is encrypted by K using AES algorithm, I (Integrity check request of

F) is obtained and sent to IA. When I is received by IA, it is decrypted by K using AES

algorithm. IF A-S pair is meaningful on IA data, IA starts execution. At this point, N

determines if latest CI data is sent to CU or if new C must be sent to CSP. If N equals

to “Latest”, IA obtains IR (Integrity check result) by encrypting latest RI with K using

AES algorithm. If N equals to “Actual”; CSP executes IntegrityChallenge step. In this

situation, IR is obtained by encrypting new RI (just received from CSP) by K using

AES algorithm. As a last procedure, IR is being sent to CU.

PrepareBlock: Nowadays, lots of cloud storages are integrated with various

editors. GoogleDrive and OneDrive offers office applications to edit files online. At

this point, updating a file on cloud is not unordinary operation.

However, IA is implemented the way to modify files over cloud. Modifying

file rather than re-uploading both saves time and cost. Even implementation with MHT

supports modification of file by re-uploading, it is not best practice and it is not

intended situation. V must be totally reconstructed because of structural design of

MHT; skip lists are more dynamic structure to get down with that problem. Skip lists

allows adding, modifying and deleting node operations.

In this step, a file that exists on cloud is being updated by adding, updating or

deleting a block. The size of new block doesn’t have to be equal with the previous

uploaded blocks. Block size is important when storing a new file, since CSP splits

blocks by using block size argument. Adding a new block and updating block

operations are done independent from block size. CU prepares a packet which includes

35

same content similar to packet that prepared in PrepareFile step. This step can be called

as PrepareBlock; since, it prepares only block of a file, rather than a file.

Ti (Metadata of new block) has been created with the same way in PrepareFile

step. Hi (Hash of new block) is created using SHA2 hash algorithm. i, QID, S and r are

appended to Hi. To obtain Ti, this content is encrypted using AES algorithm with K as

key.

To obtain Pn, Tn is appended to Bn for update and addition operations. For delete

operation; different from other operations, Bn content is set as empty string.

Content of final package is near to be ready before sent to cloud. If content is

not sensitive, CU can send Pn as final packet. If Bn includes sensitive information or

CU wants to send packet encrypted; Pn is encrypted. To avoid replay attacks, metadata

includes r. Even whole packet is sent without encryption, keeping Tn encrypted makes

metadata hidden and provides security for unauthorized manipulation of metadata. On

the other hand, if unauthorized party modifies the content of block; since metadata is

not changed, CSP can alert the CU.

After hash of block has been created; V is composed again. If, the structure

behind V is MHT; all tree must be re-composed. However, if the structure behind V is

skip list, the nature of skip list allows that node to be added inside V, without re-

compose.

StoreBlock: After packet is received by CSP; CSP decrypts the packet and

obtains Bn and Tn.(as encrypted) CSP decrypts Tn; then, obtains Hn, QID and S. CSP

checks if Hi is consistent with the Bn and if QID is proper. If values are consistent, CSP

starts to store block as a part of file which stored with S id. Indexes which include

block storage addresses belongs to file are updated and file is stored with new form

CS. When store phase is completed successfully, CSP informs the CU about situation.

CU sends updated V to IA. Up to date V which belongs to S is updated on database.

36

3.3 Implementation of IAaaS

The difference between IIA and IAaaS is that IA communicates with service,

which provides integrity results of files; rather than directly communicating with CSP.

Rather than CSP thread, another layer is needed to handle only integration

related operations. General flow is same in this model, except IntegrityChallenge.

IntegrityChallenge must be sent to servlet which undertakes checking the integrity of

files and generating response for the challenge. Also, this model creates space to CSP

for other management tasks; by reducing traffic over servlet.

3.4 Implementation of CIAaaS

Main focus of this implementation is generalizing service interface and

providing IA to be informed about integrity of data, which uploaded into various

clouds.

37

CHAPTER 4. Test Bed

This chapter summarizes the test environment, data collected and evaluation

and comparison of algorithms.

4.1 Test Bed Environment

Computer Specs:

Operating System: Windows 10 Professional

Processor: Intel Core i7 3630QM (2.4Ghz, 8 cores)

RAM: 2 x 4Gb (DDR5)

Hard disk: Hitachi HTS72755 (500Gb)

Table 1: HDD Benchmark Results

Read/Write speed of used HDD can be seen on Table 1. Values above headers

include average benchmark results along other testers who tested same HDD. Values

below headers are benchmark results of the HDD used for test bed.

38

4.2 Test Bed Restrictions

The test bed used to produce test results is not perfect to obtain best results of

this architecture. Some restrictions which affects results of the test bed must be

mentioned to make results more clear.

These test results are obtained using Windows 10. Windows is not highly

configurable operating system that runs lots of processes and services at background.

Various processes and services have been stopped while tests are conducted but not

all.

All threads run on same PC. This means, all threads shares same resources.

These resources include RAM, CPU and HDD. This is double-edged situation. Sharing

these resources along threads cause lower performance when overlaps occur. On the

other hand, by creating a test bed in one machine removes the effect of network and

bandwidth.

As mentioned above, test bed is not perfect for ideal results. Even test scenarios

have run 10 times to minimize instantaneous event effects, continual events’ effects

cannot be eliminated in that test bed. In addition, the computer is typical home laptop

which is enough for daily use. To obtain ideal results of this architecture, various

improvements can be realized.

To calculate results, the timer used inside code which starts and stops when

first and last lines of related function have been executed.

4.3 Application Details

In experiments, a test bed has been conducted using Java. As a JDK, 8u77

version have been used IntelliJ IDEA has been used for development on Windows 10

Professional operating system. Ant scripts have been used to compile code, create jars

and run the threads.

39

Figure 16: IIA Components on Test Bed

To compile test bed applications and produce JAR, two ant tasks are created.

First ant task takes module path and compiles specific module. After this operation is

completed, it moves batch files, configuration files and jars to specific folder, which

all application outputs moved to. Second ant task calls first task with all modules’

paths. After second ant task is called, all necessary batch files, configuration files and

jars to same folder. Except all components drawn in Figure 16, there is Utility jar to

hold common tasks shared between all modules. Besides, lib folder exists to store

various third party JARs.

To hold various data (like user IDs, file IDs, keys) PGSQL has been used

behind CSP and IA applications.

Test bed for the IIA includes these components as seen on Figure 16:

CU as a console application: CU has few operations. First operation is to

register on CSP that assigns ID on cloud. Second operation is to register on IA that

assigns A on IA. Third operation is to initiate key exchange that communicates with

IA and CSP.

40

Figure 17: Components of IA

IA as console application: IA starts to run with parameters which included

inside configuration file related to itself. This configuration file includes few

parameters. IP and port parameters have been used for IA to listen specific port.

Temporary file path has been used to store temporary files. DBConnectionParams has

been used to store database connection parameters. Database tables include IDs of CUs

and their files’ keys, shared keys, V of files as blob, recent integrity and port

parameters of IASs registered to IA.

As seen on Figure 17, IA includes IAM, IAFE, IASs and DB. IAM is main

thread that communicated via socket communication. It manages all other components

and the heart of IA. IAFE is used to offer front end via servlet for users to check

integrity of their files over IA. IASs are other slave threads that simulates the server

which sends IntegrityChallenges to cloud.

41

Figure 18: Components of Cloud

CSP as console application: CSP starts to run with parameters which included

inside configuration file related to itself. This configuration file includes IP and port

parameters that CSP starts to listen. Also, temporary folder path that is used for

operation that needs temporary files in progress. To access database, connection

parameters are defined inside XML file. CSP connects to database that has tables

includes data (like CU IDs, CS parameters, etc.).

As seen on Figure 18, Cloud includes CSP, CSs, DB as main components.

IAaaS servlet is available for IAaaS and CIAaaS models only. DB tables includes

information about IDs of CUs, files of CUs, file indexes, registered active CSs, file

block indexes of files over CSs.

IIA as an application includes Integrity Auditor Manager(IAM) as thread,

Integrity Auditor Front End(IAFE) as a servlet, Integrity Auditor Threads (IATs) as

threads and Integrity Auditor DB (IADB) as a PGSQL.

Simple Cloud Factory application communicates with cloud server application.

Simple cloud application includes CSP thread and CSP threads.

42

All components run on system as threads.

First application starts to run on test bed is CSP thread. By using reactor pattern,

CSs is created. Communication between CSP and CS is implemented with interthread

communication.

Second application starts to run on test bed is IAM thread. By using reactor

pattern, IATs is created. Communication between IAM and IA components are

implemented with interthread communication.

Third application starts to run on test bed is CU. CU is a simple application that

reads commands and file paths through console.

Communication between CU and CSP is implemented using socket

communication. CU communicates with IAFE over HTTP tunnel. IATs communicates

with CSP over socket communication and IAaaS over HTTP tunnel.

Bash scripts are used to initialize applications.

To run multiple CU, executing the script, which starts CU application is

enough. Cloud Factory can be implemented to run multiple clouds. Actually, CSP

initializes a cloud system by running CSs and writes process id (and if necessary,

servlet port) on a permanent path. To create clouds on CIAaaS test bed, Cloud Factory

can run scripts to initialize CSPs. This scripts are called with parameters (like servlet

port). Cloud Factory can read a path at regular intervals, which CSPs write process ids

and servlet ports. When new file of CSP is added to that path, Cloud Factory can

determine process id of a CSP and can register that CSP to itself.

4.4 Experimental Results

To test IA, several conditions has been determined. To provide this bed, various

operations have different implementations. To achieve this; few implementations have

been coded using factory patterns.

To determine effect of encryption over system, PrepareFile operation’s related

interfaces of related steps have two different implementations. One of this

implementation offers encryption with AES and second implementation returns input

as output which does not offer encryption. Different implementations of same interface

are chosen by reading related values in XML files.

43

To determine effect of MHT and skip lists; interface of classes, which used to

produce V, has two different implementation classes. These classes are inside Utility

JAR. To switch between MHT and skip list, related XML values can be changed.

Figure 19:PrepareFile Step: Encryption Enabled, with IA, SL

To determine effect of block size over system, block size of system offered as

configurable on common configuration XML file. By changing values at common

configuration file for fixed file length, effect of block size over system is observed.

Values of block sizes includes 2mb, 4mb, 8mb, 16mb, 32mb.

To determine effect of file size, five different files have been prepared by

appending various big text files over internet. These files include 128mb, 256mb,

128

256

512

1024

2048

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

2 4 8 16 32

128 256 512 1024 2048

44

512mb, 1024mb and 2048mb length of files as seen on graphs created to show test

results. Results of tests are time intervals which has unit of milliseconds.

Figure 20: PrepareFile Step: Encryption Enabled, with IA, MHT

Changing block size does not affect the time needed to prepare file much except

using smaller block size than 2Mb. Even, little changes can be observable on results;

because of hard IO operations over disk, the main percentage of PrepareFile step is IO

operations.

On Figure 19 SL used as structure to observe effects of file size and block size

over PrepareFile step. On the other hand, this graph also shows the effect of number

128

256

512

1024

2048

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

2 4 8 16 32

128 256 512 1024 2048

45

of blocks. Figure 20 includes similar results and this results obtained by using MHT.

In both cases, encryption is enabled over system and IA is activated.

On Figure 21 and Figure 22, effect of file size and block size can be seen.

Different from result sets of Figure 19 and Figure 20, to obtain these results sets,

encryption is disabled over system.

Figure 21: PrepareFile Step: Encryption Disabled, with IA, SL

Block size does not affect IntegrityChallenge and IntegrityStatus steps directly.

Since number of nodes in MHT/SL affects time required to complete these steps, Block

Size affects these steps indirectly.

128

256

512

1024

2048

0

20,000

40,000

60,000

80,000

100,000

120,000

2 4 8 16 32

128 256 512 1024 2048

46

Figure 22: PrepareFile Step: Encryption Disabled, with IA, MHT

Making IA available on system does not change time needed for PrepareFile

and IntegrityChallenge steps. Thus, graphs that includes result sets that IA disabled

over system, is not put on to avoid dense of graphs. Even IntegrityStatus step is not

affected by having active IA on system, a powerful server can speed up this step. Since,

comparison operation of two validation data does not take long time, preferring

powerful server does not change results a lot. On the other hand, if IA deals out with

massive number of users, a powerful server is better choice. Preferring encryption at

PrepareFile affects performance of that step around %30~%40. It is the tradeoff

128

256

512

1024

2048

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

2 4 8 16 32

128 256 512 1024 2048

47

between security and performance. If CU prefers to encrypt whole packet, even

performance is getting lower, increased security is a benefit.

Active encryption on messages that transmitted between parties slightly affect

the system since CBC mode is not used with AES. For increased security, it is usable

for very sensitive data.

Figure 23: Integrity Challenge Response Step, MHT

On Figure 23 and Figure 24, time spent on IntegrityChallengeResponse step

relevant to data structure is illustrated. Effect of file size and block size over producing

128

256

512

1024

2048

0

10,000

20,000

30,000

40,000

50,000

60,000

2 4 8 16 32

128 256 512 1024 2048

48

response (milliseconds as time) for Integrity Challenge step using these two data

structures can be seen on these graphs.

Figure 24: Integrity Challenge Response Step, SL

On Figure 25 and Figure 26, time spent on CheckIntegrity step relevant to data

structure is illustrated. Effect of file size and block size over checking integrity of two

data structures can be seen on these graphs.

128

256

512

1024

2048

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

2 4 8 16 32

128 256 512 1024 2048

49

Figure 25: CheckIntegrity Step, MHT

If MHT is compared with SL, it’s faster. It’s because of nature of trees. On the

other hand, as mentioned earlier; MHTs can be totally re-constructed for update and

delete operations. This decision negatively affects system performance; so, only

creation of V in PrepareFile step is affected by MHT/SL preference. And it is slightly

affecting general performance of the system.

To bring out effect of data structure used to check integrity and encryption over

PrepareFile step, another graph is created. As can be seen on Figure 27, encryption has

solid effect over system. As mentioned above, this effect is around %30~%40.

128

256

512

1024

2048

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 4 8 16 32

128 256 512 1024 2048

50

Figure 26: CheckIntegrity Step, SL

While block size is under two megabytes, it causes reduced performance.

Because lower block size causes to have more blocks. Having much blocks on system

increases number of transactions needed for any step. Higher block size provides small

amount of blocks and it provides to have lesser transactions. As a result, if block size

is more than two megabytes, it has obvious effect on system performance.

File size has most impact on system performance. For fixed block size, bigger

files lead to have more blocks. Number of blocks directly effects number of

transactions needed on system.

Flexible block size for different files (dividing files which have different sizes

by fixed block size) is not a good idea. While operating system creates a file on disk,

128

256

512

1024

2048

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2 4 8 16 32

128 256 512 1024 2048

51

it initially creates an entry on MFT (Master File Table which holds entries for all of

disk files) and binds this MFT entry to physical address on disk. For read/write

operations, a handle must be created for reading or writing into that file. However, this

handle must be disposed when operation is completed. All these operations have high

costs. To read, write or copy a file as one part is faster than doing same processes many

times. At this point, minimizing the number of blocks as much as possible is a good

idea. For example, the time required for processing one file that has million megabytes

and million files that has one-megabyte size are not equals.

Figure 27: PrepareFile Step (2048Mb File on IA Enabled System)

*Block Size(Mb) x Results: Intervals (ms)

To obtain results that are more close to real life scenario, different test bed can

be created.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

2 4 8 16 32

Encryption Enabled, SL Encryption Enabled, MHT

Encryption Disabled, SL Encryption Disabled, MHT

52

First of all, rather than Windows 10, a Linux distribution which include only

core packages of Linux and Java leads better results. Besides, rather than graphical

user interface based operating system, command line interface oriented operating

system minimize resource usage of operating system. This provides more resource

pool for IA threads.

Rather than using all threads on one machine, each thread can run on different

machines. This changes this results to more realistic results. At this point, network

structure and connections must be chosen carefully to minimize effect of network and

bandwidth.

Rather than using a computer, which caters daily usage, powerful servers must

be used for test bed.

These implementation and tests achieved by writing temporary files to disk.

This cause worse performance than in memory operations. At this point, by checking

memory status and number of files needed to process, CSP can use memory as much

as possible.

53

CHAPTER 5. Conclusion and Future Work

In the cloud environment, data owners outsource their data by storing remotely.

However, cloud server may not be fully trusted when a sensitive data is considered.

Therefore, data privacy and integrity are equally important. In this study, a scheme has

been presented for verifying the data integrity and privacy by integrating integrity

auditor into data possession scheme.

In [29], Dynamic provable data possession (DPDP) considers dynamic data

operations, however it was lacking of cryptographic aspect. By fulfilling cryptographic

aspect of that working, it is rendered as more secure.

In [12], Provable Data Possession (PDP) considers performance and security.

But it was missing dynamic operations (adding new block(s) into, deleting block(s),

updating block(s)) over files which uploaded to the cloud.

This DPDP focuses fulfilling missing sides of [12] and [29]; also compounds

powerful sides. Besides, by integrating integrity auditor, this model becomes more

relevant to real life. Integrity auditor can sustain prejudgments about cloud storage

security, which are still disputed by users and companies. As discussed in 2.1, any

sanctions can be administered about cloud providers, which provisioned by integrity

auditor reports.

Several experiments have been conducted by integrating IA; also Skip List

(SL) and Merkle Hash Tree (MHT) has been evaluated in the proposed system.

MHTs provides better performance over SLs. However, even MHTs can prove

the integrity of a whole file, it does not support CRUD operations over files that

uploaded to cloud. At this point, various implementations of skip lists are stepping into

the breach by supporting CRUD operations. Besides, skip lists have decent

performance for CRUD operations.

54

Bigger blocks produce lesser number of blocks. However, general system

performance is inversely proportional to number of blocks. Inherently, time needed to

prepare packet and send packet over a network is directly proportional to the size of

the file.

Activating IA on the system has not negative effect over system since it only

changes start and finish points of the few flows. However, IA provides better control

over checking integrity of the files. IA takes the burden of checking integrity of files

from users’ shoulder and automatizes integrity check process. Activating encryption

of packet causes more time to be spent on PrepareFile and StoreFile steps. It is a

tradeoff between performance and privacy; but it has slight effect on time needed for

steps. Even it reduces performance a bit, if data is very sensitive, it must be activated.

Some suggestions can be offered to increase the performance of the system.

These suggestions are mentioned below.

Encryption tests can be implemented using CBC mode. If it does not reduce

performance much, it can be applicable for security critical systems.

Another idea to get better performance is parallelizing steps when possible.

Block related operations, which is independent of other blocks’ status can be

parallelized. This must be achieved by refactoring code for parallel computing. While

preparing a file; creating packets of blocks are block independent operation. At CSP

side, after whole packet become decrypted, rest of operation can be parallelized too.

Even two different resources can do those steps independent from other, nice

contribution to performance can be achieved.

R1

REFERENCES

[1] K. Jamsa, Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business

Models, Mobile, Security and More, Jones & Bartlett Publishers, 2011.

[2] P. Mell and T. Grance, "The NIST Definition of Cloud Computing,"

Recommendations of the National Institute, 2009.

[3] "PixGood," [Online]. Available: http://pixgood.com/cloud-computing-

architecture.html. [Accessed 01 01 2015].

[4] R. Buyya, J. Broberg and A. M. Goscinski, Cloud Computing Principles

and Paradigms, 2010.

[5] K. Remde, "SaaS, PaaS, and IaaS.. Oh my! ("Cloudy April" – Part 3),"

Microsoft TechNet Blogs, 03 04 2011. [Online]. Available:

https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-

and-iaas-oh-my-cloudy-april-part-3/. [Accessed 01 01 2015].

[6] T. Dillon, C. Wu and E. Chang, "Cloud computing: issues and

challenges," in 24th IEEE International Conference, 2010.

[7] "big data guide: Overview of big data technology, use cases, tutorials,

markets," 01 2014. [Online]. Available: http://bigdata-

guide.blogspot.com.tr/2014/01/types-of-cloud-computing-public-

private.html. [Accessed 01 01 2015].

[8] Y. Cherdantseva and J. Hilton, "A Reference Model of Information

Assurance & Security," in Availability, Reliability and Security (ARES),

2013 Eighth International Conference, 2–6 September 2013.

[9] A. A. Muthitacharoen, R. Morris., T. M. Gil and B. Chen., "Ivy: A

read/write peer-to-peer file system," 5th Symposium on Operating

Systems Design and Implementation, 2002.

R2

[10] J. Li, M. Krohn, D. Mazi`eres and D. Shasha, "Secure untrusted data

repository (SUNDR)," Symposium on Operating Systems Design and

Implementation, 2004.

[11] U. Maheshwari, R. Vingralek and W. Shapiro, "How to build a trusted

database system on untrusted storage," OSDI, 2000.

[12] G. Ateniese, R. D. Pietro, L. V. Mancini and G. Tsudik, "Scalable and

efficient provable data possession," Proceedings of the 4th international

conference on Security and privacy in communication networks, 2008.

[13] I. Clarke and e. al., "Freenet: A distributed anonymous information

storage and retrieval system.," 2001.

[14] "Distributed File System For Cloud," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Distributed_file_system_for_cloud.

[Accessed 03 01 2016].

[15] Q. Zhang, L. Cheng and R. Boutaba, "Cloud computing: state-of-the-art

and research challenges," Journal of internet services and applications,

pp. 7-18, 2010.

[16] CSA, "Top Threats to Cloud Computing v1.0," CSA, 2010.

[17] CSA, "The Notorious Nine Cloud Computing Top Threats in 2013,"

CSA, 2013.

[18] G. Ateniese, R. Burns, R. Curtmola, J. Herring and L. Kissner, "Provable

Data Possession at Untrusted Stores," ACM Conference on Computer and

Communications Security-CCS 2007, 2007.

[19] Y. Deswarte, J.-J. Quisquater and A. Saïdane, "Remote integrity

checking: How to trust files stored on untrusted servers," Integrity and

Internal Control in Information Systems VI, 2004.

[20] P. Golle, S. Jarecki and I. Mironov, "Cryptographic primitives enforcing

communication and storage complexity.," in Financial Cryptography,

2002.

R3

[21] R. Johnson, D. Molnar, D. Song and D. Wagner, "Homomorphic

signature schemes.," Topics in Cryptology—CT-RSA, pp. 244-262, 2002.

[22] M. Krohn, M. Freedman and D. Maziéres, "On-the-fly verification of

rateless erasure codes for efficient content distribution.," IEEE

Symposium on Security and Privacy, pp. 226-240, 2004.

[23] G. Filho, D. L. Barreto and P. S. L. Messeder, "Demonstrating data

possession and uncheatable data transfer.," IACR Cryptology ePrint

Archive, 2006.

[24] T. Schwarz and E. L. Miller, "Store, forget, and check: Using algebraic

signatures to check remotely administered storage," 26th IEEE

International Conference, 2006.

[25] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferrer and J.-J.

Quisquater, "Time-bounded remote file integrity checking," 2004.

[26] G. Yamamoto, S. Oda and K. Aoki, "Fast integrity for large data,"

SPEED, pp. 21-32, 2007.

[27] M. N. Krohn, M. J. Freedman and D. Mazi`eres, "On-the-fly verification

of rateless erasure codes for efficient content distribution," IEEE

Symposium on Security and Privacy, 2004.

[28] A. Oprea, M. Reiter and K. Yang, "Space-Efficient Block Storage

Integrity," NDSS '05, 2005.

[29] C. C. Erway, A. Küpçü, C. Papamanthou and R. Tamassia, "Dynamic

Provable Data Possession Categories and Subject Descriptors," ACM

Conference on Computer and Communications Security, pp. 213-222,

2009.

[30] B. Chen and R. Curtmola, "Robust Dynamic Provable Data Possession,"

In Proceedings of ICDCS Workshops, pp. 515-525, 2012.

[31] Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu and S. S. Yau, "Efficient

provable data possession for hybrid clouds," In Proceedings of ACM

R4

Conference on Computer and Communications Security, pp. 756-758,

2010.

[32] Y. Zhu, H. Hu, G. Ahn and M. Yu, "Cooperative Provable Data

Possession for Integrity Verification in Multicloud Storage," In

Proceedings of IEEE Trans. Parallel Distrib. Syst., pp. 2231-2244, 2012.

[33] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen and A. V. Vasilakos,

"Security and privacy for storage and computation in cloud computing,"

Information Sciences, vol. 258, pp. 371-386, 2014.

[34] M. S. Niaz and G. Saake, "Merkle Hash Tree based Techniques for Data

Integrity of Outsourced Data," GI-Workshop on Foundations of

Databases, 2015.

[35] W.Pugh, "Skip lists: A probabilistic alternative to balanced trees,"

Commun. ACM, 1990.

[36] G. P. Biswas, "Diffie-Hellman technique: extended to multiple two-party

keys and one multi-party key," Information Security, pp. 12-18, 2008.

[37] M. Rouse, "TechTarget," 12 October 2014. [Online]. Available:

http://searchcloudcomputing.techtarget.com/definition/public-cloud.

A1

APPENDIX A: COMPARISON OF PREVIOUS SYSTEMS

Scheme Type
CSP

Complexity

CU

Complexity

Communication

Complexity
Privacy

Multi

Cloud

Block

Operations
Op

→ + * - S C

PDP HomT 𝑶(𝒕) 𝑶(𝒕) 𝑶(𝟏) √ ◊ √ √

SPDP MHT 𝑶(𝒕) 𝑶(𝒕) 𝑶(𝒕) √ √* √* √* √

DPDP-I SL 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) √ √ √ √ √ √

DPDP-II SL 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) √ √ √ √ √

SecCloud MHT 𝑶(𝒕) 𝑶(𝒕) 𝑶(𝒕) √ √ √

IA MHT 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕) √ √ √ √ √ √ √

IA SL 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕𝒍𝒐𝒈 𝒏) 𝑶(𝒕) √ √ √ √ √ √ √

Table 2: Comparison of Previous Schemes

B1

APPENDIX B: DETAILED FLOW OF SYSTEM

Figure 28: Detailed Flow of System

C1

APPENDIX C: DETAILED TEST RESULTS

Table 3: Test Results for PrepareFile Phase

*Orange to Dark Columns: Block Size(Mb), Light to Dark Blue Rows: File Size(Mb), Results: Intervals(ms)

2 4 8 16 32 2 4 8 16 32

128 3,389 3,231 3,110 3,077 3,062 3,372 3,227 3,125 3,049 3,028

256 5,167 4,714 4,503 4,430 4,419 5,182 4,728 4,539 4,461 4,401

512 17,889 16,810 16,341 16,158 15,954 18,050 16,625 16,177 15,883 15,650

1024 76,870 52,505 47,429 44,124 40,485 76,716 52,242 47,191 44,432 40,201

2048 157,255 108,011 94,629 89,556 80,878 147,696 107,794 94,912 87,758 84,933

128 2,931 2,788 2,680 2,673 2,636 2,906 2,801 2,691 2,631 2,616

256 4,448 4,068 3,899 3,814 3,818 4,503 4,070 3,921 3,840 3,815

512 15,420 14,305 14,118 13,976 13,752 15,541 14,430 13,896 13,675 13,569

1024 66,185 45,626 40,931 37,946 35,221 65,055 45,346 40,632 38,212 34,693

2048 145,406 90,293 83,084 76,132 73,542 127,166 93,673 82,574 75,648 73,127

128 2,236 2,067 2,021 1,978 1,956 2,181 2,036 1,972 1,960 1,916

256 3,513 3,163 2,904 2,883 2,841 3,410 3,063 3,032 2,979 2,918

512 11,806 10,926 10,458 10,324 10,162 11,425 10,623 10,337 10,212 10,282

1024 47,659 35,703 30,828 30,004 27,165 51,476 38,659 29,683 27,503 26,050

2048 105,078 69,287 58,224 51,030 49,876 100,433 71,478 61,598 55,902 53,508

128 1,948 1,803 1,738 1,721 1,684 1,900 1,759 1,694 1,688 1,654

256 3,025 2,720 2,523 2,529 2,472 2,939 2,628 2,616 2,589 2,532

512 10,319 9,582 9,098 8,910 8,760 9,928 9,231 8,890 8,732 8,781

1024 41,463 30,704 26,512 25,923 23,389 44,836 33,363 25,795 23,873 22,664

2048 85,647 64,233 52,775 45,102 40,687 86,473 61,400 53,652 47,461 45,588

N
o

 E
n

cr
yp

ti
o

n SL
M

H
T

with IA without IA

W
it

h
 E

n
cr

yp
ti

o
n

SL
M

H
T

C2

Table 4: Test Results for Integrity Challenge Response

*Orange to Dark Columns: Block Size(Mb), Light to Dark Blue Rows: File Size(Mb), Results: Intervals(ms)

2 4 8 16 32

128 5,328 2,787 1,645 1,123 941

256 10,627 5,617 3,375 2,351 1,840

512 21,373 11,362 6,546 4,553 3,653

1024 42,982 22,218 13,025 9,344 7,473

2048 86,200 44,098 26,593 18,332 14,504

128 3,267 1,921 1,288 1,026 885

256 6,682 3,886 2,594 1,964 1,730

512 13,130 7,814 5,257 4,077 3,404

1024 26,496 15,459 10,447 7,975 6,698

2048 52,756 31,595 21,301 15,832 14,061

SL
M

H
T

C3

Table 5: Test Results for CheckIntegrity Step

*Orange to Dark Columns: Block Size(Mb), Light to Dark Blue Rows: File Size(Mb), Results: Intervals(ms)

2 4 8 16 32

128 1,139 544 286 139 66

256 2,151 1,112 528 268 117

512 4,314 2,113 1,119 487 259

1024 8,399 4,231 2,117 1,208 525

2048 17,094 8,038 4,148 2,140 1,001

128 1,002 513 247 137 79

256 1,927 918 511 238 107

512 3,802 1,839 941 506 209

1024 7,704 3,687 1,754 924 449

2048 14,829 7,356 3,641 1,841 953

SL
M

H
T

D1

APPENDIX D: PSEUDOCODES

Function CreateValidationData(String filePath, Int ValidationStructureType)

 ValidationContent valContent

 List hashFileList = filePath.findFiles(“*hash”)

 HashfileList.orderAlphabetical()

 Switch(ValidationStructureType)

 case “MHT”:

 valContent=new MHT()

 case “SL”:

 valContent=new SL()

 For(String hashFilePath:hashFileList)

 String hashValue = CreateSHA2OfFile(hashFilePath.read())

 valContent.push()

 return valContent

End Function

Algorithm 1: Pseudocode of Creation of V

Function PrepareFile(String filePath)

 List<String> blockFileList

 List<String> packetFileList

 blockFileList = SplitFile(filePath)

 For(String blockPath: blockFileList)

 packetFileList.add(CreatePacketofBlock(OP_NEW, blockPath, ID, S,

K))

 plainPackPath = AppendBlockFiles(filePath, packetFileList)

 encryptedFilePath = EncryptFileWithAES(plainPackPath, K)

 return encrpytedFilePath

End Function

Function PrepareBlock(String blockPath, int operationType)

 String packPath

 List<String> packetFileList

 Switch(operationType)

 case OP_INS:

 packPath= CreatePacketofBlock(OP_INS, blockPath, ID, S, K)

 case OP_UP:

 packPath= CreatePacketofBlock(OP_UP, blockPath, ID, S, K)

 case OP_DEL:

 packPath= CreatePacketofBlock(OP_DEL, blockPath, ID, S, K)

 packetFileList.add(packPath)

D2

 plainPackPath = AppendBlockFiles(filePath, packetFileList)

 encryptedFilePath = EncryptFileWithAES(plainPackPath, K)

 return encrpytedFilePath

End Function

Function SplitFile(String filePath)

 File file = new File(filePath)

 List blockFileList

 Int i = 1

 While (byte[] blockContent = read(file, blockSize)

 blockFileName = filePath + “.” + i

 WriteToFile(blockFileName, blockContent)

 blockFileList.add(blockFileName)

 return blockFileList

End Function

Function CreatePacketOfBlock(int opType, String blockPath, String ID,

String S, String K)

 Int index = blockPath.getExtension()

 String hashFilePath = CreateSHA2OfFile(blockPath)

 String QID = CreateSHA2OfString(ID)

 String r = ToString(GetRandomNumber(16))

 String metaData = i + hashFilePath + QID + S + R

 String encMetaData = EncryptStringWithAES(metadata, K)

 String packetPath = WritePacketOfBlock (blockPath + “.bpack”,

encMetaData, blockPath)

 Return packetPath

End Function

Function WritePacketOfBlock(String blockPath, String encMetaData, String

blockPath)

 File packetBlock = new File(blockPath)

 File blockFile = new File(blockPath)

 String content = blockFile.read()

 blockFile.write(content)

 blockFile.write(encMetaData)

 return blockPath

End Function

Function AppendBlockFiles(String filePath, List fileBlockPaths)

D3

 File plainFile = new File(filePath + “fpack”)

 For(String blockPath: fileBlockPaths)

 String content = ReadFile(blockPath)

 plainFile.write(content)

 return plainFile.getPath()

End Function

Algorithm 2: Pseudocode of PrepareFile and PrepareBlock

Function CheckIntegrity(Object vBase, object v)

 If(v.type == MHT){

 baseData = ((MHT)vBase).getRoot()

 valData = ((MHT)v).getRoot()

 return CheckIntegrity(baseData, valData)

 Else

 baseData = ((SL)v).getRoot()

 validationData = ((SL)v).getRoot()

 return CheckIntegrity(baseData, valData)

End Function

Function CheckIntegrity(MHTPart pBase, MHTPart p)

 If(pBase == null && p ==null)

 return true

 If(pBase.value == p.value)

 Return(CheckIntegrity(pBase.left, p.left) &&

CheckIntegrity(pBase.right, p.right)

 Else

 Return false

End Function

Function CheckIntegrity(SLPart pBase, SLPart p)

If(pBase == null && p ==null)

 return true

 If(pBase.value == p.value)

 Return(CheckIntegrity(pBase.bottom, p.bottom) &&

CheckIntegrity(pBase.right, p.right)

 Else

 Return false

End Function

Algorithm 3: Pseudocode of CheckIntegrity

	OLE_LINK77
	OLE_LINK78
	OLE_LINK110
	OLE_LINK111
	OLE_LINK72
	OLE_LINK68
	OLE_LINK69
	OLE_LINK70
	OLE_LINK71
	OLE_LINK62
	OLE_LINK63
	OLE_LINK64
	OLE_LINK65
	OLE_LINK66
	OLE_LINK67
	OLE_LINK103
	OLE_LINK1
	OLE_LINK2
	OLE_LINK73
	OLE_LINK74
	OLE_LINK75
	OLE_LINK76
	OLE_LINK35
	OLE_LINK36
	OLE_LINK5
	OLE_LINK6
	OLE_LINK10
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK24
	OLE_LINK112
	OLE_LINK13
	OLE_LINK14
	OLE_LINK15
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9
	OLE_LINK11
	OLE_LINK12
	OLE_LINK16
	OLE_LINK17
	OLE_LINK25
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK29
	OLE_LINK30
	OLE_LINK31
	OLE_LINK32
	OLE_LINK33

