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ABSTRACT

TRAJECTORY TRACKING CONTROL OF FLEXIBLE JOINT PARALLEL
MANIPULATORS SUBJECT TO IMPACT

DENIZLI, Mustafa Semih
M.Sc., Department of Mechanical Engineering
Supervisor: Prof.Dr. Sitk1 Kemal IDER

February 2016, 99 pages

In this study, trajectory tracking control method for parallel manipulators having joint
elasticity is examined and in addition the stability and the performance were investigated
when the manipulator is subject to an impact with another object. Firstly, dynamic analysis
for the parallel manipulators is carried out and the system equations of motion are derived by
using Lagrange technique. Then the system impulse-momentum equations are derived.
Moreover, an inverse dynamics control method is presented which is based on an input-output
relation between the torques and end-effector position variables. In the case study, a 3-RPR
planar parallel manipulator with three legs having joint elasticity is simulated considering an
impact with a point mass body and all of these simulations are conducted by Matlab® and
Simulink® software programs. After the simulations, it is observed that controller retrieved

the desired trajectory and the results are provided at the end of the study.

Keywords: Flexible joint, impact, parallel manipulator, trajectory tracking control.
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CARPMAYA MARUZ BIRAKILAN ESNEK EKLEMLI PARALEL
MANIPULATORLERIN YORUNGE TAKIiP KONTROLU

DENIZLI, Mustafa Semih
Yiiksek Lisans, Makine Miihendisligi Anabilim Dali
Tez Yoneticisi: Prof .Dr. Sitki Kemal IDER

Subat 2016, 99 sayfa

Bu tez calismasinda, esnek eklemli paralel manipiilatorlerin yoriinge takip metodu islenmistir
ve buna ek olarak paralel manipiilatoriin bir bagka cisimle ¢arpismaya maruz birakildigi
durumdaki sabitlik ve performans incelemeleri yapilmistir. Oncelikli olarak paralel
manipiilatorlerin dinamik analizi yapilmis ve hareket denklemleri Lagrange formiilasyonu
kullanilarak ¢ikarilmistir. Daha sonrasinda ise impuls-momentum denklemleri elde edilmistir.
Bunlara ek olarak, torklar ve ug islemci pozisyon degiskenleri arasindaki giris/¢ikis iliskisine
dayanan ters dinamik kontrol metodu islenmistir. Durum ¢alismasinda ise bir baska cisimle
carpmaya maruz birakilan esnek eklemli li¢ bacakli diizlemsel bir paralel manipiilator (doner,
prizmatik, déner eklemli) incelenmistir ve tiim simiilasyon ¢alismalar1 Matlab® ve Simulink®
programlar1 kullanilarak yiiriitiilmiistiir. Simiilasyonlar sonucunda istenen yoriingenin takip

edildigi gézlenmistir ve simiilasyon sonuglar1 calismanin sonunda paylasilmistir.

Anahtar Kelimeler: Esnek eklem, carpma, parallel maniipilator, yoriinge takip kontrolii.
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CHAPTER 1

INTRODUCTION

1.1 Literature Search

Manipulators are assistive mechanical structures that help the operators to carry heavy loads
or to perform a task repetitively and they are classified by their kinematic structures as a serial
manipulator having an open loop chain, a parallel manipulator having a closed loop chain and
a hybrid manipulator having both open and closed loop chains together. Parallel manipulators,
sometimes called platform manipulators, are examined in many researches and there are
numerous industrial and medical applications using parallel manipulators since they can carry
heavier loads with high accuracy compared to serial manipulators due to their structure.
Airplane and earthquake simulators, welding machines, adjustable articulated trusses, mining
machines and computer-assisted surgery robots can be listed as some of these applications.
Nevertheless there are major problems such as relatively small workspace, design and control
difficulties [1].

According to Good et al. [2] joint flexibility should be taken into consideration to prevent
performance loss in controller design. Besides, flexible joints can be used in manipulators in
the presence of impact in order to decrease the effect of the impact. Transmission elements,

couplings and harmonic drives can be the source of this joint elasticity.

In many studies joint flexibility is included in the control of manipulators. Spong [3]
presented a dynamic model of flexible joint robot manipulators and studied its control. His
model includes joint elasticity and dynamic coupling between the actuators and the links and
this study is considered as a significant tractable model.

Forrest-Barlach and Babcock [4] studied the effects of drive train compliance for cylindrical
arm mechanism and developed a position controller using inverse dynamics control. The
inverse dynamic control method, sometimes referred as computed torque method, is widely
used in studies involving dynamics and control of a parallel manipulator and it is also used in
my thesis study. Method is based on eliminating intermediate variables and creating a relation

between input torques and end-effector position variables in forth order level.



Another study involving an inverse dynamics control of flexible-joint robots is carried out by
Jankowski and Van Brussel [5]. In their study, dynamical model for a flexible-joint
manipulator, which is derived from significant models examined previously, is used in non-
differentiated form and inverse dynamics control method is utilized for discrete time in order
to reduce the complexity of the computation which is considered as one of the main

disadvantages of using an inverse dynamics control method.

Ider [6] presented an inverse dynamics control method for constrained flexible-joint
manipulators involving joint structural damping to derive a hybrid force and motion trajectory
tracking control law. In this study, implicit numerical integration methods are used to solve
singular set of higher order differential equations since this model is based on acceleration

level inverse dynamics equations.

Ider and Ozgéren [7] studied the inverse dynamics control method in order to propose a
trajectory tracking control law for flexible-joint manipulators.

Parallel manipulators are one of the most studied research topics in robotics and all of the

studies mentioned here so far only include serial manipulators.

Ider and Korkmaz [8] applied inverse dynamics control method in order to achieve trajectory
tracking control of flexible-joint parallel manipulators including structural damping. In this
study, dynamic equations are derived by disconnecting tolerable number of unactuated joints
in order to obtain an open-tree structure. After getting acceleration level inverse dynamics
equations, intermediate variables are eliminated and input-output relation between the torque
and actuated joint variables is found. 2-RRR planar manipulator is examined in the case study

in order to verify the algorithm.

Ider [9] derived an inverse dynamics algorithm with singularity robustness and examined a
planar 2-RPR parallel manipulator that is considered as a manipulator having minimal
interference which enables more functional workspace. High-order derivative information is
used in order to modify dynamic equations due to prevent possible problems in ill condition

of force coefficient matrix.



Ider and Korkmaz [10] studied inverse dynamics control method and examined hybrid force

and control of parallel manipulators in the presence of joint flexibility.

Kiligaslan [11] presented a control method involving a state-dependent Riccati equation to
control elastic-joint parallel manipulators and examined a 2-RRR planar parallel manipulator

to check the effectiveness of the method derived in the study.

As it mentioned before, parallel manipulators are widely used in industrial and medical
applications and a collision with another object(s) can occur during the process since the
environment is not a closed system. Usually impacts, which are the most common type of
dynamic loading conditions, are unexpected conditions and those impulsive forces can
suppress other forces. Both jumps in system velocities and bumps in positions occur which is
considered as a difficult condition to control. Since accuracy is essential during operations
especially in a surgery operation, impact phenomena is needed to be focused on. All of the
studies mentioned so far does not concerned with a manipulator subjected to an impact.

Haug and Wehage [12] carried out dynamic analysis for systems including impulsive forces
and impact and derived the equations of motion and impulse-momentum relations. In the case

study, a weapon mechanism and a trip plow is examined.

Ilkay [13] examined flexible multi-body mechanical systems and presented an impact
dynamics model in order to observe the impact response. Generalized impulse momentum
equations are used but with assumptions of short-term impulse and constant coefficient of
restitution during impact time. A slider-crank mechanism, a sliding cantilever beam with a
rigid rod attached to the tip and a cantilever beam with a tip-point mass are studied in the case

study.

Liu et al. [14] studied impact dynamics and control of a flexible dual-arm space robot which
IS carrying out a capturing operation. The motivation of this study is to investigate the effect
of payload collision due to capturing an object. The dynamic model is presented using
Lagrange formulation and a PD controller is designed since control of space manipulators is

difficult in the meaning of stabilization.

Gherman et al. [15] studied kinematics and dynamics of a parallel hybrid surgical robot and

applied inverse dynamic control.



Angeles and Zhang [16] analyzed the dynamics of a flexible-joint manipulator subjected to an
impact. Impulse potential energy and generalize impulse momentum equations are derived
with the assumptions of infinitesimal impact time, unchanged body positions during impact,
point-touch impact and unchanged body inertias. A 2-link flexible revolute joint manipulator

is examined in the case study.

Qian and Zhang [17] studied the dynamics of multi-link manipulators subject to an impact in
the presence of link and joint flexibility. Links are considered as Euler-Bernoulli beams. After
getting dynamic equations, a mathematical model is formed and impact forces are examined.
A spatial manipulator including both flexible link and flexible joint is examined to verify the

model.

Zhang et al. [18] presented a continuous contact model including a space manipulator
colliding with a soft environment. Due to the soft environment, it is stated that collision time
cannot be considered as instant so that a continuous model is needed to be studied. Hence
continuous force is taken into consideration as a collision force. The model is derived
considering Hertz law including hysteresis damping. A 7-dof space manipulator subject to an

impact with a free-floating object is examined to observe the effects of collision.

1.2 Objective

The main objective of this study is to achieve a trajectory tracking control of a flexible-joint
parallel manipulator subjected to an impact with another point mass object during its process.
After the system equations of motion derived by using Lagrange formulation, intermediate
variables are eliminated and the control law is derived. System impulse-momentum equations
are also derived. During the simulation time, control torque data, end-effector position data,
end-effector velocity data, joint position data, joint velocity data and angular position of the

actuator rotor data are collected and the corresponding plots are drawn.

1.3 Outline of the Study

This study, containing five chapters, aims to examine the dynamics and control of a parallel

manipulator subjected to an impact step by step including a case study.



Chapter 1 is the introduction part, presenting a brief history of studies carried out before
related with parallel manipulators, joint flexibility and impact. The objective of this study is
also being mentioned in this part.

In Chapter 2, the basic assumptions that are taken into consideration in the dynamic model
and the concept of flexible joint are presented. Then Lagrange equations and energy
expressions are mentioned. Lastly, system equations of motion for a parallel manipulator are

derived.

Chapter 3 addresses the impact dynamics. The assumptions are mentioned at the beginning of

this chapter and then the system impulse-momentum equations are presented.

In Chapter 4 a series of simulation studies are carried out involving a 3-RPR parallel flexible-
joint manipulator which collides with an object during its process. The same procedures
followed in the previous chapters are also valid in this example. First of all, the dynamic
model of the manipulator is investigated and then system impulse-momentum equations are
derived. After that the governing control law is derived and the simulation model is presented.

Lastly, simulations are carried out and the results are given.

Chapter 5 is the conclusion part including a summary of this thesis study, comments about the

simulation results and proposals for the further studies.



CHAPTER 2

DYNAMIC ANALYSIS OF PARALLEL MANIPULATORS

2.1 Assumptions

Spong states two major assumptions for a dynamic model of the flexible joint robot

manipulators [3] which can be listed as,

1. Rotation of the rotor itself is the source of rotor Kinetic energy.
2. Rotor inertia is symmetric about the axis of rotor rotation.
In this study there are also two additional assumptions taken into consideration in the dynamic

analysis,

1. All of the links in the system are rigid links.
2. Viscous damping in the joints and the rotor dampings are ignored.

2.2 Flexible Joint Model

Gear box (1;)

Figure 1 Dynamic Model of the Flexible Joint

Dynamic model of a flexible joint is shown in Figure 1. As it is seen in the figure, actuator is

placed on link-1 and link-2 is driven by link.



Joint elasticity is modeled as torsional spring, where K; represents the spring constant and
damping is modeled as torsional damper, where D; is the damping constant. §; is the angular
position of the driven link. 7; is the ratio of speed reduction and ; is the actuator variable

which will all be explained in details in further Section 2.8.

2.3 Generalized Coordinates and Generalized Coordinates VVectors

Parallel manipulators are closed-loop structures and in the dynamic analysis of parallel
manipulators, sufficient numbers of joints are disconnected for the simplicity in order to have
an open-tree system. In an open-tree system with m degree of freedom, the first set of
generalized coordinates including the joint variables can be written as,

Gl = {91, 92, ,Hm} (21)

The vector of generalized coordinates corresponding to the joint variables, which are basically
the relative positions of the joints, can be expressed as,

ﬁ = [91, 92, ey Qm]T (22)

where m is the number of joints in the system.

The expression in Equation 2.2 includes both actuated and unactuated joint variables.

The second set of generalized coordinates including the actuator variables are defined as,

GZ = {¢11 ¢2, e ¢n} (23)

where n is the number of actuators in the system which is equal to the degree of freedom of
the robot.

Equation 2.3 implies that the vector of second generalized coordinates is the following,

—_

¢ = [¢11 ¢2' "'l¢n]T (24)



2.4 Lagrange Equations

The general form of the Lagrange equation can be written as,

()~ o= fi (25)

axk axk axk
where

K is the total kinetic energy of the system
P is the total potential energy of the system

fi is the non-potentialized generalized forces

According to Equation (2.5), Lagrange equation for the first set of generalized coordinates can

be written as,

d (9K Cpn .
E(a_éi)_a_el—l_a_el-l__i_fl +f, i=1..,m (2.6)

where

D is the total dissipation function of the system
fi is the non-potentialized generalized forces due to drive trains

fi is the generalized constraint forces due to disconnecting the joints

With the same methodology, Lagrange equation for the second set of generalized coordinates,

the actuator variables, is the following,

d (0K 0K ' .
5<@>_@+T%+£ f ji=1,..,n 2.7)

fj' represents the non-potentialized generalized forces for the second set of generalized

coordinates.



2.5 Kinetic Energy Expressions

As it mentioned before, Lagrange equations include kinetic energy terms. Hence, Kinetic

energy expressions for both links and actuators are needed to be found.

Kinetic energy expression for each link in the system can be formulated as,

1 = L= L 1 L sl L ,
KElL = Eml-L(VGl- )TVGi + E(a)l )TIi w; L= 1, e, m (28)
m;L  is the mass of i-th link
— L
Ve is the velocity vector of mass center of the i-th link due to fixed reference frame
@L is the angular velocity vector of the i-th link due to fixed reference frame

fiL Is the moment of inertia matrix of the i-th link due to fixed reference frame

Contributing terms in Equation (2.8), which are the vector of translational velocity and the

vector of angular velocity, can be explicitly written as the following,

—~ L — L .

Vei =3M M 6 i=1,..,m (2.9)
L m L . i

W, =Xre1 Wi Ok i=1,..,m (2.10)
— L

I, is the influence coefficient vector corresponding to the velocity vector

—_

L. . - . .
Vi is the influence coefficient vector corresponding to the angular velocity vector

Kinetic energy expression for each actuator in the system can be formulated as,

1 ~ A~ A 1 _ArmeA_ A .
KEf = -miA(Vg; )'Vej +5 (@) @ J=L..n (2.11)

mjA is the mass of j-th actuator

- A
Ve;  is the velocity vector of mass center of the j-th actuator due to fixed reference frame

@A is the angular velocity vector of the j-th actuator due to fixed reference frame



is the moment of inertia matrix of the j-th actuator due to fixed reference frame

Contributing terms in Equation (2.11), which are the vector of translational velocity and the

vector of angular velocity, can be explicitly written as the following,

- A m = A )

Vej =m0y 6 j=1,..,n (2.12)
— A m — A .

W] = Zk:l lejk Hk ] = 1,...,7'1 (213)

— A
if is the influence coefficient vector corresponding to the velocity vector

—

‘ijA is the influence coefficient vector corresponding to the angular velocity vector

Thus, the total kinetic energy of the system equals to,

KErotar = Xi=1 KEi + LR-1KE; (2.14)
2.6 Potential Energy Expressions

Lagrange equations also include potential energy expressions for both links and actuators.

Potential energy expression for each link in the system can be formulated as,
PEF = —g™Tm;L7" i=1,..,m (2.15)

g’ is the transpose of the vector of gravitational acceleration

m;*  is the mass of the i-th link

Fl-L is the position vector of the center of mass of the i-th link due to fixed reference frame

In similar manner potential energy of each actuator is,

N - A 1 .
PEf' = —§"m"5" + JKi(¢; — 6>  j=1..n (216)

10



gr is the transpose of the vector of gravitational acceleration

m;#  is the mass of the j-th actuator

K; Is the joint spring constant for the j-th transmission

Sum of Equation (2.15) and Equation (2.16) will give the total potential energy of the system

which is,
PErota = ;cn=1 PEI% + ZLl:lPEI? (2.17)
2.7 Dissipation Function Expressions

Since viscous damping and rotor damping are neglected, the main source of the dissipative

function is the structural damping in the actuated joints, which can be formulated as,

1 o .
D = -¥i-1 D" (6; — ¢)? (2.18)
where

D} is the damping constant of structural damping in the j-th actuated joint.

2.8 System Equations of Motion

As it mentioned before in Section 2.3, there are two major types of generalized forces for a
parallel manipulator system; non-potentialized forces and constraint forces. Applying virtual
work method, which is one of the basic energy methods, for each set of generalized

coordinates, non-potentialized forces would be found.

Since there is no external generalized forces in the system, the virtual work expression for the
first set of generalized coordinate is the following,

SW;, =0 i=1,..,m (2.19)

11



Actuator variables is the torques after speed reduction thus, the virtual work expression for the

second set of generalized coordinate is written as,
W, =T;6¢; j=1,..,n (2.20)
In Equation (2.20) T; represents control torque which can be denoted as,

T; = roj“ j=1,..,n (2.21)

T is torque supplied by the j-th actuator

7j is speed reduction ratio of the j-th flexible joint

The speed reduction ratio, 7, is the ratio of angular position of the j-th actuator’s rotor with

respect to the link to the angles [19], which is written explicitly as the following,

)

;= =1,..,n 2.22
] ¢j ] ( )

According to Equation (2.19) and Equation (2.20), non-potentialized forces corresponding to

the first and second generalized coordinates are derived respectively as,

fi=0 i=1..,m (2.23)

fj’ =T. j=1,..,n (2.24)

Since there are m-n number of closure constraint equations after disconnecting sufficient
numbers of joints, virtual work expression corresponding to those constraint equations at the

velocity level is the following,

m.B;i66,=0 j=1,..,(m—n) (2.25)
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Integrated form of Equation (2.25) can be written in terms of constraint reaction forces, A;,

which is,
Thus, constraint forces would be equal to the following equation,

fi = Yo Bji/lj j=1,..,(m=n) (2.27)

When the related formulas derived so far are plugged into the Lagrange equations (see
Equation 2.6 and Equation 2.7), it yields two major sets of equations of motion for the first set
of generalized coordinates and the second set of generalized coordinates which can be shown
respectively as,

Zl:l Mikfli + Qi + Di + Ki - Zzlz_lnlkBki =0 i = 1, e, m (228)
7 ¢ = Di(0; — ;) — K;(6; — b)) =T, j=L..n (2.29)
Equation (2.28) can be written in matrix form as,

ALY = RT

My+Q+D+K—-BR 1=0 (2.30)
where

M™  is the m x m symmetric positive definite generalized mass matrix

ﬁ is the m x 1 acceleration vector including both actuated and unactuated joint variables
5 is the m x 1 vector including centrifugal, gravitational and coriolis terms

D  isthe mx 1 vector including damping terms

K is the m x 1 vector including stiffness terms
BR" isthe transpose of the (m — n) x m constraint matrix
2 is the (m — n) x 1 vector including constraint forces

13



Equation (2.29) can be written as,

rg-D°(i*—¢)-R@ —¢) =T (2.31)
where
I is the n x n diagonal matrix including the inertial terms of links

D¢ is the n x n diagonal matrix including the inertial terms of actuated variables
ﬁ“ is the n x 1 velocity vector including actuated joint variables

K is the n x n diagonal matrix including spring constants

T is the n x 1 vector of control torques

14



CHAPTER 3
IMPACT DYNAMICS

3.1 Introduction
It is considered that during an ongoing process, a point mass collides the manipulator.
Likewise in the dynamic model of the flexible joint presented in Section 2.1, there are
essential assumptions taken into consideration in impact dynamics [13] which are the
followings,

1. Impact time is so short so that large impacting forces come up and positions do not

change during the collision time
2. Coefficient of restitution is constant during the collision time.

3.2 System Impulse-Momentum Equations

The combined equation of both manipulator and colliding body can be written as,

Mi+Q+D+K—-BTA+FP =0 (3.1)
where
M is (m+ 2)x (m+ 2) mass matrix of the combined system including both (mxm)

mass matrix of the manipulator and (2x2) mass matrix of the colliding body

is (m + 2) x 1 vector containing acceleration expressions of both manipulator joint

=l

variables and the colliding body

BT s the transpose of the (m — n)x (m + 2) constraint matrix

FP is the vector of generalized impulsive forces during the impact

When Equation 3.1 and Equation 2.31 are integrated with respect to time,

15



Tt o~ tt = = tt = ™ 5r2 Tt B

J-Mudt+ [_Qdt+ [_ Ddt+ [_ Kdt— [_ B"Adt+ [_ FPdt=0 (3.2)
+,.0= s BN + L - =

[CIr¢de— [T D (¢ - ¢)dt — [~ R@* - ¢)dt = [ T at (3.3)

Mean value theorem is used and since it is assumed that during impact applied forces are
considered as continuous and velocities are bounded, limits of integration for the following

—_

terms are zero: (3 D,K, D% (ﬁa - d;) K@* - d;) and T.

The remaining terms are expressed as the following [13],

[© Miide = Maji (3.4)
[C BTAdt=BTA (3.5)
[CFvde=TTH (3.6)
where

ﬁ is (m+ 2) x 1 velocity vector containing velocity expressions of both manipulator

joint variables and the colliding body

N

A . vector of impulses of constraint reaction forces.

LTH: vector of generalized impactive impulses where H is impulse of impact force

L can be expressed as [13],

L=zT(Is-1I" (3.7)

where

zT is the transpose of the unit vector of normal direction of impact

Ir is the velocity influence coefficient matrix of the colliding body

16



Ls is the velocity influence coefficient matrix of the manipulator

Hence Equation (3.2) and Equation (3.3) yields two equations respectively,
MAG—-BTA+LTH=0 (3.8)
"Ap = 0 (3.9)

As it is mentioned in Section 3.1, it is assumed that positions do not change during impact.

Thus, the constraint equations in velocity level can be expressed as,

YmnB80;(tt) — Y B 50;(t7) =0 i=1,..,m (3.10)
Equation 3.10 can be written in an implicit form,

BAi=0 (3.11)

Classic impact theory implies that, there is a relationship between the relative velocities of

colliding bodies before and after collision [13] which is,

Z.[05, (et = 95, (M) = —ez.[95,(x7) — V5,(z7)] (3.12)
where

Z is the unit vector of normal direction of impact

vy, s the velocity vector of the colliding body

V51 isthe velocity vector of the manipulator

e is the coefficient of restitution

Equation (3.12) can be written in terms of velocity influence coefficient matrices as the

following,

LAY = (e + DLu (3.13)
17



Therefore according to Equation 3.8, Equation 3.9 and Equation 3.13, system impulse-

momentum equations can be written implicitly,

M —BT IT|[au] o

-B 0 ofla[=]0 (3.14)
L 0 oflHy a

where

a=(e+ 1)Ly (3.15)
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CHAPTER 4

MODELLING AND CONTROL OF A 3-RPR FLEXIBLE JOINT PARALLEL
MANIPULATOR SUBJECT TO AN IMPACT

4.1 Introduction

Planar, spherical and spatial manipulators are the three major types of parallel manipulators
due to their motion characteristics and there are several possible limbs configurations in the
manipulator construction by using either revolute or prismatic joints [1]. In this study, a
system including a 3-RPR planar parallel manipulator is examined in order to analyze the
effect of impact on a parallel manipulator having flexible-joint actuation and go through the
control model. This manipulator has three legs with two revolute joints and one prismatic
joint in each leg. Actuators are located at points A, B and C shown in Figure 2 which are all
ground bases. All of the assumptions about flexible joints and impact characteristics, which

are mentioned before in Chapter 2 and Chapter 3 respectively, are also valid for this case.

Gs

6,

A B

Figure 2 A 3-RPR Planar Parallel Manipulator
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In order to write the generalized coordinates vector, both manipulator variables and actuator
variables are needed to be defined. For this case, joint variables are 6, 85, 6<,6-,¢&,, &4, &, and
actuator variables of flexible joints are ¢4, ¢3, ps. The vector of manipulator variables, n,

including both actuated and unactuated joint variables turn out to be,

ﬁ = [04,03,05,07,¢5,¢4, fe]T 4.1)

where 1 can be defined as,

n=[n%n*]" (4.2)

n% represents the vector of actuated joint variables and n“ is the vector of unactuated joint

variables and both vectors can be expressed respectively in the form,

ﬁa = [91' 93! GS]T (43)

ﬁu = [67, 52;54'56]T (4.4)

The vector of actuator variables of flexible joints can be written as,

—_

¢ = [$1, b3, Ps]" (4.5)

To calculate the degree of freedom of the manipulator, the following formula is used [20],

M=3f—3A+q—J, (4.6)
where

M is the mobility of the system

f; is the mobility of the i-th joint

A is the subspace of loops

q is the number of excessive links

Jp is the number of passive joints
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There are neither excessive links nor passive joints in the manipulator. Besides there are there
loops shown in Figure 3, but only two of them are independent and joint mobility of each
revolute and prismatic joint is one, so the degree of freedom of the manipulator is three.

L=t
A=3
f=1

Figure 3 Loop Subspaces and Joint Degree of Freedoms

There are also additional degree of freedoms due to the presence of flexible joints. Each

flexible joint contributes with an additional degree of freedom.

Since there are three flexible joint actuations, the total degree of freedom of the actuated

system is six.

The number of joints to be removed is formulated as [20],

L=j—1 4.7)
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where

L is the number of joints to be removed
j IS the number of joints
l is the number of moving links

According to Equation 4.7, two joints will be removed. Joint E and F are chosen to be

removed.

4.2 Kinetic Energy of the System

In order to find the kinetic energy equations, both angular velocity vectors and translational
velocity vectors are needed to be written. Each leg in the system is basically the combination

of two links except the platform link (DFE).

So for each leg, four equations will be written (two of them are angular velocity vectors and

rest are translation velocity vectors).

First Leg |AD|:

€2 G, D

link — 1 link — 2

Figure 4 First Leg and Its Link Components
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Position vector of the link-1:

Tg1 = a4 cos(0,) 1+ a;sin(6,)]

where a; is the distance between points of A and G;.
Velocity vector of the link-1:

Voy = —a, 0, sin(6,) T + a,6;cos(6,)]

Angular velocity of the link-1:

@, = [0,0,6,]"

Position vector of the link-2:

To2 = (§2 — az) cos(01) 1 + (§2 — az)sin(6,)]
where a, is the distance between points of D and G,.
Velocity vector of the link-2:

Voo = [€2 cos(6;) — (& — az)0; sin(0)]i + [£; sin(6:) + (& — a,)6; cos(6,)]]
Angular velocity of the link-2:

w, = [0,0,0,]"

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

23



Second Leg |BE|:

link — 3
B

Figure 5 Second Leg and Its Link Components
Position vector of the link-3:
Tgs = a3 cos(03) 1+ agsin(6;)]
where a; is the distance between points of B and Gs;.
Velocity vector of the link-3:
Ves = —as0; sin(6;) T + azfscos(63)]
Angular velocity of the link-3:
w5 = [0,0,65]7
Position vector of the link-4:
Tga = (§4 — a4) cos(83) 1+ ({4 — ay)sin(63)]

where a, is the distance between points of E and G,.

ay

link — 4

(4.14)

(4.15)

(4.16)

(4.17)
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Velocity vector of the link-4:

Vs = [£4 cos(03) — (4 — a4)03 sin(03)]T + [¢4 sin(B3) + (&4 — a4)05 cos(83)]]

Angular velocity of the link-4:

54 = [0,0, 93]T

Third Leg |CF]|:

C
a Qs
:> a: Gs T - Qg
F
Gg link — 5 link — 6
F v

Figure 6 Third Leg and Its Link Components
Position vector of the link-5:
Tes = as cos(0s) 1 + assin(6s)]
where as is the distance between points of C and Gs.
Velocity vector of the link-5:
Vs = —agBs sin(s) T+ agbscos(6s)]

Angular velocity of the link-5:

(4.18)

(4.19)

(4.20)

(4.21)
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ws = [0,0,05]" (4.22)
Position vector of the link-6:

Tee = (& — ag) cos(0s) 1+ (&6 — ag)sin(6s)) (4.23)
where aq is the distance between points of F and Gg.

Velocity vector of the link-6:

I766 = [ée cos(8s) — (&6 — ag)0s sin(8s)]7 + [sés sin(fs) + (&6 — ag)Bs cos(65)]]  (4.24)
Angular velocity of the link-6:

we = [0,0,05]7 (4.25)

Link 7, DFE:

$2

Gy

Figure 7 Link 7 and Its Link Components
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Position vector of the link-7:
Ty = &, c08(0,) 1+ &, sin(0,) J + g7 [cos(6; + B) T+ sin(6, + B)]] (4.26)
where g- is the distance between points of D and G.

Velocity vector of the link-7:

I7G7 = (52 cos(6,) — 5291 sin(6,)) 1 + (s;z sin(6,) + 529.1 cos(6,))J + g-7[— 97sin(07 +
B)1+ 6,c0s(6, + B)]] (4.27)

Angular velocity of the link-7:
w, = [0,0,6,]" (4.28)

In addition to velocity vectors of a chain link, velocity vectors of an actuator is also needed to

be derived since it contributes to the total kinetic energy of a link (see Section 2.5)

First Actuator (At Point A):

|

Velocity vector of the first actuator: A = 0 (4.29)
Angular velocity of the first actuator: o =10,0,1¢,]" (4.30)
Second Actuator (At Point B):

Velocity vector of the second actuator: AZA =0 (4.31)
Angular velocity of the second actuator: @4 = [0,0, r3¢5]” (4.32)
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Third Actuator (At Point C):

Velocity vector of the third actuator: VA =0
Angular velocity of the third actuator: w4 =1[0,0,15¢5]7
Kinetic Energy of Link-1:

KE}, = %[mla% + 11,167

where I, is the inertia and m, is the mass of the first link.

Kinetic Energy of Link-2:
1 . . 1 .
KE;, = Emz[fzz + (& — az)zgf] + 512zz912

where I,,, is the inertia and m,, is the mass of the second link.

Kinetic Energy of Link-3:

KE, 3 = -[m3a3 + I3,,]6%

N |-

where I5,, is the inertia and m is the mass of the third link.

Kinetic Energy of Link-4:
1 : . 1 .
KE 4 = E"M[ff + (&4 — a4)29§] + 5142263?

where I, is the inertia and m, is the mass of the fourth link.

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Kinetic Energy of Link-5:

KE, s = - [msa2 + Is,,]6% (4.39)

N |-

where I, is the inertia and ms is the mass of the fifth link.

Kinetic Energy of Link-6:

1 . . 1 .
KE ¢ = Eme[fez + (6 — a6)2952] + 51622652 (4.40)
where I, Is the inertia and mg is the mass of the sixth link.

Kinetic Energy of Link-7:

1 . . . . . . . . .
KE ; = §m7[522 + 507 + g,0% + 2(&,6,9,6, cos(6, — 0, — B) + &,9,0,sin(6; — 6, —

BV +517,,62 (4.41)

where I, is the inertia and m-, is the mass of the seventh link.

Kinetic Energy of Actuator-1:

1 .
KEAl = E [TEI{ZZ](]b% (442)

where 17, is the rotor inertia reduced to gear output shaft and r; is the gear ratio.

Kinetic Energy of Actuator-2:

1 .
KE,, = > [T?,zlgzz](]b?z, (4-43)

where 13,, is the rotor inertia reduced to gear output shaft and 5 is the gear ratio.
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Kinetic Energy of Actuator-3:

1 .
KEps = 2 [121L,,]142 (4.44)

where I, is the rotor inertia reduced to gear output shaft and 5 is the gear ratio.
Equation 2.14 implies that the total kinetic energy of the system is the sum of the total kinetic

energy of the actuators and the total kinetic energy of the links which results in,

1 . 1 , 1 , 1 .
KETotal = E [rlzlfzz](p% + E [rglgzz]qb% + E [rSZISrzz]qbé + E [mla% + 1122]912

1 . 1 . 1 . .
+ —[m3a§ + 1322]932 + —[m5a§ + 1522]952 +§m2[522 + (& — a2)2912]

2 2
1 . 1 . . 1 .
+ 51222912 + E"M[ff + (54 - a4)29??] + 5142203?
1 . . 1 .
+ Eme[fez + (&6 — a6)2952] + Elszzesz
+ §m7[€22 +£567 + 9,67 + 2(§20197,0; cos(6, — 6; — B) + §,9,6,5in(6;

1.
- 97 - B))] + 5172297
(4.45)

4.3 Potential Energy of the System

The same technique, disconnecting three joints and having four kinematic chains, is used to

find potential energy of each link and actuator.

PE;; = myga,sin(6;) (4.46)
PE;, = myg($; — aZ)Sin(91) (4.47)
PE;; = mygassin(6;) (4.48)
PE; 4, = myg(§s — agysin(6s) (4.49)
PE;s = mggassin(6s) (4.50)
PELs = meg (s — ae)sin(Bs) (4.51)
PE,; = m;g[&, sin(0,) + g, sin(6; + B)] (4.52)
PEgy = 5Ky (1 — 6:) (4.53)
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1
PE,, = 5K3(¢3 - 93)2 (4-54)

1
PEy3 = 5K5(¢5 - 95)2 (4-55)

It is clear that the total potential energy of the system is the combination of all potential

energies of actuators and links.

PErotqr = mygag sin(6,) + mygas sin(03) + msgas sin(fs) + m,g (&, — ayy sin(6;) +
myg (&4 — aqysin(03) + meg (6 — ae) sin(s) + m,g[&; sin(6,) + g7 sin(0; + B)] +

~Ki(¢1 — 01)? +5 K3 (93 — 03)% + - Ks (s — 05)* (4.56)
4.4 Dissipation Function of the System

According to Equation (2.18), dissipation function of the actuated joints, is the followings,

D% = %D1(91 — ) + %D3(93 —¢3)* + %Ds(és — ¢5)° (4.57)
Since there are no other damping sources in the system, the total dissipation function is,

D = 2Dy(6; — $1)? +5D3(85 — $3)? + 5 Ds(fs — s)? (4.58)
In order to proceed to the next step, which is deriving the system equations, Lagrange
components of total kinetic energy, total potential energy and total dissipation function is

needed to be written likewise in Section 2.4.

4.5 Lagrange Components of Expressions

0K ) . 2 . -
— = (m1a1 +11,,)0; + my(§; — ay)?0; + Ip,,60, + m,&,°0,

96,
+ m;¢,9,0,cos(6; — 6; — B)
(4.61)
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d (0K . v .. " v
d_(_> = (mla% +11,,)0; + my(§; — a2)291 + 2my(&; — a)$20; + Ip,,0; + m762291

t\o6o,
+ 2m7fzfz.9.1 + m7€2g797 COS(Q1 - 97 -p)+ m7§2g7§7 cos(6; — 6; — B)
—my§,9,07 sin(6; — 6; — ) (91 - 97)

(4.62)

j_g; = (M3a3 + I35,)05 + My (84 — as)?63 + 47,03 (4.63)
= (5—:3) = (M3a2 + I3,,)05 + my (&4 — a3)20; + 2mu (&4 — ag)é463 + Ly, 05 (4.64)
:_;Z = (Msa + Is;,)05 + me(&6 — a6)05 + Ig,,05 (4.65)
(;;i) (Mmsa? + Is;,)05 + Mg (& — a6)?0s + 2me(E — ag)é6Os + loy,05 (4.66)
5_(;(7 =m,g260, + m,&,0,9, cos(6, — 0, — B) + m,&,g,sin(0, — 0, — B) + 1,,,6, (4.67)

d (0K . . ..
_<_> = m,g56; + m;&,6,g; cos(6; — 0; — B) +m;&, 9,6, cos(6; — 6; — B)

dt \ oo,
- m7§2g791 sin(6, — 6, — B) (91 - 97) . ' )
+ m;¢,97 sin(0; — 0; — B) + m;&,9, cos(6; — 6; — ) (01 - 97) + I7,,6;

(4.68)

o = mody + Moy + Mmigy05in(6; — 07 = B) (4.69)
(:;() m,&, + m;&; + m;g,6; sin(8, — 6, — B) + m,8,g, cos(8, — 6, — B) (6, — 6,)
(4.70)

a7, = Mads (4.71)
- (2—;{2) = myé, (4.72)
;’—i = meds (4.73)
- (j—g) = meée (4.74)
;Ti =1¢11,¢: (4.75)
2 (55,) = (4.76)
a% = 1{13,,¢3 (4.77)
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d 6K _ 2 r T
pr (67)3) =1313,,¢3

0K 2711 H
—=1¢l

s 5 522¢5

d 0K 2711 T
— (=) =71

dt (6¢)5) 5 Szz¢5
0K

0. = —m,&,0,9,6; sin(6; — 6, — B) + m,&, 9,6, cos(6; — 6, — B)

oK

965 0
oK
22—
805

0K

39, = —m;&,0,9,6, sin(6; — 8, — B) + m,&,9,60, cos(8; — 6, — B)

Z—; = m, (&, — a)0% + m;&,07 + m;0,9,0; cos(6; — 6, — B)
g—; =my (&4 — a4)932

2_?6 = mg (86 — ag)63

;TI; =0

=0

;TI; =0

0
6_(;]1 = myga,cos(0;) + myg(&; — az)cos(6;1) + myg &,c0s(0;) — K1 (g — 64)
d

a_:g = M3gazcos(63) + myg(Ss — as)cos(63) — Kp(¢p3 — 63)

0
% = msgascos(fs) + meg(Ee — ag)cos(8s) — Kz(¢ps — 6s)

5

U _ m,ga,cos(6, + B)

a6,

au : :

5 = m,gsin(6;) + m,gsin(6,)
U :

ET7 mygsin(63)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)
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2 = megsin(6s) (4.97)
96

«% = Ky (1 — 61) (4.98)
:TZ = Ky(¢3 — 65) (4.99)
a‘% = Ky(¢s — 65) (4.100)
o5 = D6 — ) (4.101)
o5 = Ds(65 — b3) (4.102)
5 = D5(0s — ¢s) (4.103)
=0 (4.104)
j—g =0 (4.105)
j—g =0 (4.106)
Z=0 (4.107)
o7 =—Di(61 - 1) (4.108)
o = —Ds(05 = ¢5) (4.109)
o5 = —Ds(05 = ¢5) (4.110)

4.6 Constraint Equations

As it is mentioned in Section 4.1, two joints (Joint E and Joint F) are chosen to be

disconnected so that four constraint equations are needed to be written.

Distances between the grounds and lengths of the each link are shown in Figure 8.
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$a

do

Figure 8 Link Lengths and Dimensions

AD + DE = AB + BE

Position level constraint equations of the first loop are the followings,

&, cos(6,) + Lycos(6;) —é,cos(03) —d, =0

&, sin(0,) + L,sin(0;) — &, sin(03) = 0

Velocity level constraint equations of the first loop are the followings,

&, cos(6,) — & sin(6,) 6, — L, sin(6,) 6, — &, cos(63) + &,sin(03)05 = 0

&, sin(0;) + &, cos(6;) 6, + L, cos(8,) 6, — &, sin(63) — £4c05(65)03 = 0

Position level constraint equations of the second loop are the followings,

AD + DF = AC + CF

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)
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fz@ie1 + L7ei(97+a) =dyi+d; + Eseies (4.117)

&, cos(0;) + Locos(6; +a) —d, — &g cos(Bs) =0 (4.118)

& sin(0;) + Lysin(0;, + a) —d; — &g sin(0s) =0 (4.119)

Velocity level constraint equations of the second loop are the followings,

&, cos(0y) — &, sin(6;) 0; — L, sin(8; + @) 6, — & cos(0s) + &gsin(Bs)8s = 0 (4.120)

&, sin(0,) + &, cos(6;) 0; + L, cos(0; + a) 8, — &g sin(0s) — Egcos(05)0s =0 (4.121)

The four velocity level constraint equations derived above can be written implicitly as,

B116; + B1203 + By305 + B146; + Bisé; + Bigés + Biyés = 0 (4.122)
B;101 + B2y05 + By3Os + ByuO; + Byséy + Bygés + Byrés = 0 (4.123)
B310; + B3y05 + Bs30s + B3s0;7 + B3sé, + Bygés + B3ré6 = 0 (4.124)
By161 + By20s + By3Os + ByyO; + Byséy + Basés + Byzée =0 (4.125)
where

By = —§; sin(6,) (4.126)
By, = &, sin(6s) (4.127)
B =0 (4.128)
B,4, = —L sin(6;) (4.129)
B;s = cos(6,) (4.130)
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B16 = - COS(93)

B17:0

By, = &, cos(6,)

By, = =&, cos(63)

Bys =0

B,, = L, cos(6,)

Bys = sin(6;)

BZ6 = _Sin(93)

By; =0

B3; = =&, sin(6;)

B33 = &g sin(6s)

B34 = _L7 Sln(97 + OC)

B35 = cos(6;)

B3, = —cos(6s)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)
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By, = §; cos(6,) (4.147)

By, =0 (4.148)
Byz = —§6 sin(6s) (4.149)
B4y = L, cos(6; + a) (4.150)
B,s = sin(6,) (4.151)
By =0 (4.152)
B,; = —sin(6s) (4.153)

Expressions given above can be written in the matrix form as,

BT = 4.154
Bsy B, Bys Bsy Ba; By Bi (4.154)
B41 B42 B43 B4-4- B45 B4-6 B4-7

Equation (4.154) is subdivided into two matrices as,
Bll BlZ BlS

D BZl BZZ BZ3

Ba — 4.155
By By Bi (4.155)
B41 B42 B43

where B matrix consists of expressions corresponding to actuated joint variables.
Bl4 BlS Bl6 Bl7

Bu — BZ4 BZS B26 BZ7 (4156)

where B* matrix consists of expressions corresponding to unactuated joint variables.
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Equation (2.23) and Equation (2.24) implies that non-potentialized forces are,

Il
ol

fi (4.157)

fo=T (4.158)

4.7 System Equations of Motion and System Impulse-Momentum Equations

According to Equation (2.30) the system equations of motion corresponding to the first set of

generalized coordinates is the following,
Mi+Q+D+K—-B"1=0 (4.159)
where

My Mi; Mz My, Mys Mg Myg
My My, Myz My, Mys My My,
_ Mz, Mz, Mzz Mz, Mzs Mze Msy
M" =|Myy My, Myz Myy Mys My My (4.160)
Msy Ms; Msz Msy, Mss Msg Msy
Mgy Mgy, Mgz Mgy Mgs Mes Mey
M7, My, M7z Mys M;s Mze Moy

MTis the (7x7) mass matrix of the parallel robot with the components of,

My =myaf + L, + Ly +my(8; — ay)? + myé&l (4.161)
My, =0 (4.162)
Mi3=0 (4.163)
M,y = m;§&,g,c0s(6, — 0, — B) (4.164)
My, =0 (4.165)
My, = mga3 + Ig,, + my(&y — ay)? + Iy, (4.166)
M,3 =0 (4.167)
My, =0 (4.168)

39



My = 0 (4.169)

My, =0 (4.170)
M,; =0 (4.171)
M;; =0 (4.172)
M;, =0 (4.173)
M3 = mgag + Isz, + mg (s — a)® + lozs (4.174)
M3, =0 (4.175)
Mss =0 (4.176)
M =0 (4.177)
M;; =0 (4.178)
My, = my&,g9,c08(8, — 07, — ) (4.179)
My, =0 (4.180)
My =0 (4.181)
Mys = m705 + I7,, (4.182)
M,s = m,g,sin(6; — 6, — B) (4.183)
My =0 (4.184)
My; =0 (4.185)
Ms; =0 (4.186)
Ms, =0 (4.187)
Ms3 =0 (4.188)
M54 = m,g,sin(6; — 6; — ) (4.189)
Mss = m, + m, (4.190)
Msg =0 (4.191)
Ms, =0 (4.192)
Mg; =0 (4.193)
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Mg, =0
Mgz =0
Mg, =0
Mgs =0
Mgs = my
Mg, =0
M, =0
M;, =0
M, =0
M5, =0
M;5 =0
M;6 =0
M7 = mg

Equation (4.160) is subdivided into four matrices,

M, = My,

According to Equation (4.208) and Equation (4.209), M, is the transpose of M,.

(4.194)
(4.195)
(4.196)
(4.197)
(4.198)
(4.199)
(4.200)
(4.201)
(4.202)
(4.203)
(4.204)
(4.205)

(4.206)

(4.207)

(4.208)

(4.200)

(4.210)
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Q = [Q1; Q2 Q3; Q4; Qs; Q6; Q7]T (4.211)

The components of (3 is given below.

Q1 = 2m, (&, — a2)&26; + 2m; ;6,0 + m;&,607 g, sin(6; — 6, — B) + myga, cos(6;)
+m,g(§; — az) cos(6,) + m;gé; cos(6;)

(4.212)
Qz = 2my (&4 — a4)é493 + m3ga; cos(8;) + mag (s — as) cos(63) (4.213)
Qs = 2me(§6 — ae)éeés + msgas cos(8s) + meg (s — ag) cos(6s) (4.214)
Q4= 2m7$291g7 C05(91_ - 6, —B) — 2m7$297g7 cos(6, - 6; — B)
+ 2m;¢§,6,0,g, sin(6; — 0, — B) — m;&,07 g, sin(6; — 6; — B)
+ m;gg; cos(8; + B)
(4.215)
Qs = —m;07g; cos(6; — 8; — B) —my(&; — ap)07 — m;&,67 + m,gsin(6,)
+ m,gsin(6,)
(4.216)
Qs = —my(&4 — a4)0% + mygsin(63) (4.217)
Q7 = —mg(§e — a6)952 + megsin(6s) (4.218)
Equation (4.211) is subdivided into two matrices as,
Qa = [Q1; Q2 QS]T (4.219)
where Q¢ matrix consists of expressions corresponding to actuated joint variables.
and
Qu = [Q4; Qs; Qs Q7]T (4.220)

where Q% matrix consists of expressions corresponding to unactuated joint variables.
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D1(61 = ¢1)]
D2 (6~ ds)
D= D5(950_ #s) (4.221)
0
0
0
(K1 (601 — 1)1
K3(65 — ¢3)
_ K505 — ¢s)
K = 0 (4.222)
0
0
0

N

Ais the (4x1) vector consisting of constraint reaction forces.

Equation (4.159) does not involve relating terms of the colliding body, so they are needed to

be modified but firstly condition of the collision should be defined.

Body r (point mass) impacts with body s (manipulator) at the point P as shown in Figure 9.

270°+ 60, + «a

Figure 9 Point of Contact
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Equation (4.159) becomes as,

. —
—~

N+Q0+D+K—BA+FP =0 (4.223)

The new (9x9) mass matrix M, involves both M" derived previously in Equation (4.160) and

the (2x2) diagonal mass matrix of the colliding object which results in,

R /A
M=|0 my 0 (4224)
0 0 my

where m, is the mass of colliding object.
Q, D and K are same with the derived ones previously for Equation (4.159).

The new (4x9) B matrix, B involves terms related with the colliding object and results in,
B=1[pg 0 ol (4.225)

F? is the vector of generalized impulsive forces due to impact force F“’generated at the points

of contact of the colliding bodies [13] and formulated as,

N

FP = psTF! (4.226)

The system equations of motion, corresponding to the second set of generalized coordinates

as the following,

—_

"¢ —D° (i~ ¢) ~R(i* ~ ) =T (4.227)

When both Equation (4.223) and Equation (4.227) are integrated respectively (see Equation
3.2 and Equation 3.3), it yields

MA}—BTA+LTH=0 (4.228)
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rag = (4.229)

l

A 1 vector of impulses of constraint reaction forces.

LTH: vector of generalized impactive impulses where H is impulse of impact force

Equation (4.228) does not contain velocity components of the colliding body. So when they

are added to the equation it becomes,

MAG—-BTA+LTH=0 (4.230)

where

b

L= |x, (4.231)
Va

x4 . Xx-component of velocity of the colliding body

va .  y-component of velocity of the colliding body

L=z"(Is-1In (4.232)

Z is the unit vector of normal direction of impact and LS and L" are the velocity influence

coefficient matrices. Unit vector for point P is defined as,

. [cos(8; + a +270°)

2P = |sin(8, + a + 270°) (4.233)
The velocity of the body s (manipulator) at Point P is
Vs =95 = IS (4.234)
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I =1[ps 0l (4.235)

Equation (4.234) can be written explicitly as,

Vs = (52005(91) — &,0,sin(6,) — b,60,sin(6, + a)) T+ (&,51n(0,) + &,0,c0s(6;)

+ b,0,c0s(0; + )]

(4.236)
since
55 = [—ézsin(el) 0 0 —bysin(0,+a) cos(6;) 0 O (4.237)
&,cos(6,) 0 O bycos(6;,+a) sin(6;) 0 O
So the influence coefficient matrix becomes,
Fs _ [—Ezsin(el) 0 0 —bysin(0;,+a) cos(6,) 0 0 O O (4.238)
&cos(6,) 0 O bycos(6;,+a) sin(6,) 0 0 0 O '
Same procedure is valid in finding the velocity of the colliding body r.
V=9 [’.‘A] = I (4.239)
Ya
where
I'=1[6 1l (4.240)
V' = %0+ V4] (4.241)
b 1 0
T = [0 1] (4.242)
+r_JO 0 0 0 0 0 0 1 O
=0 000000 0 1 (4.243)

So that Equation (4.232) can be written for the point P as,
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—&,sin(0,) cos(6; + a + 270°) + &,cos(0,)sin(6; + a + 270°)
0
0
B —bysin(6; + a) cos(6; + a + 270°) + b,ycos(0; + a)sin(6; + a + 270°)
LT = cos(6;) cos(6; + a + 270°) + sin(6,)sin(8, + a + 270°) (4.244)
0
0
—cos(8, + a + 270°)
—sin(6; + a + 270°)

As it is previously stated it is assumed that collision occurs in a short period of time so that

positions do not change during impact which yields (see Equation 3.11),

o
[aN
=l
Il
o

(4.245)

Equation 3.12 implies that the relative velocities of colliding bodies before and after collision

at point P can be expressed as,

z.[0p(x") = Vp(t )] = —ez. [Vp(z7) — Vp(z7)] (4.246)
Equation 4.246 can be written in the form as (see Equation 3.13),

LAY = (e + LK (4.247)

where e is the coefficient of restitution

According to Equation 4.230, Equation 4.245 and Equation 4.247 the system impulse-

momentum equations can be written explicitly as,

M —BT IT||au| [0

B o ollz]|=]0 (4.248)
L o0 ollx a

where

a=(e+ 1)Ly (4.249)
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End-effector

Figure 10 Position of the End-Effector

Since the end-effector is located on the seventh link of the parallel manipulator (see Figure
10), velocity vector of the seventh link is needed to be written to derive the task equations.

Position vector of the seventh link was derived previously (see Equation 4.26). The x-axis and

y-axis components of this position vector are the followings respectively,

xe = &, cos(6;) + g, cos(6, + B) (4.250)

Ve = &, sin(6;) + g, sin(8, + B) (4.251)

The vector of task space position is denoted as,

X1
X = [Xz] (4.252)
X3
where
X; = Xg (4.253)
X2 =Yg (4.254)
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-, is the orientation of the end-effector.

In order to write the Jacobian matrix (I) and the vector of task space velocity, first derivatives
of Equation (4.253), Equation (4.254) and Equation (4.255) are needed to be found which are

obtained as,

%, = &, cos(8,) — &,6, sin(8,) — g, 0,sin(6, + B) (4.256)
X, = &, sin(6,) + &,6; cos(6;) + g, 6,c0s(8; + 8) (4.257)
%5 =0 (4.258)

So the vector of task space velocity is,
. xl
X = [le (4.259)

The relationship between the vector of task space velocity and the vector of joint variable

velocities can be written as,

x =11 (4.260)
which yields the following equation
_9'1_
05
ye| =16, (4.261)
07 f.z
&
[ &6
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—¢&,sin(0;) 0 0 —gysin(8;,+B) cos(f;) 0 O
&,cos(6;) 0 0 gscos(8,+pP) sin(B;) 0 O
0 0 0 1 0 0 0

fG:

Equation (4.261) can be subdivided into two sets,

. 6,
W e |7
ye|=re |6, +ruﬁ
6, s 4

$6
where

I = &cos(6)) 0 0

—&,sin(8;) 0 0]
0 0 0

2 is the Jacobian matrix corresponding to actuated variables.

=1 g,cos(6,+B) sin(6;) 0 0

—g7sin(6; + B) cos(6;) O 0]
1 0 0 O

I is the Jacobian matrix corresponding to unactuated variables.

4.8 Control Law

(4.262)

(4.263)

(4.264)

(4.265)

In this section, an input/output relation (control torques and end effector positions are the

inputs and the outputs for the system respectively) would be formed and the command signal

of the control system would be derived. Hence, first of all unactuated joint variables ought to

be written in terms of actuated joint variables which yields,

Buﬁu — _Baﬁa

(4.266)
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By leaving the unactuated joint variables one side, Equation (4.266) can be written as,
0 = —B%  By® (4.267)

The first and the second derivatives of the previous expression are the followings

respectively,

A

u —B“_l(gaﬁa + B® + BYHY) (4.268)

i=]H

Nt = —BY ' (2BY* + 2B90® + B + BOn® + BURY) (4.269)

Equation (4.159) can be written in a separate form in terms of actuated and unactuated joint

variables as,
Wi + Wit + Q2 + D (i - @) + RGi* — )~ B 2= 0 (4.270)
Man® + M, + Q4 —B¥ 1=0 (4.271)

Intermediate variable, A, should be eliminated. When Equation (4.267) is plugged into the
recent two sets of equations (see Equations (4.270) and Equation (4.271), it yields [8],

M2 +Q"+D (- ¢) + R@* — $) = 0 (4.272)
where
_ _ A1 A ~ ~o —1T\  n =1 A
i = (M1 — M,B% 13“) — pa’ (B” ! )(M3 — M,B* B9 (4.273)
0" = (—MZB” 'Ba 4+ BY B M,BM 1Ba)ﬁa
= su130 0 saTau-1T 5 su-18u\=u . ma salsu-1T7u
+(—M,Bv " B* + B B* " M,BY B* )% + Q4 —BY B Q

(4.274)
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In Equation (4.260), relationship between task space velocities and joint variable velocities

were given. This equation can be modified as a combination of two separate Jacobian

matrices ([# and [}). If ﬁ“ is also eliminated, we have the following relation,

Ji% =~/ + % (4.275)
where
j=re—rupv'pa (4.276)

Since elastic joints transmit the control torques to the end-effector, the end-effector
acceleration is not effected instantaneously. In order to get rid of this singularity, the equation
needed to be written in the form of a forth order equation [8]. Thus, the remaining

intermediate variables, n% and q? should be eliminated which will result in,

Nu+P=T+S8T (4.277)

N =K [rmj—1 (4.278)

u is the vector of control signal, which can be written explicitly as,

U= xé?sired + Cy (Kgesirea — X) + Co(Xgesirea — %) + C3(Xgesirea — %) + Ca(Xgesirea — %)
(4.279)

where, C;, C,, C5 and C, are feedback gains (see Section 4.11)

S=K'D (4.280)

(4.281)
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4.9 Simulation Model

Simulink® is a simulation software program, integrated with Matlab® program and it enables
to conduct simulations, model-based designs and automatic controls. It’s a tool in Matlab®
program hence it is easy to integrate the scripts written in Matlab® with Simulink® and create
models [21]. In this study, all of the scripts corresponding to the dynamic equations and the

control law are written in Matlab® and the control model is build in Simulink®.

Configuration parameters of this study can be listed as,

e Simulation time: Start time (0 sec) and stop time (1.5 sec)
e Solver options-type: Fixed-step

e Solver options-solver: Euler (Ode 1)

e Fixed-step size: 0.000025 sec

Since it is a block diagram environment, systems modeled in this program as a series of
blocks. In Figure 11, it is seen that control model build in this study consists of six major
blocks (“controller’, “computed torque block”, “forward dynamics”, “act 2 eta”,
“subsystem” and “forward kinematics”) which are also called subsystems. Due to the

complexity of the diagram, it is better to arrange the system as a combination of subsystems.

After the initial conditions are given and trajectory of the desired motion is specified (which

are all mentioned in Section 4.10), simulation starts.
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Figure 11 Overview of the Control Model
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In the first subsystem, command input block, time signal which is generated by the clock
located in the forward dynamics subsystem go into the corresponding Matlab® function
blocks. Each of these blocks yield prescribed task space trajectory data (i.e. dddxtask which
denotes the third derivative of the xtask). These values are subtracted from the real values (i.e.
xddd which is the third derivative of the real x value) and the results are multiplied by the

gains (i.e. C; in Gain 1). ITAE norm is used for these gains (values of the gains are provided
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in Table 1, see Section 4.11). Therefore, the control signal u, which is mentioned before in
Equation (4.279), is formed with the combination of five signals. Both end-effector position
data and end-effector velocity data are collected in this subsystem. They are symbolized as

“xvec” and “xdvec” respectively in Figure 12.

MATLAB -
—— X u
Function
xddd Gain1
MATLAB ddxtask o0
t——» :
Function
rxdd Gain2
xdd
xdd
MATLAB
— :
Function rxdddd
<t> 1 rxdddd
| S MATLAB e
Function
rxd Gain2
|
xdvec
MATLAB xtask E2
2 : + u
Function =
~© Gaind
GO
x
I [
XVEC

Figure 12 Command Input Block

Next subsystem is computed torque block. Inputs of this block are u signal, position vector of
the joint variables “eta” (1)), velocity vector of the joint variables “deta” (ﬁ), acceleration

vector of the joint variables “ddeta” (ﬁ) and jerk vector of the joint variables “dddeta” (ﬁ).

Matlab® function block includes inverse dynamics solution mentioned in Equation 4.277
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which results in control torques denoted as T in Figure 13. Torque values are collected in the

scope symbolized as “Tvec”.

1

den(s)

Transfer Fen
MATLAB f

Function | out 1 T Lt
MATLAB Fen den{s)
Transfer Fen1 |:]

1

t

3 Tvec
den(s)

Transfer Fen2

Figure 13 Computed Torque Block

The computed torque is applied to the system in the third subsystem, Forward Dynamics (see
Figure 14). When Equation (4.272) and Equation (4.227) are written in the matrix form, it
yields,

—~

[ ” l - (it-¢) -G - (4.282)
b (1i- ¢)+K(r1 ¢)+T

Equation 4.282 is modeled in this subsystem. In Figure 14, Matlab® functions and the gains

involves the following,

e Matlab®Fcn 1: Q*
e Matlab® Fen 3: M* "
e Gainl: 7"

—

e Gain3:D
e Gain5: K

In the first row, starting with Gain 1, angular position vector of the actuator rotor, “fi” (q?) and
angular velocity vector of the actuator rotor, “dfi” (5) are found by integrating the angular

acceleration vector of the actuator rotor, “ddfi” (¢).
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Next row, involving Matlab® Fcn3, position vector of the actuated joint variables “ctaa” (%),
velocity vector of the actuated joint variables “detaa” (ﬁ“) are found by integrating the

acceleration vector of the actuated joint variables “ddetaa” (ﬁa).

Initial values are assigned in these Integrator blocks and values used in integrator blocks are

given in Section 4.10.

There is an also Impact block in this subsystem. Inputs of this block are “eta”, “detaa” and
time. In this block, an if-else statement exists which check the impact time (see Figure 15). If
time equals to the impact time, it increases “detaa” values and system continues with these

new values of actuated variables.

Since acceleration vector of the actuated joint variables “ddetaa” and jerk vector of the

actuated joint variables “dddetaa” (ﬁ“) cannot be measured unlike the measurable ones
(“etaa”, “detaa”, “fi” and “dfi”), they are needed to be calculated. “ddetaa” can be found by
using Equation(4.272) and by taking derivative of this equation, “dddetaa” can be also
calculated. In Figure 14, these calculations are embedded in Matlab® Fcn 2 block.

Joint position values are collected in the scope symbolized as “etavec”. Deflection values are

also calculated as “fi” values subtracted from “etaa” values and the results are stored in the

scope symbolized as “defvec”.
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Figure 14 Forward Dynamics Block
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In the next subsystem, act_2_eta, position vector of the unactuated joint variables “etau” (n*),
“ctaa” and “detaa” are the input signals (see Figure 16). Matlab® Fcn 4 block contains

Equation 4.267 which enables to find velocity vector of the unactuated joint variables “detau”

(ﬁ“). “etau” is found by integrating “detau”.

Since “eta” consists of both actuated and unactuated joint variables (see Equation 4.2),
corresponding actuated and unactuated joint variable position vectors, “etaa” and “etau”

respectively, are combined together and “eta” signal is formed.

In the same manner, “deta” is formed as a combination of actuated and unactuated joint

variable velocity vectors which are “detaa” and “detau” respectively.

Joint velocity values are collected in the scope symbolized as “detavec”. And the output

signals of this subsystem are “eta” and “deta”.

In the subsystem, called as, Subsystem, it containts one Matlab® Function (see Figure 17)

which involves Equation (4.268) and Equation (4.269). Those equations enable to find
aceleration vector of the unactuated joint variables “ddetau” (ﬁ“) and jerk vector of the

unactuated joint variables “dddetau” (ﬁu). And then likewise, “ddeta” and “dddeta” are found

as combination of corresponding actuated and unactuated variable vectors.
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Figure 16 act_2 eta Block

Lastly, task space position vector (x), task space velocity vector (fc), task space acceleration

vector (9%) and task space jerk vector (.ch') are found in “Forward Kinematics” (see Figure 18)
by using Equation 4.253, Equation 4.254, Equation 4.255 and their first, second and third

derivatives.
[<eta>=}
dets
O MATLAB
Function

éddetsatﬁ:

Interpreted MATLAB
Function

Figure 17 Subsystem Block
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( dddeta } S9oeta MATLAB Fcn8

Figure 18 Forward Kinematics Block

4.10 Initial Values and Desired Trajectory Motion

MATLAB
—>.1
Function xddd -

xddd

The initial values and the desired trajectory used in this simulation are listed as,

The initial positions of the active joints:

0, = 45°
0, = 155°
0. = 255°

(4.282)

(4.283)

(4.284)
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The initial lengths of the passive joints:

£, =0.756m
64_ = 1.177m
£, =0.901m

The initial position of the end-effector:

x; = 0.745m
Ve = 0.631m
6, = —5.38°

Desired trajectory motion:

0.35 T . 2nT
xg_{°7°+ [_2_ ] 0<t<T
1.0
0.20 . 2nT
yg={060+—[t——sn Zlm ger<r
0.80 m

T
9§1={0+ [t——sm—]deg 0<t<T
25deg

The initial torques:

T,=0N.m
T,=0N.m
T3 :ONm

(4.285)

(4.286)

(4.287)

(4.288)

(4.289)

(4.290)

(4.291)

(4.292)

(4.293)

(4.294)

(4.295)

(4.296)
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The initial angular positions of the actuator rotors:

¢y = 45° (4.297)
¢3 = 155° (4.298)
¢s = 255° (4.299)
4.11 Data

For the simplicity, a M-file, called as data, is created which includes all the constant values.
Necessary values used in a certain Matlab® Function are directly loaded from this M-file

which prevents drops in system speed. These values can be tabulated as,

Feedback Gains Values
Cikk 21w,
Cokk 34wy
Cakk 2.7w3,
Cark Wak

Table 1 Feedback Gains

where k = 1,2,3 and w, is a positive constant used in feedback gain matrices.

For all simulations in this study,

w, = 50. (4.300)
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Symbol Value Symbol Value
Ly 0.4m as 0.3m
g7 0.231m ae 0.3m
b, 0.15m do 2m
a 0.3m dy 1.732m
a, 0.3m d, 1m
as 0.3m 60°
a, 0.3m 30°

Table 2 Dimensions and Angles

Symbol Value Symbol Value
m, 5 kg [ 0.15 kg.m*
m, 5 kg Lz, 0.15 kg.m”
ms 5 kg Lyzs 0.15 kg.m?
m, 5 kg Is,, 0.15 kg.m”
ms 5 kg loss 0.15 kg.m?
me 5 kg I72 0.23 kg.m?
m, 7 kg 17, 2x107° kg.m?
my 5 kg ,, 2x107° kg.m?
L1,y 0.15 kg.m* Ig,, 2x1075 kg.m*

Table 3 Link Masses, Mass of the Colliding Body, Link Inertias and Rotor Inertias

Symbol Value
7 100
Ts 100
Te 100

Table 4 Gear Ratios
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Symbol Value Symbol Value
D, 0.0355 N.m.s/rad K, 2500 N.m/rad
Ds 0.0379 N.m.s/rad K; 2500 N.m/rad
Dy 0.0402 N.m.s/rad Ks 2500 N.m/rad

Table 5 Damping and Spring Constants

Symbol Value
X 1.5 m/s
Va -1m/s
e 0.9

Table 6 Velocity Components of the Colliding Body and Coefficient of Restitution

65




4.12 Simulations and Results

Case |

No impact, no modeling error

Orientation (rad)

ns

0.8

Displacement (m)

Response x I
Response y
Desired x
Desired y
05 . : ' : ;
0 02 0.4 06 0.8 1 12
Time (s)
Figure 19 Position Response (x; and y;)
DB T T T T L)
Response
Desired

01E
0

1
02 0.4 06 0.8 1 12
Time (s)

Figure 20 Position Response (6-)
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Yelocity (m/s)

=]
(X}

Angular Velacity (rad/s)

-0.6

0s

06r

0.4

==

T T T T I

Response ydot
Desired ydot
Response xdot H
Desired xdot

1 | 1 1 1

n2 0.4 06 08 1 12
Time (s)

Figure 21 Velocity Response (x; and y;)

‘I
|
R
| —
| / -
| y :
05_....~ ............. e e e

T T T T T

Desired
Response

05

1] 0.2 0.4 0.6 0.8 1
Time (g)

Figure 22 Velocity Response (6,)

1.2
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Deflection (rad)

Control Targue {(Nm)

0.3 T

1

015+

-01

02 : : '
a 0.2 0.4 06 0.8 1 12

Time ()

Figure 23 Deflections: 1) 6; — ¢,2) 05 — ¢35 3) 05 — ¢

BO0 T T T T T

_a:IU L 1 1 1 1
0 0.2 0.4 0B 08 1 12

Time (s)

Figure 24 Control Torques
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Case Il

No impact, 10% modeling error

Displacement {m)
=
(i)
T

=

=51
T

Y

Response y
Desired y
Response x
Desired x

05 ! .
0 ;

0B 0.e
Time (s)

1

Figure 25 Position Response (x; and y;)
In Figure 25, ess,, = 0.000014 [m] and ess,, = 0.002215 [m]

06 T T

0sr

Deflection (rad)
o
o)

=
[

Response
Desired

RIRES - L
i} 02 0.4

06 0e
Tirme (s)

Figure 26 Position Response (6;)
In Figure 26, essg, = 0.0000007 [rad]
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Welocity (m/fs)

Angular Velocity (rad/s)

0.8

0.6

0.4

o
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0.4
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o
=]

2
(2]

o
.

2
[

0.2
1]

T T T

Response xdot

- Response ydot
N Desired xdot |
Desired ydot

% 0.2 0.4 06 038 1 1.2
Time (s)
Figure 27 Velocity Response (x.; and y;)
18 T T T T 1
Response
Desired

0.2 0

4 06 08 1

Time (s)

Figure 28 Velocity Response (6,)

1.2
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Deflection (rad)

Control Torgue (Nm)

0.25

0.15

500

400

300

200

1
0.4 06 08 1 12
Time (s}

Figure 29 Deflections: 1) 8, — ¢,2) 05 — ¢5 3) 05 — ¢

o] S

-100
\
-200

-300

-500

0z

04 06 0 1 1.2
Time (g)

Figure 30 Control Torques
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Case 111

Impact (t = 0.25 s), no modeling error

Displacement {m)

Orientation (rad)

1.1

OBk oo

07

06

05
u]

0.6

Response x
Desired %
Response y
Desired y

1 1 1 | T

02 0.4 06 og 1 1.2
Time (s)

Figure 31 Position Response (x; and y;)

Response
Desired

1 1 1 1 1

0z 04 06 0s 1 1.2
Time (=)

Figure 32 Position Response (6-)
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Welocity (mfs)

Angular Velocity (rad/s)

Response xdot
Response ydot
Desired xdot

Desired ydot

1
0e

] 02 0.4 0.8 1 1.2
Time (s)
Figure 33 Velocity Response (x; and y;)
T T T T I
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'-'I Desired
|
|
|
|
|
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0.4

06
Time (g)

0e

Figure 34 Velocity Response (,)

1.2
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Deflection (rad)

Control Torgua (Mm)

1 e L

0.15

01 O

Time (s)

Figure 35 Deflections: 1) 6, — ¢,12) 05 — ¢5 3) 05 — ¢

1 1 L 1
0.4 06 0.8 1 1.2
Time (g)

Figure 36 Control Torques

|
0 0z 04 06 na 1 12
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Case IV

e Impact (t = 0.25 s), 10% modeling error

Displacement (m)

Response x H
Desired x
Response y
Desirad y

L

ns 1 I 1 L
a 02 0.4 06 0g 1 1.2

Time (g}
Figure 37 Position Response (x; and y;)
In Figure 37, ess,, = 0.000014 [m] and ess,. = 0.002215 [m]

0s

Response
Desired

Orientation (rad)

a 0.2 0.4 0e (IR 1 1.2
Time (s)

Figure 38 Position Response (6;)
In Figure 38, essg, = 0.0000007 [rad]
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“Welocity (m/s)

Angular Welocity (rad/s)

0.8

[ Response ydot

T T T T T
Response xdot
Desired xdot

Desired ydot

1 | 1 L 1
02 0.4 06 0.8 1 1.2
Tirme (s)
Figure 39 Velocity Response (x; and y.)
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1
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Time (g)

Figure 40 Velocity Response (6,)
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Deflection (rad)
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Figure 41 Deflections: 1) 6; — ¢,2) 05 — ¢5 3) 05 — ¢
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Figure 42 Control Torques
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Displacement (rad)
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Time (g)

Figure 43 Position Response (6;)
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Figure 44 Position Response (65)
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Figure 45 Position Response (6s)
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Figure 46 Position Response (6-)
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Figure 48 Position Response (&,)
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Displacement {m)
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Figure 49 Position Response (&)
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Figure 50 Velocity Response (6;)
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Figure 51 Velocity Response (65)
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Figure 52 Velocity Response (6s)

82
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Figure 53 Velocity Response (6,)
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Figure 54 Velocity Response (£,)

83



0s

f/\
|

£ /
£ \ V4
Tﬁ M
=
|
1 afz n_la nfs o_ls 1l 1.2
Time (g)
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CHAPTER 5
CONCLUSION

In this study a flexible joint parallel robot is investigated when it is subjected to an impact.
Dynamic equations and constraint equations are derived and system equations of motion are
provided. The concept of coefficient of restitution is also presented and the governing system

impulse-momentum equations are derived.

Inverse dynamics control method is examined and intermediate variables are eliminated to get
an input/output relation. For checking the control law, a 3-RPR parallel manipulator with
flexible joints subject to an impact is investigated. All of the scripts are written in Matlab®
software program and the simulation model is created and performed in Simulink® which is
one of the tools embedded in Matlab® program. Euler (Ode1) solver is used in the simulations
with the fixed step-size. In the simulations initial position errors are applied to the system to

check the performance.

During the simulation time, all of a sudden, a point mass body collides with the manipulator.
The major assumption taken into consideration is coefficient of restitution is constant during

the impact time which is too short and besides positions do not change during the impact time.

As it is seen in the results, impact has an instantaneous effect on end-effector velocity, joint
variable velocity and torque values. Despite the instantaneous effect of the impact and the
initial position error, satisfactory tracking performance is achieved and no instability is

observed in the system. Steady state errors in Case Il and Case IV are small.

For the future studies, different control methods can be applied to the system and the model

mentioned through this study can be extended for spatial and other planar parallel robots.
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APPENDIX

TIME DERIVATIVES OF MATRICES

1. The First and Second Time Derivatives of M

M1 = 2myé,(&; — ap) + 2m;6,¢,

M13=0

M14 = m7ézg7 cos(f; — 0; — f) — m;&, 97 sin(6; — 6; — ﬁ)(é1 - t9'7)

Mis =0
Mg =0
Mi; =0
M, =0
Mzz = 2m4é4(f4 —ay)
M,; =0
My, =0
Mys =0
Mys =0
M,, =0
Ms; =0
Ms, =0
M33 = Zmeée(% — ag)
M3, =0
M35 =0
Mss =0
Ms; =0

M41 = m7Sézg7 cos(; — 0; — ) — m;§,9;sin(6, — 6; — B)(el - é7)

M4_2:O
M4_3:O
My =0
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M45 = m;&, 97 sin(6; — 6; — 5)(91 - 97)

My =0
My, =0
Ms; =0
Ms, =0
Ms; =0

Mss = 0
Msg = 0
Ms, =0
Mg =0
Mg, =0
Mg =0
Mgy =0
Mgs =0
Mg =0
Mg, =0
M, =0
M,, =0
M,s =0
M,, =0
M,s =0
M,s =0
M,, =0

My =2mpé, (& —ay) + Zmzéz2 +2m, 6,8, + 2m7<>éz2

M12=0
M13:0

M14 = m7$2g7 cos(6; — 6, — B) — 2m7ézg7 sin(6, — 6, — B) (91 - 6.’7)

M16:0

—m,§,g; cos(6, — 6; — ) (91 - 6.’7)2 —m;§,g7 sin(0; — 6, — ) (é1
~6;)
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M17=0

M, =0
My, = 2myéa(8s — ay) + 2myé}
M,; =0
M,, =0
Mys =0
My6 =0
M,; =0
My, =0
M;, =0
M3s = 2meés(€s — ag) + 2mgél
Ms, =0
M35 =0
M6 =0
Ms; =0

M41 = m7sgzg7 cos(6; — 6, — ) — 2m7ézg7 sin(6, — 6, — ) (é1 - 97)

— m,&,9, cos(6; — 6, — B) (61 — 6,)" — my&,9, sin(6; — 6, — B) (6,

~6;)
M,, =0
My =0
My, =0

M,s = —m; g, sin(6; — 6; — ) (61 - 67) + m;g; cos(6; — 6, — B) (6, — 67)
M4-6 == 0

My, =0
Ms; =0
Ms, =0
M3 =0

Ms, = —m; g, sin(6; — 6; — B) (6, — 6,)* + myg, cos(6, — 6, — B) (61 — 6,)
Mss =0
Mss = 0
Ms; =0
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M61=0

Mg, =0
Mg =0
Mg, =0
Mgs =0
Mgg =0
Mg, =0
M, =0
M,, =0
M,s =0
M,, =0
M,s =0
M, =0
M,, =0

2. The First and Second Time Derivatives of Q

Q1 = 2myE30; + 2my (&, — a3)6,0, + 2my (&, — a2)&,0; + 2m;8,8,0;, + 2m;E56,
+2m,&,E,6, + m,§,62 g, sin(6, — 6, — B)
+2m,&,0,0,9, sin(8; — 8, — B) + m,&,62g, cos(8, — 6, — B)(6; — 6,)
—myga, 6, sin(6;)
+myg&, cos(8;) — mygb; (&, — ay) sin(6,) + m,gé, cos(6,)
—m; g&,0, sin(6;)

Q2 = 2myé30; + 2my (&4 — ay)éabs + 2my (&4 — a,)é,05
— M3gaz6; sin(63) + mygé, cos(63) —myg (&4 — as)b; sin(6;)

Qs = stéezés +2me($6 — a6)$69'5 + 2me($6 — ae)éeés

- msgasés sin(fs) + megéa cos(fs) —meg (6 — ae)és sin(6s)
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Q4 = 2m,&,0, 9, cos(6; — 6, — B) + 2m,&,6, g, cos(8; — 6, — B)
— 2m,&,0,g,sin(6; — 8, — B) (6, — 8;) — 2m,&,6,g9, cos(6; — 6, — )
- 2m752é7g7 cos(6, —0; — ) + 2m7sézé7g7 sin(6; — 67 — B) (91 - 97)
+2m,¢,6,6,g,sin(6; — 8, — B) + 2m,&,6,6,9, sin(8; — 6, — B)
+2m;&,6,6, g, sin(6; — 6, — B)
+ 2m,&,0,0,g, cos(8, — 0, — B) (61 — 0;) — m,&,07 g, sin(6, — 6, — B)
— 2m;&,0,0,g; sin(0; — 0; — B) — m,&,0% cos(6;, — 0; — B)(6, — 6;)
—mygg,sin(6; + B)6;

Qs = —2m,6,6,g; cos(8; — 6, — B) + m,0%2g, sin(8, — 0, — B) (6, — 6;) — m,&,67
—2my (&, — a3)60,6; — m;&,67 — 2m;&,6,6, +m,g6; cos(6;)
+ m, g6, cos(6;)

Qs = —mu&463 — 2my (&4 — a4)630; + m,g6; cos(65)

Q7 = —meés05 — 2me (g — ag)0s05 + megbhs cos(6s)

Q1 = 4m,6,6,0, + 4m,yE50, + 2my6,6,0;, + 2my (&, — a,)6,0, + 4my (&, — a,)&,6;
+2my (&, — ay)é,0; + 2m,E,8,0, + 2m,E,E,0, + 4m,§,E,0, + 4m,E26,
+4m, 8,0, + 2m,§,&,0, + m,E,02g, sin(8; — 6, — B)
+ 2m,&,62 g, cos(6, — 6, — [)’)(91 - 97) + 4m,&,6,6,g, sin(6; — 6, — )
+2m,&,062 g, sin(0; — 6, — B) + 2m,&,0,0,9, sin(6; — 6, — )
+ 4m;&,0,0; cos(6, — 8, — B) (6, — ;)
— m,€,62g, sin(0; — 0, — B) (61 — 6,)°
+m;&,07 cos(0; — 0; — B) (6, — 6;) — myga, 6, sin(8;)
—myga,0% cos(8;) + myg &, cos(6;) — 2m,g&,6, sin(6,)
—m, g6, (&, — ay) sin(6;) — m,g67 (&, — a,) cos(6,) + m7g$2 cos(6;)
— 2m,g&,0, sin(8,) — m,g&,6, sin(6;) — m,g&,6? cos(6,)

Q> = 4m4é4g493 + 2m4é4g493 +2my(§, — ‘14);%;19'3 + 4m45293 +4m, (S, — a4)é¢4é3
+2my (&4 — 448405 — m3gazb; sin(63) — mzgas65 cos(6)
+mygés c0s(83) — 2m, 98,05 sin(6s) — mug(&y — a4)0; sin(6;)
—myg (&4 — a4)63 cos(65)
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Q3 = 4m&eéels + 2meéeéels + 2me(Es — a6)els + 4meEZ0s + 4me (s — ag)ésbs
+2mg (&6 — ag)éebs — msgasb; sin(fs) — msgas6Z cos(6s)
+ megés cos(6s) — 2megéehs sin(Bs) — meg (&6 — ag)bs sin(fs)
—meg (&6 — ag)63 cos(6s)
Q4 = 2m;§,6, g, cos(6; — 6; — B) + 4m;&,0, g, cos(6;, — 6, — B)
+ 2m7sézé'197 cos(6, —0; — ) — 4m7sézélg7 sin(6; — 67 — B) (91 - 97)
— 4m,&,0,g,sin(6; — 6, — B) (6, — 6,)
— 2m,&,0,9; cos(8; — 6, — B) (6, — 97)2
— 2m,&,0, sin(0; — 8, — B) (6, — 6,) — 2m,&,6,g, cos(6; — 8, — )
— 4m,&,0,g, cos(8, — 8, — B) — 2m,&,6,g, cos(8; — 6, — B)
+ 4m,&,6,9, sin(8, — 6, — B) (6, — 6;)
+ 4m,&,0,9, sin(, — 6, — B) (6, — 6;)
+ 2m,&,0,9, cos(8; — 6, — B) (6, — 97)2
+ 2m7f'297g7 sin(6; — 6, — B) (91 - 657)
+2m,&,6,6,g, sin(6; — 8, — B) + 4m,&,6,60,9, sin(8; — 6, — B)
+2m,&,0,0,g, cos(8, — 6, — B) + 4m,&,0,6,9g,sin(6; — 6, — )
+4m,¢,6,0,g, sin(6; — 8, — B) + 2m,&,6,6,9g, sin(8; — 6, — B)
+ 4m,£,6,6,g, cos(8, — 6, — B) (6, — 6,)
+ 4m;,&,0,6,9; cos(6, — 6, — B) (6, — 6,)
+ 4m,&,0,0,9; cos(6, — 6, — B) (6, — 6,)
— 2m;&,6,0,g, sin(6; — 0, — B) (6, — 6,)°
+ 2m7€29197g7 cos(68, — 6, — B) (651 - (9})
—m,&,0% g, sin(0; — 8, — B) — 4m,,6,6, g, sin(6; — 6, — B)
— 2m,&,62%g,sin(8, — 6, — B) — 2m,&,6,6,g, sin(6;, — 6, — B)
— 2m,§,02g, cos(0; — 6, — B) (6, — 6,)
— 4m,&,0,0,9, cos(6; — 6, — B) (91 — 97)
+m;&,0f g, sin(6; — 6, — B) (91 - 6.’7)2
- m752912g7 cos(6; — 6, — ) (é1 - 97) —m,gg, cos(8; + ) 972

—m,gg;sin(8; + B) 6,
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+ m7972g7 cos(6; — 6; — B) (91 - 97)

Qs = —2m,63 g, cos(6; — 6, — B) — 2m;&,6,6,g, cos(6; — 6, — B)
+ 4‘m79.7é7g7 Sin(91 - 97 - B) (91 - 07)

+ m7972g7 sin(6; — 6; — B) (51 - 97) - 7712';;.26.’12 - 4m2529191 —2m, (¢,

- 612)4'9.12 —2my (&, — az)é'léh - m7532912 - 47”7529.19.1 - 27717'52@'16.’1
+ m,g0;cos(8,) — m,gbh2sin(6,)+m,gb;cos(8,) — m,g6%sin(6;)

3 The First, Second and Third Time Derivatives of B

B, = =&, sin(6,) — &,60;cos(8;)
Biz = &45in(63) + £,65c05(65)
B;3=0

B,y = —L,8,co0s(6;)

Bys = —0;sin(6;)

By = 63sin(63)

B, =0

By, = &, cos(8;) — &,6,sin(6,)
By, = —&, cos(63) + £,65sin(63)
By =0

B,, = —L,0,sin(6,)

B,s = 6;cos(6;)

B, = —05c0s(63)

By; =0

B3y = =&, sin(6;) — &6, cos(6y)
Bs; =0

B3z = &g sin(6s) + E05cos(6s)
By, = —L,0,c0s(8; + a)

Bss = —0;sin(6;)

B3y =0

Bj, = 6ssin(6s)

By = &, cos(8;) — &,6,sin(6;)
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B,, =0

Bz = —&4 cos(8s) + &c05cos(6s)

B,y = —L,6,sin(6; + a)

Bys = 6;cos(6;)

By =0

By; = —65c0s(6s)

Byy = —&;5in(6;) — 2§,60,c05(6,) — §;0,cos(6;) + &,07sin(6,)
By, = &,5in(83) + 2£,05c05(03) + &,05c05(05) — £,025in(65)
Bi3=0

Biy = —L,0,cos(8;) + L,02sin(6;)

Bis = —0;sin(8,) — 6%cos(8;)

Bis = 05sin(63) + 62cos(65)

By; =0

By, = &,c05(8,) — 2&,0,sin(0;) — &,6,5in(8;) — &,67cos(6,)
By = —£4c05(63) + 28,035in(63) + &,055in(63) + £,65cos(63)
Bys;=0

B,y = —L,60,sin(6;) — L,02cos(6;)

B,s = 6;cos(6,) — 62sin(6,)

B,g = —65c0s(63) + 62sin(63)

By,; =0

Bsy = —&,5in(8;) — 2&,6,c05(6,) — &,0,c05(0;) + &,625sin(6,)
Bs, =0

B3 = &ssin(Bs) + 2€505c05(05) + Egbsc05(05) — E6H2sin(s)
By, = —L,0,c0s(0, + a) + L,02sin(6, + a)

Bss = —6,sin(6,) — 6%cos(6;)

Bsyg=0

By, = B5sin(6s) + 62cos(6s)

By, = &,c05(0,) — 2&,0,5in(0;) — &,6,5in(0,) — &,07cos(6,)
By, =0

Bys = —é5c05(05) + 2¢4055in(65) + &5055in(6s) + €662 cos(65)
Byy = —L,0,sin(6, + a) — L,0%scos(0; + a)

Bys = 6,cos(0;) — 62sin(6,)
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B46 =0
B,, = —B5cos(8s) + 02sin(6s)

B, = —&,sin(0;) — 3&,6,c0s(6,) — 3¢,0,cos(0;) — &,8,c0s(8;) + 3&,07sin(6,)
+ 3&,0,0,sin(0;) + &,03cos(0;)

B, = &;sin(03) + 3£,05c05(05) + 3,05c05(83) — 3€,02sin(03) + E,05c05(63)
— 38,050;5in(63) — £,083cos(63)

Bi3=0

B,, = —L,6,cos(0,) + 3L,0,6,sin(6,) + L,03cos(6)

B,s = —6;sin(6,) — 360,6,cos(8,) + 63sin(6,)

B¢ = 03sin(63) + 36565c0s(03) — 03sin(63)

B, =0

B,, = &,c0s(0;) — 3&,0,sin(6,) — 3&,0,sin(0,) — 3&,0%cos(8,) — &,0,sin(6,)
— 3&,016:c05(8,) + £,67sin(6;)

B,, = —&,c05(03) + 3&,055in(05) + 3&,055in(03) + 3£,02c0s(83) + £,055in(63)
+ 38,0565c05(63) — £,63sin(65)

B,; =0

B,, = —L,0,sin(0,) — 3L,6,0,cos(0,) + L,03sin(6,)

B,s = 6,cos(6,) — 30,6,cos(8,) — 03sin(6,)

B,¢ = —65c05(03) + 36505c0s(83) + 03cos(03)

B,, =0

B.31 = —3.251'”(91) - 3%;29.1005(‘91) - 35291005(‘91) - fzé'lcos(gl) + 35'291251'11(91)
+ 3&,60,0,sin(0,) + &,03cos(6;)

By, =0

Byz = &sin(8s) + 3¢05c0s(0s) + 3¢605c0s(05) — 3¢50Zsin(8s) + &505c0s(65)
— 3&405055in(65) — £62 cos(65)

By, = —L,0,cos(0, + a) + 3L,0,0,sin(6, + a) + L,03cos(0, + )

By = —6,sin(6,) — 36,6,cos(6,) + 03sin(6,)

By =0

B,, = 05sin(6s) + 36565cos(8s) — 63sin(6s)
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By = 5.2005(91) - 352915in(91) - 3ézé15in(91) — &,0,sin(6;) — 35.29.12005(91)
— 3&,6,0,co5(0;) + &,03sin(6,)

Bi,=0

By = _E.GCOS(GS) - 3ésé55in(95) - 3569551.”(95) - 35;.69.5251."(95) + &055in(65)
— 3&60505c05(85) — £62sin(6s)

B,, = —L,6,sin(8, + a) + 3L,6,0,cos(0, + a) + L,03sin(6, + a)

B,s = 6,cos(8,) — 36,6,sin(0;) — B3 cos(6;)

B,s=0

B,, = —05c0s(8s) — 3050ssin(0s) + 63 cos(6s)

4 The First, Second and Third Time Derivatives of G

Gyq = —&;5in(6;) — §26,cos(6;)
Gz =0

G13=0

Gia = —g,6,c0s(0; + )

Gy5 = —06;sin(6;)

G =0
G17 =0
Go1 = &;c08(6;) — &,6,sin(6;)
Gyy =0
Gy3=0

624 = _97975111(97 + B)
6'25 = élcos(el)

Grg =0
G, =0
Gy =0
G3; =0
G33=0
Gz =0
G35 =0
Gz =0

97



Gs; =0

G11 = —&35in(6;) — 2§,6,c05(6;) — &,6,c05(6,)+&,67 cos(6;)
G12=0

Gi3=0

G14a = —g,0, cos(8; + B) + g,02sin(6; + B)

Gys = —0; sin(6,) — 0% cos(6,)

G16 =0
G17=0
Gz1 = &3¢05(61) — 2§,6;5in(6;) — &,0;5in(6;)—§,67cos(6;)
Gay =0
Gy3=0

624 = _9757 sin(6; + ) — 97972C05(97 +pB)
Gys = 0, cos(0,) — 67 sin(6,)

Gy =0
Gy =0
G3, =0
Gz =0
G33=0
Gz =0
G35 =0
Gz =0
G3;, =0

G11 = _fz sin(6,) — 3529'1 cos(61) — 35291 cos(61) — 5291 cos(6,) + 3529191 sin(6,)
+ 3§,602 sin(6,) + &,03 cos(6,)

G, =0

G13=0

Gia = —g767 cos(6; + B) + 3g,6,0; sin(6; + B) + g,65 cos(6; + B)

Gys = —0; sin(6,) — 36,6, cos(8,) + 63 sin(6,)

Gig =0

G, =0
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621 = 52 cos(6) — 3ézé1 sin(6,) — 35.2‘9.1 sin(6,) — 5291 sin(6,) — 352‘9191 cos(61)
— 3,62 cos(6;) + &,63 sin(6;)

Gyp =0

Gz =0

Goa = —g,07 sin(6; + B) — 3g,6,0, cos(8; + B) + g,03 sin(6; + B)

Gys = 0, cos(0;) — 36,6, sin(8;) — 63 cos(6;)

Gy =0
Gy =0
G3, =0
Gz =0
G33=0
G4 =0
G35 =0
Gz =0
G3;, =0
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