

iii

AN APPROACH TO IMPROVE THE TIME COMPLEXITY OF

DYNAMIC PROVABLE DATA POSSESSION

MOHAMMED K. HAWI

 DECEMBER 2016

iv

AN APPROACH TO IMPROVE THE TIME COMPLEXITY OF

DYNAMIC PROVABLE DATA POSSESSION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

MOHAMMED K. HAWI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

DECEMBER 2016

v

vi

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : MOHAMMED K. HAWI

Signature :

Date : 13.12.2016

vii

ABSTRACT

AN APPROACH TO IMPROVE THE TIME COMPLEXITY OF

DYNAMIC PROVABLE DATA POSSESSION

HAWI, Mohammed

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Nurdan SARAN

December 2016, 49 pages

In this thesis, we aim to take some actions for alleviating the fears when the data

storage over outsourcing, and guarantee the integrity of the files in cloud computing.

In this study, we have suggested some ideas to improve FlexDPDP scheme [13].

Particularly, proposed scheme successfully reduces the time complexity for verifying

operations between the client and the server. The proposed scheme is a fully dynamic

model. We involved some parameters to ensure the integrity of the metadata. In spite

of the fact that auxiliary storage expenditure by Client-side (the client stores

approximately 0.025% size of the raw file). The remarkable enhancement in this

proposed scheme is reducing the complexity. The complexity of the communications

and the computations decreased to 𝑂(1) in both Client-side and Server-side during

the dynamically update (insertion, modification and deletion operations) and

challenge operations.

Keywords: dynamic provable data possession, cryptographic hash function, RSA-

tree modular, proofs of storage security, Cloud Computing, Flex-List.

viii

ÖZ

DİNAMİK KANITLANABİLİR VERİ DEPOLANMASINDA ZAMAN

KARMAŞIKLIĞINI GELİŞTİRMEK İÇİN BİR YAKLAŞIM

HAWI, Mohammed

Bilgisayar Mühendisliği Yüksek Lisans Bölümü

Danışman: Assist. Prof. Dr. Nurdan SARAN

Aralık 2016, 49 sayfa

Bu tezde, Bulut Bilişim (cloud computing) işlemindeki dosyaların bütünlüğünü

garanti altına alınması ve böylece veri depolamak için dış kaynak kullanıldığında

endişelerin hafifletilmesi için bazı işlemler yapılması hedeflenmiştir. Dosyaların

bütünlüğünün sağlanması için pek çok makale yayınlanmıştır. Önerilen çalışmada,

Flex List veri yapısını kullanan DPDP (Dinamik İspatlanabilir Veri Bulundurma)

[13]. Yöntemini geliştirmek için bazı fikirler öne sürülmüştür.. Ancak bilhassa bu

yöntem ile istemci ve sunucu arasındaki doğrulama işlemleri için başarıyla zaman

kazandırılmıştır. Önerilen şema tamamen dinamik bir modeldir. Meta verilerin

bütünlüğünü sağlamak için bazı parametrelere yer verdik. İstemci tarafında yardımcı

yedek depolama giderine rağmen (istemci ham dosyanın yaklaşık % 0,025 boyutunu

depolar), önerilen yöntemdeki dikkate çekici iyileştirme karmaşıklığın azaltılmasıdır.

Hesaplamaların karmaşıklığı, veri yükseltme (ekleme, değiştirme, silme) ve zorlama

işlemleri sırasında hem istemci hem de sunucu tarafında 𝑂(1)’e düşürülmüştür.

Anahtar kelimeler: Dinamik kanıtlanabilir veri bulundurma, Şifreleme ile ilgili

özetleme fonksiyonu, RSA-agaç modüler, Depolama güvenliği belgeleri, Bulut

Bilişim, Esnek-Liste (Flex-List).

ix

ACKNOWLEDGEMENTS

Foremost, I praise Allah, the almighty for granting me the opportunity and ability for

proceeding successfully.

Due to the guidance and assistance from several people, this thesis has appeared in

current form. Therefore I want to offer my profound gratitude and sincere thanks to

all of them. Profoundly thanks to my supervisor Assist. Prof. Dr. Nurdan SARAN for

providing valuable advice with insightful discussions. Profoundly gratitude sincere

thanks to my family, for unfailing support and providing me with continuous

encouragement, during my life and especially the years of study. Thank you.

Perhaps, I cannot express enough about my gratitude and fortunate fairly; to all my

friends especially my roommates in abroad; for assisting me in many different ways,

for handling the paperwork, for making our apartment as friendly as possible, for the

joyful gatherings. Therefore and more, thank you so much I will never ever forget

you.

Last but not least, I dedicate this thesis to my earlier heaven, gentle soul and loving

mother, to the beloved memory of my father (you will always be remembered),

successfully they have made me the person who I am becoming.

x

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE .. vi

ABSTRACT ... vii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF FIGURES .. xiii

LIST OF TABLES .. xiv

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION ... 1

1.1 Cloud Computing... 1

1.2 Cloud Service Provider .. 2

1.3 Motivation .. 4

1.4 Thesis Outlines .. 5

2. BACKGROUND ... 7

2.1 Static (Provable Data Possession) ... 7

2.1.1 PDP Scheme Based on RSA and HVTs .. 8

2.1.2 Similar and Other Schemes of PDP .. 10

2.1.3 PDP Scheme Challenges ... 10

2.2 Dynamic (Dynamic Provable Data Possession) .. 11

2.2.1 RSA-Based DPDP Scheme ... 13

2.2.2 Similar and Other Schemes of DPDP ... 13

xi

2.2.3 DPDP Scheme Challenges .. 14

3. DATA STRUCTURES IN DATA POSSESSION SCHEMES 16

3.1 Skip List ... 16

3.2 Improvements of Skip List .. 17

3.2.1 Authenticated Skip List ... 18

3.2.2 Rank-Based Authenticated Skip List .. 19

3.3 Flex-List ... 19

3.3.1 Search Example of Flex-List... 21

3.3.2 Insertion Examples of Flex-List .. 21

3.3.3 Removal Examples of Flex-List ... 22

4. ENHANCED SYSTEM ... 23

4.1 Preliminaries .. 23

4.2 Setup the New-Adds .. 25

4.3 The Upgrade Operations .. 28

4.3.1 Insertion Operation ... 30

4.3.2 Modification Operation ... 32

4.3.3 Deletion Operation .. 32

4.4 Integrity .. 35

4.5 Security Analysis ... 37

5. EVALUATION AND COMPARISON ... 40

5.1 Auxiliary Storage ... 40

5.2 Comparisons .. 41

xii

5.2.1 Challenge .. 42

5.2.2 Upgrade ... 43

5.3 Results.. 44

6. CONCLUSION .. 46

6.1 Future Work ... 46

REFERENCES .. 47

xiii

LIST OF FIGURES

FIGURES

Figure 1 CC architecture .. 2

Figure 2 Categories of the CSP model ... 4

Figure 3 The protocol of PDP [3]... 8

Figure 4 The setup of PDP scheme [3] .. 9

Figure 5 The RBASL in DPDP scheme [7] ... 12

Figure 6 Improved DPDP scheme [12] .. 14

Figure 7 Skip-List model.. 17

Figure 8 Skip-List (optimized version of Figure 7) ... 18

Figure 9 A Flex-List model .. 20

Figure 10 Insert on Flex-List .. 22

Figure 11 Structure of adapted scheme in client side... 24

Figure 12 Structure of adapted scheme in server side .. 25

Figure 13 Setting the Tag.Rank and the Hashes parameters 26

Figure 15 Algorithm of Insertion Operation .. 29

Figure 16 Insertion Operation .. 30

Figure 17 Algorithm of Modification Operation.. 31

Figure 18 Algorithm of Deletion Operation ... 33

Figure 19 Deletion Operation ... 34

Figure 20 CPV algorithm ... 36

xiv

LIST OF TABLES

TABLES

Table 1 Characters consumed in the upgrade algorithms ... 28

Table 2 Characters consumed in the CPV algorithms .. 35

Table 3 Comparison between PDP schemes (C the numbers of challenge block) ... 44

Table 4 Result of comparison between the adapted and the FlexDPDP schemes.... 45

xv

LIST OF ABBREVIATIONS

DPDP Dynamic Provable Data Possession

CC Cloud Computing

CSP Cloud Service Providers

IaaS Infrastructure-as-a-Service

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

PDP Provable Data Possession

HVT Homomorphic Verifiable Tags

POR Proof of Retrievability

RBASL Rank-Based Authenticated Skip List

ASL Authenticated Skip List

Flex-List Flexible Length-Based Authenticated Skip List

CHF Cryptographic Hash Function

CPV Challenge Prove-Verify

DPG Data Possession Game

1

CHAPTER 1

INTRODUCTION

This chapter briefly describes Cloud Computing paradigm, which is an emerging

computing model over participating with a gather of the resources in Section (1.1).

As well as, epitomizes the fundamental defy facing cloud service provider to be

widely deploying and usage in Section (1.2). Supplementary with this chapter

characterizes the motivation of adapted working in Section (1.3). Finally, it outlines

of the contributions and thesis regulation in Section (1.4).

1.1 Cloud Computing

Cloud Computing (CC) is an ingenious technology grabbing attention. This

technological service has a scalable to enable high estimation to be used readily on

the Internet. This scheme is spreading computational along with a spacious

framework of virtual spread computing sources.

CC is a tendency toward the management readily and the extensive flexibility. Which

is impacting on the individuals and corporations for them data, when its storage

outsourced like the clouds or server (e.g., box.net, Dropbox, Amazon S3, iCloud).

Exemplify, there is an intention for usage the computing services such as usage the

general services like gas, water etc.

Its Architecture has subdivided into Frontend and Backend whereas:

2

 Frontend symbolizes to cloud users, establishments, or implementations

utilizes that from the cloud facilities.

 Backend is a large information centers beside a lot of the applications

various, system software, and memory systems. Such as illustrated in

Figure 1.

Figure 1 CC architecture

1.2 Cloud Service Provider

Cloud Service Providers (CSP): has substantial resources for controlling servers,

storage allocation, and management database of its servers or clouds. These

resources as a virtual infrastructure to provide the applications for hosting services.

Those services are may be used from the client's side to manage its data, which it is

stored onto servers or clouds.

CSP is a web join to Client for storage data at a range of the CC, which operates in a

cooperation and apportions method. However, the clients are enabled to employ any

applications inclusive the operating system and itself.

Agree with [1] CC Architecture might be located with diverse models:

3

 Public: is overtly attainable by generic patronages and organizations, till

exchange specified fees affording by usage the CSP's services.

 Private: is devoted to an organization which may manage the infrastructure

or leave that management to a third party.

 Hybrid: is taking shape of many clouds either private or public. The

organizations afford and handle some exterior and interior resources.

Moreover, CSP depends on the metadata servers to set Clients IDs to data IDs that is

storing and determining as groups. The CSP hosts are a collection of software and

pieces of advanced equipment into its hardware. Which it is used by the developers

to impact on their applications [1] and [2], its might classify into:

1. Infrastructure-as-a-Service (IaaS) is a service that can provide the

functionalities of an entire infrastructure including storage, networks, any

platform and any number of computers. The customers could use this

service by configuring a Virtual Machine on the infrastructure, on which an

operating system installed. They employ the middleware for connection

with other applications.

2. Platform-as-a-Service (PaaS) is proposing an advance platform on a

vertex of the services delivered with IaaS, which applications are working

with, software developers not needed to install the software building tools

on the computer.

The provider's service are enabled its users for installing their applications

on a platform, which can provide a simulated with various kinds of

hardware.

3. Software-as-a-Service (SaaS) is a highly customary service in the CSP,

which transmits the software's implementation onto the web. SaaS provider

transmits their products when facilitated usage the whole Server on one

base. Otherwise, it utilizes another Server equipment dependent on the

Client interests. This operation is usually done by utilizing a licensed model

where applications may be licensed directly organizing by a group of users.

4

They manage multiple licenses between the users' organizations.

Additionally, there is one more infrastructure is Middleware, which is a base that

suitably supports progress and disseminates execution of the applications [2]. That

gives a protection among the applications, then the users will get an entry to the

applications through any Internet device. Figure 2, demonstrates these types with a

clear view of their usage.

Figure 2 Categories of the CSP model

1.3 Motivation

Data outsource such as the cloud may not physically possession. The data proprietor

must capable of verifying that data with stored one's at the Cloud Storage Provider is

robust and secure.

Cloud must be appropriate for any user, a user may investigate of possessing data

storage without requiring a typical copy of the metadata. The data proprietors have

requirements about data to be confidential when verifying its reliability.

5

 Communication complexity: Value of the communication among the

clients and server must be less complexity.

 Storage cost: auxiliary storage from client and server desired by the

scheme must be isolated down of raw data.

 Data recovery: each method must be assisting within recovery the data in

the situation of data loss.

 Provable integrity: The scheme must be secure and the data should not be

altered.

Overhead, the research questions revolved around the adapted scheme can be

illustrated by the following:

- How to improve the time complexity and how to bolster the security of the

Dynamic Provable Data Possession scheme (DPDP)?

- What is the difference in outcomes between the adapted scheme and recent

schemes?

1.4 Thesis Outlines

We have improved a system and practical control on the entire DPDP scheme

whereas the Server has the capability to guarantee the data integrity of the Client

when the clients do not download the total metadata.

The details of this thesis existing in particular chapters as described here:

 Chapter 2 have a background of the various Static Provable Data

Possession (PDP) and Dynamic DPDP schemes, their challenges, and

features. We start with the static one at its PDP schemes on data, thereafter

we complete adapted survey around the dynamic at its DPDP schemes on

data.

 Chapter 3 have a review of the various Skip-List and Flex-List methods,

their structures, and features. We start with the Skip-List methods with

different versions, after that, we complete adapted survey around the Flex-

List method with definitions several operations that are dealing with.

 Chapter 4 have adapted proposed system, within added some extension

parameters and measures the size of these extensions in the auxiliary

6

storage section. Moreover, it is shown the dynamics of setup these

parameters, that shown in details how this system is dealing with the

upgrade operations.

 Chapter 5 have a comparison with other dynamic schemes, through

calculates the complexity of adapted scheme. Then shown the result we

have got according to all that work.

 Finally, Chapter 6 totalizes the conclusions of adapted scheme and awarded

a guidance for future work.

7

CHAPTER 2

BACKGROUND

In Section (2.1), we have reviewed the PDP schemes of static data and provide the

rapport backward of their features, then give the challenges of them.

Section (2.2), the basics design of outsourcing data by providing the DPDP schemes

have been described, then the challenges have been given.

2.1 Static (Provable Data Possession)

PDP is a strategy permits for substance toward demonstrating the datum. The

ownership of the datum is approving the possess datum in excess of the remote

servers. In the common PDP schemes, the data proprietor creates a digest for a data

record for utilizing later to confirm purposes through test the traditional reaction per

the remote cloud/server [3], [4] and [5]. The proprietor refers a report to be secured

on a remote server, which could be untrusted, while remove a clone parts from the

record. Whereas the main data proprietor or the trusted substance that grants a few

information to the proprietor, to confirm that the Server has the datum record. The

server needs toward accurate where the process reaction to test a vector sent from

verifier.

Briefly, PDP authorizes the verifier to be an effectively and safely to approve over

the remote server, Figure 3 shows the protocol of the scheme [3].

In another words, PDP is a cryptographic convention that empowers a customer to

review his/her information over a remote server without getting the entire record.

Although checking the data reality when it is putting away upon the server, the

techniques during attacks take a high cost and give a low outcome.

8

Cryptographic tags give a reasonable ensures, even though it maybe require the

whole record be retrieved.

Generally, PDP models possess the property when it is provided a probabilistic

assurance and it is intensified an exponentially through redundancy.

Figure 3 The protocol of PDP [3]

2.1.1 PDP Scheme Based on RSA and HVTs

The scheme proposed in [3]; confirms data integrity utilizing the RSA for generating

the Tags; pre-processes the data before storage in outsourcing and present the idea of

the Homomorphic Verifiable Tags (HVTs), Tags depend on RSA signature. RSA-

Tags have Homomorphic possessions where numerous data blocks can be confirmed

in meantime.

Fundamentals situation of this scheme demonstrates the integrity of numerous from

reproductions and manages the operation of the static data, because of the extent of

RSA-Tags is significant. Approved clients are needed to identify which duplicate has

existed particularly reclaimed from the CSP to detect the harmful block before

decoding. The schemes in [3] and [5] are working with static data only.

9

These HVTs proceed for confirmation the metadata of data blocks. HVT modular

considers a record 𝑅 to be a limited requested accumulation of 𝑛 node (data blocks

since 𝑅 = (𝑛1, 𝑛2. . . 𝑛𝑚)), while gives two qualities, 𝑇𝑛𝑖 𝑎𝑛𝑑 𝑇𝑛𝑗 as generate the

tag 𝑇𝑛 for node 𝑛.

Figure 4, explains a summary of the PDP scheme. The remote server gives a proof

for the data, the data is not deleted or changed through reacting the challenge referred

to the verifier. While the PDP authorizes a subsection of data per every challenge, it

is the probabilistic prove of data possession.

Figure 4 The setup of PDP scheme [3]

The schemes in [3] and [4] have determined numerous requirements of other PDP

conventions; that enable when taking a large HVTs which depend on RSA generally;

each data blocks have a HVT altogether of 𝑁 bits; Consequently, towards

accomplish 80 𝑏𝑖𝑡𝑠 security level, and created tag of size 1024 𝑏𝑖𝑡𝑠.

Briefly, HVTs are unforgeable metadata check and built from the record blocks in a

manner. The verifier can be satisfied with the record blocks as precisely, by

confirming the accumulated tag/authenticate.

10

2.1.2 Similar and Other Schemes of PDP

Proof of Retrievability (POR) [6], provided a various methodology from PDP,

however both of them have a related way to deal with the validity of the remote data

by testing or checking. POR is considered as a first scheme to characterize the sort of

conventions. Both of PDP and POR are correspond together by; divides the record

(the data file) into blocks; stores the data remotely; checks the record's integrity, and

utilizes test reaction "challenge-response" protocol.

POR has one more property that tests the reaction protocol concedes as "extractor,"

so that an effective calculation can be utilized to reproduce the raw record.

The POR methods utilize unique blocks are called as the sentinels, and covered up

between different blocks in the record. The POR [6] is particular via the number of

sentinel's blocks, which they are embedded inside the record, and it permits a few

numbers of challenges on the records.

In [8], authors use some functions like a one-way function and another one to

achieve method to decrease the communication cost, but it does not satisfy the

required verification standard.

The scheme that offered in [9] verifies the data integrity by utilizing the RSA-based

homomorphic-hash-function, which has a limitation similar with [8], by forcing the

service provider to archive within an exponential growth of the whole file, that

computational overhead is hefty with large files especially.

In [10], authors cancel the issue of exponentiating of the whole file; through chunks

interested in blocks; fingerprints all blocks, and utilizes the RSA for blocks, but, it is

supporting the private verifiability only.

2.1.3 PDP Scheme Challenges

There are many criteria used to improve this scheme, it is useful and powerful or not,

constructed by the following:

 Owner pre-calculation: when the owner perform such operations on the

metadata, to prepare the data before being outsourced, that will be called a

calculation.

 Verifier capacity overhead: to store some metadata on the verifier side, to

11

be utilized later, the additional capacity will be required.

 Server capacity overhead: metadata needs an additional storage at the

server which is called overhead capacity.

 Server calculation: high level of security operations, which are applied by

the server.

 Verifier computation: a verification methods that are performed by the

verifier.

 Communication cost: the cost is simply a bandwidth which is necessary

when the challenge takes a place.

 Unbounded difficulties: the method authorities a number of examining the

data record.

 Fragmentation: divides the record into smaller blocks.

 Kind of certification: probabilistic insurance that relies upon spot

checking.

 Demonstrate information ownership: whether the method demonstrates

the possession of the data itself, or demonstrates that the server is putting

away something in any event as expansive as the native record.

2.2 Dynamic (Dynamic Provable Data Possession)

DPDP in [7] is a setting for distributed storage data, which primarily presents the

rank-based authenticated skip list (RBASL) such as a new data structure, as shown in

Figure 5.

In the DPDP model, there is a client who needs to outsource record and a server that

assumes responsibly for the capacity of the data. The client pre-processes the record

and keeps up metadata for screening the confirmations from the server, then it refers

the data case to the server.

The client needs to check whether its data integrity or not, challenges some random

blocks. the server generates the proof for challenge and backward, the client at that

point checks the data integrity of the record using this proof.

As indicated by this method, record 𝑅 is divide into 𝑣 nodes (blocks) 𝑣1, 𝑣2, . . . 𝑣𝑛.

The tag 𝑇(𝑣𝑖) of blocks 𝑣𝑖 is located in the appropriate position at the 𝑖𝑡ℎ below-

level nodes of the RBASL. Blocks 𝑣𝑖 will be located somewhere else by the cloud.

12

Each node 𝑣 of the RBASL stores the portion of nodes at below-level that can

become for 𝑣, that value of node is known as the rank of 𝑣 and indicated by 𝑟(𝑣).

The furthest-top-left node of the Skip-List will have alluded to the begin node 𝑤𝑖.

For a node 𝑛, the records of the furthest-left and furthest-right nodes at the below-

level Reachable from 𝑣𝑖. It indicated by low (𝑣𝑖) and high (𝑣𝑖) individually as shown

in Figure 5. The hash value of the nodes in Skip-List when updated or modified

nodes are reachable and recomputed with the path, whereas the nodes updated are

referred to the user for authentication.

Figure 5 The RBASL in DPDP scheme [7]

RBASL has utilized to update operations and tags through that it has achieved the

dynamic behavior of data blocks. RBASL nodes alongside with verify are influenced

by the dynamic operations of file blocks solely.

Each level and node of RBASL in specific conditions must be stored also the

aggregate hash value of the nodes from left to right in below-level, these hash values

entries act as the metadata.

The integrity verification in [7] scheme is similar to the conventional schemes but it

supports data dynamics and verifies data block within update operations.

13

2.2.1 RSA-Based DPDP Scheme

There is a second scheme in [7] that has displayed a variation of the DPDP scheme

utilizing RSA-trees rather than (RBASL) as the second plan of its worked.

The second scheme of DPDP (based on RSA-trees) permits that any individual who

identifies the proprietor's public key be able to challenge the outlying server and

check the server “is yet having the proprietor's records?”.

In [11] modify the method in [10] that makes the verification publicly on dynamic

data. It permits a person identifies the public key to challenge the remote server and

verify it by keeping the possessing data. In the case of doubt with data integrity and

possession validity, when transmitted between the proprietor and the CSP. Hence,

the outsider inspector can figure out the secure of data. These outsiders utilized in

this scheme for auditing system, where no private data is leaked. The scheme

displayed in [11] guarantees that the information is kept privately over the outside

confirmation.

2.2.2 Similar and Other Schemes of DPDP

PDP scheme in [4] offers “dynamicity model based on Cryptographic Hash Function

and symmetric key encryption in dynamic version”. However, the issue of updated

block in PDP is cannot explicitly, because it is supported only the append operation.

There are several schemes covered DPDP with using RBASL, one of them in [12]

divides record into blocks, makes a tag for each block to ensure the respectability of

the index blocks and enrolls a hash value for each tag to ensure the wellbeing of the

tags.

The added matrixes in [12] have increased in a few amount of the raw file size as

shown in Figure 6. Due to the lack of supply variable block sized operations with an

RBASL, this scheme is not fully dynamic like adapted scheme.

Flex-DPDP scheme [13] offers a new data structure (Flex-List), which provides a

variable-size of blocks utilized for constructing the DPDP protocol.

Another work of the Flex-DPDP [14] utilizes a balanced Flex-List for permitting a

variable-sized of that block which provides the flexibility to deal with the arbitrary

length changes.

14

Figure 6 Improved DPDP scheme [12]

2.2.3 DPDP Scheme Challenges

The scheme in [7] faces with the challenges by the following procedures:

 Key-generation: controlled by data proprietor (customer), and the

outcomes are secret key 𝑠𝑘 and public key 𝑝𝑘. The secret key is preserved

by the proprietor, but the public key is transmitted to remote server.

 Update-preparation: controlled by the proprietor with nominate a part of

the file to store onto the remote server. The vectors are 𝑠𝑘 and 𝑝𝑘 as the

input parameters and make the comprehensive update cross the metadata

𝑀𝑐 (e.g., full re-write, modify the block, delete block, or insert block).

The outcomes are transmitted to remote server, which they are; an encoded

form of file 𝑒(𝐹); encoded metadata 𝑒(𝑖𝑛𝑓𝑜) passed off the update and for

getting the metadata 𝑒(𝑀).

 Update-execution: when gets an update demand from the proprietor, the

server runs this step in responding to the demand. The vectors are 𝑝𝑘, file

15

denoted as 𝐹𝑖 − 1, metadata 𝑀𝑖 − 1, and the values produced by the client

during Update-preparation step.

The outcomes are the new release from the file 𝐹𝑖, metadata 𝑀𝑖, and

metadata 𝑀𝑐 is transmitted to the proprietor for proof 𝑃𝑀𝑐.

 Update-verification: running by the proprietor to verify a behavior of the

server through the updates. The vectors are all inputs of Update-preparation

step, the metadata 𝑀𝑐, and the proof 𝑃𝑀𝑐 (𝑀𝑐 and 𝑃𝑀𝑐 are submitted by

the server as the outcomes of the Update-execution step).

The outcome calculation is either accept or reject signal.

 Challenge: controlled by the proprietor to challenge the server and confirm

the integrity of storage data remotely. It picks as info (𝑠𝑘, 𝑝𝑘), and the most

recent proprietor metadata 𝑀𝑐.

The outcome is a challenge 𝐶 that is transmitted from proprietor to server.

 Proof-computation: After getting 𝐶 from the proprietor, the server runs

Proof computation in order to test that. The vectors are 𝑝𝑘, the most recent

version of the file, the metadata, and the challenge 𝐶.

The outcome is a proof 𝑃 that is transmitted to proprietor.

 Proof-verification: controlled by the proprietor to prove 𝑃 got from the

server. The vectors are (𝑠𝑘, 𝑝𝑘), the customer metadata 𝑀𝑐, the

challenge 𝐶, and the proof 𝑃 transmitted by the server.

The outcome is accept or reject generally.

16

CHAPTER 3

DATA STRUCTURES IN DATA POSSESSION SCHEMES

There are several data structures that have been used in data possession schemes such

as skip list, rank based skip list, Flex-List etc. In this chapter, we have summarized

these structures and associated their effects in data possession.

3.1 Skip List

Skip List is a data structure (probabilistic method) introduced as the other option of

balanced trees [15], and “it is a hierarchical structure of Linked-Lists”.

It utilizes for storage a sorted set of items among the constructions that empower

dynamic operations. It offers search, modify, insert, and remove operations with

logarithms multifaceted nature in high probability.

It is easy to structure but difficult to execute without complex balancing and

rebuilding operations, which keeps nodes requested by key-values. Each node n in

the typical Skip-List stores with right and down pointers, to be utilized during search

system for a particular target at leaf-level nodes (in below-level nodes) [15].

In the typical Skip List nodes consist of key, level and data, where the data is being

at below-level nodes. While the connections consist of connection-below and

connection-after (e.g., 𝑛2. 𝑏𝑒𝑙𝑜𝑤 = 𝑛3 𝑎𝑛𝑑 𝑛2. 𝑎𝑓𝑡𝑒𝑟 = 𝑛4).

If a search for the node with key 27 will be conducted, the search begins from 𝑛1

(root) and keeps track of 𝑛2 (the next connection). 𝑛1′𝑠 connection-after leads to the

node that has the greater key-value than its key-search as ∞ > 27.

At that point, within 𝑛2 keeps track of 𝐶1 connection to 𝑛4, when key-value of 𝑛4 is

smaller than or equal to the key-search.

Generally, whether key-value of the node where connection-after leads to smaller or

equal to the key-search then must keep track of that connection, otherwise remain

17

track of that connection-below. By utilizing the same resolution mechanism, hence

keeping track of that blue-connections till the key-search is hit at the below-level.

Otherwise, it does not exist and return the node with key immediately.

Figure 7 summarizes the typical Skip-List; the path of search node with key 27 is

shown within the blue-connections; Numbers on the left characterize the levels;

Numbers exclusive the nodes are the key-values; and dashed-lines refer to the

pointless connections and nodes.

Figure 7 Skip-List model

3.2 Improvements of Skip List

Noticeably there are several connections never used in Skip-List such as 𝐶2 in Figure

7, even after any search within key larger or equal to 10, definitely that will keep

track of 𝐶1. While the search for the smaller key would not progress through 𝐶2,

Hence these connection are unnecessary.

After removing the unnecessary connections, then some nodes (whose have not

connection-after e.g., 𝑛3) are unnecessary too. Therefore these unnecessary nodes do

not have a new condition in Skip-List.

In spite of the fact that it does not alter the asymptotic complication, it is valuable not

to incorporate them for time and space proficiency.

Detecting a connection is necessary if and only if it is on at least one search path.

18

Where detecting a node is necessary if and only if it is at the below-level or it has a

necessity at the connection-after.

For example the optimized version of Skip-List that is illustrated in Figure 7, can be

expressed in Figure 8 per the identical blue-connections, but without the unnecessary

nodes and connections.

Overall, [7] enrolls a new data structure (RBASL), and [14] extends RBASL and

enrolls a new data structure, Flex-List. These data structures, RBASL and Flex-List,

are constructed based on Skip-List. The following section shows these models

carefully.

Figure 8 Skip-List (optimized version of Figure 7)

3.2.1 Authenticated Skip List

Authenticated Skip List (ASL) is developed with the utilization of an impact safe

(collision-resistant) hash function and saving a hash value in every node. Nodes at

below-level remain connections to the blocks, which can connected toward a various

structures e.g., records, catalogs [16].

ASL may supply a proof to demonstrate whether a particular component has a place

with the set constitute with the list or not. Every node n in authenticated Skip-List

19

stores 𝑟𝑔𝑡(𝑣), 𝑑𝑤𝑛(𝑣) and a name 𝑓(𝑣) recursively by relating a hash function to

 𝑓(𝑟𝑔𝑡(𝑣)) and 𝑓(𝑑𝑤𝑛(𝑣)).

A hash value is computed per the accompanying efforts: level and key of the node,

and the hash value of the both node-after and node-below. Through the efforts to the

hash function, all nodes are reliant on their after and below neighbors.

The root-node is reliant on each leaf-node, and because of the collision-resistant of

the hash function, knowing the hash value of the root is enough for checking the

integrity later.

Note that if there is no node below or an element of data (which called tag in the

accompany segments), utilized rather than the hash of the below neighbor.

3.2.2 Rank-Based Authenticated Skip List

Rank-Based Authenticated Skip List (RBASL) is vary in relation to the ASL by a

method for how its listed data [7]. An RBASL has rank data (utilized as a part of

hashing rather than the key value), which means what number of the nodes is

reachable from that node. In spite of 𝑟𝑔𝑡(𝑣), 𝑑𝑤𝑛(𝑣) and 𝑓(𝑣), every node n in

RBASL stores the quantity of the nodes on the base level.

For more details about this scheme (as mentioned in chapter.2 section (2.2)) and in

Figure 5 an example of RBASL is shown.

3.3 Flex-List

Flexible Length-Based Authenticated Skip List (Flex-List) is verified data structure

and constructed on the length of data and dealing with variable-length blocks of data

[13], “The Flex-List optimization of removing unnecessary links and nodes results in

50% fewer nodes and links on top of the leaf nodes”. While the speedup of parallel

build Flex-List from 8 cores reduces the time of building [14].

Respectively, the nodes preserves a hash value that computed by rank, level, the hash

value of below neighbor, and the hash value of the after neighbor. The rank is the

quantity of bytes that consist of node and level, which is the status of a node in Flex-

List.

Respectively below-level nodes preserves a connection to the metadata (a block of

20

the stored file) that it alludes to the length of the data, and computes a tag ascertained

by metadata. Rank qualities are including the below and after neighbors' positions.

The leaf-level nodes' hash value are slightly distinctive, denote that root node needy

to wholly leaf-level nodes.

Additionally, Flex-List has sentinel nodes as the initial and latest nodes (𝐸4 and 𝐸13).

These nodes do not have any information where their length qualities are 0, and they

don't influence the rank value of alternate nodes. The sentinel nodes do not create a

new conditions, they are valuable to make the calculations simpler and more

justifiable.

In Figure 9, the numbers at the bottom represent the lengths of the data blocks

associated with the leaf-level nodes. The numbers in the nodes represent the ranks,

and the numbers at the left side of the figure denote levels.

Figure 9 A Flex-List model

In Figure 9, consider node 𝐸2 keeps two active connections, rank quality (75) and

level value (3). By keep tracking the connections to reach the node-below 𝐸3 and the

node-after 𝐸9.

The rank bytes of the genuine data can be reached by going to the specific node (e.g.,

the rank bytes of 𝐸3 is 25𝐵). Computing the rank value can be done by adding its

21

values of below and after nodes (rank of node-after is taking 0 if the connection

is 𝑁𝑈𝐿𝐿). The level performs the length of the node in Flex-List.

Once more, in Figure 9 consider 𝐸5 which has a connection-after to 𝐸7, however, it

does not have a connection-below.

3.3.1 Search Example of Flex-List

Assume the block that chosen to represent the search example has the byte with

value 30 through that Flex-List, see Figure 9.

Starting from the root-node (𝐸1) and checking a rank’s node-below as a procedure

for drawing the search path until achieved the desired. Since 30 < 75 realizes that

search path must keep tracking the connection-below to reach 𝐸2. Continuously, by

the same search path will get 30 > 25, for that must keep tracking the connection-

after at the second time to reach 𝐸8.

Moreover, by keep tracking the connection-after when leaving behind several bytes

on the left, whereas cannot be reached later. At that point, the operation must be

subtracted these bytes from search the index. Then the search operation will

complete its work with this index 30 − 25 = 5 (rank of 𝐸3). Sequentially,

searching until reach 𝐸9 and 𝐸10 respectively (the length of data for 𝐸10 is 25). At

that point, the searching is stopped since the index 5 cannot be reached.

3.3.2 Insertion Examples of Flex-List

Insertion operation to Flex-List is a little bit complicated; should maintain on data

structure optimally; removing nodes that turn out to be pointless after the insertion

operation, and whether the connection point is hollow then creates a new node.

Figure 10 demonstrate the Insert Example by inserting a data block with length 10 to

index 50, the main insertion point in this Example is 𝐸8.

Starting at the root 𝐸1 with the same principle in the Search Example, by keep

tracking the connections until reached the node-before.

Continuously through following the connections will reach 𝐸10, which it does not

have a connection-after. Where 𝐸10 has achieved the desired to add a new nodes

index (𝑃1).

22

At that point, creating 𝑃1 and interfaced with 𝐸10 (as a leaf-level node), and

determined both of the rank and hash value for the new node 𝑃1.

After that, during follow all the connections inversely till the root, the Insert

operation will be finished and achieved the desired.

Figure 10 Insert on Flex-List

3.3.3 Removal Examples of Flex-List

Basically, the Removal operation is an opposite of the Insert operation. In the

running case to delete the node 𝑃1 with data block 10 from Figure 10 will obtain on

the same Flex-List in Figure 9.

23

CHAPTER 4

PROPOSED SYSTEM

According to the proposed model in [12] there are some parameters added to RBASL

to improve the DPDP scheme (as mentioned in Section 2.2). Unfortunately, there are

some corner nodes, and lack of supply variable block sized operations in RBASL.

Hence all that had been fixed by Flex-list, where that is encourage us to make the

Flex-list as our data structure for constructing an adapted scheme.

There are several studies that-have used the measurement of metadata, which is

available in every node in bytes (not the number of blocks) like Flex-list. The Flex-

list in [13] utilizes the rank of the node as a length of the metadata that opened

through that node. Whereas, the pre-processing step by parallelization gets 60% gain

at server-side and 90% gain at client-side. Overall, the computational complexities

of Flex-DPDP scheme are logarithmic in [14]. Among these mentioned methods, we

have constructed an adapted scheme.

4.1 Preliminaries

We have explained the work dynamism of the Flex-List [13] data structure in section

3.3, by utilizing the rank’s node in bytes “not the number of blocks”.

The work in [12] is simply adding four parameters to the RBASL. In the adapted

scheme, three parameters from the [12] are added to the Flex-List with some

modification on their functions.

The metadata is being saved at the below-level 𝑖𝑡ℎ that urges to generate tags

(Tag.Rank) to those nodes separately. Since Tag.Ranks (𝑇𝑅) will be carried on the

24

network with the metadata packages, therefore computes the hashes (𝐶𝐻𝐹) of them

became a fact to increase the integrity.

Although, those operations are managed in both client and server sides, the client

creates an additional array (Ѡ matrix) towards the authentication of the metadata

integrity.

In Figure 11, adapted scheme for client-side is shown with the New-Adds on Flex-

List, and in Figure 12, adapted scheme for server-side is shown with the New-Adds

on Flex-List.

According to all that the Server can look for a specific rank of the metadata from

Flex-List.

Figure 11 Structure of adapted scheme in client side

25

Figure 12 Structure of adapted scheme in server side

4.2 Setup the New-Adds

We can notice that there are differences between Figure 11 and Figure 12 in the

New-Adds. The New-Adds are classified into two chunks, Tag.Rank and Hashes, in

server side. In client side, the New-Adds are classified into three chunks, Tag.Rank,

Hashes, and Ѡ Matrix.

Figure 13, summarizes how to build Tag.Rank (𝑇𝑅𝑖) and Hashes (𝐶𝐻𝐹𝑖) for each

node of metadata, rank's nodes (𝑅𝑖) in below-level of Flex-List. In Figure 13,

KeyGen function produces a public key and a private key {𝑠𝑘, 𝑝𝑘}.

26

Figure 13 Setting the Tag.Rank and the Hashes parameters

The Tag.Rank parameter generates a tag for each rank's node (𝑅𝑖) in below level

except for the sentinel's nodes (present in Figures (11 and 12) by k4 and k14) because

of they have zero value. Equation 4.1 calculates the Tag.Rank as in [21].

 𝑇𝑅 = 𝑔𝑅𝑖 𝑚𝑜𝑑 𝑁 (4.1)

Once 𝑁 = 𝑝𝑞 “𝑝 and 𝑞 are the product of two large prime numbers used in RSA

group Z𝑁
∗ , 𝑔 is a high-order generator”.

The Hashes parameter computes the Cryptographic Hash Function (𝐶𝐻𝐹) by

Tag.Ranks and Ѡ matrix, which meant to increase the integrity of Tag.Rank.

Equation 4.2 calculates the hashes as in [22].

 𝐶𝐻𝐹𝑖 = ℋ𝑘1
 (𝑇𝑅𝑖 || ℱ(g𝑖) || 𝑖) (4.2)

Once “𝓗 is a cryptographic hash function, 𝓕 is a pseudo-random function” and ||

denote concatenation.

During generation the public key and secret key by the Client side, the Ѡ Matrix

parameter (g
𝑖
) is generated too so that guarantee the integrity with initial value zero.

27

Each g
𝑖
 is belong to any given rank's node in below level of the Flex-List. However,

the Ѡ matrix, which kept by Client only, is representing how many modification

times takes place on the responsible nodes.

The Client sends the handled metadata and the public key upon the Server with

saving the Ѡ Matrix and the secret key confidentially. The handled metadata

consists of Flex-List nodes in below-level 𝑖𝑡ℎ, Tag.Rank parameter, and Hashes

matrix.

Figure 14, shown the pseudo-code of setting up the New-Adds in both the Client and

Server sides.

 Figure 14 Pseudo-Code of the New-Adds

Pseudo-code of the New-Adds

1. Input FlexList_size

2. Input g𝑖 = 0; // by KeyGen(node.index)

3. Generate public key, secret key

4. For(node.index ! = 0)

a. If (flexlist.node.below_level != nodes.sentinel)

i. 𝑇𝑅𝑖 = CalculateTag(flexlist.node.below_level, len,

vecter.data); //By the RSA-group

ii. 𝐶𝐻𝐹𝑖 = CalculateHash(𝑇𝑅𝑖, PseudoRandom(g𝑖) , len,

vecter.data, node.index); //By the SHA2

iii. Keep on referring all the pointers

End If

b. Else If (flexlist.node.below_level = sentinels nodes)

i. node.index + 1

End For

5. Return 𝑠𝑘, g𝑖 //Save Ѡ Matrix and secret key privately by the Client

6. Return 𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑖 //Send them to the Server with public key

28

Doing the same steps in Figure 14 by the Server but without generate the Ѡ Matrix,

while the Hashes will be calculated like this code:

𝐶𝐻𝐹𝑖 = CalculateHash(𝑇𝑅𝑖, PseudoRandom(g𝑖) , len, vecter.data, node.index);

4.3 The Upgrade Operations

The main operations that occur between the Client and the Server are the

modification, the insertion, and the deletion. We have provided some figures of these

operations to illustrate the idea of the adapted scheme. For explaining these

operations, we are assuming the Flex-List originally have 𝑛 nodes and the operations

upgrade the data structure upon the New-Adds. Additionally,

Table (1) summarizes the notation have been used in this section, in adapted

algorithms especially.

Table 1 Characters consumed in the upgrade algorithms

Symbol Description

∗ Insert a parameter

′ Upgrade a parameter

" Multiple upgrades onto the parameter

𝒊 The index parameter in bellow-level of Flex-List

𝒌 , 𝒔 Random number

𝓕 pseudo-random function

𝒏 No. of elements of the metadata.

𝒈 High-order

𝓗 Cryptographic Hash Function

g The Ѡ Matrix

𝑹 Rank of the node

𝑻𝑹 The Tag.Rank parameter

𝑪𝑯𝑭 The Hashes array

29

Setup Insertion Operation

 Client Server

1. g
𝑛+1
∗ = 0 // inserts at the close of Ѡ Matrix

2. 𝑇𝑎𝑔. 𝑅𝑎𝑛𝑘 (𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑛) //computes 𝑇𝑅𝑖
∗ and 𝐶𝐻𝐹𝑛+1

∗

3. {𝑖, 𝑅𝑖
∗, 𝑇𝑅𝑖

∗, 𝐶𝐻𝐹𝑖
∗} //transmits to Server

Upload to Server

1. 𝑅𝑖
∗ //inserts as 𝑅𝑖+1 next to the 𝑅𝑖 node

2. 𝑇𝑅𝑖
∗ //inserts in Tag.Rank group

3. 𝐶𝐻𝐹𝑛+1
∗ // appends to Hashes group

Update Server

1. 𝐶𝐻𝐹𝑅 //selects a Hashes

2. 𝑔𝑠 = 𝑔𝑠 // computes a random number 𝑠

3. { 𝑖 + 1, 𝐶𝐻𝐹𝑅 , 𝑔𝑠 } //transmits to Server

- Proof if the Server has the new node 𝑅𝑖+1

1. 𝑅𝑖+1 ? //yes, Server finds the node in

(𝑖 + 1)𝑡ℎ of FlexList

2. 𝑇𝑅𝑖+1 ↔ 𝐶𝐻𝐹′(𝑖+1)

 // corresponds Hashes with Tag.Rank

3. 𝑇𝑅𝑠 , 𝐶𝐻𝐹𝑅 //computes them

//since [𝑇𝑅𝑠 = 𝑔𝑠
𝑅𝑖+1 𝑚𝑜𝑑 𝑁] and

// [𝐶𝐻𝐹 = ℋ𝑅 (𝑇𝑅𝑖+1 || 𝐶𝐻𝐹(𝑖+1)′)]

- Verify if the value of (𝑇𝑅𝒔 , 𝐶𝐻𝐹) are equal to their values in Client

 Return (𝑇𝑅𝒔 , 𝐶𝐻𝐹) to Client

1. (𝑇𝑅𝑖
∗)𝑠 ? = 𝑇𝑅𝒔 // computes if equal

2. ℋ𝑅 (𝑇𝑅𝑖+1 || 𝐶𝐻𝐹(𝑖+1)′) ? = 𝐶𝐻𝐹 // computes if equal

Figure 15 Algorithm of Insertion Operation

30

4.3.1 Insertion Operation

If we want to insert the new 𝑅𝑖
∗ node into the metadata (next the 𝑖𝑡ℎ in below-level

nodes), we must manage the operation in both of the Client and the Server sides as

shown in Figure 15. The Insertion operation is enrolled in both of the Client side and

the Server side as the following: Firstly in Client side, we add g
𝑖 + 1
∗ parameter into

the end of Ѡ Matrix while computing the 𝑇𝑅𝑖
∗ with the 𝐶𝐻𝐹𝑖

∗ from 𝑅𝑖
∗. Moreover,

the client transmits {𝑖, 𝑅𝑖
∗, 𝑇𝑅𝑖

∗, 𝐶𝐻𝐹𝑖
∗} parameters to the Server.

Secondly in Server side, a 𝑅𝑖+1 next to the 𝑅𝑖 node of the 𝑖𝑡ℎ is inserted in below-

level nodes. While insertion the 𝑅𝑖
∗ node in Flex-List and 𝑇𝑅𝑖

∗ in Tag.Rank group, it

appends 𝐶𝐻𝐹𝑛+1
∗ into the end of the Hashes group. The pointers, which appear in

Figure 16 with the blue arrows, preserve the pointers among the parameters during

the whole process. Moreover, the Client will transmit the 𝐶𝐻𝐹𝑅 and 𝑔𝑠 to the Server

(selects 𝐶𝐻𝐹 for 𝑅 and random number 𝑠 by computing 𝑔𝑠) to confirm whether the

insertion operation has been done successfully.

Figure 16 Insertion Operation

31

Setup Modification Operation

 Client Server

1. Index 𝑖 //transmits to Server

Upload to Server

1. 𝑅𝑖 , 𝑇𝑅𝑖 //searches into the Flex-List

2. 𝐶𝐻𝐹𝑖′
 , 𝑖 ′ // congruent with Tag.Rank

3. {𝑖 ′, 𝑅𝑖 , 𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑖′} // transmits to Client

Update Server

1. 𝑇𝑅𝑖 ?, 𝐶𝐻𝐹𝑖′ ? //computes for verification

2. g𝑖
′ → g𝑖

∗′ , 𝑅𝑖 → R𝑖
∗′ //upgrades the Ѡ matrix and the Node

3. 𝑇𝑅𝑖
∗ , 𝐶𝐻𝐹𝑖

∗′ //computes the Tag.Rank and the Hashes

4. {𝑅𝑖
∗, 𝑇𝑅𝑖

∗, 𝐶𝐻𝐹𝑖
∗′} // transmits to Server

Upload to Server

 𝑅𝑖 → R𝑖
∗′ , 𝑇𝑅𝑖 → TR𝑖

∗′ , 𝐶𝐻𝐹𝑖′ ' → CHF𝑖
∗′ //upgrades all

Update Server

1. 𝐶𝐻𝐹𝑅 //selects a Hashes

2. 𝑔𝑠 = 𝑔𝑠 // computes a random number 𝑠

3. (𝑖 , 𝐶𝐻𝐹𝑅 , 𝑔𝑠) //transmits to Server

- Proof if the Server has the 𝑅𝑖+1 node

1. 𝑅𝑖+1 ? //finds node in 𝑖𝑡ℎ of Flex-List

2. 𝑇𝑅𝑖 ↔ 𝐶𝐻𝐹𝑖′ // corresponds together

3. 𝑇𝑅𝑠 , 𝐶𝐻𝐹𝑅 // computes them

//since [𝑇𝑅𝑠 = 𝑔𝑠
𝑅𝑖 𝑚𝑜𝑑 𝑁] and

// [𝐶𝐻𝐹 = ℋ𝑅 (𝑇𝑅𝑖 || 𝐶𝐻𝐹𝑖
′)]

- Verify if the values of {𝑇𝑅𝒔 , 𝐶𝐻𝐹} are equal to their values in Client

Return (𝑇𝑅𝒔 , 𝐶𝐻𝐹) to Client

1. (𝑇𝑅𝑖
∗)𝑠 ? = 𝑇𝑅𝒔 // computes if equal

2. ℋ𝑅 (𝑇𝑅𝑖+1 || 𝐶𝐻𝐹(𝑖+1)′) ? = 𝐶𝐻𝐹 // computes if equal

Figure 17 Algorithm of Modification Operation

32

4.3.2 Modification Operation

The modification operation can be illustrated step by step according to Figure 17.

First of all, during the upgrade on the metadata in the 𝑖𝑡ℎ node, the rank's nodes will

change from 𝑅𝑖 to 𝑅𝑖
∗.

When the Client transmits the index 𝑖 to the Server, the Server itself will check whole

the Flex-List to detect the 𝑅𝑖 node at the 𝑖𝑡ℎ below-level which congruent with 𝑇𝑅𝑖

and 𝐶𝐻𝐹𝑖. After that, the Server will return (𝑖 , 𝑅𝑖 , 𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑖) to the Client. The

Client confirms the integrity of these parameters through Ѡ matrix.

If the Client updated the 𝑅𝑖 node to 𝑅𝑖
∗ then there will be another updating on the

{g
𝑖
, 𝑇𝑅𝑖, 𝐶𝐻𝐹𝑖} parameters to { g

𝑖
∗′

, 𝑇𝑅𝑖
∗, 𝐶𝐻𝐹𝑖

∗′}. Appending to these upgrade, the

Client will transmit {𝑅𝑖
∗ , 𝑇𝑅𝑖

∗ , 𝐶𝐻𝐹𝑖
∗′} to the Server. On the other hand, the Server

will upgrade the {𝑅𝑖
∗ , 𝑇𝑅𝑖

∗ , 𝐶𝐻𝐹𝑖
∗′} values.

Moreover, the Client will transmit the 𝐶𝐻𝐹𝑅 and 𝑔𝑠 to the Server (selects 𝐶𝐻𝐹 for

𝑅 and random number 𝑠 by computing 𝑔𝑠) to confirm whether the modification

operation has been done successfully.

4.3.3 Deletion Operation

If we want to delete the 𝑅𝑖 node from the metadata in the 𝑖𝑡ℎ below-level nodes, we

must manage the operation in both of Client and Server sides as shown in Figure 18.

Firstly, the Client transmits the index 𝑖 to the Server. Whereas the Server will check

whole the Flex-List to detect the 𝑅𝑖 node at the 𝑖 𝑡ℎ below-level which congruent

with { 𝑇𝑅𝑖 , 𝐶𝐻𝐹 ′𝑖 , 𝑖′ } parameters. Hence, the Client will remove the node; the

Tag.Rank; and the last value of Hashes 𝐶𝐻𝐹𝑛 which congruent with 𝑇𝑅′𝑛.

Secondly, the Server will return (𝑖 ′) only. Then, the Client will upgrade 𝐶𝐻𝐹 ′𝑖 to

𝐶𝐻𝐹𝑖
∗ ′ and transmit it to the Server. The Server itself upgrade 𝐶𝐻𝐹 ′𝑖 to 𝐶𝐻𝐹𝑖

∗ ′ for

removing 𝐶𝐻𝐹𝑛 .

33

Setup Deletion Operation

 Client Server

1. Index 𝑖 //transmits to Server

Upload to Server

1. 𝑅𝑖 , 𝑇𝑅𝑖 //searches into the Flex-List

2. 𝐶𝐻𝐹𝑖 ′
 , 𝑖 ′ //congruent with Tag.Rank

3. 𝑅𝑖 , 𝑇𝑅𝑖 //removes from the Flex-List

4. {𝑖 ′, 𝐶𝐻𝐹𝑛, 𝑇𝑅𝑛′} //transmits to Client

//since 𝐶𝐻𝐹𝑛 is the final value congruent with 𝑇𝑅𝑛′

Update Flex-List

1. 𝑇𝑅𝑛 , 𝐶𝐻𝐹𝑛 //congruent between them

2. g
𝑛 // appends into the Ѡ matrix

3. 𝐶𝐻𝐹𝑛 ? = ℋ𝑘1 (𝑇𝑅𝑛′ || ℱ(g
𝑛
) || 𝑛)

// computes for verification since g𝑖′ > g𝑛 when g𝑖
∗′

= g𝑖′ + 1

4. 𝐶𝐻𝐹𝑛 → 𝐶𝐻𝐹𝑖′ //changes the pointer

5. 𝐶𝐻𝐹𝑖′ //transmits to Server

Upload to Server

1. 𝐶𝐻𝐹𝑖′ → CHF𝑖
∗′ //upgrades the Hashes

2. 𝐶𝐻𝐹𝑛 //remove it

Update Server

1. 𝐶𝐻𝐹𝑅 //selects a Hashes

2. 𝑔𝑠 = 𝑔𝑠 // computes a random number 𝑠

3. (𝑖 ′ , 𝐶𝐻𝐹𝑅 , 𝑔𝑠) //transmits to Server

Check if the Server has the 𝐶𝐻𝐹𝑖′

1. 𝐶𝐻𝐹𝑖′ //searches Hashes to find 𝑖′𝑡ℎ

2. 𝑅𝑖 " ↔ 𝑇𝑅𝑖 " // congruent with 𝐶𝐻𝐹𝑖′

3. 𝑇𝑅𝑠 , 𝐶𝐻𝐹𝑅 //computes them

 //since [𝑇𝑅𝑠 = 𝑔𝑠
𝑅𝑖" 𝑚𝑜𝑑 𝑁] and [𝐶𝐻𝐹 = ℋ𝑅 (𝑇𝑅𝑖" || 𝐶𝐻𝐹𝑖

′
)]

Return (𝑇𝑅𝒔 , 𝐶𝐻𝐹) to Client for verifying

1. (𝑇𝑅𝑛
 ′)𝑠 ? = 𝑇𝑅𝒔 // computes if equal

2. ℋ𝑅 (𝑇𝑅𝑛′ || 𝐶𝐻𝐹𝑖
∗′) ? = 𝐶𝐻𝐹 // computes if equal

Figure 18 Algorithm of Deletion Operation

34

The pointers, which appear in Figure 19 with the blue arrows, preserve the pointers

among the parameters during the whole process.

Moreover, from the Client will transmit the 𝐶𝐻𝐹𝑅 and 𝑔𝑠 to the Server (selects

𝐶𝐻𝐹 for R and random number 𝑠 by computing 𝑔𝑠) to confirm whether the deletion

operation has been done successfully.

The following hints are meant to illustrate Figure 19:

- The green nodes are representing the search path.

- The gray nodes are representing the deleted nodes.

- The red arrows are representing the deleted pointers.

- The blue arrows are representing the new pointers.

Figure 19 Deletion Operation

35

4.4 Integrity

We clarify a nowadays issue about the data integrity. The issue is covered by some

steps, especially such as challenges, proofs and verifications. To explain how the

Client gets a verification of the integrity to proceed the file onto the Server, we have

utilized the Challenge Prove-Verify (CPV) algorithm. Figure 20 demonstrates the

CPV algorithm.

Overall, in different issues for decreasing the general expenses of communication,

we guide the Server to generate the index and the coefficient via its side. The Client

delivers the permutation and function pseudo-random (∏, ℱ) to the Server. The client

generates the 𝑘2, 𝑘3 numbers randomly (they are extended from 𝑘1 ← {0,1}𝑘) while

transmitting them to Server for challenge. The Server orders a system call (prove

function) for making and returning the prove (ƿ).

Moreover, the Client orders a system call (verify function) for confirming if ƿ was

true, then the outcome will be an Accept else if it corrupts the file then the outcome

will be a Reject. Additionally, Table (2) summarizes the notation that we have used.

Table 2 Characters consumed in the CPV algorithms

Symbol Description

𝑪 Counts the No. of the node

𝑪𝑮 Challenge generates

𝒋 Index parameter

∏ Pseudo-random permutation

𝑵 No. of the node in 𝑖𝑡ℎ

𝑲𝟐 , 𝒌𝟑 Random numbers extended from 𝑘1 ← {0,1}𝑘

𝜷 The coefficient of the rank's nodes

𝜶 Forges coefficient of the rank's nodes

Ƿ Outcome of Prove function

𝑭𝑺 File Server set of {𝑅, 𝑇𝑅, 𝐶𝐻𝐹}

𝑫𝑷𝑮 Data Possession Game

𝑨𝒄𝒄𝒆𝒑𝒕 Win Data Possession Game

𝑹𝒆𝒋𝒆𝒄𝒕 Lose Data Possession Game

36

Setup CPV algorithm

i. 𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆 (𝑪 → 𝑪𝑮)

1. 𝑅𝑛 → 𝐶 //counts the No. of the node in 𝑖𝑡ℎ

2. 𝑘2 , 𝑘3 //generates random numbers extended from 𝑘1 ← {0,1}𝑘

3. 𝑖𝑗 = ∏𝑘2 (𝑗) //gets index 𝑖𝑗 for 1 ≤ 𝑗 ≤ 𝐶

4. 𝛽𝑗 = ℱ𝑘3 (𝑗) //gets coefficient 𝛽𝑗 for 1 ≤ 𝑗 ≤ 𝐶

5. 𝐶𝐺 = {(𝑖1, . . . , 𝑖𝐶), (𝛽1, . . . , 𝛽𝐶)} //outcomes

ii. 𝑷𝒓𝒐𝒗𝒆 ((𝑪𝑮, 𝑭𝑺) → Ƿ)

1. 𝐶𝐺 , 𝐹𝑆 //input challenge and file Server (𝐹𝑆 𝑖𝑠 {𝑅, 𝑇𝑅, 𝐶𝐻𝐹})

2. 𝐹𝑆𝑖𝑗
 ? //searches {𝑅𝑖𝑗

′ , 𝑇𝑅𝑖𝑗

′ 𝑎𝑛𝑑 𝐶𝐻𝐹𝑖𝑗
} when 𝑖𝑗 ∈ (𝑖1, . . . , 𝑖𝐶)

3. 𝑅𝐶 = 𝛽1 . 𝑅𝑖1

′ + . . . +𝛽𝐶 . 𝑅𝑖𝐶

′ , 𝐶𝐻𝐹𝑐 = 𝐶𝐻𝐹𝑖1
 𝐶𝐻𝐹𝑖𝐶

//computes file Server via challenge within the pointers

4. Ƿ = {𝑅𝐶 , 𝐶𝐻𝐹𝐶 , (𝑇𝑅𝑖1
 , . . . , 𝑇𝑅𝑖𝐶

)} //outcomes

iii. 𝑽𝒆𝒓𝒊𝒇𝒚 (𝒔𝒌, 𝑪𝑮, Ƿ, Ѡ)

1. 𝑠𝑘 = 𝑘1 //input secret key

2. 𝐶𝐺 = {(𝑖1, . . . , 𝑖𝐶), (𝛽1, . . . , 𝛽𝐶)} //input challenge function

3. Ƿ = {𝑅𝐶 , 𝐶𝐻𝐹𝐶 , (𝑇𝑅𝑖1
 , . . . , 𝑇𝑅𝑖𝐶

)} //input prove function

4. g
𝑖𝑗

 //input Ѡ matrix and look for (g𝑖1
 , . . . , g𝑖𝐶

) via 𝑖𝑗

5. 𝑇𝑅𝐶 , 𝐶𝐻𝐹𝐶 //computes the Tag.Rank and the Hashes

//since 𝑇𝑅𝐶 = {𝑇𝑅𝑖1
′ 𝛽1 , . . . , 𝑇𝑅𝑖𝐶

′ 𝛽𝐶}= 𝑔𝑅𝐶 𝑚𝑜𝑑 𝑁

// 𝐶𝐻𝐹𝐶 = ℋ𝑘1
 (𝑇𝑅𝑖1

′ || ℱ(g𝑖1
) || 𝑖1) ℋ𝑘1

 (𝑇𝑅𝑖𝐶
′ || ℱ(g𝑖𝐶

) || 𝑖𝐶)

6. 𝑇𝑅 ? = 𝑇𝑅𝐶 && 𝐶𝐻𝐹 ? = 𝐶𝐻𝐹𝐶

//computes if equal then outcome Accept else outcome Reject

Figure 20 CPV algorithm

37

4.5 Security Analysis

We have built up the security of adapted scheme to be homogeneous with “Data

Possession Game” (DPG) [7] of the original DPDP scheme. The following scenarios

(1, 2) are rolling between Contender and Opponent with a view to resistance and

facing the probable attacks.

4.5.1 Scenario1

By holding all the Tag.Rank and Hashes congruent with CPV algorithm:

1. Contender: Generates 𝑝𝑘, 𝑠𝑘 and Ѡ matrix by calling the KeyGen function

(𝐾𝑒𝑦𝐺𝑒𝑛 (1𝑘) → {𝑝𝑘, 𝑠𝑘}) then saving the 𝑠𝑘 and the Ѡ matrix secret,

and uploads the 𝑝𝑘 to Server.

2. Opponent: chooses 𝑖𝑡ℎ
 nodes 𝑅𝑖 (since 0 ≤ 𝑖 ≤ 𝑛), they predicts the

inquiries with adaptation, then transmits to Contender.

3. Contender: computes 𝑇𝑅𝑖 and 𝐶𝐻𝐹𝑖 by calling Tag.Rank function

(𝑇𝑎𝑔. 𝑅𝑎𝑛𝑘(𝑝𝑘, 𝑠𝑘, 𝑅𝑖 , g
𝑖
, 𝑖) → {𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑖}), then transmits back.

4. Opponent: keeps on inquiry about the remainder Tag.Ranks from the

Contender, then storages all the parameters (𝑇𝑅𝑖 and congruent 𝐶𝐻𝐹𝑖).

 Otherwise: Opponent either upgrade 𝑅𝑖 to 𝑅𝑖
∗ or modify only the

allocates of 𝑖 to 𝑖∗ , then upgrades the 𝑇𝑅𝑖
∗ and 𝐶𝐻𝐹𝑖

∗ by transmitting

them to Contender.

5. Contender: Generates 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (𝐶 → 𝐶𝐺) by calling CPV algorithm

and asking Opponent for providing 𝑃𝑟𝑜𝑣𝑒 ((𝐶𝐺, 𝐹𝑆) → Ƿ) to prove the

possession of rank's nodes in 𝑖𝑡ℎ (𝑅𝑖1
 , . . . , 𝑅𝑖𝐶

), which determines by CPV

algorithm.

6. Opponent: computes 𝑃𝑟𝑜𝑣𝑒 ((𝐶𝐺, 𝐹𝑆) → Ƿ) to prove the possession Ƿ for

Tag.Ranks, which determines by CPV algorithm and return Ƿ.

7. Contender: checks whether Opponent is winning the DPG by calling CPV

algorithm when getting (𝑉𝑒𝑟𝑖𝑓𝑦 (𝑠𝑘, 𝐶𝐺, Ƿ, Ѡ) = 𝐴𝑐𝑐𝑒𝑝𝑡) on not when

getting (𝑉𝑒𝑟𝑖𝑓𝑦 (𝑠𝑘, 𝐶𝐺, Ƿ, Ѡ) = 𝑅𝑒𝑗𝑒𝑐𝑡).

38

4.5.2 Scenario2

Assume the Opponent wins the DPG by putting a hand on all the Tag.Ranks and

Hashes but missing several of the information (rank's nodes). We consider these

steps to show how Contender reacts with Opponent in DPG fairly by utilizing

cryptographic hash function with create and upgrade the Tag.Ranks.

1. Contender: delivered a cryptographic hash function, 𝑁 (𝑁 = 𝑝𝑞) as the

modulus and patterns a high-order 𝑔 as the base.

Then gets 𝐶𝐺 = {(𝑖1, . . . , 𝑖𝐶), (𝛽1, . . . , 𝛽𝐶)} by the CVP algorithm.

2. Opponent: when forges the rank's nodes(𝛼𝑖𝑗
 , . . . , 𝛼𝑖𝑘

) , while miss the

original rank's nodes 𝑅𝑖𝑗
 , . . . , 𝑅𝑖𝑘

 (𝑠𝑖𝑛𝑐𝑒 {𝑖𝑗, . . . , 𝑖𝑛} ⊆ {𝑖1, . . . , 𝑖𝐶}).

Then compute that such as:

 𝑅𝑗 = 𝛽1𝑅𝑖1
+ . . . + 𝛽𝑗𝛼𝑖𝑗

+ . . . +𝛽𝑛𝛼𝑖𝑛
+ . . . + 𝛽𝑐𝑅𝑖𝑐

And 𝐶𝐻𝐹𝑗 = 𝐶𝐻𝐹𝑖1
 𝐶𝐻𝐹𝑖𝐶

And returns Ƿ = {𝑅𝐶 , 𝐶𝐻𝐹𝐶 , (𝑇𝑅𝑖1
 , . . . , 𝑇𝑅𝑖𝐶

)}

3. Contender: makes a system call for Verify function

(𝑉𝑒𝑟𝑖𝑓𝑦 (𝑠𝑘, 𝐶𝐺, Ƿ, Ѡ)) to comfier the prove such as:

𝑇𝑅𝑗 = 𝑔𝑅 𝑚𝑜𝑑 𝑁 = 𝑔
𝛽1𝑅𝑖1+ ...+ 𝛽𝑗𝛼𝑖𝑗

+ ...+𝛽𝑛𝛼𝑖𝑛+ ...+ 𝛽𝑐𝑅𝑖𝑐 𝑚𝑜𝑑 𝑁 ,

𝑇𝑅𝑐 = 𝑇𝑅𝑖1

𝛽1 𝑇𝑅𝑖𝑐

𝛽𝑐 ,

𝐶𝐻𝐹𝑐 = ℋ𝑘1
 (𝑇𝑅𝑖1

′ || ℱ (g
𝑖1

) || 𝑖1) ℋ𝑘1
 (𝑇𝑅𝑖𝐶

′ || ℱ (g
𝑖𝐶

) || 𝑖𝑐)

4. Opponent: checks the outcome if accept (only when (𝑇𝑅𝑗 = 𝑇𝑅𝑐) &&

(𝐶𝐻𝐹𝑗 = 𝐶𝐻𝐹𝑐))

 Otherwise: as the Opponent are conserved TR & CHF truthfully, we

consider (𝐶𝐻𝐹𝑗 = 𝐶𝐻𝐹𝑐) and (𝑇𝑅𝑗 ? = 𝑇𝑅𝑐).

Since:

 If (𝑇𝑅𝑗 = 𝑇𝑅𝑐) then

𝑇𝑅𝑖1

𝛽1 𝑇𝑅𝑖𝑐

𝛽𝑐 = 𝑔
𝛽1𝑅𝑖1

+ ...+ 𝛽𝑗𝛼𝑖𝑗
+ ...+𝛽𝑛𝛼𝑖𝑛+ ...+ 𝛽𝑐𝑅𝑖𝑐 𝑚𝑜𝑑 𝑁 ,

𝑇𝑅𝑖𝑧
= 𝑔𝑅𝑖𝑧 𝑚𝑜𝑑 𝑁 (When 𝑖𝑧 ∈ (𝑖1, . . . , 𝑖𝐶))

39

 We get:

𝑔𝛽1𝑅𝑖1+ ...+ 𝛽𝑐𝑅𝑖𝑐 = 𝑔
𝛽1𝑅𝑖1+ ...+ 𝛽𝑗𝛼𝑖𝑗

+ ...+𝛽𝑛𝛼𝑖𝑛+ ...+ 𝛽𝑐𝑅𝑖𝑐 𝑚𝑜𝑑 𝑁

5. Contender: may have 𝛽 ≠ 𝛼 while 𝑔𝛽 = 𝑔𝛼 𝑚𝑜𝑑 𝑁 , when adaptively

altering the coefficients (𝛽1, . . . , 𝛽𝐶).

Subsequently, consider 𝛼 = 𝐴 & 𝛽 = 𝐵 so (𝐴 − 𝐵 = 𝑘𝜑(𝑁)) and (𝐴 − 𝐵) can be

used to factor 𝑁, according to [17, 7]. Overall, Opponent cannot win the DPG except

these both cases, "huge integer factorization problem can be solved by the Opponent"

and "collision in the collision-resistant can be found in the 𝐶𝐻𝐹" [21, 22].

Hence, the Tag.Ranks and Hashes, which created by adapted scheme, efficient for

ensuring that the data integrity of adapted scheme is secure.

40

CHAPTER 5

EVALUATION AND COMPARISON

After using the data structure of the Flex-List and adding the New-Adds parameters

(Tag.Rank, Hashes, and Ѡ matrix), we need to evaluated the performance of our

approach to see the effect of the New-Adds.

C++ programming language have been used to be corresponding with the Flex-list

implementation in [18]. The Flex-list needs an assistance from "𝐶𝑎𝑠ℎ𝑙𝑖𝑏" library, for

cryptography, and the "𝐵𝑜𝑜𝑠𝑡 𝐴𝑠𝑖𝑜" library, for network programming, to work [19]

[20].

We managed the local experiments by using 64𝑏𝑖𝑡𝑠 Ubuntu 14.04 (𝑇𝑟𝑢𝑠𝑡𝑦 𝑇𝑎ℎ𝑟);

"Intel (R) core (TM) i3-2348m CPU @ 2.30 GHz" processor (with activating only

one core of the 4 processors); 4𝐺𝐵 of memory (RAM); and 3𝑀𝐵 CacheSize L3 level

Cache.

For creating the security parameters (Tag.Rank and Hashes) and expecting the

outcome security of 80𝑏𝑖𝑡𝑠, we applied 1024𝑏𝑖𝑡𝑠 RSA modulus [21], 80bits

random numbers, and SHA-2 Cryptographic Hash Function [22].

5.1 Auxiliary Storage

The auxiliary storage confirms dynamically the Client and the Server. The Client has

the private key and the Ѡ matrix. Whereas, the Server has the Tag.Rank and the

Hashes parameters which they are getting a fixed values (whatever the file size it is

41

being, they get 128𝐵 for Tag.Rank and 20𝐵 for Hashes). Hence, the additional

storage at the Server will be computed by 𝑇𝑅 + 𝐶𝐻𝐹 ∗ 𝑅/2, as shown in the

following example:

We have considered that 𝑁 of the RSA-Group is 1024 bits, and the raw file is 4𝐺𝐵,

the raw file capable to be divided into blocks of 4𝐾𝐵, have 1,000,000 nodes, each

block has a 128𝐵 Tag.Rank and a 20𝐵 Hashes. Skip-List has approximately 𝑅 nodes

that equal to the number of blocks (as mentioned in Section 3.1), while the Flex-List

has approximately 𝑅/2 nodes (as mentioned in Section 3.3).

In order to prove that only 74𝑀𝐵 of memory filled with 𝑇𝑅 + 𝐶𝐻𝐹 at the server

side, we have made a several calculations such as the following; calculates the nodes

by 𝑅/2 (1,000,000/2) so we get 500,000 nodes; calculates the amount of bytes for

a single node by added up the 𝑇𝑅 + 𝐶𝐻𝐹 (20 + 128) so we get 148𝐵; calculates the

total bytes of nodes (500,000 ∗ 148𝐵) so we get (74𝑀𝐵). The 74MB is equal to

1.8% of the raw file.

The Ѡ matrix has 500,000 items when each item takes about 2B (support, 216 =

 65536 times update). Consequently, the Client will get 1𝑀𝐵 as an auxiliary storage.

The storage value of the Ѡ matrix can be calculated as the following (500,000 ∗

 2𝐵) so we get 1𝑀𝐵. The 1𝑀𝐵 is equal to 0.025% of the raw file.

5.2 Comparisons

At the Server, the adapted scheme is differentiated by 1.8% from the Flex-DPDP

scheme, in [14], when it compared in term of the additional storage by using a 4GB

raw file, and 0.025% of the raw file at the Client.

However, the important reason behind these increases (The New-Adds parameters) is

to give an assistance to decrease the complexity of computational (i.e., the time taken

by the client to verify the returned proof by the server) and communication (i.e., the

size of the returned proof by the server to the client). Likewise, this capacity of the

auxiliary storage is acceptable with any framework. In the other hand, presenting the

challenge and the upgrade on the adapted system is to provide a comparison among

the adapted scheme and the other DPDP schemes.

42

5.2.1 Challenge

We created a challenge scenario, as a probabilistic system that run through the

Client-side and transmitted towards the Server/cloud, as the following steps:

1. The Client chooses the nodes, which are essential to challenge, and creates

the indexes and coefficients.

2. The Server looks for the Hashes parameter to detect the challenge nodes,

Tag.Ranks and Hashes, then computes a prove Ƿ.

3. The Client utilizes the Ѡ matrix and the private key to confirm the proof

via Verify function.

 The complexity of the (1, 2 and 3) steps is constant.

4. The Client recalls the Challenge function for getting the inquiry of 40

Bytes to 𝑘2 and 𝑘3 (𝑘2 =20B, 𝑘3 = 20𝐵).

5. The Client determines the inquiry of 40B with the size of Ƿ by recalling the

Prove function which be determined by the number of the checked rank's

nodes.

6. The Client will get fixed value, around (60𝐾𝐵 − 64𝐾𝐵), every time of

calling the Prove function.

We compared these result with the static PDP scheme [3] "when checking 460

blocks each time can discovery this pollution at a probability of 99%, when 1% of

the file blocks are polluted". The Big-O notation of the adapted scheme for

Challenge and proof is equal to 𝑂(1) .

When comparing with the dynamic DPDP scheme which has accessing the paths of

checked blocks with proofing size equal to 449𝐾𝐵, the Big-O notation of the

adapted scheme for Challenge and proof is equal to 𝑂(1).

However, the complexity result of both the Challenge and the proof in the recent

schemes (Flex-DPDP [14] and DPDP [9]) is 𝑂(𝑙𝑜𝑔𝑛).

43

5.2.2 Upgrade

To illustrate the upgrade operation, the Modification Operation will take a place at

the Client side (as mentioned in section 4.4.2).

Firstly, the Client needs to update the {𝑖, 𝑅𝑖
∗, 𝑇𝑅𝑖

∗, 𝐶𝐻𝐹𝑖
∗} parameters for upgrading

operation. The size of the parameters is equal to 4152𝐵. In order to verify the

upgrade operation, the client will recall the CPV algorithm for {𝑖′, 𝑔𝑠, 𝐶𝐻𝐹𝑘} inquiry

parameters. So far, the Client gets the outcome, which is equal to 152𝐵, and then

gets the calculation, which is totally equal to 4304𝐵. Comprehensively, the

computational and communication complexity at the Client side is a constant (i.e.,

the Big-O notation is 𝑂(1)).

Secondly, the Server will take the segmentations of the {𝑅𝑖 , 𝑇𝑅𝑖 , 𝐶𝐻𝐹𝑖
′ , 𝑖 ′}

parameters. The size of the parameters is equal to 4152𝐵 as well. The size of the

{𝑇𝑅𝑠 , 𝐶𝐻𝐹} parameters that returned, from the upgrade verification by calling the

CPV algorithm, is equal to 128B and 20B respectively. So far, the Server gets the

outcome, which is equal to 148𝐵, and then gets the calculation, which is totally

equal to 4300𝐵. Comprehensively, the Server communication complexity is a

constant (i.e., the Big-O notation is 𝑂(1)). While, the computational complexity is

equal to 𝑙𝑜𝑔𝑛 (i.e., the Big-O notation is 𝑂(𝑙𝑜𝑔𝑛)) because the needing to search the

whole Flex-List to detect the specific upgraded node.

To ensure the integrity of the file, we compared the DPDP scheme, which utilizes the

tag of the RBASL, and the Flex-DPDP scheme, which utilizes the tag of the Flex-

List, with the adapted scheme.

The communication complexity of the file is equal to 𝑙𝑜𝑔𝑛 in both (DPDP and Flex-

DPDP) schemes because of the urgent to access the whole path of the specific node

that will be returned from the upgrade.

44

5.3 Results

Table 3, illustrates the results of applying the adapted scheme and gathering the

challenges and the upgrades results in Section (5.1). Obviously, the performance of

the adapted scheme is acceptable according to the enhancements in the complexity.

Table 3 Comparison between PDP schemes (C the numbers of challenge block)

In Table 4, we demonstrate the result of comparison between the adapted scheme and

the FlexDPDP scheme after ten iterations on 106 size of the Flex-List file. Hence, we

manage these steps to explain the Table 4:

 Leads the inquiries (Multi-queries) over 1s and we get about 100 times

more queries than the recent scheme.

 Manages the single proof and verifies have taken within the adapted

scheme around 2ms, which it is reducing the time for the authentication and

the verification.

 Manages the multiple proofs and verifies have taken within the adapted

scheme around 170ms, which it is reducing the time for the authentications

and the verifications at the Client.

45

 Manages the multiple proofs and verifies have taken within the adapted

scheme around 25ms, which it is reducing the time for the authentications

and the verifications at the Server.

Table 4 Result of comparison between the adapted and the FlexDPDP schemes

SCHEMES FlexDPDP Adapted

Multi-queries 300/1000ms 400/1000ms

Single Proof & Verify 5ms 2ms

At Client Multiple Proof & Verify 649.11ms 170ms

At Server Multiple Proof & Verify 38.60ms 25ms

Particularly, the adapted scheme is appropriate with the situations that deals with

time of challenges rather than upgrades.

46

CHAPTER 6

CONCLUSION

We have taken some steps for alleviating fears when the data storage over

outsourcing, and guarantees the integrity of the files into cloud computing

dynamically, and to alleviate the computational and communication complexity

during the upgrade operations (Insertion, Modification and Deletion operations) and

challenges (by used CPV algorithm). Particularly, the adapted scheme is appropriate

with the situations that deals with time of challenges rather than upgrades. The

performance of the adapted scheme is acceptable according to the enhancements in

the complexity at the Client and the Server sides.

In spite of the fact that the New-Adds expended the auxiliary storage by the Client-

side, the Client stores approximately 0.025% of the 4GB file Size. Generality, that

amount is agreeable during many situations. The adapted scheme is a fully dynamic

model. Regard to the remarkable enhancement in the adapted scheme, cutting-

complexity of communication from 𝑂(𝑙𝑜𝑔 𝑛) to 𝑂(1) at both the Client and the

Server sides. Cutting-complexity of computations (in Challenges) from 𝑂(𝑙𝑜𝑔 𝑛) to

𝑂(1) at both sides in the adapted scheme.

6.1 Future Work

We plan on extending the adapted scheme by implementing the parallel build of the

Flex-List with the New-Adds of the adapted scheme. In order to achieve the

distribution of the DPDP on multi-CSP without using the third-party and get the

replication of the data.

47

REFERENCES

[1] Mell, P. and Grance, T., (2009). "Effectively and securely using the cloud

computing paradigm". NIST, Information Technology Laboratory, pp.304-

311.

[2] Landis, C., and Blacharski, D. (2013). "Cloud Computing Made Easy".

Vitual Global, Incorporated.

[3] Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, and

Song D., (2007). "Provable data possession at untrusted stores". In

Proceedings of the 14th ACM conference on Computer and communications

security, Oct 28, pp. 598-609.

[4] Ateniese, G., Di Pietro, R., Mancini, L.V. and Tsudik, G., (2008).

"Scalable and efficient provable data possession". In Proceedings of the 4th

ACM international conference on Security and privacy in communication

networks, September, p. 9.

[5] Ateniese, G., Kamara, S. and Katz, J., (2009). "Proofs of storage from

homomorphic identification protocols". In International Conference on the

Theory and Application of Cryptology and Information Security, Springer

Berlin Heidelberg, December, pp. 319-333.

[6] Juels, A. and Kaliski Jr, B.S., (2007). "PORs: Proofs of retrievability for

large files". In Proceedings of the 14th ACM conference on Computer and

communications security, October, pp. 584-597.

[7] Erway, C.C., Küpçü, A., Papamanthou, C. and Tamassia, R., (2015).

"Dynamic provable data possession". ACM Transactions on Information and

System Security (TISSEC), 17(4), p.15.

[8] Deswarte, Y., Quisquater, J.J. and Saïdane, A., (2004). "Remote integrity

checking". In Integrity and internal control in information systems,

VI Springer US., pp. 1-11.

48

[9] Gazzoni Filho, D.L. and Barreto, P.S.L.M., (2006). "Demonstrating data

possession and uncheatable data transfer". IACR Cryptology ePrint Archive,

p.150.

[10] Sebé, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y. and

Quisquater, J.J., (2008). "Efficient remote data possession checking in

critical information infrastructures". IEEE Transactions on Knowledge and

Data Engineering, 20(8), pp.1034-1038.

[11] Hao, Z., Zhong, S. and Yu, N., (2011). "A privacy-preserving remote data

integrity checking protocol with data dynamics and public

verifiability". IEEE transactions on Knowledge and Data Engineering, 23(9),

pp.1432-1437.

[12] Liu, F., Gu, D. and Lu, H., (2011). "An improved dynamic provable data

possession model". In IEEE International Conference on Cloud Computing

and Intelligence Systems, September, pp. 290-295.

[13] Esiner, E., Küpçü, A. and Özkasap, Ö., (2014). "Analysis and optimization

on FlexDPDP: A practical solution for dynamic provable data possession".

In International Conference on Intelligent Cloud Computing, February,

Springer International Publishing, pp. 65-83.

[14] Esiner, E., Kachkeev, A., Küpçü, A. and Özkasap, Ö., (2013). "Flexlist:

optimized skip list for secure cloud storage". Technical Report, Koç

University.

[15] Pugh, W., (1990). "Skip lists: a probabilistic alternative to balanced

trees". Communications of the ACM, 33(6), pp.668-676.

[16] Goodrich, M.T., Tamassia, R. and Schwerin, A., (2001). "Implementation

of an authenticated dictionary with skip lists and commutative hashing".

In DARPA Information Survivability Conference & Exposition II.

DISCEX'01. Proceedings, IEEE, Vol. 2, pp. 68-82.

[17] Miller, G.L., (1975). "Riemann's hypothesis and tests for primality".

In Proceedings of seventh annual ACM symposium on Theory of computing,

May, pp. 234-239.

[18] Cryptography, Security, and Privacy Research Group, (FlexDPDP).

https://crypto.ku.edu.tr/downloads.

[19] Brownie, cashlib, cryptographic library.

http://github.com/brownie/cashlib.

https://crypto.ku.edu.tr/downloads
http://github.com/brownie/cashlib

49

[20] Boost – asio, library. http://www.boost.org/doc/libs.

[21] Papamanthou, C., Tamassia, R. and Triandopoulos, N., (2008).

"Authenticated hash tables". In Proceedings of the 15th ACM conference on

Computer and communications security, October, pp. 437-448.

[22] Dobraunig, C., Eichlseder, M. and Mendel, F., (2014). "Analysis of SHA-

512/224 and SHA-512/256". In International Conference on the Theory and

Application of Cryptology and Information Security, Springer Berlin

Heidelberg, December, pp. 612-630.

http://www.boost.org/doc/libs

