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ABSTRACT

WRITER IDENTIFICATION BASED ON COVARIANCE FEATURES
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Local descriptors have been widely utilized in image analysis for automatic object cat-
egorization. In this work, an algorithm based on empirical covariance estimation of
region descriptor vectors is formulated and developed. This technique is then spe-
cialized in order solve to the task of writer identification via a tricky way of keypoint
extraction. Experiment results are reported for ETH-80 and ICFHR 2012 Writer Iden-
tification Contest datasets.

Keywords: Vector Set Kernels, Local Descriptors, Object Categorization, Empirical
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ÖZET

KOVARYANS NITELİKLERİNE DAYALI YAZAR BELİRLEME

KARADENİZ, Talha
Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. H. Hakan Maraş

Kasım 2016, 30 sayfa

Görüntü analizinde lokal tanımlayıcılar otomatik nesne tasnifi için kullanılagelmiştir.
Bu çalışmada, bölge tanımlama vektörlerinin empirik kovaryans tahminine dayalı bir
algoritma formüle edilmiş ve geliştirilmiştir. Daha sonra, bu teknik, yazar belirleme
görevi için, hususi bir anahtar nokta çıkarma usulü vasıtasıyla, özelleştirilmiştir. ETH-
80 ve ICFHR 2012 Yazar Belirleme Yarışması verisetleri üzerinde gerçekleştirilmiş
deneylerin sonuçları raporlanmıştır.

Anahtar Kelimeler: Vektör Cümlesi Kernel’leri, Lokal Tanımlayıcılar, Nesne Tasnifi,
Empirik Kovaryans Matrisi, Yazar Belirleme
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CHAPTER 1

INTRODUCTION

This work is based on vector set analysis, by which we mean statistical modeling
on feature multitudes. These multitudes can be collections of fixed D-dimensional
vectors. That is, a collection U is considered as a vector set if any u 2 U is in RD.
We concentrate specifically on categorization task. This will be in two ways: in chapter
2 we will focus on the labeling of images via covariance features. In chapter 3 we will
move towards the challenge of automatic writer identification.

1.1 Object Categorization and Writer Identification

Object categorization is the task of automatically classifying objects. One can list
many applications of this field by stating security systems [20], aided repairment via
augmented reality [22] and robotics technology[20]. Writer identification, on the other
hand, is a forensic-focused study of labeling hand-written texts, which is, apart from
the image data content, closely related to signature verification. Notwithstanding the
naming intention behind object categorization, by which one generally think about
rigid or real-life bodies, writer identification can be seen as an extended object cate-
gorization task; or rather, one can say that, these can be grouped closely under study
on pattern categorization. In spite of the difference between the kind of uniformity
of features searched in object categorization and writer identification, it is completely
normal to expect a technique constructed for the first one works for the second.
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1.2 Motivation

The main motivation behind this study was first ’simple’ innovation – especially on
object categorization, during a multimedia analysis project at Tubitak Uzay – and then
an introduction of a security-focused or rather a can-be-adapted-to-security routine;
hence Automatic Identification. Since an increasing need for writer identification is
observed in the last years, organizations may benefit from such automatizations, for
example, on the area of digital rights management and batch document operations[14].
Without a towards-security goal, some of the ’novelties’ introduced in this work would
not exist. 1

1.3 Route

Most of the framework is given in chapter 2; chapter 4 is a simplified application of
the ideas noted in the first one. Hence the reader should not be suprised by the volume
and density difference of these two.

In chapter 2, a definition of object categorization task is given. Then, a brief expla-
nation of Support Vector Machines is given along with a list of implementation strate-
gies. Afterwards, formal definitions of kernel mappings is written to form the basics
of vector set kernels. This is followed by the examples and formulations of two known
vector set kernels. Finally, covariance feature based Power Series Kernel-Linear Ker-
nel combination is introduced before the experiment results. Literature content is kept
relatively narrow due to theoretical and influential reasons; focus is directed to the
work on vector set kernels.

In the third chapter, generic formulation of writer identification task and a moderately
uptodate literature review is given. This is followed by a chapter allocated to the algo-
rithm details. ’Tricky’ keypoint and SIFT-BRIEF descriptor extraction steps are given
to summarize the solution route. Most of the notation is based on the work supplied in
first chapter. SIFT feature calculation steps and examples are demonstrated in figures.

1’novelties’ instead of actual novelties due to the experimental-and-quasi-combinatorial-rather-than-
rock-solid-analytic-and-constructive basis behind each.
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A contest result as a document of feasibility is listed at the end.

In spite of the simple idea of featurization of covariance entries, when combined with
other components such as matrix exponentiation and power series implicit mapping,
introduced algorithm base is hopefully shown to be a candidate for future study. The
work is voluntarily kept short to make the content as dense as possible.
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CHAPTER 2

BACKGROUND STUDY

Assume that we have a collection of images S = {I1, I2, ..., IN} and the corresponding
labels C = {c1, c2, ..., cN} where each I

i

is of type category c
i

. Given a training set S,
object categorization task is the challenge of finding a classifier model which is suitable
for the correct labeling of any test image. This is for sure an example of machine
learning analysis where an automatic labeler routine is derived from the training set.

2.1 Vector Set Analysis

As noted in chapter 1, Vector Set Analysis is the job of featurization of vector sets
or deriving kernels from these ready to be utilized in kernel machines. Actually, apart
from the abstract mathematical sense of the word ’analysis’, here we refer rather to
a data inquiry kind. Any fixed dimensional unordered vector collection is a vector
set and in the following sections, kernel machines forged upon vector set relations are
explored.

2.2 Object Categorization

Given the definition at the start of this chapter, it is now suitable to list the components
of a vector set categorization route.
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2.2.1 Support Vector Machines

Support Vector Machine [SVM] is one of the state-of-the-art classification methods. It
is based on finding an optimal hyperplane between two sample sets via using kernel
functions [2]. For a given input space X , a function K : X ⇥ X ! R is a kernel if
and only if it corresponds to an inner product in some feature space F . That is, for
any u,v 2 X , one must have K(u,v) = h�(u),�(v)i. The function � : X ! F is
considered as an implicit mapping since one does not need the explicit representations
of �(u) and �(v) to use the kernel values in optimal hyperplane calculation.

Let X = {x1,x2, ...,xl}, be the input vectors and y
i

be the corresponding labels for
i = 1, 2, ..., l. Let K be a kernel, C be the penalty parameter. Then SVM optimization
is of the form [1]:

max

↵

W (↵) =
lX

i=1

↵
i

+

lX

i=1

lX

j=1

y
i

y
j

↵
i

↵
j

K(xi,xj)

subject to 0  ↵
i

 C 8i (2.1)
lX

i=1

↵
i

y
i

= 0 (2.2)

(2.3)

One of the generic techniques for finding solutions of the stated optimization progam
is known as ’chunking’, where a chunk of dataset is chosen as the initial working
set [2]. Then, a training is done with respect to this collection and the hypothesis is
validated against remaining vectors. Samples, on which the most violation of Karush-
Kuhn-Tucker conditions are encountered, are added to support vectors to begin a new
training session. This loop is kept until the stopping criteria is satisfied. In each step, a
generic quadratic optimization routine is ran.

Decomposition, on the other hand, is a more economic version of chunking, in which
the number of support vectors are kept constant. Again, a generic quadratic optimiza-
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tion routine is applied to the dataset at each step [2].

Finally, a fast way to solve this quadratic optimization problem is Sequential Minimal
Optimization, where the analytical solutions of narrower sub-problems are composed
to arrive the final optimized coefficients [1]. Main difference of SMO from chunking
and decomposition is the size of sub-problems handled: at each iteration only 2 coef-
ficients are changed. Furthermore, this is done in an analytical way; an exact solution
is found for the coefficients.

Support Vector Machines are one well-known example of kernel machines. At the
heart of this kind of machines, as it can be deduced from the name, there exists the core
of kernel functions. These are similarity measures between vectors – or data structures
such as strings and graphs – which are calculated to optimize the hypothesis. Measures
can be combined in various algebraic ways so that more complex affinity elements can
be constructed. Before going on, let’s give the fundamental definition of a kernel.

Definition 1. A function K(u,v) : X⇥X ! R is a kernel if and only if it corresponds
to an inner product K(u,v) = h�(u),�(v)i in a feature space F . [2]

2.2.2 Vector Set Kernels

Standard kernels such as linear, polynomial and rbf are utilized for fixed-dimensional
vector categorization [8], i.e. all the inputs are elements of RD. Although this is the
case for conventional SVM applications, there also exists kernels of graphs, strings and
manifolds [5]. In [8] and [5], scientists concentrate on vector set kernels. That is, they
explored the kernels of type K : X ⇥ X ! R, where the elements of X are vector
sets, each consisting of D-dimensional vectors. The expression K(U,V) represents
the kernel between vector sets U and V, which may have different cardinalities.

Pyramid Match Kernel [8] is calculated as weighted sum of multi-resolution histogram
intersections. Let U and V be vector sets, H

i

(U), H
i

(V) be the i-th level histograms
of U and V, respectively. If I(H

i

(U), H
i

(V)) is the histogram intersection function,
L is the number of levels, then the kernel value is found by the following formula:

6



K
pmk

(U,V) =

LX

i=0

1

2

i

(I(H
i

(U), H
i

(V))� I(H
i�1(U), H

i�1(V))) (2.4)

The meaning of the coefficient 1
2i is that we assign lower weights to the coarse levels

and higher importance to finer levels. At each level, we only count the new intersection
counts and hence the difference operator. Since each intersection is a kernel, sum of
all intersection values is also a kernel [2].

Bhattacharyya kernel on the other hand is calculated via fitting of Gaussians to vector
sets [5]. Let U = {u1,u2, ...,uNU}, V = {v1,v2, ...,vNV}. We fit two probability
distributions p

U

and p
V

to U and V respectively. Bhattacharyya distance between
these vectors are found via the integral:

K(U,V) =

Z
p
U

(w)p
V

(w)dw (2.5)

Let

µU = (1/N
U

)

NUX

i=1

ui (2.6)

,

µV = (1/N
V

)

NVX

i=1

vi (2.7)

be the mean vectors of sets U, V, respectively.

Let

⌃U = (1/N
U

)

NUX

i=1

(ui � µU)(ui � µU)
T (2.8)

⌃V = (1/N
V

)

NVX

i=1

(vi � µV)(vi � µV)
T (2.9)

be the empirical covariance matrices of U and V. Define

⌃

0
= (

1

2

⌃

�1
U +

1

2

⌃

�1
V )

�1 (2.10)
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and
µ

0
= (

1

2

⌃

�1
U µ

U

+

1

2

⌃

�1
V µ

V

) (2.11)

Then the explicit form of this kernel is as follows [5]:

K(U,V) = |⌃U|
�1
4 |⌃V|

�1
4 |⌃0 | 12

exp(
�1

4

µU
T

⌃

�1
U µU+

�1

4

µV
T

⌃

�1
V

µV
+

1

2

µ
0T
⌃

0�1
µ

0
) (2.12)

Influenced from works [5], [8], we have found that the following naive kernel yields
accurate results in object categorization.

Let ✓ : RD⇥D ! RD

2 be the row-concatenation function

✓(

2

66664

a11 a12 ... a1D

a21 a22 ... a2D

...

a
D1 a

D2 ... a
DD

3

77775
) = (a11, a12, ..., a1D,

a21, a22, ..., a2D,

...,

a
D1, aD3, ..., aDD

) (2.13)

Define the mapping �1 : X ! RD

2 with

�1(U) = ✓(⌃
U

) (2.14)

and the kernel

K1(U,V) = h�1(U),�1(V)i = h✓(⌃
U

), ✓(⌃
V

)i (2.15)
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Actually, this route is a second-level-feature one, by which we mean, not a well-
crafted-specifically-for-vector-sets but a tricky-way-of-transforming-vector-set-task-to-
vector-task. It is second-level because in the first level we have D-dimensional vectors
extracted from images. In the second level, we have covariance features extracted from
these vector sets.

Okay. We are in the domain of vectors so that we can apply the standard routes or
routes influenced from standard ones. We have noted that there exist conventinal ker-
nels such as linear, polynomial and rbf. Now, it will be appropriate to introduce Power
Series Kernel by which we obtained a slight but not-negligble improvement on the
final categorization accuracy 1.

Now, suppose the mapping �2 : RD

2 ! R1 is defined as

�2(u) = �2((u1, u2, ..., u
D

2
)) = (u1, u1

2, ..., u1
k, ....,

u2, u2
2, ..., u2

k, ....,

...,

u,

D

2u
2
D

2 , ..., uk

D

2 , ....) (2.16)

and assume that |u
i

|, |v
i

| < 1 to make the function

K
0

2(u,v) = h�2(u),�2(v)i =
DX

i=1

(1/(1� u
i

v
i

)� 1) (2.17)

valid.

Remark 1. K 0
2(u,v) is a kernel on X where X is the D-dimensional space of vectors

u for which |u
i

| < 1 holds .

Proof. Since the feature representation is explicitly given in 2.16, by definition, h�2(u),�2(v)i =P
D

i=1

P1
k=1(ui

v
i

)

k

=

P
D

i=1(1/(1� u
i

v
i

)� 1) is a kernel.

|u
i

|, |v
i

| < 1 condition is necessary for the series
P1

k=1(ui

v
i

)

k to converge [17]. Ap-
1Although the one in this thesis is formulated independently, an analysis on Power Series Kernels

can be read here: Zwicknagl, Barbara. "Power series kernels." Constructive Approximation 29.1 2009:
61-84.

9



plying this to our covariance features, we get,

K2(U,V) = h�2(�1(U)),�2(�1(V))i = h�2(✓(⌃U

)),�2(✓(⌃V

))i (2.18)

Lemma 1. Let K
a

, K
b

be kernels on some input space X . Then K1K2 is also a kernel.

Proof. Assume that K
a

(u,v) = h�
a

(u),�
a

(v)i and K
a

(u,v) = h�
b

(u),�
b

(v)i, where
�
a

: X ! RDa and �
b

: X ! RDb are the corresponding feature space mappings.
Consider K

ab

(u,v) = h�
a

(u),�
a

(v)ih�
b

(u),�
b

(v)i. Let �
ai

and �
bj

be the projection
functions; i.e. �

ai

(u) = �
a

(u)

i

and �
bj

(u) = �
b

(u)

j

. Then explicit form of K
a

(u,v)

is

(

DaX

i=1

�
ai

(u)�
ai

(v))(

DbX

j=1

�
bj

(u)�
bj

(v)) =

DaX

i=1

DbX

j=1

�
ai

(u)�
ai

(v)�
bj

(u)�
bj

(v) =

DaX

i=1

DbX

j=1

�
ai

(u)�
bj

(u)�
ai

(v)�
bj

(v) (2.19)

, which is an inner product in RDa⇥Db , under the mapping

�
ab

(u) = (�
a1(u)�b1(u),�a1(u)�b2(u), ...,�a1(u)�bDb

(u),

�
a2(u)�b1(u),�a2(u)�b2(u), ...,�a2(u)�bDb

(u),

...,

�
aDa(u)�b1(u),�aDa(u)�b2(u), ...,�aDa(u)�bDb

(u))

That is, finally, we can state our second kernel as:

K(U,V) = K1(U,V)K2(U,V) (2.20)
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When it comes to complexity, after asymptotic analysis on (2.12), (2.4) and (2.20),
speed complexity list can be obtained as O(D3

+ND2
), O(NDlog(r)) [8] and O(ND2

),
respectively. Slowness derived from 2.12 is due to matrix inversion. On the other hand,
in experiments, duration results yielded by machines of 2.20 were quite comparable to
that of 2.4.

As a lower-dimensional version of this covariance analysis, we now introduce an ad-
ditional kernel, which is based on the exponential matrix:

Definition 2. Let A 2 CDxD, then the limit of the sum SA,n = ID +

P
n

k=1
Ak

k! is
described as lim

n!1 SA,n

= eA [15].

Now, define the mapping �
e

: X ! RD

2 with

�
e

(U) = ✓(e⌃U
) (2.21)

Remember that ✓ is the concatenation function (2.13). Additionally, let �
c

: X !
RD

2 such that �
c

(U) = [⌃U
ij

]. At the last step, concatenate the original empirical
covariance estimation with the exponential and the cube-root features and normalize
the vectors to obtain

(�1(U)/|�1(U)|1)� (�
e

(U)/|�
e

(U)|1)� (�
c

(U)/|�
c

(U)|2) (2.22)

Then, linear kernel for this induced space is

K
e1(U,V) = h(�1(U)/|�1(U)|1)� (�

e

(U)/|�
e

(U)|1)�

(�
c

(U)/|�
c

(U)|2),

(�1(V)/|�1(V)|1)� (�
e

(V)/|�
e

(V)|1)�

(�
c

(V)/|�
c

(V)|2)i (2.23)

which is equal to the statement
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h�1(U)/|�1(U)|1,�1(V)/|�1(V)|1i+

h�
e

(U)/|�
e

(U)|1,�e

(V)/|�
e

(V)|1i+

h�
c

(U)/|�
c

(U)|2,�c

(V)/|�
c

(V)|2i

(2.24)

and the Power Series Kernel is

K
e2(U,V) = h�2(�1(U)/|�1(U)|1)� �2(�e

(U)/|�
e

(U)|1)�

�2(�c

(U)/|�
c

(U)|2),

�2(�1(V)/|�1(V)|1)� �2(�e

(V)/|�
e

(V)|1)�

�2(�c

(V)/|�
c

(V)|2)i (2.25)

Similar to (2.20), the matrix exponential version is:

K
e

(U,V) = K
e1(U,V)K

e2(U,V) (2.26)

To our knowledge, the matrix exponential is not utilized by anyone so far in this con-
text; that is, in conjunction with empirical covariance estimation of local descriptors.

As a last kernel candidate, let’s concentrate on a substitue of component covariation
measure. Normally, if we have two variables X and Y , we measure the covariance by

C
XY

=

1

N

NX

i=1

(X
i

� ¯X)(Y
i

� ¯Y ) (2.27)

where ¯X , ¯Y and N are sample mean of X , sample mean of Y and total number of
observations, respectively. The rationale behind this calculation is summing up the
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centered values of each variable to arrive a scalar of co-linearity; if C
XY

> 0 then one
can say that he has two variables changing ’together’. Otherwise, if C

XY

< 0, then he
can deduce that the change is again ’together’ but this time at opposite directions. If
C

XY

= 0, then there exists no covariation.

Remark 2 (Triangle Inequality). For any x, y 2 R, we have |x+ y|  |x|+ |y|.

Proof. If x + y � 0 then |x + y| = x + y  |x| + |y| since x  |x| and y  |y|.
Otherwise if x + y < 0 then |x + y| = �x + �y  |x| + |y| because since �x  |x|
and �y  |y|.

Lemma 2. If sgn(x) = sgn(y) then |x+ y|� |x|� |y| = 0. Otherwise |x+ y|� |x|�
|y| < 0.

Proof. Assume that sgn(x) = sgn(y) = �1. ) |x+y| = �x�y since sgn(x+y) =

�1. Thus, |x + y| � |x| � |y| = �x � y � (�x) � (�y) = �x � y + x + y = 0.
Suppose that sgn(x) = sgn(y) = 1. ) |x + y| � |x| � |y| = x + y � x � y = 0. If
sgn(x) 6= sgn(y), then either |x| > |y| or |y| < |x|. ) |x+ y| < |x| because we have
opposite signs for x and y. Therefore |x + y| < |x|  |x| + |y|. This can also applied
to the case |y| < |x|.

Thus, one can integrate absolute value comparisons to strengthen the covariation mea-
surement, for a sign difference implies a negative |x+ y|� |x|� |y| value and hence a
negative covariation. We have found that the following estimate is complementary to
the covariance summation stated in (2.27):

C
0

XY

=

1

N

NX

i=1

(|X
i

� ¯X � (Y
i

� ¯Y )|� |X
i

� ¯X|� |(Y
i

� ¯Y )|)2�

(|X
i

� ¯X + (Y
i

� ¯Y )|� |X
i

� ¯X|� |(Y
i

� ¯Y )|)2

(2.28)
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At the formation of the modified covariance matrix, we take C
XiXj (2.27) if i > j,

otherwise we choose C
0
XiXj

(2.28).

Now, let’s concentrate on object categorization: for an image I
i

, consider SIFT [6]
descriptors extracted from uniformly sampled grids of I

i

. Let U be this descriptor
collection. Similarly, let V be the multitude extracted from another image I

j

. It is
obvious that we can use our kernel stated in (2.20) between these two images. Note
that we do not define a standard kernel between vectors-extracted-from-images – which
is the case for the standard route – but rather formulated one between vector-sets-
extracted-from-images. By formulations (2.4), (2.12) and (2.20), one can construct
kernels between vector sets of different cardinalities, albeit the constant-cardinality
nature of uniformly sampled grids noted here.

For the lower-dimensional case, instead of direct SIFT, PCA-SIFT descriptors [7, 8]
are taken as the base vector sets. Then these sets are categorized through the exponen-
tiated, standard or cube-rooted empirical covariance features (2.26).

Each kernel matrix, that is, the matrix of all pairwise kernel, is normalized according
to the formula [8]:

K�(U,V) =

K(U,V)p
K(U,U)K(V,V)

(2.29)

2.3 Experiments

In the former section, some known vector set kernels are formulated and examples
based on covariance matrices are built with or without extensions of Power Series
Kernels. In this section, short reports on an idealized-environment dataset will be
given.
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Figure 2.1: Apple

Figure 2.2: Car

2.3.1 Dataset

For experiments, we followed the route explained in [8]. ETH-80 dataset is used for
categorization accuracy measurements. The experiment set is a collection of 400 im-
ages, containing 8 category of objects. Each category is formed by 10 objects, where
each object’s 5 different poses are tested in an experiment. For each category, a one-
vs-all SVM is trained. The total number of experiments run is 80.

Figure 2.3: Cup
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Each image’s vector set is composed of uniformly sampled grid SIFT descriptors 2.
Experiment code is written as an extension of libpmk-2.5 3 via noweb 4. Noweb is
chosen for documentation since it is a flexible literate programming 5 tool.

2.3.2 Results

The results are evaluated with respect to categorization accuracy. The ratio of number
of correct labelings to the total number of tests is shown in Table 2.1 and Table 2.3.
Corresponding accuracy measures are given in Table 2.2 and Table 2.4. Abbreviations:

• CFLK: Covariance Features with Linear Kernel (2.15)

• CFCK: Covariance Features with Combined Kernel (2.20)

• ECFCK: Exponential Covariance Features with Combined Kernel (2.26)

• ECFCK-II: Exponential Covariance Features with Combined Kernel via alter-
nating triangle inequality measures (2.28)

• PMK: Pyramid Match Kernel (2.4)

2.3.3 Analysis

In the case of low-dimensionality, that is, the task of classifiying PCA-SIFT collec-
tions, from these tables, one should not deduce that ECFCK is absolutely more ac-
curate than PMK. These PCA-SIFT results are reported according to the basic con-
figuration of PMK: number of branches and number of levels are taken 3 and 11,
respectively 6. When these values are increased, numbers ranging between [0.80, 0.85]

can be observed; the total run-time also increases, though.
2http://people.csail.mit.edu/jjl/libpmk/samples/eth.html
3http://people.csail.mit.edu/jjl/libpmk/
4https://www.cs.tufts.edu/~nr/noweb/
5Knuth, Donald Ervin. "Literate programming." The Computer Journal 27.2 (1984): 97-111.
6An example run from the engineers of PMK is logged at:

http://people.csail.mit.edu/jjl/libpmk/samples/eth.html

16



Table 2.1: Rates of correct categorization

Object Category CFLK CFCK PMK

#1 42/50 45/50 38/50

#2 50/50 50/50 49/50

#3 40/50 43/50 40/50

#4 45/50 48/50 45/50

#5 45/50 44/50 33/50

#6 48/50 47/50 33/50

#7 50/50 50/50 50/50

#8 50/50 49/50 47/50

Table 2.2: Average accuracy

CFLK CFCK PMK

0.925 0.940 0.837

When it comes to note the reason behind the success obtained through exponentiation
of covariance matrix, as a first step, one can show that an element of the infinite series
is a polynomial kernel collection of the covariance vectors. This collection is weighted
with a decreasing coefficient so that the original covariance structure is conserved.
One interesting side of the technique is the exploitation of variance-covariance kernel
measures as features of Support Vector Machines. Note that these kernels are not
directly transfered to SVM but rather calculated as vector components ready to be
inputs of Power Series Kernel-Linear Kernel combination.

One drawback related to reliability of CFCK results, is the cube-root feature transfor-
mation and scaling of input components. Although in experiments, any combination
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Table 2.3: Rates of correct categorization (PCA-SIFT)

Object Category ECFCK ECFCK-II PMK

#1 40/50 42/50 36/50

#2 49/50 49/50 47/50

#3 37/50 37/50 33/50

#4 44/50 46/50 45/50

#5 30/50 29/50 29/50

#6 34/50 36/50 30/50

#7 50/50 50/50 49/50

#8 42/50 43/50 42/50

Table 2.4: Average accuracy (PCA-SIFT)

ECFCK ECFCK-II PMK

0.815 0.830 0.777

of PMK parameters yielded a lower accuracy rate, one cannot generalize this to an
absolute success devised from machines of CFCK over to that of PMK. One may see
this as a mandatory or usual item of data mining experiments [3], but since such a
grid-search is not applied on the PMK machines, it can be thought as a drawback of
the technique stated and formulated in this work, albeit not a major one.
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CHAPTER 3

LITERATURE REVIEW

Assume that we have a collection of hand-written paragraph images S = {{I11,
I12, ..., I1K}, {I21, I22, ..., I2K}..., {IN1, IN2, ..., INK

}}, the corresponding writer labels
C = {{c1, c1, .., c1}, {c2, c2, .., c2}, ..., {cN , cN , .., cN}} where each I

ij

is composed by
user c

i

. A total of K distinct paragraphs are exampled by N writers; that is, all I
ij

is of
the same content T

i

. Writer identification is the challenge of finding a classifier model
induced from S which is suitable for the correct identification of any test image.

To automatically identify writers, several methods have been engineered so far. Along
with the classical approaches consisting segmentation-based combination of macro-
micro attributes [4, 10], bag of features [BoF] techniques have also been tested: a
framework built upon K-adjacent Segment features [13] or a system based on SIFT [6]
descriptors [12] are examples of modelling the writer style. The technique evaluated
in this work, by its generic basis of local descriptors, is similar to [12] and have been
successfully used at ICFHR 2012 Writer Identification Contest [16].

3.1 Macro-Micro Combination

In [4], macro attributes such as gray-level distribution, gray-level threshold and con-
tour variations are calculated on overall image; hence the adjective ’macro’. Micro
attributes, on the other hand, are found by an analysis of low-level shape structure.
Gradient and concavity bits are these kind of attributes. Since this algorithm is depen-
dent on segmentation and character-level feature extraction, the efficiency derived can
be highly affected by the noted steps. When the time of release considered [2002],
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the work may be seen as novel but if one takes generalization to multi-languages into
account, he can conclude that the stated route must be adapted each time to target the
input kind.

A text-independent flow is reported at [10], where, similar to [4] a combination of
micro and macro attributes is formed to automatically identify the writers. Engineers
involved state that distribution functions of directional, grapheme and run-length mea-
surements are utilized successfully to build a model. Final identification and verifi-
cation is done by nearest-neighbor search with Hamming distance. One advantage of
employing this route is independency from cursive-isolated variation.

3.2 Bag of Features Models

Assume we have a collection of feature vectors U
all

= {u1,u2, ....,uN

} and a vector
set extracted from an image V = {v1,v2, ...,v|V |}. Bag of Features is mainly done in
two steps:

1. Calculate k clusters with k-means or any other algorithm [13] on U
all

.

2. For all vi 2 V assign the vector to a cluster after distance comparison. Form Bag
of Features representation as R

V

= {V
c1 , Vc2 , ..., Vck

} where V
ci is the number

of vectors in V assigned to the cluster i.

20



3.2.1 K-Adjacent Segments

A technique of Bag of Features from adjacent line segment features is introduced in
[13]. Here, a Canny edge detection followed by line fitting is done in order to calculate
the location, orientation and length attributes

(r
x1 , ry1 , rx2 , ry2 , ..., rxk

, r
yk
),

(✓1, ✓2, ..., ✓k),

(l1, l2, ..., lk),

respectively. Codebooks of these vectors are then extracted to build the final labeling
engine. For each kind of attribute a different weight is taken into account so that a
stable metric can be devised. Normalization is done with respect to the largest segment
length. In our humble opinion, this is the most simple-but-elegant-and-effective route
noted in this review.

3.2.2 SIFT

[12] is another Bag of Features kind modelling of writer style: Features in this case
are SIFT descriptors rather than adjacent segments. Codebooks of descriptors are used
to calculate the final vectors for classification routine. Several keypoint detectors are
tested to get the best labelling. Originality of [13] is replaced in this case with the
well-known scale invariant descriptor components.
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3.2.3 Contour Moments

An uptodate example of Bag of Features kind can be seen in [18]. Here, engineers
compose a method by Vector of Locally Aggregated Descriptors [VLAD] on Contour
Moments. Descriptors based on region-to-orthogonal polynomial mappings are em-
ployed to generate a representation of the writer style. Results on two datasets are
reported. Actually, VLAD is not an exact Bag of Features routine. It is constructed
upon residuals [21] rather than cluster counts.

A robust scheme is established by combining VLAD with Moment Descriptors.

VLAD is a clean way for representing images and can be seen as an advanced or fine-
tuned version of Bag of Features model. Here, assume again we have again U

all

as
defined in Bag of Features explanation 2. Let C =

{c1, c2, ..., ck} be the cluster centers. If a vector set V = {v1,v2, ...,v|V |} extracted
from an image, representation is written as R

V

= V
c1 � V

c2 � ... � V
ck

, where V
ci =P

vt:l(vt)=i

vt � ci and l is the cluster assignment function.
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CHAPTER 4

INTRODUCED TECHNIQUE

Introduced algorithm is based on keypoint extraction followed by fixed-scale descriptor
calculation and formation of covariance features.

4.1 Components

Given a binary image I , coarse keypoint-edge detection may yield an over-analyzed
and over-generalized path, carrying the risk of a two-fold decrease in performance: i)
Accuracy. ii) Complexity (of parameter control and of the algorithm). On the other
hand, since the stated classification context is text-independent, dense sampling, where
descriptors are extracted over the whole image by uniformly locating keypoints at pre-
determined areas, is not feasible for the problem. Therefore, although it is proven to be
a useful tool for object categorization, which was the topic of Chapter 2, grid sampling,
is not suitable for writer identification task.

4.1.1 Keypoints

Following the line of reasoning stated above, one can focus on a quasi-dense strategy,
where 1 of each M black pixel, is marked for descriptor extraction. Once the coordi-
nates are located, local region vectors are calculated via SIFT [6] and BRIEF [11].

23



4.1.2 SIFT

In SIFT, the gradient information is gathered to describe a region. The circular area is
considered as a 4 ⇥ 4 union of grids, where from each grid, an orientation histogram
of 8 bins is extracted. A final vector of dimension 4 ⇥ 4 ⇥ 8 = 128 is formed by
concatenating the histogram data of each cell.

Taken from Hubble 1, in 4.1, the samples of astronomy images and corresponding
SIFT desciptors are shown 2. For demonstration reasons, number of bins is restricted
to 16.

4.1.3 BRIEF

The second vector set source is BRIEF, where intensity tests of sampled point-pairs
are encoded in a binary string manner to establish a memory-efficient and fast region
descriptor.

4.1.4 Covariance Features

As in 2, covariance features are formed via the mapping (2.14). Let Us be the SIFT
vector set of a binary image I , Ub be the fitude for BRIEF. Assume that ✓

s

(⌃

Us),
✓
b

(⌃

Ub
) are the vectorizations of SIFT and BRIEF covariance matrices, similar to ✓

defined in 2.14. Then the covariance features are obtained by the concatenation of
✓
s

(⌃

Us) and ✓
b

(⌃

Ub
) = ✓

s

(⌃

Us)� ✓
b

(⌃

Ub
).

1http://hubblesite.org/
2These are extracted via binaries from http://vlfeat.org
3Image is adapted from https://fr.wikipedia.org/wiki/Scale-invariant_feature_transform
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(a) M 101

(b) NGC 290

Figure 4.1: Astronomy images and corresponding SIFT descriptors
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Figure 4.2: SIFT flow summary3

4.1.5 Identification

A 1-NN classifier [9] is built due to the low-cardinality of experiment text content set.

4.2 Results

In this section, competition structure and identification rates are noted.

4.2.1 Competition Setup

ICFHR 2012 competition on writer identification challenge dataset [16] is selected to
evaluate the introduced technique. This collection is a union of 206 writers’ handwrit-
ten paragraphs. The same three textual content is written by each of the writers; the
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(a) (b)

Figure 4.3: Writer 1

(a) (b)

Figure 4.4: Writer 2

first two of these is used for training, the remaining ones are separated for testing.

In the training step, a two-fold cross validation scheme is followed to measure the
success of the features. For each writer, a text is selected for training and the other for
validation. This resulted with an average score of 0.95 identification rate.

4.2.2 Scores

An identification rate of 91.95% is achieved via covariance features. Our team ihata
and its standing compared with other teams is given in table 4.1 [16].

(a) (b)

Figure 4.5: Writer 3
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Table 4.1: Test results

Team Identification Rate

Wayne Zhang 95.30%

Newell and Griffin 95.30%

YT 93.29%

ihata 91.95%

bfs 91.95%

AWReS 91.28%

cess_northumbria 91.28%

William Cukierski 91.28%

Marcos Sainz 89.93%

Sashi Dareddy 89.26%

D33B 87.92%

Han & Kilian 83.89%

Foxtrot 82.55%

Ben Hammer 81.88%

steinke 81.21%

Luciferase 77.18%
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CHAPTER 5

CONCLUSION

To sum up, a simple technique based on empirical covariance estimation of local de-
scriptors is tested successfully on writer identification, yielding a 4-th rank result in a
competition with approximately 50 contestants.

5.1 Summary

Support Vector Machines is a technique of kernel engineering by which challenges of
classification and regression are solved in an optimization framework. In this scheme,
vector affinities with respect to high-dimensional vector space scalar products are cal-
culated to categorize input features. Currently, the most efficient SVM implementation
is SMO; relying on a fast analytical solution of sub-problems, it is the common choice
for the final hypothesis formation.

In addition to solid quadratic optimization and statistical risk analysis grounds, while
working through SVM, one can benefit from the modularity advantage via kernel map-
pings. It is not necessary for employing these functions to have fixed dimensional
vectors as inputs at hand; graphs, strings and vector sets are also suitable structures.
Influenced from [8] and [5], in the introduction and background of this study, an em-
phasis on vector sets can be observed.

Notwithstanding the explicit featurization kind through empirical covariance matrices,
two main kernel machines for local descriptor set categorization are formulated: first of
these is built upon direct covariance estimation combined with Power Series Kernels
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while the second is based on covariance matrix exponentiation. It has been shown
that, both of the techniques can be regarded as alternatives to commonly known vector
set kernels. Since matrix exponentiation is O(D3

), its application is limited to low-
dimensional cases, though.

After object categorization background, a derived version of the core notion is applied
to the task of writer identification. Choosing the classic, well-known descriptor SIFT
– which is robust to affine transformations – as the vector set generation way and
supporting this with BRIEF, covariance feature identification is demonstrated to be an
alternative system of automatic writer style modelling.

5.2 Future Work

During the evaluation of ICFHR 2012 Writer Identification Contest entries, there was
the case of ’unknown writers’ which corresponds to the task of writer verification.
Our system, where any given input is necessarily assigned to a writting model in the
training dataset, is lacking in detection of these writers. Thus, in future, a verification
step shall be added to form a complete scheme.

Another extension can be accomplished by conducting experiments on datasets of dif-
ferent languages. This is also valid for object categorization in the aspect that the
algorithm may be tested on more cluttered environment conditions or larger sample
sets.

Moreover, Power Series Kernel-Linear Kernel combination can be adapted to writer
identification simply by modifying the distance metric with respect to the final scalar
product.
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Date and Place of Birth: 21 August 1984, Adapazarı
Marital Status: Single
Phone: +905355087384
Email: talhakaradeniz@gmail.com

EDUCATION

Degree Institution Year of Graduation

B.Sc. METU, Mathematics 2012

High School Gazi Anatolian High School 2002

A1



WORK EXPERIENCE

Year Place Enrollment

2006-2011 Tubitak Uzay Software Engineer

2012-2013 Simtek Software Engineer

2013-2015 Freelance Software Engineer

2015-2016 Çankaya University Software Engineer

FOREIGN LANGUAGES
English

HOBBIES
Swimming, Writing

A2


	Statement of Non-Plagiarism
	Abstract
	Özet
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Object Categorization and Writer Identification
	Motivation
	Route

	BACKGROUND STUDY
	Vector Set Analysis
	Object Categorization
	Support Vector Machines
	Vector Set Kernels

	Experiments
	Dataset
	Results
	Analysis


	LITERATURE REVIEW
	Macro-Micro Combination
	Bag of Features Models
	K-Adjacent Segments
	SIFT
	Contour Moments


	INTRODUCED TECHNIQUE
	Components
	Keypoints
	SIFT
	BRIEF
	Covariance Features
	Identification

	Results
	Competition Setup
	Scores


	CONCLUSION
	Summary
	Future Work

	References
	APPENDICES
	Curriculum Vitae

