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ABSTRACT 

 

Structure from Motion Using a Single Camera 

Isawi, Muthana Yaseen Nawaf 

M.Sc., Department of Mathematics and Computer Science  

Information Technology Program 

Supervisor: Assist. Prof. Dr. Reza Hassanpour 

September 2016, 55 pages 

 

This thesis introduces a general survey of conversion algorithms, their advantages and 

disadvantages and a thorough explanation of the basic concepts in the field of 3D 

model reconstruction. The thesis concentrates, step by step, on the structures of motion 

technique and reconstruction of three-dimensional models from image pairs. The 

reconstruction process is carried out using a single calibrated camera and an algorithm 

based on only two views of a scene, the SFM technique based on detecting the 

correspondence points between the two images, and the epipolar inliers. All the 

experimental results have been computed using MATLAB (R2015b). By using the 

KLT algorithm we figure out the incompatibility of it with the widely-spaced images. 

Also, the ability of reducing the rate of reprojection error by removing the images that 

have the biggest rate of error. The experimental results are consisting from three 

stages. The first stage is done by using a scene with soft surfaces, the performance of 

the algorithm shows some deficiencies with the soft surfaces which are have few 

details. The second stage is done by using different scene with objects which have 

more details and rough surfaces, the algorithm results become more accurate than the 

first scene. The third stage is done by using the first scene of the first stage but after 

adding more details for surface of the ball in order to motivate the algorithm to detect 

more points, the results become more accurate than the results of the first stage. The 

experiments are showing the performance of the algorithm with different scenes and 

demonstrate the way of improving the algorithm.  At last, we would like to mention 

that the aim of thesis is to figure out the depth information from two 2D images, and 

not to create 3D image from two 2D images.   

 

Keywords: SFM, Conversion Algorithms, 2D into 3D, Computer Vision. 
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ÖZ 

 

Tek Kamera Kullanımıyla Hareketten Yapı Oluşturma  

Isawı, Muthana Yaseen Nawaf 

Yüksek Lisans, Matematik ve Bilgisayar Bilimleri Anabilim Dalı 

Bilgi Teknolojisi Programı 

Danışman: Yrd. Doç. Dr. Reza Hassanpour 

Eylül 2016, 55 sayfa 

 

Bu tez dönüştürme algoritmaları, bunların avantajları, dezavantajları üzerine genel bir 

araştırma ile 3D modeli yeniden yapılandırma alanında detaylı bir açıklama 

sunmaktadır. Araştırma, hareket tekniğinin yapılarını ve görüntü eşlerinden üç boyutlu 

modelleri yeniden yapılandırma sürecini aşama anlatmaktadır. Yeniden yapılandırma 

süreci tek kalibreli kamera ve aynı sahnenin sadece iki görüntüsüne dayanan bir 

algoritma kullanılarak yürütülmüştür. SFM tekniği iki görüntünün bileşen noktalarını 

tespit etmeye dayanmaktadır. Tüm deneysel sonuçlar MATLAB (R2015b) 

kullanılarak hesaplanmıştır. KLT algoritması kullanılarak geniş aralıklı görüntülerin 

uyuşmazlığı açıklanmıştır. Ayrıca en büyük hata oranına sahip görüntülerin 

çıkarılmasıyla, yeniden projeksiyon oranının düşürülmesi sağlanmaktadır. Deneysel 

sonuçlar üç aşamadan oluşmaktadır. Birinci aşama, yumuşak yüzeyli sahne 

kullanılarak tamamlanmıştır. Algoritmanın performansı az detaylı yumuşak 

sahnelerde yetersizlik göstermektedir. İkinci aşama, daha fazla detayı olan sert yüzeyli 

nesneler kullanılarak tamamlanmıştır. Algoritma sonuçları birincisinden daha fazla 

doğruluk göstermektedir. Üçüncü aşama, ilk deneyseli sahneye daha fazla detay 

eklenerek gerçekleştirilmiş ve sonuçların ilk deneyden daha büyük bir doğruluk 

oranına sahip olduğu gözlemlenmiştir. Deneyler, algoritmanın farklı sahnelerdeki 

performansını göstermekte ve algoritmayı geliştirmek için yollar ortaya çıkarmaktadır. 

Sonuç olarak, tezin amacı iki boyutlu görüntülerden üç boyutlu görüntüler yaratmak 

değil, 2D görüntüler hakkında derin bir araştırma ortaya koymaktır. 

 

Anahtar Kelimeler: SFM, Dönüştürme Algoritmaları, 2D'den 3D'ye, Bilgisayar 

Görüntüsü 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Problem Definition 

The ability of the vision of living creatures in receiving the real world as a three-

dimensional scene motivates pioneers of the computer vision community to determine 

methods to simulate this ability. The solutions to this problem are divided into two 

groups, the first by acquiring a three-dimensional model directly from the real world 

by using special cameras such as a stereoscopic dual-camera with the ability to 

generate a three-dimensional model directly from a real-world scene. The second is by 

using two-dimensional data as inputs for algorithms designed particularly for the 

conversion of two-dimensional models into three-dimensional models. The role of 

these algorithms is to reconstruct a three-dimensional model based on the structure of 

the two-dimensional data which is missing the third dimension (the depth information) 

of the real world. The missing depth information is the result of the inadequacy of the 

traditional camera to obtain the third dimension from a captured scene, hence the role 

of algorithms to overcome this problem. 

 

1.2 Why Do We Need to Convert the Two-Dimensional into Three-Dimensional? 

In general, there is more than one reason to convert two-dimensional images into three-

dimensional models. The enormous amount of two-dimensional data in the past and 

the present in addition to the traditional devices for capturing scenes from the real 

world are the most important reasons. At this point, we see a trend where the role of 

conversion algorithms from 2D to 3D for generating three-dimensional models is 

becoming more popular. The accuracy of these algorithms, which differ from each 

other, depends on elements such as time consumption and the precision of the output 

model [1] [2]. 
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1.3 Challenges Facing Conversion Techniques 

The challenges facing the techniques of conversion from the two-dimensional model 

to the three-dimensional model are divided into two groups. The first group covers 

every algorithm and a number of problems which must be solved by applying these 

algorithms. The second group of challenges involves specific types of algorithms 

considered to be high quality conversion techniques. 

The first group of challenges includes three tasks which are solvable with every 

conversion algorithm. These tasks include [3][4]: 

 Apportionment of depth: the determination of the range of allowed depth, the 

value of the depth value that should be matched to the screen location 

(“Intersection Point” Location), the allowed space ranges for objects on the 

screen according to the observer determining the three types of parallax known 

as zero parallax (on the screen), positive parallax (behind the screen), and 

negative parallax (in front of the screen). 

 Check of convenient disparity: to avoid eye strain and the effects of nausea, 

the disparity must be convenient for the eyes without too much parallax or 

contradictory depth cues. 

 Padding of the exposed regions: the objects in the original two-dimensional 

images may be partly or entirely occluded by the foreground, and should be 

uncovered (made visible) in the three-dimensional model. 

The second group (as shown below) of these challenges could be named as typical 

problems, which require high quality conversion algorithms in order to execute them. 

Those problems such as: 

 Semi-transparent objects such as glass 

 Repercussion 

 Foggy translucent objects 

  Thin objects such as fur or hair 

 Noise effects such as film grain 

 The quick and unorganized motion in a scene 

 Small pieces such as snow, rain and explosions 
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1.4 Scope of Thesis 

The scope of the thesis is limited to obtaining the structure from the motion of the 

camera (SFM), and on exploring the methods of conversion of two-dimensional 

images into three-dimensional models. The thesis reviews the conversion method in 

the general part, and with regard to the structure from motion, the thesis is based on 

SFM with two views using a single camera achieving acceptable results as expounded 

in Chapter VI. 

 

1.5 Structure of the Thesis 

The structure of the thesis is as follows:  

In the second chapter, the fundamental concepts are clarified with illustrations. The 

third chapter demonstrates background information about the conversion algorithms. 

The fourth chapter discusses past work carried out in this area. The fifth chapter 

contains the proposed method and introduces a theoretical discussion about the 

method. The sixth chapter presents the experimental results and a discussion thereof. 

The seventh and final chapter presents the conclusion and any future work. 
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CHAPTER II  

 

FUNDAMENTAL CONCEPTS 

2.1 2-D and 3-D [5] 

In order to make the later chapters more clear, we introduce the current chapter with 

definitions and explanations for the terms and concepts of the related thesis topics.  

The process of transformation from 3D space to a 2D plane can be illustrated with a 

pinhole model (Figure 2.1), which consists of a plane R, called the image plane and a 

point C, the optical centre, which does not belong to the image plane. 

M object has a projection on the image plane R at the m point, and that projection 

represented by intersection of the optical ray (C, M) and the image plane R. The 

principal point c represents the center of the perpendicular of the optical axis on the 

image plane. The camera coordinate system (CCS) could be carried out with the 

center C and two axes (X and Y) which are parallel to the image plane (u, v) and the 

third axis Z corresponds the optical axis.  The distance between the center C and the 

image plane represent the focal length f. 

1ி௨ ௌ௨∶ோ [ହ] 

c 

m 

M 

Y 

X C 

Z 
Figure 2.1 Pinhole݈݁݀ܯଵ 

R 

v 

u 
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Thales theorem defines the relationship between the coordinates of M, [ܺ, ܻ, ܼ]் and 

those of its projection m, [ݑ,  :as shown below ்[ݒ

ݑ =  


ݒ                          =  


              (2.1) 

The aim of computer vision is to infer features of the world from images. The main 

problem of 3D vision is the inversion of the projection due to the transformation from 

a poorer representation of 2D to the richer representation of 3D. 

 

2.2 The Relationship between the Camera and the Real World 

 In general, all images that we have represent the reflection of any object in our world, 

so those images represent the results of the relationship between cameras and the real 

world, and each point in the image has a corresponding point in the real world. 

Clearly, the position of any object in an image depends on its position in the real 

world. In fact, after the camera captures any scene, we obtain a 2D image coordinate 

,ݑ)ܲ ,ܺ)ܲ from 3D points (scene coordinates) (ݒ ܻ, ܼ), as shown in Figure 2.2 [6]. 

 

 

 

 

2௨ ௦௨: [] 

Figure 2.2 Image coordinate and world ܿ  ଶ݁ݐܽ݊݅݀ݎ
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2.3 Camera Calibration 

Camera calibration is the process of estimating the internal camera parameter 

(intrinsic parameter) that relates the direction of rays through the optical centre to 

coordinates on the image plane. The importance of the internal camera parameter lies 

in the need for building 3D models of the world using a camera with a known intrinsic 

parameter [6]. 

 

2.4 Components of a 3D Point and its Corresponding 2D Image Point (Camera 

Works) [7] 

1. Internal camera parameter: (Intrinsic parameter): inherent from the camera 

regardless of the physical location of the camera in the world. Mathematically the 

intrinsic parameter is represented by the following matrix and is known as the 

camera calibration matrix: 

K = 
α୶ 0 Χ
0 α୷ Υ

0 0 1
൩ 

 

Where 

௫ߙ =  


ௗೣ
   And   ߙ௬ =  



ௗ
 

݂ ∶  ℎݐ݃݊݁ܮ ݈ܽܿܨ

݀௫ , ݀௬: Scale x, y by physical dimension of a pixel 

 

 

3ி௨ ௌ௨: ௧௧://௧௬௨ .௧//ି  

(2.2) 

(2.3) 

Figure 2.3 Focal ݐ݃݊݁ܮℎଷ 
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X ୟ୬ୢ Y  represent the camera shift (Center of the image) or the principle point. 

The camera converts 3D points (scene coordinates) from the real world to 2D (image 

coordinates) by using the following equation: 
 

ℎݏ݁ݐܽ݊݅݀ݎܿ ݏݑ݊݁݃݉→ቈ
߯
ߛ
1

 ∽ ܭ 
ܺ

ܻ
ܼ

൩  (2.4) 

∽ means ‘proportional to’ or ‘equal up to scale.’ 

Therefore, by inserting more detail into the above equation, we obtain the following: 

ۏ
ێ
ێ
ێ
ێ
ۍ

݂
݀௫

0 Χ

0
݂

݀௬
Υ

0 0 1 ے
ۑ
ۑ
ۑ
ۑ
ې


ܺ

ܻ
ܼ

൩ =  

ۏ
ێ
ێ
ێ
ێ
ۍ

݂
݀௫

ܺ + ܼܺ

݂
݀௬

ܻ + ܻܼ

ܼ ے
ۑ
ۑ
ۑ
ۑ
ې

 

 

Then, we need to divide the result by ܼ to acquire the 2D image coordinates (pinhole 

projection equation): 

ۏ
ێ
ێ
ۍ



ௗೣ
0 Χ

0


ௗ
Υ

0 0 1 ے
ۑ
ۑ
ې


ܺ

ܻ
ܼ

൩ =  

ۏ
ێ
ێ
ێ
ۍ



ௗೣ
ܺ + ܼܺ



ௗ
ܻ + ܻܼ

ܼ ے
ۑ
ۑ
ۑ
ې

 ∼  

ۏ
ێ
ێ
ۍ



ௗೣ




+ ܺ



ௗ




+  ܻ

1 ے
ۑ
ۑ
ې
  (2.5) 

 

2. External camera parameter (camera extrinsic parameter): describes the camera 

pose [R, T] or the location of the camera in the world. We convert from the WCS 

(world coordinate system) to the CCS (camera coordinate system) with a rotation and 

translation [R, T]. 

 


ܺ

ܻ
ܼ

൩ = ܴ 
ܺ
ܻ
ܼ

൩ + 
௫ݐ
௬ݐ

௭ݐ

൩     (2.6) 

where 
ܺ

ܻ
ܼ

൩ is the CCS, 
ܺ
ܻ
ܼ

൩ is the WCS, R(3 × 3) is the rotation matrix, and t is the 

translation vector. 
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Here, we put the internal and external parameters into one equation: 

ቈ
χ
γ
1

 ∽ K 
Xୡ
Yୡ
Zୡ

൩ = K ൭R 
X
Y
Z

൩ + t൱ 

 

= [ ݐ | ܴ] ܭ  

ܺ
ܻ
ܼ
1

  where [R | t] is a (3 × 4) matrix. 

 

= P 

ܺ
ܻ
ܼ
1

 P is the camera matrix (2.7) 

 

We can encapsulate all the above equations as follows under the name of the image 

formation process: 

∽ ܠ P(2.8)         ܆ 

where 

 .the scene coordinates ܆ represents the image coordinates and ܠ

 

2.5 Two Views, Stereopsis 

Stereo vision has great importance to the human due to the research into vision systems 

with two inputs. Stereo vision uses the information of their own relative geometry to 

infer depth information from the two views they receive, and use this information in 

the three-dimensional (3D) display which is not exist in the conventional two-

dimensional content [8]. 



9 
 

 

 

Figure 2.4 shows the geometry of the system with two views in which the line between 

the optical centres C and ۱ᇱ is called the baseline. When the optical centres C and ۱ᇱ 

intersect at the same point M by the corresponding rays in the scene, they create the 

epipolar plane. The lines that intersect the image planes define the epipolar lines I, ۷ᇱ. 

The intersections of the baseline with the respective image planes represent epipoles 

e, ܍ᇱ which represents the points though which all epipolar lines pass when the scene 

point M moves in space [9] [10]. 

 

The projections of the scene point M in both images consecutively are u,࢛ᇱ. The ray 

CM is projected onto the epipolar line Iᇱ in the right image which also represents every 

possible position of point M for the left image. The corresponding points u, ࢛ᇱ in the 

right and left images must thus lie on the same epipolar line Iᇱ in the right image. This 

geometry supplies a powerful epipolar constraint that minimizes the dimensionality 

of the search space for a correspondence between u and ࢛, in the right image from the 

two-dimensional to the one dimensional [9] [10]. 

 

 

4ி௨ ௌ௨∶ோ [଼] 

u 

e 

I 

C, 

I, 

 ,ݑ

݁, 

M 

C 

(R, t) 

Figure 2.4 Epipolar ݕݎݐ݁݉݁ܩସ 
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2.6 Essential Matrix (E) and Relative Motion of the Camera 

The relative motion of the camera is the movement of a single camera in space with 

known calibration. The role of essential matrix E is to capture all the information 

about the relative motion between the two positions of the calibrated camera. The 

essential matrix is denoted by the following equation [6][8]: 

 

ܧ =      ௫ܴ[ݐ] 

 

where t is the translation vector and R is the rotation 

 

The properties of the essential matrix E are as follows [10] [11]: 

 Rank 2 

 Matrix of 3×3 

 The first two singular values are always identical and the third is zero 

 Depends only on the rotation and translation of the camera 

 Usually considered to have five degrees of freedom 

 Epipolar lines are retrieved from E. 

 

I = ଶݔ 
Iᇱ , ܧ் = ଵݔ 

  ்ܧ்

 

 Epipoles can be extracted from E. 

 

݁ = ᇱ݁ , [ܧ] ݈݈ݑ݊ =  ்[ܧ] ݈݈ݑ݊

 

 

 

 

 

 

 

 

 

 

(2.11) 

(2.9) 

(2.10) 
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2.7 Fundamental Matrix F 

The role of the fundamental matrix F is to capture all information that can be retrieved 

from two images in cases where the correspondence problem is solved. Moreover, the 

fundamental matrix F plays the role of essential matrix E from a camera with an 

arbitrary internal matrix. The fundamental matrix is denoted by the equation below 

and includes essential matrix equation 2.9 [6] [8] [10] [11] [12]: 

 

ܨ = ଵܭ 
ି

ܭܧ
ିభ

 

 

where  

  are the calibration matricesܭ ,ଵܭ

 

The properties of the fundamental matrix F are as follows: 

 Rank 2 

 Fundamental matrix has a relationship with the epipoles 

 

ܨ்݁ = 0 and ܨ ݁ᇱ = 0 

 

 They have seven degrees of freedom 

 Fundamental matrix F has the possibility of recovering the essential matrix 

 

ܧ = ଵܭ 
  ܭܨ ்

 

 

2.8 Motion 

The term motion appears when we deal with a sequence of images taken during 

different periods of time. According to the term motion, the position of objects changes 

between multiple images and the motion of those objects is called optical flow, which 

may be detected. In addition, motion can be used to generate a 3D description of 

objects from more than one view [8]. 

 

 

 

(2.12) 

(2.13) 

(2.14) 
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Generally, from a practical point of view, there are three types of motion-related 

problems. The first, known as motion detection, represents the detection of any motion 

and used for security purposes and mostly uses a single static camera. The second is 

known as moving objects detection, which poses another problem: a camera with a 

static position and objects which are moving in the scene, or vice versa. The second 

situation is considered to be more difficult in comparison with the first. The solution 

to the moving objects detection may depend on motion-based segmentation 

techniques. This problem becomes more complex when it includes object moving 

detection, and the detection of the path of its motion in the present and future. Image 

matching methods are mostly used to solve this problem. The last problem is the 

derivation of 3D objects properties from a group of two-dimensional projections 

acquired at varying time moments of object motion [13] [14]. 

 

2.9 Motion Parallax 

Motion parallax is the phenomenon that provides the moving observer with the 

information about the depth to on object even when static objects appears to be moving 

relative to each other, so closer objects move faster than the distant ones [15]. 

 

2.10 Disparity 

The first use of the term disparity was to describe the difference in position of the 

corresponding features seen by human eyes. In computer vision, this term refers to the 

difference in the image location of the same point in the three-dimensional scene when 

projected under perspective to two different views [11] [15]. 

 

2.11 Binocular Stereo Vision 

The term binocular disparity denotes the procedure of deriving a three-dimensional 

structure from two images of a scene captured from multiple but slightly different 

standpoints. The variance of location gives rise to proportional displacements or 

variances of corresponding points in the images, and these variances allow the depth 

to be computed by triangulation [16]. 
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2.12 Structure from Motion SFM 

The technique of building three-dimensional models from two-dimensional images 

taken by a single moving camera around a static scene is not straightforward due to 

the formation process of the image not being invertible. To build a 3D model, we need 

to establish the properties of the camera and its position in each frame simultaneously. 

This technique is known as structure from motion (SFM) although this is somewhat 

a misnomer as both motion and structure are recovered simultaneously [6] [14] [17]. 

 

The use of structure from motion techniques are found in a wide range of applications 

such as: 

 Photogrammetric surveys; 

 Automatic reconstruction of virtual reality models from a video sequences; 

and 

 The determination of camera motion. 

 

2.13 Blocks of Structure from Motion SFM [11] [14] [18] 

The trend of this section is to make the understanding of structure from motion easier 

and clearer. Thus, we describe how SFM works as steps that will create links between 

those steps, and how it makes it easier to adapt to the camera model. 

The first three steps in the blocks are for a calibrated camera are as follows: 

 Pose estimation 

 Motion estimation 

 Triangulation of points 

The fourth step demonstrates the role of bundle adjustment in both structures from 

motion and calibration. 
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 2.13.1 Pose estimation 

Pose estimation, or extrinsic calibration, is the opposite of the intrinsic calibration of 

the camera parameters, such as focal length. The pose estimation problem is one of the 

classical problems in computer vision. The computation of the object position and 

orientation is usually carried out by using points or lines corresponding between the 

object and the image. The minimal number of correspondence points necessary is three 

correspondences, which is known as the perspective three points problem (P3P), and 

extends to contain as large a number of points as PnP. 

In order to solve the pose estimation problems, there are a number of techniques that 

can be used, such as direct linear transform, linear algorithms, and iterative 

algorithms. All of these techniques have been developed to solve pose estimation 

problems. 

 

2.13.1.1 Linear algorithms 

The pose of the camera can be recovered by forming a set of linear equations similar 

to those used for two-dimensional motion valuation from a camera matrix form of the 

perspective projection. 

 

ݔ =  
ܺ ଵ + ܻ ଶܼ +  + ଷ 

ଶ ܺ + ଶଵ  ܻ ଶଶܼ + + ଶଷ 
 

 

ݕ =  
ଵ ܺ + ଵଵ  ܻ ଵଶܼ + ଵଷ +

ଶ ܺ + ଶଵ  ܻ ଶଶܼ + ଶଷ +
 

 

, ݔ) ) ) are the computed two-dimensional coordinates, andݕ ܺ , ܻ , ܼ) are the three-

dimensional coordinates (Figure 2.5). The camera matrix P is unknown and can be 

solved in a linear fashion by multiplying the denominator on both sides of the equation. 

The algorithm that is the result of this process is called a direct linear transform (DLT). 

The minimum known correspondences between the three-dimensional and two-

dimensional coordinates are six correspondences that are needed to compute the 12 (or 

11) unknowns in P. The intrinsic calibration matrix K and the rigid transformation (R, 

t) can be recovered after the entries in P have been recovered. 

 

(2.15) 

(2.16) 
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ܲ =   [ݐ|ܴ]ܭ

 

When the camera is calibrated, the matrix K is known and the pose estimation can be 

used with as few as three points. In the linear perspective n point (PNP), the main 

notation is the visual angle between any pair ൫ݔො  ,  ො൯ of two-dimensional points thatݔ

must be the same angle in the corresponding three-dimensional points ൫ ܲ, ܲ൯ (Figure 

2.5). 

 

 

 

 

2.13.1.2 Iterative Algorithms 

Pose estimation can be recovered more accurately and flexibly by minimizing the 

squared re-projection error for the two-dimensional points of the unknown pose 

parameters (R, t), and optionally K by using nonlinear least squares. The projection 

equation can be written as: 

 

ݔ = )   , ܴ , , ݐ   (ܭ

 

 

 

5ி௨ ௌ௨:ோ  [ଵଵ] 

(2.17) 

 ݔ

 ݔ

ܿ 

 ߠ

ܲ = ( ܺ  , ܻ  , ܼ  , ܹ) 

ܲ 

Figure 2.5 Pose Estimationହ 

(2.18) 
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We minimize the squared linearized re-projection error iteratively: 

 

ேܧ =   


 ൬
߲݂
߲ܴ

 ∆ܴ +  
߲݂
ݐ߲

ݐ∆  + 
߲݂
ܭ߲

ܭ∆  −  ൰ݎ 

 

 

where 

 

ݎ = ݔ  −  ො is the current two-dimensional error in the predicted position, and theݔ 

partial derivatives are with respect to the unknown parameters such as the translation, 

rotation, and calibration parameters. 

 

2.13.2 Motion Estimation [8] [18] 

Motion or optical flow computation is dependent upon two propositions: 

 that the spotted brightness of any point be steady over time; and 

 that contiguous points in the image plane move in an identical style 

(smoothness velocity constraint). 

The motion estimation then depends on a Gauss-Seidel iteration method of two 

dynamic images. If the number of images exceeds two, the computation will be more 

accurate by using the results of one of the iterations in the previous method to launch 

the current two images in sequence. These algorithms are parallel, and the iterations 

potentially are slow with computational intricacy. 

According to the above propositions, the optical flow computation will be recovered 

with the algorithms mentioned above. Unfortunately, if those propositions are broken, 

error will occur in the results. Typically, the motion changes significantly in extremely 

textured zones, around moving edges, and at depth discontinuities. For these situations, 

global and local optical flow computation, and global relaxation methods of motion 

estimation are employed to determine the smoothest velocity area consistent with the 

image data. Relaxation methods have the property to reproduce topical constraints 

globally. 

As an outcome, not only constraint information but also motion estimation errors are 

reproduced across the solution. Therefore, even problems in the small area in the 

motion estimation area potentially cause prevalent errors and poor motion estimates. 

(2.19) 
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The global error reproduction is the most problematic of the global motion estimation 

scheme. Local motion estimation shows a good solution to this obstacle. The local 

estimation is dependent upon the same above propositions with the concept of the local 

estimate splitting the image into small areas where the propositions hold. This solves 

the error reproduction problem; however, another one appears in areas where the 

locative gradients change bit by bit, the motion estimation becomes poorly conditioned 

due to the absence of motion information. If a global approach is applied to the same 

area, the information from contiguous image pieces reproduces and represents a 

ground for motion estimation even if the local information was insufficient by itself. 

The conclusion is that global sharing of data is useful in constraint sharing but bad 

with respect to error reproduction. One way to deal with the smoothness violation 

problem is to detect areas in which the smoothness holds. A pair of heuristics for 

specifying contiguous constraint equations that vary basically in their flow value are 

introduced. The main problem of the reproduction error is still unsolved. However, an 

estimation or rough guess is used with each flow vector that is dependent upon the 

heuristic rule of correctness, and the local average flow is estimated as a measured 

average. Consequently, the reproduction of error-free estimates holds. 

 

2.13.3 Triangulation of points [11] [17] [18] 

The meaning of the term triangulation represents the problem of locating a three-

dimensional point from a group of corresponding image positions with known camera 

locations. Triangulation is considered to be the converse of the pose estimation 

discussed in 2.13.1. 

The reconstruction algorithm reduces the result of squared errors between the weighted 

and the forecasted image locations of the three-dimensional point in the whole views 

in which it is apparent. 

 

ܺ = arg ݉݅݊௫  ∑ ݑ‖ − ොݑ   ( ܲ , ܺ)‖ଶ
   

 

where (ݑ , ) ො)  andݑ ܲ  , ܺ) respectively represent the weighted and forecasted image 

locations in the view. So far, the triangulation represents the process of determining 

the three-dimensional points as the intersection of two projection rays when two 

images are available (Figure 2.6). 

 

(2.20) 
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Figure 2.6 Triangulation 

 

 

 

 

 

 

2.13.4 Bundle Adjustment [10] [11] [17] [18] 

The term bundle adjustment comes from the field of photogrammetry. Bundle 

adjustment is considered to be the final step in most algorithms. The goal of bundle 

adjustment is to purify the structure and motion parameters by using it repeatedly to 

reach the most probable estimate, which is carried out by reducing the suitable cost 

function where the suitable cost function represents the result of the total squared 

errors. 

Purifying the structure and motion can be carried out by using nonlinear smallest 

squares to reduce the error measure:  

 

ܧ =  
1

݉݊
  ቈ(ݑ −  

݉ଵ. ܲ

݉ଷ. ܲ
 )ଶ + − ݒ )  

݉ଶ. ܲ

݉ଷ . ܲ
 )ଶ



 

 

Although the bundle adjustment is potentially costly, it provides the upper hand of 

merging all computations to reduce the important error measure, that is, the mean 

squared error between the current image point locations and those forecasted using the 

estimated scene structure and camera motion. 

6ி௨ ௌ௨:ோ [ଵଵ]

 ଶܥ ଵܥ

X 

 ଵݑ
 ොଵݑ

 ොଶݑ

 ଶݑ

(2.21) 
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CHAPTER III 

BACKGROUND INFORMATION 

 

 

3.1 Introduction 

Generally, human vision can perceive the three-dimensional real world, including the 

depth in the shape of multi-ocular disparity. Human vision system represents the 

reason of observe various sights of the world. This phenomenon offers an advantage 

for the three-dimensional present by producing two somewhat differing images of each 

scene and then displaying them to each eye individually. The correct perception of 

three dimensions can be perceived by offering a suitable disparity and calibration of 

parameters. 

The realm of computer vision has evolved a variety of algorithms to convert two-

dimensional images into three-dimensional models. Each of these algorithms has its 

own advantages and disadvantages. Most algorithms have the advantage of using 

specific depth cues to produce a depth map [19]. 

 

3.2 Two-Dimensional to Three-Dimensional Conversion Algorithms 

In general, conversion algorithms can be classified into two groups depending on the 

number of input images. The first group contains algorithms which deal with two or 

more images and the second group contains algorithms dealing with single images. In 

the first group, the inputs can be obtained either by using more than one fixed camera 

located in different positions or by using only one camera with a moving object in the 

scene. The depth cues used in the first group are known as multi-ocular depth cues. In 

the second group, the depth cues work on only one image and the depth cues are known 

as monocular depth cues [20]. 

Figure 3.1 shows the types of conversion algorithms mentioned above based on the 

number of input images. 
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The thesis deal with two images only, so later we will be demonstrating only the multi-

ocular algorithms. 

3.2.1 Binocular Disparity 

The technique for obtaining the three-dimensional structure from a pair of two-

dimensional images, which represents the same scene from two different views, is 

known as binocular stereo vision algorithm. The steps of this technique are, starting 

with detecting the corresponding points between a pair of images, then matching them 

and finally calculating the depth, by using triangulation. This algorithm is based on the 

restriction of disparity gradients in the matched image [LIoyd S.]. 

The binocular stereo vision solutions were obtained by imposing additional restrictions 

in order to solve the correspondence problem. These solutions were produced to cope 

with issues such as the occlusion or transparent surfaces, due to the violation of the 

constraints. Determining the binocular disparity, which must be a unique disparity, by 

using the motion parallax that was obtained from a moving monocular camera, 

represents an alternative solution instead of adding additional constraints [Nishikawa]. 

7ி௨ ௌ௨∶ோ [ଶ] 

Figure 3.1 Conversion Algorithms  ૠ 
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The quality of the matching and the execution time represents important issues in most 

algorithms. In order to achieve these issues, the square and gradients will be the base 

of the binocular vision algorithm. The gradient of the points of the image lines will be 

compared, and the image lines used as a series of areas. While the role of the sum of 

squares differences will be the basis for determining the best matching in each area. 

This algorithm is characterized by being quality derived from the gradients algorithm, 

and cope with the additive noise [Hu T.].  

3.2.2 Silhouette 

Silhouette estimates of the perspective projection have some difficulties in order to 

obtaining an efficient result. Silhouette estimates, based on a sequence of viewpoints 

and the parallel projection, is the proposal method. This algorithm using the sequential 

frames of the polyhedral model, and tracking the ongoing changes in the silhouette 

between them. Then the computation is carried out based on the point-plane duality in 

3D [Pop M.]. 

The objects have a silhouette images, some algorithms are using this feature in order 

to construct a three-dimensional model for these objects. The shape from silhouette 

(SFS) is one of those algorithms that used the silhouette images to create a 3D model 

which known as visual hull (VH). Shape from silhouette carry out on static and 

dynamic objects, the moving objects in the case of videos. The steps of the proposal 

algorithm are VH alignment and VH refinement. The algorithm extended from the 

rigid objects to the articulated objects which have unknown motion [Cheung K.]. 

The occlusion, noise, and the errors in the background all these are considering as a 

reasons for generation inconsistent silhouette. The proposal algorithm is dealing with 

all these reasons and construct a robust silhouette model. This algorithm is proposing 

to continue to reduce the energy problem which is known as the error between the 

shape and the silhouette. Also, the algorithm is using the visible feature of the surface 

in order to construct the shape. The results of the algorithm are obtained by using the 

graphic card processor with parallel computing, this method will reduce the 

computation time. Finally, the algorithm introduced an assistant function that construct 

simultaneously the visible surface and empty visual cone [Haro G.]. 
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For more methods, [Hartner A.] contain a comparison and explanations of the object 

space silhouette algorithms.    

3.2.3 Focus 

The shape from focus (SFF) algorithm proposed as a method which is using different 

levels of focus to generate a sequence of images. This algorithm is used the Sum-

Modified-Laplacian (SML) operator which is applying on the image sequences in 

order to measures the quality of the image focus.  The local depth estimates are 

computed by using the set of focus in each image point. The depth estimation is figure 

out by using two algorithms, the first one is tracking the focus levels, and the second 

one is used the SML focus measure differences at each point as a Gaussian distribution. 

Both of algorithms can be used with smooth and non-smooth textured surfaces by 

using specific illumination methods [Nayar S.]. 

The auto focusing algorithm which proposed is based on paraxial geometric optics of 

the image origination. Due to the adoption of the algorithm, the focus measures which 

is based on the energy of the image gradients have some negative side effects. The 

proposed method solution is based on divided the auto focus algorithm into two steps. 

The first stage result is obtained by using the image disparity to find the vicinity of 

focus, then the second stage result represents the optimum focused image with the 

focus measures. The proposed algorithm is designed especially to the digital cameras 

[Lee J.]. 

Depth estimation by using more than on image with different focuses, and by using 

only the spatial image gradients as the focus measure is the proposed method. The 

algorithm is used two types of the decisions, the corroborates and soft decision. Those 

decisions add more accurate to the algorithm in order to deal with the sensor noise and 

optics-related effects [Eltoukhy H.]. 
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The algorithm based on a one-dimensional Fourier transform and the Pearson 

correlation is the proposed method.  The algorithm process is done by using a specific 

vector pattern which is used to search in each image. Then, the Fourier transform is 

carried out and extract the frequency content of the vector pattern. Finally, the 

frequency vector is comparing with a reference image which is detected by using the 

Pearson correlation. This algorithm is suitable to cope with different environments 

with consideration of the illumination [Bueno M.]. 

3.2.4 Defocus using more than two images 

The technique of estimate the depth from two images with different amount of defocus 

of the same scene without correspondence problem is the proposed algorithm. The 

algorithm consists from two stages, first one is the calibration stage and the second 

one is the depth recovery stage. The defocus process in this algorithm is addressed as 

a Gaussian point spread function (PSF) [Hwang T.]. 

The shape from defocus (SFD) is the process of obtaining a 3D geometry which 

required a set of defocused images. The typical method is required a deplurring for the 

focused images and approximation of the scene which known as equivocal assumption. 

The proposed algorithm is introduced a method of obtaining the three-dimensional 

geometry without a strong assumption for the scene in order to avoid the deblurring. 

The solving of the defocus problem requires forming the interaction between the light 

and the optics, this interaction known as point spread function. The algorithm 

introduces two solutions; each solution is suitable for specific situation. These 

situations are defined by the known and the unknown form of the point spread 

function. The proposed solutions have only one simple matrix-victor multiplication, 

and based in general on the minimize of the Euclidean norm of the difference between 

the observed image and the estimated image [Favaro P.]. 

The projection defocus analysis, which is modelling by using the linear system, is the 

base of the proposed method. The projector’s model is used to estimate the depth at 

each camera pixel through computing of the parameters of the projection defocus in 

frequency domain. In order to ensure that the recovered depth is covering all the 

camera pixel, the algorithm is used the coaxial projector camera system. 
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This algorithm effectively contributed to the increases the depth of field of the 

projector without needed to justify the projector optics. Also, the algorithm is get rid 

of the strong pixelation artifacts which is caused by the digital projectors with 

consideration to the quality of the projected image [Zhang L.]. 

In the past the defocus could be obtained through using multiple images exposures 

focused at variant depths, and the correspondence cues is required multiple cameras or 

multiple exposures at variant viewpoints. Nowadays, the light-field cameras become 

available in the market, so in a single capture those cameras are offering the depth 

information from defocus and correspondence at the same time. The proposed 

algorithm is combining the focused and the correspondence depth cue, which are 

obtaining from light-field cameras, in order to calculate the dense depth estimation 

[Tao M.]. 

 

3.2.5 Motion 

The technique of obtaining the structure and motion information from multiple images 

without needed to the correspondence information is the proposed algorithm. This 

algorithm is based on the probability distribution which is iteratively refines on the set 

of correspondence. At each iterative, structure from motion problem is solved. The 

Markov Chain Monte Carlo technique is used to obtain the probability distribution 

[Dellaert F.]. 

The two-frames motion estimation is the proposed algorithm. This algorithm is 

consisting from two stages; the first stage is carried out by using the quadratic 

polynomials in order to estimate each neighbourhood of the frames. The second stage 

is done by observing the polynomial transform under translation in order to estimate 

the displacement fields from the polynomial expansion coefficients [Farneback G.]. 

The structure from motion technique is used to reconstruct three-dimensional model 

by using multiple two-dimensional images. The proposed algorithm is based on the 

incremental of the SFM by using unordered 2D images, and the accuracy and the 

efficiency are considering as a purposes of this algorithm [Schonberger J.]. 
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CHAPTER IV 

 

STATE-OF-THE-ART 

 

4.1 Conventional Techniques to Structure from Motion 

The procedure of obtaining structure from a set of images began in the 1980s [21-24]. 

Normally, structure from motion is initially approached by placing a set of obvious 

characteristics that are found in two image structures. This is commonly denoted as 

the correspondence problem solution. Then, the proportional motion of these 

characteristic correspondences is given the structure of the environment [25]. By 

computing of the optic flow within the given image sequence, there is the possibility 

of estimating the structure from motion without directly placing the correspondence 

points [25]. 

The conventional estimation of structure from motion mostly uses two images 

obtained from a single camera to slant the field of view of 45 to 60° [34-36]. However, 

there are advantages to raising the number of images in the estimation process [29] 

and also raising the field of view [30]. Additional refinement in accuracy can be 

achieved by assuming further constraints, which can be varied, such as the restriction 

of the objects’ speed in linear motion, breaking down the two-dimensional photo into 

two one-dimensional photos, and so on [31]. 

Batch processing means several images being processed at once, which causes a 

significant delay if the calculation was wanted in real time. Instead, it is suitable for 

real-time executions to produce a structural computation of a recursive nature, 

permitting recurring refined calculations to be usable after each new image is scanned 

[25]. 

 

4.2 Related Works 

Using the structure and motion together under the name of structure from motion to 

reconstruct the three-dimensional model from multiple images is considered to be a 

significant topic in computer vision research. The pioneers in the field of computer 

vision have proposed many techniques to fill the lacunae in the structure from motion 

approach. 
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Zhengyou Zhang [32] used structure and motion from two perspective views based on 

the essential parameters, a fundamental matrix and Euclidean motion. The typical 

technique consists of two steps: 

 Calculate the nine essential parameters by using the 8-point algorithm 

(considered a linear calculation problem). 

 Rectifying the motion calculation depending on statistically optimum measures 

(considered a non-linear calculation problem in 5-dimensional space). 

The problem with this technique is that the results mostly are not good enough due to 

the sensitivity of the second step to the incipient guess and the difficulty of obtaining 

an accurate incipient estimate from the first step. In order overcome this problem, 

Zhengyou Zhang proposed an approach by imposing the fundamental matrix (zero-

determinant constraint). The process of this technique is carried out gradually through 

project parameters calculated in a higher-dimensional space onto a lower-dimensional 

space, which means moving from 8 dimensions to 7 and finally reaching 5 dimensions. 

Unlike [32], Frank et al [33] introduced another technique by using the structure from 

motion without correspondence. This method exceeded the traditional techniques that 

require the presence of a known correspondence point [34] or calibrated images from 

a known camera viewpoint [35] or known shape [36]. Furthermore, this method deals 

with non-sequential images which are taken from vastly different viewpoints. 

Masahiro [37] introduced a method of using the structure from motion in map 

reconstruction. This method was a system of three-dimensional simultaneous 

localization and mapping (SLAM), which is based on the SFM scheme. The steps of 

this method are as follows: 

 Basic Framework 

 Feature Tracking 

 Initial Estimation 

The first step considers the three-dimensional SLAM as a set of images obtained from 

a monocular camera. The three-dimensional map is represented as three-dimensional 

points from the feature points tracked through the set of images. The second step 

occurs based on KANADE-LUCAS-TOMASI [38]. The third step occurs by using the 

factorization method [39]. 

The precision and robustness of this method is based on the selection of the baseline 

distance, so the proper baseline selection depends on standards for object shape 
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reconstruction and the camera pose estimation. Figure 4.1 clarifies the procedure of 

this method. 

 

 

 

Zach et al [40] discovered and used three-dimensional symmetries based on image 

cues in SFM. The aim of this technique is to retrieve the symmetry connections in 

conditions under which the initial structure from motion veers due to drift and can be 

imprecise. In order to cope with this problem, this approach should discover symmetry 

restraints within uncertain three-dimensional structures, and enforce them during 

structure from motion. Thus, reconstruction will be more accurate where the derived 

structural restraints are observed. In this method, Zach et al proposed a bundle 

adjustment equation in the case of the structural restraints being imposed between 

different subsets of three-dimensional point sets linked by propinquity transforms. 

Additionally, the symmetry knowledge offers a natural coordinate for the structure to 

be selected during the bundle adjustment. To this end, the underlying symmetries allow 

us to complete the three-dimensional model. 

Klingner et al [41] uses the structure from motion to model the street view images by 

extending the SFM technique in order to repair the pose of those images. 

 

 

 

 

9ி௨ ௌ௨:ோ ଷ 

Figure 4.1 3D SLAM Basic ܲ݁ݎݑ݀݁ܿݎଽ 
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This method presents two challenges: the planet-wide scale and the rolling camera 

shutter. In order to overcome these problems, Klingner et al used a good initial 

approximation of the local vehicle route. Through the incorporation of techniques, 

such as SFM, GPS, and INS (Inertial Sensors), the approach corrects the distortions in 

the street view image, as shown in Figure 4.2: 

Figure 4.2 A: Before B: After the SFM based-ܿ݊݅ݐ݈ܽ݁ݎݎଵ 

10ி௨ ௌ௨:ோ ସଵ 

A 

B 
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 In spite of the advantages that are offered by the previous method of reconstructing 

the city-scale, it is still expensive due to the use of the GPS/INS systems. Yongjun 

Zhang et al [42] introduced an SFM method of producing the city-scale reconstruction 

based on images obtained with a driving recorder without any information from the 

GPS/INS systems in order to decrease the cost of reconstruction. Figure 4.3 shows the 

steps of this method. 
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Figure 4.3 the Steps of three-dimensional ݊݅ݐܿݑݎݐݏ݊ܿ݁ݎଵଵ : The blue 
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 CHAPTER V 

 

THE PROPOSED METHOD 

 

5.1 Methodology 

This chapter describes the method based on achieving the goal of this thesis. According 

to the title of the thesis, the technique of reconstructing a three-dimensional model 

from a pair of two-dimensional images depends on structure and motion. In order to 

obtain this information, there are a number of steps to follow. First, we need a static 

scene with an object of known size (in our scene, the object is a ball of size 10 cm), 

and a calibrated camera to obtain two views. After obtaining the real data in two 

images, the work of the algorithm begins at this step. The workings of this algorithm 

are presented in the following sections. 

 

5.1.1 Detection of The Correspondence Points 

In order to continue to the others step, it is necessary to find the correspondence points. 

Therefore, the best features need to be detected in order to track from image to image. 

This process is carried out by using the minimum eigenvalue algorithm as proposed by 

C. TOMASI & J. SHI [48], and as the below equation shows: 

 

ܴ = min (ߣଵ,  ଶ)   (5.1)ߣ

 

where  (ߣଵ,  ଶ) represents the eigenvalues and the window (corner) is accepted if thoseߣ

eigenvalues are greater than the predefined threshold value (ߣ) as shown below: 

 

min(ߣଵ, (ଶߣ >  (5.2)    ߣ 

 

According to the C. Tomasi & J. Shi method, the strongest corners will be found in the 

image, which is a grayscale image. 
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5.1.2 Features Tracking 

This step begins after finding the strongest corners (best features) from the first image. 

The role of this process is to track those features in the second image. This process is 

carried out by using the KLT algorithm (KANADE-LUCAS-TOMASI) [43]. The goal 

of this algorithm is to find the specific location of a specific point in the second image 

according to the first image. This is achieved with the following equation: 

 

തܸ௧ = ଵିܩ  തܾ   (5.3) 

 

5.1.3 Computing The Fundamental Matrix 

The computation of the fundamental matrix from the correspondence points which are 

detected is the first step. The fundamental matrix was explained briefly in Chapter 2 

(2.7). 

 

5.1.4 Camera Motion Calculation 

In this section, we will estimate the position and orientation of a calibrated camera. 

Normally, there are two views, hence there are two poses. Both poses are relative to 

each other as denoted by the fundamental matrix F. The camera poses are computed 

up to scale and the position denoted a unit vector. The second chapter (Section 2.4) 

also mentions camera pose. 

 

5.1.5 Triangulation 

The three-dimensional positions of the matched points can be determined by 

triangulating. (This term is explained in detail in Chapter II (2.13.3)). 

 

5.1.6 Detect an Object with Known Size 

This process is carried out by using the MSAC algorithm (M-estimator sample 

consensus). The fitting of a sphere to an inlier point cloud using an object with known 

size is here a ball of size 10 cm. 
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CHAPTER VI 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

6.1 Experimental Results 

The experiments were carried out on an ordinary PC equipped with the following 

specifications: 

 System Type: 64-bit operating system, x64-based processor. 

 Edition: Windows 10 Home. 

 Processor: Intel (R) Core (TM) i3-2310M CPU @ 2.10 GHz. 

 RAM: 4.00 GB. 

The input images were obtained from a digital camera (NX3000) equipped with: 

 20.3 MP APS-C CMOS Sensor. 

 16-50 mm Power Zoom Lens. 

 1/4000 sec Shutter Speed. 

All experiments were carried out using the MATLAB R2015b software package. The 

methodology of the thesis was based on the technique of ‘structure from motion’, but 

by using a single calibrated camera with the camera calibration application in 

MATLAB and by obtaining two views of the scene with a little motion for the second 

view. The algorithm that will create the three-dimensional model of the scene, from a 

pair of two-dimensional images following a number of steps, as the next section shows. 

 

1. The first step is carried out by loading a pair of images of the scene obtained 

by using the above camera. 

2. Next, the camera parameters are obtained by loading the camera calibration. In 

order to understand the mean reprojection error, which represent the difference 

in distance between the actual scene and the estimated one, we show below the 

equation of mean projection error: 

 ݔ) ݀ , ො)ଶݔ + ݔ) ݀
ᇱ, ොݔ

ᇱ)ଶ 

The unit of the reprojection error in pixel, so less than one it will be acceptable 

rate as shown in figure 6.1. 
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- Steps of the camera calibration: 

Firstly, there are some tools that should be available to implement the calibration such 

as the camera, checkboard, and camera calibrator application which are found in 

MATLAB. Next, obtain a group of images of the checkboard using the mentioned 

camera, and inserts these images into the camera calibrator application. For best 

results, load or acquire between (10) and (20) images. The following figures show the 

above steps of calibration: 

  

 

 

P 

O P 

ܲ 

Reprojection Error 

Figure 6.2: Select the camera calibrator application  

Figure 6.1: The reprojection error  
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After opening the calibrator application, add the images and specify the size of 

checkboard as shown in figure 6.3: 

 

 

Here, the total images processed was 32 and the added images were 28 while the 

rejected were 4 images (Figure 6.4). 

  

 

 

 

 

Figure 6.3: Adding and specify the size of checkboard  

Figure 6.4: The added images 
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Later, the camera is calibrated, shown in figure 6.5. 

 

 

The mean error in pixel which is 0.94 shown in the figure 6.6, the mean error could be 

minimizing by removing any images which have the biggest error. 

 

 

After removing the images which have the biggest error, which was only 18 images, 

we decrease the mean error from 0.94 to 0.77 as shown in the figure 6.7. The reason 

of stopping remove more images is the calibrator application require at least 10 images 

to give an accurate result. 

Figure 6.5: The Result of calibrator 

Figure 6.6: The Reprojection errors (0.94) 
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The extrinsic parameter of the camera for 28 images with mean error 0.94 is shown in 

figure 6.8. 

  

  

The extrinsic parameter of the camera for 10 images with mean error 0.77 shown in 

the figure 6.9. 

Figure 6.8: Extrinsic (Pattern – centric view 28 images)    

Figure 6.7: The Reprojection errors (0.77) 
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Finally, we export the camera parameters in order to use them in the code later as 

shown in figure 6.10. 

 

 

 

3. In order to avoid any lens distortion effects on the accuracy of the final 

reconstruction, MATLAB offers a simple function for this purpose which 

straightens any lines that may deform due to the radial distortion of the lens. 

 

Figure 6.9: Extrinsic (Pattern – centric view 10 images)    

Figure 6.10: Export camera parameters  
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4. At this step, the algorithm detects the corresponding points between the two 

images. This process can be carried out in a number of ways; however, here, 

the motion occurs not too far from the first position, so the KLT algorithm 

(KANADE–LUCAS–TOMASI) is suitable to create the point 

correspondences. 

5. Computing the fundamental matrix is carried out at this point and according to 

the results, the inlier points are obtained and those points match the epipolar 

constraints. 

6. The computation of the camera position, which consists of the translation and 

rotation, is carried out by using the CameraPose function in MATLAB. 

7. The three-dimensional locations of the matched points found in the fourth step 

are reconstructed using the triangulation function. 

8. The Plot Camera and the PcShow functions are used to display the three-

dimensional point cloud. 

9. In order to detect the actual scale factor, the algorithm uses an object with 

known size, so the scene contains a ball with a known radius (of 10 cm). The 

PcFitSphere function fits a sphere to the point cloud to detect the ball. 

10. The final step is the metric reconstruction, which mean the coordinates of the 

three-dimensional points will be in centimetre due to the actual radius of the 

ball which was 10 cm.   

The following images show the results of the above steps with multiple different 

scenes, and each image has a title to clarify its identity. The time consumed by the 

algorithm to reach the results was different in each test, where the 1st test consumed 

102 seconds, the 2nd test consumed 280 seconds, and the 3rd one consumed 131seconds. 

The results are shown below: 

 Figure 6.11: The original images 
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Figure 6.12: The Undistorting images 

Figure 6.13: The Strongest corners from the first image 
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Figure 6.14: The Tracked features 

Figure 6.15: The Epipolar inlier 
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Figure 6.16: The estimated size and location of the ball 

Figure 6.17 A: The metric reconstruction of the scene 
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In order to test the algorithm with another scene, which consisted of different ball with 

rugged surface and objects with more details, we repeat the execution of the code and 

the results were as shown:  

 

 

Figure 6.17 B: The metric reconstruction of the scene with another position 

Figure 6.18: The original images (second test) 
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Figure 6.19: The undistorted images (second test) 

Figure 6.20: The Strongest corners from the first image (second test) 
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Figure 6.22: The Epipolar inlier (second test) 

Figure 6.23: The estimated size and location of the ball (second test) 

Figure 6.21: The Tracked features (second test) 
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Figure 6.24 A: The metric reconstruction of the scene (second test) 

Figure 6.24 B: The metric reconstruction of the scene with another position (second test) 



46 
 

The first scene (Figure 6.11) contained a ball with a soft surface which had some parts 

with only one colour. We added some details to this ball in order to induce the 

algorithm to detect more matching points, and the results were as shown below: 

 

 

 

 

 

 

 

Figure 6.25: The original images (3rd test) 

Figure 6.26: The undistorted images (3rd test) 

Figure 6.27: The Strongest corners from the first image (3rd test) 
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Figure 6.28: The Tracked features (3rd test) 

Figure 6.29: The Epipolar inlier (3rd test) 

Figure 6.30: The estimated size and location of the ball (3rd test) 
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As we said in section 6.1 step 4 the distance between the images is not too far, so the 

KLT algorithm will work properly, but when the distance become more than 5 cm 

(distance between the camera and the scene was 50 cm) the algorithm fails to match 

the points between the images as shown in the figure 6.32. 

Figure 6.31 A: The metric reconstruction of the scene (3rd test) 

Figure 6.31 B: The metric reconstruction of the scene with another position (3rd test) 
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6.2 Real Data and Numerical Results 

- First Test 

In Figure 6.11, we show two real images of a constructed composite scene. This scene 

represents a difficult set of data due to its soft surface. We have covered the images 

with matched points using the KLT algorithm technique. When the sixth step of the 

algorithm is applied to the matched points of the real data, the motion estimate is a 

single matrix (1×3) for translation and a double matrix (3×3) for rotation, as shown 

below: 

ݐ =  
−0.27
3.16
0.3

൩ 

ܴ =  
0.99 0.005 −0.034

−0.002 0.99 0.096
0.035 −0.095 0.99

൩ 

As Zhengyou Zhang [32] used the same technique that we followed in our method and 

according to the available numerical data from his method, the translation and rotation 

data was as shown below: 

ݐ = [ −9.6, 1.85, −1.75]் 

ܴ = [−2.1, 4.2, 1.04]ܶ 

 

 

 

Figure 6.32: KLT algorithm error  
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The remaining data obtained from the experimental results are as follows: 

 Mean projection error 0.94 Mean projection error 0.77 

All colours 19961856x3 uint8 19961856x3 uint8 

Ball 

Properties 

Parameters [0.57, -0.91,10.6,3.13] [0.57, -0.91,10.6,3.13] 

Center [0.57, -0.91,10.6] [0.57, -0.91,10.6] 

Radius 3.13 3.13 

Camera 

parameters 

Radial Distortion [-0.097,0.1] [-0.099,0.12] 

Tangential Distortion [0, 0] [0, 0] 

Estimate Skew 0 0 

Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1] [3.9,0,0;0,3.9,0;2.7,1.85,1] 

Focal length [3.9,3.9] [3.9,3.9] 

Principal Point [2.7,1.85] [2.7,1.85] 

Fundamental Matrıx 
[1.16, -2.55,0.01;1.9, -2.2,9.5; -

0.01, -2.4,0.9] 

[1.3, -3.07,0.01; -7.28, -

2.6,0.001; -0.01, -2.1,0.9] 

Scale Factor 3.18 3.18 

Table 6.1: The Numerical Result Data (First Test) 

- Second Test 

The second test carried out by using another scene as shown in the figure 6.18, and the 

numerical results data as shown below: 

ݐ =  
−3.3
0.14

−0,47
൩ 

ܴ =  
0.99 −0.02 −0.08
0,02 0.99 0.015

0.087 −0.018 0.99
൩ 

 Mean projection error 0.77 

All colours 19961856x3 uint8 

Ball 

Properties 

Parameters [-0.99, -0.68,9.7,2,92] 

Center [-0.99, -0.68,9.7] 

Radius 2.92 

Camera 

parameters 

Radial Distortion [-0.099,0.12] 

Tangential Distortion [0, 0] 

Estimate Skew 0 

Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1] 

Focal length [3.9,3.9] 

Principal Point [2.7,1.85] 

Fundamental Matrıx [2.02, 6.49, -0.001; -4.02, -3.88,0.01; 2.33, -0.01, 0,99] 

Scale Factor 3.41 

Table 6.2: The Numerical Result Data (2nd Test) 
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- Third Test 

The third test carried out by using the first scene but with adding some more details as 

shown in the figure 6.25, and the numerical results data as shown below: 

ݐ =  
−0.25
3.34

−0,01
൩ 

ܴ =  
0.99 0.002 −0.031

0,001 0.99 0.11
0.031 −0.11 0.99

൩ 

 

 Mean projection error 0.77 

All colours 19961856x3 uint8 

Ball 

Properties 

Parameters [0.69, -0.98,9.64,2,98] 

Center [0.69, -0.98,9.64] 

Radius 2.98 

Camera 

parameters 

Radial Distortion [-0.099,0.12] 

Tangential Distortion [0, 0] 

Estimate Skew 0 

Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1] 

Focal length [3.9,3.9] 

Principal Point [2.7,1.85] 

Fundamental Matrıx [1.7, 3.06 ,0.01; -5.49, -4.03,0.003; -0.01, -0.00, 0,99] 

Scale Factor 3.35 

Table 6.3: The Numerical Result Data (3rd Test) 

 

6.3 Discussion 

The image resolution used in the algorithm was 5472×3648. Initially, the algorithm 

begins in the first test with loading a pair of images (Figure 6.11), followed by the 

camera calibration stored in the camera parameters object loaded, which included the 

camera intrinsic matrix, the radial distortion and the estimated skew. According to the 

value of the skew, which here is zero, there is no distortion in the lines of the lens. The 

next process aims to remove any bends in the lines of the lens, and as the skew is zero, 

there is no need for this step (Figure 6.12). Later, the feature points will have been 

detected in this step from the first image (Figure 6.13) and, as mentioned above, are 

carried out by using the KLT algorithm. 
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The point tracker is created to find the correspondence points between the images 

(Figure 6.14). In order to specify the epipolar constraints, the fundamental matrix is 

estimated, and by computing the fundamental matrix, the inlier points will be 

established and matched to the epipolar constraints (Figure 6.15). Before the final step 

in the algorithm, the camera position (R, t), which represents the external parameters, 

are computed. Later, by using the sphere function to fit the point cloud in order to find 

the size and location of the ball in the scene (Figure 6.16). 

Finally, the coordinates of the three-dimensional points in centimetres are determined 

according to the actual size of the ball (Figure 6.17 A and B). The final result of 

reconstruction of the three-dimensional model was not good due to the holes in the 

model; therefore, it was necessary to fill the uncovered areas 

We used the SFM technique in computer vision to reconstruct the three-dimensional 

model from the two-dimensional images based on different methods as the previous 

chapter demonstrated, (such as Frank et al [33], Masahiro [37], and Zach et al [40]), 

and all of these methods have used the SFM technique based on a variety of 

approaches. However, these approaches do not meet the criteria as set out in this thesis, 

which introduces the use of structure from motion based on matching the 

correspondence points between the only two images as done by Zhengyou Zhang [32]. 

Due to the lack of the data from the mentioned method, it was not possible to compare 

with the results of this thesis. 

Zach et al [40] in their methods using four different datasets, and by adding more 

points where are reduced the of error, except the third dataset where the error is 

increased, and this issue is left without explaining in their paper. Those results shown 

in the table 6.4. 

Dataset #Images #3D points 
Init. Image 

error 

#Added 

points 

Final image 

error 

1 175 43553 2.17 1497 2.14 

2 186 47756 6.18 5605 4.89 

3 99 31876 1.77 5747 6.75 

4 191 60997 3.3 1556 2.4 

 

Table 6.4: The results of Zach et al methodଵଶ 

12் ௌ௨:ோ ସ 
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In our method we used different types of scenes in order to demonstrate the behaviour 

of the algorithm. The numbers of three-dimensional points, which are the algorithm 

obtained from the first scene (figure 6.11), are 19333 points. After adding more details 

to the first scene, and by using the same algorithm (figure 6.25), the numbers of three-

dimensional points are increased from 19333 points to 22195 points. In the second test 

we using different scene (figure 6.18), which is have more colours and details, the 

result of using such a scene was obtaining more 3D points. Where the numbers of 3D 

points are increased from 22195 points to 59413 points. Table 6.5 is clarifying all those 

results which were carried out from the three tests. 

 

The original scene (1st Test) 
The original scene after 

modifying (3rd Test) 

Different scene with more 

details (2nd Test) 

3D 

points 

Image 

points 

Matched 

Points 

3D 

points 

Image 

points 

Matched 

Points 

3D 

points 

Image 

points 

Matched 

Points 

19333 30306 19333 22195 39402 22195 59413 247519 59413 

 

Table 6.5: Numbers of points according to different scenes 

 

Zach et al [40] in their method were added more points in order to reduce the rate of 

error, where the approach of the proposed method in this thesis is motivate the 

algorithm to obtain more matched points by using scenes rich in details.  

  

The limitations of the previous algorithm were found in the fourth step of the feature 

detection, where the KLT algorithm will not work probably if the space between the 

obtained images is too great (Figure 6.18). Next, the tracker features had some 

difficulties detecting the soft surfaces in the scene (Figure 6.14), so we added some 

details to this surface in order to motivate the algorithm to detect more matching points 

(Figure 6.25). Then, the same steps which mentioned above were executed. As the 

final result of the third test shown in the figures 6.31 A, B, the algorithm detects more 

points and reconstruct new model with more points. 

The second test was carried out by using a different scene (Figure 6.18), after executing 

the algorithm, the results were more accurate than the first test due to the details of the 

scene which was had more colours than the first scene (figure 6.11).  
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CHAPTER VII 

 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this thesis, we explored a variety of methods and techniques that aim to reconstruct 

the optimum three-dimensional model from two-dimensional data. This thesis 

concentrated on the structure from motion based on two views. The experimental 

results in the previous chapter have some limitations that need improvement and 

complementary solutions. Due to the limited time, there is no possibility to cope with 

the issues that are mentioned in the previous chapter section 6.3. 

The results of the experiments show the insufficiency of KLT algorithm when the 

distance between images becomes more than 5 cm. Also, we figure out the possibility 

of reducing the rate of reprojection error by removing the images that have the biggest 

rate of error.    

The experimental results are consisting from three stages. The first stage is done by 

using a scene with soft surfaces, the performance of the algorithm shows some 

deficiencies with the soft surfaces which are have few details. The second stage is done 

by using different scene with objects which have more details and rough surfaces, the 

algorithm results become more accurate than the first scene. The third stage is done by 

using the first scene of the first stage but after adding more details for surface of the 

ball in order to motivate the algorithm to detect more points, the results become more 

accurate than the results of the first stage. The experiments are showing the 

performance of the algorithm with different scenes and demonstrate the way of 

improving the algorithm. 

In spite of the limitations mentioned above, the algorithm creates three-dimensional 

models that depend on only two views with the model being meaningful according to 

the original scene. Moreover, the work of the algorithm is quite good due to the rating 

of the mean projection error, which was 0.94 and decreased into 0.77, as shown in 

Table (6.1). 

 

 

 

 

 



55 
 

7.2 Future Work 

Researchers in this field may use this thesis in investigations of two-dimensional to 

three-dimensional conversion algorithms. They can deal with the limitations 

mentioned herein by finding alternative algorithms instead of using the KLT algorithm 

so as to cope with widely-spaced images, or improve the 3D-model for greater 

accuracy. Also, they can estimate the depth information using the other algorithms that 

mentioned in the figure 3.1 in third chapter, and comparing the results with the current 

one in order to clarify the strengths and weaknesses of each algorithm. 
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