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ABSTRACT

Structure from Motion Using a Single Camera
Isawi, Muthana Yaseen Nawaf
M.Sc., Department of Mathematics and Computer Science
Information Technology Program
Supervisor: Assist. Prof. Dr. Reza Hassanpour

September 2016, 55 pages

This thesis introduces a general survey of conversion algorithms, their advantages and
disadvantages and a thorough explanation of the basic concepts in the field of 3D
model reconstruction. The thesis concentrates, step by step, on the structures of motion
technique and reconstruction of three-dimensional models from image pairs. The
reconstruction process is carried out using a single calibrated camera and an algorithm
based on only two views of a scene, the SFM technique based on detecting the
correspondence points between the two images, and the epipolar inliers. All the
experimental results have been computed using MATLAB (R2015b). By using the
KLT algorithm we figure out the incompatibility of it with the widely-spaced images.
Also, the ability of reducing the rate of reprojection error by removing the images that
have the biggest rate of error. The experimental results are consisting from three
stages. The first stage is done by using a scene with soft surfaces, the performance of
the algorithm shows some deficiencies with the soft surfaces which are have few
details. The second stage is done by using different scene with objects which have
more details and rough surfaces, the algorithm results become more accurate than the
first scene. The third stage is done by using the first scene of the first stage but after
adding more details for surface of the ball in order to motivate the algorithm to detect
more points, the results become more accurate than the results of the first stage. The
experiments are showing the performance of the algorithm with different scenes and
demonstrate the way of improving the algorithm. At last, we would like to mention
that the aim of thesis is to figure out the depth information from two 2D images, and

not to create 3D image from two 2D images.

Keywords: SFM, Conversion Algorithms, 2D into 3D, Computer Vision.



0z

Tek Kamera Kullanimiyla Hareketten Yapi Olusturma
Isaw1, Muthana Yaseen Nawaf
Yiiksek Lisans, Matematik ve Bilgisayar Bilimleri Anabilim Dali
Bilgi Teknolojisi Programi
Danisman: Yrd. Dog¢. Dr. Reza Hassanpour

Eyliil 2016, 55 sayfa

Bu tez dontistliirme algoritmalari, bunlarin avantajlari, dezavantajlar tizerine genel bir
aragtirma ile 3D modeli yeniden yapilandirma alaninda detayli bir aciklama
sunmaktadir. Aragtirma, hareket tekniginin yapilarini ve goriintii eslerinden {i¢ boyutlu
modelleri yeniden yapilandirma siirecini asama anlatmaktadir. Yeniden yapilandirma
stireci tek kalibreli kamera ve ayni sahnenin sadece iki goriintiisiine dayanan bir
algoritma kullanilarak yiiriitiilmiistiir. SFM teknigi iki goriintiiniin bilesen noktalarini
tespit etmeye dayanmaktadir. Tiim deneysel sonuglar MATLAB (R2015b)
kullanilarak hesaplanmistir. KLT algoritmasi kullanilarak genis aralikli goriintiilerin
uyusmazligr agiklanmigtir. Ayrica en biiyiik hata oranina sahip goriintiilerin
cikarilmasiyla, yeniden projeksiyon oraninin diisiiriilmesi saglanmaktadir. Deneysel
sonuclar {i¢ asamadan olugmaktadir. Birinci asama, yumusak ylizeyli sahne
kullanilarak tamamlanmistir. Algoritmanin performanst az detayli yumusak
sahnelerde yetersizlik gdstermektedir. Ikinci asama, daha fazla detay: olan sert yiizeyli
nesneler kullanilarak tamamlanmistir. Algoritma sonuglari birincisinden daha fazla
dogruluk gostermektedir. Uciincii asama, ilk deneyseli sahneye daha fazla detay
eklenerek gerceklestirilmis ve sonuclarin ilk deneyden daha biiylik bir dogruluk
oranina sahip oldugu gozlemlenmistir. Deneyler, algoritmanin farkli sahnelerdeki
performansimi gostermekte ve algoritmay1 gelistirmek i¢in yollar ortaya ¢ikarmaktadir.
Sonug olarak, tezin amaci iki boyutlu goriintiilerden {i¢ boyutlu goriintiiler yaratmak

degil, 2D goriintiiler hakkinda derin bir aragtirma ortaya koymaktir.

Anahtar Kelimeler: SFM, Doniistirme Algoritmalari, 2D'den 3D'ye, Bilgisayar

Goruntisi
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

The ability of the vision of living creatures in receiving the real world as a three-
dimensional scene motivates pioneers of the computer vision community to determine
methods to simulate this ability. The solutions to this problem are divided into two
groups, the first by acquiring a three-dimensional model directly from the real world
by using special cameras such as a stereoscopic dual-camera with the ability to
generate a three-dimensional model directly from a real-world scene. The second is by
using two-dimensional data as inputs for algorithms designed particularly for the
conversion of two-dimensional models into three-dimensional models. The role of
these algorithms is to reconstruct a three-dimensional model based on the structure of
the two-dimensional data which is missing the third dimension (the depth information)
of the real world. The missing depth information is the result of the inadequacy of the
traditional camera to obtain the third dimension from a captured scene, hence the role

of algorithms to overcome this problem.

1.2 Why Do We Need to Convert the Two-Dimensional into Three-Dimensional?
In general, there is more than one reason to convert two-dimensional images into three-
dimensional models. The enormous amount of two-dimensional data in the past and
the present in addition to the traditional devices for capturing scenes from the real
world are the most important reasons. At this point, we see a trend where the role of
conversion algorithms from 2D to 3D for generating three-dimensional models is
becoming more popular. The accuracy of these algorithms, which differ from each
other, depends on elements such as time consumption and the precision of the output

model [1] [2].



1.3 Challenges Facing Conversion Techniques

The challenges facing the techniques of conversion from the two-dimensional model

to the three-dimensional model are divided into two groups. The first group covers

every algorithm and a number of problems which must be solved by applying these

algorithms. The second group of challenges involves specific types of algorithms

considered to be high quality conversion techniques.

The first group of challenges includes three tasks which are solvable with every

conversion algorithm. These tasks include [3][4]:

Apportionment of depth: the determination of the range of allowed depth, the
value of the depth value that should be matched to the screen location
(“Intersection Point” Location), the allowed space ranges for objects on the
screen according to the observer determining the three types of parallax known
as zero parallax (on the screen), positive parallax (behind the screen), and
negative parallax (in front of the screen).

Check of convenient disparity: to avoid eye strain and the effects of nausea,
the disparity must be convenient for the eyes without too much parallax or
contradictory depth cues.

Padding of the exposed regions: the objects in the original two-dimensional
images may be partly or entirely occluded by the foreground, and should be

uncovered (made visible) in the three-dimensional model.

The second group (as shown below) of these challenges could be named as typical

problems, which require high quality conversion algorithms in order to execute them.

Those problems such as:

Semi-transparent objects such as glass
Repercussion

Foggy translucent objects

Thin objects such as fur or hair

Noise effects such as film grain

The quick and unorganized motion in a scene

Small pieces such as snow, rain and explosions



1.4 Scope of Thesis

The scope of the thesis is limited to obtaining the structure from the motion of the
camera (SFM), and on exploring the methods of conversion of two-dimensional
images into three-dimensional models. The thesis reviews the conversion method in
the general part, and with regard to the structure from motion, the thesis is based on
SFM with two views using a single camera achieving acceptable results as expounded

in Chapter VI.

1.5 Structure of the Thesis

The structure of the thesis is as follows:

In the second chapter, the fundamental concepts are clarified with illustrations. The
third chapter demonstrates background information about the conversion algorithms.
The fourth chapter discusses past work carried out in this area. The fifth chapter
contains the proposed method and introduces a theoretical discussion about the
method. The sixth chapter presents the experimental results and a discussion thereof.

The seventh and final chapter presents the conclusion and any future work.



CHAPTER 11

FUNDAMENTAL CONCEPTS
2.12-D and 3-D [5]

In order to make the later chapters more clear, we introduce the current chapter with

definitions and explanations for the terms and concepts of the related thesis topics.

The process of transformation from 3D space to a 2D plane can be illustrated with a
pinhole model (Figure 2.1), which consists of a plane R, called the image plane and a

point C, the optical centre, which does not belong to the image plane.

R

Figure 2.1 PinholeModel*

M object has a projection on the image plane R at the m point, and that projection
represented by intersection of the optical ray (C, M) and the image plane R. The
principal point ¢ represents the center of the perpendicular of the optical axis on the
image plane. The camera coordinate system (CCS) could be carried out with the
center C and two axes (X and Y) which are parallel to the image plane (u, v) and the
third axis Z corresponds the optical axis. The distance between the center C and the

image plane represent the focal length f.

1Figure Source:Reference [5]



Thales theorem defines the relationship between the coordinates of M, [X,Y,Z]" and

those of its projection m, [u, v]7 as shown below:

— X =Y
u= - v= 2.1

The aim of computer vision is to infer features of the world from images. The main
problem of 3D vision is the inversion of the projection due to the transformation from

a poorer representation of 2D to the richer representation of 3D.

2.2 The Relationship between the Camera and the Real World

In general, all images that we have represent the reflection of any object in our world,
so those images represent the results of the relationship between cameras and the real
world, and each point in the image has a corresponding point in the real world.
Clearly, the position of any object in an image depends on its position in the real
world. In fact, after the camera captures any scene, we obtain a 2D image coordinate

P(u,v) from 3D points (scene coordinates) P(X,Y, Z), as shown in Figure 2.2 [6].

A Y
P (X,Y,Z)
/ ]
P, (uyv

o Jo
Center of v Principal Axis 7
Projection Image Plane

X

Figure 2.2 Image coordinate and world coordinate?

2figure source:reference [6]



2.3 Camera Calibration

Camera calibration is the process of estimating the internal camera parameter
(intrinsic parameter) that relates the direction of rays through the optical centre to
coordinates on the image plane. The importance of the internal camera parameter lies
in the need for building 3D models of the world using a camera with a known intrinsic

parameter [6].

2.4 Components of a 3D Point and its Corresponding 2D Image Point (Camera

Works) [7]

1. Internal camera parameter: (Intrinsic parameter): inherent from the camera
regardless of the physical location of the camera in the world. Mathematically the
intrinsic parameter is represented by the following matrix and is known as the

camera calibration matrix:

oy 0 X,
K=[0 o Y 2.2)
0O 0 1
Where
_r _ L
a, = L And ay = 4 (2.3)

f : Focal Length

d, ,d,: Scale x, y by physical dimension of a pixel

Sensor or /

Film

Zoom Lens

Focal Length

Lens Extended

, | Focal Length

Lens Contracted

Figure 2.3 Focal Length®

3Figure Source: http://photographycour .net/blog/focal—leng



Xoand Yo represent the camera shift (Center of the image) or the principle point.
The camera converts 3D points (scene coordinates) from the real world to 2D (image

coordinates) by using the following equation:

Xc
Y
Ze

(2.4)

X
homogenous coordinates—>[y] - K
1

“~ means ‘proportional to’ or ‘equal up to scale.’

Therefore, by inserting more detail into the above equation, we obtain the following:

[f 1 Ly 4w xz]
dx 0 XO XC dx C+ 0%c
f Yc = f
i —Y Y Z
0 d, Yol]z, | d, ct ¥o ¢ |
0 0 1 | Z¢ |

Then, we need to divide the result by Z. to acquire the 2D image coordinates (pinhole

projection equation):

f gl f X
o 0 Folpx. Ifd’fXC+ Kole| [zt Ko
f Y.|= |1 ~|SfYe 2.5
[0 o YOJ ZZ |deC+ YoZ, Tzt Y, | (2-3)
0 0 1 1z | 1

2. External camera parameter (camera extrinsic parameter): describes the camera
pose [R, T] or the location of the camera in the world. We convert from the WCS
(world coordinate system) to the CCS (camera coordinate system) with a rotation and

translation [R, T].

XC X tx
Y.|=R|Y|+ |ty (2.6)
Z, 7 t,
X, X
where | Y, | is the CCS, [Y | is the WCS, R(3 X 3) is the rotation matrix, and ¢ is the
Z. Z

translation vector.



Here, we put the internal and external parameters into one equation:

X X X
[Y]"‘KYC =K|[R |Y|+t
1 7. Z
X
=KI[R|t] g where [R | ] is a (3 X 4) matrix.
1

X
=P g P is the camera matrix (2.7)
1

We can encapsulate all the above equations as follows under the name of the image
formation process:

x ~PX (2.8)
where

x represents the image coordinates and X the scene coordinates.

2.5 Two Views, Stereopsis

Stereo vision has great importance to the human due to the research into vision systems
with two inputs. Stereo vision uses the information of their own relative geometry to
infer depth information from the two views they receive, and use this information in
the three-dimensional (3D) display which is not exist in the conventional two-

dimensional content [§].



Left Image R0 Q;x%‘(\&

Figure 2.4 Epipolar Geometry*

C

Figure 2.4 shows the geometry of the system with two views in which the line between
the optical centres C and C' is called the baseline. When the optical centres C and C’
intersect at the same point M by the corresponding rays in the scene, they create the
epipolar plane. The lines that intersect the image planes define the epipolar lines 1, 1'.
The intersections of the baseline with the respective image planes represent epipoles
e, €' which represents the points though which all epipolar lines pass when the scene

point M moves in space [9] [10].

The projections of the scene point M in both images consecutively are u,u’. The ray
CM is projected onto the epipolar line I" in the right image which also represents every
possible position of point M for the left image. The corresponding points u, u’ in the
right and left images must thus lie on the same epipolar line I’ in the right image. This
geometry supplies a powerful epipolar constraint that minimizes the dimensionality
of the search space for a correspondence between u and w’ in the right image from the

two-dimensional to the one dimensional [9] [10].

4Figure Source:Reference [8]



2.6 Essential Matrix (E) and Relative Motion of the Camera

The relative motion of the camera is the movement of a single camera in space with
known calibration. The role of essential matrix E is to capture all the information
about the relative motion between the two positions of the calibrated camera. The

essential matrix is denoted by the following equation [6][8]:
E = [t],R (2.9
where ¢ is the translation vector and R is the rotation

The properties of the essential matrix £ are as follows [10] [11]:
e Rank?2
e Matrix of 3x3
e The first two singular values are always identical and the third is zero
e Depends only on the rotation and translation of the camera
e Usually considered to have five degrees of freedom

e Epipolar lines are retrieved from E.
1= xIE, 1= «xTET (2.10)
e Epipoles can be extracted from E.

e=null [E], e =null [E]" (2.11)

10



2.7 Fundamental Matrix F

The role of the fundamental matrix F is to capture all information that can be retrieved
from two images in cases where the correspondence problem is solved. Moreover, the
fundamental matrix F plays the role of essential matrix £ from a camera with an
arbitrary internal matrix. The fundamental matrix is denoted by the equation below

and includes essential matrix equation 2.9 [6] [8] [10] [11] [12]:

F= K[ EK;' (2.12)

where

K, K, are the calibration matrices

The properties of the fundamental matrix F are as follows:
e Rank2

e Fundamental matrix has a relationship with the epipoles
e’lF=0andFe =0 (2.13)

e They have seven degrees of freedom

e Fundamental matrix F has the possibility of recovering the essential matrix

E = K{ FK, (2.14)

2.8 Motion

The term motion appears when we deal with a sequence of images taken during
different periods of time. According to the term motion, the position of objects changes
between multiple images and the motion of those objects is called optical flow, which
may be detected. In addition, motion can be used to generate a 3D description of

objects from more than one view [8].

11



Generally, from a practical point of view, there are three types of motion-related
problems. The first, known as motion detection, represents the detection of any motion
and used for security purposes and mostly uses a single static camera. The second is
known as moving objects detection, which poses another problem: a camera with a
static position and objects which are moving in the scene, or vice versa. The second
situation is considered to be more difficult in comparison with the first. The solution
to the moving objects detection may depend on motion-based segmentation
techniques. This problem becomes more complex when it includes object moving
detection, and the detection of the path of its motion in the present and future. Image
matching methods are mostly used to solve this problem. The last problem is the
derivation of 3D objects properties from a group of two-dimensional projections

acquired at varying time moments of object motion [13] [14].

2.9 Motion Parallax
Motion parallax is the phenomenon that provides the moving observer with the
information about the depth to on object even when static objects appears to be moving

relative to each other, so closer objects move faster than the distant ones [15].

2.10 Disparity

The first use of the term disparity was to describe the difference in position of the
corresponding features seen by human eyes. In computer vision, this term refers to the
difference in the image location of the same point in the three-dimensional scene when

projected under perspective to two different views [11] [15].

2.11 Binocular Stereo Vision

The term binocular disparity denotes the procedure of deriving a three-dimensional
structure from two images of a scene captured from multiple but slightly different
standpoints. The variance of location gives rise to proportional displacements or
variances of corresponding points in the images, and these variances allow the depth

to be computed by triangulation [16].
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2.12 Structure from Motion SFM

The technique of building three-dimensional models from two-dimensional images
taken by a single moving camera around a static scene is not straightforward due to
the formation process of the image not being invertible. To build a 3D model, we need
to establish the properties of the camera and its position in each frame simultaneously.
This technique is known as structure from motion (SFM) although this is somewhat

a misnomer as both motion and structure are recovered simultaneously [6] [14] [17].

The use of structure from motion techniques are found in a wide range of applications
such as:
e Photogrammetric surveys;
e Automatic reconstruction of virtual reality models from a video sequences;
and

e The determination of camera motion.

2.13 Blocks of Structure from Motion SFM [11] [14] [18]
The trend of this section is to make the understanding of structure from motion easier
and clearer. Thus, we describe how SFM works as steps that will create links between
those steps, and how it makes it easier to adapt to the camera model.
The first three steps in the blocks are for a calibrated camera are as follows:

e Pose estimation

e  Motion estimation

o Triangulation of points
The fourth step demonstrates the role of bundle adjustment in both structures from

motion and calibration.
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2.13.1 Pose estimation

Pose estimation, or extrinsic calibration, is the opposite of the intrinsic calibration of
the camera parameters, such as focal length. The pose estimation problem is one of the
classical problems in computer vision. The computation of the object position and
orientation is usually carried out by using points or lines corresponding between the
object and the image. The minimal number of correspondence points necessary is three
correspondences, which is known as the perspective three points problem (P3P), and
extends to contain as large a number of points as PnP.

In order to solve the pose estimation problems, there are a number of techniques that
can be used, such as direct linear transform, linear algorithms, and iterative
algorithms. All of these techniques have been developed to solve pose estimation

problems.

2.13.1.1 Linear algorithms
The pose of the camera can be recovered by forming a set of linear equations similar
to those used for two-dimensional motion valuation from a camera matrix form of the

perspective projection.

~_ PooXi + Po1Yi + PoaZi + Pos (2.15)
' P20X; + D21Yi + D222 + D23

_ PwXit puli + piaZi + pis (2.16)
P20Xi + P21Yi + D22Zi + D23

i

(x; ,y;) are the computed two-dimensional coordinates, and (X;,Y;, Z;) are the three-
dimensional coordinates (Figure 2.5). The camera matrix P is unknown and can be
solved in a linear fashion by multiplying the denominator on both sides of the equation.
The algorithm that is the result of this process is called a direct linear transform (DLT).
The minimum known correspondences between the three-dimensional and two-
dimensional coordinates are six correspondences that are needed to compute the 12 (or
11) unknowns in P. The intrinsic calibration matrix K and the rigid transformation (R,

t) can be recovered after the entries in P have been recovered.
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P = K[R|t] (2.17)

When the camera is calibrated, the matrix K is known and the pose estimation can be
used with as few as three points. In the linear perspective n point (PNP), the main
notation is the visual angle between any pair (J?i , fj) of two-dimensional points that
must be the same angle in the corresponding three-dimensional points (Pl-, Pj) (Figure

2.5).

P=(X;,Y,Z W)

Figure 2.5 Pose Estimation®

2.13.1.2 Iterative Algorithms

Pose estimation can be recovered more accurately and flexibly by minimizing the
squared re-projection error for the two-dimensional points of the unknown pose
parameters (R, t), and optionally K by using nonlinear least squares. The projection

equation can be written as:

x;= (p;,R,t,K) (2.18)

5Figure Source:Referenc [11]
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We minimize the squared linearized re-projection error iteratively:

of of of
Eyip = zp (ﬁ AR + aAt-}- ﬁAK_ Ti> (2.19)

i

where

r; = X; — X; is the current two-dimensional error in the predicted position, and the
partial derivatives are with respect to the unknown parameters such as the translation,

rotation, and calibration parameters.

2.13.2 Motion Estimation [8] [18]
Motion or optical flow computation is dependent upon two propositions:

e that the spotted brightness of any point be steady over time; and

e that contiguous points in the image plane move in an identical style

(smoothness velocity constraint).

The motion estimation then depends on a Gauss-Seidel iteration method of two
dynamic images. If the number of images exceeds two, the computation will be more
accurate by using the results of one of the iterations in the previous method to launch
the current two images in sequence. These algorithms are parallel, and the iterations
potentially are slow with computational intricacy.
According to the above propositions, the optical flow computation will be recovered
with the algorithms mentioned above. Unfortunately, if those propositions are broken,
error will occur in the results. Typically, the motion changes significantly in extremely
textured zones, around moving edges, and at depth discontinuities. For these situations,
global and local optical flow computation, and global relaxation methods of motion
estimation are employed to determine the smoothest velocity area consistent with the
image data. Relaxation methods have the property to reproduce topical constraints
globally.
As an outcome, not only constraint information but also motion estimation errors are
reproduced across the solution. Therefore, even problems in the small area in the

motion estimation area potentially cause prevalent errors and poor motion estimates.
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The global error reproduction is the most problematic of the global motion estimation
scheme. Local motion estimation shows a good solution to this obstacle. The local
estimation is dependent upon the same above propositions with the concept of the local
estimate splitting the image into small areas where the propositions hold. This solves
the error reproduction problem; however, another one appears in areas where the
locative gradients change bit by bit, the motion estimation becomes poorly conditioned
due to the absence of motion information. If a global approach is applied to the same
area, the information from contiguous image pieces reproduces and represents a
ground for motion estimation even if the local information was insufficient by itself.

The conclusion is that global sharing of data is useful in constraint sharing but bad
with respect to error reproduction. One way to deal with the smoothness violation
problem is to detect areas in which the smoothness holds. A pair of heuristics for
specifying contiguous constraint equations that vary basically in their flow value are
introduced. The main problem of the reproduction error is still unsolved. However, an
estimation or rough guess is used with each flow vector that is dependent upon the
heuristic rule of correctness, and the local average flow is estimated as a measured

average. Consequently, the reproduction of error-free estimates holds.

2.13.3 Triangulation of points [11][17] [18]

The meaning of the term triangulation represents the problem of locating a three-
dimensional point from a group of corresponding image positions with known camera
locations. Triangulation is considered to be the converse of the pose estimation
discussed in 2.13.1.

The reconstruction algorithm reduces the result of squared errors between the weighted
and the forecasted image locations of the three-dimensional point in the whole views

in which it is apparent.

X = argmin, ¥llu; — 0; (P, X)|I? (2.20)
where (u;, ;) and (P;, X) respectively represent the weighted and forecasted image
locations in the view. So far, the triangulation represents the process of determining

the three-dimensional points as the intersection of two projection rays when two

images are available (Figure 2.6).
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Figure 2.6 Triangulation®

2.13.4 Bundle Adjustment [10] [11] [17] [18]

The term bundle adjustment comes from the field of photogrammetry. Bundle
adjustment is considered to be the final step in most algorithms. The goal of bundle
adjustment is to purify the structure and motion parameters by using it repeatedly to
reach the most probable estimate, which is carried out by reducing the suitable cost
function where the suitable cost function represents the result of the total squared
errors.

Purifying the structure and motion can be carried out by using nonlinear smallest

squares to reduce the error measure:

E= (u i1 )2 + (v — mi;'Pf)Z 2.21)
mn U mys. P; Y m P

Although the bundle adjustment is potentially costly, it provides the upper hand of
merging all computations to reduce the important error measure, that is, the mean
squared error between the current image point locations and those forecasted using the

estimated scene structure and camera motion.

6Figure Source:Reference [11]
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CHAPTER 111

BACKGROUND INFORMATION

3.1 Introduction

Generally, human vision can perceive the three-dimensional real world, including the
depth in the shape of multi-ocular disparity. Human vision system represents the
reason of observe various sights of the world. This phenomenon offers an advantage
for the three-dimensional present by producing two somewhat differing images of each
scene and then displaying them to each eye individually. The correct perception of
three dimensions can be perceived by offering a suitable disparity and calibration of

parameters.

The realm of computer vision has evolved a variety of algorithms to convert two-
dimensional images into three-dimensional models. Each of these algorithms has its
own advantages and disadvantages. Most algorithms have the advantage of using

specific depth cues to produce a depth map [19].

3.2 Two-Dimensional to Three-Dimensional Conversion Algorithms

In general, conversion algorithms can be classified into two groups depending on the
number of input images. The first group contains algorithms which deal with two or
more images and the second group contains algorithms dealing with single images. In
the first group, the inputs can be obtained either by using more than one fixed camera
located in different positions or by using only one camera with a moving object in the
scene. The depth cues used in the first group are known as multi-ocular depth cues. In
the second group, the depth cues work on only one image and the depth cues are known

as monocular depth cues [20].

Figure 3.1 shows the types of conversion algorithms mentioned above based on the

number of input images.
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Figure 3.1 Conversion Algorithms 7
The thesis deal with two images only, so later we will be demonstrating only the multi-

ocular algorithms.
3.2.1 Binocular Disparity

The technique for obtaining the three-dimensional structure from a pair of two-
dimensional images, which represents the same scene from two different views, is
known as binocular stereo vision algorithm. The steps of this technique are, starting
with detecting the corresponding points between a pair of images, then matching them
and finally calculating the depth, by using triangulation. This algorithm is based on the
restriction of disparity gradients in the matched image [Lloyd S.].

The binocular stereo vision solutions were obtained by imposing additional restrictions
in order to solve the correspondence problem. These solutions were produced to cope
with issues such as the occlusion or transparent surfaces, due to the violation of the
constraints. Determining the binocular disparity, which must be a unique disparity, by
using the motion parallax that was obtained from a moving monocular camera,

represents an alternative solution instead of adding additional constraints [Nishikawa].

7Figure Source:Reference [20]
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The quality of the matching and the execution time represents important issues in most
algorithms. In order to achieve these issues, the square and gradients will be the base
of the binocular vision algorithm. The gradient of the points of the image lines will be
compared, and the image lines used as a series of areas. While the role of the sum of
squares differences will be the basis for determining the best matching in each area.
This algorithm is characterized by being quality derived from the gradients algorithm,

and cope with the additive noise [Hu T.].
3.2.2 Silhouette

Silhouette estimates of the perspective projection have some difficulties in order to
obtaining an efficient result. Silhouette estimates, based on a sequence of viewpoints
and the parallel projection, is the proposal method. This algorithm using the sequential
frames of the polyhedral model, and tracking the ongoing changes in the silhouette
between them. Then the computation is carried out based on the point-plane duality in

3D [Pop M.].

The objects have a silhouette images, some algorithms are using this feature in order
to construct a three-dimensional model for these objects. The shape from silhouette
(SES) is one of those algorithms that used the silhouette images to create a 3D model
which known as visual hull (VH). Shape from silhouette carry out on static and
dynamic objects, the moving objects in the case of videos. The steps of the proposal
algorithm are VH alignment and VH refinement. The algorithm extended from the

rigid objects to the articulated objects which have unknown motion [Cheung K.].

The occlusion, noise, and the errors in the background all these are considering as a
reasons for generation inconsistent silhouette. The proposal algorithm is dealing with
all these reasons and construct a robust silhouette model. This algorithm is proposing
to continue to reduce the energy problem which is known as the error between the
shape and the silhouette. Also, the algorithm is using the visible feature of the surface
in order to construct the shape. The results of the algorithm are obtained by using the
graphic card processor with parallel computing, this method will reduce the
computation time. Finally, the algorithm introduced an assistant function that construct

simultaneously the visible surface and empty visual cone [Haro G.].
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For more methods, [Hartner A.] contain a comparison and explanations of the object

space silhouette algorithms.
3.2.3 Focus

The shape from focus (SFF) algorithm proposed as a method which is using different
levels of focus to generate a sequence of images. This algorithm is used the Sum-
Modified-Laplacian (SML) operator which is applying on the image sequences in
order to measures the quality of the image focus. The local depth estimates are
computed by using the set of focus in each image point. The depth estimation is figure
out by using two algorithms, the first one is tracking the focus levels, and the second
one is used the SML focus measure differences at each point as a Gaussian distribution.
Both of algorithms can be used with smooth and non-smooth textured surfaces by

using specific illumination methods [Nayar S.].

The auto focusing algorithm which proposed is based on paraxial geometric optics of
the image origination. Due to the adoption of the algorithm, the focus measures which
is based on the energy of the image gradients have some negative side effects. The
proposed method solution is based on divided the auto focus algorithm into two steps.
The first stage result is obtained by using the image disparity to find the vicinity of
focus, then the second stage result represents the optimum focused image with the
focus measures. The proposed algorithm is designed especially to the digital cameras

[Lee J.].

Depth estimation by using more than on image with different focuses, and by using
only the spatial image gradients as the focus measure is the proposed method. The
algorithm is used two types of the decisions, the corroborates and soft decision. Those
decisions add more accurate to the algorithm in order to deal with the sensor noise and

optics-related effects [ Eltoukhy H.].
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The algorithm based on a one-dimensional Fourier transform and the Pearson
correlation is the proposed method. The algorithm process is done by using a specific
vector pattern which is used to search in each image. Then, the Fourier transform is
carried out and extract the frequency content of the vector pattern. Finally, the
frequency vector is comparing with a reference image which is detected by using the
Pearson correlation. This algorithm is suitable to cope with different environments

with consideration of the illumination [ Bueno M.].
3.2.4 Defocus using more than two images

The technique of estimate the depth from two images with different amount of defocus
of the same scene without correspondence problem is the proposed algorithm. The
algorithm consists from two stages, first one is the calibration stage and the second
one is the depth recovery stage. The defocus process in this algorithm is addressed as

a Gaussian point spread function (PSF) [Hwang T.].

The shape from defocus (SFD) is the process of obtaining a 3D geometry which
required a set of defocused images. The typical method is required a deplurring for the
focused images and approximation of the scene which known as equivocal assumption.
The proposed algorithm is introduced a method of obtaining the three-dimensional
geometry without a strong assumption for the scene in order to avoid the deblurring.
The solving of the defocus problem requires forming the interaction between the light
and the optics, this interaction known as point spread function. The algorithm
introduces two solutions; each solution is suitable for specific situation. These
situations are defined by the known and the unknown form of the point spread
function. The proposed solutions have only one simple matrix-victor multiplication,
and based in general on the minimize of the Euclidean norm of the difference between

the observed image and the estimated image [Favaro P.].

The projection defocus analysis, which is modelling by using the linear system, is the
base of the proposed method. The projector’s model is used to estimate the depth at
each camera pixel through computing of the parameters of the projection defocus in
frequency domain. In order to ensure that the recovered depth is covering all the

camera pixel, the algorithm is used the coaxial projector camera system.
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This algorithm effectively contributed to the increases the depth of field of the
projector without needed to justify the projector optics. Also, the algorithm is get rid
of the strong pixelation artifacts which is caused by the digital projectors with

consideration to the quality of the projected image [ Zhang L.].

In the past the defocus could be obtained through using multiple images exposures
focused at variant depths, and the correspondence cues is required multiple cameras or
multiple exposures at variant viewpoints. Nowadays, the light-field cameras become
available in the market, so in a single capture those cameras are offering the depth
information from defocus and correspondence at the same time. The proposed
algorithm is combining the focused and the correspondence depth cue, which are
obtaining from light-field cameras, in order to calculate the dense depth estimation

[Tao M.].

3.2.5 Motion

The technique of obtaining the structure and motion information from multiple images
without needed to the correspondence information is the proposed algorithm. This
algorithm is based on the probability distribution which is iteratively refines on the set
of correspondence. At each iterative, structure from motion problem is solved. The
Markov Chain Monte Carlo technique is used to obtain the probability distribution
[Dellaert F.].

The two-frames motion estimation is the proposed algorithm. This algorithm is
consisting from two stages; the first stage is carried out by using the quadratic
polynomials in order to estimate each neighbourhood of the frames. The second stage
is done by observing the polynomial transform under translation in order to estimate

the displacement fields from the polynomial expansion coefficients [ Farneback G.].

The structure from motion technique is used to reconstruct three-dimensional model
by using multiple two-dimensional images. The proposed algorithm is based on the
incremental of the SFM by using unordered 2D images, and the accuracy and the

efficiency are considering as a purposes of this algorithm [Schonberger J.].
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CHAPTER 1V

STATE-OF-THE-ART

4.1 Conventional Techniques to Structure from Motion

The procedure of obtaining structure from a set of images began in the 1980s [21-24].
Normally, structure from motion is initially approached by placing a set of obvious
characteristics that are found in two image structures. This is commonly denoted as
the correspondence problem solution. Then, the proportional motion of these
characteristic correspondences is given the structure of the environment [25]. By
computing of the optic flow within the given image sequence, there is the possibility
of estimating the structure from motion without directly placing the correspondence
points [25].

The conventional estimation of structure from motion mostly uses two images
obtained from a single camera to slant the field of view of 45 to 60° [34-36]. However,
there are advantages to raising the number of images in the estimation process [29]
and also raising the field of view [30]. Additional refinement in accuracy can be
achieved by assuming further constraints, which can be varied, such as the restriction
of the objects’ speed in linear motion, breaking down the two-dimensional photo into
two one-dimensional photos, and so on [31].

Batch processing means several images being processed at once, which causes a
significant delay if the calculation was wanted in real time. Instead, it is suitable for
real-time executions to produce a structural computation of a recursive nature,
permitting recurring refined calculations to be usable after each new image is scanned

[25].

4.2 Related Works

Using the structure and motion together under the name of structure from motion to
reconstruct the three-dimensional model from multiple images is considered to be a
significant topic in computer vision research. The pioneers in the field of computer
vision have proposed many techniques to fill the lacunae in the structure from motion

approach.
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Zhengyou Zhang [32] used structure and motion from two perspective views based on
the essential parameters, a fundamental matrix and Euclidean motion. The typical
technique consists of two steps:

e C(Calculate the nine essential parameters by using the 8-point algorithm

(considered a linear calculation problem).
e Rectifying the motion calculation depending on statistically optimum measures
(considered a non-linear calculation problem in 5-dimensional space).

The problem with this technique is that the results mostly are not good enough due to
the sensitivity of the second step to the incipient guess and the difficulty of obtaining
an accurate incipient estimate from the first step. In order overcome this problem,
Zhengyou Zhang proposed an approach by imposing the fundamental matrix (zero-
determinant constraint). The process of this technique is carried out gradually through
project parameters calculated in a higher-dimensional space onto a lower-dimensional
space, which means moving from 8 dimensions to 7 and finally reaching 5 dimensions.
Unlike [32], Frank et al [33] introduced another technique by using the structure from
motion without correspondence. This method exceeded the traditional techniques that
require the presence of a known correspondence point [34] or calibrated images from
a known camera viewpoint [35] or known shape [36]. Furthermore, this method deals
with non-sequential images which are taken from vastly different viewpoints.
Masahiro [37] introduced a method of using the structure from motion in map
reconstruction. This method was a system of three-dimensional simultaneous
localization and mapping (SLAM), which is based on the SFM scheme. The steps of
this method are as follows:

e Basic Framework

e Feature Tracking

e Initial Estimation
The first step considers the three-dimensional SLAM as a set of images obtained from
a monocular camera. The three-dimensional map is represented as three-dimensional
points from the feature points tracked through the set of images. The second step
occurs based on KANADE-LUCAS-TOMASI [38]. The third step occurs by using the
factorization method [39].
The precision and robustness of this method is based on the selection of the baseline

distance, so the proper baseline selection depends on standards for object shape
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reconstruction and the camera pose estimation. Figure 4.1 clarifies the procedure of

this method.
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Figure 4.1 3D SLAM Basic Procedure®

Zach et al [40] discovered and used three-dimensional symmetries based on image
cues in SFM. The aim of this technique is to retrieve the symmetry connections in
conditions under which the initial structure from motion veers due to drift and can be
imprecise. In order to cope with this problem, this approach should discover symmetry
restraints within uncertain three-dimensional structures, and enforce them during
structure from motion. Thus, reconstruction will be more accurate where the derived
structural restraints are observed. In this method, Zach et al proposed a bundle
adjustment equation in the case of the structural restraints being imposed between
different subsets of three-dimensional point sets linked by propinquity transforms.
Additionally, the symmetry knowledge offers a natural coordinate for the structure to
be selected during the bundle adjustment. To this end, the underlying symmetries allow
us to complete the three-dimensional model.

Klingner et al [41] uses the structure from motion to model the street view images by

extending the SFM technique in order to repair the pose of those images.

9Figure Source:Reference 37
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This method presents two challenges: the planet-wide scale and the rolling camera
shutter. In order to overcome these problems, Klingner et al used a good initial
approximation of the local vehicle route. Through the incorporation of techniques,
such as SFM, GPS, and INS (Inertial Sensors), the approach corrects the distortions in

the street view image, as shown in Figure 4.2:

1 OFigure Source:Reference 41
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In spite of the advantages that are offered by the previous method of reconstructing
the city-scale, it is still expensive due to the use of the GPS/INS systems. Yongjun
Zhang et al [42] introduced an SFM method of producing the city-scale reconstruction
based on images obtained with a driving recorder without any information from the
GPS/INS systems in order to decrease the cost of reconstruction. Figure 4.3 shows the

steps of this method.
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Figure 4.3 the Steps of three-dimensional reconstruction® : The blue
frames represents the SFM process, while the yellow one represents the
main betterment steps proposed by this method

11Figure Source:Reference 42
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CHAPTER V

THE PROPOSED METHOD

5.1 Methodology

This chapter describes the method based on achieving the goal of this thesis. According
to the title of the thesis, the technique of reconstructing a three-dimensional model
from a pair of two-dimensional images depends on structure and motion. In order to
obtain this information, there are a number of steps to follow. First, we need a static
scene with an object of known size (in our scene, the object is a ball of size 10 cm),
and a calibrated camera to obtain two views. After obtaining the real data in two
images, the work of the algorithm begins at this step. The workings of this algorithm

are presented in the following sections.

5.1.1 Detection of The Correspondence Points

In order to continue to the others step, it is necessary to find the correspondence points.
Therefore, the best features need to be detected in order to track from image to image.

This process is carried out by using the minimum eigenvalue algorithm as proposed by

C. TOMASI & J. SHI [48], and as the below equation shows:

R = min(,, 1,) (5.1)

where (1,, 4,) represents the eigenvalues and the window (corner) is accepted if those

eigenvalues are greater than the predefined threshold value (4) as shown below:

min(1,, 1,) > 1 (5.2)

According to the C. Tomasi & J. Shi method, the strongest corners will be found in the

image, which is a grayscale image.
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5.1.2 Features Tracking

This step begins after finding the strongest corners (best features) from the first image.
The role of this process is to track those features in the second image. This process is
carried out by using the KLT algorithm (KANADE-LUCAS-TOMASI) [43]. The goal
of this algorithm is to find the specific location of a specific point in the second image
according to the first image. This is achieved with the following equation:

Vope = G™'b (5.3)

5.1.3 Computing The Fundamental Matrix

The computation of the fundamental matrix from the correspondence points which are
detected is the first step. The fundamental matrix was explained briefly in Chapter 2
(2.7).

5.1.4 Camera Motion Calculation

In this section, we will estimate the position and orientation of a calibrated camera.
Normally, there are two views, hence there are two poses. Both poses are relative to
each other as denoted by the fundamental matrix F. The camera poses are computed
up to scale and the position denoted a unit vector. The second chapter (Section 2.4)

also mentions camera pose.

5.1.5 Triangulation
The three-dimensional positions of the matched points can be determined by

triangulating. (This term is explained in detail in Chapter II (2.13.3)).

5.1.6 Detect an Object with Known Size
This process is carried out by using the MSAC algorithm (M-estimator sample
consensus). The fitting of a sphere to an inlier point cloud using an object with known

size 1s here a ball of size 10 cm.
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CHAPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Experimental Results

The experiments were carried out on an ordinary PC equipped with the following

specifications:

System Type: 64-bit operating system, x64-based processor.
Edition: Windows 10 Home.

Processor: Intel (R) Core (TM) i3-2310M CPU @ 2.10 GHz.
RAM: 4.00 GB.

The input images were obtained from a digital camera (NX3000) equipped with:

20.3 MP APS-C CMOS Sensor.
16-50 mm Power Zoom Lens.

1/4000 sec Shutter Speed.

All experiments were carried out using the MATLAB R2015b software package. The

methodology of the thesis was based on the technique of ‘structure from motion’, but

by using a single calibrated camera with the camera calibration application in

MATLAB and by obtaining two views of the scene with a little motion for the second

view. The algorithm that will create the three-dimensional model of the scene, from a

pair of two-dimensional images following a number of steps, as the next section shows.

1.

The first step is carried out by loading a pair of images of the scene obtained
by using the above camera.

Next, the camera parameters are obtained by loading the camera calibration. In
order to understand the mean reprojection error, which represent the difference
in distance between the actual scene and the estimated one, we show below the

equation of mean projection error:
> d )+ d (), 2
The unit of the reprojection error in pixel, so less than one it will be acceptable

rate as shown in figure 6.1.
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Reprojection Error

Figure 6.1: The reprojection error

- Steps of the camera calibration:
Firstly, there are some tools that should be available to implement the calibration such
as the camera, checkboard, and camera calibrator application which are found in
MATLAB. Next, obtain a group of images of the checkboard using the mentioned
camera, and inserts these images into the camera calibrator application. For best
results, load or acquire between (10) and (20) images. The following figures show the

above steps of calibration:
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Figure 6.2: Select the camera calibrator application
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After opening the calibrator application, add the images and specify the size of

checkboard as shown in figure 6.3:
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Figure 6.3: Adding and specify the size of checkboard

Here, the total images processed was 32 and the added images were 28 while the

rejected were 4 images (Figure 6.4).
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Figure 6.4: The added images
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Later, the camera is calibrated, shown in figure 6.5.
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Figure 6.5: The Result of calibrator

The mean error in pixel which is 0.94 shown in the figure 6.6, the mean error could be

minimizing by removing any images which have the biggest error.
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Figure 6.6: The Reprojection errors (0.94)

After removing the images which have the biggest error, which was only 18 images,
we decrease the mean error from 0.94 to 0.77 as shown in the figure 6.7. The reason
of stopping remove more images is the calibrator application require at least 10 images

to give an accurate result.
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Figure 6.7: The Reprojection errors (0.77)

The extrinsic parameter of the camera for 28 images with mean error 0.94 is shown in

figure 6.8.
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The extrinsic parameter of the camera for 10 images with mean error 0.77 shown in

the figure 6.9.
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Finally, we export the camera parameters in order to use them in the code later as

shown in figure 6.10.
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Figure 6.10: Export camera parameters

3. In order to avoid any lens distortion effects on the accuracy of the final
reconstruction, MATLAB offers a simple function for this purpose which

straightens any lines that may deform due to the radial distortion of the lens.
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4. At this step, the algorithm detects the corresponding points between the two
images. This process can be carried out in a number of ways; however, here,
the motion occurs not too far from the first position, so the KLT algorithm
(KANADE-LUCAS-TOMASI) is suitable to create the point
correspondences.

5. Computing the fundamental matrix is carried out at this point and according to
the results, the inlier points are obtained and those points match the epipolar
constraints.

6. The computation of the camera position, which consists of the translation and
rotation, is carried out by using the CameraPose function in MATLAB.

7. The three-dimensional locations of the matched points found in the fourth step
are reconstructed using the triangulation function.

8. The Plot Camera and the PcShow functions are used to display the three-
dimensional point cloud.

9. In order to detect the actual scale factor, the algorithm uses an object with
known size, so the scene contains a ball with a known radius (of 10 cm). The
PcFitSphere function fits a sphere to the point cloud to detect the ball.

10. The final step is the metric reconstruction, which mean the coordinates of the
three-dimensional points will be in centimetre due to the actual radius of the
ball which was 10 cm.

The following images show the results of the above steps with multiple different
scenes, and each image has a title to clarify its identity. The time consumed by the
algorithm to reach the results was different in each test, where the 1% test consumed
102 seconds, the 2™ test consumed 280 seconds, and the 3™ one consumed 131seconds.

The results are shown below:

Figure 6.11: The original images
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Figure 6.13: The Strongest corners from the first image
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Figure 6.14: The Tracked features

Figure 6.15: The Epipolar inlier
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Figure 6.17 B: The metric reconstruction of the scene with another position

In order to test the algorithm with another scene, which consisted of different ball with
rugged surface and objects with more details, we repeat the execution of the code and

the results were as shown:

Figure 6.18: The original images (second test)
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Figure 6.19: The undistorted images (second test)

Figure 6.20: The Strongest corners from the first image (second test)
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Figure 6.23: The estimated size and location of the ball (second test)
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Figure 6.24 A: The metric reconstruction of the scene (second test)

Figure 6.24 B: The metric reconstruction of the scene with another position (second test)
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The first scene (Figure 6.11) contained a ball with a soft surface which had some parts
with only one colour. We added some details to this ball in order to induce the

algorithm to detect more matching points, and the results were as shown below:

Figure 6.27: The Strongest corners from the first image (3rd test)
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Figure 6.30: The estimated size and location of the ball (3rd test)
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Figure 6.31 A: The metric reconstruction of the scene (3rd test)
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Figure 6.31 B: The metric reconstruction of the scene with another position (3rd test)

As we said in section 6.1 step 4 the distance between the images is not too far, so the
KLT algorithm will work properly, but when the distance become more than 5 cm
(distance between the camera and the scene was 50 cm) the algorithm fails to match

the points between the images as shown in the figure 6.32.
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Figure 6.32: KLT algorithm error

6.2 Real Data and Numerical Results

- First Test

In Figure 6.11, we show two real images of a constructed composite scene. This scene
represents a difficult set of data due to its soft surface. We have covered the images
with matched points using the KLT algorithm technique. When the sixth step of the
algorithm is applied to the matched points of the real data, the motion estimate is a

single matrix (1x3) for translation and a double matrix (3%3) for rotation, as shown

below:
—-0.27
t=| 3.16
0.3
0.99 0.005 —-0.034
R = |-0.002 0.99 0.096

0.035 —0.095 0.99
As Zhengyou Zhang [32] used the same technique that we followed in our method and

according to the available numerical data from his method, the translation and rotation
data was as shown below:
t =[-9.6,1.85,—1.75]"
R =[-2.1,4.2,1.04]"
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The remaining data obtained from the experimental results are as follows:

Mean projection error 0.94

Mean projection error 0.77

All colours

19961856x3 uint8

19961856x3 uint8

Parameters [0.57,-0.91,10.6,3.13] [0.57,-0.91,10.6,3.13]
Ball
Center [0.57,-0.91,10.6] [0.57,-0.91,10.6]
Properties
Radius 3.13 3.13
Radial Distortion [-0.097,0.1] [-0.099,0.12]
Tangential Distortion [0, 0] [0, 0]
Camera Estimate Skew 0 0
parameters Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1] [3.9,0,0;0,3.9,0;2.7,1.85,1]
Focal length [3.9,3.9] [3.9,3.9]
Principal Point [2.7,1.85] [2.7,1.85]
[1.16,-2.55,0.01;1.9, -2.2,9.5; - [1.3,-3.07,0.01; -7.28, -
Fundamental Matrix
0.01, -2.4,0.9] 2.6,0.001; -0.01, -2.1,0.9]
Scale Factor 3.18 3.18

Table 6.1: The Numerical Result Data (First Test)

- Second Test

The second test carried out by using another scene as shown in the figure 6.18, and the

numerical results data as shown below:

—-3.3
t=|0.14
—-0,47
0.99 —-0.02 -—-0.08
R=10,02 0.99 0.015
0.087 -—-0.018 0.99
Mean projection error 0.77
All colours 19961856x3 uint8
Parameters [-0.99, -0.68,9.7,2,92]
Ball
Center [-0.99, -0.68,9.7]
Properties
Radius 2.92
Radial Distortion [-0.099,0.12]
Tangential Distortion [0, 0]
Camera Estimate Skew 0
parameters Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1]
Focal length [3.9,3.9]
Principal Point [2.7,1.85]
Fundamental Matrix [2.02, 6.49, -0.001; -4.02, -3.88,0.01; 2.33, -0.01, 0,99]
Scale Factor 341

Table 6.2: The Numerical Result Data (2nd Test)
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- Third Test
The third test carried out by using the first scene but with adding some more details as
shown in the figure 6.25, and the numerical results data as shown below:
—0.25
‘= [ 334 ]
—0,01

099 0.002 -0.031
R = (0,001 099 0.11
0.031 -0.11  0.99

Mean projection error 0.77
All colours 19961856x3 uint8
Parameters [0.69, -0.98,9.64,2,98]
Ball
Center [0.69, -0.98,9.64]
Properties
Radius 2.98
Radial Distortion [-0.099,0.12]
Tangential Distortion [0, 0]
Camera Estimate Skew 0
parameters Intrinsic Matrix [3.9,0,0;0,3.9,0;2.7,1.85,1]
Focal length [3.9,3.9]
Principal Point [2.7,1.85]
Fundamental Matrix [1.7,3.06,0.01; -5.49, -4.03,0.003; -0.01, -0.00, 0,99]
Scale Factor 3.35

Table 6.3: The Numerical Result Data (3rd Test)

6.3 Discussion

The image resolution used in the algorithm was 5472x3648. Initially, the algorithm
begins in the first test with loading a pair of images (Figure 6.11), followed by the
camera calibration stored in the camera parameters object loaded, which included the
camera intrinsic matrix, the radial distortion and the estimated skew. According to the
value of the skew, which here is zero, there is no distortion in the lines of the lens. The
next process aims to remove any bends in the lines of the lens, and as the skew is zero,
there is no need for this step (Figure 6.12). Later, the feature points will have been
detected in this step from the first image (Figure 6.13) and, as mentioned above, are

carried out by using the KL T algorithm.
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The point tracker is created to find the correspondence points between the images
(Figure 6.14). In order to specify the epipolar constraints, the fundamental matrix is
estimated, and by computing the fundamental matrix, the inlier points will be
established and matched to the epipolar constraints (Figure 6.15). Before the final step
in the algorithm, the camera position (R, ), which represents the external parameters,
are computed. Later, by using the sphere function to fit the point cloud in order to find
the size and location of the ball in the scene (Figure 6.16).

Finally, the coordinates of the three-dimensional points in centimetres are determined
according to the actual size of the ball (Figure 6.17 A and B). The final result of
reconstruction of the three-dimensional model was not good due to the holes in the
model; therefore, it was necessary to fill the uncovered areas

We used the SFM technique in computer vision to reconstruct the three-dimensional
model from the two-dimensional images based on different methods as the previous
chapter demonstrated, (such as Frank et al [33], Masahiro [37], and Zach et al [40]),
and all of these methods have used the SFM technique based on a variety of
approaches. However, these approaches do not meet the criteria as set out in this thesis,
which introduces the use of structure from motion based on matching the
correspondence points between the only two images as done by Zhengyou Zhang [32].
Due to the lack of the data from the mentioned method, it was not possible to compare
with the results of this thesis.

Zach et al [40] in their methods using four different datasets, and by adding more
points where are reduced the of error, except the third dataset where the error is
increased, and this issue is left without explaining in their paper. Those results shown

in the table 6.4.

Init. Image #Added Final image
Dataset #Images #3D points )
error points error
1 175 43553 2.17 1497 2.14
2 186 47756 6.18 5605 4.89
3 99 31876 1.77 5747 6.75
4 191 60997 33 1556 24

Table 6.4: The results of Zach et al method®?

1 2Table Source:Reference 40
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In our method we used different types of scenes in order to demonstrate the behaviour
of the algorithm. The numbers of three-dimensional points, which are the algorithm
obtained from the first scene (figure 6.11), are 19333 points. After adding more details
to the first scene, and by using the same algorithm (figure 6.25), the numbers of three-
dimensional points are increased from 19333 points to 22195 points. In the second test
we using different scene (figure 6.18), which is have more colours and details, the
result of using such a scene was obtaining more 3D points. Where the numbers of 3D
points are increased from 22195 points to 59413 points. Table 6.5 is clarifying all those

results which were carried out from the three tests.

The original scene after Different scene with more
modifying (3" Test) details (2™ Test)
3D Image | Matched 3D Image | Matched 3D Image | Matched

The original scene (1% Test)

points | points | Points | points | points | Points | points | points Points

19333 | 30306 | 19333 | 22195 | 39402 | 22195 | 59413 | 247519 | 59413

Table 6.5: Numbers of points according to different scenes

Zach et al [40] in their method were added more points in order to reduce the rate of
error, where the approach of the proposed method in this thesis is motivate the

algorithm to obtain more matched points by using scenes rich in details.

The limitations of the previous algorithm were found in the fourth step of the feature
detection, where the KLT algorithm will not work probably if the space between the
obtained images is too great (Figure 6.18). Next, the tracker features had some
difficulties detecting the soft surfaces in the scene (Figure 6.14), so we added some
details to this surface in order to motivate the algorithm to detect more matching points
(Figure 6.25). Then, the same steps which mentioned above were executed. As the
final result of the third test shown in the figures 6.31 A, B, the algorithm detects more
points and reconstruct new model with more points.

The second test was carried out by using a different scene (Figure 6.18), after executing
the algorithm, the results were more accurate than the first test due to the details of the

scene which was had more colours than the first scene (figure 6.11).
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CHAPTER VII

CONCLUSION AND FUTURE WORK
7.1 Conclusion
In this thesis, we explored a variety of methods and techniques that aim to reconstruct
the optimum three-dimensional model from two-dimensional data. This thesis
concentrated on the structure from motion based on two views. The experimental
results in the previous chapter have some limitations that need improvement and
complementary solutions. Due to the limited time, there is no possibility to cope with
the issues that are mentioned in the previous chapter section 6.3.
The results of the experiments show the insufficiency of KLT algorithm when the
distance between images becomes more than 5 cm. Also, we figure out the possibility
of reducing the rate of reprojection error by removing the images that have the biggest
rate of error.
The experimental results are consisting from three stages. The first stage is done by
using a scene with soft surfaces, the performance of the algorithm shows some
deficiencies with the soft surfaces which are have few details. The second stage is done
by using different scene with objects which have more details and rough surfaces, the
algorithm results become more accurate than the first scene. The third stage is done by
using the first scene of the first stage but after adding more details for surface of the
ball in order to motivate the algorithm to detect more points, the results become more
accurate than the results of the first stage. The experiments are showing the
performance of the algorithm with different scenes and demonstrate the way of
improving the algorithm.
In spite of the limitations mentioned above, the algorithm creates three-dimensional
models that depend on only two views with the model being meaningful according to
the original scene. Moreover, the work of the algorithm is quite good due to the rating
of the mean projection error, which was 0.94 and decreased into 0.77, as shown in

Table (6.1).
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7.2 Future Work

Researchers in this field may use this thesis in investigations of two-dimensional to
three-dimensional conversion algorithms. They can deal with the limitations
mentioned herein by finding alternative algorithms instead of using the KL T algorithm
so as to cope with widely-spaced images, or improve the 3D-model for greater
accuracy. Also, they can estimate the depth information using the other algorithms that
mentioned in the figure 3.1 in third chapter, and comparing the results with the current

one in order to clarify the strengths and weaknesses of each algorithm.
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