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ABSTRACT 

 

 

DESIGN AND EVALUATION OF COOPERATIVE ADAPTIVE CRUISE 

CONTROL (CACC) FOR THE IMPROVEMENT OF HIGHWAY TRAFFIC 

FLOW 

 

 

AL-JHAYYISH, Ahmed M. H. 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT 

 

January 2016, 59 pages 

 

 

 

The subject of intelligent transportation systems (ITS) began to take worldwide 

attention in the last decade. One main purpose of deploying ITS is the improvement 

of traffic flow capacity on highways while ensuring safety. Cooperative Adaptive 

Cruise Control (CACC) is a method used to support the flow of road vehicles at a 

safe distance in the form of vehicle strings. In order to enable small inter-vehicle 

spacing, CACC is implemented on each vehicle by the use of vehicle distance 

measurements as well as information from other vehicles via vehicle-to-vehicle 

communication. An important goal of CACC is the achievement of string stability in 

order to attenuate fluctuations in the vehicle motion along vehicle strings. Hereby, 

CACC designs in the literature are lmited to the case of homogeneous vehicle 

strings, where all vehicles have identical dynamic properties.  

In the first part of this thesis, an original CACC H∞ controller design method is 

developed for the practical case of heterogeneous vehicle strings while achieving 
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string stability. The second part of this thesis considers the issue of delay in the 

CACC control design for platoons of vehicles. Several H∞ control design methods for 

time-delay systems are applied to address both communication and vehicle plant 

delay. For each method, a longitudinal controller for a platoon of vehicles is obtained 

which results in the achievement of string stability. In addition, a comparison of the 

different methods regarding the supported delay and inter-vehicle spacings is 

performed. The findings of the thesis are supported by representative simulation 

experiments. We note that, to the best of our knowledge, no research has considered 

the CACC design for heterogeneous vehicles and CACC design with delay. 

 

 

Keywords: Intelligent Transportation Systems, Cooperative Adaptive Cruise 

Control, String Stability, Heterogeneous vehicles, CACC with Delay, H∞ Control. 
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ÖZ 

 

 

 

TRAFİK AKIŞINI İYİLEŞTİRMEK İÇİN KOOPERATİF OTOMATİK 

SEYİR KONTROLÜNDE DİZAYN VE DEĞERLENDİRME  

 

 

AL-JHAYYISH, Ahmed M. H. 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç Dr. Klaus Werner SCHMIDT 

Ocak 2016, 59 sayfa 

 

Günümüzde akıllı ulaşım sistemlerine (AUS) olan ilgi giderek artmaktadır.Akıllı 

ulaşım sistemlerinin geliştirilmesinin ana amacı emniyetli bir şekilde araç yolundaki 

trafik akışını devam ettirmektir. Kooperatif Adaptif Araç Kontrolü (KAAK), araç 

dizininde araçlar arası güvenilir bir mesafede trafik akışının devam etmesini 

amaçlayan bir metottur. KAAK yöntemiyle araçlar arası en kısa uzaklığı elde 

edebilmek için her araçtan uzaklık ölçülerini alınır ve araçtan araca haberleşme 

yöntemiyle araçlar arası uzaklık verileri hesaplanır. KAAK yönteminde dizi boyunca 

araçta her hangi bir satürasyon ya da dalgalanma olmadan dizi kararlılığının 

korunması amaçlanmaktadır. Bundan dolayı, KAAK modelleri literatürde aynı 

dinamik özellikleri gösteren araçlar için kısıtlı bir konudur. Tezin ilk bölümünde, 

heterojen araçlarda dizi kararlılığını sağlamak için orijinal KAAK H∞ kontrol dizayn 

yöntemi geliştirilmiştir. Tezin ikinci bölümünde, KAAK kontrol modeli araç 

dizinindeki gecikme konusu ile ilgili çalışmaları içermektedir. Zaman-gecikme 

sistemleri için birkaç H∞ kontrol dizayn yöntemi hem haberleşme hem de araç 

gecikme modeli için uygulanmıştır. Her yöntem için, dizi kararlılığı korunarak araç 

grubunda uzunlamasına kontrolör elde edilmiştir. Aynı zamanda, farklı yöntemler 
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kullanarak gecikme ve araçlar arası uzaklık ile ilgili karşılaştırmalar yapılmıştır. 

Tezde bulunan sonuçlar yapılan simülasyonlar ile desteklenmiştir. Şunu belirtmeliyiz 

ki bildiğimiz kadarıyla, heterojen araçlar ve gecikme ile KAAK yöntemi, bu 

çalışmada ilk defa kullanılmıştır.  

 

 

Anahtar Kelimeler: Akıllı Ulaştırma Sistemleri, Kooperatif Otomatik Seyir 

Kontrolü, Dizi Kararlılığı, H∞ Kontrol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

ACKNOWLEDGEMENTS 

 

I would like to express my deep gratitude to my advisor and supervisor, Assoc. Prof. 

Dr. Klaus Werner SCHMIDT, for his support and guidance throughout this thesis. 

I would also like to thank my parents, sisters, brothers and all my friends for their 

support and love, I would not be able to accomplish this work without them. 



ix 

 

TABLE OF CONTENTS 

 

 

 STATEMENT OF NON PLAGIARISM.................................................................. iii 

 ABSTRACT.............................................................................................................. iv 

 ÖZ………………………………………………………………………………….. vi 

 ACKNOWLEDGEMENTS………………………………………………………... viii 

 TABLE OF CONTENTS………………………………………………………….. ix 

 LIST OF FIGURES………………………………………………………………... xii 

 LIST OF TABLES………………………………………………………………… xv 

 LIST OF ABBREVIATIONS……………………………………………………... xvi 

   

 CHAPTERS:  

   

 1. INTRODUCTION............................................................................................ 1 

 2. BACKGROUND.............................................................................................. 4 

  2.1. Intelligent Transportation Systems…………………........................... 4 

  2.2. CACC and Vehicle Following.............................................................. 4 

  2.3. String Stability...................................................................................... 5 

  2.4. CACC Control Structure……………………………………………... 8 

 

 

 2.5. 

2.6. 

Simulation Example for Homogeneous Vehicles................................. 

H∞ control Computation....................................................................... 

10 

12 

 3. CACC DESIGN FOR HETEROGENEOUS VEHICLES............................... 16 

  3.1. Longitudinal Vehicle Dynamics….…….............................................. 16 

  3.2. Modified Block Diagram….................................................................. 18 

  3.3. String Stability Bounds…………......................................................... 19 

  3.4. Controller Design Methods for Heterogeneous Vehicles……………. 21 

  3.5. 

 

Simulation Study for Heterogeneous………………………………… 

3.5.1.      CACC Controller Computation…………………………….. 

23 

23 



x 

 

3.5.2.      Simulation with Heterogeneous Vehicles…………………... 24 

 4. CACC DESIGN WITH TIME-DELAY…….................................................. 27 

  4.1. Introduction.......................................................................................... 27 

  4.2. CACC Model with Delay…………………………………………….                                                      28 

  4.3. Controller Realizations…………......................................................... 28 

   4.3.1. Rational Controller…............................................................. 28 

   

 

4.4.  

4.3.2. 

4.3.3.  

Modified CACC with Predictor…………………………….. 

Modified String Stability for CACC with Predictor……….. 

30 

31 

  Padé-Approximation………..……………………………................... 32 

   4.4.1. 

4.4.2. 

Controller Design by Padé-Approximation……………….... 

Simulation and Experimental Results………………………. 

32 

32 

  4.5.     Smith-Predictor……………………………………………………….. 

            4.5.1.      Modified CACC with Smith-Predictor…………………….. 

            4.5.2.      Modified CACC with Smith Predictor for θ=Ø case………. 

            4.5.3.      Experimental Results………………….…………………… 

4.6.     Finite Impulse Response (FIR) Blocks………………………………. 

            4.6.1.      Modified CACC by FIR Block In Same Delays Case……... 

            4.6.2.      String Stability……………………………………………… 

            4.6.3.      H∞ Control Structure………………..………………...……. 

            4.6.4.      Simulation Results…..……………………………………… 

4.7.     A Transformed Standard H∞ Problem………………………………… 

            4.7.1.     Introduction………………………………………………….  

            4.7.2.     Transformation……………………………………………… 

            4.7.3.     H∞ Control Design with a Single Delay……………...…......   

            4.7.4.     CACC Design by A Transformed Standard H∞ Problem….. 

            4.7.5.     Simulation Results…………………………………………..  

 4.8.     Discussion……………………………………………………………. 

            4.8.1.   Simulation Results for Comparison …………………………. 

            4.8.2.   Headway Time Problem………………………………………   

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

45 

46 

48 

51 

52 

52 

53 

54 



xi 

 

 

 5. CONCLUSION AND FUTURE WORK......................................................... 59 

 REFERENCES.............................................................................................................. R1 

 APPENDICES.............................................................................................................. 

       A.  CURRICULUM VITAE........…...……….......……………………………… 

A1 

B1 



xii 

 

LIST OF FIGURES 

FIGURES   

   

Figure 1 Vehicle string with CACC ………………………………………… 5 

Figure 2  Inputs for CACC realization ………………………………………. 6 

Figure 3  Vehicle string with 7 vehicles ………………………………… ….. 6 

Figure 4  
Vehicle string with 7 vehicle performing an acceleration/ 

deceleration maneuver and CACC design that fulfills strict string 

stability. Each line represents the motion of one vehicle .................. 

 

 

7 

Figure 5 

 

Vehicle string with 7 vehicles performing an acceleration/ decele-

ration deceleration maneuver and CACC design that violates strict 

string stability …………………………………………………........ 

 

 

 

8 

Figure 6  Feedback loop for CACC …………………………………….......... 9 

Figure 7 H∞ control design for CACC ………………………………............. 10 

Figure 8 Vehicle string with 11 vehicles ……………………………………. 10 

Figure 9 Input signal u₁  of the leader vehicle ………………………….......... 11 

Figure 10  CACC design  for  string  stability:  simulation  with  homogeneous  

 vehicles …………………………………………………………...... 11 

Figure 11 System with controller for H∞ design ……………………………... 12 

Figure 12 Structure of cruise control system …………………………............. 17 

Figure 13 Feedback loop for CACC ………………………………………...... 18 

Figure 14 Feedback loop for CACC with heterogeneous vehicles……………. 22 

Figure 15 H∞ control loop for heterogeneous vehicles ………………………. 22 

Figure 16 CACC  simulation  with  heterogeneous  vehicles  and  strict  string   

 stability for first example ………………………………………….. 25 

Figure 17 Zoom in figure for velocity and acceleration of first example ……. 25 



xiii 

 

Figure 18  CACC  simulation  with  heterogeneous vehicles and strict stability  

 for second example ………………………………………................ 26 

Figure 19 System with delay ………………………………………………….. 27 

Figure 20 CACC model with delay …………………………………………... 28 

Figure 21 H∞ design for CACC ………………………………………............. 30 

Figure 22 CACC model with predictor ……………………………….………. 30 

Figure 23 String of six vehicles ………………………………………............. 33 

Figure 24  Acceleration input ………………………………………………………... 33 

Figure 25 CACC design for 0.1s delay by second-order Padé-approximation......... 34 

Figure 26 CACC design for 0.1s delay by fifth-order Padé-approximation................ 34 

Figure 27 CACC design for 0.3s delay by second-order Padé-approximation............ 35 

Figure 28 CACC design for 0.3s delay by fifth-order Padé-approximation ………... 35 

Figure 29 CACC design for 0.5s delay by second-order Padé-approximation……… 35 

Figure 30 CACC design for 0.5s delay by fifth-order Padé-approximation ………... 36 

Figure 31 System with Smith-predictor loop………………………………….. 36 

Figure 32 CACC model with Smith-predictor.........……………………........... 37 

Figure 33 Modified CACC in Ө=Ø case ……………………………………..                38 

Figure 34 Structure of H∞ control for CACC with Smith-predictor ….………. 39 

Figure 35 CACC with Smith-predictor design for string stability with 0.1s delay….. 39 

Figure 36  CACC with Smith-predictor design for string stability with 0.3s delay….. 40 

Figure 37 CACC with Smith-predictor design for string stability with 0.5s delay….. 40 

Figure 38 Modified CACC model in same delays case …………………………....... 41 

Figure 39 CACC with FIR block...…………………………………………..... 42 

Figure 40 Modified CACC by using FIR block ………………………………. 43 

Figure 41 H∞ design for CACC with FIR block ……………………………... 44 

Figure 42 CACC with FIR block for string stability with 0.1s delay ………… 44 

Figure 43 CACC with FIR block for string stability with 0.3s delay…………. 45 

Figure 44 CACC with FIR block for string stability with 0.3s delay…………. 45 

Figure 45 General control setup for time-delay systems ……………………... 46 



xiv 

 

Figure 46 An equivalent structure …………………………………………….. 47 

Figure 47 The graphic interpretation of the transformation …………………... 48 

Figure 48 Structure of H∞ optimal control for CACC model ………………... 51 

Figure 49 Structure of a transformed standard H∞ for CACC model…………  52 

Figure 50 CACC design by a transformed standard H∞ with 0.1s delay ……. 53 

Figure 51 CACC design by a transformed standars H∞ with 0.3s delay …….. 53 

Figure 52 CACC design by a transformed standars H∞ with 0.5s delay …….. 54 

Figure 53 Design methods for string stability with 0.1s delay ……………….. 56 

Figure 54 Design methods for string stability with 0.3s delay ……………….. 57 

Figure 55 Design methods for string stability with 0.5s delay ……………….. 55 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 

 

 

 



xv 

 

 

LIST OF TABLES 

 

 

TABLES   

   

Table 1 Parameters for the CACC controller design for first example.... 23 

Table 2 Parameters for the CACC controller design for second example 24 

Table 3 Some converted delays by Padé-approximation.......................... 32 

Table 4 Control design for 0.1s delay...................................................... 55 

Table 5 Control design for 0.3s delay...................................................... 55 

Table 6 Control design for 0.5s delay...................................................... 55  

Table A.1 Controllers computation for experiment of chapter 2................. A1 

Table A.2 Controllers computation for first example of chapter 3.............. A1 

Table A.3 Controllers computation for experiment of chapter 4................. A2 

Table A.4 Controllers computation for experiment of chapter 4 ................ A3 

   

   



xvi 

 

LIST OF ABBREVIATIONS 

 

 

ITS Intelligent Transportation Systems  

CACC Cooperative Adaptive Cruise Control  

ACC Adaptive Cruise Control  

V2V Vehicle to Vehicle   

 Velocity of Vehicle i  

 Actual Inter-Vehicle Distance of Vehicle i  

 Desired Inter-Vehicle Distance of Vehicle i  

 Standstill Distance of Vehicle i  

h Time Headway  

 Spacing Error of Vehicle i  

 Rear Bumper Position of Vehicle i  

 Length of Vehicle i  

G Plant of Vehicle  

 Communication Delay  

 Possible Plant Delay  

i String-Stability of Vehicle i  

 Time Constant  

s Spacing Policy  

Kfb Feedback Controller  

Kff Feedforward  Controller  

W Weighting Transfer Function  

S(s) Closed-Loop Sensitivity  

Kfbo Main Feedback Controller  

Kffo Main Feedforward Controller  

δ   Mutual Delay between  and   

 



xvii 

 

G̃ Dynamic Vehicle when Delay is Active 

T Time-Delay 

FIR Finite Impulse Response Block 

  

  

  

 

 



CHAPTER 1

INTRODUCTION

Recent advances in automotive engineering aim at fully or partially replacing human

driver functionality [1, 2]. Transportation systems are one of the essentially important

aspects of our daily life. This is due to the rapidly growing human population and

economy [3, 4], and therefore demands of traffic are ever-increasing. Accordingly,

there is a need for increasing safety, enhancing mobility and convenience, improving

operational performance, reducing congestion, fuel consumption and emissions to arise

[2, 5, 6, 7, 8, 9, 10, 11].

Intelligent Transport Systems (ITS) have developed into a profitable solution for the

improvement of the operational performance of traffic systems [4, 12]. This includes

planning, construction design, operations, safety and so on [12]. Cooperative Adaptive

Cruise Control (CACC) is a recently developed technique for automating the longitudi-

nal vehicle motion [13, 14, 15, 16, 17]. Analogous to Adaptive Cruise Control (ACC)

[18, 19, 20, 21], CACC allows to travel at a desired vehicle speed and inter-vehicle

spacing, hence maintaining a safe distance to predecessor vehicles based on the distance

measurements (RADAR or LIDAR). Commonly, a velocity-dependent spacing policy

with a constant headway time (time to reach the position of the predecessor vehicle) is

chosen. As an extension to ACC, CACC also uses state information of the predecessor

vehicles such as acceleration or velocity that is provided via vehicle-to-vehicle (V2V)

communication. Accordingly, CACC enables small inter-vehicle distances which is a

pre-requisite for high levels of traffic throughout [2, 22, 21].

CACC’s level of effectiveness becomes relevant in dense traffic, where vehicles

follow their respective predecessor vehicle at small distances in the form of so-called

vehicle strings. Here, it is highly necessary that the fluctuations in the motion of any

vehicle do not have a negative effect on its followers. In particular, it is desired that

such fluctuations are attenuated by the follower vehicles which is captured by the for-
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mal condition ofstring stability [23, 24]. Throughout the literature, several control

methods are proposed for the successful achievement of string stability by the use of

CACC [13], [15] usesH∞ control and [25] proposes a model-predictive control strat-

egy to accomplish string stability. [17, 26] studies the combination of longitudinal and

lateral control for vehicle flowing and [16, 14] focus on the impact of communication

delays on string stability. It has to be emphasized that all previous studies assume ho-

mogeneous vehicles, where string stability is only obtained in the situation where all

vehicles have the same dynamic properties. There is a singleexception by the work in

[24], which considers the possibility of heterogeneous vehicle strings with a size limit.

The first contribution of thesis is the CACC design for string stability under the as-

sumption of heterogeneous vehicles. The proposed method isbased on theH∞−design

for string stability of homogeneous strings in [15]. To thisend, we first develop an

analysis algorithm, that determines if a given controller design supports string stability.

Further, anH∞ controller design is developed based on the analysis algorithm. The

method used involves a particular weighting transfer function in order to obtain string

stability for a wide range of vehicle dynamics and arbitrarily long strings.

Secondly, this thesis contributes to the use ofH∞ control with explicit consideration

of delays in the CACC design. There are two such delays in the CACC design: the de-

lay caused by the wireless communication from predecessor vehicles and the internal

delay of the plant dynamics [13]. In general, time-delay on CACC affects the stability

of the closed-loop and string stability of vehicle platoons[27]. The existing literature

only uses a Pad́e-approximation to include the delays in the CACC design byH∞ con-

trol [15]. This thesis offers various methods for the CACC design including delay by

H∞ control. The first method involves the designing of aH∞ control by the use of a

Smith-predictor. That is, a predictor is added to the closed-loop of the CACC model,

eliminating delays from the closed loop. In the second method, the CACC feedback

loop is extended by Finite Impulse Response (FIR) blocks. Lastly, a CACC design

based on a transformed standardH∞ problem is applied [28]. This method is based

on a transformation of the feedback loop with delay which simplifies the evaluation of

theH∞ norm with delay. With this transformation, the infinite dimensional robust con-

trol problem (with delay) can be solved analogous to the finite-dimensional problem.

For comparison, we also employ the Padé-approximation, where delays are approxi-

2



mated by rational transfer function. The properties of the different CACC designs are

illustrated by extensive simulation experiments in Matlab/Simulink. Also, a thorough

comparison shows the suitability of the different methods regarding different delays

and headway times. The controllers for each design are presented in the table at the end

of this thesis.

This thesis is organized as follows. Chapter 2 provides background information.

In Chapter 3, the CACC design for heterogeneous vehicles is presented. Chapter 4

contains the CACC design with time-delay. Chapter 5 gives conclusion and directions

for future work.
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CHAPTER 2

BACKGROUND

2.1 Intelligent Transportation Systems

The ever-growing demands of traffic during the last few decades exceeds existing road

transportation infrastructure and resources. This leads to increased frequency and sever-

ity of traffic problems, such as traffic congestion, traffic accidents and environmental

pollution [3]. For these reasons, a robust solution in the future lies in efficient applica-

tion of presently available means of road transportation and infrastructure [12]. Intel-

ligent transportation systems (ITS) are a possible solution to reduce these issues. ITS

can be classified as traffic infrastructure based, vehicle categories based, diverse roads

based, vehicle to road based or vehicle to vehicle based technologies [1, 29, 11, 4]. This

thesis focuses on the vehicle to vehicle based technologies(vehicles in platoon) of ITS

with the design of cooperative adaptive cruise control (CACC) systems to improve the

highway traffic flow [30]:

• Increasing the road capacity by small inter-vehicle distances (traffic throughput).

• Increase driving safety.

2.2 CACC and Vehicle Following

Cooperative adaptive cruise control (CACC) takes an important role in the developing

traffic flow; the wirelessly communicated data are used in a feedforward setting such

that vehicles follow each other in so-calledvehicle stringsat small inter-vehicle spacing

[13, 30] as shown in Figure 1.

Li, qi andvi denote the length, rear bumper position and velocity of vehicle i, respec-

tively. Heredi is the gap between vehiclei−1 and vehiclei. It is assumed thatdi can be

measured by vehiclei via using sensors (RADAR or LIDAR) [1, 15, 30]. In addition,

4



Li+1 Li Li-1

vi vi-1

V2V

qi-1

V2V

Wireless communication 

qi+1

vi+1

qi

di+1 di

Figure 1: Vehicle string with CACC.

data such as the acceleration or velocity of other vehicles can be obtained via wireless

communication with the nearest vehicle (vehicle-to-vehicle (V2V)) communication.

di(t) = qi−1(t)−qi(t)−Li . (2.1)

A frequently used spacing policy for CACC is given by the constant headway time

policy [15] as shown in (2.2).

di,r = r i +hvi. (2.2)

Here,di,r represents the desired spacing between vehiclei−1 and vehiclei. It depends

on the distance at standstillr i and the headway timehi . That is, at zero velocity, the

desired distance isr i anddi,r increases proportional tovi. The spacing errorei(t) is then

equal to:

ei(t) = di(t)−di,r(t) = (qi−1(t)−qi(t)−Li)− (r i +hvi(t)). (2.3)

2.3 String Stability

The major goal of vehicle-following in dense traffic, (whichis essential using CACC),

is subject to requirements related to safety, comfort and scalability with respect to pla-

toon length [13]. In order to fulfill these requirements, thevehicle platoon is desired

to exhibit string-stable behavior. The CACC must be designed such that disturbances

are attenuated along a vehicle string as depicted in Figure 2. That is, a small variation

in the speed or acceleration of any vehiclei should not lead to increasing variations in

the motion of its follower vehicles. This is equivalent to distance errors that are not

5



amplified upstream from vehicle to vehicle in a platoon [15, 31].

 vehicle 1  vehicle 2  vehicle i

u1

q1

u2

q2 qi-1 qi

ui-1 ui
u1

Figure 2: Inputs for CACC realization.

The stated condition is captured by the notion of strict string stability in the liter-

ature [15, 16, 17, 23, 24]. Assuming a linear system representation with inputui−1 of

the preceding vehicle, we write

Γi(s) =
Ui(s)

Ui−1(s)
. (2.4)

for the transfer function between the control inputsui−1 andui of successive vehicles.

Consequently strict string stability is achieved if for all vehiclesi

||Γi(s)||∞ ≤ 1. (2.5)

Hereby,Ui(s) denotes the Laplace transform of the signalui(t) and|| • ||∞ denotes the

H∞-norm. Hence, each CACC controller design should ensure (2.5). This condition

is only addressed for homogeneous vehicles in the literature. This thesis will find a

solution for CACC design in the heterogeneous case (differentvehicles) and perform a

CACC design including communication and plant delays in the next chapters.

In order to clarify the idea of string stability, we present some simulations examples

for the case with string stability and the case when string stability is violated. We sim-

ulate a string of 7 vehicles as shown in Figure 3. The leader vehicle 1 first accelerates

Vehicle 1Vehicle 2Vehicle 3Vehicle 4Vehicle 5Vehicle 6Vehicle 7

Figure 3: Vehicle string with 7 vehicles.

with up to 4 m/s2 and then decelerates with up to -4 m/s2 (right-hand plot). In Figure

6



4, strict string stable is achieved: the follower vehicles perform the same motion as

the leader vehicle with a decreased (attenuated) acceleration/deceleration. In addition

the position plot (left-hand side) indicates that the vehicles follow each other at a safe

distance. Similarly, the velocity variation (center plot)is attenuated along the vehicle

string. This argument is clearly explained by figures. Each vehicle (there is a line for

each vehicle) is following its predecessor without amplification in the acceleration or

velocity in the platoon. In contrast, string stability is violated in the scenario of Figure
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Figure 4: Vehicle string with 7 vehicles performing an acceleration/deceleration ma-
neuver and CACC design that fulfills strict string stability. Each line represents the
motion of one vehicle.

5. Performing the same maneuver of the leader vehicle 1, it now holds that the accel-

eration and velocity of the follower vehicles are amplified which is clearly undesirable.

It is evident that the signals of vehicle 2 (which is represented by the green line) are

amplified compared to its predecessor vehicle 1 (which is represented by the blue line)

and each vehicle follows its predecessor vehicle with amplification. In addition the

position plot (left-hand side) shows that the vehicles follow each other at an extremely

unsafe distance.
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Figure 5: Vehicle string with 7 vehicles performing an acceleration/deceleration ma-
neuver and CACC design that violates strict string stability.

2.4 CACC Control Structure

The CACC design is an extension of standard Adaptive Cruise Control (ACC), feeding

additional data by wireless communication to allow short-distance automatic vehicle

following. The control objective in this chapter is, as in the literature, only for the case

of homogeneous strings, where all vehicles have the same dynamic properties [15, 16].

The most recent approaches [15] use the spacing policy in (2.2) and model each vehicle

by the plant transfer function in (2.6).

Gi(s) =
e−θi s

(1+sτi)s2 =
Qi(s)
Ui(s)

. (2.6)

θi is a possible plant delay andτi is the time constant of the low-level driveline dynam-

ics. Then, a CACC controller is designed for the feedback loop in Figure 6. Here, the

input signalui−1 of vehicle i is transmitted to vehiclei via V2V communication and

D= e−φ s represents a potential communication delay.H = 1+hsis used to implement

the spacing policy in (2.2) with the constant headwayh andK is the controller transfer

matrix which can be written as

K =
[

K f f K f b

]

. (2.7)
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K f f is a feedforward controller transfer function for controlling acceleration data by

wireless communication andK f b is a feedback controller transfer function for control-

ling the spacing errorei(s) between the desired distance and the actual distance. For

G

D

H

1/HK
qi-1 qi

ei

ui-1*

ui-1
G

ui

Figure 6: Feedback loop for CACC.

the case of homogeneous vehicles, it holds thatτi = τi−1 andθi = θi−1 for any vehicles

i, i−1. Then, the same transfer functionΓ is found from Figure 6 for alli:

Γ(s) := Γi(s) =
Ui(s)

Ui−1(s)
=

DK f f +Gi K f b

H (1+Gi K f b)
. (2.8)

Hence, according to (2.4), the design ofK requires that

||Γ(s)||∞ ≤ 1. (2.9)

In addition, [15] considers the closed-loop sensitivity as

S(s) =
Ei(s)

Ui−1(s)
=

G(1−DK f f )

1+GKf b
. (2.10)

In order to fulfill string-stability, (2.9) has to be fulfilled. At the same time, it is desired

to minimize the position errorei(t). Hence, theH∞ control problem

min
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ(s)

S(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ 1 (2.11)
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is solved. The lower fractional transformation (LFT) and the corresponding matrixP

are shown in Figure 7.

P =











0
1
H

G −G
D 0
G −G











Figure 7: H∞ control design for CACC.

2.5 Simulation Example For Homogeneous Vehicles

Our simulation platform is based on MATLAB/SIMULINK to evaluate the perfor-

mance of CACC for homogenous vehicle strings. An example experiment is accom-

plished for 11 vehicles as shown in Figure 8. In order to quantify values of τi, we

Vehicle 1Vehicle 2Vehicle 3Vehicle 4Vehicle 5Vehicle 6Vehicle 7Vehicle 8Vehicle 9Vehicle 10Vehicle 11

Figure 8: Vehicle string with 11 vehicles.

refer to practical experiments in [13], where a value ofτ ≈ 0.4 is obtained. That is, we

chooseτi = 0.4 for each vehicle and designK according to (2.11). In our simulation,

the leader vehicle is provided with the input signal in Figure 9. That is, sharp accel-

erations of 4 m/s2 and−4 m/s2 are given in order to study a difficult vehicle following

scenario. The simulation result is shown in Figure 10. It canbe seen from the vehicle

positions that each vehicle follows its predecessor at a safe distance. In addition, the

velocity and acceleration plot suggest that the disturbance provided by the input sig-

nal is attenuated along the string (the respective signal amplitudes decrease along the

string). That is, strict string stability is confirmed.
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Figure 9: Input signalu1 of the leader vehicle.
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Figure 10: CACC design for string stability: simulation with homogeneous vehicles.
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2.6 H∞ Control Computation

The results in this thesis are based on theH∞ control design. The optimalH∞ control

is to find all admissible controllersK(s) such that theH∞ norm of the complementary

sensitivity transfer funcction||T(zw)|| (between input signalw and output signalz) is

minimized as shown in Figure 11. We summarize the necessary computations for the

general case as shown in [32].

Assume the interconnected plantP and a general controllerK(s).

P

K

z

u y

w

Figure 11: System with controller forH∞ design.

Then, the realization of the transfer matrixP is taken to be of the form:

P(s) =











A B1 B2

C1 D11 D12

C2 D21 0











(2.12)

In addition, the following assumptions are employed:

A1) (A,B2) is stabilizable and(C2,A) is detectable;

A2)





A− jω I B2

C1 D12



 has full column rank∀w∈ R ;

A3)





A− jω I B1

C2 D21



 has full row rank∀w∈ R ;

A4) D∗
12D12 = I and D21D∗

21 = I .
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Assumption (A1) is necessary for the existence of stabilizing controllers. Furthermore,

assumptions (A2) and (A3) are needed for a technical reason for guarantee of the two

Hamiltonian matrices. In addition, assumption (A4) are made to simplify the exposi-

tion. In fact, only the non-singularity of the matricesD∗
12D12 andD21D∗

21 is required.

For the general matricesD11,D12,D21 andD22, a solution is found in [32].

The solution, which is stated in Theorem 1, involves two Hamiltonian matrices

Hx :=





A 0

−C∗
1C1 −A∗



−





B

−C∗
1 D1•



 R−1
[

D∗
1•C1 B∗

]

. (2.13)

Jy :=





A∗ 0

−B1B∗
1 −A



−





C∗

−B1D∗
•1



 R̃−1
[

D•1B∗
1 C

]

. (2.14)

where,

R := D∗
1•D1•−





γ2 I 0

0 0



 , (2.15)

R̃ := D•1D∗
•1−





γ2 I 0

0 0



 , (2.16)

and

D1• :=
[

D11 D12

]

, (2.17)

D•1 :=





D11

D21



 . (2.18)

The stable solutionsX andY of the Riccati equations are obtained

X := Ric(Hx) and Y := Ric(Jy) (2.19)

13



and thestate feedbackandoutput injectionmatricesF andL are determined as

F :=





F1•

F2•



 := −R−1 [D∗
1•C1+B∗X] , (2.20)

L :=
[

L1• L2•

]

:= − [B1D∗
•1+Y C∗] R̃−1, (2.21)

with the partitionD, F1•, andL1•:





F
′

L
′

D



=

















F∗
11• F∗

12• F∗
2•

L∗
11• D1111 D1112 0

L∗
12• D1121 D1122 I

L∗
2• 0 I 0

















(2.22)

Theorem 1. Assume P fulfills the assumptions(A1) to (A4). Then there is a stabilizing

controller K, such that‖Fl (G,K)‖∞ ≤ γ if and only if:

(i) γ > maxσ [D1111 D1112],σ [D∗
1111 D∗

1121],

(ii) Hx ∈ dom(Ric) and X≥ 0,

(iii) Jy ∈ dom(Ric) and Y≥ 0,

(iv) σ(X Y)< γ2

Using the notationFl for the lower fractional transformation, stabilizing controllers

K(s) is given byK = Fl (M∞,Q) for arbitraryQ∈ RH∞ such that‖Q‖∞ ≤ γ, where

M∞ =





Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0





M ͚ 

Q

uy
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and the parameters are given as:

D̂11 =−D1121D∗
1111(γ

2 I −D1111D∗
1111)

−1D1112−D1122, (2.23)

D̂12 andD̂21 fulfill:

D̂12D̂
∗
12 = I −D1121(γ2 I −D∗

1111D1111)
−1D∗

1121, (2.24)

D̂∗
21D̂21 = I −D∗

1112(γ
2 I −D1111D∗

1111)
−1D1112, (2.25)

and

B̂2 = Z∞ (B2+L12•) D̂12, (2.26)

Ĉ2 =−D̂21(C2+F12•), (2.27)

B̂1 =−Z∞ L2•+ B̂2 D̂−1
12 D̂11, (2.28)

Ĉ1 = F2•+ D̂11D̂−1
21 Ĉ2, (2.29)

Â= A+BF+ B̂1 D̂−1
21 Ĉ2. (2.30)

Finally,

Z∞ = (I − γ−2Y X)−1. (2.31)

In this thesis, we use Matlab/Simulink forH∞ computations for LTI plants. In

particular, we apply the functionhinfsyn, which computes a stabilizingH∞ optimal

controllerK for a partitioned plantP.
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CHAPTER 3

CACC DESIGN FOR HETEROGENEOUS VEHICLES

In this chapter, the CACC design is developed for heterogeneous vehicles, such that a

platoon of vehicles with different dynamics achieves string-stability and safe vehicle-

following.

3.1 Longitudinal Vehicle Dynamics

Vehicles (cars, trucks, buses) represent interesting and complex mechanical systems

with nonlinear characteristics that require accurate analysis [26, 33]. The model dy-

namics have to capture complex aspects of vehicle dynamics such as aerodynamics,

geometry, mass, motion and tire specifications of each vehicle. Therefore, many stud-

ies have been developed in order to understand the behavior of both light and heavy

vehicles. Moreover, these studies are based on using exact linearization methods to

linearize the input-to-output behavior of each vehicle in the platoon [34, 35, 36, 33]. In

order to control the longitudinal position of platoon vehicles, it is considered that the

speed of each vehicle is controlled to a desired value using the throttle input [26]. The

longitudinal control system architecture for the cruise control vehicle will be designed

to be hierarchical, with an upper level controller and a lower level controller as shown

in Figure 12.

The upper level controller determines the desired acceleration for the vehicle. The

lower level controller determines the throttle input required to track the desired accel-

eration. A detailed vehicle dynamics model are for the lowercontroller in calculating

the real-time throttle input required to track the desired acceleration [26]. For thei-th

vehicle in the string, the high-level mode is given by the following linear third-order
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Upper Controller

Lower Controller

speed set point

desired acceleration

throttle input

Figure 12: Structure of cruise control system.

state-space representation of the longitudinal dynamics:











q̇i(t)

v̇i(t)

ȧi











=











vi−1(t)−vi(t)

ai(t)

−ai(t)/τi +ui(t −θi)/τi











(3.1)

whereqi, vi andai are respectively the absolute position, velocity and acceleration.τi

represents the time constant of the internal dynamic vehicle, θi is a plant delay and

ui is the control input of thei-th vehicle. This model is widely used in the literature

as a basis of analysis [15, 16, 34, 35]. Equivalently, by using Laplace transforms,

L (qi(t)) = Qi(s) andL (ui(t)) = Ui(s), the vehicle model can be represented by the

following transfer function as in (3.2):

Gi(s) =
e−θi s

(1+sτi)s2 =
Qi(s)
Ui(s)

. (3.2)

The actual acceleration of the vehicle is assumed to track the desired acceleration

with a time constantτi , so according to the specific valueτi, we can measure the differ-

ent types of vehicle driveline dynamics. For instance, theτi value of a VolvoS60 car is
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about 0.45 [37], while the literature uses 0.9≤ τi ≤ 1.4 for heavy vehicles, considering

that the best condition for heavy vehicle is taken asτi ≈ 0.9 according to [38]. For more

information about computing theτi value, [26] can be consulted.

3.2 Modified Block Diagram

The CACC controller from the existing literature [15] is suitable for homogeneous

strings. In particular, the design uses the fact that:

Γ(s) =
Ui(s)

Ui−1(s)
=

Vi(s)
Vi−1(s)

. (3.3)

That is, although the relationVi(s)
Vi−1(s)

is relevant in practice1 [39], it is possible to design

the CACC controllerK using the ratio Ui(s)
Ui−1(s)

according to the block diagram in Figure

13.

Gi-1

D

H

1/HK
qi-1 qi

ei

ui-1*

ui-1
Gi

ui

Figure 13: Feedback loop for CACC.

The vehiclei has the transfer function

Gi(s) =
1

(1+sτi)s2 =
Qi(s)
Ui(s)

(3.4)

1It is desired that velocity fluctuations of vehiclei −1 are attenuated by vehiclei.
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and its predecessor vehicle has the same transfer function with different value of time

constantτ

Gi−1(s) =
1

(1+sτi−1)s2 =
Qi−1(s)
Ui−1(s)

. (3.5)

This is no longer true in the case ofheterogeneous vehicleswhere generallyτi−1 6= τi .

In order to evaluate the ratioVi(s)
Vi−1(s)

, assume

Vi−1(s) = sQi−1(s) =
1

1+sτi−1

1
s

Ui−1(s) (3.6)

and;

Vi(s) = sQi(s) =
1

1+sτi

1
s

Ui(s) (3.7)

from (3.2). Together, it holds that;

Vi(s)
Vi−1(s)

=
1

1+sτi

1
s

Ui(s)
( 1

1+sτi−1

1
s

Ui−1(s)
)−1

=
1+sτi−1

1+sτi

Ui(s)
Ui−1(s)

=
Gi(s)

Gi−1(s)
Γ(s) =: Γi(s).

Therefore,

Γ(s) f orheter.veh. := Γi(s) =
Gi

Gi−1

DK f f +Gi−1K f b

H (1+Gi K f b)
. (3.8)

In order to obtain strict string stability in the developed setting, it is required by (2.5)

that

||Γi(s)||∞ ≤ 1 (3.9)

for all vehiclesi.

3.3 String Stability Bounds

Regarding (3.9), it has to be noted thatτi is known when designing the controllerKi

for vehiclei. Nevertheless, the dynamics of the predecessor vehiclei −1 (represented
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by τi−1) are not known. Vehiclei can have different predecessor vehicles depending

on the traffic situation. That is, it is essential for each vehicle i that (3.9) is fulfilled

for a sufficiently large range of valuesτi−1 such that vehiclei can follow different

predecessor vehicles without violating strict string stability and without changing the

controller.

In this section, we develop an original method for analyzingthe range of suitable

values forτi−1. To this end, we assume that a controllerKi has been computed for

vehicle i. It is then desired to find out which time constantsτi−1 for vehicle i − 1

are suitable such that||Γi(s)||∞ ≤ 1. We next propose two bi-partition algorithms in

order to determine an upper boundτmax
i−1 (Algorithm 1) and a lower boundτmin

i−1 for τi−1

(Algorithm 2). Both algorithms are developed using a particular assumption that can be

verified for the transfer functionΓi−1(s) in (3.8): letτi−1,τ ′i−1 be time constants such

that||Γi−1||∞ ≤ 1. Then, it holds for allτ ′′i−1 betweenτi−1 andτ ′i−1 that||Γi−1||∞ ≤ 1.

Algorithm 1 bisects the difference between an upper valueτmax
u and a lower value

τmax
l until they are sufficiently close (threshold valueε). Hereby, it is initially required

that ||Γi(s)||∞ ≤ 1 for τi−1 = τmax
l,0 and||Γi(s)||∞ > 1 for τi−1 = τmax

u,0 .2 The resultτmax
l

gives an upper bound forτi−1 (slowest possible predecessor vehicle) to obtain strict

string stability. In analogy to Algorithm 1, Algorithm 2 determines a lower bound on

Algorithm 1 Bi-partition algorithm for computingτmax
i−1

1: input : τmax
u,0 , τmax

l,0 , ε
2: output: τmax

i−1
3: τmax

u = τmax
u,0 , τmax

l = τmax
l,0

4: while τmax
u − τmax

l > ε do

5: τi−1 :=
τmax

l + τmax
u

2
6: if ||Γi(s)||∞ > 1 then
7: τmax

u := τi−1

8: else
9: τmax

l := τi−1

10: end if
11:

12: end while
13: τmax

i = τmax
l

τi−1 (fastest possible predecessor) for strict string stability. Initially, it is required that

2τmax
l,0 can be obtained from the controller design andτmax

u,0 >> τi can be chosen manually.
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||Γi(s)||∞ ≤ 1 for τmin
u,0 and ||Γi(s)||∞ > 1 for τmin

l,0 . Based on Algorithm 1 and 2, it is

Algorithm 2 Bi-partition algorithm for computingτmin
i−1

1: input : τmin
u,0 , τmin

l,0 , ε
2: output: τmin

i−1
3: τmin

u = τmin
u,0 , τmin

l = τmin
l,0

4: while τmin
u − τmin

l > ε do

5: τi−1 =
τmin

l + τmin
u

2
6: if ||Γi(s)||∞ > 1 then
7: τmin

l = τi−1

8: else
9: τmin

u = τi−1

10: end if
11:

12: end while
13: τmin

i−1 = τmin
u

possible to determine a range of values forτi−1 in order to achieve strict string stability.

Accordingly, we obtain the following result.

Proposition 1. Let Gi(s) be a plant and Ki(s) be a controller. Assume thatτmax
i−1 and

τmin
i−1 are computed with Algorithm 1 and 2, respectively, wherebyτmax

l,0 ≤ τmin
u,0 . Then,

||Γi(s)||∞ ≤ 1 for all τmin
i−1 ≤ τi−1 ≤ τmax

i−1 .

According to Algorithm 1, strict string stability is fulfilled forτmax
l,0 ≤ τi−1 ≤ τmax

i−1 .

Likewise, Algorithm 2 implies that strict string stabilityis fulfilled for τmin
i−1 ≤ τi−1 ≤

τmin
u,0 . Sinceτmax

l,0 ≤ τmin
u,0 , this directly implies that following-vehiclei is valid to follow

predecessor vehiclei−1 with range of vehiclesτmin
i−1 ≤ τi−1 ≤ τmax

i−1 .

3.4 Controller Design Method for Heterogeneous Vehicles

The previous section analyses the possible dynamics of predecessors of a vehiclei

such that strict string stability is guaranteed under the assumption thatKi is already

determined. In this section, we propose the first method in the literature for designing

Ki under the assumption of heterogeneous strings. To this end,we recall thatKi must

be found such that (3.9) is fulfilled for each vehiclei and for all possible predecessor

vehiclesi − 1. We useH∞-design with the following block diagram. Here,W is a

weighting transfer function.
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Figure 14: Feedback loop for CACC with heterogeneous vehicles.

We note that the block diagram is arranged such thatŨi(s)
Ui−1(s)

= Γi(s) in (3.8). The

modified sensitivity is

Si(s) =
Ei(s)

Ui−1(s)
=

Gi−1+DKi, f f Gi

1+Ki, f bGi
. (3.10)

We propose to computeKi for each vehiclei such that

min
Ki

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γi(s)W

Si(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1 (3.11)

and chooseW such that string stability is achieved for a sufficient rangeof τi−1. To this

end, we use the LFT in Figure 15 with the matrixPi evaluated from Figure 14. In this

design,Gmin
i−1 denotes the vehicle model with the smallest possible value of τi−1 = τmin.

Pi =













0
Gi W

Gmin
i−1H

Gmin
i−1 −Gi

D 0
Gmin

i−1 −Gi













Figure 15: H∞ control loop for heterogeneous vehicles.
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The described design method computes the controllerKi to be implemented on

vehiclei. That is, the dynamics of vehiclei (time constantτi) is known. Nevertheless,

the dynamics of the predecessor vehiclei − 1 is uncertain. The idea of the design

method is to assume the fastest vehicle (τi−1 = τmin) as predecessori−1. If the design

achieves strict string stability forτi−1 = τmin, it is expected that the design is also

successful for values ofτi−1 ≥ τmin. In addition, the weighting transfer functionW is

used to further increase the range ofτi−1. Examples are provided in the next section.

3.5 Simulation Study For Heterogeneous

3.5.1 CACC Controller Computation

In this section, computations and simulations for heterogeneous vehicle strings are per-

formed. In first example Figure 16, we assume deviations of about 0.3 from that av-

erage value ofτi = 0.4 such that we are interested in the range 0.1 ≤ τi ≤ 0.7 with

τmin = 0.1. As the first step of our evaluation, we use (3.11) to determine Ki for the

different vehicle parameter valuesτi = 0.1,0.2,0.3,0.4,0.5,0.6,0.7. Table 1 shows the

respective weighting transfer function and the upper and lower bounds for string stabil-

ity according to Algorithm 1 and 2. It can be seen that string stability is achieved for

the whole range of vehicles withτmin
i−1 ≤ 0.1≤ τi−1 ≤ 0.7≤ τmax

i−1 . Hereby, we note that

the choice of the weighting transfer functionW is tuned manually and the plant delay

θ and communication delayφ are assumed to be zero in this initial research.

τi W τmin
i−1 τmax

i−1 τi W τmin
i−1 τmax

i−1
0.1 1+.9s

1+.09s 0 0.758 0.5 1+.85s
1+.12s 0 0.723

0.2 1+.9s
1+.09s 0 0.758 0.6 1+.85s

1+.12s 0 0.723
0.3 1+.85s

1+.12s 0 0.723 0.7 1+.85s
1+.12s 0 0.722

0.4 1+.85s
1+.12s 0 0.723

Table 1: Parameters for the CACC controller design for first example.

In the second example in Figure 18, we assume deviations of about 0.4 to the av-

erage value ofτi = 0.5 such that we are interested in the range 0.1 ≤ τi ≤ 0.9 with

τmin = 0.1. K is computed according to (3.11) for differentτ values as shown in Table

2, which are fulfiled (3.9) by using Algorithm 1 and 2.
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τi W τmin
i−1 τmax

i−1 τi W τmin
i−1 τmax

i−1
0.1 1+s

1+.4s 0 1 0.6 1+1.3s
1+.06s 0 1

0.2 1+1.3s
1+.4s 0 .97 0.7 1+1.2s

1+.3s 0 .96
0.3 1+1.3s

1+.4s .06 1 0.8 1+1.2s
1+.2s 0 1

0.4 1+1.3s
1+.05s 0 .98 0.9 1+1.3s

1+.3s 0 .92
0.5 1+1.3s

1+.05s 0 1

Table 2: Parameters for the CACC controller design for second example.

3.5.2 Simulation with Heterogeneous Vehicles

We now evaluate the controller design in the previous section by simulations in Mat-

lab/Simulink. To this end, we consider the same heterogeneous vehicle string as in

Section 2.5. In the simulation, the controllerKi for the respective time constantτi as

computed in Section 3.5.1 is used for each vehicle.

The simulation result is shown in Figure 16 and 18. From the position signal for

each example, it is readily observed that the vehicles follow their predecessor at a safe

distance and the velocity signals confirm that strict stringstability is achieved in the

proposed design. The velocity disturbance of the leader vehicle 1 is indeed attenuated

along the heterogeneous vehicle string. In addition, we zoom in on the interesting

part of the simulation in Figure 16 for the velocity and acceleration signal in order to

study the heterogeneous vehicle behavior in platoon. Figure 17 shows that vehicle 2

(which is represented by the green line) is following its predecessor vehicle 1 (which is

represented by the blue line) fast since vehicle 2 has fasterdynamics than vehicle 1. At

the same time, string-stability is fulfilled. In contrast, vehicle 3 (which is represented by

the red line) is following its predecessor vehicle (green line) slowly since vehicle 3 has

slower dynamics than vehicle 2. Nevertheless, string-stability is still fulfilled. Finally,

each line shows that the vehicles are following their respective predecessor vehicle in a

safe distance and without violating string-stability. This is independent of whether fast

vehicles (smallτ) follow slow vehicles (largeτ) or vice versa.
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Figure 16: CACC simulation with heterogeneous vehicles and strict string stability for
first example.
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Figure 17: Zoom in figure for velocity and acceleration of first example.
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Figure 18: CACC simulation with heterogeneous vehicles and strict string stability for
second example.

26



CHAPTER 4

CACC DESIGN WITH TIME-DELAY

The objective of the chapter is to find a solution for CACC designwith time delay in

order to obtain string stability for realizing safe vehiclefollowing at small inter-vehicle

spacing.

4.1 Introduction

Time-delay exists in many real-world engineering systems such as the control systems,

communication networks, intelligent transportation systems (ITS), hydraulic systems,

heating systems and so on [28]. It has been realized that timedelay predominantly is a

source for instability of system or poor performance of control systems [40]. For this

reason, the presence of delay makes system analysis and control design complicated

[28, 41]. Therefore, the stability analysis and robust control of time delay systems are

of theoretical and practical importance [42]. Delay is defined as a unit that causes a
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Figure 19: System with delay.

time-shift in the signal. An ideal delay is a delay system which has no effect on the

signal characteristics at all [41, 43, 40], for example delayed acceleration signal as

shown in Figure 19.
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4.2 CACC Model with Delay

The general form of a CACC model includes 2 delays [15], as shownin Figure 20.

G

D

H

1/HK
qi-1 qi

ei

ui-1*

ui-1
G

ui

̃ 
̃ 

Figure 20: CACC model with delay.

D= e−sθ refers to the communication delay of data which is transmitted by wireless

communication from the predecessor vehicle. Communicationdelay undertaken in

vehicle platoons is widely dependent on the network architecture adopted [42]. On

the other hand, the vehicle dynamics with delay is describedin the Laplace domain by

the transfer functioñG(s):

G̃i(s) =
e−φ s

(1+sτi)s2 =
Qi(s)
Ui(s)

, (4.1)

whereG̃i(s) = e−φ sG(s) andG(s) is the rational part of the dynamic plant model,τ

is a time constant andφ is a time delay of internal vehicle dynamic.Ui is the vehicle

input (desired acceleration) and the positionQi is the output (desired distance). This

chapter is focused on finding a solution for theH∞ control design for CACC with delay.

4.3 Controller Realizations

4.3.1 Rational controller

In previous chapters, CACC is designed byH∞ control that does not consider delays to

achieve the string stability conditions [chapter 2, 3]. Thebasic feedback loop for the
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CACC is shown in Figure 20.K is the controller transfer matrix which can be written

as

K =
[

K f f K f b

]

. (4.2)

K f f is a feedforward controller andK f b is a feedback controller transfer function. As-

suming that all vehicle dynamics are similar, the transfer functionΓ is formed from

Figure 20, for all vehiclesi:

Γ(s) := Γi(s) =
Ui(s)

Ui−1(s)
=

DK f f +Gi K f b

H (1+Gi K f b)
. (4.3)

For a rational controller design,θ andφ are assumed to be zero. The platoon vehicles

achieve strict string stability if and only if theΓ of all vehiclesi is:

||Γ(s)||∞ ≤ 1. (4.4)

In order to fulfill (4.4) and at the same time minimize the position errorei(t), theH∞

control problem is formulated as;

min
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ(s)

S(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ 1. (4.5)

Here,S(s) is the closed-loop sensitivity corresponding to vehiclei as shown in (4.6).

S(s) =
Ei(s)

Ui−1(s)
=

G(1−DK f f )

1+GKf b
. (4.6)

The method in chapter 2 is proposed to design controllerK (which considers that the

delays are zero) under the requirement of string stability.As a consequence, the lower

fractional transformation (LFT) with the corresponding matrix P is evaluated from Fig-

ure 20, as shown in Figure 48.
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Figure 21: H∞ design for CACC.

4.3.2 Modified CACC with Predictor

One of the possible approaches to control processes for time-delay with stable closed-

loop, high performance and stability, is the usage of a controller with predictor as seen

in the literature [28, 44, 45, 46, 47]. Moreover, this predictor provides useful and prac-

tical guidelines for the development of a systematic robustdesign method for system

with delay.

In the new proposal of CACC model, a predictor is added to the closed-loop as

shown in Figure 22. Particularly, this model with predictoris developed to designH∞

control for CACC with delays under the requirement of string stability.
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Figure 22: CACC model with predictor.
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From Figure 22, the plant̃G(s) = e−sφ G(s) is a dynamic vehicle system with delay

φ , θ is a communication delay andδ is assumed as a mutual delay between communi-

cation and dynamic delays. The predictor helps to shift the delay outside the feedback

loop and preserving stability of the closed-loop. As a consequence, the control design

and system analysis are considerably simplified. This is realized by introducing lo-

cal feedback to the main controllerK◦(s). Hence, a main controller combined with a

predictor forms the overall controllerK(s) of the system as shown in (4.7).

K =

[

K f f◦
K f b◦

1+K f b◦G(1−e−sδ )

]

. (4.7)

4.3.3 Modified String Stability for CACC with Predictor

The definition of the string stability of a platoon of vehicles is assumed as seen in

previous chapters which is obtained from a linear system representation;

Γi(s) =
Ui(s)

Ui−1(s)
. (4.8)

From Figure 22, the transfer functionΓ(s) with predictor is written for each vehiclei

as

Γ(s) := Γi(s) =
Ui(s)

Ui−1(s)
=

e−sθi K f f◦+e−sφi Gi K f b

H (1+e−sφi Gi K f b)
. (4.9)

Here, the feedback controllerK f b represents the main controllerK f b◦ with predictor

loop as shown in (4.10);

K f b(s) =
K f b◦

1+K f b◦G(1−e−sδ )
. (4.10)

To this end, strict string stability is achieved if and only if all vehiclesi fulfill

||Γi(s)||∞ ≤ 1. (4.11)

In order to achieve (4.11), we need to compute the infinity norm of ||Γ||∞, which in-

cludes an exponential term (time delay). According to this reason, the computation of

the ||Γ||∞ is performed by utilizingbode, or nyquistplot since the considered system
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has a single input and single output.

4.4 Pad́e-Approximation

The transfer function of delaye−sT is irrational. Therefore, in some conditions, it is

possible to substitutee−sT with an approximation in form of a rational transfer func-

tion. The most common approximation is the Padé-approximation which is based on a

minimization of the truncation errors in a finite series expansion ofe−sT [15, 48, 49,

50, 51, 52] as shown in the form of:

e−sT ≈
1−k1s+k2s2+ · · ·±knsn

1+k1s+k2s2+ · · ·+knsn . (4.12)

wheren is the order of the approximation. The coefficientski are functions ofn.

4.4.1 Controller Design by Pad́e-Approximation

It is assumed that the lower fractional transformation (LFT) with the corresponding

matrix P includes delays as shown in a Section 4.3.1. In addition, each scenario of

delay in the CACC is converted to rational transfer function byPad́e-approximation as

shown in the Table 3. To this end, the computation ofH∞ control is identical to Section

2.6. Furthermore, high and low orders1 of the Pad́e-approximation are utilized in the

controller design.

Delay value Second-order Fifth-order

e−s0.1 ≈ s2−60s+1200
s2+60s+1200

−s5+300s4−42000s3+3.36106s2−1.512108s+3.024109

s5+300s4+42000s3+3.36106s2+1.512108s+3.024109

e−s0.3 ≈ s2−20s+133.3
s2+20s+133.3

−s5+100s4−4667s3+1.244105s2−1.867106s+1.244107

s5+100s4+4667s3+1.244105s2+1.867106s+1.244107

e−s0.5 ≈ s2−12s+48
s2+12s+48

−s5+60s4−1680s3+2.688104s2−2.419105s+9.677105

s5+60s4+1680s3+2.688104s2+2.419105s+9.677105

Table 3: Some converted delays by Padé-approximation.

4.4.2 Simulation and Experimental Results

Experiments show the impact of the Padé-approximation on string stability for the

CACC design whenφi andθi are same. These simulations are executed with a string of

1Increasing order of the Padé-approximation, makes the controller more complex due to high order
of transfer functions
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6 vehicles by MATLAB/SIMULINK as shown in Figure 23. where,τi = 0.4 is consid-

θ₂  

     

θ₁ θ₃ θ₄  θ₅ 

Փ₆ Փ₅ Փ₄ Փ Փ₁Փ₃

Figure 23: String of six vehicles .

ered for each vehicle and headway time is 0.7. The controllersK are computed by using

the second-order and fifth-order of Padé-approximation for each scenario of delay as

shown in Table 3. In the first simulation, the dynamic and communication delays are

assumed to be 0.1s. In the second simulation, the delays are assumed to be 0.3s. In the

last simulation, the delays are assumed to be 0.5s. The leader vehicle is provided with

the input signal in Figure 24. That is, sharp accelerations of 2m/s2 and -4m/s2 are given

in order to study a difficult vehicle following scenario.
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Figure 24: Acceleration input.

The simulation results are shown in Figures 25, 27 and 29 for design by second-

order Pad́e-approximation and Figures 26, 28 and 30 for design by fifth-order Pad́e-

approximation. It can be seen from the vehicles positions that each vehicle follows its

predecessor at a safe distance, and smoothly tracks the leader acceleration and velocity

while maintaining small fluctuations around the target distance. In addition, the veloc-

ity and acceleration plot suggest that the disturbance provided by the input signal is

attenuated along the string (the respective signal amplitudes decrease along the string).

This confirms strict string stability. Furthermore, the experiments show that the design
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Figure 25: CACC design for 0.1s delay by second-order Padé-approximation.
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Figure 26: CACC design for 0.1s delay by fifth-order Padé-approximation.

by different orders of Pad́e-approximation lead to similar results for string stability and

fast following vehicles.
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Figure 27: CACC design for 0.3s delay by second-order Padé-approximation.
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Figure 28: CACC design for 0.3s delay by fifth-order Padé-approximation.
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Figure 29: CACC design for 0.5s delay by second-order Padé-approximation.
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Figure 30: CACC design for 0.5s delay by fifth-order Padé-approximation.

4.5 Smith-Predictor

The Smith predictor has an important role in the control of time-delay systems which is

efficient for processes with long time-delay [28]. It was discovered in 1957 by Otto J.

M. Smith. Smith-predictor design is based on an inner loop with a main controller that

can simply be designed without the time-delay. The result isthat the delay is shifted

outside the feedback loop [45, 46, 47]. The basic structure of the Smith-predictor is

shown in Figure 31.

Controller K with Smith-Predictor

GK

G - G

r y

̃ 

 ο

e
̃ 

Figure 31: System with Smith-predictor loop.

G̃(s) = e−sT G(s) is a plant system with a delay, where the Smith predictor is rep-

resented asSP= G(s)− e−sT G(s). G(s) is the rational part ofG̃(s) (without delay)

[28, 44, 53]. It can be seen that the delay is moved outside thefeedback loop and the
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main controllerK(s) can be designed according to the delay-free partG(s) of only the

plant as seen in (4.13).

K(s) =
K◦(s)

1+K◦(s)(G(s)−e−sT G(s))
. (4.13)

4.5.1 Modified CACC with Smith-Predictor

We add the Smith-predictor to the feedback loop. The new modification of CACC

with Smith-predictor is shown in Figure 32. Here,G(s) is a rational dynamic vehicle
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Figure 32: CACC model with smith-predictor.

(without delay),θ refers to communication delay,φ represents internal dynamic delay

andδ is assumed as a mutual delay between communication delay andinternal dynamic

delay. The main controllerK◦(s) is represented as:

K◦(s) =
[

K f f◦ K f b◦

]

. (4.14)

To this end, the controllerK(s) is computed as the main controller with Smith-predictor

loop.

K(s) =

[

K f f◦
K f b◦(s)

1+K f b◦(s) (G(s)−e−sT G(s))

]

. (4.15)
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4.5.2 Modified CACC with Smith-Predictor for θ=φ Case

In the caseθ=φ , the H∞ control computation can be easily performed, because the

CACC loop with Smith-predictor does not include any delay. That is, all delays are

moved out of the feedback loop. The new block diagram is displayed in Figure 33.

The δ value is assumed to be the same asθ , φ value. Again, theH∞ control for a

1/H
qi-1 uiei

ui-1*

e
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e
uĩ ui-1̃ 

G Kfbο  

Kffο  

K ̥ 
-sδ -sδ 

Figure 33: Modified CACC inθ=φ case .

CACC model with Smith-predictor is formulated to minimize theposition errorei(t)

and achieve string-stability (4.11). That is, we want

min
K

∣
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S(s)
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∞

≤ 1 (4.16)

whereΓ(s) is given as:

Γ(s) := Γi(s) =
Ũi(s)

Ũi−1(s)
=

K f f◦+Gi K f b◦

H (1+Gi K f b◦)
. (4.17)

andS(s) is a sensitivity:

S(s) =
Ei(s)

Ũi−1(s)
=

G(1− K f f◦)

1+GKf b◦
. (4.18)

For this purpose, the lower fractional transformation (LFT) and the corresponding

matrix P are as shown in Figure 34.
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Figure 34: Structure ofH∞ control for CACC with Smith-predictor.

4.5.3 Experimental Results

The simulations are performed to confirm a vehicle platoon with string-stability for the

modified CACC with Smith-predictor for different delay scenarios. These simulations

are executed with the same parameters and input that are usedin Section 4.4.2. It can

be seen that string-stability is indeed achieved in all cases.
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Figure 35: CACC with Smith-predictor design for string stability with 0.1s delay.
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Figure 36: CACC with Smith-predictor design for string stability with 0.3s delay.
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Figure 37: CACC with Smith-predictor design for string stability with 0.5s delay.

4.6 Finite Impulse Response (FIR) Blocks

Finite impulse response (FIR) blocks are frequently used as solution for control of

time-delay systems. The FIR operator divides into the completion operator and the

truncation operator [28]. Consider

G(s) =





A B

C D



 (4.19)

is a rational transfer matrix (without delay) such thatG(s) =C(sI−A)−1B. To this end,

the following two operators combined withG(s) are widely used as:
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thetruncation operatorτT{G} is defined as:

τT{G}=





A B

C D



−e−sT





A eATB

C 0





=C(I −e(−sI−A)T)(sI−A)−1B= G−e−sTḠ (4.20)

and thecompletion operatorπT{e−sTG} is defined as:

πT{e−sTG}=





A B

Ce−AT 0



−e−sT





A B

C D





=Ce−sT(I −e(−sI−A)T)(sI−A)−1B= Ĝ−e−sTG (4.21)

These two operators map any rational transfer matrix into anFIR block. It can be

verified that bothπT{e−sTG} andτT{G} are entire functions whose impulse responses

have finite support (FIR systems) [28, 54, 55].

4.6.1 Modified CACC By FIR Block In Same Delays Case

In order to extend CACC by an FIR block, firstly CACC is modified in a way that

all delays move out of the closed loop as shown in Figure 38. Then, assume that the

1/H
qi-1 uiei

ui-1*

e
ui-1

G

e
uĩ ui-1̃ 

G Kfb  

K ff  

K

-sT -sT

Figure 38: Modified CACC model in same delays case.

πT{e−sTG} operator is appropriate for CACC model. The new extension of CACC

model is by inserting FIR block to the feedback loop as shown in Figure 39.
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Figure 39: CACC with FIR block.

Here,

Ĝ(s) =





A B

Ce−AT 0



 (4.22)

is a plant including the value of the delay, which is represented asT. After modification

as seen in Figure 40, it can be concluded that the FIR block removes all delays from

system. The controllerK(s) can be designed according to the main controller with FIR

block as seen in (4.23).

K(s) = [K f f◦
K f b◦

1+K f b◦ Ĝ
] (4.23)

4.6.2 String Stability

We want that the transfer functionΓ(s) fromUi(s) toUi−1(s) fulfills the string stability

condition of a platoon of vehicles;

Γ(s) := Γi(s) =
Ui(s)

Ui−1(s)
=

e−sθi K f f◦+e−sφi Gi K f b

H (1+e−sφi Gi K f b)
, (4.24)
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Figure 40: Modified CACC by using FIR block.

where the feedback controllerK f b represents the main controllerK f b◦ with FIR block

as shown in (4.25);

K f b(s) =
K f b◦

1+K f b◦FIR
. (4.25)

To this end, the strict string stability is achieved if for all vehiclesi

||Γi(s)||∞ ≤ 1. (4.26)

4.6.3 H∞ control Structure

In order to designH∞ control such that string stability is fulfilled (4.26) and atthe same

time we minimize the position errorei(t), theH∞ control problem is written as

min
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ(s)

S(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ 1 (4.27)

where,Γ is obtained from Figure 40 as:

Γ(s) := Γi(s) =
Ũi(s)

Ũi−1(s)
=

K f f◦+Gi K f b◦

H (1+ Ĝi K f b◦)
. (4.28)

S(s) is the closed-loop sensitivity corresponding to vehiclei as shown in (4.29).

S(s) =
Ei(s)

Ũi−1(s)
=

Gi + Ĝi K f f◦

1+Gi K f b◦
. (4.29)
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This method is proposed for designing the main controllerK◦ under the requirements

of string stability, which can be written as:

K◦ =
[

K f f◦ K f b◦

]

. (4.30)

To this end, the lower fractional transformation (LFT) withthe corresponding matrixP

are shown in Figure 41 as evaluated from Figure 40.

̃ 
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









Figure 41: H∞ design for CACC with FIR block.

4.6.4 Simulation Results

For simulations of CACC with FIR block model, it performs the same parameters and

input as in Section 4.4.2. In addition,T is considered same asφ .
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Figure 42: CACC with FIR block for string stability with 0.1s delay.
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Figure 43: CACC with FIR block For string stability with 0.3s delay.
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Figure 44: CACC with FIR block for string stability with 0.5s delay.

4.7 A Transformed StandardH∞ Problem

4.7.1 Introduction

A transformed standardH∞ Problem is used to solve theH∞ control of time-delay

systems by Qing-Chang Zhong [28]. This method is based on a transformed delay

in theH∞ design which is presented as a beneficial way to compute theH∞ norm with

delay. With this transformation, all robust control problems can be solved analogous

to the finite-dimensional versions. In addition, this transformation has a trade-off in

the performance such that the controller obtained has a quite simple and transparent

structure with a modified Smith-predictor. Moreover, thereare no additional hidden

modes in the Smith predictor. To this end, the practical significance of the approach is
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obvious.

Let,

G(s) =





A B

C D



 (4.31)

with the rational plant transfer functionG(s) =C(sI−A)−1B. The transformation uses

truncation operatorτT{G} and completion operatorπT{e−sTG} as defined in Section

4.6, such that these two operators map any rational transfermatrix into an FIR block.

4.7.2 Transformation

Consider the standard feedback configuration with delay shown in Figure 45. It con-

sists of the interconnected plantP and a general controllerK(s) with delay.

P

K

z

u
u ̃ y

w

e I-sT

Figure 45: General control setup for time-delay systems.

ConsiderP as

P(s) =





P11 P12

P21 P22



 (4.32)

The closed-loop transfer matrix fromw to z is:

TFzw(s) = P11+e−sTP12K(I −e−sTP22K)−1P21. (4.33)
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Then, the FIR block is represented as

∆1(s) = τT{P11}= P11− P̃11(s)e
−sT. (4.34)

Subtracting it from the feed-forward pathP11, as shown in Figure 47, we obtain

TFzw(s) = ∆1(s)+Tz′w(s). (4.35)

P

e K P

P

z

^ 

-sT
P

w y u

Figure 46: An equivalent structure.

That is,

TFz′w(s) = e−sT{P̃11+P12K(I −e−sTP22K)−1P21}. (4.36)
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Figure 47: The graphic interpretation of the transformation.

4.7.3 H∞ Control Design with a Single Delay

Assume that the realization of the rational part of the generalized process in Figure 45

is taken to be of the form

P(s) =











A B1 B2

C1 D11 D12

C2 D21 D22











(4.37)

then, we suppose that the system parameter matrices satisfythe following assumptions:

A1) (A,B2) is stabilizable and(C2,A) is detectable;

A2)





A− jωI B2

C1 D12



 has full column rank∀ω ∈ R ;

A3)





A− jωI B1

C2 D21



 has full row rank∀ω ∈ R ;

A4) D∗
12D12 = I andD21D∗

21 = I .

Assumption(A4) is made to simplify the exposition. Factually, only the non-

singularity of the matricesD∗
12D12 andD21D∗

21 is required.
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Now consider a Smith predictor-type controller:

K(s) = K◦(s)(I −∆2(s)K◦(s))
−1 (4.38)

as shown in figure 47. The predictor is designed to be

∆2(s) = πT{e−sTP22}=





A B2

C2e−AT 0



−e−sT





A B2

C2 D22



 (4.39)

then, the system can be re-formulated as





z′′

y′



= P̃(s)





w

u



 , (4.40)

u= k◦(s)y
′ (4.41)

with e−sTz′′ = z′, where

P̃(s) =











A eATB1 B2

C1 0 D12

C2e−AT D21 0











. (4.42)

The closed-loop transfer function fromw to z′ becomes

TFz′w(s) = e−sT TFz′′w(s) = e−sT
Fl (P̃(s),K◦(s)). (4.43)

Hence, theH∞ control problem

‖TFz′w(s)‖∞ < γ. (4.44)

is converted to

‖Fl (P̃(s),K◦(s))‖∞ < γ. (4.45)
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The solution of theH∞ control involves two Hamiltonian matrices;

HT =





A γ−2eATB1B∗
1eA∗T

−C∗
1C1 −A∗



−





B2

−C∗
1D12





[

D∗
12C1 B∗

2

]

, (4.46)

and

JT =





A∗ γ−2C∗
1C1

−eATB1B∗
1eA∗T −A



−





e−A∗TC∗
2

−eATB1D∗
21





[

D21B∗
1eA∗T C2e−AT

]

.

(4.47)

Theorem 2. There exists an admissible main controller such that‖Tz′w(s)‖∞ < γ, if and

only if the following three conditions hold:

(i) HT ∈ dom(Ric) and X= Ric(HT)≥ 0;

(ii) JT ∈ dom(Ric) and Y= Ric(JT)≥ 0;

(iii) ρ(XY)< γ2.

Moreover, when the conditions hold, one such main controller is:

K◦(s) =





AT −LT

FTZT 0,



 (4.48)

where

AT = A+LTC2e−AT + γ−2YC∗
1C1+ (B2+ γ−2YC∗

1D12)FTZT , (4.49)

FT =−(B∗
2X+D∗

12C1). (4.50)

LT =−(Ye−A∗TC∗
2 +eATB1D∗

21). (4.51)

ZT = (I − γ−2YX)−1. (4.52)

Furthermore, the set of all admissible main controllers such that‖Tz′w(s)‖∞ < γ can be

parameterized as

K◦(s) = Fl (M(s),Q(s)) (4.53)
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where

M(s) =











AT −LT B2+ γ−2YC∗
1D12

FTZT 0 I

−(C2e−AT + γ−2D21B∗
1eA∗TX)ZT I 0











(4.54)

andQ(s) ∈ H∞ , ||Q(s)||∞ < γ.

4.7.4 CACC Design by A Transformed StandardH∞ Problem

Consider our CACC model as shown in Figure 20 is designed byH∞ control with

min
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ(s)

S(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ 1, (4.55)

whereΓ(s) andS(s) are as seen in (4.3), (4.6) respectively. Then, the lower fractional

transformation (LFT) with the corresponding matrixP are as shown in Figure 48 as

evaluated from Figure 20.

P(s)=











0
1
H

G −G
D 0
G −G











Figure 48: Structure ofH∞ optimal control for CACC model.

The new control design of CACC model by a transformed standardH∞ problem is

evaluated as shown in Figure 49. Here,△1(s) is neglected due toP11 = 0 in CACC

model, so it has no any affect on the string-stability if there is△1(s) or not. △2(s) is

computed according to (4.39), then it is added to the closed-loop part in CACC model.

In addition, the conditions ofD∗
12D12 = I and D21D∗

21 = I are met by adding a new

row [0 1] in the 3rd column ofP for regularization (this means the extra output (Eo)
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is assumed to be the same as the model given in Figure 49). To this end, the control

design is formulated for:

min
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∞

≤ 1 (4.56)
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Figure 49: Structure of a transformed standardH∞ for CACC model.

4.7.5 Simulation Results

Consider a CACC model with delays using the transformed standard H∞ method. The

simulations are performed with the same parameters and input used in Section 4.4.2.

Figures 50, 50 and 50 show the impact of design by a transformed standardH∞ control

on the string-stability.

4.8 Discussion

In this chapter we provide many methods to find a useful solution for CACC design

with delay. Controller with predictor gives a good performance for obtaining string-

stability. In the first method, the dynamic and communication delay are converted

to the rational transfer function by using Padé-approximations with different orders.

Whereas, in the design by Smith-predictor or FIR blocks, it isassumed that predictor
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Figure 50: CACC design by a transformed standardH∞ with 0.1s delay.
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Figure 51: CACC design by a transformed standardH∞ with 0.3s delay.

helps moving all delays out of the closed-loop. For this reasonH∞ control design is easy

to compute. However, in the last method, the solvability conditions of the standardH∞

problem with a delay depends on a transformed delay in theH∞ design. The existence

of solutions then depends on two delay-independent algebraic Riccati equations and the

non-singularity property of a delay-dependent matrix.

4.8.1 Simulation Results for Comparison

In comparison experiments, we execute each simulation witha string of 2 vehicles,

considering the same parameters and input as in Section 4.4.2. Figures 53, 54 and 55

show that the controller design by using Padé-approximation and FIR blocks lead to a

faster response than the design by Smith-predictor or transformed standardH∞ control.
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Figure 52: CACC design by a transformed standardH∞ with 0.5s delay.

This is true for both small and large delays. Furthermore, wesupport the figures by

zooming in order to show the vehicle motion for each method.

4.8.2 Headway Time Problem

The main objective of CACC in vehicle platoon is to design controllers that obtain a safe

and stable vehicle following at small inter-vehicle spacing by a small headway time. In

order to check the headway for each method, we perform some simulations with dif-

ferent scenarios of delays. We consider same input and parameters as used in Section

4.4.2 . The experiments show that the controller design for very small delays by using

Pad́e-approximation or FIR block gives string-stability for a very small headway. How-

ever, the disadvantage of these two methods is seen when the delay increases. Then,

the headway needs to be large in order to achieve string-stability. In addition, it has to

be noted that the controller order can be very high when usingthe Pad́e-approximation

(see Table 10). Whereas, the Smith predictor works for all values of delays (large or

small) but can not support very small headway times. Finally, the transformed standard

H∞ method works for large headway times. The computation for small headway times

causes numerical problems in the solution of the Riccati equations. The tables below

show the results for different delays and methods.
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Method String-stability if headway≤
Pad́e-approximation 0.101

FIR block 0.11
Smith predictor 0.301

A Transformed StandardH∞ 0.5

Table 4: Control design for 0.1 delay.

Method String-stability if headway≤
Pad́e-approximation 0.32

FIR block 0.31
Smith predictor 0.301

A Transformed StandardH∞ 0.5

Table 5: Control design for 0.3 delay.

Method String-stability if headway≤
Pad́e-approximation 0.56

FIR block 0.53
Smith predictor 0.301

A Transformed StandardH∞ 0.5

Table 6: Control design for 0.5 delay.
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Figure 53: Design methods for string stability with 0.1s delay.
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Figure 54: Design methods for string stability with 0.3s delay.
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Figure 55: Design methods for string stability with 0.5s delay.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis developedH∞ controller design methods for Cooperative Adaptive Cruise

Control (CACC) in string of vehicles in platoon. Here, it is desired to realize a short

distance between vehicles in order to increase the traffic throughput, whereas driving

safety must be ensured.

The first part of this thesis presents the general backgroundabout CACC and ve-

hicle motion with the definition of string-stability. Moreover, theH∞ controller design

for homogeneous vehicles is introduced. The second part of this thesis, develops a new

H∞ control method that ensures strict stability for heterogeneous vehicle strings. That

is, velocity and acceleration disturbances in the string are attenuated along the string

even if the string is composed of vehicles with different dynamic properties. String

stability is analytically evaluated and also supported by results from simulation exper-

iments. The third part of this thesis focuses on the design ofCACC with delay by

H∞ control. In this thesis, different methods are suggested. In the first method, the

communication and dynamic delays are converted to rationaltransfer function by us-

ing Pad́e-approximation. In the second and third methods, the CACC is modified by

addition of a Smith-predictor or FIR block to the closed-loop section such that delays

are shifted outside the feedback loop. In the last method, CACCis designed by a

transformed standardH∞ problem, which is based on a transformed delay. Simulation

experiments are presented for each method and a comparison shows their advantages.

Some suggestions for future work, include the CACC design for heterogeneous

vehicles include time-delays and the CACC design in the case that communication and

dynamic delay are different.
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APPENDIX A

CONTROLLER TABLES

Control transfer function

K f f =
1431s3 +8485s2 +1.923104s+1.433104

s4 +1435s3 +8489s2 +1.923104s+1.433104

K f b =
3150s3 +1.337104s2 +1.517104s+3571

s4 +1435s3 +8489s2 +1.923104s+1.433104

Table 1: Controllers computation for experiment of chapter 2.

Control transfer function
K f f (0.1) =

5.13105s5+1.761107s4+2.182108s3+1.148109s2+2.291109s+1.496109

s6+1.466104s5+7.373106s4+1.642108s3+1.137109s2+2.329109s+1.552109

K f b(0.1) =
7.227105s5+2.373107s4+2.712108s3+1.197109s2+1.379109s+2.226108

s6+1.466104s5+7.373106s4+1.642108s3+1.137109s2+2.329109s+1.552109

K f f (0.2) =
5.317105s5+1.559107s4+1.614108s3+7.058108s2+1.265109s+7.751108

s6+7610s5+3.821106s4+8.511107s3+5.892108s2+1.207109s+8.042108

K f b(0.2) =
7.49105s5+2.085107s4+1.955108s3+6.907108s2+7.261108s+1.154108

s6+7610s5+3.821106s4+8.511107s3+5.892108s2+1.207109s+8.042108

K f f (0.3) =
1.845105s5+4.567106s4+3.948107s3+1.437108s2+2.239108s+1.237108

s6+3545s5+6.924105s4+1.459107s3+9.847107s2+1.953108s+1.25108

K f b(0.3) =
2.243105s5+5.228106s4+4.024107s3+1.142108s2+1.027108s+1.054107

s6+3545s5+6.924105s4+1.459107s3+9.847107s2+1.953108s+1.25108

K f f (0.4) =
1.88105s5+4.496106s4+3.686107s3+1.241108s2+1.805108s+9.45107

s6+2714s5+5.29105s4+1.115107s3+7.523107s2+1.492108s+9.55107

K f b(0.4) =
2.284105s5+5.135106s4+3.719107s3+9.487107s2+7.929107s+8.054106

s6+2714s5+5.29105s4+1.115107s3+7.523107s2+1.492108s+9.55107

K f f (0.5) =
1.915105s5+4.485106s4+3.551107s3+1.128108s2+1.548108s+7.703107

s6+2217s5+4.312105s4+9.085106s3+6.132107s2+1.216108s+7.785107

K f b(0.5) =
2.328105s5+5.116106s4+3.556107s3+8.353107s2+6.529107s+6.565106

s6+2217s5+4.312105s4+9.085106s3+6.132107s2+1.216108s+7.785107

K f f (0.6) =
1.952105s5+4.507106s4+3.48107s3+1.057108s2+1.381108s+6.543107

s6+1886s5+3.663105s4+7.717106s3+5.209107s2+1.033108s+6.613107

K f b(0.6) =
2.372105s5+5.136106s4+3.467107s3+7.622107s2+5.602107s+5.577106

s6+1886s5+3.663105s4+7.717106s3+5.209107s2+1.033108s+6.613107

K f f (0.7) =
1.991105s5+4.548106s4+3.447107s3+1.01108s2+1.264108s+5.719107

s6+1652s5+3.202105s4+6.745106s3+4.553107s2+9.029107s+5.78107

K f b(0.7) =
2.419105s5+5.179106s4+3.42107s3+7.122107s2+4.945107s+4.874106

s6+1652s5+3.202105s4+6.745106s3+4.553107s2+9.029107s+5.78107

Table 2: Controllers computation for first example of chapter 3.

A1



Control design by Smith-predictor
K f f◦ =

1431s3+8485s2+1.923104s+1.433104

s4+1435s3+8489s2+1.923104s+1.433104

K f b◦ =
3150s3+1.337104s2+1.517104s+3571

s4+1435s3+8489s2+1.923104s+1.433104

Control design by FIR block for 0.1 delay
K f f◦ =

1767s3+1.031104s2+2.271104s+1.656104

s4+1435s3+8804s2+2.146104s+1.656104

K f b◦ =
3519s3+1.483104s2+1.654104s+3618

s4+1435s3+8804s2+2.146104s+1.656104

Ĝ = 0.01361s2−0.25s+2.5
s3+2.5s2

Control design by FIR block for 0.3 delay
K f f◦ =

9.118107s3+5.196108s2+1.1109s+7.76108

s4+4.706107s3+3.086108s2+9.214108s+7.826108

K f b◦ =
1.561108s3+6.508108s2+7.061108s+1.361108

s4+4.706107s3+3.086108s2+9.214108s+7.826108

Ĝ = 0.1468s2−0.75s+2.5
s3+2.5s2

Control design by FIR block for 0.5 delay
K f f◦ =

6931s3+3.863104s2+7.834104s+5.328104

s4+1523s3+1.162104s2+5.455104s+5.329104

K f b◦ =
9969s3+4.087104s2+4.227104s+6053

s4+1523s3+1.162104s2+5.455104s+5.329104

Ĝ = 0.4961s2−1.25s+2.5
s3+2.5s2

Control design by a transformed standard H∞ problem for 0.1 delay
K f f◦ =

11.23s3+46.73s2+50.55s+9.568
s4+12.35s3+42.91s2+49.59s+9.568

K f b◦ =
1.17110−7s3+4.59910−7s2+4.18110−7s

s4+12.35s3+42.91s2+49.59s+9.568
Control design by a transformed standard H∞ problem for 0.3 delay

K f f◦ =
44.04s3+183s2+196.7s+36.05

s4+34.23s3+149.2s2+189.5s+36.05

K f b◦ =
4.4110−7s3+1.73310−6s2+1.57510−6s

s4+34.23s3+149.2s2+189.5s+36.05
Control design by a transformed standard H∞ problem for 0.5 delay

K f f◦ =
11.23s3+46.73s2+50.55s+9.568

s4+12.35s3+42.91s2+49.59s+9.568

K f b◦ =
1.17110−7s3+4.59910−7s2+4.18110−7s

s4+12.35s3+42.91s2+49.59s+9.568

Table 3: Controllers computation for experiment of chapter 4.
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Second-order Padé-approximation for 0.1 delay
K f f =

1768s7+2.225105s6+1.187107s5+3.192108s4+4.169109s3+1.8221010s2+3.5111010s+2.3861010

s8+1555s7+1.87105s6+9.836106s5+2.637108s4+3.468109s3+1.5881010s2+3.331010s+2.3861010

K f b =
3520s7+4.372105s6+2.292107s5+5.979108s4+7.305109s3+2.3771010s2+2.4351010s+5.211109

s8+1555s7+1.87105s6+9.836106s5+2.637108s4+3.468109s3+1.5881010s2+3.331010s+2.3861010

Second-order Padé-approximation for 0.3 delay
K f f =

2956s5+7.596104s4+7.663105s3+2.98106s2+5.247106s+3.348106

s6+1456s5+3.922104s4+4.257105s3+1.939106s2+4.461106s+3.348106

K f b =
5040s5+1.218105s4+1.115106s3+3.258106s2+3.112106s+5.699105

s6+1456s5+3.922104s4+4.257105s3+1.939106s2+4.461106s+3.348106

Second-order Padé-approximation for 0.5 delay
K f f =

7480s5+1.318105s4+9.503105s3+3.121106s2+4.897106s+2.892106

s6+1452s5+3.408104s4+3.236105s3+1.483106s2+3.714106s+2.892106

K f b =
1.169104s5+1.887105s4+1.193106s3+2.944106s2+2.563106s+4.138105

s6+1452s5+3.408104s4+3.236105s3+1.483106s2+3.714106s+2.892106

Fifth-order Padé-approximation for 0.1 delay
K f f =

1768s13+1.071106s12+3.138108s11+5.8241010s10+7.551012s9+7.1281014s8+4.9621016s7+2.521018s6+9.0031019s5+2.0911021s4+2.661022s3+1.1581023s2+2.2291023s+1.5151023

s14+2035s13+1.044106s12+2.869108s11+5.1431010s10+6.5221012s9+6.0641014s8+4.1731016s7+2.1021018s6+7.4661019s5+1.731021s4+2.2141022s3+1.0091023s2+2.1151023s+1.5151023

K f b =
3520s13+2.127106s12+6.214108s11+1.151011s10+1.4851013s9+1.3951015s8+9.6531016s7+4.861018s6+1.7131020s5+3.8811021s4+4.6481022s3+1.511023s2+1.5461023s+3.311022

s14+2035s13+1.044106s12+2.869108s11+5.1431010s10+6.5221012s9+6.0641014s8+4.1731016s7+2.1021018s6+7.4661019s5+1.731021s4+2.2141022s3+1.0091023s2+2.1151023s+1.5151023

Fifth-order Padé-approximation for 0.3 delay
K f f =

2956s13+6.081105s12+6.056107s11+3.828109s10+1.6961011s9+5.5021012s8+1.3271014s7+2.3691015s6+3.0531016s5+2.6971017s4+1.4881018s3+4.4241018s2+6.6771018s+3.8891018

s14+1636s13+3.169105s12+3.104107s11+1.954109s10+8.6711010s9+2.831012s8+6.8971013s7+1.2511015s6+1.6521016s5+1.5191017s4+8.9991017s3+3.0781018s2+5.7651018s+3.8891018

K f b =
5040s13+1.029106s12+1.017108s11+6.369109s10+2.7931011s9+8.9461012s8+2.1231014s7+3.7061015s6+4.6171016s5+3.8571017s4+1.9081018s3+4.3341018s2+3.7141018s+6.621017

s14+1636s13+3.169105s12+3.104107s11+1.954109s10+8.6711010s9+2.831012s8+6.8971013s7+1.2511015s6+1.6521016s5+1.5191017s4+8.9991017s3+3.0781018s2+5.7651018s+3.8891018

Fifth-order Padé-approximation for 0.5 delay
K f f =

7481s13+9.397105s12+5.72107s11+2.213109s10+6.0211010s9+1.2041012s8+1.8041013s7+2.021014s6+1.6611015s5+9.6621015s4+3.7281016s3+8.6731016s2+1.0961017s+5.6431016

s14+1560s13+1.965105s12+1.234107s11+4.974108s10+1.4191010s9+2.9991011s8+4.7931012s7+5.8131013s6+5.2871014s5+3.5111015s4+1.6261016s3+4.9011016s2+8.6571016s+5.6431016

K f b =
1.17104s11+1.234106s10+6.09107s9+1.838109s8+3.7221010s7+5.2121011s6+5.011012s5+3.1681013s4+1.2031014s3+2.3031014s2+1.7731014s+2.7791013

s12+1542s11+1.676105s10+8.779106s9+2.855108s8+6.328109s7+9.9261010s6+1.1091012s5+8.6651012s4+4.541013s3+1.4981014s2+2.8561014s+1.9431014

Table 4: Controllers computation for experiment of chapter 4.
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