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ABSTRACT

SAGLAM, Harun Bugra
Ph.D., Department of Electronic and Communication Engineering
Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

September 2017, 140 pages

An important aim of intelligent transportation systems (ITS) is the full or partial
replacement of human driver functionality. Cooperative adaptive cruise control
(CACC) is a recent technology for automating the longitudinal vehicle motion.
Fulfilling the condition of string stability, CACC enables safe vehicle following at
small inter-vehicle spacings and hence supports the formation of tight vehicle strings
for improving the road capacity. In its classical realization, CACC is limited to the
case where vehicle strings are already formed and all vehicles in a string follow each
other on the same lane of a road. However, practical driving situations include the case
of vehicles entering or leaving a string and performing maneuvers different from only
vehicle following.

This thesis is concerned with the effect of additional maneuvers due to lane changes
(vehicles entering or leaving) on the safety of vehicle strings. Lane changes include
gap opening and closing maneuvers and are subject to measurement inaccuracies and
sensor errors due to changes of the vehicle locations. Accordingly, the effect of these

maneuvers on the longitudinal vehicle motion has to be analyzed.



As the first contribution, the thesis argues that the described measurement
inaccuracies during lane changes can be modeled by input signal impulses of the
respective vehicle. Moreover, opening/closing gap maneuvers can be realized by the
generation of suitable feedforward input signals that are nonzero for a limited time.
Respecting that multiple lane changes can occur in a vehicle string, the thesis
proposes to study the effect of repeated input signals (impulses or time-limited input
signals) on the output signal norm of LTI systems. The second contribution of the
thesis is extending the definition of string stability to additional disturbances that can
be applied to any vehicle in the string. Respecting the same idea, the third
contribution of the thesis shows that a bound on the output signal norm of stable LTI
systems exists if the repeated input signals (impulses or time-limited signals) are
separated by a non-zero dwell-time. Additionally, an original computational
procedure for finding a tight bound on the output signal norm is provided. The fourth
contribution is the adaptation of these computational methods to the case of stable
LTI systems with multiple inputs and outputs. The fifth contribution is the
application of the obtained results to vehicle strings. It is shown that suitable
analytical bounds for the relevant output signals such as distance error or
acceleration can be determined and the results are validated by simulations. The last
major contribution is the development of new numerical methods for bounding the
matrix exponential function for large LTI systems based on the Jordan canonical
form and the Schur decomposition. The evaluation of such norms is needed when

computing the output signal norm of large LTI systems such as long vehicle strings.

Keywords: Intelligent Transportation System, platooning, cooperative adaptive
cruise control, linear systems, impulse inputs, time-limited inputs, vehicle following,

string stability, driving safety, feedforward signal, matrix exponential bound.
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Akilli ulagtirma sistemlerinin 6nemli amaglarindan biri insan siiriicii fonksiyonalitesini
kismi veya tiimiiyle devralabilmektir. Kooperatif otomatik seyir kontrolii (CACC)
boylamsal arag¢ hareketinin otomasyonu i¢in yeni sayilabilecek bir teknolojidir. Dizi
kararlilig1 kosulunu saglamak kaydiyla, CACC kiigiik ara¢ arasi bosluklarda giivenli
ara¢ takibini miimkiin kilmakta ve yol kapasitesini iyilestirmek hedefiyle siki arag
dizilerinin olusumunu desteklemektedir. Klasik gerceklenisiyle diisiindiiglimiizde,
CACC arag dizilerinin olusmus oldugu ve tiim araglarin yolun ayni seridinde birbirini
takip ettigi durumlarla sinirlandirilmistir. Bununla birlikte pratik ongoriilen siiriis
durumlan diziye giren ve ¢ikan araglari icermekte olup dizide sadece dndeki araci
takip etmenin yani sira farklt manevralar icra etmeyi gerektirir.

Bu tez arag dizilerindeki (araglar girerken ve ¢ikarken) serit degisikliklerinden dolay1
yapilan ek manevralarin arag dizileri iizerindeki emniyet etkileri ile ilgilenmektedir.
bosluk agcma ve kapama manevralarin1 igerecek sekilde serit degisikliklerini
diizenleyen kontrolciiler ara¢ lokasyonunun degisiminden dolayr Sl¢iim hatalar1 ve
sensOr bozulmalarina maruz kalabilmektedir. Uygun sekilde, bu manevralarin aracin

boylamsal hareketi izerine etkileri analiz edilmelidir.
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Ilk 6nemli katkis1 olarak bu tez, serit degisikligi sirasinda tanimlanan bu &lg¢iim
hatalariin ilgili aracin girdi sinyal impulse’lar1 olarak modellenebildigini
tartismaktadir. Bunun yaninda, takip boslugu agma/kapama manevralari uygun
tanimlanmais, sinirlt bir siire sifir-dis1 olan ileribesleme girdi sinyallerinin tiretimi ile
gerceklestirilebilmektedir. Bir ara¢ dizisinde birden fazla serit degisikligi olabilecegi
fikrine sadik kalarak, bu tez tekrar eden girdi sinyallerinin (impulse’lar veya zaman-
sinirlt girdi sinyalleri) LTI sistemlerin sinyal ¢ikti normlar lizerindeki etkilerinin
calisilmasini 6nermektedir. Bu tezin ikinci katkisi dizi kararlig1 tanimina herhangi bir
arag lizerindeki ek bozulmalar1 uygulayarak genisletmesidir. Ayni fikre sadik kalarak
bu tezin yaptig1 iigiincii katkiysa, eger tekrar eden girdi sinyalleri (impulse veya
zaman-sinirli sinyaller) sifir-harici bir ikamet-zamami ile ayrilmigsa kararli LTI
sistemlerin ¢ikt1 sinyal normu iizerinde bir sinir géstermesidir. Ek olarak, ¢ikt1 sinyal
normu {izerinde orijinal sekilde, siki bir sinir hesaplama prosediirii sunmaktadir.
Dordiincii katkisi ise, bu hesaplama yontemlerini kararh ¢ok-girdili ¢ok-¢iktili LTI
sistemler {lizerine adapte edebilmesidir. Besinci katkisiysa, elde edilen sonuglarin
ara¢ dizilerine uygulanabilmesidir. Mesafe hatasi, ivme hatas1 gibi ¢ikt1 sinyallerin
uygun analitik sinirlarin belirlenebildigi gosterilmekte ve sonuglar simiilasyonlarla
gecerli kilinmaktadir. Son biiyiik katkisiysa, biiyiik LTI sistemler i¢in matris
eksponansiyel fonksiyonlarin Jordan kanonik form ve Schur kirilimi1 temelinde yeni
numerik metodlar gelistirmesidir. Bu normlarin degerlendirme ihtiyaci, uzun arag
dizileri gibi biiyiik LTI sistemlerin ¢ikt1 sinyal normunun hesaplanmasi sirasinda

ortaya ¢ikmaistir.

Anahtar Kelimeler: Akilli Ulastirma Sistemleri, ara¢ dizileri, kooperatif otomatik
seyir kontrolii, lineer sistemler, impulse girdileri, zaman-sinirli girdiler, ara¢ takibi,

dizi kararliligi, siiris emniyeti, ileri beslemeli sinyal, matris exponansiyel sinir.
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CHAPTER 1

INTRODUCTION

Transportation systems form the backbone of national ecanprosperity, which
provides reliable transportation of passenger traffic aaigit movement for do-
mestic and international trade. The ever-growing demamdsaffic during the
last few decades exceeds existing road transportaticasimércture and resources.
This leads to an increased frequency and severity of traffiblpms, such as traf-
fic congestion, traffic accidents and environmental palutil]. Additionally,
a considerable number of people die from roadway crashedgimvays, and
growing traffic demand causes significant congestion on majman areas and
corridors in each country. While driver error has been carsid as the leading
cause of most crashes, limited transportation infrasireatapacity is one of the
primary reasons of congestion.

For these reasons, a robust solution in the future lies inieffi application
of presently available means of road transportation andsitriucture [2]. Intelli-
gent Transportation Systems (ITS) are a possible solubaduce these issues,
maximize the efficiency of existing transportation systexpacity, and to improve
traffic safety [3, 4, 5]. ITS can be classified as traffic infrasture based, vehicle
categories based, diverse roads based, vehicle to road basehicle to vehi-
cle based technologies [6, 7, 8, 9]. In particular, the mhiiciion of automation
into vehicles [10, 11, 12] and wireless communication in angxted vehicular
environment can improve safety and mobility efficiency. ycan also reduce
environmental impact of transportation systems.

It is observed that the most important factor for traffic lbgwvn is the hu-
man driving behavior [7]. That is, the design of control &gges for automatic



driving is essential to avoid traffic breakdown. Startingnfirautomation of vehi-
cles and highways, protocols for coordination of vehiclings are established.
Such protocols can either be entirely distributed baseckbicie to vehicle (V2V)
communication or they can include a central roadside umivéhicle to infras-
tructure (V21) communication. This thesis focuses on coajpee adaptive cruise
control (CACC) as a vehicle to vehicle based technology. Thetiomality of
CACC is based on signal communication and distance measuramemg vehi-
cles in a platoon. Its main aim is to improve the highway tedfow and driving
safety [13, 14, 15] by increasing the road capacity by smgrivehicle distances
(traffic throughput).

In the recent literature, CACC is commonly realized using poedsor fol-
lowing [14, 16]. That is, each vehicle obtains data from it®ct predecessor
vehicle [8, 13, 17, 18, 19, 20, 21, 22, 21, 23]. When realiziepiele follow-
ing, it is important to ensure driving comfort and safety.nele, it is important
that fluctuations in the motion of any vehicle are attenuatedg a vehicle string.
This intuitive requirement is formally described by the dibion of string stability
[8, 24, 25, 26, 27]. Hence, CACC has to be designed so as to iifitlg stability
and the literature provides various methods. Designs basedD-controllers
are proposed in [8, 13, 20, 23] anl,-control is employed in [22]. Model-
predictive control is applied in [9], [28] uses consensustiam and [29] uses
receding-horizon control to achieve string-stability speed-change maneuvers.
It is important to note that all the cited research works asel on the assump-
tion that vehicle strings are already formed. That s, diligles in a string already
travel back to back on the same lane of a road and disturbandbe string are
only introduced by the leader vehicle. However, the casesbfaoles entering or
leaving a string and the case of vehicles performing mansuliierent from only
following in a string are not considered.

Accordingly, this thesis identifies that it is important teadyze the effect of
additional disturbances within vehicle strings. Herebg tain focus is the ef-
fect of lane changes (vehicles entering or leaving) in Velstrings. Consider the
case of a new vehicle entering in front of some vehicle V. Whameting such



maneuver, it is the case that the leader vehicle of vehicleahges. Due to mea-
surement inaccuracies, this has the effect of a jump in tite sif vehicle V (for
example distance error) and can be modeled by an impulsé signal. In addi-
tion, the preparation of lane changes requires opening gdpsh are achieved by
applying certain feedforward signals to vehicle V. Sincehsmaneuvers can be
performed in a bounded time, time-limited input signalssrgable for this task.
Following the previous discussion and respecting the faait the described ma-
neuvers can occur many times in a vehicle string, the thetésnds the classical
setting of CACC to scenarios including repeated state jurmpgu(ise inputs) and
repeated exogenous time-limited input signals within etehstrings. In addition,
the thesis provides a detailed analysis of the effect of suithitional maneuvers
on the successor vehicles in order to establish drivingysafe
The main contributions of the thesis are listed as follows:

1. In the existing literature, the notion of string staliig defined for the case
of vehicle strings, where the only disturbance signal isotticed by the
leader vehicle. The thesis extends the definition of strtabikty to addi-
tional disturbances that can be applied to any vehicle istiveg. In partic-
ular, the case of impulsive and time-limited exogenousudistnce inputs
is considered and conditions for the verification of the ed#sl version of
string stability are derived.

2. Itis necessary to quantify the effect of additional disances for the prac-
tical application of CACC in vehicle strings. Modeling a vdhistring
with CACC by a stable LTI system, the thesis develops generéhaods
for computing norm bounds on output signals when applyimgaged in-
put impulses and time-limited input signals to stable LT$teyns. In this
context, it is desired that output signals such as the distamror between
vehicles remain bounded in order to ensure driving safegp édmaneuvers
are repeatedly executed. Accordingly, the thesis first shibvat a bound
on the output signal norm exists if the repeated input sg)(ialpulses or
time-limited signals) are separated by a non-zero dwelétiMoreover, an



original computational procedure for finding a close (fgtirghtly) bound
on the output signal norm is developed.

. Vehicle strings have a special interconnection strecamnd each vehicle is
associated with an input and output signal. To this end, dmeputational
methods in item 2. are adapted to the case of stable LTI sgstéth mul-
tiple inputs and outputs.

. The bound computations in item 2. and 3. are formulatedjémeral LTI
systems. In accordance with the aim of studying lane chaimgeshicle
strings, the developed methods are applied to vehiclegstias the second
main contribution of the thesis. Suitable analytical baifat the relevant
output signals such as distance error or acceleration asgndi@ed and
validated by simulations. Together, it is shown that a satt@mfortable
driving distance is guaranteed even if an arbitrary numlbéormitudinal
maneuvers is performed in vehicle strings with many vehicle

. The developed computational methods require the nuailer@nputation
of a certain bounding function for the norm bound of the ingpulesponse
matrix. It turns out during the thesis study, that this boaodhputation
becomes infeasible for large LTI systems. To this end, thsithproposes
new numerical methods based on the Jordan canonical forrtharfsichur
decomposition for bounding the matrix exponential functior large LTI
systems.

This thesis is organized as follows. Chapter 2 provides backgl infor-

mation regarding vehicle strings, CACC and string stabillty.Chapter 3, lane

change maneuvers in vehicle strings are described, saitattiels are presented

and string stability under additional disturbance sigmalavestigated. Chapter 4

determines analytical bounds for the effect of repeatedtisjgnals on the output

signal norm of LTI systems. Chapter 5 applies the generaldhocomputations to

vehicle strings and evaluates driving safety under repdatee changes. Chap-

ter 6 develops computational methods for bounding the isgrgsponse matrix

norm. Chapter 7 gives conclusion and discusses directiorigtioe work.
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CHAPTER 2

BACKGROUND

The main subject of this thesis is the use of cooperative tagapruise control
(CACC) during lane changes. This chapter provides the negebsakground
information about vehicle following and CACC. Section 2.1 agluces the con-
cept of vehicle following together with CACC. A state space nmiéolethe CACC
control loop is derived in Section 2.2 and string stabilgyntroduced as an im-
portant condition for safe vehicle following in Section 2S3ection 2.4 provides
simulations of vehicle strings for illustration.

2.1 CACC and Vehicle Following

CACC is an extension of standard Adaptive Cruise Control (ACC) 330, feed-
ing additional data by wireless communication to allow $tastance automatic
vehicle following. CACC takes an important role in the futuraffic control,
where vehicles follow each other in so-calleshicle stringsat small inter-vehicle
spacing [13, 26, 32] as shown in Fig. 2.1. As a special featlata is commu-
nicated from one or more predecessor vehicles. Differergimes such as the
leader-following, the predecessor following or the leaplesdecessor following
strategy are investigated in the literature. In this thegesemploy the predecessor
following strategy, where vehicle— 1 provides state information to vehidleia
V2V communication. The practical advantage of this stnaieghat communica-
tion is only required with the closest vehicle, which in@es the reliability and
allows for small response times. Hence, this is the mostisasitegy [14, 16, 33]
that is most frequently used in the recent literature.

Fig. 2.1 shows the common vehicle following scenaiig, g; andv; denote
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Figure 2.1: Vehicle following scenario in a vehicle string.

the length, rear bumper position and velocity of vehiclespectively. Heré; is
the gap between vehicie- 1 and vehicle that is defined as

di(t) =gi—1(t) —ai(t) — Li. (2.1)

Itis assumed thal; can be measured by vehicleia sensors (RADAR or LIDAR)
[6, 13, 33]. In addition, data such as the acceleration avoigl of the predeces-
sor vehicle can be obtained via wireless (V2V) communicatimtroducing the
desired distancd, ; of vehiclei, the distance errag is evaluated as

& =0dr—(g-1—0). (2.2)

In this scenario, the vehicle spacigg 1 — g should be small in order to in-
crease the traffic capacity. On the other hand, a sufficiemthespacing must
be guaranteed in order to ensure driving safety. This taskeaccomplished by
usingcooperative adaptive cruise contf@@ ACC) with the property o$tring sta-
bility that ensures the attenuation of fluctuations in the motiamlefider vehicle
along the vehicle string [8, 26, 27]. In particular, boundsthelL,-norm or the
L.-norm of the distance err@& can be established [8].

A frequently used spacing policy for CACC is given by the consteeadway
time policy [33] as shown in (2.3).

diy =ri+hwv. (2.3)



Here,d;; in (2.2) represents the desired spacing between vehicleand vehicle
i. It depends on thdistance at standstillirand theheadway time jh That is, at
zero velocity, the desired distancerjsandd; ; increases proportional t§. The
spacing errog (t) is then equal to:

&(t) =di(t) —dir(t) = (Gi—a(t) —ai(t) —Li) — (ri +hw(t)). (2.4)
Regarding the vehicle plant, we employ the linear model

_Qi(s) e ®s
~Ui(s)  (1+sm)s?’ (2:3)

Gi(s)

that is frequently used in the recent literature [21, 23, 33is the time constant
of the driveline dynamicsnd @ is theactuator time delayhat can be different
for each vehicle. This model is obtained from a nonlinear model of the driveli
dynamics based on feedback linearization and low-levetirobf84, 35, 36]. The
low-level control loop ensures thatis constant over a wide range of normal driv-
ing situations [13, 37] which are predominant for CACC. The oardbjective in
this chapter is, as in the literature, only for the case of bg@emeous strings, where
all vehicles have the same dynamic properties and use tleenggaolicy in (2.3)
[20, 33]. That is, we assume th@t = G with 1 = T and@ = ¢ for all vehiclesi.

CACC controller is designed for the feedback loop in Fig. 2.8rd{the input
signalu;_1 of vehiclei is transmitted to vehicleé via V2V communication and
D = e %S represents a potential communication del&y.= 1+ hsis used to
implement the spacing policy in (2.3) with the constant emadh andK is the
controller transfer matrix which can be written as

K= |:Kff be}. (2.6)

Ks¢ is a feedforward controller transfer function for contirodl acceleration data
by wireless communication ariky is a feedback controller transfer function for
controlling the spacing errag(s) between the desired distance and the actual
distance. Then, the transfer functibns found from Fig. 2.2 for ali:
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Figure 2.2: Feedback loop for CACC.

. Ui(s)  DKyi+GKpp
re)= Ui—1(s)  H(1+GKpp) &9

2.2 State Space Model of the CACC Loop

Consider the feedback loop in 2.2. No communication delagssimed, where
D(s) =1. As abasis for state-space design, the following vehiddetis adopted:

& Vi1 —Vi—ha
Vil = g (2.8)
& —2ai+ Tu

The controller state-space model can now be formulateddonrdance with
Fig. 2.2.

N A i+ [bl bz}

Y L (2.9)

Ckni+ [dl dz}

whereAg, Ck, Yk i andby, by, dq, d» depend orH,, controller designed. Moreover,
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Yk i is the unfiltered controller output and its effect for theteys can be generated
as

- 1 i d]_ _ d2 CK )

Ui ——HUH-FUl—l—i-Fei—I—Fr)l (2.10)

Using (2.8) to (?.10) and defining the overall system state as

X = [ei Vi & U Ui} with errorg, velocity v;, acceleratiorg;, control input
u; and controller statg; of vehiclei, the following vehicle model in the string, is
thus obtained:

e] [o -1 -nh 0o o]fe] [o10 0 d]fegu]
Vi 0 0 1 0 O0f|v 000 O O |[vig
al=10 0 - I o||a|+|0 00 O O |a:
i i, o0 o -} ic]|u 0 0 0 #dy Of [uiq
hi] b 0O 0 0 A[n] [000 b Of[ni1
Ao Ay
(2.11)

whereA is the part of the dynamic matrix that depends on the own &atach
vehicle, whileA; is the part of the dynamic matrix that depends on the predeces
state for each vehicle (interconnection).

The first vehicle in the platoon, not having a preceding Vehisamely the
leader vehiclei(=r) employs the open-loop controller to direct the platddeing
the above state definition, the leader reference vehicleshmody be formulated
as

O 01 Of|o 0
vl =100 1 +|0]|u
v vr r (2.12)
a| |00 —7]|a| [z
=
A B,

with A, andB;, reflecting the dynamic matrix of the leader vehicle and tipait



vector for the exogenous input of the leader vehicle. The signal connections of
a vehicle string are shown in Fig. 2.3.

Uy

X1 X2 Xi-1 Xi

Vehicle 1 L—y—» Vehicle I Rs Vehicle 2 oz Vehicle i | y;

Figure 2.3: Normal string with input.

Individual models are derived in (2.11) and (2.12), congidgethe single state
space model for a vehicle. Regarding a vehicle string witlctmaections in Fig.
2.3, a string witm vehicles and the output matrixis modeled as

Xr = Ar X + Br Uy
X1 = Arr X +AoX1 + B ur
X =A1X_1+AoX, 1i=2,....
X=AX+Bu (2.13)
yi =Gix. (2.14)
with
| (A 0 0 0 0] B,
X1 Al,r AO 0 0 0 B;
Xx=|x|; A= 0 A A O 0|; B=|0
: Lo (2.15)
| Xn | | 0 0 0 - AL A | O]

G=[0 .- 0C O -0

The control objective is to ensure that the (closed-loopjale string dynam-
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ics exhibits an asymptotically stable equilibrium for whit holds that [38]

lime(t)=0 (2.16)

t—o0

for ur(t) = 0. This control objective implies that all intervehicle tdisce errors

& (t) converge to zero when the velocity of the leader referenbeleey; (t) goes

to a constant velocity; (which is the case fou, = 0). As a result, it holds that
tlmvi (t)=w (2.17)

Now, (2.16) and (2.17) together imply that all vehicles dollat the desired
inter-vehicle distance with equal velociy.

2.3 String Stability

2.3.1 Definition

The major goal of vehicle-following in dense traffic, (whichessential using
CACCQC), is subject to requirements related to safety, comfaitsaalability with
respect to string length [26]. In order to fulfill these raganents, the vehicle
string is desired to exhibit string-stable behavior. The CAGGst be designed
such that disturbances are attenuated along a vehiclg.strivat is, a small vari-
ation in the speed or acceleration of any vehic#hould not lead to increasing
variations in the motion of its follower vehicles. This isudeplent to distance
errors that are not amplified upstream from vehicle to vehicla vehicle string
[33].

The stated condition is captured by the notion of strichgtistability in the
literature [20, 31, 33, 39]. Here, the most general definitd string stability
is given in [33] and is hence employed in this work. The dabnitconsiders a
state-space model of the vehicle string witlvehicles! The homogenous vehicle
string model (2.13) is a special, linear case of the foll@nimerconnected state-

INote thatN € N can be any integer and the dynamics of different vehicleseatifferent in
the general definition.
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space system:

X = fr (X, Ur), (2.18)
X1 = f1(X1, %, Ur), (2.19)
Xi = fi(Xi,%i-1),1=2,3,...,N, (2.20)
yi = hix). 2.21)

representing a general, possibly nonlinear, heterogenederconnected system
with the same state relation structure as the model (2.18)e b, is the external
input signal of the reference leader vehiclgis the state vector of each vehicle
andy; is the respective output signal foe=1,2,...,N. Note that,u; in (2.19)
might be dropped i), is embedded intd\ as part of the system state such that
the reference input is moved in front of the spacing polieysfer function 1H

of Fig. 2.2. The overall state vector is written %)@ X1 X2 o0 XN T, where

o denotes the transpose. Then, the general string stabdfigition starts from
an equilibrium solutiorx for u; = 0 of the system in (2.18) to (2.21). Two notions
of string stability are defined as follows.

Definition 1 (%} string stability) The system i{2.18)to (2.21)with the equilib-
rium solutionx is

1. string stable if there exist clasg” functionsa, 8 such that for any initial
state X0), any exogenous input signgl @ .2 and i€ {1,...,N}, it holds
that

[1yi = CiXl|., < a(l[urll.z,) + B(I[x(0) = X[]).

2. strictly string stable if 1. holds and additionally fodak {2,...,N} it holds
that

1Yi —CiX|| 2, < [lYi-1—Ci—1X|| 2,

The string stability conditions can be explained as follows of Definition
1 considers theZ, norm of the output deviation from the equilibrium output for
each vehicle. This deviation should be bounded by.#jenorm of the applied

12



input signalu, (exogenous input) and th&, norm of the deviation of the initial
condition from the equilibrium point. In addition, strictring stability in 2. of
Definition 1 requires that disturbances along a vehiclegtare attenuated along
the vehicle string. That is, th&}, norm of the follower deviation must be smaller
than that of the predecessor.

The most relevant norms for the practical application of Digfin 1 are the
Z-norm and theZ,-norm. Sufficient conditions for string stability are dexi
for both norms in the following sections.

2.3.2 Conditions for.%, String Stability using CACC

Now, we look at the case of th&, norm where the energy content of a signal
is measured.%> string stability is defined such that the energy (represkthie
the % norm) of the output signal is not larger than the energy oirnpet signal
[40]. Limiting the discussion to the case of linear systemd eonsidering (s) is
the frequency-domain equivalent of tl-induced norm, then the conditions in
Definition 1 can be simplified to operator norms. To this ene,use the transfer
functions with the external inputto the vehicle, the accelerati@or the veloc-
ity v as relevant output signal for string stability. Next, we defthe so-called
string-stability transfer functionls, ; wheren € u,a,v. Assuming a linear system
representation with input or a or v of the preceding vehicle, we note that

U _ A9 _ Vi)

ri<5) = Uifl(s) - Ai,]_(S) B Vifl(s) .

(2.22)

for the transfer function between the control inputs of eprdreding and fol-
lower vehicles. Herebyi(s) denotes the Laplace transform of the signé),
Ai(s) denotes the Laplace transform of the sigadl), Vi(s) denotes the Laplace
transform of the signal;(t).

To this end, the model (2.15) is first formulated in the Laplaomain as
follows:

Yi(s) = R(s)Ui(s) + Ci(s)x(0), (2.23)
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with x(0) denoting the initial (time-domain) condition, aRds) = Ci(sl — A) 1B
andO;(s) = Ci(sl — A)~L. R(s) is the transfer function formulated in the Laplace
domain, according to interconnected system reference in@und selected output
depending oIE;.

Combining (2.22) and (2.23), by factorization, the striragodity complemen-
tary sensitivity is

Fi(s) =R(s)R1(s) " (2.24)
Here, it is assumed thal%’,,,l(s)‘1 exists. The following theorem can now be
stated.
Theorem 1(.%, Stability). The system i string stable if:
1. ||P(jw)]||n., exists;
2. ITi(jow)||n, <1,i=2,3,...,N;
with ' (s) as in(2.24) || e || denotes the K-norm.

A proof of Theorem 1 is given in [8]. When considering homogmrsestrings
and assuming that 1. in Theorem 1 is fulfilled by the plant,usirhold that

IF(jo)|n, < 1. (2.25)

2.3.3 Conditions for %, String Stability using CACC

Until now, only %> string stability has been considered. As [33] suggestegs-ph
ically, this can be motivated by the requirement of energgigation along the
string. Obviously, the induce&’, norm can be used instead. In the scope of ve-
hicle following, the motivation for using this norm would b&ffic safety, since
the %, norm is directly related to maximum overshoot. The condgifor %%,
string stability can be analogous with Definition 1. The @iénce is taking the
%1 norm of string impulse response.

Theorem 2 (%, Stability). The system i, string stable if
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1. ||p1(t)|]| & exists

2. [[u®)ll4 < 1.

p1(t) andy(t) denote the impulse responses corresponding ts)RndTi(s).

As [40] suggested, usingy(t)|| # in the time-domain to obtain analytical
results even in cases with relatively simple transfer fiomst can be quite diffi-
cult to analyze. Fortunately, it is possible to replaggt)|| », < 1 by sufficient
conditions:

Corollary 1. The system i, string stable if

L. [Ipa(t)|[.# exists
2. [[Fifln. <1

3. y%(t)=0

That is, it is only required to check th¢, norm of ';(s) and to verify if the
impulse responsg(t) is non-negative.

In summary, %> string stability is satisfied with proper controller syrgigein
accordance withi[i(s) ||~ < 1. %, string stability needs the additional condition
of a non-negative impulse response. Although it is diffiboilfulfill this condition
by design, it turns out in this thesis that the used contreleitomatically fulfill
this condition. Regarding the practical meaning of both aooras, with_# string
stability, we only know thaf|ui||> < ||ui_1||]2. ConcerningZ string stability, we
additionally know that|ui||e < ||Ui—1]|c-

There are various controller design methods for stringilgtabising CACC.
Considering the feedback loop in Fig. 2.2, a recent methodesig to usé.
controller synthesis [33]. The method is based on the reqment that

IF(s)lfo < 1. (2.26)

In addition, [33] considers the closed-loop sensitivity as

Ei(s) G(1—DKjy)

s) = Ui_1(s) - 1+GKjsp (2.27)
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In order to fulfill string-stability, (2.26) has to be ful@t. At the same time, itis
desired to minimize the position errait). Hence, théd. control problem

r(s)
s)

min

< .
) 1 (2.28)

[ee]

is solved. Hereby, both the vehicle and the communicatiteycsre described by
Pade approximations, yielding a sufficiently accurate plaghe frequency inter-
val of interest. The lower fractional transformation (LFand the corresponding
matrix P are shown in Fig. 2.4.

i u;
r- .
€;
P }—>
-

1
H
-G
0
-G

QAo Q o

K

P=
-

Figure 2.4: H., control design for CACC.

In this thesis, we generally usé, computations for LTI plants. The input
Uj_1 iS an exogenous input representing the disturbance aatitigeassystem. The

outputy; ande are outputs of the system, whose dependence on the exogenous

inputu; which we want to minimize. The outputs are the measuremeatsnake
on the system which we shall use to choose our iguhich in turn is the tool
we have to minimize the effect ®f_; to uj andeg. At the same time, we do not
want the states to become too large while we try to regulatpedormance. The
effect ofu;_1 onu; after closing the loop is measured in terms of the energp-atte
uation and the worst disturbanag 1 in accordance with oufs string stability
criteria. Moreover, in line with theZ, string stability condition, thél, norm of
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the transfer functiom should be less or equal to a bound value, 1. In particular,
the function of Matlab/Simulintainfsyn is applied to minimize the infinity norm

in (2.28) while obtaining a stable feedback loop in Fig. ZBe partitioned plant

P in analogy to [33] is used for this purpose.

2.4 Simulations for CACC with String Stability Conditions

Our simulation platform is based on MATLAB/SIMULINK to evalte the per-
formance of CACC for homogenous vehicle strings. Heterogemstiings under
CACC are explicitly studied in [41]. An example experimentes@mplished for
7 vehicles as shown in Fig. 2.5. In order to quantify valueg ofve refer to prac-

@ N

e B ¥
Vehicle 4

1 = i
Vehicled " Vehicle 2 Vehicle I

-u"-" -.' =
& el

fi 5 = -
Vehicle 5

'ﬂ-"-_-‘—l" E: = (i
" Vehicle 7 "~ Vehicle 6

Figure 2.5: Vehicle string with 7 vehicles.

tical experiments in [26], where a value D& 0.4 is obtained. That is, we choose
1, = 0.4 for each vehicle, assume wireless communication timeydgla 0.02s.
and desigrK according to (2.28). The string stability complementanysstvity
ri(s) =T (s) (independent off is illustrated in Fig. 2.6 where (2.26) is satisfied.

Impulse Response of I

Figure 2.6: Impulse response 6f.
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Reference throttle acceleration input

0 2 4 6 8 10 12 14 16 18 20
time [sec]

Figure 2.7: Input signalu, of the leader reference vehicle.

In our simulation, the leader vehicle is provided with thpuhsignal in Fig.
2.7. That is, sharp accelerations of 3 f#sd—3 m/< are given in order to study
a difficult vehicle following scenario. The simulation réss shown in Fig. 2.8.
It can be seen from the vehicle positions that each vehidl@as its predecessor
at a safe distance. In addition, the velocity and accetsrgilot suggest that the
disturbance provided by the input signal is attenuatedgaibe string (the respec-
tive signal amplitudes decrease along the string). Thatigt string stability is
confirmed.

In contrast, string stability is violated in the scenarid=td. 2.9. After chang-
ing the communication delay t® = 0.5s., performing the same maneuver of the
leader vehicle 1, it now holds that the acceleration andoigiof the follower ve-
hicles are amplified which is clearly undesirable. This ig/&@milar scenario of
ACC where this method is always criticized as creating trgdfics. It is evident
that the signals of vehicle 2 (which is represented by themgtme) are ampli-
fied compared to its predecessor vehicle 1 (which is reptedday the blue line)
and each vehicle follows its predecessor vehicle with dioption. In addition
the position plot (left-upper side) shows that the vehiftdi®w each other at an
extremely unsafe distance.
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7 vehicles—position

2 4 6 8 10 12 14 16 18 20
. . time [sec]
7 vehicles—distance error—
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7 vehicles—desired acceleration input— 7 vehicles—acceleration—
10 15 20 0 5 10 15 20
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Figure 2.8: Vehicle string with 7 homogenous vehicles performing arebaa-
tion/deceleration maneuver and CACC design that fulffis strict string stabil-
ity. Each line represents the motion of one vehicle.

7 vehicles—position

2 4 6 8 10 12 14 16 18 20

time [sec
7 vehicles—distance error— [sec]
T 200
= :
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el
(7
5 10 15 20 0 5 10 15 20
time [sec] time [sec]
7 vehicles—desired acceleration input— 7 vehicles-acceleration—

[m/s?]
[m/sq

time [sec] time [sec]
Figure 2.9: Vehicle string with 7 homogenous vehicles performing arebea-
tion/deceleration maneuver and CACC design that viol&festrict string stabil-
ity. Each line represents the motion of one vehicle.
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CHAPTER 3

LANE CHANGE MANEUVERS IN VEHICLE STRINGS

This chapter considers the different phases during a laaregeh Section 3.1 gives
a general description of lane change maneuvers. The camptdta lane change
and initiation of a lane change are addressed in Sectionn®l 33, respectively.
A first result regarding the effect of multiple lane changesiérived in Section
3.4.

3.1 Lane Change Maneuver Description

The main motivation of this part of the thesis is the comborabf results on
string-stability and the possibility of lane changes. Tis #nd, we developed a
protocol for lane change between at most 3 vehicles. The Ides is illustrated
in Fig. 3.1.

The lane change maneuver consists of the following seclestéips

1. Request of vehicle B to vehicle A (Fig. 3.1 (a)),
2. Vehicle A generates a sufficient gap for vehicle B (Fig.(8)),

3. Vehicle B performs the lateral motion into the gap andfrestivehicle E
when the lateral motion is completed (Fig. 3.1 (c)),

4. Vehicle E closes the gap to vehicle D (Fig. 3.1 (d)).

Hereby, itis important to note that steps 1 and 3 require comecation among
the vehicles and steps 2 and 4 involve changes in the longéluahotion on differ-
ent lanes. That is, the planning of the desired vehicledtajees for these actions
without adverse effects on string stability is of utmost ortpnce. Fig. 3.1 (a)-(b)
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Figure 3.1: Protocol for lane changes: (a) Initial situation, (b) Gapeation,(c)
Lane change, (d) Final approach.

describe the phase of initiating a lane change (gap open{ey)s the phase of
completing lane change. Finally, (d) is the phase of finataagh (gap closing).

An important topic on multi-lane highways is the possigilitf lane changes
and their effect on the traffic flow. Usually, lane changingstivated by merging
behavior at on-ramps or off-ramps, bottlenecks and speotadriver decision
depending on the traffic situation and the desired speedoufimout our study
we have focused on lane changes of particular vehicles, orotiee microscopic
models. Here, the main idea to study lane-changing beheiordevelop a lane-
changing rule set depending on the headway differencecildifference, safety
distance.

The recent literature [9, 13, 33, 42, 43] considers the kuaignal control of
vehicles so as to maintain string-stability of a platoonethicles based on CACC.
As aresult, large fluctuations in the vehicle flow are avoidegla shortcoming of
the approaches on CACC, it has to be noted that these approaetfesnaulated
for car motion on a single lane. That is, lane-changes ofckehare not captured.
This thesis focuses on the effect of lane changes and we heagstigated the
longitudinal motion during lane changes in detail. The vkds affected by a lane
change maneuver are all the followers.

Moreover, various studies in the literature focus on theaféf lane changes
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on multi-lane highways. For example, the works in [44, 49,p¥6vide different
models of the lane-changing process of human drivers anducbextensive sim-
ulations. The main focus of these studies is the validatiamadfic flow models
that include lane changing behavior based on empirical ddtlaough such stud-
ies potentially enable the analysis of different traffiziattons incorporating hu-
man drivers, they do not include possible improvement dficrlow by control.
Research on the control of lane changes is performed for tiieydar situation of
lane changing due to merging at on-ramps [47, 48, 49, 50,41 hese research
works propose different strategies for the pre-computatiovehicle trajectories
in order to enable safe merging without collisions. Howgmene of the existing
approaches includes an investigation of string-stabaityen performing merging
maneuvers.

Besides all, safety is the main important fact that after amyiver of lane
changes vehicle following safety margins should not beateal. Therefore, the
gap opening, lane change completion and gap closing phasédsdll be calcu-
lated for error accumulations.

3.2 Completing a Lane Change

3.2.1 Maneuver Description

The existing methods in [13, 33] focus on fluctuations in tasecwhere a string
is already formed. [53] focuses on CACC based lane changerdekigteraction
protocols, which mimic the driver interactions as much asspige. However,
the effect of modifying a vehicle string by adding or remayione or multiple
vehicles after a lane change is not included in the discns3dide next consider
this problem in the framework developed in this thesis.

To this end, we analyze a lane change maneuver of vahickg. 3.2. Before
the lane change, vehidle- 1 should follow vehicleé — 1 at a distance &  in order
to provide a sufficient gap for vehiclgo enter the lane. Using the CACC design
in Section 2.1, the motion of vehicle+ 1 depends on the distance measurement
g_1—0ir1—Ljr1. After the lane change, vehicie- 1 should follow vehicle at
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Figure 3.2: Lane change scenario in a vehicle string.

the distancel; ; and now uses the distance measurenentgi 1+ Li;1. That s,
the distance measurement of vehiclel switches from vehicle— 1 before the
lane change to vehicleafter the lane change.

Assuming that vehicleenters the gap precisely at the desired distance—
gi = dir such that alsm; — gi;+1 = dir, the lane change does not generate any
disturbance for the motion of the vehicle string. Neverbks| in practice, an
imprecise positioning of vehicleafter the lane change is to be expected. That
is, a jump from 2y — (gi_1 — qgi4+1) to di;y — (0 — Gi+1) in the distance error
measurement is observed from the perspective of vehielk

Additionally, in accordance with the model (2.11), there && jumps in ve-
locity and acceleration also. Vehicles are assumed to belecated by intelligent
road steering units and as expected from any sensor andtcegpstems, their
speed measuremewntor acceleratiom control may have errors practically at any
time.

3.2.2 Simulation Experiment Validation

Noteworthy is the observation that the main effect of switghis a state jump
when a vehicle joins or disappears. This can be modeled byt impulse
o(t) with an appropriate input vector. For example, consideategump of the
errorex(t) of vehicle 2. This corresponds to an input impulse with inpegtor
by, = [0 -0 1 0 ... 0 ! where the 1 is at the position of the error state
e. This means that we want to study the impulse response forsah impulse
input and the possible error jumps.

We know that the impulse response can be computed as thesénkaplace
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transform of the corresponding transfer function. Hence,ewaluate the trans-
fer function from the impulse input to the relevant outpgrsils (for example
impulse ate; and effect orey, Vo, az, Uy, €3, V3, etc.).

S ) T —a e T = e e S
‘L 4 \\) p 3 ))) [ 1 )‘)) [Leada’\
=) ey i — ~ e L i

Figure 3.3: Lane change scenario in a vehicle string.

Focusing on a single vehicle merge scenario as illustratédg. 3.3, second
vehicle enters in a very aggressive manner such that positror of 3n, velocity
error of 3n/sand acceleration error ofd/s?. Initial velocity is 1am/sand desired
following distance isg-h+r = 10-0.84 5= 13m. An error of more than wh
is observed in Fig. 3.4 such that the safety distance forclefollowing may be
violated due to human reaction time in an emergency sitnatio

Velocity Response of all 4 vehicles

Position Error Response of all 4 vehicles

14, . 4 :
— vehiclel —vehiclel

— vehicle2(merger) : : —vehicle2(merger)
: : — vehicle3 3 f o\ | ——vehicle3
w3l S —— vehicle4 —— vehicle4

12f e

1H /)
= )
£ ; ; ; g0
>11Ff f e N d @
g 5
o = -1F
[ 1%
- g
10 -2F

time [sec] time [sec]

Figure 3.4: Single vehicle merging into seconé¢ 2) position with errors.

In another scenario, it is assumed that the merger vehitérsemto the first
position following the leader. Selection of first vehicle@oying the closed-loop
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controller, enables us to observe the worst-case scerfathe whole string.
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Figure 3.5: Vehicle merge scenario into firgt€ 1) position of the string.

Then, for our next scenario in Fig. 3.5, merger vehiclesreotéhe first posi-
tion of string following each other for a given time intenddlsec, in other words
t =0,10,20,30,40,50. In each merging maneuver, an acceleration erromgsi
is given and the distance error and acceleration of eacleieakiobserved in Fig.
3.6

Error Response of all 4 vehicles Acceleration Response of all 4 vehicles

: — vehiclel(merger)
: —— vehicle2

— vehiclel(merger)
—— vehicle2

distance error [m]
=

nd
o

acceleration [m/s?]

_15 H H H H H H H H
0 10 20 30 40 50 0 10 20 30 40 50
time [sec] time [sec]

Figure 3.6: Repeated vehicle merging into leader position with 10see tirter-
val and acceleration errors. The responses of vehideaBd 5 are not illustrated
because they are near to zero due to string stable design.

Now, the duration between each merge is shortened as 4sethanwords
for 48sec., at = 0,4,8,...,48 new vehicle merges into the first position of hte
string. The interesting result here is that, even we applgym@pulses for very
short times, the output signal remains bounded/limitedeanoéptable in practice.
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From the string stability definition, norm of each disturbamight be expected
to be added cumulatively, e.g. for a numbek mhpulse inputsk times the norm

of jump could be expected. However, due to the time evolubiaihe signals, the
superposition of each output is added up after a significacdyg of the respective
signal. This bound can only be observed after simulationasgn Fig. 3.7 and

needs an analytical evaluation.

Error Response of all 4 vehicles
— vehiclel(merger)
— vehicle2

osH Vo Yo VN

Acceleration Response of all 4 vehicles

: — vehiclel(merger)
: — vehicle2

[

nd
3

distance error [m]
acceleration [m/s?]

-15
0

10 20 30 40 50 0 10 20 30 40 50
time [sec] time [sec]

Figure 3.7: Repeated vehicle merging into leader position with 4sec intezval
and acceleration errors.

When both Fig. 3.6 and 3.7 are compared, a bound will be cordgartalyti-
cally which we will define in Chapter 4 and 5.

3.2.3 Model

In this section, the particular interconnection structiréhe vehicle string is de-
rived. First, we only need to consider vehicles that enteardhe leader vehicle
i =r, illustrated in Fig. 3.5. Hence, we do not need to look at tiilerhodel but

only the part of the model starting from vehidle- 1. Here, a state jump of any

26



vehicle and output at any vehicle is modeled as

% A0 O O 0 0 O B,
% AL Ay 0O - 0 0 O B,
X 0 A 0 0 0 B
S R x| e @)
Xn-1 0O 0 0 - AL A0 O Bn-1
% 0 0 0 - 0 A A B,
Yi=0 G 0 -~ 00 0x (3.2)

We next evaluate the case of more than one input or the coohinipet sce-
nario which represents a simultaneous or asynchronous amncbvelocity jump
in a single or more than one vehicle. This scenario changemput matrixB as

follows:
B, 0 0 - 0 0 | [ u]
0 B> o - 0 0 Uz
0O 0 By --- 0 0 u
C ) ° . . _3 (3.3)
O O O te anl O Unfl
O o0 o -- 0 By Un

3.2.4 Multiple Lane Changes

We would like to analyze the effect of multiple lane changedifberent vehicles

in the string. Accordingly, the jump in any parameter erriteraa lane change
at a time can be represented by the impulse irfpuiThe effect is observed in
the output signay;(t). Moreover,k+ 1 lane changes in front of vehicler 1 at
defined timedy,t1,...,t in the input directions/, V1, ...,V are represented by
the input signagﬁzoé(t —ty)vy. It has to be noted that the removal of a vehicle
from a vehicle string follows the same line of argument. Tibaive identified the
problem of applying repeated impulse inputs to a linear tinvariant system in
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order to represent the integration of multiple vehicles imeamoval of multiple
vehicles from a vehicle string.

Assuming that the/-th impulse can be applied in an arbitrary input direction
vy € RP | the successive application of input signajs= d(t —ty,)v, for a given
time sequencéy );_ is represented by the signal

[¢]

U(tv);ozo(t) = Zoé(t —tv)VV. (34)

In this expression, impulse input signal is applied at time, .

3.3 Initiating-Preparing Lane Change

3.3.1 Maneuver Description

The vehicle string, CACC, stability and control structure wgd@&ned in Chapter
2. In addition to normal driving conditions for the string,is trivial that some
vehicles would like to leave or merge into the string. Theapgbetween vehicles
have to be opened or closed if vehicles want to enter or leae&iating platoon as
illustrated in Fig. 3.8 (a)-(b). Here, vehidat positiong; opens a gap to vehicle
i — 1 such that the new vehich can safely enter the platoon.

As discussed in Section 3.2.2, additional maneuvers causs$ate jumps can
have a negative effect on vehicle following. Similarly,dtexpected that maneu-
vers such as opening/closing gaps have an effect on thevialieehicles. Closing
gaps in vehicle strings that are already formed are inva®dyin [54]. They an-
alyzed two controllers, one to manage the approaching nvanea the leading
vehicle and the other to regulate car-following once thaatehoins the platoon.
However, they have not considered a gap opening creatiaglissirbance for the
string. Moreover, [55] explains the effect of opening gapgraffic flow stability.
Analyzing different scenarios for opening multiple gapsimehicle string, it is
concluded that gaps should not be opened simultaneoustgar to avoid traffic
breakdown. Hence, they propose a method to schedule theuremsdor opening
gaps while keeping the traffic throughput high. This schedsildirectly related
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Figure 3.8: Vehicle Platoon: (a) vehicle following; (b) gap opening foeparing
a lane change.

with our dwell-time findings for multi-merge and leave sceos To the best of
our knowledge, [55] is the first method for the feedforwargdige for opening
gaps and the scheduling of lane change maneuvers.

In our setting of initiating or preparing lane changes, vsoaxtend the gen-
eral design by an additional feedforward input signal as»agenous inpuu}°f
similar to [55] as depicted in Fig. 3.9. This input signalydes a means to ad-
just the vehicle position for opening gaps as described ¢gn 9. In order to
preserve the possibility of safe following, we also introduhe feedforward ref-
erence distancgl’, wherebygl" andul® are computed such that

Q' (s)=G(s)U (s).

The feedback loop for vehicle following is not affected by thpplication ofu}°f
since the desired distance signal is adjusted accordinigetapplied inpu'uiff :
As a consequence, when applyiuggfor opening a gap, vehicle i keeps following
vehiclei — 1 but at an increasing distance.

Since this input signal is used together with the CACC designéabicle fol-
lowing, the important property of string stability is preged. Computation of
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Figure 3.9: Feedforward loop for each vehicle.

feedforward input signal is explicitly defined in [55] andsamed to exist in this
study. In summary, gap opening/closing feedforward veHimllowing is realized
by the CACC architecture of Fig. 3.9

Vehiclei + 1 follows vehiclei assuming that both vehicles have the same plant
transfer functiorG. Vehiclei + 1 receives the control signafl via a filter transfer
function K¢ from the predecessor vehicle by vehicle-to-vehicle comuoation.
Here,D represents a potential communication delay.

An example signal for closing a gap within 10 s is shown in BidO. It has
to be noted that, whilel is computed for the maneuver of vehi¢lehere is an
effect on the distance errey, 1 of the follower vehicle + 1 via the stable transfer
function

Ei;1(s) G-DKxG
uf(s)  1+KpG '

(3.5)

Here,Ej 1 andUiff are the Laplace transforms @f,. 1 and uff, respectively. This
effect is small when closing a single gap as can be seen ir8HiQ.

3.3.2 Simulation Experiment Validation

Now, we would like to compare gap opening and closing respoo$ the vehi-
cle string with and without the feedforward signal. Thersgris depicted in Fig.
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Figure 3.10: Input and error signal when closing a gap.

3.8 where tha'" vehicle opens the gap for entrance of vehinle In both sce-
narios, 6 vehicles simulation is given. Initial velocityrfthe vehicle platoon is
20 m/s. Vehicle lengths are 5m and the bumper distance isneskl0 m. Head-
way constant is taken as 0.8. Thus, the overall followingatice evaluates as
0.8-20+10+5m=31m. In this scenario vehicie- 1 is additionally analogous
to Vehicle C of 3.1. Entering/Leaving Vehicle is Vehicle Bdarehiclei is Vehicle
A. The others are successive follower vehicles in the platoo

Option 1: No feedforward (step reference change)

First, as illustrated in Fig. 3.11, simulation starts widjpggeneration maneuver
of vehiclei. At time=4 sec, a new vehicle (green) enters the string. rAltat, at
time=8 sec, the same vehicle (green) leaves the string dndi@e starts to close
the gap. Just after the gap is closed, a gap open maneuveeatli?sec starts. At
time=16sec, the new vehicle once again enters and the swimgues to drive.
The simulation is very widely analogous to real life sitoatithat in dense
traffic conditions people frequently enter and leave a gtrifhat is, the realistic
case of a lane change occurring every 4 sec is simulated. rib@kcobservation
here is that the acceleration maneuvers done by vehisl@ot logical. Accel-
erations around 20/s” with the relevant velocities are not feasible for current
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Figure 3.11: Realizations of Gap Opening/Closing without Feedforwardutnp
Signal

vehicles on the road. Physical limitations, e.g. actuasurstion is discussed
in [56]. Additionally, as we consider accelerations of ab?u 3m/s? as com-
fort limit for human passengers while very sudden jump frabkii/h velocity
reaching 14@m/h is not comfortable, that makes this scenario both not ldgica
and practical. Hence, this fact supports the usage of adesdfd input as will

be illustrated next.

Option 2: Computed feedforward signal for Gap Open/Close

Second, as illustrated in Fig. 3.12 we apply the gap operuegazio with feedfor-
ward input. Formulation of optimal control problem was agk$red explicitly in
[57]. In this simulation gap open maneuver startSrae= 2 sec. This maneuver
continues untitime= 12 sec, after then vehicles approach their normal following
positions with identical velocities. As observed from decation of each vehicle
the response of each vehicle is acceptable and comfortafiheiman passengers.
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Figure 3.12: Realizations of Gap Opening/Closing with Feedforward Inpgt S
nal

3.3.3 Model

The model is the same fétr matrix of (2.15). Here, gap opening or closing input
on any vehicle is selected I8 and the output at any vehicle is modeled as

X A, 0 0 O 0 0 O B,
X1 Ay Av 0 0 0 0 O B,
Xo 0 AL Ap O 0 0 O B,
x3 =10 0 A A 0O O Ofx+| Bz |ut) (3.6)
X1 0O 0 0 0 - AL Ay O B 1
%] [0 0 0 0 -~ 0 A A | Bn
=0 G 0 --- 0 0 O x (3.7)

We next evaluate more than one input or combined input stewaich repre-
sents simultaneous or succeeding gap open or close masdarsingle or more
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than one vehicle. This scenario changes the input vé&&s follows:

B, 0 0 - 0 0] [ u |
0O B, 0 - 0 0 uo
0 0 By - 0 of|u
> S (3.8)
0 0 0 Bn__‘]_ O Un—l
0 0 0 0 Byl | u

3.3.4 Multiple Gap OpeningClosing

Single vehicle and reference vehicle models are given il{22.12). Vehicle
string was, in lumped form, denoted by (2.15) wahe R™" state matrix and
n= N x 8+ 3 due to our specific plant model and controller synthdsis Rk
input matrix havingk inputs.C; € R9" output matrix havingj outputs.

Since (2.15) describes a controlled system, the magis typically Hurwitz.
However, this may not be the case for the ma#ixrelated to the leader reference
vehicle in case of vehicle following. As indicated by (2.1fy instanceA; has a
marginally stable mode associated with Hence, the system matrixin (2.11)
is not Hurwitz. For our analysis, we remove the poles at zerarginally stable
modes) by a specific choice of similarity transformationToy! AT, T-1B,CT
for A, B andC respectively where system transfer function remains umgpée
After the transform, now state matrix has two less statesreviae can call as
n—2.

We next evaluate the scenario of more than one input or nhelitiputswhich
may be due to dynamic conditions of the string where sevestaicles may enter
and exit consecutively.

We formally introduce the set of input signals with time-iiy < c as

%, = {u:R — RP|u(t) =0fort <O andt >t }. (3.9)

Then, the successive application of an input signal %4, for a given time
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Figure 3.13: Vehicle String with additional exogenous inputs

sequence is represented by the signal

0

u(tv)ff:o(t) = ZOU(t —tv). (310)

3.4 Extended String Stability

String stability notion is first explained in Section 2.3. Wleedisturbance occurs
at the beginning of the string it should not grow or amplifyilhpropagating
through the string. In the extended case now, there are awoganput signals
from any vehicle in addition to impulses (state jumps) wtsbbuld not be ampli-
fied along the string.

As described in (3.4), the error introduced when switchiegieen leader
vehicles affects the motion of the follower vehicles anddse® be quantified.
Hereby, the impulse signal is assumed to be composed ofpfeultnpulses in the
following form

Ni
= ij O(t —tjj 3.11
W glrj ( i) ( )

rij represents the weight of the-th impulse and;j represents the time of the
j—th impulse applied to vehiclie= 1,...,N. Note that an initial condition; g of
vehiclei can be represented by an impulse input with werght= x; o and at the
timetj; = 0.

Using the control architecture in Fig. 3.9, we extend thmgtstability con-
ditions in Definition 1 to the case of vehicle strings with didethal exogenous
inputs and error impulses as depicted in Fig. 3.13. In thitesy, each vehicle is
affected by maneuvers of all its predecessor vehicles. i§etid, we reformulate
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the state space model in (2.18) to (2.21) usif‘lgindwi fori=1,...,N:

%q = f1(xq,ul) +wy, (3.12)
xi = fi(Xi,%i—1, U )+W.,|_23 N, (3.13)

Definition 2. Consider the vehicle string in Fig. 3.13 with the exogenousiti®ip
u}cf and error impulses wfori =1,...,N and the corresponding state space model

:
in (3.12)to (3.14) Let x= [er x| - XL] be the lumped state vector and

T
let X = [)‘(rT x| - 7({,} denote the constant equilibrium solution far 0.
Then, the system fulfills

1. extended?}, string stability if there exist class¢” functionsa, 8 such that
for all input signals I;T €%y j=1,...,Nandie {1,...,N} and all error
signals win (3.11)such that]|rij|| < o, it holds that

Iyi(t) ~ GiXl|.2, < a( z GIPARN:L zznrk, %[l) (3.15)

2. Extended strictZ}, string stability if 1) is fulfilled and for all i= 2,...,N, it
holds that

1yi(t) —=CiXl|.z, < [IYi—1(t) =Ci—1X]|.#,. (3.16)

That is, extended string stability requires that the outimviation (in terms of
the Z,-norm) of each follower is bounded by the size of the predemesputs
(in terms of Z,-norm). Extended strict string stability requires the #@ddal
condition that the output deviation (in terms of tl&-norm) of each follower is
bounded by the size of the output deviation of its predecessucles (in terms
of the_Z,-norm) as in the previous Definition 1.

The conditions for extended string stability in Definitiorae formulated for
general interconnected nonlinear systems representedtayeaspace model. We
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next derive the relevant conditions for the case of lineatesys according to the
control architecture in Fig. 3.9. Here, the relevant transiinctions are

Ui~ (8), 1eNj<I (3.17)
Yi(s) B q
Yifl(s) - l_Yi (S) - PYi:Ul(S)PYifl,Ul(S) ) I € N7 (318)
Yi _ . o
ng =By (9) =Rw(9R,1,(9 =Ty Ty, TeN,j<i. (3.19)

Using these transfer functions, two theorems for extendi@uagsstability of
vehicle strings with linear vehicle modedse derived for the case of th& norm
and the case of th&;, norm.

3.4.1 Conditions for Extended String Stability and the.#, Norm

Theorem 3. Consider the control architecture in Fig. 3.9 with the exogenm-
puts Lf fori=1,...,N. The system fulfills extended string stability if and only
if

max|[Ry u;|[eo < o0. (3.20)
and extended strict/, string stability if and only if

[[Rsulleo <o fori=1,....N, (3.21)
Hry|H°°§17 |:2;7N (322)

Proof. Extended string stability({IF) Assume that (3.20) holds and lpfax ;=
Mad i ||Ry oo, O = Ma < [|©Yi, il ANCBAMax: = Madg (51— A7) 2|,

A represents the dynamics matrix of the state space modelhotlee. Note
that pmax exists by assumption in (3.23max exists because of (3.23) and (3.19)
and amax exists since(s| — A~ is a stable and proper transfer matrix for all
i=1,...,N. It has to be shown that 1. in Theorem 3 is fulfilled. We knownfro
Fig. 3.9 and (3.17) that
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Yi(8) =Ry u (UM (8) + -+ Ry (U () +Ci (s — A) 1w
+TiCi_1(sl —Ai_1)71V\/,_1_|_ o Ty T2Cy (sl —A1)71W1.

Then,

N;
ff ff
[1Yi(t) = GiXl|.2, < PmaxU1 || + -~ + Pmax| Ui || 2 + [|Cil | amax > [[Fij ]
=
Ni—1 N>
+1|Ci—1/| Bmax@max Z [ri—gjl| 4+ +[|Cye|| Bmax@max Y [|r2jl|-
=1

=1
(3.23)

Choosing the class?” functionsa(z) = pmaxz and B(z) = max{1, Omax} 8maxz,
(3.15) directly follows.

(ONLY IF) Assume that there existsjac {1,...,i} such that|R,; ||~ does
not exist. Then, (3.23) directly implies that there is nassla” function to fulfill
(3.15). Hence, extended strict string stability is viothteHence, (3.20) is the
necessary and sufficient condition for extended stringlgtain the case of linear
models.

Extended strict string stability(IF) Assume that (3.21) and (3.22) hold. It has
to be shown that (3.15) and (3.16) are fulfilled. First not®y ,, =Ty, -- Ty, B u;-
Hence’HPYi»Uj ‘00 < HryiHOO Hryj+1Hoo HPYj,Uj H°° < HPYJ',UjHOO <ooforalli= 1,...,N
andj <iwith (3.21). Thatis, may<i||Ry.u;|| < 0, which implies that (3.15) is
fulfilled. In addition, (3.16) directly follows from (3.22)

(ONLY IF) Assume that (3.21) is violated. In that case (3.B)iolated and
also (3.15) is violated according to the proof for extendethg stability. Now
assume that (3.22) is violated. This directly implies tt3a16) is violated. Hence,
(3.21) and (3.22) are the necessary and sufficient condifionextended strict

string stability in the case of linear models. n

We finally show that a successful controller design satigfythe conditions
in Section 2.3 directly implies extended strict string dighif the output signals
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Yi = U; ory; = g are chosen. Considering the vehicle model in (2.5), it habds f
eachi=1,...,N that

o [[Ri(9)le = [[1f] = L1 if yi = u,
o (RIS = Il lle = 1if i = &
’ 1+ sT;
In addition, ||y, (s)||e < 1 for all i =2,...,N by design. That is, the control
architecture in Fig. 3.9 directly supports the achievenoéeixtended strict string

stability with the suitable design method according to B@ac2.3. Hence, we can
conclude that the signal norms of follower vehicles are lolean

3.4.2 Conditions for Extended String Stability and the.%,, Norm

The conditions in Section 3.4.1 are formulated for the cdde @tring stability,
which is concerned with the energy dissipation along thegstin this section, we
derive conditions fok, string stability, which captures the maximum overshoot.

Theorem 4. Consider the control architecture in Fig. 3.9 with the exogesnm-
puts lf fori =1,...,N and the error signals win (3.11) The system fulfills
extended%. string stability if and only if

mgﬂ!pyi,u,-\ll < 0. (3.24)

and extended strict/, string stability if and only if

Ipyiullr <o fori=1,...,N, (3.25)
Il <1, i=2,...,N. (3.26)

Proof. Extended¥%., string stability:(IF) Assume that (3.24) holds and l@hax:=
max, j<i || Py.uj| |1, Bmax:=max, j<i[|8i,Yj||1 andamax:=max [ £~ *((s1=A) ™) ll1,
A represents the dynamics matrix of the state space modehimfgeand.Z 1 (e)
represents the inverse Laplace transform. Note phak exists by assumption in
(3.27), Bmax eXists because of (3.27) and (3.19) aqgy exists sincgs| — A)~1
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is a stable and proper transfer matrix foriak# 1,...,N. It has to be shown that
1. in Theorem 4 is fulfilled. We know from Fig. 3.9 and (3.17ath

¥i(9) =Ry (UL (S) + -+ + Ry (9 UF (9) +Ci (s1 - A) Wi
+TiC_1(sl— Ai—l)_l\M_1+ oo i ToCy (s _Al)_lwl.

Using Young’s inequality for convolutions, it follows that

Ni
1¥i(t) —Gixl| 2, < Pmax| U] |2, + -+ Pmax! U] || 2, +1ICil| max > il
=1

Ni—1 N>
+1/Ci—1/| Bmax@max z [ri—gj|| + - +[|Cy|| Bmax@max z [[r2jl]-
=1 =1

(3.27)

Choosing the class?” functionsa (z) = pmaxz and B(z) = max{1, Omax} 8maxz,
(3.15) directly follows.

(ONLY IF) Assume that there existsja {1,...,i} such that|py, | |2 does
not exist. Then, (3.27) directly implies that there is nassla” function to fulfill
(3.15). Hence, extended strict, string stability is violated. Hence, (3.24) is the
necessary and sufficient condition for extended stringlgtain the case of linear
models.

Extended strict string stability(IF) Assume that (3.25) and (3.26) hold. It has
to be shown that (3.15) and (3.16) are fulfilled. First not®y y, =Ty, -- Ty, R u;-
Hencel [py,u ll1 <11l Wy alla 1Pyl < 1Py, lle < o foralli=1,...,N
andj <iwith (3.25). That s, max<i || py,u;||1 < e, which implies that (3.15) is
fulfilled. In addition, (3.16) directly follows from (3.26)

(ONLY IF) Assume that (3.25) is violated. In that case (3.Biolated and
also (3.15) is violated according to the proof for extendethg stability. Now
assume that (3.26) is violated. This directly implies tt3a16) is violated. Hence,
(3.25) and (3.26) are the necessary and sufficient condifionextended strict
string stability in the case of linear models. n

We finally show that a successful controller design accgrdinSection 2.3
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Figure 3.14: Gap Opening Simulation Satisfying Extended String Stibili

can be used to address extended strict string stabiliteibtitput signaly; = u;
ory; = & are chosen and the additional conditionygf) > 0 is fulfilled. Itis a

general fact [40] that

Ml < 1 andy(t) > 0= |lyl[s < 1. (3.28)

Considering the vehicle model in (2.5), it holds for eaehl, ... N that

o [|pii(s)]|l1=11]r=1ify;i = ui,

1 :
o [Ipi(9)lr= H1+5Ti|\1:1 ifyi = a&.
In addition, ||, (s)||1 < 1 for alli = 2,...,N because of (3.28). That is, the con-

trol architecture in Fig. 3.9 directly supports the achieeat of extended strict
string stability with the suitable design method in Sect® and the additional

condition thaty(t) > 0.

3.4.3 Simulation Experiment and Discussion

An illustrative practical scenario is simulated for ba#» and %, cases of ex-
tended string stability. A sawtooth signal for opening a géihin 10s is applied
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Figure 3.15: Gap Opening Simulation with 5times Repeated Sawtooth Inatit S
isfying Extended String Stability

to vehiclei as shown in Fig. 3.14. The effect on the physically relevastadce
error and acceleration to follower vehigle- 1 is observed in the same Fig. 3.14.
In numerical comparison terms, then the computed norm sadue tabulated in
Table 3.1.

Table 3.1: % and.%. norm comparison for input output signals of platoon

% Norm | %, Norm
Sawtooth Input 45.58 2.5
Distance Error 0.01 0.0006
Acceleration 38.85 1.91

Let class=#" term coefficient isa(z) = z for being simple, then the differ-
ence in the left and right hand-side of equation is585- 0.01 = 45.57 and
2.5—0.0006= 2.4994 for £, and %, cases respectively. In summary, the en-
ergy and maximal values of both signals for vehiclel is bounded by the input
sawtooth signal in the same figure, that conforms to (3.1%3, shown that ex-
tended string stability satisfied. Next, we run the sameting@peated five times
within 5sec as shown in Fig. 3.15.
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In numerical comparison terms, then the computed norm saue tabulated
in Table 3.2.

Table 3.2: % and_%, norm comparison for 5times repeated input output signals
of platoon

% Norm | % Norm
Sawtooth Input 72.02 2.5
Distance Error 0.02 0.0007
Acceleration 44.67 1.64

It can be observed that numeric difference or ratio of inpudutput is getting
higher (from single input to five times repeated input cage5&/38.85=1.17 to
72.02/44.67=1.61) when the repetition of input signal éased. It is clear that
superposition of repeated inputs makes the differenceehigepending on the
number of feedforward inputs applied, which is practicétlseseen in big traffic
platoons. Then itis evaluated as using only (3.15) is insefiit for the calculation
of a bound. Besides that, it is observed in the simulationsttiee should be a
computed bound which we will elaborate in the Chapter 5.
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CHAPTER 4

GENERAL BOUND COMPUTATION

We briefly addressed vehicle strings and their internalceffen Chapter 3. We
discussed maneuvers, had simulations and confirmed ting stibility notion.
We have observed the simulation of multiple lane changegjapdpen or close
maneuvers. Intuitively, we observed a bound for each saeirestead of an ac-
cumulation of the output signals then applying repeatedanaers.

Oriented from LTI vehicle models we will analytically conmeuLTI signal
bounds and first establish existence results and then cemputeric bound val-
ues in the forthcoming sections. In Section 4.1 we look atuisgs which would
be related to completing lane changes and in Section 4.2nitasitask will be
related to gap open-close maneuvers. Since these two szepaly study indi-
vidual systems (single vehicle), we will extend the restdtsover multiple inter-
connected systems in analogy to general strings with nieliphicles in Section
4.3.

4.1 Impulse Input Repetitions

In this section, we consider the case of repeated input isegulor the case of
completing lane changes as discussed in Section 3.2. Weifogide a general
development for LTI systems and then show how the developedlts can be
applied to lane changes of vehicles.
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4.1.1 Notation and Problem Statement

We focus on LTI systems with the parameters in Table 4.1 aadsthte space
representation

X =AX+Bu

, _Cx (4.1)

Table 4.1: Relevant parameters and functions of the linear system 1. (4.

A e R™N dynamics matrix
B e R"™P input matrix
C e R9" output matrix
X(t) € R" system state
u(t) e RP input signal
y(t) e RY output signal
r(s)=C(sl—A)~1B | transfer matrix
y(t) =Ce\'B impulse response matrix
4 subspace of stable LTI systems

In addition, we use the notation in Table 4.2 for matrides R™<", vectors
v € R" and functionsf : R — R.

Table 4.2: Notation for matrices, vectors and functions.

ajj entry of Ain row i and columnj
specA) set of eigenvalues of matrix
Omax(A) maximum singular value of matri&
a(A) :=max{ReA|A € spe¢A)} | spectral abscissa of matmx

Vi i-th entry of vectow

IVl[2= /31 Vil? vector 2-norm of vectov

[| ]|, =SuR=q|f(t)] Lo-norm of functionf
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4.1.2 Norm Definition and Verification of Norm Properties

Norms for the impulse response of the LTI system in (4.1) aresiclered in [58,
59, 60]. Specifically, [58] introduces

17| = tsgg){amax(v(t))} = tsgg{amax@ ¢''B)}. (4.2)

as the maximum excursion of the impulse response matrixeof Th system in
(4.2).

In this section, we study the case where repeated impulsgsate sepa-
rated by adwell-timeA > 0 are applied to the LTI system in (4.1)We write
(ty)D_g= (to,t1,...,tn) for a sequence withl + 1 terms and introduce the @}
of monotonically increasing finite time sequences with ditigie A

QN = {(t)D)olto > 0,ty 1 —t, >AYv=0,...,N—1}. (4.3)

Then, the set of monotonically increasing infinite time sawes with dwell-time
Ais

Qa ={(tv)y—olto > 0,ty11 —t, > A, Vv =0,1,...}. (4.4)

We assume that the-th impulse can be applied in an arbitrary input direction
vy € RP and define

( Umax( Sv_oY(t—1ty) VV) )

IMlea=  sup

(tv)%_oeQat>0 max, || ||2
= sup <omax( > vt —t\,)v\,)) : (4.5)
(tv)s_o€Qat>0,[|vy|[2<1 V=0

In words, ||T'||L, o quantifies the maximum amplification of an input signal in
the form of an arbitrary number of repeated impulses, thapied to the LTI
system in (4.1). Hereby, impulses of the found(t —t,) that are separated by

1The application to the case of vehicle strings is found in 5.1
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at leastA are applied at timeg,, v =0,1,.... Accordingly, the excursion of the
output signay(t) is bounded by the maximum magnitude méx,||» of the input
impulses:

YOIz < [IT][L.a max|[vy|[2. (4.6)

The main subject of this chapter is the solution of two protderegarding
M ||L..a in (4.5). First, it is desired to identify a subspace of LTs®ms with
transfer matriX” such that (4.5) defines a norm. Second, it is intended to ctenpu
a close bound fofil"||., a-

We first present a new result for the summation of right-elifhonotonically
decreasing non-negative functions that will be used foetrsuation of [I||., a
in (4.5).

Lemma 1. Let f: R — R be a function with ft) =0fort <O, f(t) >0fort >0
and f(t) > f(t’) for all t,t’ with t <t’. Assume thah > 0. Then, it holds that

(o) ]

sup z fit—ty) = z f(vA). 4.7)

(tv)S:OEQAJEOv:O v=0
Proof. We first show that, for anit € N,

sup % ft—ty) = i f(va). (4.8)

(tv)K_oeQk t>0V=0 v=0

It holds thatf (t —tx) assumes its maximum value figr=t sincef(t) is mono-
tonically decreasing. In addition, since the time instaptare separated by the
dwell-time A for v = 0,...,k, the maximum value of (t —t,) is obtained for
ty=tx— (k—v)A=t—(k—Vv)A. Thatis,

k k k k

sup ft—ty) = ft—t+(k—v)a) = f((k—=v)A)=Y f(vh)
(tv)¥_qeQk t>0 vZo VZO vZo vZo
Taking the limit fork — oo, (4.7) directly follows. ]
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It is now possible to show thafl™ ||, o constitutes a norm for stable LTI sys-
tems in.Z.

Theorem 5. Assume that the LTI system (#.1) belongs to.# and letA > 0.
Then||l'||L, a is bounded and|l"||., A is a norm for.Z.

The proof of Theorem 5 uses the following lemma that is adhfstan [61].

Lemma 2. Consider the LTI system i@.1) and writept = —a (A). Then, for all
€ > 0, there exists an nx 0 such that for all t> 0,

Omax(Y(t)) < me =&)L, (4.9)

We next prove Theorem 5.

Proof. We first show that there existska < « such that||I"||_, o < K. Using
(4.5), the triangle inequality foomax and Omax(Ww) = ||wl]2 <1forv=0,1,...,
it holds that

M |Lea = sup (Umax( z y(t —tv)Vv)>
(tv)ﬁzerAytZOaHVvHZSl VZO

[oe]

< sup Gyt —t)).
(tV)T/o:OEQA,IZO (vZO max( ( V)))

Additionally, there arem, & > 0 such thaiomax(y(t)) < me K-8t (Lemma 2).
Then, f(t) := me (=8t fyffills the conditions in Lemma 1. Hence,

00

s (3 onalyt-t)) < s (3 ft-1) = 3 18

(tv)P_o€Q >0 *v=0 (tv)2_o€Qa,t>0 V=0
Applying the geometric series, we get

® ® m
_ —(u—e)vA:
HFHLWASVZO]C(VA) Vzorr{e 1_e (H-8)D

=K < 0. (4.10)

We finally show that|I" ||, a is a norm for.Z.
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Absolute Homogeneity_etk € R. Then,

KT [ L2 = sup (Umax( z ky(t —tv)Vv))
v=0

(tV)%o:()EQAJ‘ZovHVVHle

=K sup (oma Y vit-t)W)) = KM L.a
v=0

(t\/)%o:()EQA7tZOa||VVHSl

Triangle InequalitylLet 1, > be transfer matrices of stable LTI systems. Then,

8

P14+ T 2L = sup <0max( (Vl(t—tv)+V2(t—tv))Vv)>
(tv)y—_o€QAL20,[|wy[[2<1 V=0
< sup (Umax< Z Vl(t_tv)Vv)>
(tv)y—_o€QAL>0,[|wy[[2<1 V=0
+ sup (amax( Z yg(t—tv)vv)>
(tv)y_o€Qat>0,[|vy[[2<1 v=0
=|IF1||Lwa+IT2||Le A
Zero Vector Condition:
IIMN|L.a=0= sup (omax( > y(t—tv)vv)) =0

(tv)l\))O:OGQA7t207HVVH2§1 v=0

=Wt >0,yt)=0=T(s)=0.

Since we know thafil"||, o < o from before,||['||.,, A iS indeed a norm for
Z. O

The theorem states that the vector 2-norm of the output kigmains bounded
when applying an arbitrary number of impulses with a boundagdnitude that are
separated by a dwell-tim®&to a stable LTI system.

We illustrate Theorem 5 by an LTI system with the impulse oese matrix
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y1 and the state space model

-05 1 0o -2
0O -65 O 5
4 4 -25 -8
0O -25 O 1

A= , Bi=1, Ci=I, (4.112)

wherebyl| denotes the identity matrix. Considerisgpe¢A;) = {—0.5, —1.5,

—2.5, —4}, it holds thaty = 0.5. Choosinge = 0.1, a bound fory (t) according
to (4.9) is 5~ (05-01t 35 shown in Fig. 4.1.

5 T
\ : : : 5 c, ., )

Ay SRR SRR e - - -
s 5
8o N
° :

15 20 25 30
time [sec]
20

y(®)
()

T2 : : y(®
. — TOp AR e ---K
m—-m=eK | peememem-t - -m--—---—-————- - - - -
==t oo oo oS- c- oo A -20 R R R
0 10 20 30 40 0 10 20 30 40

time [sec] time [sec]

Figure 4.1: Example in (4.11): Comparison ofqax(¥a(t)) and exponential bound

f(t) (top); comparison of simulated response &nih (4.10) forA =5 (left) and
A =1 (right).

We computeK = TS_OAA in (4.10) such thakK = 5.8 for A =5 andK =
15.2 for A = 1. Fig. 4.1 shows a simulation of the LTI system in (4.11) with
repeated impulses of magnitude 1 foe=5 andA = 1. It can be seen that the
maximum value of|y(t) || stays well belovK, that is, the bound is conservatite.

2Section 4.1.5 shows that the simulation result is close eoatttual values offl"1||.., s and
LTI
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Second, we consider an LTI system with the transfer function

Fo(s) = 40s° 4 240s° + 2616s* + 96325 + 46744s* + 700005+ 186120
2= (5+5)2(2+25+17)3 '

(4.12)

A corresponding bound according to (4.9) has- 1, ¢ = 0.3 andm’ = 50 (see
Fig. 4.2).

: : J== -1
40 [y : : : Cmax(Y(t))
[} : : :
= 30F Vo R R R R R RRRRRRRRT
= \
=2 \
= 20F - W T
5 N
DE 10k - N T T D
-10 L L
5 10 15 20
time [sec]
T T T 150
: : : 100
: Q ; BOf -+
2 IRAAAANAAANAARNNAANNAANNAAANAA 2 ol AAAMMAMAMAMAWVUVVVVUAAAMMA
= - - - = VVVVVVVVUVVVVVVUVRVVVVVVYVVV VUV VY UVVY
—20f SR ESTMT i -50 : : : :
—y®
—AOf ———K -100
-60 . . -150 . . . . . v
10 20 30 40 0 10 20 30 40 50 60

time [sec] time [sec]

Figure 4.2: Example in (4.12): Comparison ¢(t) and exponential bound(t)

(top); comparison of simulated response &nih (4.10) forA = 5 (left) andA =
0.7 (right).

. 50 . .
Accordingly,K = 1 o078 in (4.10) withK =516 forA=5andK =1291

for A =0.7. Again, the bound is conservative as can be seen in Fig. 4.2.
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4.1.3 Exact Bound Computation

We focus on the LTI system in (4.1) with a single inft) € R, a single output
y(t) € R and a monotonically decreasing impulse respansg(y(t)) = |y(t)| in
order to compute the exact value|{f|| ., a. Then, (4.5) and Lemma 1 imply that

ML = sup yt—ty)w|¢ = . (4.13)
H ||L A {ZO‘ % v’} Zo

(tV)T;OZOEQAJZO?HVVHZSl

We use the general representatiory(f as

k| ) K | ]
t) = Z%ai’jtje_)\it—‘— Z anmtl cofwt+q@)e At (4.14)
i=1j= i=k+1j=

with coefficientsa; j e Rfori =1,...,Kandj =0,...,l;, the real poles-A; <0
fori=1,...,k, the complex poles-Ai £« j and the phase shifg j for i = k+
1,...,Kandj =0,...,lj. Then, the following theorem states sufficient conditions

for the exact analytical computation 0F ||, a.

Theorem 6. Consider a stable LTI system {#.1)for p=q=1. If |y(t)| is
monotonically decreasing, then

k | i
' - .ood! 1
r —_ZZa--AJ—ll .
Il ‘i: = A8 (=1 d(Aip)] 1 —e Al

K li ; W

i : . dl cogq ) —ecofm—q,)

+ g > aijbl(-1) - - Li))
i ) ( ) d(AiA)J 1—2eAid COS(OQ)—}—e_ZAlA |

(4.15)

We use the following general result about exponential séaeproving The-
orem 6.
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Lemma 3. Let,w >0, ¢ € Rand je N. Then, it holds that

© dJ 1
jg=Bv _(_
Z vie?PV=(-1 dB‘ 1 oF (4.16)
j —B
d! coqp)—e P cojJw— (p). (4.17)
dBl 1—2e P coqw)+e 28

S vicogwv+g)e PV =(-1)
v=0

We next provide the proof of Theorem 6.

Proof. We use (4.13), (4.14) and Lemma 3:

[oe]

IMll.o= 3 vl =] 5 yva)

v=0
o k | )
=[5 55 ajvaje i
v=0i=1]j=
00 K li

+ > Z Zoa,j(VAﬂcos(cqvAﬂn,j)e“A\
v=0i=k+1j

_’ZZ;’J‘”N ZVJe

+ aHAJ Zvl cofw VA+q j)
+1j V=

—)\ Av|

_‘ZZ)aHAJ )\A)jl i—AA

dl cos(c;q,j)—e‘)‘iAcos(m—qq?,-)‘
d()hA)J 1—2eAid Coqm) e 24D

+ aHAJ( 1)]
i=k+1j=

O

We emphasize that Theorem 6 applies to stable SISO LTI sgsteith a
monotonic impulse response. Examples for such systemsesmrera LTI sys-
tems, whose transfer function has alternating negatiiepas and zeros [62].
In addition, certain vehicle following applications as désed in Section 5.1 have
this property.

53



We consider the example system with the transfer fundigand the impulse

responses:
_ (s+5)(s+10)
"3(9) = 55 2) (s 8) s+ 15)" (4.18)
_ 3 a3 st 90 15
ya(t) = 22e +14e +77e : (4.19)

Using (4.15) withk = 3,1 = 0 fori =1,....kanday 0 = 55, 82,0
A1 =4, A, =8,A3 =15, we obtain

Il = 57— emads * oo *+ T
e T 22(1—e48) " 14(1—e88) T 77(1—e 158)’

We computd|I3]|.,, 5 = 1.0 for A =5 and||l'3||L, 01 = 1.64 forA=0.1. The
exactness of the result is verified by the simulated resgandeig. 4.3.

15

ITTTT

—05 ““““““ ““““““ --------- —0
: : : ---K

ey g

5 10 15 20 25 0 5 10 15 20 25
time [sec] time [sec]

Figure 4.3: Comparison of simulated response and||., o for A =5 (left) and
A = 0.1 (right).

4.1.4 Close Bound Computation

We next approximate|l ||, o by a close upper bound in the general case of
multiple-input multiple-output (MIMO) LTI systems. Reféng to Lemma 1, we
intend to find such bound by constructing a monotonicallyrel@sing function
f(t) such thatf (t) > gmax(Yy(t)) for all t > 0. In addition,f must be chosen such
that the infinite sum in (4.7) converges. We make use of an lsepresponse
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bound according to [58, 63].

Lemma 4. Consider the LTI system i@.1) and writep = —a(A). Then, there
existnand g> 0, k=0,...,n—1such that for all t> 0,

Tmax(Y(t)) < b(t) := e—“t(:zlaktk). (4.20)
=0

It is readily observed thdi(t) for stable LTI systems has a single maximum
fort > 0 sinceu > 0 anday > 0 fork=0,...,n—1. We denote the maximum
value ofb(t) asby, and the corresponding time instantgasuch thab(ty,) = b,.

Using (4.16) and (4.20), it follows that the infinite sum inZ#) converges:

00 n—-1 K K dk 1
vZob(VA) 3 |<ZoakA 4 d(up)k1—e HA R~ (4.21)

Neverthelessb is not suitable for computing a close bound (0|, a, Since
it does not fulfill monotonicity in Lemma 1. In addition(t) is generally very
conservative.

In order to circumvent the stated issues, we use a thresladlé y > 0 and
definety as the smallest time instant aftgrsuch thab(ty) remains belowp:

W :tztmrgi(gswt' 4.22)
Sinceb(t) is monotonically decreasing and smaller thamfterty, we consider
b(t) as a suitable bound farmax(y(t)) afterty,.

We further propose to determine a monotonically decreamgnda(t) >
Omax(Y(t)) fort € [0,ty) by simulation. Consider an impulse response simulation
run of the LTI system in (4.1) with the solution valugsit the times;,i=1,...,F
and a maximum simulation erreg, for amax(¥)- Then, we define the bouradt)
for eacht € [0,ty) as

a(t) = izlf.ﬁ%ﬁizt{)’l} + Esim- (4.23)
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By construction, it holds that is a monotonically decreasing staircase function
anda(t) > ogmax(y(t)) for all t € [0,ty). Together, we define the bound

(4.24)

t) foro<t<t
(t) = at) foro<t<ty
b(t) fort>ty.

We revisit the example in (4.11). Using (4.20) and the dediniof a, in [63],
we obtain

b(t) = e %' (4+88.2t + 973t? + 71543 (4.25)

with a maximum valuéoy, = b(5.95) = 7.9- 10* atty, = 5.95sec. That isb is
indeed very conservative. Using (4.22), we figd = 45.24 s> t,, for the thresh-
old ¢ = 0.1. We further determina(t) based on a simulation in Matlab/Simulink
2013a (solvende45 at a relative tolerance 18). omax(y(t)) is shown in Fig.
4.4. Considering that the maximum value is belowe3d;, < 0.003 can be as-
sumed. According to (4.24§(t) is used as a bound beforg = 45.24 sec and
b(t) is used afterwards.

Using c(t), the computation of a close bound foF ||, A is performed as
stated in Theorem 7.

Theorem 7. Assume that the LTI system (#h.1) belongs to.Z. LetA > Of let
ty > 0 be computed witfd.22)and let ¢t) be given as irf4.24) Write N= LKwJ.
Then, it holds that

N-1 . di 1
< Uty kK—i Al _
|| < zavA +e Z Z}()t A( d(uA)'l—e—NA<°°
(4.26)
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Figure 4.4: Monotonic bound computation farmax(yi(t)) (top); comparison of
simulated response ani 1|, a for A =5 (left) andA = 1 (right).

Proof. By definition,

IFllea = sup  (Omax( Y yt-t)w))
(tv);ozerAytZOaHVvHZSl V:O

< sup ot —t
(tv)'\’;’:erA7t20 <VZO ( V))

[oe] [ee]

= sup ( 2 a(t—tv)) + sup ( z b(t—tv)>.

(tv)y_p€Qat>0t—ty <ty “v=0 (tv)y_g€QA >0t -ty >ty “v=0

. t
Considering that, ;1 —t, > Aforallv=0,1,...,, there can be at mobt = Lij

values such that—t, <ty. Recalling that is monotonically decreasing, (4.8) in
the proof of Lemma 1 shows that

% N—1 N-1
sup z a(t—tv)> = sup ( Z a(t—tv)> = z a(vh).
(tv)y_g€QA >0t -ty <ty “v=0 (tv))geQy1t>0 " v=0 V=0

A

In addition, sinced(t) is monotonically decreasing for> ty, b(t) := b(t +ty) is
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monotonically decreasing for> 0. Using Lemma 1, we compute

[0e] 00

b(t—t,)) = b(t —t
(tv)ff:oEQil{IEO,t —ty>ty ( VZO ( V)> (tV)CozoES(l?JAF-)t —ty>0 < VZO ( ’ )>

[oe]

= i b(vA) = 3 bity+vA).
v=0 v=0

Hence,
N-1 0
IMLea < > a(vA)+ S bty +vA)
v=0 v=0
N—-1 0 n—-1
=Y ava)+ 5 e HWID S g (ty+va)< =
v=0 v=0 k=0
Nfla(vA)+e‘“tw nzlak : (k)t"“A‘ i vig HvA
V=0 K=o i;) i)Y V=0

N—1 ut -1 k /i - i q 1
= a(vAh)+e " ay (_)tA -1 . .
VZO g kZO i;) i)Y 1) d(pd) 1—e HA

In this computation, we used the binomial theorem and Lemm@dhsidering

that all summations in the above expression are finite, ibvied that||I"||, o <
00, ]

Theorem 7 divides the computation of a bound|n|,_, A into the finite sum
S = yN"ra(vA) and the infinite sun®, := 35_b(ty +vA). Here, the close
monotonic bound@(t) can be easily found by simulation foe [0,ty). Moreover,
the infinite sumS, can be evaluated analytically based on the monotonic bound
b(ty +1). Its contribution toS; + S, is small when choosings small enough as is
justified by the subsequent examples.

4.1.5 Academic Examples

Using (4.26) for the example in (4.11) with the bounds in Big, we find|I"1||., 5 <
3.53 forA =5 and||l"y||,,1 < 111 for A= 1. The simulation in Fig. 4.4 also
shows that the 2-norm of the output signal remains below thumd, whereas the
bounds are much closer than the bounds in Fig. 4.1.
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We next evaluate the example in (4.12). Using (4.20), weinbta

b(t) = et (6+418t +14-10°t?> 4 33-10°t + 58- 10°t* 4 80- 10°t°
+92-10°t%+91-1¢%t").

with tm = 6.99 andty = 53.0 > ty, for ¢ = 0.1. We further obtaira(t) by simu-

lation with esjm < 0.01. y»(t) and the resulting boundgt) andb(t) are shown in
Fig. 4.5.

35
. o, (v,®)
- a(t)
g = = =bh(t)
1 T PPERE SRPRRPRRN
)
= :
g B P SRR
o
A A MRS A i
30 40 50 60 70 80
time [sec]
tp=————T=————T=——=———= —————— 20
2R o U HIB U T
2o g o
=2p b ok IS T
4b=s=ccxoccoocazccooo = -20 . . . .
0 10 20 30 40 0 10 20 30 40

time [sec] time [sec]

Figure 4.5: Monotonic bound computation farmax(2(t)) (top); comparison of
simulated response an »||., a for A =5 (left) andA = 1 (right).

Using (4.26)/|2]|L.. 5 < 3.8 forA=5and||l2||L, 07 <155forA=0.7. The

simulation in Fig. 4.5 again confirms a close bound that ishmess conservative
than the bound in Fig. 4.2.

4.2 Time-Limited Input Repetitions

Different from the previous section, this section conssdée case of repeatedly
applying time-limited input signals to an LTI system. Asalissed in Section 3.3,
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such signals are used when opening/closing gaps in a vesticig.

4.2.1 Notation and Problem Statement

We focus on LTI systems with the state space model

X =AX+Bu

4.27
y —Cx (4.27)

A € R™" is thedynamics matrixB € R"*P is theinput matrixandC € R9" is
the output matrixx(t) € R" is thesystem stateu(t) € RP is theinput signaland
y(t) € R%is theoutput signal We further writey for theimpulse response matrix
of the system in (4.27).

Regarding matrices, we use the same notation as in Sectidn A& R"™",
we write spe¢A) for the set of eigenvaluesf A, omax(A) for the maximum sin-
gular valueof A, a(A) := max{ReA |A € spe¢A)} for the spectral abscissaf A
andA = Q(D +N) Q1 for the Schur decomposition & with the unitary ma-
trix Q € R™" the diagonal matriXD € R"™" and the upper triangular matrix
N € R™", For vectorsv € R", we writey; for thei-th entry and use theector
2-normvl| = /31, M2,

As described in our motivating example in Section 3.3, wesatar stable LTI
systems with repeated time-limited input signals that epasated by a minimum
dwell-timeA. Using a boundinay, We formally introduce the set of bounded input
signals with time-limitt; < c as

Uismasts = U R — RPJu(t) =0 fort < 0 andt > t;, ||u(t)|]

In order to formulate the successive application of inpghals inZ4, .., We
define the se@Q, of monotonically increasing infinite time sequences witretiw
time A as
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Then, the successive application of input signgls %, for a given sequence
(tv)y_o € Qa is represented by the signal

[oe]

U(tv)ﬁzo(t) = z Uy (t—ty). (4.30)
v=0
In this expression, the time-limited input signglis applied at time, .

Using the notions introduce above, the aim of this chaptén determine a
bound on the output signal norjiy(t)|| over time when applying a repeated input
signalu(tv)%ozo(t) to the LTI system in (4.27) for arbitrary input Signals € %t
and sequenc,);,_, € Qa. This aim is formalized in Problem 1.

Problem 1. Consider a stable LTI system with the impulse response magnix
let U € 2., - Determine a bound K< o such that

sup  ||y(t)|| = sup HV(t)*U(tv)‘ﬁ:o(t)H <Ky, (4.31)

(t\,)?:OEQA,IZO (tv);ozerAatZO

whenever such bound exists.

4.2.2 Bound Existence

In this section, we show that the boukg < o« in (4.31) exists for any € %,
and any stable LTI system.

Theorem 8. Consider a stable LTI system with the impulse response mattigt
A>0,t >0and W € %,y for someit Then, there exists a boung K o such
that (4.31)holds.

Proof. We first show that the input signaf, - (t) is bounded, thatigjue, )= (t)[| <
Ky < o for some constank,. Consider a time instaritand defineNp = [Z']
If t > 1, it holds that||ug,)=_(t)[| < NaUmax since at mostNy successive in-
put signals can be non-zero and the norm of all input sigrealsounded by
Umax If t <), less thanNp successive input signals can be non-zero such that

Ui,y (D[] < Naumax. Together, itis true thatu,)= (t)[| < Naumaxfor all t,
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that is,||ug,)=_ (t)[| is bounded. Since the LTI system is stable, this implies that

also sup, = o, >0/ |Y(t)|| is bounded such that (4.31) holds. O

v=0

4.2.3 General Bound Computation

In this section, we propose a method for computing a bdgipch (4.31). To
this end, we develop a new result that allows determiningumbtmf the output
response for any input signal i, depending on a bound on the impulse
response of the LTI system.

Lemma 5. Consider a stable LTI system with the impulse response maamnd
let c(t) be a function that is zero for 4 0 and non-negative monotonically de-
creasing for t> 0 such that||y(t)|| < c(t) for all t € R. Then, it holds for any
input signal ue Z..,4 that the output signal norm is bounded by

1)
V(O] < tnax | et = 1)dr (4.32)

Furthermore, the bound i(4.32)is zero for t< 0, has a maximum at+ t; and
non-negative monotonically decreasing for t;.

Proof. It holds that

t t
Iyl = Iy <u®)] = || [ vt=Dumdr] < [ jive-1)] ju(o]|dr

1 1
g/lc(t—r)umaxdr:umax/lc(t—r)dr.
0 0

In addition, it holds that[ct,' c(t—1)dr =0 fort < O sincec(t) =0 fort < O.
Considering <ty, it holds thatfé' c(t—r1)dr = f(t, c(t—1)drt. Thatis, since(t)
is non-negative i c(t — 7)dt < [ o(tj — T)dT for anyt <. In addition,c(t)
being monotonically decreasing implies trfétc(t’ —1)dTr > f(t)' c(t — 1)dr for
anyt’ >t >t. That is,f(t)' c(t — 7)dt indeed has a maximum at=t; and is
monotonically decreasing for> t;. O

Respecting the result in Lemma 5 it is now possible to defineranegative
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and monotonically decreasing bound f(t)|| as

Je(y—T1)dr fort <t

" _ (4.33)
o C(t—1)dT otherwise

Iy < f(t) := Umax{

. . t, ... .
Using Lemma 1 and (4.33) and writimg = (Z'} , itis now possible to evaluate
(4.31). It holds that

sup |lyt)||= sup  [|y(t)*ug, e (D)]]
(tv)2_oeQat>0 (tv)2_oeQn,t>0
= sup ||y v(t)xu(t)]]
(tv)y_o€Qnat>0  v=0
< sup || y(t) < uy(t)]|

(tv)y—_o€Qa,t>0v=0

0 t
< sup umaX/IC(t—r)dr (4.34)
(tv)y_o€Qna,t>0v=0 0
< sup H f(Y) (4.35)

(tv)y_o€Qnat>0v=0

:umax(No-/otlc(n—r)dr-i— i/otlc(vA—r)dr).
(4.36)

Here, (4.34) follows from Lemma 5, (4.35) follows from Lemrhaand (4.36)
follows from (4.33).

In order to ensure that the bound in (4.36) is finite, it is resplito find a func-
tion c(t) > [|y(t)[| such that the infinite suryy_y, fé‘ c(vA—1)dt converges.
According to Lemma 5¢(t) needs to be zero fdr< 0, non-negative and mono-
tonically decreasing far> 0. In addition, it is desired tha{t) constitutes a close
bound for||y(t)|| such that the bound in (4.36) is as well close.

In the literature [58, 63], analytical bounds foy(t)|| exist in the form

n—1
[yl <b(t) :=[[C]| HBHe“‘(kZOakt"), (4.37)
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wherebyay depends on the system matrieg®sB, C in (4.27) andn depends on
the bounding method which we will elaborate based on matpogrential in
Chapter 6. Such bound is non-negative, monotonically decrgand close for
large enough values of Accordingly, we suggest to select a threshold vaue
and employ the bounf(t) for timest > t;, wherebyb(t) < 6 fort > t;. In the
remaining bounded intervéd,t;], we find a monotonic bound(t) > ||y(t)|| by
simulation similar to [64]. We perform a simulation run |of(t)|| for t € [O,t;)
and determine a bounding functiaft) > ||y(t)|| for t € [0,t;] with a(t;) = b(tf).
In this work, we use a bounding function of the type

a(t)=me "t (4.38)

As a resulta(t) is non-negative and monotonically decreasing aftd > ||y(t)||
for allt € [0,t). The overall bound for all > 0 is then

0 fort <O
c(t):=<¢ a(t) for0<t<t (4.39)
b(t) fort >t;.

By constructiong(t) is zero fort < 0 and non-negative monotonically decreasing
for t > 0. It remains to show that the infinite sum in (4.36) is bound€lis is
shown in the following theorem.

Theorem 9. Consider a stable LTI system with the set of input sigfa|s,, ?nd
the impulse response boungtcin (4.39) LetA > 0and t > 0. Write Ny = [—'L

A
t tr+-t . .
N; = (ZW and N = L%j. Then, it holds for any & %, that a suitable

bound in(4.31)is given by

Np
Ky = Umasr (No (1— €714) + (€14 — 1) > e vh)
n v=Np+1

e S 0 <l><N SR ML NPT
i = i;) i) d(ub) 1—e HB’ .
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whereby ¢is computed witl{4.41)for | =0,...,n— 1.

3 (' H) e (4.41)
C = a i . / T T. )
{ j;) +] j 0
Proof. It has to be shown that

sup [[y()]| <Ky <o
(tv)y—p€Qn,1>0

for all possible input signals if#4,,,.. Using (4.36), we compute

it 0 i
sup Hy(t)l\éumax(No/ oty —1)dT + Zw/ c(vA—1)dr)
(tv)y_p€Qat>0 &

t
:umax(No/ (t—1)dTr+ Zw /I a(vA—r1)dT+

(4.42)

VA—t;

N> it
+v;11(/0 b(v,A—1)dT+ a(vA—rT)dr)

VA—t;
[*) {)
+ / b(vA—T1)dr
v=gz+l 0 )

This computation considers that the convolution integsapplied toa(t) before
t =tr (until v =N; — 1), toa(t) andb(t) fort; <t <t;+1t (N < v <Np) and to
b(t) fort > t: +t; (v > Np). Further noting thaa(t) andb(t) are non-negative, it
also holds that

(tV)‘\)/O:OEQAJzo

f) N it
sup  |[y(t)]| < umax(No/0 a—1)dr+ ZN /o a(vA—T1)drt
(4.43)

+ v;w /O 'bvA—T1)dr). (4.44)
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It can be directly computed far> t; that

1) m ] it m
/a(t|—r)dT=—(1—e"7t')and/ a(t—r)dT:/ me 1t-Ddr=—(e —1)e .
0 n 0 0 n

(4.45)

In order to evaluatg‘é' b(vA—T1)dt, we use (4.37) and the binomial theorem and
write

t N— 1
/ (VA—T) dr—/ e H=Ddr
-1k : ,
:e“t/ > & (.)tk'(—r)'e‘”dr.
0 % i \!

Re-organizing the summations and the integral accordinguees oft leads to

/ b(t—1)dr =€~ “tnit'nil (IJ.FJ)/O( T)le!Td1||
2 gut th'nil (H)/O( 1)le!Tdr
<e ut”§t|ni| (|—|—J)/O Tje“TdT:e_“tTZ:CItl-

/

g

=:q
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Then, the infinite sum in (4.43) results in

Zw/ b(vA—T)dT = %e“VA%

— g HMA Z e HVA Z)Cl (N;A+vA)
v=0 =
n—1 00

— g HNA % c A S e HVA(Ny + v)!
= v=0

_ o HNiA ”ilq A :'%( )N' i % “pva

=0 i

n—1 [ - ) B | 1
_ aHN1A | 1=y
—gH |;>CIA i;) (i)Nl (-1) d(uD) 1—e HE
(4.46)

Here, the last two identities are derived based on the bialotiheorem and the
geometric series. Using (4.45) and (4.46), the result iaQ@directly follows.
Since all the summations in (4.40) are finig, < o. n

4.2.4 lllustrative Example

We illustrate the bound computation in Section 4.2.3 by allsexample system
with the matrices

1 0 1 4
A=| 1 —11,B=0,C:[121]
32 16 -7 0

and the eigenvaluek, = —5 andA, 3 = —1+2i. Fig. 4.6 (a) shows the impulse
response norm and the corresponding boe(hyin (4.39). Herebya(t) = 3et

in (4.38) andb(t) = 9.8e! zﬁ_(,% in (4.37) are found suitable using =
1079 andt; = 35. In addition, Fig. 4.6 (b) and (c) show the bound in (4.32) a
the corresponding functiof(t) in (4.33) forty = 4 andt; = 8, respectively. For
comparison, these figures also show example input resptorsde time-limited
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input signals inZ/ 4,
up(t) = —squaré2r/3t), ux(t) = —triang(2m/3t), us(t)=—cog2m/3t).

Hereby, squarg), triangt) and sirft) denote the square wave, triangular wave
and sine wave with period72 respectively. It can be seen that the corresponding
output signals all stay below the computed bound.

g 3 — 3= — Iy, Il 3 — Ily, Ol
> 1
3 2s5) - = —cynaalf 4 2571 O |y 25 4 lly, Ol
RN T L S ofrotf—mon E ool [y
) § --- Boqnd in (7)8 ' = = =Boundin (7)
§15 “““““““““““““““ g1-5"" --ff(t)ln(8) E 15l KA ] - - —f)in (8)
S Ay 3 1 : 3 1l :
3 3 3
205 0.5 0.5
=3 - -
£ o - 0 - 0
0 10 20 0 10 20 0 10 20
time[sec] time[sec] time[sec]
(@) (b) (©)

Figure 4.6: Bounds: (a) Impulse response; (k}) for t; = 4; (c) f(t) fort; = 8.

Using f(t), it is possible to evaluate the bound in (4.40). Examplelte$or
different combinations aff andA are shown in Table 4.3. It is readily observed

Table 4.3: BoundKy for different values of; andA

t=4A=2|4=4A=5|4=4A=10 | t4=8A=5|4=8A=2|4=8,A=10
9.3 4.0 3.0 15.2 6.3 3.3

that the bounds decrease when increagirand when decreasirtg This is ex-
pected from the computation in (4.40). In addition, we cora@asimulation with
the repeated inputly (t) € %1y, for different combinations ofi and A with the
respective boun#y as shown in Fig. 4.7.

It can be seen that a valid bound is obtained in all cases. dfergit can
be observed that the bound appears closer in cases Wherg. This can be
explained by the conservativeness of the bofiftd for t <t as can be seen in
Fig. 4.6.
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Figure 4.7: Comparison of repeated input response and close bigyur@)t = 4,
A=2;(b)ty=4,A=5;(c)t, =8,A=10.

4.3 Input Repetitions for Distributed Interconnected Sysems

The case of repeated input signals for general LTI systennséstigated in Sec-
tion 4.1.1 and 4.2.1. Motivated by the vehicle string scenave next consider
the case of interconnected systems. The basic block diagfaonch distributed
interconnected system is shown in Fig. 4.8.

U Vi
Distributed
Interconnected
U, System Vi

Figure 4.8: Distributed interconnected system

Here, the LTI system defined in Section 4.1.1 and 4.2.1 iveleté as a system
with g inputs,u; € RP andh outputs,y; € RY. In view of the vehicle string ap-
plication, the input signals can represent the impulsetismnals in case of lane
change completion (Section 4.1 or the feedforward inputasyin case of open-
ing/closing gap maneuvers (Section 4.2). From the applicgierspective, we
are interested in the effect of repeated lane changes oelthant signals such as
distance errors of a vehicle string. Accordingly, we coasithe effect of apply-
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ing repeated inputs (impulses or time-limited input sigh&b the interconnected
system in Fig. 4.8. The main result is given in Theorem 10.

Theorem 10. Consider a stable distributed interconnected system withirthe
put signal vector u= [uluz---ug]T and the impulse responsgs;(t) where ic
{ieN|1<i<g}andje{jeN1<j<h} Here, assumgy j(t)|[> < bij(t),
whereby

ni,j—1 Hikj tk

bi j(t) := e %t k; T)' (4.47)

Here, nj and H j depend on the respective bounding method. Then, for each
Y, 3ty and H, a, n such that with

ct) =

{ at) forO<t <ty (4.48)

b(t) =e 9Y(3p5 %) fort >ty

Proof. Choose

y.j®)]l2<c(t)forallie{ieN[1<i<g}and je {j e N|1<j<h}.

H = max|[Hi ||,
n= maanj
I’j

a = rrlnjn Q.|
Together all of the above taken into computation, siHca anda is chosen ac-
cordingly,b(t) > by j(t) Vi, j
Moreover, we choosg, in the same way as (4.22), such thét) < ¢ fort > t.
Fora(t), we simulate all j(t) until ty,. Takea(t) = max j ¥ j(t) vt <ty and de-
termine a monotonically decreasing bouwaft) > &(t) fort € [0,ty) in analogy to
(4.23). O

In words, Theorem 10 states that the impulse response ndwmweée each in-

70



put/output pair of an LTI system with multiple inputs andmutis can be bounded
by a single monotonically decreasing functigh) in (4.48). This bound is again
suitable for the application of Lemma 1.

Specifically, for the case of input impulses and time-limiteputs, the fol-
lowing corollaries are obtained.

Corollary 2. Assume that the LTI system illustrated in Fig. 4.8 belong®’td_et
the input w be given in(3.4), letA > 0, let ty > 0 be computed and let(y be
given as in(4.48) Write N= szj. ThenYj € 1,...,h, it holds that

N-1 o LRk y o 1
v .
Il < 5 alva)+e e 5 s () 8D g

2 oo, (4.49)

similar to Theorem 7.

Thatis, (4.49) represents an analytical bound for the ndremypoutput signal,
when applying repeated impulse signals to any of the inputs.

Corollary 3. Consider a stable LTI system with the set of input signasgiven
in (3.10)in .., and the impulse response bound)dn (4.48) m andn are
defined depending on(@ of (4. 48) with the bounding function logic of4. 38)

t ty +t
LetA>Oandfy > 0. Write Ny = ( 1 Ny = w] No=| wz 'J and g = R
Then, it holds for any & %+, that a swtable boundj € 1,...,his given by

N2
m
1Yj (1)]]2 < Umax— (No (L — e M") + (eTh — 1) g e nve)
L b+1

nfl : : di 1
5,03, (1) M) 81 g 1 e

(4.50)
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whereby ¢is computed witl{4.51)for | =0,...,n— 1.

n—1-| (|+j) ) j aty (4.51)
C = aj . / e T. .
{ j;) +] j 0

similar to Theorem 9.

Thatis, (4.50) represents an analytical bound for the ndremypoutput signal,
when applying repeated time-limited signals to any of thpits.

As an interesting point, we determine the casé e « for both (4.49) and
(4.50). In the first case, it holds that

lim [Jy; (1] ]2 < a(0) = maxy(t)

sinceNg = 0 and in the second case, we get
m

lim |y;(t)]|2 < Umax—(1—e 1Y

Jim 113 ()12 < Umax )

sinceNg = 1. That is, in both cases, the resulting bound correspontetappli-
cation of a single input signal.

4.4 Summary and Discussion

The thesis study is motivated by lane changes in vehiclagsri The vehicle
strings could for example be traveling on a highway, wheheaehicle would
move on its way and could perform lane changes at differem thstants. Lane
changes require opening/closing gap maneuvers and areiassioto potential
measurement errors and the corresponding jumps in staédhes as discussed in
Section 3.2 and 3.3. The main interest of the thesis is tretemngde and computa-
tion of bounds for the output signal norm when repeatedlyyapgp the mentioned
types of input signals. Finding such bounds allows quainigfyhe effect of lane
changes on the longitudinal vehicle motion in strings anackds important for
the analysis of driving safety.

This chapter addresses the stated issues for both impysésiand time-
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limited input signals. Bound existence is shown for both sakthe LTI system
under consideration is linear.

Bounds for the lane change completion are computed basedvitnaay out-
put signal and repeated impulses in Section 4.1. Thesdseselthen extended to
the case of repeated impulses of systems with multiple sgiputputs in Section
4.3. That s, the thesis provides an effective method formaimg output bounds
in the case of vehicle strings with many vehicles and lanegbaompletions at
different positions and times.

Results regarding opening/closing gaps for lane changeshbdagned with a
general formulation using the set of time-limited inputsbéund for the output
signal norm for repeated inputs is derived in Section 4.2is Boenario is ex-
tended to the case of repeated inputs of systems with nmalipluts/outputs in
Section 4.3. As a result, thesis proposes an effective mdtdra@omputing output
bounds in the case of vehicle string with many vehicles arehmg/closing gap
maneuvers at different positions and times.

The closeness of bound is related with selectiolMof That is to say, the
a(t) term of (4.48) add the contribution from the values whereetisiequal to
A multiples. In practice, the simple observation is thak is sufficiently bigger
than the point whera(t) is sufficiently small and converging to 0, then the bound
computed remains to be convergent for increading

Up to now, the two different cases of lane change completoiogening/closing
gaps were investigated separately. Similar to the combmatf both maneuvers
in the definition of extended string stability in Section,3¥e now combine the
bound for both maneuvers in order to properly capture thetipad CACC vehicle
string lane change scenario. In doing so, we focus on theafadistributed in-
terconnected systems since the vehicle string scenaridevépecial case of this
concept.

Corollary 4. Consider a stable LTI system with the set of input signals. u, ug
as given in(3.10)in %,,.,, and in(3.4). LetA > O and fy > 0. Let dt) be given
as in (4.48) Combining the bounds computed separately4i®9) (4.50)and
(4.51) it holds that

73



Ol S ava)+e 'S k € i i gy 9 -
iOllz= 5 avay+e®v 5 &g i Jw &Y gqai1-eaa
N2
+Unax N (1 enh) (el7t|_l) e—"IVA
ma '7( ° gwl )

_aNA i(_a) d 1
Z)C' Z)() (N&) (=) Grgay 1-eab
(4.52)

That is, an analytical bound for the output signal norm in thse of re-
peated lane changes is given by (4.52). This bound comhiresftect of open-
ing/closing gaps and the lane change completion. An exgstiah evaluation of
the presented results by simulation will be given in Chapter 5

As an interesting point for future study, we note that the@utr formulation
considers the case of impulse inputs and time-limited s @&parately. Nev-
ertheless, it has to be noted that both formulations aredbasampulse trains
(repeated impulse inputs in Corollary 2) or convolutiondwihpulse trains (re-
peated time-limited inputs in Corollary 3). Hence, it woulg interesting to de-
termine a unified representation based on convolutionsiwmipiulse trains for the
bound computation.
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CHAPTER 5

LONGITUDINAL MANEUVER INPUTS TO VEHICLE STRINGS

The previous sections of the thesis provide new results Torsistems that are
subject to repeated input signals. Specifically, boundshf@routput signal norm
of LTI systems with repeated input impulses and time-lichileput signals are
determined in Section 4.1 and 4.2, respectively. Moredese results are ex-
tended to the case of LTI systems with multiple inputs angbatstin Section 4.3
and a combination of all results is achieved in Section 4.4.

Although these general results for LTI systems are motil/ate performing
lane change maneuvers in vehicle strings, they were natttirapplied to vehi-
cle strings up to now. This chapter shows that these restdtindeed suitable
for quantifying the effect of repeated lane changes of mia@tvehicles in a string.
Section 5.1 and 5.2 illustrate the case of applying repaatpdises and repeated
time-limited input signals, respectively, to a single \a&i The general case of a
vehicle string with many vehicles and different repeatquutrsignals is consid-
ered in Section 5.3

5.1 Application Example with Input Impulses for a Single Vehicle

5.1.1 Motivation and Description

We consider the scenario in Fig. 5.1 with a string of autonasneehicles that
follow each other in dense traffic. Each vehicleas a length.;, a positiong;,

a velocityv; and a distance;_1 — g to its predecessor vehicle. Introducing the
desired distancd, ;, the distance errag is

& =0dr—(gi-1—0). (5.1)
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Figure 5.1: Lane change scenario in a vehicle string.

In this scenario, the vehicle spacigg 1 — g should be small in order to in-
crease the traffic capacity. On the other hand, a sufficidnitlespacing must be
guaranteed for driving safety. This task can be accompiSlyaisingcooperative
adaptive cruise contral CACC) with the property oftring stabilitythat ensures
the attenuation of fluctuations in the motion of a leader eleralong the vehicle
string [8, 26, 27]. In particular, bounds for the-norm or thelL.-norm of the
distance errog can be established as described in Section 2.3.

The existing methods focus on fluctuations in the case whetréng is already
formed. However, the effect of modifying a vehicle stringdxjding or removing
one or multiple vehicles after a lane change is not includete discussion. This
problem is investigated in the framework developed in thésts.

To this end, we consider a lane change maneuver of vehicl€ig. 5.1. We
use the CACC design in [8] to model the described scenario fuckes + 1. The
closed-loop system is represented by the state space model

0O -1 —-h O 1

: 0O O 1 0 0

X = 11| Xt u(t)
0 0 -7 1 0 (5.2)
¢ %k o

yt) = Cx

T
The state vector iS = (g1 Vi;1 @1 ui+1] with the distance erroe 1,
velocity v; 1, acceleratiorg; 1 and controller state, 1. T is a plant parameter
andKy, Kp are the controller parameters. According to Section 3&juimp in the
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distance errog 1 after alane change at a tirgecan be represented by an impulse
input u(t) = vo(t —t,) with the maximum level/ of the distance measurement
error. Example output signals that are affected by the jumihe distance error
measurement a@, ; with C = [1 00 0} for driving safety orgj 1 with C =

[0 01 (ﬁ for driving comfort. We writel ¢(s) and T 5(s) for the respective
transfer functions. Moreovek+ 1 lane changes in front of vehidle- 1 at timeg,,
forv=0,1,...,kare represented by the input signél) = ZLOVV o(t—ty), v <
v. Assuming that different lane changes are separated bwsttAan time, the
effect of an arbitrary number of lane changes on the erraraig. 1 is bounded
by v||lel|L..a, Whereas the effect on the acceleration signal is bounded by
V||l al|L,.a. Hereby,|| e ||, A denotes the norm defined in Section 4.1.2.

5.1.2 Evaluation

We first considely(t) = g.1(t) using the parameters in Table 5.1. The corre-

Table 5.1: Parameters of the example system [8].

| Lizaz=5m|ri;a=5m|[h=07sec| 1=01sec| Ky=10| Kp=0.25]

sponding impulse response
Ve(t) = 0.004e 891t _ 1 737068t 9 70042

is positive and monotonically decreasing as can also beisdég. 5.2. That is,
(4.15) withk=3,lj=0fori=1,...,k a;0=0.004,ap0 = —1.73,a30 = 2.72,
A1=8.91,A, =0.68,A3 = 0.42 gives the exact bound

_0.004 -1.73 2.72
ITellLea = 1—e-891A T 1_ g 068A t 1— e 0427°

For example,||[¢||L,, .4 = 1.51 (for A = 4) and||l¢||L,,10 = 1.04 (for A = 10).
That is, even in the (unrealistic) case of a lane change aogwvery 4 sec with a
measurement error @f= 2m, the distance error is bounded byi 51 m=3.02m.
Considering thatl y = 5m+5m+0.7sec 20 m/sec= 24 m for a reference speed
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of 20 m/sec, driving safety is ensured for an arbitrary nundfdane changes.
The exactness of the computed bound is further verified bgithalation in Fig.
5.2.

v,(®

0 10 20 30 40 50 60 70 80 90 100
time [sec]

2 - - - - 15

(0] ANORY IR RN B XERY FA Y B WO B VEOR . O A ERY & OO 3 OOF

y(®)
o
y(®)

— () S0

N N N N _15 N N N N
0 20 40 60 80 100 0 20 40 60 80 100
time [sec] time [sec]

Figure 5.2: Monotonic impulse responsg(t) (top); comparison of simulated
response anfl ||, a for A = 4 (left) andA = 10 (right).

We finally considery(t) = a1 1(t). Here, the impulse response is not mono-
tonic such that the bounding method in Section 4.1.4 is agplVe first obtain

b(t) = e %4 (1+10.92t 4+ 59.7t%> +217.3t3)

anda(t) in Fig. 5.3 by simulation. Choosing = 0.005, it holds that,, = 54.6 sec.

Using (4.40), we find|3||L, 4 < 0.172 forA = 4 and||l 4| |L,, 10 < 0.125 for
A = 10. In both cases, the resulting acceleration bounds ateefaw the accel-
eration limit for comfortable driving which is in the rangé2— 3 m/< [65]. We
further perform a simulation of the system in (5.2) with ratgel unit impulses
that are separated ldy= 4 sec and\ = 10 sec in time as shown in Fig. 5.3. It is
readily observed that the computed bound|0g||,, » is close.
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Figure 5.3: Monotonic bound computation farmax(a(t)) (top); comparison of
simulated response an 4| |, a for A = 4 (left) andA = 10 (right).

5.2 Application Example for Repeated Time-Limited Inputs for a Single
Vehicle

The plant model, vehicle following, controller design for C& and the relevant
parameters were already described in Chapter 2 and lane emaaigeuvers in
Chapter 3. This section first gives an example for a repetaicthe same input
signalu. After that, the example will be extended with input sigrfatsn a set as
defined in Section 3.3.

In order to perform gap opening and closing maneuvers of &hehin the
described architecture, we use the feedforward input kighand a feedforward
reference signaf for vehiclei as was discussed in Section 3.3. The generation
of suitable input signals is discussed in the subsequetibeec

5.2.1 Input Signal Generation

If vehiclei opens/closes a gap, it is desired to increase/decreaseltidevdis-
tanced; by the velocity-dependent valualg, within a certain timeT. This behav-
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ior can be formulated in the form of a linear optimal contrabidem with state
constraints

T
minJ:/ F(z,ull t)dt (5.3)
0

subject to the dynamic plant constraints

: : . -1 1
=Vi; Vi=a&; ai:T'ai-i-?-uiﬁ (5.4)

initial and terminal conditions

gi(0)=0, vi(0)=v, &(0)=0, q(T)=d,, v(T)=v, &(T)=0
(5.5)

additional constraints

Vmin < Vi(t) < Vmax, a@min < @i(t) < amax (5.6)

(5.4) is a state space realization of that plant transfectfan G(s) for vehiclei
with the statez, = [qi v a;}/, T is the terminal time,J denotes the objective
function and it is assumed that the vehicle string travela abnstant velocity
v. In addition, in order to maintain driver comfort, the aeration and veloc-
ity variation during such maneuver is limited using (5.6)ed@nding on the de-
sired maneuver, different objective functions can be usedhis paper, we use
F1(z,uff,t) = 1in order to minimize the maneuver time aRdz, u,t) = (uf")2in
order to minimize the accumulated input signal. Exampleiirgignals for open-
ing gaps at different velocities and with different objeetfunctions are generated
using the PROPT solver [66] according to Table 5.2 and aressitogether with
the created gap and acceleration in Fig. 5.4. Note that tme signals can be
used for closing gaps when multiplying byl.

It can be seen from the figure that the considered gap opeiosgig scenario
requires input signal levels that are boundedt#i/5 m/sec and their duration is
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Table 5.2: Input signals for different velocities and objective funats

v=10m/secF | v=20m/secF; | v=30m/secf;
Uz 37) us

v=10m/secf | v=20m/secf | v=30m/secf»
Ug Us Us

a [m/secz]

max

0 5 10
time [sec] time [sec] time [sec]

Figure 5.4: Different input signals fofl < 10.

below 10sec. That s, it is possible to employ the set of ispgrals?. s 1o.

5.2.2 Repeated Application of the Same Input Signal

We apply the obtained bound computation in Section 4.2 t@ka@oning exam-
ple with the feedback loop in Fig. 3.9, the input signalc %> 5 19 and output
signale 1 in Fig. 3.10 for opening a gap.

Using the controller design of [33], the bouad) in (4.39) has the coefficients
in Table 5.3. The last maximum aft) is atty, = 3.2s. Choosingy = 0.01, we
obtaint; = 1807 s in (4.39).

Table 5.3: Coefficients ofc(t).

Co C1 C2 C3
6.1-10® | 48-10°° | 1.6-10® | 2.7-10%*
Ca Cs Cs v
27-10% | 15.10%% | 3.1-10%° 0.55

We further perform a simulation of the output response inldtaSimulink
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with a simulation erroesj, ~ 0.001 to determine the bourait) fort < t;. The
boundsa(t) andc(t) are shown in Fig. 5.5.

0.05

- €.1(®)
v ool +a()
E-E I | S R S kelliatdc )
> 1 - - - - - - -
S . '
o \ I\
S 0 M 34
5
8 3 3 3 3
S SO.02BJa 1
!
-0.05= i i i i i i
0 50 75 100 125 150 175 200

time [s]

Figure 5.5: Bounds for the platooning example.

ChoosingA = 6 s, we comput&, = 0.125 m and choosingg = 20 s, we com-
puteK, = 0.058 m. We further compare the bounds with a simulation of yise s
tem where gaps are repeatedly opened by velhialith a dwell-time ofA =6s
andA = 20s. The results are shown in Fig. 5.6. It can be seen thabtnputed
bound is close, especially for large valuesfof The conservativeness for small
values ofA can be explained by inspecting the bouwaft) and the actual output
signaleg; in Fig. 5.5. Here, repeated "open gap” maneuvers do not leaah t
accumulation in the error signal due to the sign change,in

In contrast, an accumulation of the error can be observedatternating
'open gap’ and 'close gap’ maneuvers. Since the input sidﬁwr closing a gap
fulfills |0 (t)| = |uff(t)| for all t > 0, the same bound(t) is valid in both cases.
That is, the same bounid, is obtained when alternating’ and uff according
to Theorem 9. Fig. 5.7 shows a simulation where 'open gap’ 'alude gap’
maneuvers are alternated e 6 s andA = 20s. In this case, the bourkq, for
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Figure 5.6: Simulation and bound fak = 6 s (left) andA = 20 s (right).

A = 6sis less conservative.
In summary, it can be confirmed that driving safety is enswihkdn perform-
ing arbitrary 'open gap’ and 'close gap’ maneuvers. Evemedase where a gap

is opened/closed evety= 6 s, it holds that the accumulated distance error stays

below Q125 m. Considering that the desired distance js= 29 m at a speed of
20 m/s [33], such error is negligible.

5.2.3 Repeated Application of Different Input Signals

We next evaluate the bound in (4.40) for all input signalsZs 10. We find
a(t) = 0.016e %33 py simulation ando(t) = 10.1e %5t 58 | 11'ljktk using a
minimal realization of (3.5). Choosing scenarios, wherealeh poientially has
to open a gap everfs = 10 sec and\ = 20 sec and using = 10~° (t; = 135), the
boundsKy = 0.25m andKy = 0.13 m are obtained, respectively. Fig. 5.8 shows a
comparison of the bounds with a simulation of different egpd input signals.

It can be seen that the computed bound is valid for the regaapeit signals

83



(8]
3 -0.05
E
(@]

-0.1}

~0.15} -

-0.2

0 100
time [s]

Figure 5.7: Simulation and bound fak = 6 s (left) andA = 20 s (right).

chosen from74,510. In addition, it can be concluded that the error signal of
vehiclei (follower vehicle of predecessor vehicle on which feedfamvsignals
are applied) remains below2b m even if the predecessor vehiclgerforms gap
opening maneuvers i s 1o every 10sec in the described setting. Considering
that the desired distance at a speed ef 10m/sec isdyj = 17 m, this does not
cause a violation of driving safety.

5.2.4 Discussion

After demonstrating the proposed bound computation by seftne application
example, we next discuss the obtained results.

First, we note that the evaluation of the bound in (4.40) hasaddends. The
first addend is computed based on the boaftd in (4.38) that is obtained using
simulation. It determines a bound for up & repetitions of input signals in
umasty- The second addend depends on the bdaftiin (4.37) and captures the
effect of applying an arbitrary number of input signals.
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Figure 5.8: Comparison of bound and simulation for repeated inputs:A(a)
10sec; (bA = 20 sec.

In principle, it could be argued that the rather intricatecs®l addend can
be avoided if it is ensured that the input signal is repeateohare tharN, times.
Nevertheless, such assumption poses a restriction on fséy®system behavior.
In our application example, this would mean that only a ledinumber ofN,
opening/closing gap maneuvers is permitted while guaeamgethe bound on the
error signal. Precisely, the advantage of the bound in J4mtuding the second
addend is that a bound is obtained for any number of inpuiasigapetitions. In
addition, the evaluation of (4.40) is an offline computatibat only depends on
the range of the possible input signals#g
of the LTI system in (4.39). Furthermore, choosigmall enough (and hente

naxt @nd the impulse response bound
large enough) always ensures that the contribution of tbersabaddend in (4.40)
is small. For example, when computing the bold= 0.25 m for the input signal
uz andA = 10sec in Section 5.2.1, the first addend amounts2d®m and the
second addend is@1 m.

Finally, we recall that the se¥,,, 1, is obtained by inspecting the expected
input signals to be applied to the LTI system as illustrate@eéction 5.2.3. A
benefit of the proposed method is that any new input signabeapplied without
violating the computed bound as long as it belong&4g,,. 1 -
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5.3 Vehicle String Application

Effects of multiple impulses and time-limited inputs withsafficient temporal
spacingA were investigated for a single follower vehicle in Sectioh &nd Sec-
tion 5.2. Now, we consider the effect of lane change mansuerra complete
vehicle string composed & vehicles. The main contributions compared to the
previous results of Section 5.1 and 5.2 is that we now comitédound of im-
pulse and time-limited responses for the whole vehiclegtrio this end, Section
5.3.1 identifies a relation among the impulse responseseetdifferent vehicles.
Then, it is possible to apply the result for LTI systems witbltiple inputs and
outputs in Section 4.3.

5.3.1 Vehicle Strings Structure

It is important to note that the dynamic matrix of a vehiclengt in (3.2) has a
special structure. For each transfer function, we use tedard equation from
state space to transfer function conversion:

A(s)=C(sl—-A)"'B

Writing A(s) = (sl — Ap), with the help of the lower triangular matrix structure,
we compute
(sl—A)1=
- Al 0 -
A tant At
(A~1A1)°A1 AtA AL

(A_lA]_)n_zA_l (A_lAl)n_3A_1 (A_lAl)lA_l A_l 0
(AflAl)nflAfl (AflA]_)anAfl . <A71A1>2A71 (AflAl)lAfl Afl_

having the form of a block Toeplitz matrix with identical msfer functions along
the diagonals.
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That is, the transfer matrix between each vehicle statelanduccessor vehi-
cle states can be easily computed. Likewise, the transfannfeetween each in-
put signal and output signgl can be easily determined. Famele using the input
vector [Bl 00:0 o] and the output vecto0 C, 0 --- 0 0 0,
we get the transfer function

M(s) =CoA 1A A 1B,

With the assumption that the string is homogenous and usmgransfer ma-
trix representation above, the relation between any velstdte and successor
vehicle states can be generalized.

Proposition 1. Consider a vehicle string with N vehicles and impulse response
y,j from the state of vehicle i to the state of successor vehislé jThen, it holds
that any impulse respongg; is identical to the impulse respongg;_i 1.

Proof. We show that, for any, j € {i, j € N|]1 <i < j < N} by using the lower
triangular matrix special structure

Fij(s) = (A A - (AT ADA ™ = (A1 A A =T jia(s).

]

Practically this means, as an exampl ® 4" vehicle and % to 5" vehicle
and 6" to 8" vehicle have the same state-to-state relation. The impiocnse-
guence of Proposition 1 is that it is only necessary to compualuate the impulse
response matrices from the first vehicle state to all suoceshicle states, which
include the impulse response matrices of the successarl@shi

Additionally, as was concluded in the Section 3.4, whenewdtiple gap/opening
or closing maneuvers and different input signals are agpbehe system, using
the bound of (3.15) a large bound which is practically infiel@s We next compute
a new feasible, improved bound for the whole vehicle string.
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5.3.2 Multiple Impulse to Vehicle String

We first considery(t) = [e11(t) &42(t) --- en(t)] using the parameters in
Table 5.4.

Table 5.4: Parameters of the example system [8].

[Liza=5m][ri;1=5m] h=08sec| 1 =0.4sec| K by He | Kip by He |

For example||le|L,,,7 = 1.02 (forA = 7) as given in the Fig. 5.9.

That is, even in the case of a lane change occurring in thegstar every
7 sec with a measurement error\of 2m, the distance error is bounded by 2
1.02m= 2.04m. Considering thal ; = 5m+5m+ 0.8sec 20m/sec= 26 m for
a reference speed of 20 m/sec, driving safety is ensurechfaratrary number of
lane changes.

10 Vehicles String 10 Vehicles String

1.5

vATAl

— vehiclel

o | vehicle1}

- | — vehicle2
.| —venhicle3
B —tKu

: | — vehicle2
=1 —vehicle3
S| —2K

u

distance errors for repeated error impulses
(=]

accelerations for repeated error impulses
(=)

o 10 20 30 40 50 60 o 10 20 30 40 50 60
time[sec] time[sec]

Figure 5.9: Multiple error impulse response of vehicle strings(t) (left) and
ya(t) (right) fora =7

We next considey(t) = [ai+1(t) a&y2(t) --- an(t)] using the same pa-
rameters of Table 5.4. Using (4.40), we fiiflg||.,, 7 = 0.64 forA = 7. In this
case, the resulting acceleration bounds are far below tbelexation limit for
comfortable driving which is in the range of23 m/s’ [65]. We further perform
a simulation of the system in (5.2) with repeated unit impslithat are separated
by A =7 sec in time as shown in Fig. 5.9. Itis readily observed thatbmputed
bound on|| 4|, A is close.
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5.3.3 Multiple Time-Limited Input to Vehicle String

We apply the results to the platooning example with the faeklioop in Fig. 3.9,
the input signali; € %510 and output signale11(t) &42(t) - en(t)]in
Fig. 3.10 anda11(t) a2(t) --- an(t)] in Fig. 3.10 for opening a gap.

Using theH., controller design of Matlab/Simulink, the bouwt) in (4.39)
is computed. Choosingg = 0.005, we obtairiy = 59.94 s in (4.39).

We first performed a simulation of the output response in dd8imulink
with a simulation erroesjm, ~ 0.001 to determine the bouradt) fort < t;.

Choosingh = 55, we computé, = 1 m andK, = 6.14 m/€ for e(t) anda(t)
respectively. We compare the bounds with a simulation okgtstem where gaps
are repeatedly opened by vehicleith a dwell-time ofA = 5s. The results are
shown in Fig. 5.10. It may be asserted that the computed bucmhservative,
due to accumulation of error by repeated exogenous actieleraput. However,
for larger values ofA the bound is quickly getting closer by inspecting the bound
a(t) ande(t) in Fig. 5.11. WithA = 15s, we comput&, = 0.0013 m andK, =
2.69 m/$ for e(t) anda(t) respectively.

x 107 10 Vehicles String 10 Vehicles String

(%]

- |—venicle1
—— vehicle2

—— vehiclel
—— vehicle2

output for repeated inputs
output for repeated inputs

S2f e ehicle3 6 e e e | ——vehicle3
: : : +K : : +K
——————————————————— u : : : u
h0) 20 40 60 80 100 0 20 40 60 80 100
time[sec] time[sec]

Figure 5.10: Simulation and bound fok = 5 s distance error(left) and accelera-
tion (right).

In summary, it can be confirmed that driving safety is enswikén perform-
ing arbitrary 'open gap’ and 'close gap’ maneuvers. Evemedase where a gap
is opened/closed evety=5s, it holds that the accumulated distance error stays
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distance error output for repeated inputs
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Figure 5.11: Simulation and bound fak = 15 s distance error(left) and accelera-
tion (right).

below Q005 m. Considering that the desired distance js= 29 m at a speed of
20 m/s [33], such error is negligible.

5.4 Summary and Discussion

In summary, the main subject of this chapter is the appbeoatf the general
results on norm bounds for the output signal of stable LTtesys derived in
Chapter 4.

Section 5.1 applies the bound computation for LTI systentis keipeated input
impulses to the case of lane change completion in vehiciegstr It is shown
that suitable analytical bounds for the error signal of sgsor vehicles are found
when realizing vehicle following be cooperative adaptiugise control (CACC).
Moreover, simulations illustrate that the obtained bouasclose especially in
case where the repeated input impulses are separated Wicaestlf large dwell-
time.

Section 5.2 focuses on the bound computation for LTI systsitisrepeated
time-limited input signals for opening/closing gaps in i#h strings. Using the
analytical bounds derived in Section 4.2, it is shown thay weall error signals
are encountered when using CACC and the closeness of theieadbhdunds is
confirmed by simulation experiments.
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Finally, Section 5.3 extends the previous studies in thitiae for the case of
vehicle strings with many vehicles. Here, it is possiblertip®y the general result
for LTI systems with multiple inputs and outputs in Sectio8.4lt is shown that
the special structure of a homogeneous vehicle string makafficient to apply
this result to a reduced number of impulse response mattitsgeg the analytical
bounds, safe driving during lane changes is ensured as lorleadwell-time
between lane changes is not too small.

It has to be noted that the analytical bounds in Section 4dl4ap depend
on the evaluation of the impulse response bobftd in (4.20). In the course
of this thesis study, it turned out that existing methodscfamputing this bound
suffer from numerical problems in case of large systemsceSine thesis focuses
on vehicle strings, whose dynamic models have many statessinecessary to
develop an original improved method for the numerical cotaton ofb(t). This
additional work is the subject of Chapter 6.
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CHAPTER 6

LINEAR ALGEBRAIC COMPUTATIONS FOR BOUNDS DERIVATIONS

The results in the previous chapters are based on the cotigputéa boundo(t)
for the impulse response matrix of LTI systems as in (4.2@hdugh such bounds
have been determined in the existing literature, it turnstioat their numerical
evaluation becomes infeasible for large LTI systems. Bexatithis reason, this
chapter develops new methods for the numerical evaluafioorwn bounds for
the impulse response matrix of large LTI systems. Since btaimed method is
general and not limited to vehicle applications, it is preéed in a separate self-
contained chapter.

6.1 Preliminaries

We first introduce the necessary notation in Section 6.1henTwe state several
basic results for matrices and block matrices as well as theixnexponential
function in Section 6.1.2. We formalize the Jordan candrfiman in Section
6.1.3 and recall the Schur decomposition in Section 6.lrllly, we summarize
and discuss existing bounds for the matrix exponentialtianen Section 6.1.5.

6.1.1 Notation

Consider a quadratic matri € C"™". We writeg; for the entry in thd-th row
and j-th column of A. The set of eigenvalues @& is denoted aspec¢A) and
a(A) = max{RgA)|A € spec¢A)} is the largest real part of any eigenvalue in
specA). Writing ||A]| for the induced matrix normk (A) = ||A~Y|| - ||A]| is the
condition number oA if Ais invertible. Furthermore, usingy* for the conjugate
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transpose oA, u(A) = max{ u|u € spe¢(A+A*)/2)} is the logarithmic norm of
A[67].

We write I, for the identity matrix with dimension, .7 for the set of upper
triangular matrices such that; =0 forall 1<i,j <nwithi> jif Ac .7 and
< C 7 for the set of strictly upper triangular matrices such thgt= 0 for all
1<i,j<nwithi> jif Ac.”. AmatrixAis nilpotent ifAX = 0 for some index
k and the smallest sudhis called the nilpotency index & Consider a matrix
A€ 7. We writeA = Ap + An, WherebyAp is the diagonal part ok andAy € .77
is the strictly upper triangular part éf

In this chapter, we employ block matrices with quadratick&on the main
diagonal. In general, we write

Bi11 Bi2 Bim
pd B21 B.zz Bom
_Bml Bm2 ° S Bmm_

for anmx mblock matrix, wherebyg; € C"*" is ann; x n; complex matrix for
1<i<mandB;j € C"*"i for 1 <i, ] <m. We use the notation di&B11, - - - , Bmm)
for block diagonal matrices witBj; = O for i # j. Additionally, we call a block
matrix (strictly) upper triangular if the relevant block triees are zero.

6.1.2 Basic Results Regarding Matrices, Block Matrices and the Max
Exponential Function

Lemma 6 summarizes several results regarding matriceslankl imatrices that
are used to prove the main results in this thesis.

Lemma 6. Consider that TU € .7 are upper triangular matrices, 8 .7 is a
strictly upper triangular matrix and R is an invertible diagal matrix with com-
patible dimensions. Then,

1. T-U andU-T are upper triangular,
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2. ST and T-S are strictly upper triangular,
3. T-Lis upper triangular if T is invertible,
4, RL.T.-R=R 1. (Tp+Tn)-R=Tp+R1-Ty-R.

We study bounds for the norm of the matrix exponential fuorcét of ma-
trices A € R™". To this end, we present several relevant results. A passibl
representation of the matrix exponential function is

3 ki k
el = A—t. 6.1
kgo " (6.1)

Then, it holds for the matrix exponential function of a blatkgonal matrix that
eliagBuBrmt _ diggeBut  gPBmmt), (6.2)

Finally, we state a result that allows evaluating the magxponential function
of a matrix product with commuting matrices [68, 69].

Proposition 2. Let AB € R™". Then, it holds for all t= R that
e(A+B)t — eA'[eBt (63)
if and only if AB= BA.

6.1.3 Jordan Canonical Form

We next provide a formal definition of the Jordan canonicaifto be used in the
remainder of the thesis.

Definition 3. Let Je C"™" be a matrix. Then, J is a Jordan matrix with eigenvalue
A and Segre characteristic {ddo, . .., ds) if the following conditions hold:

1. i +do+---+ds=nis a partition of nwithd >d, > --- >ds>1and J
is an sx s block matrix with j € C%*% fori =1,...,s.

2. The main diagonal entries of &re allA fori=1,...,s.
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3. The superdiagonal entries qf dre equalto 1 fori=1,...,s.
4. All other blocks of J are zero. Thatis; 3= 0if j #1.

An example Jordan matrix with eigenvalde@nd Segre characteristi4, 4,2, 1)
is givenin (6.4).

A 1000000000
0A100000O0O0HO
0 0A 1:000O00O0TG 0O
0 00AO0O0GOGO0 OO DO
0 00O0A1000O0 O
J=/0 000/ 0A 10000 (6.4)
0 00 0O0O0A1:0 0:0
0000 0O OAD OO
0 0000O0O0O0A 10
0 00000DO0OO0AO
|0 000 0000CO 07|

Using the Jordan matrix for a given eigenvaluen Definition 3 as the building
block, it is possible to define the general Jordan matrix.

Definition 4. Let Je C"™" be a square matrix with the distinct eigenvalues. .., Am.

J is in Jordan canonical form if
J=diagJ,...,Im), (6.5)
whereby Je C"*" is a Jordan matrix with eigenvalug fori=1,... k. We write

s for the number of diagonal blocks qf J

It is a well-established result in the literature that angnptex matrix can be

transformed to its Jordan canonical form.

Proposition 3. Let Ac C™" be a matrix. Then, there exists an invertible matrix
T3 such that TlAJ T; = J, where J is a matrix in Jordan canonical form.
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6.1.4 Schur Decomposition

We further employ the Schur decomposition as formalizedap®sition 4.

Proposition 4. Let Ac R"™" be a matrix. Then, A can be transformed to
S=Q'AQ (6.6)

where Q is a unitary matrix and § 7. In that case, S is denoted as a Schur form
of A.

6.1.5 Existing Bounds for the Matrix Exponential Function

Various bounds for the matrix exponential function are pied in the literature.
In this section, we summarize the most relevant bounds adifigel in [63, 69].
Consider a complex matri&k € C"™",

The first bound is derived based on a result on the logarithorim of matrices
by [67].

Lemma 7. Assume that T is an invertible matrix and write=ET ~1AT. Then,
[1€2]] < Iba(t) = K (T) -4, (6.7)
Also, for eacle > 0, there exists an invertible T such that
H(E) <a(A)+e. (6.8)

The second bound is based on the Jordan canonical form asluctd in
Section 6.1.3.

Lemma 8. Assume that jTis an invertible matrix such that & TJ_lAT] is in
Jordan canonical form and let b be the size of the largestaotadock of J. Then,
it holds that

tk

t < —D. .eu (At il
1€ < 1ba(t) = b-k(Ty) - €7 max 0. (6.9)
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We denote the bound in (6.9) as therdan bound
The third bound is based on a transformatiorAdb an upper triangular ma-
trix.

Lemma 9. Let Q be an invertible matrix such that=SQ 1AQ e .7. Write
S=%+S. Then,

a n—1 tk
1€ < k(Q)-e (A)t-kZOHSkaH- (6.10)

In particular, if a Schur decomposition #fis used such that (Q) = 1, the
following corollary is obtained.

Corollary 5. Let S= Q1AQ be a Schur form of A and write=SS, + Sy. Then,

o n—1 tk
17| < shu(t) == e (A)t'kZOHS\IHk'E' (6.11)

We denote the bound in (6.11) as tBehur bound

The bounds introduced in this section show different priopeand it is argued
in [63] that the effectiveness of each bound depend# and the relevant time
instances. If all the eigenvalues oA are in the left half complex plane, the bound
in (6.7) can ensure a monotonically decreasing exponesgiedy that is slower
thane? Wt The speed of the decay can be adjusted by a similarity wemstion
as in (6.8). Here, increasing the speed of the decay suchufat~ a(A) gen-
erally has the effect that the maximum vaki€l) of the bound at = 0 becomes
very large.

The bounds in (6.9) and (6.11) both constitute the produatd#caying expo-
nential with exponentr(A)t and an increasing polynomial trwith positive co-
efficients. That is, the exponential decay is faster contptréhe bound in (6.7).
On the other hand, the bounds in (6.9) and (6.11) generatiw shhump [70]
(maximum) such that the exponential decay is dominant omyldrge enough
times. Here, the size of the hump depends on the growth of aha@mial in
(6.9) and (6.11), which is determined by the polynomial fioeints and the poly-
nomial order.
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In (6.9), the polynomial coefficients are always equal to ané the polyno-
mial order only depends on the sibeof the largest Jordan block in (6.9) and
not on the size oA. A disadvantage of the bound in (6.9) is the requirement
of obtaining the Jordan canonical form Af which is generally not possible in
floating point arithmetic [71, 72]. In addition, the conditinumber (T;) can be
arbitrarily large [70].

On the other hand, the bound in (6.11) depends on the Schangexsition,
which can be obtained in a stable way using the QR algoritt8n7{4]. Moreover,
sinceQ is a unitary matrix, it is ensured that the bound is equal ® font = 0
and hence close for very small times. Nevertheless, thenpatjal coefficients in
(6.11) are given by the noriiSy|| and the polynomial order grows with the size
of Ain (6.11). That is, a large maximum is commonly observed teetioe bound
exponentially decays to zero unld$Sy || and/orn are sufficiently small.

In summary, all bounds have to be considered as conservat\Nhough
the bounds in (6.9) and (6.11) ensure exponential decay st for large
enough times, they can assume a very large maximum espefdallarge and
ill-conditioned matrice#\, which impairs the numerical bound computation.

The subject of this chapter is the computation of bounds emthtrix expo-
nential function that can be better evaluated for large astdaell-conditioned
matricesA. Hereby, the main focus is on obtaining bounds with a fasadend
a maximum value that can be evaluated numerically. To this $action 6.2 de-
rives new bounds based on the Jordan canonical form ancd8é&c8 proposes a
new method that is based on the Schur decomposition.

6.2 Improved Bounds for the Matrix Exponential Function Using the
Jordan Canonical Form

This section focuses on computing bounds for the matrix egptal function

using the Jordan canonical form. Section 6.2.1 states alensdevant properties
of the Jordan canonical form and Section 6.2.2 determinesnargl result that
slightly improves the bound in (6.9). A method for obtainiadaster decay of
the bound is developed in Section 6.2.3 and an evaluatiow@amgarison of the
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presented results is given in Section 6.2.4.

6.2.1 Properties of the Jordan Canonical Form

We next state several basic results for matrices in Jordaonical form.

Proposition 5. Let J= diag(Js, . ..,Jn) € C™" be a matrix in Jordan canonical
form with Jordan matrices; & C"*" with eigenvalueg\; and Segre characteristic
(di1,...,dig) fori=1,...,m. Then, it holds that

1. J can be written as
J — JD ‘l‘JN — dlanl Inl7 ¥ o ,Amlnm> ‘l—dlanl, ey Nm), (612)

where Nis a nilpotent Jordan matrix with the same Segre charactieres
Jfori=1....m.

2. ||9n] =1,

3. b and y commute,

4. the nilpotency index ofJis b:=max_1,__mdi 1.
Proof. 1. Directly follows from Definition 4.

2. Sincely = diag(Ny, ..., Nn), it holds that
=m Nil|.
[[n]] = max [[Ni]

Considering that the structure Bf implies ||Nij|| =1 fori =1,...,m, the
assertion directly follows.

3. It holds that

\JD ‘JN == dlanllnl . Nl,...,AmInm‘ Nm)
- d'anlAllnl,,Nm)\mlnm) :\]N JD
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4. It holds that
JK = diag(N¥,...,NK)

and the nilpotency index df; is equal tad; 1 according to [75]. That is, for

k < b, there exists am such thatNk # 0 and hence # 0. However for

k= b, it follows thatNP = 0 for alli = 1,...,m, implying that alsaJf = 0.
]

6.2.2 Bound Derivation for the Jordan Canonical Form

Using the properties in Proposition 5, it is now possibledtedmine an improved
bound for the matrix exponential function based on the Joodaonical form.

Theorem 11.Assume that & C™"is a matrix. Let J= TJ‘lATJ =diagJs,...,Jdm) €
C™"M pe the Jordan canonical form of A with Jordan matrices X" <" with
eigenvaluel; and Segre characteristi@; 1,...,dig) fori=1,...,m. Write b=
max<i<mdi 1. Then,

b— ltk

1] < k(Ty) Z % (6.13)

Proof. We first compute

1A = (I Tae™ AT T Y| < k(To) €Y.
Considering Proposition 5 item 3., it holds tl¥at- Jy = Jn - Jp. That is, Proposi-
tion 2 implies that

eJ t_ e(JD“‘JN) eJDt eJNt

We further know from Proposition 5 item 4. thﬁ = 0. Using the representation
of eNt according to (4.16) and noting thiady|| = 1 from Proposition 5 item 2.,
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we obtain

€M) < K(Ty) - [[elor Nt ||—K(TJ) ||eJDt'eJNtH<K(TJ)'||eJDt||'||eJNtH
= K(Ty)- W] N o 1= k(M) € )t'|| N |
o =
b—1 | 7| (kek b—1 ¢k
amt < O] t
<K(Ty)-€ Z —k! = Z K
o
O

Itis readily observed that the bound in (6.13) is smallentte bound in (6.9)

since
b—1 k k

Z k| —~ O<k<b K"

Of course, it has to be noted that the difference betweemtbébunds need not
be significant. Nevertheless, as will be shown in the sulestgection, the bound
formulation in (6.13) allows for a straightforward impraewent of the bound es-
pecially for sufficiently small times.

6.2.3 Adjusting the Bounds for Sufficiently Small Times

The bound in (6.13) is the product ef?(At (monotonically decreasing) and the
polynomlalzﬁzcl)}(—! (monotonically increasing). Hereby, the polynomial coeffi
cients are determined by the fact thgh|| = 1. Accordingly, depending on the
value of a(A), the bound in (6.13) shows a large maximum (hump) and slow
decay. In this section, an additional transformation withatrix R € R"*" is in-
troduced in order to decrease this hump and to achieve fdstaty to zero. To

this end, we use the properties stated in the following psijon.

Proposition 6. Let J= diagJs,...,Jn) € C™" be a matrix in Jordan canon-
ical form with Jordan matrices; X C"*" with eigenvalue\; and Segre char-
acteristic (dj 1,...,dis) fori =1,...,m. Write b= max<j<mdi1. Letr<1
and define R = diag(r®,....r% N fori=1,....mand j=1,....5. Let R =
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diagRi1,...,R ) fori=1,...,mand R=diagRy,...,Rn). WriteJ=R 1JR=
Jo +Jn. Then, it holds thafip = Jp, Jy = rJy andk(R) = r1-b.

Proof. First, it holds forJp that

R 1JpR=diagR;?,..., Ryt diagA1lng,. -, Amln,) diagRy, .. ., Rm)
= diag A1 Ry Mn Ry, - - -, Am Ryt Rm)
- dlanllnl, e 7Arnlnm) - \]D

Next, we considedy:

R1IR=diagR;?%,...,R )diag(Ny, ..., Nm)diagRy, ..., Rm)
= diag(R; *Ni Ry, ..., Ry N Rmn).

We show thaR(l NiR =r-Nifori=1,...,m RecallthaR =diagR 1,...,R 5)
by definition and writd\; = diag(N; 1,...,Ni s ), wherebyN; j represents the nilpo-
tent Jordan block of sizé ;. Then,

RINR = diag(Rijll,...,Rijal)diag(NLl,...,NLS)diag(Ra,l,---,Ri,s)
= diag(Rifll Ni1Ri1,..., Ri_,sl NisRis)-

Considering thaR j = diag(r?,...,r%i~1), Rt = diag(r®,...,r*~%i) andN j is
a matrix where the superdiagonal entries are equal to 1 anlleabther entries
are zero, it is readily observed thaijjl NijR j=rNij. Hence R"!NjR =rN;
which impliesdy = rJn.

Finally, sincer < 1, the largest singular value Bfis 1 and the smallest singu-
lar value ofRis rP~1, that is,k (R) = 1/rb=1 = r1-b, O

Using Proposition 6, it is possible to modify the polynonueéfficients in the
bound for the matrix exponential function as shown in Theol&.

Theorem 12. Let A, J, J,i=1,...,m, b, R be defined as in Theorem 11 and
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Proposition 6. Then, it holds that

f e blktk a(A)tblktk
(] < ioa(t) == K(Ty-R)- 1 5 = <0 (Ty) - B 5
(6.14)

We denote the bound (6.14)asimproved Jordan bound

Proof. In analogy to the proof of Theorem 11, it follows from Propimsi 6 that

b—1 ) 7 . 11kik b-1 kik
In| |t -JIn |t
HeAtH < K(TJR)_eO((A)t_ Z || N|'| :K(TJR)-e“(A)t~ Z Hr ’\:H
2 K 2 K
b-1 k ¢k b-1,k ¢k

= K(T %kl— Zk.

O
k. tk
Inspecting (6.14), itis possible to adjust the effect ofpbb/nomlalzk 0 N
on the overall bound. In order to achieve fast decay to zestould be chosen

depending o (A) in order to decrease the maximumesfA't. 5L ér" . The
subsequent section provides several examples for this&hoi

6.2.4 Evaluation Examples

We consider two examples for the evaluation of the bound ih4)6 The first

example uses the matrq = Ty, J Tle with

5 1 0 0 0 0 O
0 51 0 0 0 O
0 0 50 0 0 0
J=|0 0 0 -5 1 0 O
0O 0 0 0 -5 1 0
0 0 0 0 0 -5 0
(0 0 0 0 0 0 -5
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and the randomly generated transformation matrix

3 7 5 7 4 5 4
025 02 045 04 045 025 O
100 0 O 800 100 100 2do
=6 2 4 o0 2 8 1.
200 900 100 300 100 600 100
18 03 27 06 03 09 06
6 8 0 8 8 5 4

Thatis,A; has a single eigenvalueb and Segre characteristig, 3,1) andk (Tj,) =

4021. Evaluating the bound in (6.14) for different values gives the bounds in
Fig. 6.1.

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time [sec]

Figure 6.1: Bound computation for the example matAx.

It can be seen in this example that a choice-6f0.2 supports fast convergence
to zero. Choosing a smaller value pincreases the condition numbe(T;, R).
Hence, the initial value of the bound is significantly ined, whereas the ex-
ponential decay is not affected. Fig. 6.1 also confirms thatexisting Jordan
bound in (6.9) is more conservative than the improved Jolamd in (6.14).
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For comparison, we also state the Schur bound accordingld)(&s

6 k
shy, () = 5 ! 125;( t (6.15)

k=0

with a maximum at B86- 103, That is, the bound in (6.11) is considerably more
conservative for this example except for very small time® (Sig. 6.1).
As the second example, we usg=Tj, JZTJ;1 with

11 0 0 0 0 O
0 -1 1 0 0 0 O
0O 0 -1 0 0 0 O
L=|0 0 0 -1 1 0 O
0 0 0 0 -1 0 0O
0 0 0 0 0 -3 1
0 0 0 0 0 0 -3

and the randomly generated transformation matrix

[ 600 1400 1000 14006800 1000 800
1000 800 1800 1600 1800 1000 P
200 0 0 1600 200 200 4Q0

T,=103 01 02 0 01 04 01
01 04 01 0.2 01 03 01
6 1 9 2 1 3 2
6 8 0 8 865 4

That is,A; has a the eigenvaluel with Segre characterist{8,2) and the eigen-
value—3 with Segre characteristi@). In this examplek(T;,) = 3086. Evaluat-
ing the bound in (6.14) for different valuesogives the bounds in Fig. 6.2.

In this example, the choice of= 0.1 is most suitable. Here, the hump in
the bound can be observed when choosirigo large. It can also be seen that
smaller values of are required compared to the first example due to the slower
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ij:
——ijby, (r=1.0)
——ijby, (r=10.6) (|
——ijby, (r=04)
ijby, (r=10.1)

——ijby, (r = 0.05)
- = -ijby, (r = 0.02)f
- - -sby,

= : :
0 20 40 60 80 100 120
time [sec]

Figure 6.2: Bound computation for the example matAx.

exponential decay with eigenvaluel. Fig. 6.2 again confirms that the Jordan
bound in (6.9) and the Schur bound with
7 kik
_ 11.9%t

k=0

(6.16)

are more conservative than the improved Jordan bound.

6.3 Improved Bound using the Schur Decomposition

It is shown in Section 6.2.4 that the improved Jordan boumdbeasignificantly
better than the Schur bound in (6.11) except for very smalkks. Nevertheless,
the bound in (6.14) requires the availability of the Jordananical form, whose
computation is generally numerically not stable [71, 78]tHis section, we pro-
pose an improved bound using the Schur decomposition wiaintbe computed
in a stable way. To this end, we address two main reasonsd@oihservativeness
of the bound in (6.11). First, as confirmed by the examplesecti6n 6.2.4, it
holds that the value gfSy|| can be large. Second, the nilpotency inde)§gfis
generally equal to the dimensiorof A, leading to a polynomial degree nf- 1
in (6.11). Accordingly, the proposed method attempts taicedthe nilpotency
index of Sy using a similarity transformation & to block diagonal form. Then,
the norm of the strictly upper triangular part of the resgtmatrix is further de-
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creased with the aim of reducinipy||-.

6.3.1 Bound Derivation

As the first step, we transform the matixto block diagonal form. Hereby,
similar to [76], we first determine an ordered Schur decortipos where sim-

ilar (close) eigenvalues &4 are grouped next to each other. Then, we apply a
method to eliminate off-diagonal blocks by using a spedarailarity transform
and a Sylvester equation. To this end, we employ the follgwiroposition that is
adapted to the notation in this thsis from [76].

Proposition 7. Let Ac R™" be a matrix and led > 0 be a constant. Then, there
exists a unitary transformation & R™" and a pe N such that

(S S o S
s—u-tau— | F o e (6.17)
0 0 - Sy

and
e S is upper triangular fori=1,...,p,

e eitherA is the sole eigenvalue of; ®r there exists another eigenvaliéof
Si such that £ A" and|A —A/| <9,

o foralli,jwith i # j, it holds that if A is an eigenvalue ofiSand Aj is an
eigenvalue of , then|Aj —Aj| > 4.

That is,Sin (6.17) is an ordered Schur decompositiorAofOn the one hand,
each blockS; of Seither contains a single eigenvalue or each eigenvalGg lods
an adjacent eigenvalue with a distance that is boundedl Yn the other hand,
different blocksS; andS;j, i # j, have eigenvalues with a distance larger than
Hereby, it has to be noted that the unitary transformdtian (6.17) can be com-
puted efficiently. Algorithm 4.1 in [76] allows grouping tleggenvalues oA into
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p groups, whereas Algorithm 4.2 in [76] determines a sintjatiansformation
S=U"1AU such that the eigenvalues in each group are adjaceéht in

After obtainingSin (6.17), we transforng to a block diagonal matrix. It is
known that such transformation always exists if the diajthacks of S have
distinct eigenvalues [77, 78].

Proposition 8. Let S be given as i(6.17)such thatspe¢Si) Nspe¢S;j) = 0 for
alli # j. Then, S is similar t&= diag(Sy1, .. ., Spp)-

The computation of dig@s, ..., Spp) is based on the following lemma [79,
75, 78], which establishes such transform for block masgriegh two blocks.

[511 22] andspecS;1) Nspe¢Sy2) = 0. Define the trans-

2

Lemma 10. Let S=

I X
formation matrix Q= [O I ] such that X is the unique solution of

SIIX=XS2+S2=0. (6.18)

Then, Q1S Q= diagSi1, $»).

The successive application of Lemma 10 leads to the iterétigorithm 1 for
computing diagS1, . . ., Spp) for general block matrices.

The algorithm initializes the matri$ with the ordered Schur decomposition
S and successively applies the similarity transformatiomémma 10 to make
the block(j,i) of S zero starting from the blockp — 1, p). According to the
transformation, all blocké&k, | ) with | > i ork > j remain unchanged. In particular,
if a block (k, 1) has been made zero, it will remain zero in all subsequerattiters.

The resulting matrix6= (UT)"TA(U T) after applying grouping of eigenval-
ues as in Proposition 7 and block diagonalization as in Fsitipa 8 and Algo-
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input : S A
output: T, S A A
Initialize T =1 andS=S

[N

2 fori=p,...,2do
3 forj=i—1,...,1do
4 Solve the Sylvester equation
5 —XSi+Sij+Sji:0
6 Define the transformation matri@ = |
7 Set the blockj,i) of Q to X
8 ComputeS=Q1SQandT =T Q
9 end
10 end

Algoritrlm 1. Transformation of a block triangular matr$¢o a block diagonal
matrix S.

rithm 1 is a block diagonal matrix

(&, 0 .- 0
T _ézz 0 (6.19)
0 0 - &)
and can be written &8= & + Sy, whereby
Dy 0 -~ 0] Ny O -« 0]
- |° Dz " ° | anag= | ° 5'22 % 620
_6 0o .- f)pp_ _6 O. N;)p_

For eachi = 1,...,p, Dj is a diagonal matrix with dimensiog and the eigen-
values of the block§; on the diagonal.N; is a strictly upper triangular matrix
with nilpotency indexg;. It further holds that each bloc& of S i=1,...,p
has similar eigenvalues and different blocks have seghetgenvalues. In the
scope of this thesis, the latter fact is particularly ussfate it aids in limiting
the condition number of the related similarity transforim@at[77, 80]. Writing
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g = max-1,. p0qi the bound for the matrix exponential function after thispsis

denoted as

The remaining issue in the bound computation is the dep&ydanthe norm

q-1
HeAIH <isbIa(t) := k(U -f)ea(A)t z
=0

ki

[[Sul*t¥

(6.21)

of the strictly upper triangular pa8iy of S In the next step, we propose a method

for decreasing|Sy||.

To this end, we apply a diagonal transformation [81]

Ri = diag(d,r,...,r9 1),

to decrease the norm blj below a desired limi3. Hereby, the value afin R;j is

computed by a bi-section algorithm. Define the upper bayrahd lower bound
ri such that|R: 2N; Ri|| > B for r = ry and||R: *N; Ri|| < B for r =r,. Then,
Algorithm 2 bisects the interval betwegnandr until

IR7INi Ri|| < B andB —||R; INi Ri|| < 6.

That is, the deviation of Rii‘1 Nii Ri|| from the desired valug is below a given
thresholdd. ComputingR;; fori =1,...,p, the overall transformation matrix of

this step iR = diag(Ry, . .., Rpp)-

The result of the computation in this section is a matrix

with the overall similarity transformatiofl = U T Rcombining (6.17), Algorithm
1 and 2. Foreach=1,...,p, Dj = Dj in (6.20) and|N;|| < B due to Algorithm

Son)

Dy O
0 Dy
0 O
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(6.22)

Niz O
O sz
0 0




input : Si, B,6

output: Rii A
1 Ny =§; —diagSi)
2 if ||N;|| < B then
3 ‘ Ri = lg
4 else
5 Initialize:ry, =1, =0
6 while ||N;||—B8 >0V||N;j|| - B < —6 do
. — ry-+r1
2
8 Ri =diag(Lr,...,r9-1)
9 Si= FSiTlSi Ri
10 Ni = Si —diag Si)
11 if |IN;i|| —B > Othen
12 | re=r
13 else if||Nj|| — B < —6 then
14 | n=r
15 end
16 end
17 end

Algorithm 2: Norm bound for;.

2. Hence, the bound in (6.11) is modified to thgroved Schur bound

t) . a(A)tq_lﬁktk
1€™]] < ish2a(t) :=k(T)e T (6.23)
k= :

The bound computation fafe*!|| is summarized in Algorithm 3.

input : A 0,8,6
output: isba(t)
1 DetermineSin (6.17)
2 DetermineSaccording to Algorithm 1 using
3 Adjust the norm of the strictly upper triangular part&fusing
Algorithm 2 andf3, 6
4 Evaluate the bound in (6.23)
Algorithm 3: Overall algorithm for computing an improved Schur bound
on the matrix exponential function.

Hereby, the bound in (6.23) can be computed in a numerictlyls way and

111



improves the bound in (6.11) from the existing literatuneatly for small times
due to the smaller polynomial degree of the block matricestha reduced norm
of the strictly upper triangular part of the block matrices.

6.3.2 Numerical Evaluation

In order to evaluate the improved bound computation, weoperinumerical ex-
periments using randomly generated matrices with diffepeaperties. In our
experiments, these matrices are computed in the form

A=VJIV1eR™"

whereV € R™" is an invertible matrix and € R™" is a Jordan matrix. The
real part of the eigenvalues is selected randomly (unifpmiigtributed) from an
interval [ry - Amax, Amax}, WherebyAmax < 0 andr, quantifies the range of the real
parts. The imaginary part of complex eigenvalues is safigetedomly (uniformly
distributed) from the interval0, r; - |[Amax]]. The ratio of complex eigenvalues is
given asr¢ (such thatA hasr¢-n complex eigenvalues) and the transformation
matrixV is randomly generated with a given condition numkéy).

We next investigate the improvement of the bounds in (6.8d)(&.23) com-
pared to the original Schur bound (6.11). In each experimegatgenerate 100
different matrices with the respective properties and me¢¢e improvement as
the logarithm of the ratio of the maxima of the different bdsmver time:

max isb2(t)
max sh(t)

max isb2(t)

max isb(t) ) (6.24)

ry = 1og; o ) r2 = 1000

That is,r1 shows the improvement when using the bound in (6.23), wkeatea
shows the improvement when applying the diagonal simylarénsformation in
Algorithm 2. Since the improvements are in the order of pewsrl0, we take
the logarithm of the respective ratios. We note that all oypeeiments are carried
out using quadruple precision floating point numbers [82].

In the first experiment, we consider the dependency; @ndr, on the real
part of the eigenvalues @&, which characterizes the rate of change to be ex-
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pected in the dynamical system modeledAyIn this experimentn = 50 and
K(V) = 1000 is chosen (the dependencymandk (V) will be studied in sub-
sequent experiments). The results are obtained for differ@nges of the real
partr, different ratios of complex eigenvaluese {0,0.4,0.7,1.0} and different
numbers of diagonal blocksin (6.17). The average values fandr, for 100
randomly generated matrices per data point are shown forl00 in Table 6.1
and forr; = 10000 in Table 6.2.

Table 6.1: Improvementr; andry depending omy, p andr for k(V) = 1000,
n =50 andr; = 100.

rr=10 r- =100 r- = 1000 rr=10000 rr = 100000
P \ le \ r \ r2 \ N \ rz \ r \ r2 \ r \ ra \ r \ rz
00| -126.3| -46.2| -163.1 -62.3 -182/0 -714 -1884 -72.1 -190:32.1
2 | 04| -158.0| -65.8/ -1584 -67.9 -170/6 -63|8 -177.8 -68.5 -183-89.6
0.7 || -160.3| -69.0] -156.4 -65.4 -167/0 -64|2 -177.8 -68.5 -176-88.4
10 || -160.5| -68.3|| -158.3 -69.6 -1647 -640 -1755 -68.8 -176-81.7
00| -131.2| -17.9] -171.6 -26.8 -1914 -306 -193.6 -30.6 -198:21.9
4 |04 -1735| -32.1) -171.3 -33.0 -181)7 -28|8 -193.5 -31.2 -194.81.7
0.7 | -176.0| -36.1|] -171.7 -36.1 -181/6 -320 -189.7 -32.3 -191.32.0
10 || -178.2| -38.8| -171.4 -35.0 -178)9 -304 -186.2 -30.7 -188:31.2
00|l -1339| -93| -1749 -158 -193f7 -18|3 -201.4 -18.7 -201.99.3
6 | 04| -178.3| -21.0|f -175.9 -19.3 -187/6 -18|1 -198.8 -19.4 -199.29.2
0.7 || -181.0| -21.7| -176.7 -22.5 -184)7 -184 -197.3 -20.0 -193:68.9
10| -183.4| -23.2| -176.9 -22.8 -180/6 -18(7 -1919 -186 -192:99.1
00|l -1348| -56| -177.0 -109 -195p5 -12}4 -200.9 -12.4 -211.93.2
8 | 04| -181.6| -14.5| -177.0 -13.F -190/0 -1366 -204.1 -18.4 -2Q0-23.1
0.7 || -183.1| -16.4| -180.0 -16.4 -188,0 -13|7 -195.6 -18.3 -200-02.8
10| -186.9| -16.6|| -180.3 -16.4 -185)7 -146 -195.1 -13.6 -192:91.7
00|l -135.1| -3.1| -1775 -7.0/ -199.1 -98 -207.4 -95 -2088 -9.5
10| 04 || -183.5| -11.3]] -181.6 -11.8 -193)8 -10j1 -199.7 -10.3 -201.8.8
0.7 || -185.1| -12.3] -181.5 -13.} -194f7 -116 -199.7 -9i8 -201.P.6 -
10| -187.4| -12.9| -1829 -13.0 -188/3 -116 -1958 -83 -196.18.6 -

The observations are summarized as follows. First a coraitkeimprove-
ment is observed in all cases. This improvement is mostlieseld because of the
block diagonalization in Algorithm 1. The contribution ofgrithm 2 is more
significant if the number of blockp is small. Conversely, the overall improve-
ment is generally large if more bloclsare used. This observation corresponds
to the fact thaty in (6.23) is expected to be smallergfis larger. The effect of the
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Table 6.2: Improvementr; andr, depending omy, p andr for k(V) = 1000,
n =50 andr; = 10000.

rr=10 rr =100 rr = 1000 rr = 10000 rr = 100000
plrell ri [ [ n [ 2 [ rn [ [ [ n |
0.0 -126.3| -46.2| -163.1 -62.3 -182/0 -714 -188.4 -72.1 -190:32.1
2 [ 04| -201.9| -69.9| -199.0 -67.} -1852 -632 -163.7 -59.4 -166-85.7
0.7 | -205.7| -70.7|] -201.6 -69.3 -182]2 -64|8 -162.1 -60.2 -167-47.8
10| -207.3| -72.8]| -201.3 -69.0 -18555 -67|[7 -159.2 -59.5 -159:85.7
00 || -131.2| -17.9] -171.6 -26.8 -1914 -30l6 -193.6 -30.6 -198:31.9
4 | 04| -239.6| -33.7| -235.2 -349 -2166 -314 -1855 -30.0 -185.27.5
0.7 || -243.1| -35.1}] -237.2 -34.1 -215]2 -33|3 -185.1 -3(.7 -183:95.8
10| -245.3| -37.6] -235.3 -38.1 -213)8 -360 -1815 -31.5 -182:27.6
0.0 || -133.9| -9.3| -1749 -158 -193]7 -183 -201.4 -18.7 -201.29.3
6 | 04| -254.7| -22.5|| -247.2 -228% -227/0 -214 -196.8 -21.3 -194.77.8
0.7 || -255.3| -23.5]] -248.0 -24.1 -226/1 -22|7 -198.6 -20.9 -189-37.4
10| -256.9| -23.1|| -249.9 -24.1 -228]1 -22|3 -198.6 -20.5 -187-%8.6
00 || -134.8| -56| -177.0 -10.9 -1955 -124 -200.9 -12.4 -211.93.2
8 | 04| -261.8| -16.2|| -254.8 -16.0 -229/5 -158 -205.2 -1%.5 -195:63.1
0.7 | -263.4| -17.9]] -255.2 -16.6 -234/7 -17/5 -201.4 -16.1 -197:13.4
10| -265.5| -17.6]| -257.4 -17.6 -233]7 -16/9 -197.2 -1}y.2 -192-94.6
00| -135.1| -31| -17783 -7.0/f -199.1 -9.8 -2074 -9|5 -208.8 -
10 | 0.4 || -266.3| -12.0|| -259.8 -12.¥ -234{7 -12/9 -204.2 -11.7 -202-80.2
0.7 || -268.4| -13.7| -262.2 -14.1 -234]2 -13]1 -202.2 -12.1 -198-:40.8
10| -270.5| -14.5]| -263.0 -14.0 -238/0 -13]9 -200.5 -13.1 -194-41.0

D.5

ratiorc of complex eigenvalues dependsmmandr,. If r, > r;, less improvement

is obtained when increases. The reverse effect is observedifr,. In addition,

the improvement is smaller if andr, are in the same range. That is, the ratio of

real parts and imaginary parts has an effect on the improneme

In the second experiment, we studyandr, when generating matricéswith

different dimensiona € {10, 20,50, 100,200}, different ratiog¢ € {0,0.4,0.7,1.0}
of complex eigenvalues and different numbers of diagor@iks p. The real part

of the eigenvalues is generated witk= 1000 and; = 100. The average values of

r1 andr, for 100 randomly generated matrices per data point are siowable

6.3.
It can be seen from Table 6.3 that the improvement increagbsaw increas-

ing dimensiom, which is an expected result. In analogy to experiment felar

improvements are observed if more blogks (6.17) are used and the improve-
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Table 6.3: Improvementr; andr, depending om, p andr. for k(V) = 1000,

rr = 1000 andj = 100.

ment slightly decreases for larger ratigsof complex eigenvalues. It is further
important to note that the contribution of Algorithm 2 beagsmmore significant

for large dimensions.

previous experiments.

The third experiment evaluates the dependenay @indr, on the condition
numberk (V). The experiment is performed with= 50, r, = 1000 and;; = 100.

Table 6.4 shows that a larger improvement is achieved\f) is large. Other-
wise, the observations regarding the dependenqgy andr. are analogous to the

In the fourth experiment, we study the effect of the imagmpart of the

eigenvalues by changing The representative casemf 50, k (V) = 1000 and

rr = 1000 is investigated.
It can be seen from Table 6.5 that the improvement moderatetgases with
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n=10 n=20 n=50 n=100 n=200
plrec |l ro [l ra [ o | rn [ [ n | 2 [ i [ 1
0.0 || -20.5| -7.0/| -57.2f -20.00 -182.p -71/4 -379.4 -138.7 -597.4872
2 04| -210.7| -7.9|| -50.8 -17.3 -155.F -52/6 -365.9 -133.7 -580.380-2
0.7 | -20.4| -7.4| -48.6 -15.4| -156.6 -53/0 -360.6 -132.1 -581.684&
10 || -20.4| -7.7|| -47.5 -16.00 -156.6 -54/0 -353.5 -130.0 -578.581:2
00 || -26.3| -3.1|| -63.9 -8.0/| -191.4 -306 -4079 -6083 -627.4 244
4 104]| -251| -3.1|| -60.5 -8.7|| -182.0 -25/9 -401.0 -60/8 -612.3 846
0.7 || -25.2| -3.5|| -58.6/ -9.2|| -177.3 -26/6 -3916 -61/0 -61P.4 Q43
10| -245| -3.3|| -58.3 -9.8| -173.2 -270 -3846 -62/0 -611.2 846
00 || -27.0| -1.6|| -65.9 -5.3|| -193.Y -18,8 -4149 -37|6 -642.5 789.
6 |04 — — || -64.3| -6.2| -186.6 -16.3 -4054 -37.p -6245 -88.2
0.7 — — || -645| -6.5| -184.7 -184 -400.7 -39.2 -624.6 -90.1
10| — — || -64.2| -6.3| -180.6 -18.71 -396.1 -41.2 -624.2 -92.0
0.0 || -28.0| -0.8|| -76.8 -3.7|| -1955 -12.4 -420.8 -253 -650.7 565.
8 |04 | — — || -65.5| -5.5| -190.6 -13.2 -412p -28.p -631.0 -61.6
0.7 — — || -64.7| -5.6| -188.0 -13.7] -4051 -28.83 -630.5 -65.0
10| — — || -64.4| -5.7| -185.7 -14.¢ -399.2 -31.9 -628.6 -66.7
001 -284| O -68.8| -2.6|| -199.0 -9.8 -426/5 -19/1 -653.6 -51.5
10/ 04| — — || -65.7| -5.2| -193.9 -10.5 -414ff -22.6 -635.0 -485
0.7 — — || -65.4| -5.0| -194.7 -11.¢ -4094 -23.3 -634.8 -50.1
10| — — || -65.7| -44| -188.3 -11.¢ -401.9 -246 -633.3 -52.1



Table 6.4: Improvement, andr, depending ok (V), rc andp for n =50, r, =
1000 and; = 100.

k(V)=10 | k(V)=1000 | k(V) = 100000

plre] i [ 2] i [ 11| 1
00 -94.8| -24.5] -182.0 -71.F -246]2 -94)1
2 04| -855| -19.9| -170.6 -63.8 -240]7 -95.
07| -85.4| -20.6| -167.0 -64.2 -233/4 -91.0
10| -83.7| -21.6| -164.7 -64.0 -229)5 -90.8
00| -105.9] -9.0 -191.4 -30.6 -264]9 -419
4 04| -986| -75| -181.7 -28.8 -2619 -46.8
07| -939| -7.7|| -181.6 -32.0 -258/4 -454
10| -936| -8.6| -178.9 -30.4 -25500 -44.0
00 -109.8] -5.1|| -193.7 -18.8 -272]2 -24
6 | 0.4 -101.5/ -4.7| -187.6 -18.1 -271/1 -30.8
07| -99.7 | -5.3| -184.7 -184 -267)9 -30.5
10| -96.3| -5.2| -170.6 -18.7 -26772 -33.3
00| -111.2] -2.9| -1955 -12.4 -278]9 -176
8 |04 -101.6| -35| -190.0 -13.6 -280/9 -255
07| -99.3| -3.6|| -188.0 -13.7 -280]2 -26.0
10| -975| -3.6| -188.3 -14.6 -271)5 -27.1
00| -111.5] -1.8] -199.1 -9.§ -284]6 -15.0
10| 0.4 | -102.7| -2.5| -193.8 -10.1 -283/9 -216
0.7 | -104.7| -2.9|| -194.7 -11.6 -279]4 -22p
10| -96.4 | -2.8| -188.3 -11.6 -2762 -22.p

an increasing value of. Similar to the observation in Table 6.1 and 6.2, it further
holds that an increase in the ratigof complex eigenvalues has a negative effect
on the improvement as long as< r, = 1000, whereas a positive effect on the

improvement is confirmed fax > r,.

The fifth experiment considers the case of matrices withiplaleigenvalues
and up to 4 Jordan blocks per eigenvalue. The representase ofn = 50,
K(V) = 1000 andr, = 1000 is investigated. In additio in Proposition 7 is
varied such that ordered Schur decompositions witarge number of blocks
(0 = 0.1), amediumnumber of blocks § = 10) and asmall number of blocks
(0 = 20) are computed. The results are shown in Table 6.6 togeittterthe
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Table 6.5: Improvementr; andr, depending orr;, p andr for k(V) = 1000,
n =50 andr, = 1000.

r =10 r = 100 r=1000 | r; =10000
plrel] ri [ 2 [ i [ e[ rn [r2 ] n ro
0.0 -182.0] -71.4] -182.0 -71.h -182[0 -714 -182.0 -71.4
2 |04 -175.8| -68.5 -170.6 -63.8 -1957 -76/9 -192.9 -78.9
0.7 | -175.2| -68.2| -167.0 -64.p -171/5 -733 -199.8 -80.5
1.0 | -171.8| -67.7| -164.7 -64.0 -171/5 -7312 -196.0 -78.2
0.0 | -193.9] -30.2] -193.9 -30.p -193/9 -30/2 -193.9 -30.2
4 |04| -186.0| -30.8| -181.7 -28.8 -188/1 -350 -221.5 -39.0
0.7 | -187.3| -32.1| -181.6 -32.0 -189/5 -38/4 -221.2 -38.8
1.0/ -182.6| -30.5 -178.9 -30.4 -187|1 -37,7 -221.5 -40.6
0.0 | -196.7| -18.2] -196.7 -18.2 -196|7 -18]2 -196.7 -1B8.2
6 | 04| -192.9| -19.5 -187.6 -18.E -196|1 -24/4 -227.9 -26.5
0.7 | -189.0| -18.5| -184.7 -18.4 -195/0 -23|8 -233.8 -26.6
1.0 -187.3| -18.0) -180.6 -18.f -1937 -24/1 -232.4 -28.4
00| -199.1] -12.5] -199.1 -12.5 -199]1 -12/5 -199.1 -12.5
8 | 04| -193.4| -13.0/ -190.0 -13.6 -195/0 -16/1 -235.6 -18.1
0.7 | -193.5| -11.9| -188.0 -13.] -196/9 -17)3 -237.1 -20.4
1.0 -186.7| -11.5/ -185.7 -14.6 -196/6 -19,1 -237.1 -19.7
0.0 | -201.3] -10.1] -201.3 -10.f -201|3 -10/1 -201.3 -10.1
10| 0.4 || -196.1| -9.7| -193.8 -10.1 -199]3 -11j0 -238.8 -15.2
0.7 || -195.4| -10.3| -194.7 -11.6 -198/4 -12|5 -239.9 -16.2
1.0 -191.5| -9.7| -188.3 -11.6 -197/8 -12|7 -237.8 -15.3

corresponding numbers for the caseswigleeigenvalues.

Similar to the results in Table 6.3, Table 6.6 indicatesdarlgnprovements
for matrices with higher dimensions. In general, a largenber of blocksp
leads to larger improvements, whereby the improvementewasth in the case of
multiple eigenvalues are slightly smaller than the improeats in the case of
single eigenvalues and in the case of a larger ratio of conggenvalues.. It is
interesting to note that the contribution of the diagonah&formation according
to Algorithm 2 is more significant for large dimensiom&nd for small numbers
of blocksp.

The last experiment investigates the convergence of thelsapesponse bound.

117



Table 6.6: Improvementr; andr, depending om, p andr. for k(V) = 1000,
rr = 1000 andj = 100.

n=10 n=20 n=50 n=100
c| p [ nlraln[rn | n [ n |
single | -28.4| O -68.8 -2.6/ -199.0 -9.8 -426.5 -19.1
0.0 small -27.4| -8.0/ -61.9 -21.4 -167)7 -644 -339.2 -133.6
" | medium| -30.5| -3.9 -68.9 -9.7 -186|5 -340 -382.6 -68.4
large -31.8/ -0.3] -73.1 -1.1] -19755 -5 -406.4 -13.9
single || -25.1] -3.1| -65.7 -5.2 -193/9 -10/5 -414.7 -22.6
04 small -26.0| -7.9/ -65.9 -20.1 -162/3 -49/2 -331.0 -109.3
"7 | medium| -28.4/ -4.8 659 -116 -178/1 -30.7 -367Y.0 -67.0
large -30.5| -2.5| -70.4 -4.8 -190/8 -12/5 -392.3 -26.5
single || -25.2 -3.5 -65.4 -5.0 -194/7 -116 -4094 -23.3
0.7 small -25.4| -7.8| -58.6 -19.0 -156/4 -51)3 -323.1 -112.0
" | medium| -27.7| -6.2] -64.1 -11.8 -172/6 -31.7 -355.1 -67.7
large -30.1} -3.6/ -69.3 -6.7 -187/0 -17|1 -3855 -35.4
single || -24.5| -3.3] -65.7 -44 -188/3 -11i6 -401.9 -24.6
10 small -23.0| -8.0/ -57.4 -19.9 -157/1 -46|8 -317.2 -106.6
| medium| -26.00 -6.9] -63.0 -13.pb -1734 -33.7 -351.6 -66.2
large -289| -5.3] -688 -94 -1859 -20/9 -383.6 -37.6

To this end, the times when the impulse response bound ig/lzedpven threshold
valuey is determined for the different bounds in (6.11), (6.21) éh@3):

tsp = mtinsb(t) <y, tigh1= mtinisbl(t) <y, tisp2= mtinisb2(t) <y,

In the experiment values gfc {107°,10710, 10715} are used.

Table 6.7 shows that the improved impulse response boutedd8) converges
to zero significantly faster than the original bound in (§.11In particular, the
application of Algorithm 2 leads to a considerable addaéldmprovement of the
bound in (6.23) compared to the bound in (6.21).

We finally list the main observations from our experimentady.

1. The bound in (6.23) achieves a significant improvementpaoed to the
bound in (6.11) in all cases, whereby the improvement irsggavith the
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Table 6.7: Convergence times in seconds for different threshgldepending on
n, p=10,k(V) =1000,r, = 1000,r; = 100,r. = 0.6.

N=20| n=50| n=100| n=200| n=500

tisb1/tsp [%0] || 16.2 13.9 11.8 12.4 27.1

y=10"° | tigno/tsp[%] | 12.8 9.3 7.1 6.6 11.0
tisb1/tsp [%0] || 19.6 15.3 12.6 12.8 27.6

y=10"19| tigpo/tsp [%] || 16.4 11.1 8.0 7.1 11.6
tisb1/tsp [%0] || 23.3 16.9 13.4 13.3 27.9

y =101 | tigno/tsp[%] | 19.8 12.6 8.9 7.6 12.1

matrix dimension.
2. Itis beneficial to use a large number of blogks (6.17).

3. More improvement is seen if the real parts and imaginarig ud eigenval-
ues are not in the same range.

4. In the case of multiple eigenvalues, slightly smaller iayements are ob-
tained compared to the case with single eigenvalues.

5. Significantly faster convergence of the impulse resptwsmd in (6.23) is
achieved compared to the bound in (6.11).

6.4 Application of Bounds for the Matrix Exponential Function

This section applies the proposed bound computation fom&ix exponential
function to an automotive example. First, the example i<idesd in Section
6.4.1. Then, the improved Jordan bound and Schur bound anpared for a
small version of the example system in Section 6.4.2. Bin&kction 6.4.3 shows
that the improved Schur bound gives suitable results forgela&ersion of the
system.
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6.4.1 Vehicle String Example

We consider an automotive platooning application, wheverse vehicles follow
each other in the form of a vehicle string. Specifically, wdrads the case where
a new vehicleN enters in front of a string of up th vehicles as can be seen in
Fig. 6.3. The vehicle string can be modeled in the form of blsthnear system

- k vehicles >

U]

Figure 6.3: Lane change in front of a string withvehicles.

[8, 33] with the state equations

Xl AO o - 0 0 X1 b]_
X2 AL b - 0 O Xo 0
Pl = e e N I A ) (6.25)
Xi—1 0 0 . Ay Of X1 0
_Xk_ 0 o ... A1 Ao _Xk_ _0_
- ~— N N~
Ak X Bk

Herebyx € R!,i=1,..., kis the state vector of vehiclevith dimension, uc R

is the input signal that acts on the first vehicle and the mwegdy € R'*! and
A1 € R"*! capture the dependency of vehiclen its own state and the state of the
predecessor vehicle, respectively. Writkfpr the overall state vector, an output
signal can be defined as

y = CyX. (6.26)

Hereby,Cy can be chosen to select any relevant linear combinationguthe
states.

120



Using this model, the entering maneuver can be represegtad impulse in-
put applied to the first vehicle in the string. Then, the nofrthe output response
of the vehicle string is bounded by

[1Ce By | < [[Ci [/ [[oa -

Assuming that a simulation of the linear system in (6.25) @n#6) is available in

a time intervak € [0,tsin|, we are particularly interested in finding a close bound
for the output response that quickly converges to zero inrttegvalt € (tsjm, «)

[64]. That is, in agreement with the discussion in Sectiéhahd 6.3, we want to
find a bound for|e’!|| that can be evaluated numerically and that converges to
zero for sufficiently small times.

6.4.2 Jordan Bound Computation

We first consider small vehicle strings with 2 and 3 vehiclebgere a Jordan
canonical form of the corresponding matéy in (6.25) can be obtained. Not-
ing that different realizations %y, A; exist in the literature [13, 23, 33, 83], we
choose a realization according to [33] with 8 states peralelsind matrices

O -1 -1 0 00 O 0
O 0 1 0 00 O 0
0 0 -25250 0 O 0
o 0o 0 -100 O 64
Po= 002 0 0O O 0 0O 0 -395
016 0 0 O 2 0 0 -1254
256 0 0O O 0 16 0 -8982
4231 0 0 O O O 64-100573

121



and

010 0 00 0
000 O 00O G
000 O 00O G
p_|000 0 000
000 Q6 000 O
000020 0000
000 140 0 0 0 O
0000Q6 000 0

The eigenvalues of in (6.25) are the eigenvalues&f: A1 = —1000,A, 3 =
—0.68+£0.73i, A = —2.53,A5 = —2.24,A6 = —1.13,A7 = —0.99 andAg = —1.0.

Using the bounds in (6.14) and (6.23) widh= 0.3 and@ = 0.01, we obtain
the results in Fig. 6.4 and Fig. 6.5 for two and three vehjalespectively.

12 7

x 10 x 10
T ) b, (3= 1)
| ——ijby, (r=1) isby, (8=
: ijb,. (r = 0.7) 8 isby, (6 =0.7)
" I e )| —e=03)
| ——ijby, (r=0.5) isby, (8 =0.3)
ijby, (r =0.3) N | .
S‘bA2 x
= - =5
< <
= 2oalo N
0 5 . 1-0 15 20 0 5 10 5 20

time [sec]

time [sec]

Figure 6.4: Bound comparison for a system with 2 vehicles.

Itis readily observed that the bound in (6.23) using the $dkaomposition is
significantly better for this example. The main reason istifacondition number
of the transformation matrix for obtaining the Jordan cacalform of Ais large.
In both cases, the bound in (6.23) wih= 0.5 converges to zero quickly. For
example it holds that isH(t) < 10~* for t € (55, ) in the case ok = 2 vehicles
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Figure 6.5: Bound comparison for a system with 3 vehicles.

and fort € (65, ) in the case ok = 3 vehicles. In comparison, the existing Schur

bound in (6.11) leads to

15 17&tk
_ —0.68t
(1) = 0 5 ==

for the case of two vehicles and

23 173tk
_ ~—0.68t
shyg(t) =€ kZOT

(6.27)

(6.28)

for the case of three vehicles. In both cases, this bound ihmmore conservative

as is also indicated in Fig. 6.4 and 6.5 (note that, simd sk, are only shown for

very small times).

6.4.3 Schur Bound Computation

We finally consider a vehicle string with 20 vehicles. Thatle matrixAyg has
dimension 160 and it was not possible to determine its Jocdaonical form.



Computing the Schur bound in (6.11), we obtain

159 1 73k
_ ~—0.68t
Sha,,(t) =€ kZO 0 (6.29)

which cannot be evaluated numerically even for very smaés due to the high
polynomial order. For illustration, we compute the impré&chur bound in Sec-
tion 6.3 step by step. First, we determine the ordered Sclcordposition in
(6.17) withd = 0.3. As a result, we gebwith 4 blocks, whereby the size of the
largest block igy = 60. In this computation, we note that the special structtife o
is helpful, since it holds that each eigenvalué\gis repeated 20 times. That s, it
is easy to determine similar eigenvalues for this exampbecHically, one block
of size 20 contains the repeated eigenvalueone block of size 40 contains the
complex eigenvaluek, 3, one block of size 40 contairdg andAs and one block of
size 60 contains the remaining eigenvalues. Next, we partbe transformation
to the block diagonal matri$ using Algorithm 1. The resulting transformation
matrix haSK(f) = 50140 and the norm of the strictly upper-triangular paé'm‘
ISu|| = 12.0. That is, without using the diagonal transformat®im Algorithm

2 (or equivalently = 12.0), the improved Schur bound in (6.21) gives

. 39 12,0tk
isbla,(t) = 50140 € %% & i (6.30)
k=0 :

This bound is much smaller than the bound in (6.29) and deloelpsv 104 for

t € (513 ). A further improvement is achieved by limitingSy||. Hence, we

perform a transformation witR using Algorithm 2 with different values ¢ and

a tolerancéd = 0.01. The results of this computation are shown in Fig. 6.6.
Here, for example the bound f@ = 0.5 is suitable. Although the condition

number now increases iqT) ~ 2.5- 10?2, the overall bound

t 2 o6t = 0.5°tK
|| < 251072 > T (6.31)
k=0 )

already decays below 18 fort € (233 ) and can be computed in a stable way.
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Figure 6.6: Bound comparison for a system with 20 vehicles.
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CHAPTER 7

CONCLUSION

In the scope of intelligent transportation systems (I T8pperative adaptive cruise
control (CACC) is a recent technology that enables vehicledotig in the form
of vehicle strings at small inter-vehicle spacings. Hehe, fulfillment of string
stability is essential in order to ensure driving comfortl @niving safety. String
stability guarantees that fluctuations and disturbanaeatsenuated along a vehi-
cle string.

In the literature, string stability is commonly studied éd®n the fact that a
disturbance is introduced by the leader vehicle and henoersat the beginning
of the string. Such disturbance should not grow or amplifyilevpropagating
through the string. In contrast, this thesis identifies tbeuorence of additional
disturbances within the string when performing lane chany§ghen completing
a lane change, impulses are encountered due to state jungossmlitching pre-
decessor vehicles. In addition, the preparation of lanegbsrequires opening
gaps, which are achieved by applying time-limited inpubalg. Hence, the thesis
extends the classical setting to scenarios including tepestate jumps (impulse
inputs) and repeated exogenous time-limited input signétsn vehicle strings.

In order to address the stated problem, the thesis firstdotes the relevant
background information on vehicle strings, CACC and striadp#ity. As the first
contribution, the thesis presents methods for computimghimunds on output
signals when applying repeated input impulses and timédadrinput signals to
stable LTI systems. In this context, it is desired that otuggnals such as the
distance error between vehicles remain bounded in orderdore driving safety
even if maneuvers are repeatedly executed. Accordingiythibsis first shows that
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a bound on the output signal norm exists if the repeated isigmials (impulses
or time-limited signals) are separated by a non-zero dtiak Moreover, an
original computational procedure for finding a close boundfe output signal
norm is developed. Moreover, the concepts that are firstlojeed for general
LTI systems are extended to the case of distributed intexected systems with
multiple inputs and outputs.

The bound computations are formulated for general LTI systeln accor-
dance with the aim of studying lane changes in vehicle sriige developed
methods are applied to vehicle strings as the second matnimaion of the the-
sis. Suitable analytical bounds for the relevant outpubalig) such as distance
error or acceleration are determined and validated by sitioms. Together, it is
shown that a safe and comfortable driving distance is gteedreven if an arbi-
trary number of longitudinal maneuvers is performed in gkghstrings with many
vehicles.

When determining the analytical output signal bounds, itisesved that the
numerical computation of a certain bounding function fa ttorm bound of the
impulse response matrix becomes infeasible for large L$tesys. To this end,
the third contribution of the thesis is the development ahetical methods for
bounding the matrix exponential function for the analysid design of linear dy-
namical systems. Two new bounds are proposed. The first hieurased on the
Jordan canonical form. Using a particular diagonal sintyaransformation, it
is possible to achieve fast convergence of this bound to. Zdevertheless, the
usability of this bound depends on determining the Jordamomaal form of a
matrix, which is numerically difficult. Accordingly, the send method proposes
a computational procedure that can be evaluated for gematzices. Using an
ordered Schur decomposition, it is first possible to tramsfa given matrix to
a block diagonal form. Then, an additional diagonal trams&gion is used to
achieve fast convergence of the bound to zero. It is shownxamples that both
bounds are suitable for systems of small size when the Ja@aonical form is
available. Furthermore, the bound based on the Schur dexsitigm also pro-
vides satisfactory results for large systems, which is destrated by the practical
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example of vehicle strings.

The current formulation is for the case of homogeneous \elsitings with
linear models, where each vehicle has the same dynamic ntiegoeFuture re-
search will extend the obtained results to the case of hgg@epus vehicle strings.
Additionally vehicle experimental tests may be done todatk our models and
compare then verify our results. Another direction apastrfrintelligent trans-
portation systems is that our system and control contobstmight be applied to
completely different areas of interconnected distribigstems such as irrigation
flow systems or supply chains.
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