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ABSTRACT

ON LEFT-DEFINITE STURM-LIOUVILLE EQUATIONS

ARAS, Atilla
M.Sc., Department of Mathematics and Computer Science
Supervisor: Assist. Prof. Dr. Ekin UGURLU

June 2017, 61 pages

Sturm-Liouville equations are very important to understand the nature of the real-
world problems and have been investigated by many authors. To investigate the
spectral properties of these problems it is convenient to construct the Hilbert space.
Such a construction is done with the help of the weight function. In 1992, A.M. Krall
studied on the second order equation -(pg’)’ + qg =Awg, where p, q, w are real-valued
functions with 1/p, q, w > 0 on the given interval [c,d] subject to some boundary
conditions in the Sobolev space. Such equations are called left-definite equations.
He also investigated the left definite fourth order equations and Hamiltonian systems
on the finite intervals. Moreover, Race and Krall studied on the Weyl theory for a
left-definite second order equation. Using these obtained results second-order,
fourth-order equations and Hamiltonian systems are studied on finite and infinite

intervals in this thesis.

Keywords: Sturm-Liouville equations, Hilbert space, Sobolev space, left-definite

equations.
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SOL BELIiRLi STURM-LIOUVILLE DENKLEMLERI UZERINE

ARAS, Atilla
Yiiksek Lisans, Matematik-Bilgisayar Anabilim Dali
Tez Yoneticisi: Yrd. Dog. Dr. Ekin UGURLU
Haziran 2017, 61 sayfa

Sturm-Liouville denklemleri ger¢ek diinya problemlerinin yapisini anlamada g¢ok
onemlidir ve bircok yazar tarafindan arastirilmistir. Bu problemlerin spektral
ozelliklerini arastirmak i¢in Hilbert uzayini inga etmek uygun olmaktadir. Bu insa
agirlik fonksiyonunun yardimiyla yapilmaktadir. 1992’de, A.M. Krall verilmis [c,d]
araliginda Sobolev uzayinda bazi sinir sartlarma tabi 1/p, g, w > 0 ile p, q, w’nin reel
degerli fonksiyonlar oldugu ikinci mertebeden -(pg')’ + qg = Awg diferansiyel
denklemi ftizerine c¢alismistir. Bu denklemler sol belirli denklemler olarak
adlandirilmaktadir. Krall sonlu araliklarda sol belirli dordiincii mertebeden
denklemler ve Hamilton sistemleri iizerine de arastirmalar yapmistir. Bundan baska,
Race ve Krall sol belirli ikinci mertebeden bir denklem i¢in Weyl teorisi {izerine
calismistir. Bu tezde, elde edilmis bu sonuglar1 kullanarak, ikinci mertebeden,
dordiincii mertebeden denklemler ve Hamilton sistemleri sonlu ve sonsuz araliklarda

caligilmistir.

Anahtar Kelimeler: Sturm-Liouville denklemleri, Hilbert uzayi, Sobolev uzay1, Sol
belirli denklemler
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PRELIMINARY

Definition 1.1 [1]. A vector space R is Euclidean if for all g, u belonging to R there
exists a defined complex-valued function, denoted by (g, u), which satisfies the
following conditions:

i) (9.9)=0; (g9, 9)=0onlyif g =0;

i) (g.u)=(w9);

iii) (Ag,u) =A(g, w);

iv) (91+92, w) = (g1, W) + (g2, w).
The function (g, w) is said to be the inner product of g and u.

Definition 1.2 [1]. The Cauchy-Schwartz inequality exists in any Euclidean space:
(g WI* < (9, 9) (u, u).

Definition 1.3 [1]. The number ||g|| = m is called the norm of the vector g.
The norm has the following properties

i) lgll = 0;

i) llgll =0ifand only if g =0;

i) llagll = Al llgll;

iv) g +ull < llgll + [lull.

Definition 1.4 [1]. A sequence g;, g2, g3, -.- IS called a fundamental sequence (or
Cauchy sequence) if for any positive number &, there is an integer D>0 such that the
inequality

lgm — gnll <&, m,n>D,

is satisfied.

Definition 1.5 [1]. Two vectors g, u are called orthogonal if (g,u) = O.

1



Definition 1.6 [1]. A vector g is said to be normalized if ||g|| = 1. For g #0 the
vector u = g /||gl|| is normalized. An orthogonal system of which all the vectors are

normalized is called an orthonormal system.

Definition 1.7 [1]. A Euclidean space in which there exists a denumerable, complete,

orthonormal system is called a Hilbert space.

Definition 1.8 [1]. It is denoted by L2, (c,d) the aggregate of all complex-valued
functions g(x) that are measurable and quadratically summable over the fixed
interval (c,d) (which can be finite or infinite) with respect to a positive function w(x).

The inner product is denoted as

() = [ g () u(x) wx) dx.

L2, (c,d) is said to be a Hilbert space.

Definition 1.9 [2]. The space
Wi(c,d)={s€ L3, (c,d):Vhe {1,....... m}, s™ e 12, (c, d)},

where me N, is said to be a Sobolev space. For s € W (c,d) it is set

Isllzs = (SPolls®] 2",

where ||. || is the norm on L2, (c,d).

Definition 1.10 [2]. W(c,d) is said to be a Banach space with respect to the norm

112,

Definition 1.11 [1]. An operator VV which is defined on the whole Banach space D is
called bounded if there is a positive number J such that

IVgll <3 llgll for all ge D.
The smallest number J is said to be the norm of the bounded operator V and is shown
as [[VII.



Definition 1.12 [1]. An operator V is called Hermitian if for all g,u € D (V), domain
of V,

(Vg, u) = (g, Vu)
takes place. A Hermitian operator is a symmetric operator if its domain of definition
is dense in the Hilbert space F. An operator whose a domain of definition is dense in
F is called self-adjoint if V= V*.

Lemma 1.13 [1]. When E is a symmetric extension of a symmetric operator D, we

pOSSess
DcE
and so
E* c D*.
Since E is a symmetric operator,
EcE”

holds and so we possess
Dc EcE* c D*.

Definition 1.14 [1]. A symmetric operator D is said to be maximal if it does not

POSSEss proper symmetric extension.

Lemma 1.15 [1]. Every operator D which possesses self-adjointness is a maximal

symmetric operator.

As is shown in [1] that any differential expression which possesses self-adjointness
with real, sufficiently often differentiable, coefficients can be put in the form
W) = [(D"Gou™)™ + (=1 (u® ) + . +j,u] w(x),

where w(x) > 0.

Definition 1.16 [1]. An expression I(u) is said to be regular if the interval (c,d) is
finite and the function 1/j,(x), j1(x).,..., jo(x), w(x) are summable in the whole

interval (c,d); otherwise I(u) is called singular.



Definition 1.17 [1]. The quasi-derivatives of a function u related to the expression

I(u) are defined as follows:

[s] = &°u - 1)
u = s=1,2,...,(n-1);
[n] = ; du
u Jo dxn
. di~s d _
u[n+s] = i dxn—lsl _ a( u[n+s 1])'

For convenience it is written ul®l=u.

Lemma 1.18 [1]. For the functions m and t for which the expression I(.) makes sense
the following Lagrange’s identity is obtained on the interval [, f] < (a,b)

ff [(m) t w(x) dx- ff m 1(t) w(x) dx = [m, £]°
where

[m, t] = S0_, {mlk=1] § [2nk]_ pl2n=k]  [k-1]}
and

[m, t]g = [m, 1 (8) - [m, €] ().
Suppose that the domain of L is B and for all m € B, let
Lm = I(m).
It is denoted by By the set of all functions m in B which is identically zero outside a
finite interval [a, B] < (a,b). The resctriction of the operator L to B is denoted by
o- In other words,
LycL.

Lemma 1.19 [1]. For arbitrary functions m € B, s € B one has
(Lym, s) = (m, Ls),
that is
LcLy.

Lemma 1.20 [1]. The operator L;, is Hermitian.

We consider that I(u) is regular in [c,d].



B, denotes the set of all functions u in B which fulfils
ull @ =ul (0)=0, 1=0,1,2..., (2n-1).

The restriction of the operator L to B, is denoted by L.

Lemma 1.21 [1]. For arbitrary functions m € B, s € B one has
(Lom, s) = (m, Ls).

Lemma 1.22 [1]. The operator L, is Hermitian, i.e., for arbitrary elements g,u € B,

one has
(Log, U) = (gv LOU)'

Theorem 1.23 [1]. The domain of definition B, of the operator L, is dense in
L2, (c,d).

Theorem 1.24 [1]. The operator L is adjoint to the operator L, , i.e.,
L=L,".

Theorem 1.25 [1]. The operator L, is adjoint to the operator, L, i.e.,
Lo=1L"

Definition 1.26 [3]. An nxn matrix function ¢ is called a fundamental matrix for the
vector differential equation
g'=S(X)g
as long as ¢ is a solution of the matrix equation
G'=S(X)G
on the interval [c,d] and det {(x) #0 on the interval [c,d], where S is a nxn matrix, G

IS anxn matrix and g is a nx1 matrix.

Theorem 1.27 [3]. An nxn matrix function ¢ is called a fundamental matrix for the
vector differential equation

g' = S(x)g
if and only if the columns of ¢ are n linearly independent solutions of



g'=S(x)g
on the interval [c,d].

Definition 1.28 [3]. Suppose that e, h are differentiable functions on an interval [c,d].
Then the Wronskian of e and h are defined as
WIe(x), h(x)] = e(x)h'(x)-e'(x)h(x)

for x € interval [c,d].



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

See the boundary value problem (bvp) over a finite interval [c,d],
-(Pg")' +ag = Awg +wf (1),
X111 A1 g(c) ) (311 312) ( g ): 0
(0521 0522) (Pg’(C) y P21 P22/ \pg'(d) (0) (),
where 1/p, q, w > 0 are integrable functions over [c,d] and q > ew for ¢ > 0. The

coefficients matrices meet the conditions of

therank(a“ a1, P ,812):2
A1 Ay Pa1 P22

and the self-adjointness criterion
(a11 0512) (O —1) (“11 “12) _ (,311 ﬁ12) (O —1) (ﬁu ,312>
Q1 A/ \1 0/ \az; Qz Bo1 B2/ \1 0/ \Ba1 P22/

The equation (1) in this bvp in a left-definite background was discussed by lots of
authors. The conditions ay; = @yy = 0, @112 + @122 # 0, B11 = Biz = 0, Bor” +
B,,> # 0 are studied by the authors. These conditions can be found after the

mathematical manipulations of (2).

Pleijel [4,5] introduced the subject, Everitt [6] considered the regular problem for the
first time in a diffuse way, Bennewitz and Everitt [7] extended the theory and Krall

[8] developed the theory of differential operators in a left-definite context.

The study of bvp in left definite setting begins with Weyl in 1910. Weyl did the

classification of the limit-point and limit-circle cases for singular
7



spectral problems of second-order formally self-adjoint linear differential equations
[9]. After then a paper by Atkinson, Everitt and Ong has been introduced in the
literature [10]. The paper investigates left-definite square integrable homogeneous

solutions. Several years later, Schneider and Niessen worked on left-definite S-
Hermitian problems [11-12]. Onyango-Otieno considered Jacobi, Laguerre and
Hermite equations in 1980 [13]. By the way a discussion of differential operators in a
left-definite setting did not exist. Work was begun by Everitt and Littlejohn who
examined the fourth order Legendre-type equation [14]. There has been a little work
on differential operators corresponding with left definite bvps in the suitable Hilbert
spaces in the literature. One such study was performed by Krall in 1990. He
investigated the spectral properties of a second order regular problem [8]. This work
was followed by Krall and Littlejohn who examined the left-definite Legendre
operator [15]. Moreover, Hajmirzaahmad introduced some results on the left-definite

Jacobi and Laguerre operators [16-18].

1.2 OBJECTIVES

The objective of this thesis is to study of the way of constructing of the inner product
associated with the Sobolev space with p,q>0. Then we collect the results on the
operators in this new inner product space. Moreover, we continue the similar study

for the left-definite Hamiltonian systems.

In addition, another important problem in the literature is to determine the number of
the linearly independent solutions of the Sturm-Liouville equation belonging to the
Lebesgue space L (c,d). We introduce the known results on the problem in right and

left-definite cases.



1.3 ORGANIZATION OF THE THESIS

This thesis contains five chapters.

Chapter 1 is an introduction to the bvp (1), (2) in left definite context and includes

objectives of this thesis.

Chapter 2 is comprised of L2,-theory, the Dirichlet formula and H? theory of Sturm-

Liouville equation.

Chapter 3 we study the L%, theory, the Dirichlet formula and H* theory for left

definite Hamiltonian Systems.

Chapter 4 consists of Weyl’s Theory.

Chapter 5 includes the conclusion and discussion part.



CHAPTER 2

SECOND ORDER DIFFERENTIAL OPERATORS

2.1 INTRODUCTION

It is suitable to study a differential equation on the proper Hilbert function space and

it is also possible to define differential operators whose eigenvectors can be

corresponded with solutions of the differential equation fulfilling certain boundary

conditions. It is essential to define an appropriate Hilbert function space in terms of

one or more of the coefficients of the differential equation to permit the possibility of

possessing the solution in operator theoretic terms. Boundary value problems can be

considered by a uniquely determined unbounded self-adjoint operator in this function

space where eigenfunctions and eigenvalues of the bvp are tantamount to the

eigenvalues and eigenfunctions of the operator [6].

We now investigate L2,-theory, the Dirichlet formula and H?* theory respectively.

Note that throughout this section it is assumed that 1/p, q, w > 0 and integrable on

[c,d], g>ew, where € is a positive constant.

2.2 L2-THEORY

Let us make clear the definition of the L,;, L,, and L.
Definition 2.2.1 (The Maximal Operator) [19]. It is denoted by D,, the set
consisting of those elements g in L2, (c,d) which fulfils

1.9 is absolutely continuous on every closed subinterval of

[c,d].
10



2.pg’ is absolutely continuous on every closed subinterval of [c,d].
3.1g= (-(pg")+qg) / w exists a.e. and is in L2, (c.d).

The maximal operator L,, is defined by making L,, g = Ig for all g in D, .

Definition 2.2.2 (The Minimal Operator) [19]. It is denoted by D,,, consisting of
those elements g which fulfils

1.gisin Dy, .

2.9(c)=0, pg'(c)=0, g(d)=0, pg'(d)=0.

The minimal operator L,, is defined by making L,,g=Ig for all g in D,,,.

Definition 2.2.3 (The operator L) [19]. It is denoted by D consisting of those
elements g which fulfils

1.gisin Dy,.

2.a11 9(C)+ @12 pY'(c)*+P119(d)+ B12 PY'(d) = 0.

21 9(C)* a22 PY'(c)*+B219(d)+ B2z PY'(d) = 0.

The operator L is defined by making Lg=Ig for all g in D.

Theorem 2.2.4 [19]. The domains D,, and D,,, are dense in L2, (c, d).

Lty =Ly, Ly = L.

Proof [20]. The proof of this theorem can be embedded into the proof of the
Theorem 3.2.1.

Since we know the form of the adjoint operator, its domain can be calculated with
the help of Green’s formula. Suppose that g is in D and u is in the domain of adjoint
D* [20]. Then
0=(Lg, u) = (g, L*u)
=078 (= (pg) +ag) dx = [ (=) + qu) g dx
=p(g’ —gu) | ¢
=@ (2 ) () e

11



Let J= ((1) _01) ’ Gz(p%’) ,U=(p1;,),

Then it is found 0=U*JG|¢ or

0= (U*(c) U*(d)) (‘0] ?) (6@)

K S\ . .
E F) is nonsingular. Then

(g:* ff) require (I;,’: 1€:*) (Ibf 15;) :(_0] ?).Therefore, it is found

K*K + E"*E= -],
K'*S + E*F=0,
S*K + F'*E= 0,
S"™*S + F'*F=J.

Let E and F be chosen so that the square matrix (

The Green’s formula afterwards is
v . . K™ E™\(K S\ (c()
0=(U'©@QU@D) (S’* F’*) (E F) (g(d))
or
0= (K'U(c)*+S'U(d))*(KG(c)+ SG(d)) +(E'U(c)+F'U(d))*(EG(c)+FG(d)). (3)

KG(c)+SG(d)=0, while EG(c)+FG(d) is arbitrary; if u is in D* then E'U(c)+F'U(d) =

0. (3) is called adjoint boundary condition.

The adjoint parametric conditions are tantamount to the originals. These adjoint
parametric conditions are developed as follows [20]:
KG(c) + SG(d) =0,
EG(c) + FG(d) = a.
(0 DG 2E DED) =6 HE )@
where

& ) ()
b 50 NE@)=6 2)Ee

Then

12



and

(7 ) (E9)= (TEe),

where —J? =1,
= (6@) = (es) @

Likewise, as above the parametric boundary condition for U(c) and U(d) can be

developed as
U(c)) _ (-TK"«
(U(d) B ( TS a )(5)
with boundary conditions

K'U(c) + S'U(d) = a,
E'U(c) + F'U(d) = 0.

(4) and (5) are critical for proving the Theorem 2.2.5.

Now let us consider the following MG(c)+NG(d)=0 for g in D and PU(c)+QU(d)=«

for u in D* boundary conditions.
Theorem 2.2.5 [20]. L=L*if and only if MIM*=NJN*.

Proof [20]. For self-adjointness occur, both form and domain must be the same. Let
L=L* exist. Then D =D*. U(c)= -JIM*¢ and U(d)= IN*¢ are achieved for D*. If the
condition that MG(c)+NG(d)=0 is written by changing G(c) and G(d) with U(c) and
U(d), M(-IM*p) +N@IN*¢) =0 will be found. Then -MIM*¢p+NIN*¢= 0 and
(-MJIM*+ NJN*) ¢ =0 are encountered. This means that MIM*= NJN*.

Conversely, let MIM*=NJN* exist. Then -MJM*+NJN*= 0 is found. This equality
may be shown in matrix multiplication form as (—=MJ  NJ) (*.)= 0 where M* and

N* are adjoints of M and N respectively.

On the other side, (1;[ g) (g((g) = (2) = (JP\/I 1(\2,) (—]]P(;S(oc) - (2)

13



( MJP”"a— NJQ"a
—PJP"*a— QJQ"«

M N () =0

) = (g) = (MJP"* = NJQ")a=0=

Pl*

Then there takes place such an B* matrix so that (Q’*

M* . .
) B* = N*) is achieved or so

is (M N)= B(g,). This leads that the conditions of MG(c)+NG(d)= 0 and

P'G(c)+Q'G(d)=0 are tantamount. This leads to conclude that D= D*. Because the
forms are the same, one gets L= L*.

Theorem 2.2.6 [20]. Eigenfunctions corresponded to different eigenvalues are
mutually orthogonal. Eigenfunctions corresponded to each eigenvalue 4; can be

made mutually orthogonal.

Proof [20]. Let g; be an eigenfunction associated with 1;, g, be an eigenfunction
associated with A,. Then using (3) with g =h;, u =h,
Lg: = 4191, Lg2 =229,
A1(hy, hy) = (A1hy, hy) = (Lhy, hy) = (hy, Lhy) = Chy, A2hy) = A3(hy, hy).
Since
A #= Ay, (hy,hy) =0.

Now let g4, ..., gy are eigenfunctions corresponded to A. Suppose
ty=g1/ gl
It is then defined inductively
Uk = gk X1t (tn gk) and ty = v / lugll.

Therefore t;, is orthogonal to t,..., tx_1.

Now let us consider the construction of Green’s function [21].
Let
1/p, q,w, f € L (B,C), B=(c,d), -oo< c<d<oo, A € C,

14



() )l De=(0) o) e meo

The bvp
-(pg)' +ag = Awg +f, MG(c) + NG(d) =0,

is tantamount to the system

G' = (P-AW)G +F, MG(c) + NG(d) = 0.
Suppose that {= {(.,.,A4) is the primary fundamental matrix of the homogeneous
system

G' = (P-AW)G.

Keep in mind that

¢(t,u,A)=2¢(t,c,A) ¢(c,u,A) forc<t,u<d.
This comes from

(t,u,A) = G(t) G71(u)

for any fundamental matrix solution G of G' = (P-AW)G.

Theorem 2.2.7 [21]. Let
1/p, q,w, f € L (B,C), B=(c,d), -00< c<d<w, 1 € C,

ey )= 86 () () e

Let us consider the scalar bvp

-(pg")' + qg = Awg +f, MG(c) + NG(d) =0 (6)
and vector bvp

G' = (P-AW)G +F, MG(c) + NG(d)=0. (7)
Then these three statements are tantamount:
1)When =0 on B, the bvps (6) and (7) possess only the trivial solution.
2)The matrix

[M+NZ(d,c,1)]
has an inverse.
3)For every f € L! (B,C) each of the problems (6) and (7) possess a unique solution.
Furthermore, if
[M + N{(d,c, )] ¢

exists, the matrix function V is defined by

15



Ut ¢, DU, u, 1) c<t<u<d,

V(t, u ,A) = {Z(t, c, A)U(A)C(d’ u, /1) + Z(t, u, /1) c<t<uc<d

where
U(A)=-[M + N(d,c,1)] “IN.

Theorem 2.2.8 [21]. For any f € L! (B,C), the unique solution g of (6) and the unique

solution G of (7) respectively are given by
o) = [ Vip(tu, Dfw)dy,  c<t<d,

G = [V(tu Dfudy,  c<t<d,

where

% V.
V= ( 11 12>.
Va1 Vo

Proof [21]. G is a solution of
G'=(P-AW)G +Fon B
if and only if g is a solution of

-(pg)' + qg = Awg +f on B,

where
(9
G_(pg’)

For

_(d

D= (d2>, d e,

determine a solution G of G' = (P-AW)G +F on B by the initial condition

G(c, A) =D.

Then g is a solution of
-(pg’)' + qg = Awg +f
constrained by the initial conditions
g(c, A) = dy,
(Pg) (¢, D)= d,.
Keep in mind that
G(t, A) =0t cA)D, c<t<d,
and from the variation of parameters formula one obtains

16



G(t, 1) =3t D + [ Ut s, DF(s)ds, c<t<d.
In particular,

G(d, ) =(d, ¢, HD + [ 3(d, s, DF(S)ds,

Keep in mind that the existence of the first integral above (f € L' (B,C)) shows that
the solutions have finite limits at the end points and are bounded in a neighborhood

of each point.

Let
E(A) = [M+N ¢(d,c, )]

then one may see that

MG(c,)+ NG(d,2) = E()D +N [ 7(d, 5, DF(S)ds.

When = 0 on B, G and g are nontrivial solutions if and only if D is not the zero
vector. See from the above equation that, when f= 0 on B, there takes place a
nontrivial solution G which fulfils the boundary condition MG(c,1)+ NG(d,A) = 0 if
and only if E(A) is singular. This is also true for the nontrivial solution g which
satisfies the boundary condition MG(c,A)+ NG(d,A) = 0. It is also true that there
takes place a unique solution G which fulfils the boundary condition MG(c)+NG(d)
=0 for every f € L' (B,C) if and only if E(A) is nonsingular. This is again true for the
nontrivial solution g satisfying the boundary condition MG(c)+ NG(d) = O for every
f € L' (B,C) if and only if E(A) is nonsingular.

Now suppose that E(4) is nonsingular. Let
H=E"(2) (-N)[ 3(d, s, DF(5)ds.
Then
MG(c,A)+ NG(d,2) =0

and
G(t, ) = (6 ¢, DIETA) (N) [ 7(d, 5, DF(s)ds] + /. ¢(t, 5, A)F(s)ds

=12t 6, DIETI @A) (-N) U(d, 5, DF()ds] + [ I(t, s, DF(s)ds
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=V (t,5,2) F(s)ds, c<t<d

The property of ¢(d,s, 1) =1(d, c,1)(c,s, 1) and definition of V are used in the last

equation.

Theorem 2.2.9 [20]. (L — AI)~1 is a bounded operator and holds for all nonreal A. It
is a bounded operator and takes place also for all real A for which
det[M + NG(d, 1 )] # 0.

Proof [20]. (L — AI)~? is obtained by the formula
G= [ B(A, %, &) AE€) F(§) d¢

as long as

det[M + NG(d, 2 )] # 0.
Since L possesses self-adjointness it must hold for all complex A. It definitely holds
for all real A except the zeros of

det[M + NG(d, 1)] =0.
To see that (L — AI)~! is bounded, suppose that

f(§) = AV F()
holds and
M2, x, ) =A()*B( A, x, § ) A(x)"/2.

Then

I1GI1% = [ 67(x) AX) G(X) dx

dr d o . d
=[P ©OM (% € )dET [ M, %) f(n) dn] dx.
When Schwarz’s inequality is applied to both terms,
612 < IMII? IFII?

is found where

IMI2 =f2 fORm, 3| ME(A, x, € )| dédx

with
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M:Ml’j-

2.3 THE DIRICHLET FORMULA

The Dirichlet formula is a formula that forms a new setting for the bvp of the

previous section [19]. If the second derivative term of

d _
[fg)awdx (8)
IS integrated by parts, one has [5]

~(pgH W) | ¢ + [ pg'@ +qga] dx. (9)

If the boundary conditions are thought to be separated, then pg’ is said to be
eliminated at ¢ and d [19]. When the coefficients have proper signs, a new form (a
Sobolev space) is generated where the bvp remains self-adjoint [19]. If ¢ and d are
singular points, then under various conditions a Sobolev space may be constructed in

which the boundary value problem remains self-adjoint [19].

The regular case when the boundary terms at ¢ and d are mixed together will be
considered here. First the g-terms together and the pg’-terms together are put with a

minus sign with the term pg’(d). Then it is found that

®11 /311) g(c) _(‘“12 312> pg'(©) \= (0
(a'21 ,321 (g(d)) —Uyo ,822 (_pg’(d)) (0)

Three situations may arise as follows:
1_<—a12 P12
—Qz;  Pa
2_<—a12 P12
—Qz;  Pa

3_<—a12 P12

—Qy;  Pa

) is nonsingular.

) is singular but not zero.

) IS zero.

1-The nonsingular case [19]: It is assumed that a,,f;, -@1202, = 1 and then from

the original coefficient matrix above
19



( pg’'(c) ) _ (allﬁZZ —@21P12  Bi1B2z — ,312321) (g(c))

-pg'(d) (1103 — Agaf21  Apaf11 — A12B21) \9(D)
is found.

If the matrix is positive, then using the (8) and (9) Dirichlet formula becomes

fcd(lg) uwdx =

[{pg' @ +qg) dx + w(©) u(d))
(anﬁzz —a21B12  B11Pa —312:321> (g(c))_

(ppQ11 — Q12031 QP11 — U121/ \9(@)

If the matrix is positive, the right side of the Dirichlet formula may be used to define

an Sobolev inner product.

Example 1: ay; =1, @;2=0, az; =1, @2;=1,511=1,612=0,621=1, 2, =1

Then from the above formula
( rg’(c) ) d (1 1) (g(C))
-pg'(d) 1 1/ \9@
is found.

—a1z P12

is singular,
—U22 ,322>

2-The Singular, Non-zero Case [19]: When the matrix (

the rows are said to be dependent. Then there takes place a number k such that

K (-a12 B12) = (—azz B22).

Hence ka,, = @y, , KB12 = P22. The following is found by row manipulation:

(0, s g i) (59) - (5 Py (290) =)

Assume that a?, + 2%, = 1 and define g., g4, 9.’ 94’ by

(o 22)(59) = (%),

(ot ) () = (22)
Because a?, + 7, =1,
(o ) (00)= (&)
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( —ay1012 + B11P12 a11P12 + B11%12 )
—a1p(az — kagy) + P12(B2r — kP11)  Prz(az — kayy) + a12(fa1 — kP1s

(2)-G 9 (&) = O

Two constraints are found from above. If first matrix is shown by (z g) then

Pg.+Qg4 =9, and Rg.+Sg, =0 and the boundary terms change to
—— —— . ( pg'(©) ) P —— (—a12 ﬁlZ) (_alz ,312> (gc')
@@ w@) (P90) = mm) (2 ) (5 L) (g

=) (J)

—_ ! —_—
“Uucg c+udg da-

Since substitution can only be made for g’., itis required that u; = 0. The boundary

terms are equal to u.(Pg.+Qg,). Since g; = 0, the boundary terms are equal to

u.Pg..

The Dirichlet formula is found as below because R-S constraint vanishes since the
self-adjointness criterion dictates that a;; @y, - @1, a1 = Bi1 P22 - Bz P21 and
Katyz =gz, KB12 = Baa. Since aqz (ag1k- az1) = Bra (Br11k-Ba1 ) exists, R is found
0. If there is a parameter j such that ja;, = B1,k-B,, and jB;, = a,1k- a,4, S is found
0.

Then from (8) and (9) the Dirichlet formula becomes
[fagyawdr = [[pg'@ +aqgi | dx +(- azpu(c) + Bip u(d)) (—aisa; +
f11 B22) (- a12 g(c) + B12 g(d)),

where g and u satisfy
B12 9(c) + a4, 9(d) =0, B12 U(C) + ai, u(d) =0.

The right-hand side of the Dirichlet formula may be used to define Sobolev inner

product again.
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Example 2 [19]: a;; = 0.6, a;,=0.6, f;1= 0.8, By, =0.8, &y =0.21, ay,=1.2, fyy
=1, B,y =1.6

The matrix <_a12 312) is singular. The Dirichlet formula is
—yy B2z

fcd(lg) awdx =
[ pg' @+ qgii] dx + (—0.6 u(c)+ 0.8u(d)(0.28)(-0.6g(c)+0.8g(d)),

where g and u must satisfy the constraints
0.8g(c)+0.6g(d)=0, 0.8u(c)+0.6u(d)= 0.

—a1z P12

is zero.
iey) ﬂ22>

3-The zero case [19]: This case is the case when the matrix (

The boundary conditions become
<a11 ,311) (g(c)) - (0)
Az Poq/ \&(D) U
Because the coefficient matrix possesses rank 2, the matrix above is nonsingular.

Hence the boundary conditions are tantamount to g(c)= 0 and g(d)= 0. Then the

Dirichlet formula becomes

d _ ', _
fc (lg) U w dx :fcd[pg u +qgu] dx.

2.4 H THEORY

See the differential expression lg= (-(pg’)’ + qg) /w whose domain is constrained by

boundary conditions (2).

The new inner products will be defined that depends on whether the matrix

(_‘1’12 P12

—Qy;  Pa

by

) is nonsingular, singular/nonzero or zero. These are respectively given

1-< g,u>yi = ['[pg'@+qgt] dx + u(©) u(@))
(“11/322 — 2112 P11z — B12ﬁ21) (g(C))

Qpply; — (1201 2Py — 1221/ \8(D)
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where o-f matrix is assumed to be positive,

2-< gou> = [ pg'w+qguldx +-apuc) + Pip U(d)) (~aryas, +
P11 322)(‘ a1z g(C) + f12 9(d) ),

where —a11A12 + ﬁll BZZ = 0 and

B129 (€)* ai, g(d) =0,

3-< g,u>y= fcd[pg’ﬂ”r qgu | dx
which satisfies the constraints g (c)=0 and g (d)=0.

Let us define the operator L.
Definition 2.4.1 (Operator £) [19]. It is denoted by D consisting of those elements
g in H* which fulfils
1-g is absolutely continuous on every closed subinterval of [c, d].
2-pg’ is absolutely continuous on every closed subinterval of [c, d].
3-1g =(-(pg’)’ +qg)/w exists a.e and is in H*.
The operator £ is defined by making £g = Ig for all g in D.

Theorem 2.4.2 [19]. L, acting on D in L2, (c,d) is bounded below by &.

Proof. For g € D one obtains
d _ d N — d A2 —
(Lg, gz = J, Lg gwdx = [ (=(pg")’ +dg)iw) gwdx = [ [-(pg")" + qglg dx
d 1IN = d — _ "N = d ’ d _
=-[(pg'")gdx+ [, qggdx =—(pg)g |&+ [ plg'|?dx+ [ qlgl?dx =

d d
<g.g>m =[, qlgl*dx= e[ wlgl?dx= e(g,9)2 = €llgll}
and consequently,

(Lg,9)12-€(9,9)12 = (Lg —€9,9)12 = (L—el)g, g)2 >0.

23



Theorem 2.4.3 [19]. L™t exists and is given by a Green’s function G (x,¢) .

L ()= [ G (x, ) f (©w(E)dE.
L1 is bounded by 1/ ¢.

Proof. We know that
(L9, 912=<9,9 >y 2 (9,912
Let Lg= fthen L™1f = g implies
F L P =<LH, L7 f >y 2 e (L7, L7 )12
(LT LT ) < (LT ) <UL L7H )l
When Schwarz inequality is applied
eI 2 < NFINNLTAN
L7 Il < 1 €lif ]l

Theorem 2.4.4 [19]. £ is symmetric.

Proof [19]. The Dirichlet formula shows
(Lgu)z =< gu>y1
for gin D, u in H1. Suppose that u is also in D and change u by Lu.
Then
(Lg, Lu);2 =< g Lu >p1.
This also shows
(Lg, Lu);2 = < Lg,u >y,

and symmetry is achieved.

Theorem 2.4.5 [19]. £~ exists and is bounded.

Proof. £~ g=f may be solved by means of Green’s function. When Schwartz’s
inequality is applied,
(f, L7 )z =
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< L LT S = LTI < Q) Iflle < O 2 IF I
Therefore
1L < Q)

is found.

Theorem 2.4.6 [19]. £ is self-adjoint in HZ.

Proof. (L-A)D = H! where g e D and fe H! .
(L-A\Dg=f & g=(L—AD"* f
Rf=g=/. G (x, ) f (Hw(t)dt.
g=Rf € H'. Hence the range of £ isthe whole H!. So £ is maximally extended and

symmetric and therefore self-adjoint.

Theorem 2.4.7 [19]. The spectrum of £ possesses the same eigenvalues as L, {4;};2,
and the same eigenfunctions {g;}2,. Because ||g;||l%: = 4; llg:ll? = A;, i=1,2,...,
however they must be normalized. These eigenfunctions create a complete

orthogonal set in H*.

Proof [19]. It is known that
(g, u)2=<g,u >y1.
Let 1g,,= 4,9, €Xist.
< Gn9n > 11 = (G0 912 = AnGn, Ind1z = An(Gn Grd12 = Anllgnlliz,

1gnliZs = AnllgallZ: = YaallgallZn = gall?  [VI/Zngall,,x = lgnllZ.
Suppose u possesses orthogonality to the span of {g;};2,. Then
(Lgiwyz =< gpu>y1=0
implies the orthogonality of u to the range of L. But this is whole L?,(c,d) so u=0 in
L2,(c,d). Hence u=0 in H?.
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CHAPTER 3

REGULAR HAMILTONIAN SYSTEMS

3.1. INTRODUCTION

It can be seen from [22] that second order Sturm-Liouville equation of
—(pg")' +qg =Awg + wf can be written in linear Hamiltonian format. It is defined on
an interval (c,d) with p and w bigger than zero and both of them with g are continuos
on (c,d). If it is permitted to write g,= g, g,= pg’, then
g'1= (Up)ya,

-g'2 = Awgy-qgy +W,

or
(NG =@ )+ )6 90
Above equation can be put in
JG' =[AA +B]G +AF (10),

where

=6 ) =) A=(F o)== 1) =)
The classical linear, scalar fourth order differential equation
(Pg")" - (ag)' + rg = Awg + wf
can also be written in a linear Hamiltonian format. If it is permitted to write
g81= 0
g82=0,83=-(pg")" + ag’, 84 =pg"”
then
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00 -1 0\ /&
00 0 -—1)\[8:
10 0 o0 ||
01 0 0/ \8

w 0 0 0 -r 0 0 0 81 w 0 0 0\ [/f
_ 0 0 0 O 0 —g 1 0 g2 0 00 0ol (o0
=040 000l lo 1 0 o MNel*lo o0 oo

0 0 0 0 0 0 0 1/p/ \8a 0 0 0 0/ \o

which is in the form (10).

More generally any scalar equation which is self-adjoint can be written in
Hamiltonian form
JG' =[1A +B]G (11),

e

A and B are equal to their adjoints and A is bigger than or equal to zero. They are

where

also all real [23].
The regular second order boundary value problems in left definite context contains

the Hermitian form
[¢pg' @ + gt 1dx + KH,
where KH represents boundary terms.

In the same way, the fourth order problems involve

fcd[pg”ﬁ” +0g'tu +rgu ]dx +KH.

Higher order problems have the same form but they were not investigated in depth
because of the extreme complexity of the boundary terms. All of these complexities
are studied through the vector algebra in (11) in left definite context. The new

variables are added to the system to formulate the boundary conditions.

The notations belong to Hinton and Shaw [24-26], Schneider and Niessen [11,12].
(10) with constraint
AG(c) + BG(d)=0,
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will considered as follows:
The equation (10) with its constraint is considered over a finite interval [c,d], where

! o o)

where the components are all nxn and E=E* >0 where B=B* is 2nx2n.
If G satisfies (11) and

G possesses dimension 2n, J:( _01) | is the nxn identity matrix, A = (

[f6"AGdx=0
then G is identically 0 which is called Atkinson definiteness condition.
The boundary coefficients A and B are 2nx2n constant matrices which satisfy the
classical situation for self —adjoint boundary conditions

AJA* = BJB".
The Hilbert space is generated by the inner product
(G, V)4 =1 UAG dx (12),

(12) is the classical context for boundary value problem. The space of these

equivalent classes for the Hilbert space is denoted by L% (c,d).

Now let us investigate the L?; theory, the Dirichlet formula, and H* theory

respectively.

3.2 L% THEORY

The problem of determining a self-adjoint operator in L%, (c, d) is closely related with

the boundary conditions appearing in the bvp.

Now let us define the operators Ly, L,,, and L.
Definition 3.2.1 (Maximal Operator) [22]. Let D,, denote the set of those elements
G in L%(c,d) which fulfils
(1) JG'-BG=AF exists a.e. and F is in L% (c,d).
The maximal operator L,, is defined by making L,,G= F when JG'-BG=AF,
G in Dy,.
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Definition 3.2.2 (Minimal Operator) [22]. Let D,, denote the set of those elements
G in L% (c,d) which fulfils
(2) Gisin Dy.
(3) G(c) =0, G(d) = 0.
The minimal operator L,,, is defined by making L,,G = F when JG'-BG=AF,
G in D,y,.

Definition 3.2.3 (Operator L) [22]. Let D denote the set of those elements G
in L% (c,d) which fulfils

(1) Gisin Dy,.

(2) AG(c) + BG(d)= 0 where A and B are 2nx2n matrices with rank A: B = 2n.
The operator L is defined by making LG=F when JG-BG= AF, G in D.

Theorem 3.2.4 [22]. In L% (c,d), Ly, = Ly, Ly = L.

Proof [20]. Suppose that G is in D,, and suppose that U is in the domain of L;,,.
Then
(LG, U) g = (G, Ly U) 4.
This is tantamount to
[LUTRG -BG] dx = [7[Ly,U]" AG dx,

or

[EUIG dx [ [BU + A(L;, )]G dx = 0.
Integration by parts to the second integral is done, remembering that G(c) =0, G(d)=
0.

[EUnIG dx + [ [TIBU + A(Ly,U)]dE] "G dx =0,

or

[E1=1U + [[BU + A(Ly,U)]dE] G dx = 0.
Elements that are orthogonal to G' will be found now.

If the bracketed term is a constant R, then

[ R*G'dx= R*G|¢=0.

29



Suppose that the bracketed term is V. By drawing upon the Gram-Schmidt
procedure, it is assumed that
V,R) = [ R"V dx =0.
Because the constant can be arbitrary,
fcd Vdx =0.
Now let
S=["Vd¢.
Then §(c) = 0, §(d) = 0. S" is an acceptable S' (is in the domain of L},). Thus S’ is
orthogonal to V. But §' =V in L?(c,d), and so V= 0.
It is concluded that the bracketed term must be constant, and
U +[7[BU + A(L,U)] dE = R.
This explains that U can be differentiable and
AL U =JU' - BU.
Setting L;, U= H, we see L;,U=H if and only if
JU'—8BU = AH.
The form of L;, was found. Because there are no constraints for U at c or d, it is
found that L}, and L,, possess the tantamount sort of form and that the domain of

Lip: Dy:. © Dy Thus Ly, © Ly,

Conversely, let G be in D,,,, U be in Dy, and L,,,G=F, Ly, U =H. Then

JG'-BG= AF,

JU'-BU= AH,
with F and H in L% (c,d). It is computed that

(LG, U) g =[ U* (LG dx (13)
=[* U AF dx
=/ U"[)G’ - BG] dx.
(13) is tantamount to
UG |4+ [JU’ — BUTG dx.

Because G is in D,,, G(c)=0, G(d)=0, and

(13) becomes
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= [JU’ —BUT"G dx
=de H* AG dx
=[*(LnU)" AG dx
=(G,LyU) .
This explains that U isin D+ , Dy € Dy ,and Ly U = L3, U: Ly, < Ly,. Hence Ly, =

Ly.

It is firstly noted that L,,, < Ly , thatis, D,, € Dy, and for G in D,,, L,,G = LyG.
Now suppose that U is in D+ and G is in D,,, a subset of Dy,. Then (LyG,U) 4 =
(L, G,U) 4. If the previous proof is again performed, it shows that U is in Dy, and
Ly U =LyU .So L}y, € Ly,.

If the Green’s formula is again applied, it shows that U(c) = 0, U(d)= 0, because G is
in Dy, G(c) and G(d) are arbitrary. Thus Dy~ € D,,, and Ly, C Lyy,.

Green’s formula implies that L,, < Lj,, and so Ly, = L,,.

The operator L is self-adjoint when L is tantamount to its adjoint and these operators
are determined by using boundary conditions [22].

The key way to guarantee that operator is self-adjoint is to use Green’s formula. A
A B)

K S
has rank 4n (is nonsingular). Then let 4, B, K, S be 2nx2n matrices determined by

(& )G D=0 )

Theorem 3.2.5 [22]. (Green’s Formula) Suppose that G and U are in Dy, then

and B are adjointed to 2nx2n matrices K and S such that the 4nx4n matrix (

requiring the following

[ U (LnG) dx - [ (LyU)*AG dx =
[AU(c) + BU(d)] * [AG(c) + BG(d)] +[RU(c) + SU(d)] * [KG(c) + SG(d)]. (14)
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Proof [20]. Let L,,G = AF, Ly U = AH. Then the left-hand side of (14)
JEU* (LnG) dx - [4(LyU) AG dx

becomes
[ U (AF) dx - [ (AH)*G dx
=[*[U"(JG-BG)- JU' — BU)*G] dx
=[“[U")G" + U"JG] dx
= U"]G|Z.
Now

UTJGl¢ = U (dJG(d)- U (9)JG(c)

~voro () (6@)

If the substitution is made for the middle matrix,

weu@® B B(EY)

is found. This is equivalent to

z D@ G Do)
=<§U(c) + 1~§U(d)>* (AG(C) + BG(d))
KU(c) + SU(d) ) \KG(c) + SG(d)
= [AU(c) + BU(d)] * [AG(c) + BG(d)] +[KU(c) + SU(d)]* [KG(c) + SG(d)].
This completes the proof.

Theorem 3.2.6 [22]. The domain of L*, D* possesses those elements U in L% (c,d)
which fulfil
(1) Uisin Dy,
(2) KU(c) + SU(d) = 0.
ForUin D*, L*U = H if and only if
JU'-8BU = AH.
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Proof [20]. Because L, c L c Ly, Ly € L* < Ly, also exist . The form of L* is
tantamount to that of L. Suppose that G is in D, U is in D* and perform (14). The

left-hand side of the equation
[EU (LnG) dx - [ (LyU)*AG dx =
[AU(c) + BU(d)]* [AG(c) + BG(d)] +[KU(b) + SU(d)]* [KG(c) + SG(d)]
vanishes, and the second term on the right, AG(c) + BG(d) also vanishes. But the
term KG(c)+SG(d) is arbitrary, and this leads U to make KU(c)+SU(d) = 0.

Conversely, if U possesses the properties listed above, then U is in the domain of the

adjoint.

To prove the self-adjointness condition of L, parametric conditions are needed. It is
firstly noted that if G is in D and U is in D*, then

AG(c) + BG(d) =0, AU(c) +BU(d) =y,

KG(c) + SG(d) = ¢, KU(c) +SU(d) =0,

where @ and y are arbitrary.

These can be solved for G(c), G(d), U(c), U(d), leading to

G(c) =-JK*y, U(c) =-JA%,

G(d)=JS*y, U(d)=IB"9p,
by requiring that D is equal to its adjoint yields U to have the A-B boundary
condition [22].

Theorem 3.2.7 [22]. The boundary value problem on the operator L, possesses self-
adjointness if and only if
AJA*= BJB*.

Proof [20]. If L possesses self-adjointness, then Z has the D-boundary conditions.
Therefore A[-JA*@] + B[JB*¢] =0, and [-AJA*+ BJB*] ¢ = 0. Since ¢ is arbitrary,
-AJA*+ BJB*= 0.
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Conversely, if AJA*= BJB*, then (-AJ BJ)(g*) = 0. This explains that the columns

of (g*) for n independent solutions to the equation (-AJ BJ)X = 0. But from the

equations computed earlier, (-AJ BJ) (1;:*) = 0 as well. Again full complement of n
solutions exist. Thus there must take place a constant, nonsingular matrix V* such

that (g) ve=(4) oraB) =V (& 3).

This says that the boundary conditions are of the form
AG(c) + BG(d) =0
and
KG(c) +5G(d) = 0.

Since the forms of L and its adjoint are equivalent, L is tantamount to its adjoint.

Lemma 3.2.8 [20]. Suppose that K (x, 1) is a fundamental matrix for (11) which
fulfils K(a, 1) = I. (That is, K (x, 4) is an 2nx2n matrix whose columns fulfil the
differential equation. With x = a, K(a, ) = I, where I is a 2nx2n identity matrix)
Then for all x,

K*(x, ) JK (x,2) =J.

Proof [20]. K*(x, 1) fulfils
—K*(x,41)" I =K*(x, )[A1A + B],
while K (x, 4) fulfils
JK (x,1) =[AA + B] K (x, 1).
Right multiply the first by K (x, 1), left multiply the second by K*(x, 1), and subtract
because J is constant
K (x, )" JK (X, 1) + K*(x, ) IK' (x, 1)
= [K*(x, 1) JK (X, 1)] '=0
and K*(x, DJK(x,2)=C.Ifx=a, K" =K=1,andso C =J.
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Theorem 3.2.9 [21]. Let L be self-adjoint. The spectrum of L is discrete, possessing
real eigenvalues {4;} ;2 which are supplied by det(A K (c, 1) + BK (d, 1) ) =0 and
which converge only at c. If A is not an eigenvalue, then LG = F can be determined

for G. The solution is as follows:

G(X) =[R(A,x,) A (§) F(§) dE,

where
R(A,x,8)=-K(XNDAK(C, 1))+ BK(1) *AK(Cc, 1) IKE ),
c<& <x<d,
= KX DAK(C, 1)+ (BK(,A1)) TBK(Cc ) IK(E ),
c<x< &<d.

Proof [20]. Since the solutions to the homogeneous equation are determined by
G(x, 1) = P K (x, 1), for some constant P, one shall draw upon the method of the
variation of parameters. There exist, with P now variable,
JG'=JKP+JKP,
[AA+B]G =[14+B] K P.

Thus
JG'-[14+B]G = {J' K -[AA+B] K }P +JK P'
=JKP
=AF.
Therefore
JKP'=AF.

Now from the Lemma 3.2.8

(JG)™t =-JK*(x, 1)
exists. So

P'=-J K*(X, 1) A(X) F(X).
Thus
G=-K (x,4) JK*(§, 1) A(¢) F(6)d¢ + K (x, )T.

But also perform the boundary condition

AG(c) + BG(d) = 0.
Here

G(e) =T,
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G(d) =-K (d, D) [['] K (€, ) A©) F(§)d¢ + K (d, )T.
These yield
G()= —K(xA)[A +BK(d, D] M A[TJK (£, 1) A®) F(§)d¢

+K(xA) [A +BK(d, )] 7 B[] K'(€, 1) A©) F(©)ds,

which is written as

G(X) =[ R(A,x,&) A (§) F(©) d,
R(A,x,&) =—(Kx, 1) [A +BK(d,1)] T AJK*(£,1), c< § <x<d
=K(x,4) [A + BK(d,1)] "' BIK*(§, 1), c< x< &<d.

Since L possesses self-adjointness L must take place for all complex A. It definitely
holds for all real A apart from the zeros of det [A +BG(d, A)] = 0. Since the
determinant is analytic in A and is not identically zero, it may possess only isolated

zeros, which may accumulate only at + co.

3.3 THE DIRICHLET FORMULA

It is known from [22] that the Dirichlet formula is an important tool to construct a
new inner product and a self-adjoint operator in the corresponding Sobolev space. A
Sobolev inner product space will be found by the matrix 8 with additional inner
product entries determined by the boundary coefficient A and B. To obtain this new
inner product Dirichlet formula will be used.

11 BlZ

B will be decomposed into ( .
p BlZ B22

) and assume that —B;; < 0 < B,, and for

some o >0, oE< B;;. G and U will be decomposed into <g1> and (Zl>
2 2

The notation of Schneider and Niessen [11,12] will be used. Two inner products will

also be used. The first,

(G, U4 =[UE G dx
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= [1UAG dx,

E 0)'

generates the classical L2, space where A = (O 0

The second,

d * *
(G, V) = J [Uf B11Gy + U3 By3Gyp] dx

_ d . (B11 0
—fCU(O Bzz>de

will be drawn upon as piece of the inner products in various Sobolev spaces.

A beginning variant of the Dirichlet formula is used to connect these inner products.
G = JG' — BG = AF may be used to define LG=F. Without evaluating boundary

terms, it is computed that
(LG, V) = [ U*(LG) dx = [ U* (AF) dx
d, e 1 (E O (F Y -
=[*(u; U3) (0 O) (FD dx = [* UFE Fydx.
Now JG' — BG = AF is the same as

-G, + B11Gy -B1,G, = EF;,
Gy - B12G1 -B3,G, =0,

O NE) - EE)=CE ()

d s L ’
fc U{E Fydx = fc U{[-G; + By, Gy -B1,G,] dx

because

Therefore,

=-UGy|2 + [ [UI" G, + UjB11 G1-U; B1,Go] dx
=-UiG,|¢ + fcd[(Bikzul + ByoUy)" Gy + UiByy Gy -UiBy; Go] dx
=-U{G,|¢ + fcd[( UiBi; Gy + U;Byy Gy + U{Byy Gy - Ui By, Go] dx

=-U;G,|¢ + fcd[Uan Gy + U;Bz; Gy ] dx.

The second component of arbitrary U will be defined as:
Ui- Bi; Uy = By, Us.

One then may introduce the following Dirichlet formula:
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(LG,U) 4 =-UiGy|% + < G,U >p1. (14)
The first term on the right-hand side of (14) will be worked on.
So see the boundary condition
AG(c)+BG(d) =0,

which may be rewritten as

G1(c)
(A1, A3, By, - By) gf((ccl% =0,
—G,(d)
or
G1(c)
(A1, By, Az, - By) gz((cg =0.
—G(d)
If (A4;, By) =M, (=4, B;) = N, (gigg) = (2&3) = g, are set, the below
exists:
Mg: - Ng, =0.

As it can be seen, the rank of M: N can be 2n. Suppose that the rank of N is z, 0<
z < 2n. The sizes of A, A,, By, By areall 2nxn; M and N are 2nx2n. Mg, - Ng, =

0 will be solved for as many of the terms in g, as possible.

Unitary matrices B and W exist in such a way that
—_ * * —_ Ml * Nl * —
Mgy - Ng; = MBB"g, - NBB'g; = (1) Bg: - ('¢) Bg2 =0,
and
Ml) * N1 . (M11 Mlz) 911 Nll 0\ 921\ _
W(Mz B gl W( O )B gZ_ MZZ MZZ (ng) ( 0 0) (,922) - O,
where N;, is nonsingular and the following exists:

MB= (%;) NB= (1\(')1)

Wit)= (a2 () = o)
Ba=(T), Ba.= (9)
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Therefore, the boundary condition is decomposed into two parts:
921 = Nii"(M11911 + M12912) = Nii'M;B* g4,
and

My1911 + My91, = MyB* g, = 0.

The first one will be used. The second constraint will be zero.
The boundary term in the Dirichlet formula becomes
G, (c)
-UsG,|% = (U (c) U (d ( z )
16l = W@ Vi) gy
= ujg, = (B'u)*(B*g2)

_ « (921

= (uy; ujy) (922)

. _ 911 .
= ujy(N;;' (M4 M) (912) T U292

= ujy (N;1'(M11911+ M12912)) +Uia020

= Ui (N;;'Myq ) 911 + uis(N;T*Map ) G912 + U52 922

There exists no control over g,,. Hence the restriction g;, =0, u;, = 0 will take
place. With this constraint, one has
UGy = ui (NI*May ) g

_ « « (N3*M;; 0) (911
= ubhul, ( 110 11 0) (912)
" N M 0) #
= 4 B( 11 Mqq B* g+
1 0 0 91

N;*M;; = 0 is assumed and it will be showed that it is symmetric.

Next see the constraint M,B*g, = 0. It is easy to infer that

I 0 0 O
0 0 I 0
V= (M, -N) o 1/ X=(M, -N) 0 0
0 O 0 -—-I

Thus the self-adjointness condition VJV* = XJX™ is tantamount to MN*= NM*,

Placing the unitary matrix B, the equation
(MB)(NB)* = (NB)(MB)*
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exists. This equivalence is the same as
Ml N1 * N1 Ml *
(Mz)(o) _(0)(M2>
Multiply from the right by W*, from the left by W, it is obtained
(M11 Mlz) (N11 ) (N11 ) (Mﬁ M§1)
M21 M22 MIZ M;Z
N (Nll_l 0) <M11 Mlz) (1 0) (1 0) (Mi‘l Mé‘l) (Nn*‘l 0)
0 0/ \Mzy M) \0 0 0 0/\Mj, My 0 0

=>(N11‘1 0)(M11 0) (M;‘1 M;l) (Nll*_l 0)_
0 0/\Mz; 0 0 0 0 0

M;; Niy = Npp Mgy

This leads

or
Nii*Myy = (N Myg)™.
Therefore the symmetry is achieved and
M>1Nq; = 0.
Since Ny, is nonsingular, this makes M,, = 0.
The second boundary condition thus changes to M,,g,, = 0. Hence the boundary

conditions change to
(" w2) (o) - (o 9 (G)=0)

Mll M12 N11 0
0 My, 0 0

concluded that, if G possesses the original boundary conditions, then g,, = 0.

Since the rank of ( ) is 2n, M,, is nonsingular. Therefore It is

In summary, the Dirichlet formula

-1
(LG,U)4=<G,U>y;1+ z} B (N“OM“ 8) B*g, (15)

_(G1(c) _ U1(C)>
o ‘(Gl(cw)' “ ‘(Ul(d) |
The elements of G and U will be g,, = 0 and u,, = 0, where

B*g4 —(gi;) and B*u, =(ZE)

exists, where
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The right-hand side of (15) leads an inner product space which is known as the
Sobolev space. The subspace is constrained by the linear constraint g;, = u;, = 0.

This subspace is the context which it is sought to be.

3.4 H! THEORY

As the left definite problem is known from [22], it is assumed that if ||G|| 4= 0, then
|G| ;1= 0 as well. Because L% (c,d) can be an collection of equivalence classes, so
also can H!' be. In addition, both norms are positive definite for scalar

representations.

It must be assumed that ||G|| ;1= 0, then ||F|| ;= = 0 so that £ is well defined.
There is little control over the matrices B;; and B,,. For example, in the case of a

fourth order scalar problem one should have

r O 0 O
ba=(s omal} )

It may be possible that both of them or only B,, is singular.

Let us define operator L.
Definition 3.4.1 (Operator £) [22]. It is denoted by D consisting of those elements
G in H? fulfilling

(1) 4G = JG-BG = AF exists a.e. and F is in H* (A :(g 8))

(2) AG(c) + BG(d) = 0, where A and B are 2nx2n matrices with rank (A:B)= 2n
and AJA*= BJB”.
The operator £ is defined by making LG = F for all g in D.

Theorem 3.4.2 [22]. L, acting on D in L;(c,d), is bounded below by o.
Proof [22]. The Dirichlet formula indicates

(LG,G) 4 =<G,G>y1=0(G,G)y.
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This implies that
((L-9)G, G) =0.

Corollary 3.4.3 [22]. L™ holds acting on L% (c,d) and is bounded above by o~ 1.

Proof [22]. Let LG=F, L™* F=G. Then

(F,L'F)q 2 o(L'F, L' F),4
Apply the Schwartz’s inequality on the left.

|(F, LY )l < IFI LY F
Hence,
IFINLT FIL = |(F, LT F) gl Z 0 L7 FI?

and

L I =sup | L=LFI/NIF] < Le.

Theorem 3.4.4 [22]. L is symmetric.

Proof [22]. The Dirichlet formula shows
(LG,U) 4 =< G,U >y . (16)
Let Gin D and U in H'. Suppose that U is also in D and change U by LU. Then
(LG,LU) 4 =< G, LU >
exists. This implies that
(LG,LU) 4 =< LG, U >

and symmetry is achieved.

Theorem 3.4.5 [22]. £~ exists and is bounded.

Proof [22]. LG = F may be solved with the help of the Green’s function. (16)
provides
(F,L''F),; = < L7YF, L™ F >1.
Applying the Schwarz inequality on the left we have
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I L Fli < IFllg | L7 Fllg S WFllg IFNlal @ S IFllga IIFNlyal @
Here we take into account the inequality
I L7 Flla < |IFllal 0
from Corollary 3.4.3. Thus
| L7 Fllgs < |IFllya/ o
= sup || L7 Fllga/ [IFllg: < 07
S L7l < 07h

Therefore, the proof is completed.
Theorem 3.4.6 [22]. £ possesses self-adjointness in H1.

Proof [22]. The range of £ is the whole H. So £ is maximally extended, symmetric

operator. Hence it is self-adjoint.

Theorem 3.4.7 [22]. The spectrum of L possesses the same eigenvalues as L,
{1;} i21, with the same eigenfunctions {G;} ;2, . Because ||Gjl| 1211 = LGill %4 = 4;,
1I=1,2,3,... however, they must be renormalized. These eigenfunctions make a
complete orthogonal set in H?.

Proof [22]. If K; = Gil\/T , renormalize the eigenfunctions. (Keep in mind that K;
has the boundary conditions. Hence g,,=0 and K; is in H.) To prove completeness,
suppose that there takes place an element U which possesses orthogonality to the
span of {K;} ;2 . Then (16)

(LK;, U) 4 =< K;, U >,1=0
leads that U possesses orthogonality to the range of L. In addition, this is whole L2,
(c,d). Hence U =0 in L2, (c,d). Therefore U=0in H?.
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3.5 EXAMPLE

These examples are shown in [22]. Suppose that
91=9.92=9,93=-(pg")" + a9, g+ =pg"".
The fourth order problem

(pg")" -(qg9) +rg = Awg + wf
can be shown by a four dimensional Hamiltonian system (11).

First see the boundary conditions created by the coefficients

Qi1 = CoSA, a3 =-SINA, ayy; = cosf, ayy =SING,

P31 =COSy, f33=SINy, sz =C0SS, Pas =SING,

0<a,pByd< m/2,

with all others a;;, f;; set equal to zero. g; and g, can be solved at both ¢ and d,
gs(c) =cotag,(c), ga(c) =cotfg,(c),

gs(d) =cotyg,(d),  gu(d) =cotég,(d),

and so the Dirichlet formula is

[ gy - (ag") + rg] Udx = [ [pg"T" -qg'tW + rgiidx + cotag, (a) T 4(c)
+cotBg,(c) U ,(c) + coty gs(d) u 3(d) + cotdg,(d) u 4(d).

If a= 0, then there exists a subspace constrained by g(c) =0, u(c)=0. The a term in
the formula above is not included. The other cases f =0,y = 0,5 = 0 are worked
similarly.

If any of a, B,y or & is m/2, then again the various terms above are zero, but there

does not take place subspace restriction.

Consider the boundary condition

: : G1(c) : : G1(0)) _
(o 120 (ere)* Gor 160 (6acer)= (0)
where I:((l) (1)) G, :(g;) G, :(gi)

When the above is rearranged, it is
(.61 .81)(61(6))_(—.61 .81)( G4 (€) ): (0)
AL 1.01\G,(d)) \—1.21 1.61/\—G,(d) 0/°
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I 0
=21 1

(.61 .81 ) (Gl(c)> ] (—.61 .81)( Gi(c) >: (0)
—81 —.61/\G1(d) 0 0 /\—G,(d) 0/
The boundary condition is broken into two pieces.

If it is permitted that

Gl(c))_ .6 —8 (911 (Gl(c)>_ —.61 —.8 (921 i
(Gz(d) _(.81 —.61)(912)’ —G,(d) ‘(.81 —.61)(922) exists,
then

911\ _(—.61 .8] Gl(c)) 921\ _ (—.6] .8I (Gl(c)) :
(912) ‘(—.81 —.61)(Gz(d) ! (922)_(—.81 —.61) _G,(d)) &
Placing the first into the boundary condition supplies

(% 1)) o)) <o)

Thus g;,=0, and also g,;= .28g,,-.969,,. The term U;G,|2 in the Dirichlet formula

If this is multiplied by the unitary matrix W = ( ) the result is

takes place as .28z;7,y;;. Placing this into the Dirichlet formula while substituting

for g41 and u,4, the below exists:
d TIN/11 N/ —
J. (g - (qg)" + rg] udx
d n=r I—/ —
= [ [pg"t" -qg't’ + rgi]dx

.1008 .1008 .1344 .1344\ /9(c)
et .1008 .1008 .1344 .1344 \[ g'(¢)
rEQEEEAT@N (344 1344 1792 .1792 g(d |
1344 .1344 .1792 .1792/ \g'(d)

The constraint g,, =0 takes place as
.8g(c) +.6g(d) =0, .8g'(c) + .6g'(d) = 0.
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CHAPTER 4

WEYL’S THEORY

4.1. INTRODUCTION

In this chapter the bvp will be considered on the interval [0, ). The bvp will be
considered as regular at zero and singular at infinity [27], [28]. Boundary condition
can be given at 0 but it cannot be given directly at infinity. In 1910, Hermann Weyl
introduced an extraordinary way for boundary-value problem considered on an
infinite interval [9]. According to this way, differential equations can be classified at
two groups:

A-All solutions are of the class L2, (0,00) (limit-circle case)

B-Only one linearly independent solution is of the class L2,(0,00) (limit-point

case).

4.2. RIGHT DEFINITE CASE
The interval under consideration is [0, o). If every solution of

Lg: = [-(p(x)g")" +q(x)g] / w(X) =g
satisfies

Jy 1gPw() dx < oo
for a particular complex number A,, then L is called the limit-circle type at infinity,

otherwise L is called the limit-point type at infinity. It must be kept in mind that the

classification is related to only on L and not to the particular 1, chosen.

Theorem 4.2.1 [27]. If every solution of Lg =1,g is of class L2,(0,00) for some A, €

C, then for arbitrary complex A, every solution of Lg= Ag is of class L2,(0,).
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Proof [27]. It is given that {,n are the linearly independent solutions of Lv = [,v that
are of the class L?,(0,00). Let V be any solution of Lv = Iv. Then

Lv =lyv + (I-lp)v
exists.

The variation of constants formula leads the following

V(D)= ¢ (1) + cn(t) + (o) [11C(®) n(r) - {(x) n(OIV()w(r) dr
where ¢; and c, are constants.

If the notation
t
Ve = (J,(IVI*> wdt)*/?
is used and if M is chosen such that ||{||. < M, [In]l. < M for all t>c, then the

Schwarz inequality provides

| L@@ - C@n@IVEOWEr | < MO +Hn®) IV
Using this in

V(O)= ¢;(1) + cn(t) + (-o) [T ¢ O - C@m®OIVIOW()dr
the Minkowski inequality gives
IVl < (lea|+ |2 DM + 2| 1L [M2 ||V |l ..
If ¢ is thought large enough so that
| 1-1o|M? < Y4,
then
IVlle < 2(eq |+ [e2[)M.
Since the right-hand side of this inequality does not depend on t, V is of

class L2,(0,00).

Theorem 4.2.2 [27]. If Im A #0 and ¢, n are the linearly independent solutions of Lg
= Ig which satisfy
¢ (0, A) = sina, 1 (0, A) = cosa,
p(0) ¢'(0, A) = - cosa, p(0)n’ (0, X) = sina,
where 0<oa<,

then the solution V= ¢ + mn has the real boundary condition

47



cosP g(d) + sinf p(d) g'(d) =0, (0<P<mn) for some point d where 0<d<co if and only
if mis on a circle C; in the complex plane whose equation is

[VVI(d) =0,
where W[g,u] = [g,u].
As d— oo either C; = C,, , a limit circle, or C; - m,, , a limit point. All solutions of
Lg = Ig are L?,(0,00) in the former case, and if Im A #0 exactly one linearly
independent solution is L2,(0,00) in the latter case. Moreover, in the limit-circle case,
a point is on the limit circle C,, (1) if and only if

[VV] () = 0.

Proof [27]. Suppose that {,n are two solutions of Lg= Ag which satisfy
¢ (0, A) = sina, 1 (0, A) = cosa,
p(0) {'(0, ) = - cosa, p(0) n'(0, ) = sina,

where 0<o<m.

Then ¢, n are linearly independent solutions and ', n, {,n are entire functions of A

and continuos in (x, A). Besides, since

WIZ, 7] (0) = p(O)[ ¢(0)n'(0)- ¢"(0)n(0)]= 1, WI{, 1] (9)=1
exists for all g. These solutions are real for real A and meet the following boundary
conditions at zero:
cosa {(0,2) + sina p(0) {'(0, 1) =0,
sina 1(0, ) — cosa p(0) (0, 1) = 0.
Every solution V of Lg= Ag apart from 7 is, for a constant multiple, in the form of
V= {+mn
for some m which depends on A.
Consider now a real boundary condition at d where 0< d< co:
cosP g(d) + sinf p(d) g'(d) =0, (0<P<mn).
m = ~(cotB {(d, ) + p(d) ¢'(d, 1) / (cotB 7 (d, 1) + p(b) 1’ (d, 1))

when the solution V satisfies the boundary condition. Since m = m(\,d,) and {’,

n', {,n are entire in A, m is meromorphic in A and real for real A.

If z = cotP and if (A, B) are held fixed, then

m=-(Pz+R)/(Sz +T)

exists.
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Here P, R, S, T are fixed, z is varying over the real line and B is varying from 0 to 7.
The real axis of the z-plane has its image a circle C; in the m-plane. Therefore V
meets the boundary condition if and only if m lies on Cj,.
From
z=- (R +Tm)/ (P+Sm)
the equation of the image of the real axis (i.e. Imz=0) becomes
(R +Tm) / (P+Sm) =( R+Tm) /(P+Sin)
(P+Sm)(R +Tm) —( P+Sm)( R+Tm)=0
which is the equation for C;:
mm(ST-ST) +m(SR-PT)+ m(PT-SR)+ PR-PR=0.
mm+m(SR- PTIST- ST)+ m(PT-SR/ST-ST)+( PR-PR/(ST-ST) = 0.
Hence the center of C;, is
mg= (PT-SR) / (ST-ST)

and the radius is

|PT — RS|/|ST — ST|.
Because V= ¢ +mn and W[V,V] (d)= 0, the equation of C, is

W[V, V] (d)= 0.

Since

PT — SR=WI¢, 7](d),

ST - ST=-W[n, 7](d),

PT-RS=WI[{,n](d)=1.

mgq = - WIZ, 71(d)/ WIn,7](d),  74= 1/ W[n,7](d)
exist respectively.
It follows that the interior of C; in the m-plane is
WLV, V1(b)/W[n,7](d) <O.
A direct calculation, that is (3) gives
WIn, 71(d) = 2ilmA [’ [n]? dx
and
WLV, 7](b)= 2ilmA [ V|2 w(x) dx +W[V,7](0).

Because

W[V, V](0)= -2ilmm,
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WLV, 71(d)= 2ilma ['|G|? w(x) dx-2ilmm
exists.
Substitution gives
2ilma [ V12 w(x) dx-2ilmm /2iima [ 171 w(x) dx < 0
and
FAVIPw(a)dx< Imm / Im2
which determines the interior of C,.
Points m are on Cy if and only if
FAVIPw()dx= Imm /Im 2 (Im 2 % 0)
The radius ry is given for Im A > 0 by
ra= L(2ImA [ 1] w(x) dx).
Now 0< ¢ < d < oco. Then if m is inside or on C,
LWV w(x) dx < [ VI w(x) dx < Imm / Im2
so m is inside C,.

This leads to conclude that C,. contains Cy in its interior if c<d.

As d—wo the circles C,; converge either to a circle C,, or to a point m,, for a given A.
If the C, converge to a circle, then its radius 7., = lim r is positive and this implies
that n € L2,(0,0). If m, is any point on C,,, then m,, is inside any C, for d>0.

Therefore

S E 4+ men 12 w(x) dx <Imm,,/ ImA.

If d—>oo, { + men € L2,(0,0). In the case C; — C,, all solutions are of class
L2,(0,00) for ImA # 0. This shows the limit-circle case with the existence of the
circle C.,. Correspondingly the limit-point case is known with the existence of the
point m.,. In the case C; - m., this leads to a limr;= 0. This situation implies

that 7 is not of class L2, (0,00).
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4.3 LEFT DEFINITE CASE

Consider the homogeneous differential equation

—(pg")' +tqg =2Awg (17)
where p, q and w are bigger than zero and they are measurable functions over (c,d),
-0 <c<d<oo; 1/p is in L}, (c,d); q and w satisfy £;w< q< e,w and are in L}, (c,d)

[29].

It is known that there are two linearly independent solutions of (17) for all values of

the complex parameter A.

The problem will be investigated in two contexts. The Hilbert space is defined by
L3,(c,d) = {f: (c,d) = C | [TIf (1> w(x) dx < o0 }
with inner product

(w2 = [ 900 ul) w(x) dx.
The Sobolev space is defined by
HY:=H" (c,d;p,q) = {f: (c,d) > C|fe AC)y. (c,d); p*? f',qY*f € L*(c,d) }
with inner product
< gu >y =[[pg'd +qga)dx.
Hence
H* (c,d; p,g) € L*(c, d; w) .
The equation (17) when multiplied by g and integrated from e to d', d'e (e,d) leads
the following:
[ 1=(g"y +agl g dx= 2 [1g1? wdx.
If one uses the method of integration by parts, one has the following Dirichlet
formula
[ tplg'1 +algl?1 dx —(pg"g 19 = A ["lglP wx e L2, .
Let {(x, A) be the solution which fulfils the initial conditions at e in (c,d),
{(d, ) = cosy, p(d){'(d,A) = —siny,
for some fixed y, real.

Let n(x,7) be the solution fulfilling
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n(e,A) =siny, p(e)n' (e, A) = cosy.

It is obviously seen that ¢ and n are linearly independent, that is,
PW [{,n]=p[¢n" — '] =1
and n fulfils
cosyn (e,A)- siny p(e) n'(e,A)=0

while ¢ fulfils

siny{(e, 1) + cosyp(e) {'(c, A1) = 0.
These are two regular boundary conditions which are independent at e in (c,d).

4.3.1 The Dirichlet formula and H? solutions

The preliminary form of the Dirichlet formula is

ar A — _ dar
J, [=(pg") +aglgdx=1 [, |g|* wdx
where d'e (e,d).

If one performs the integration by parts to the p term, it is found that

[ olg'1? +alglPl dx —(0')g | ¢ = 2 [} 1912 wdx.
The term (pg")g is troublesome. It is suitable to let it zero at b'. Hence it is required
that
p(d’) g'(d’) =0.

If a general boundary condition at d' is imposed,

cosdg(d’) +sind p(d) g'(d) =0
for some real §, then the solution of (17) must be in the form

§(v,4) = ¢(v,4) + m(A)n(v.A).
Here m(A) is determined by

m(A)=-(cosd¢ (d',A) + sind p(d") ¢'(d',A)/ cosd n(d',2) + sind p(d) n'(d',1))
and tané is determined by
tang = -({(d',2) + m(A)n(d',4)) / (p(d") ¢'(d",2) + m(2) n'(d',2)).

It can be seen that as 6 changes over real values from 0 to 7r, m(A) shows a circle in
the complex plane. As d' approaches d, the circles approach a limit circle or a limit

point. If m is on the limit circle or point, then & is in L2,(c,d).
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Because

¢(e,A) =cosy + m(A)siny,

p(e) § '(e,2) = - siny + m(2)cosy,

it is also true that

(e, 1) = cosy + m(Q) siny,

p(e) £ '(e,2) =-siny +m(2) cosy.
Therefore
p (e) €'(e,A) € (e, 1)=[|m|?-1] siny cosy+ mcos?y -msin?y.

In addition to this,

&(d',1) =Ksiné,
p(d") &'(d",A) = -K cosd,

and

&(d’, 1) =K sins,

p(d) &'(d’, 1) =-K cosé,
SO
p(d") &'(d',A) € (d',2) = -|K|? sind cosé,

where

K12 =18(d", DI? +Ip(d) & '(d, ) |

If g is changed by ¢ in

[ plg'1? +algl?1 dx —(pg")g |
and boundary values

(e, 1) = cosy + m(Q) siny
p(e) §'(e, 1) =-siny + m(2) cosy
&(d’, 1) =K siné
p(d') &€'(d’, 1) =-K cosd

are inserted, the following is found:

fedl[P |€% +q|&€|?] dx + |K|?sind coss + [|m|?-1] siny cosy +mcos?y -msin?y (18)
i) [T Pwdx,  A=p+iz
The imaginary part of (18) is

Imm) =v [* £ w dx.
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The real part of (18) is
[T 1817 +al171 dx + K |2 sin coss=
[1-|m|?] siny cosy —Re(m) cos?y + Re(m) sin?y + u Im(m)/z.
If d' approaches d, m approaches the limit point or a point on the limit circle.
Nonetheless, only if § is in [0, /2], it is seen that & is in H* (e,d; p,q), since
otherwise the two terms on the left in the above formula become infinite.
If & is fixed at /2 with
m(4) =-¢" (d', )/n'(d', 2),
it is encountered that
[ Ip 1§12 +q]€17] dx = [1-|m|2] siny cosy ~Re(m) cos2y + Re(m) sin?y + u
Im(m)/z.
If d'is fixed in the upper limit in the integral and suppose that all other d”’s approach
d, the following is found:

1" [p 1§'12 +q1¢12] dx < [1-[m|?] siny cosy —Re(m) cos?y + Re(m) sin®y +
Im(m)/z.

where, now, all of the m’s are on the limit point or limit circle.

Therefore, one may pass to the following theorem.

Theorem 4.3.1.1 [29]. For all A, Im(4) # 0, there takes place a solution
$a(x,4) = ¢ (x,4) +mq(A) 1 (x,4)

of (17) whichisin H? (e,d; p,q), the Sobolev space with inner product

de _
< gu > =[[pg't’ +qgu]dx.

Even if (17) is in the limit circle case with two solutions in L2,(e,d), there need not
be more than one solution &;(x,A) in H! (e,d;p,q). Even if the L2 (e,d) theory is limit-
circle with two L,(e,d) solutions for (17), there is one solution &g(x,A)

in H* (e,d;p,q).

Theorem 4.3.1.2 [29]. Let &, (x,A) be the solution of (17) in H! (e,d; p,q) generated
by approaching solutions ;' (x,A) satisfying

p(d") §4,'(d',M)=0.
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Then
lim p(x) §4'(x,M)=0.
x—d

Proof [29]. p(d) &a'(d\1)-p(d") §a,'(d'h) = (bq -ba/) p(d') {' (1)
exists. Now

p(d) {'(d M) =p(e) ¢ (e.h) + fed’(p'C ) dx=

p(e) ' (e[ g () = Aw ()17 (x, Ddx.
Thus by the triangle inequality

Ip) ¢ (@) [<]p )¢ (M) K [Fw ][] dx
and by Cauchy-Schwartz inequality
<Ip (@) ¢ @M [+ KIS, w dx] V2 [, w [|2dx] /2
In the limit point case
Ima —ma | <2/ I2] f;"w I5]2dx.
Thus
ma —ma | Ip(@)S (&, 2) | < (A+B[[w 1[2dx12) 1 (& 'w 1§12 dx)
which approaches 0 as d' approaches d.
In the limit circle case one has
lp(d)¢" (d,2) | <K.
Since
mg — Mgy

one obtains

lim p(d)¢' (d,) (may = ma) = 0.

Theorem 4.3.1.3 [29]. Suppose that g and u are in H* (e,d;p,q) and
lim p(x)g'(x) =0
x—d
If
lim p(x) g’ (x)u(x)
x—-d
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exists, then

lim p()g’ ux) =0.

Proof [29]. Keep in mind that p*/2g' and p/?u' are in L?(e,d). Let
a = lim p() g’ u(),
X—

and let &« # 0. Then near b,

1/2 1/2

peg' ~al(p=u).
However p*/2g'is in L?(e,d), so it will be deduced that (p*/? %)~ is in L?(ey,d), for
some e in (e,d).
Now p/?u’ is in L?(e,d), so
u'u = (pH ) (w7
is in L'(ey,d). However, then
(In Ju])"=(Reu'n )/ (ub)

is in L*(ey,d). Thus lirr(} In|u| exists and is finite. Hence u is bounded as x
X—

approaches d. This makes a contradiction, since u is bounded and
lim p(x)g'(x) = 0.
x—d

implies a = 0.

As a corollary the following can be stated:
Theorem 4.3.1.4 [29]. Suppose that g and u be are H! (e,d;p,q), let pg' be in ACj,
(c.e), and
limy . p(x)g'(x) =0
If
limy_,. p(x)g’(x) u(x) exists,

then

limy ¢ p(X)g,(X) m =0.

56



CHAPTER 5
CONCLUSION AND DISCUSSION

In this thesis, we have collected some results on regular and singular Sturm-Liouville
equations and operators. As is known that real-world problems can be identified by
second/fourth/... order Sturm-Liouville equations with appropriate boundary
conditions. A useful method to get some information about the spectrum of such
problems is to pass to the associated operators defined on suitable spaces.
Positiveness condition of the function appearing at the right-hand side of the
equation
-(p(x)g")' + q(x)g = AW (x)g, x € (c,d),
gives rise the well-known Lebesgue space L%, (c,d) with the usual inner product
(g,u) = fcd g uw dx.
On the other side, if one considers Lg instead of g in the inner product, where
Lg =[-(p(x)g")' +ax)g]/ w(x)
then a nice formula (9) arises as follows
(Lg.w)=-pga|¢ + [ pg' Wdx +[" qg T dx.
In the literature, some authors have tried to make the right-hand side of the equation
an inner product. This aim now depends on p, q and the remaining part
-pg't ¢ = -p(d) g'(d) u(d) + p(c) g'(c) U(c).
Krall achieved to construct an inner product by choosing appropriate boundary
conditions and p,q>0. Then he investigated some properties of the operators in this
new inner product space. Moreover, the similar results have been obtained for the

left-definite Hamiltonian systems.

Another important problem in the literature is to determine the number of the linearly

independent solutions of the equation
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-(P(x)g")' + q(x)g= AW(x)g, X € [c,0)
belonging to the Lebesgue space L2, (c,0). This problem was solved by H. Weyl in
1910. He showed that at least one of the linearly independent solutions must lie in
L2, (c,0). Furthermore, both of them may lie in L2, (c,0). These cases are known as
limit-point and limit-circle cases, respectively. However, such a result has not been
introduced for left-definite case until 1992. Krall and Race have showed that at least
one solution must lie in the Sobolev space H(c,00;p,q) but there is not more

information about the other linearly independent solution.
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