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Sturm-Liouville equations are very important to understand the nature of the real-

world problems and have been investigated by many authors. To investigate the 

spectral properties of these problems it is convenient to construct the Hilbert space. 

Such a construction is done with the help of the weight function. In 1992, A.M. Krall 

studied on the second order equation -(pg′)′ + qg =λwg, where p, q, w are real-valued 

functions with 1/p, q, w > 0 on the given interval [c,d] subject to some boundary 

conditions in the Sobolev space. Such equations are called left-definite equations.  

He also investigated the left definite fourth order equations and Hamiltonian systems 

on the finite intervals. Moreover, Race and Krall studied on the Weyl theory for a 

left-definite second order equation. Using these obtained results second-order, 

fourth-order equations and Hamiltonian systems are studied on finite and infinite 

intervals in this thesis. 

 

Keywords: Sturm-Liouville equations, Hilbert space, Sobolev space, left-definite    

                    equations.   
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ÖZ 

 

 

 

SOL BELİRLİ STURM-LIOUVILLE DENKLEMLERİ ÜZERİNE 

 

 

 

ARAS, Atilla 

Yüksek Lisans, Matematik-Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Ekin UĞURLU 

Haziran 2017, 61 sayfa 

 

 

Sturm-Liouville denklemleri gerçek dünya problemlerinin yapısını anlamada çok 

önemlidir ve birçok yazar tarafından araştırılmıştır. Bu problemlerin spektral 

özelliklerini araştırmak için Hilbert uzayını inşa etmek uygun olmaktadır. Bu inşa 

ağırlık fonksiyonunun yardımıyla yapılmaktadır. 1992’de, A.M. Krall verilmiş [c,d] 

aralığında Sobolev uzayında bazı sınır şartlarına tabi 1/p, q, w > 0 ile p, q, w’nin reel 

değerli fonksiyonlar olduğu ikinci mertebeden -(pg′)′ + qg = λwg diferansiyel 

denklemi üzerine çalışmıştır. Bu denklemler sol belirli denklemler olarak 

adlandırılmaktadır. Krall sonlu aralıklarda sol belirli dördüncü mertebeden 

denklemler ve Hamilton sistemleri üzerine de araştırmalar yapmıştır. Bundan başka, 

Race ve Krall sol belirli ikinci mertebeden bir denklem için Weyl teorisi üzerine 

çalışmıştır. Bu tezde, elde edilmiş bu sonuçları kullanarak, ikinci mertebeden, 

dördüncü mertebeden denklemler ve Hamilton sistemleri sonlu ve sonsuz aralıklarda 

çalışılmıştır. 

  

Anahtar Kelimeler: Sturm-Liouville denklemleri, Hilbert uzayı, Sobolev uzayı, Sol   

                                   belirli denklemler  
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PRELIMINARY 

 

Definition 1.1 [1]. A vector space R is Euclidean if for all g, u belonging to R there 

exists a defined complex-valued function, denoted by (𝑔, 𝑢), which satisfies the 

following conditions: 

i) (𝑔, 𝑔)≥ 0; (𝑔, 𝑔) = 0 only if 𝑔 = 0; 

ii) (𝑔, 𝑢) = (𝑢, 𝑔)̅̅ ̅̅ ̅̅ ̅̅ ; 

iii) (λ𝑔, 𝑢) = λ(𝑔, 𝑢); 

iv) (𝑔1+𝑔2, 𝑢) = (𝑔1, 𝑢) + (𝑔2, 𝑢). 

The function (𝑔, 𝑢) is said to be the inner product of 𝑔 and 𝑢. 

 

Definition 1.2 [1]. The Cauchy-Schwartz inequality exists in any Euclidean space: 

|(g, u)|2  ≤ (g, g) (u, u). 

 

Definition 1.3 [1]. The number ‖𝑔‖ = √(𝑔, 𝑔) is called the norm of the vector g. 

The norm has the following properties 

i) ‖𝑔‖ ≥ 0; 

ii) ‖𝑔‖ = 0 if and only if  𝑔 = 0; 

iii) ‖λg‖ = |λ| ‖𝑔‖; 

iv) ‖𝑔 + 𝑢‖ ≤ ‖𝑔‖ + ‖𝑢‖. 

 

Definition 1.4 [1]. A sequence 𝑔1, 𝑔2, 𝑔3, … is called a fundamental sequence (or 

Cauchy sequence) if for any positive number 𝜀, there is an integer D>0 such that the 

inequality 

                                                  ‖𝑔𝑚 − 𝑔𝑛‖ < 𝜀,  m,n> D, 

is satisfied. 

 

Definition 1.5 [1]. Two vectors g, u are called orthogonal if (g,u) = 0.
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Definition 1.6 [1]. A vector 𝑔 is said to be normalized if ‖𝑔‖ = 1. For 𝑔 ≠0 the 

vector u =  𝑔 / ‖𝑔‖ is normalized. An orthogonal system of which all the vectors are 

normalized is called an orthonormal system. 

 

Definition 1.7 [1]. A Euclidean space in which there exists a denumerable, complete, 

orthonormal system is called a Hilbert space. 

 

Definition 1.8 [1]. It is denoted by 𝐿𝑤
2  (c,d) the aggregate of all complex-valued 

functions g(x) that are measurable and quadratically summable over the fixed 

interval (c,d) (which can be finite or infinite) with respect to a positive function w(x). 

The inner product is denoted as 

(g,u) = ∫ 𝑔(𝑥)
𝑑

𝑐
 𝑢(𝑥)̅̅ ̅̅ ̅̅  w(𝑥) d𝑥. 

𝐿𝑤
2  (c,d) is said to be a Hilbert space. 

 

Definition 1.9 [2]. The space 

𝑊2
𝑙(c,d) = {s∈ 𝐿𝑊

2  (c, d) : ∀h ∈ {1,…….m}, 𝑠(ℎ) ∈ 𝐿𝑊
2  (c, d)}, 

where m∈ 𝑁0 is said to be a Sobolev space. For s ∈ 𝑊2
𝑙(c,d) it is set 

‖𝑠‖2,𝑙  = (∑ ‖𝑠(ℎ)‖ 2)𝑚
ℎ=0

1/2
, 

where ‖. ‖ is the norm on 𝐿𝑤
2  (c,d). 

 

Definition 1.10 [2]. 𝑊2
𝑙(c,d) is said to be a Banach space with respect to the norm 

‖. ‖2,𝑙  

 

Definition 1.11 [1]. An operator V which is defined on the whole Banach space D is 

called bounded if there is a positive number J such that 

‖𝑉𝑔‖ ≤ J ‖𝑔‖ for all g∈ D. 

The smallest number J is said to be the norm of the bounded operator V and is shown 

as ‖𝑉‖. 
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Definition 1.12 [1]. An operator V is called Hermitian if for all g,u ∈ Ɗ (V), domain 

of V, 

(Vg, u) = (g, Vu) 

takes place. A Hermitian operator is a symmetric operator if its domain of definition 

is dense in the Hilbert space F. An operator whose a domain of definition is dense in 

F is called self-adjoint if V= V*. 

 

Lemma 1.13 [1]. When E is a symmetric extension of a symmetric operator D, we 

possess  

D ⊂ E 

and so  

𝐸∗ ⊂ 𝐷∗. 

Since E is a symmetric operator,   

E ⊂ 𝐸∗ 

holds and so we possess 

D⊂ E ⊂ 𝐸∗ ⊂ 𝐷∗. 

 

Definition 1.14 [1]. A symmetric operator D is said to be maximal if it does not 

possess proper symmetric extension. 

 

Lemma 1.15 [1]. Every operator D which possesses self-adjointness is a maximal 

symmetric operator. 

  

 As is shown in [1] that any differential expression which possesses self-adjointness 

with real, sufficiently often differentiable, coefficients can be put in the form 

l(u) = [(−1)𝑛(𝑗0𝑢
(𝑛))(𝑛)  +   (−1)𝑛−1(𝑗1𝑢

(𝑛−1))(𝑛−1) +…+𝑗𝑛u] /w(x), 

where w(x) > 0. 

 

Definition 1.16 [1]. An expression l(u) is said to be regular if the interval (c,d) is 

finite and the function 1/𝑗0(𝑥), 𝑗1(𝑥),…, 𝑗𝑛(𝑥), w(x) are summable in the whole 

interval (c,d); otherwise l(u) is called singular. 
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Definition 1.17 [1]. The quasi-derivatives of a function u related to the expression 

l(u) are defined as follows: 

u[s] = 
dsu

dxs
    ,            s = 1,2,…, (n-1); 

u[n] = j0
dnu

dxn
 

u[n+s] = js
dn−su

dxn−s
 - 
𝑑

𝑑𝑥
( u[𝑛+𝑠−1]). 

 

For convenience it is written u[0]= u. 

 

Lemma 1.18 [1]. For the functions m and t for which the expression l(.) makes sense 

the following Lagrange’s identity is obtained on the interval [𝛼, 𝛽] ⊂ (a,b) 

∫ 𝑙(𝑚)
𝛽

𝛼
 𝑡̅ w(𝑥) d𝑥- ∫ 𝑚

𝛽

𝛼
 𝑙(𝑡)̅̅ ̅̅ ̅ w(𝑥) d𝑥 = [𝑚, 𝑡]𝛼

𝛽
 

where 

[𝑚, 𝑡] = ∑ {𝑛
𝑘=1 𝑚

[𝑘−1] 𝑡̅ [2𝑛−𝑘]- 𝑚[2𝑛−𝑘] 𝑡̅ [𝑘−1]} 

and 

[𝑚, 𝑡]𝛼
𝛽

 = [𝑚, 𝑡] (𝛽) - [𝑚, 𝑡] (𝛼). 

Suppose that the domain of L is B and for all m ∈ B, let  

Lm = l(m). 

It is denoted by 𝐵0
′  the set of all functions m in B which is identically zero outside a 

finite interval [𝛼, 𝛽] ⊂ (a,b). The resctriction of the operator L to 𝐵0
′   is denoted by 

𝐿0
′ . In other words, 

𝐿0
′  ⊂ L. 

 

Lemma 1.19 [1]. For arbitrary functions m ∈ 𝐵0
′ , s ∈ B one has 

(𝐿0
′ 𝑚, s) = (m, Ls), 

that is  

L ⊂ 𝐿0
′ ∗. 

 

Lemma 1.20 [1]. The operator 𝐿0
′  is Hermitian. 

  

We consider that l(u) is regular in [c,d]. 
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 𝐵0 denotes the set of all functions u in B which fulfils 

𝑢[𝑙] (a) = 𝑢[𝑙] (b) = 0,   l=0,1,2…, (2n-1). 

The restriction of the operator L to 𝐵0 is denoted by 𝐿0. 

 

Lemma 1.21 [1]. For arbitrary functions m ∈ 𝐵0, s ∈ B one has 

(𝐿0m, s) = (m, Ls). 

 

Lemma 1.22 [1]. The operator 𝐿0 is Hermitian, i.e., for arbitrary elements g,u ∈ 𝐵0 , 

one has 

(𝐿0g, u) = (g, 𝐿0u). 

 

Theorem 1.23 [1]. The domain of definition 𝐵0  of the operator 𝐿0 is dense in 

 𝐿𝑤
2  (c,d). 

 

Theorem 1.24 [1]. The operator L is adjoint to the operator 𝐿0 , i.e., 

L=𝐿0
∗. 

  

Theorem 1.25 [1]. The operator 𝐿0 is adjoint to the operator, L, i.e., 

𝐿0 = 𝐿∗. 

 

Definition 1.26 [3]. An n⨯n matrix function 𝜁 is called a fundamental matrix for the 

vector differential equation  

                             g' = S(x)g 

as long as 𝜁 is a solution of the matrix equation 

                             G' = S(x)G 

on the interval [c,d] and det 𝜁(x) ≠0 on the interval [c,d], where S is a n⨯n matrix, G 

is a n⨯n matrix and g is a n⨯1 matrix. 

 

Theorem 1.27 [3]. An n⨯n matrix function 𝜁 is called a fundamental matrix for the 

vector differential equation 

                            g' = S(x)g 

if and only if the columns of 𝜁 are n linearly independent solutions of  
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g' = S(x)g 

on the interval [c,d]. 

 

Definition 1.28 [3]. Suppose that e, h are differentiable functions on an interval [c,d]. 

Then the Wronskian of e and h are defined as 

W[e(x), h(x)] = e(x)h'(x)-e'(x)h(x) 

for x ∈ interval [c,d]. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

See the boundary value problem (bvp) over a finite interval [c,d], 

-(p𝑔′)′ + q𝑔 = λw𝑔 +wf  (1), 

(
𝛼11 𝛼12
𝛼21 𝛼22

)  ( 𝑔(𝑐)
𝑝𝑔′(𝑐)

) + (
𝛽11 𝛽12
𝛽21 𝛽22

) ( 𝑔(𝑑)
𝑝𝑔′(𝑑)

)=   (0
0
)  (2), 

where 1/p, q, w > 0 are integrable functions over [c,d] and q > 𝜀w for 𝜀 > 0. The 

coefficients matrices meet the conditions of 

                                           the rank (
𝛼11 𝛼12 𝛽11 𝛽12
𝛼21 𝛼22 𝛽21 𝛽22

) =2  

and the self-adjointness criterion 

(
𝛼11 𝛼12
𝛼21 𝛼22

) (
0 −1
1 0

) (
𝛼11 𝛼12
𝛼21 𝛼22

) = (
𝛽11 𝛽12
𝛽21 𝛽22

) (
0 −1
1 0

) (
𝛽11 𝛽12
𝛽21 𝛽22

). 

  

The equation (1) in this bvp in a left-definite background was discussed by lots of 

authors. The conditions  𝛼21 = 𝛼22 = 0, 𝛼11
2 + 𝛼12

2 ≠ 0, 𝛽11 = 𝛽12 = 0, 𝛽21
2
 + 

𝛽22
2 ≠ 0 are studied by the authors. These conditions can be found after the 

mathematical manipulations of (2).  

 

Pleijel [4,5] introduced the subject, Everitt [6] considered the regular problem for the 

first time in a diffuse way, Bennewitz and Everitt [7] extended the theory and Krall 

[8] developed the theory of differential operators in a left-definite context. 

 

The study of bvp in left definite setting begins with Weyl in 1910. Weyl did the 

classification of the limit-point and limit-circle cases for singular 
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spectral problems of second-order formally self-adjoint linear differential equations 

[9]. After then a paper by Atkinson, Everitt and Ong has been introduced in the 

literature [10]. The paper investigates left-definite square integrable homogeneous  

solutions. Several years later, Schneider and Niessen worked on left-definite S-

Hermitian problems [11-12]. Onyango-Otieno considered Jacobi, Laguerre and 

Hermite equations in 1980 [13]. By the way a discussion of differential operators in a 

left-definite setting did not exist. Work was begun by Everitt and Littlejohn who 

examined the fourth order Legendre-type equation [14]. There has been a little work 

on differential operators corresponding with left definite bvps in the suitable Hilbert 

spaces in the literature. One such study was performed by Krall in 1990. He 

investigated the spectral properties of a second order regular problem [8]. This work 

was followed by Krall and Littlejohn who examined the left-definite Legendre 

operator [15]. Moreover, Hajmirzaahmad introduced some results on the left-definite 

Jacobi and Laguerre operators [16-18]. 

 

 

1.2 OBJECTIVES 

 

The objective of this thesis is to study of the way of constructing of the inner product 

associated with the Sobolev space with p,q>0. Then we collect the results on the 

operators in this new inner product space. Moreover, we continue the similar study 

for the left-definite Hamiltonian systems. 

 

In addition, another important problem in the literature is to determine the number of 

the linearly independent solutions of the Sturm-Liouville equation belonging to the 

Lebesgue space 𝐿𝑤
2 (c,d). We introduce the known results on the problem in right and 

left-definite cases.  
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1.3 ORGANIZATION OF THE THESIS 

 

This thesis contains five chapters. 

  

Chapter 1 is an introduction to the bvp (1), (2) in left definite context and includes 

objectives of this thesis. 

  

Chapter 2 is comprised of 𝐿𝑤
2 -theory, the Dirichlet formula and 𝐻1 theory of Sturm-

Liouville equation.  

 

Chapter 3 we study the L𝒜
2  theory, the Dirichlet formula and 𝐻1 theory for left 

definite Hamiltonian Systems. 

 

Chapter 4 consists of Weyl’s Theory. 

 

Chapter 5 includes the conclusion and discussion part. 
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CHAPTER 2 

 

SECOND ORDER DIFFERENTIAL OPERATORS  

 

 

2.1 INTRODUCTION 

 

It is suitable to study a differential equation on the proper Hilbert function space and 

it is also possible to define differential operators whose eigenvectors can be 

corresponded with solutions of the differential equation fulfilling certain boundary 

conditions. It is essential to define an appropriate Hilbert function space in terms of 

one or more of the coefficients of the differential equation to permit the possibility of 

possessing the solution in operator theoretic terms. Boundary value problems can be 

considered by a uniquely determined unbounded self-adjoint operator in this function 

space where eigenfunctions and eigenvalues of the bvp are tantamount to the 

eigenvalues and eigenfunctions of the operator [6].   

 

We now investigate 𝐿𝑤
2 -theory, the Dirichlet formula and 𝐻1 theory respectively. 

 

Note that throughout this section it is assumed that 1/p, q, w > 0 and integrable on 

[c,d], q>εw, where ε is a positive constant. 

 

 

2.2 𝑳𝒘
𝟐 -THEORY 

 

Let us make clear the definition of the 𝐿𝑀 ,  𝐿𝑚 and L. 

Definition 2.2.1 (The Maximal Operator) [19]. It is denoted by 𝐷𝑀 the set 

consisting of those elements g in 𝐿𝑤
2  (c,d) which fulfils 

1.g is absolutely continuous on every closed subinterval of [c,d]. 
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2.pg′ is absolutely continuous on every closed subinterval of [c,d].   

3.lg= (-(pg′)′+qg) / w exists a.e. and is in 𝐿𝑤
2  (c,d).   

 The maximal operator 𝐿𝑀 is defined by making 𝐿𝑀 g = lg for all g in 𝐷𝑀 .  

 

Definition 2.2.2 (The Minimal Operator) [19]. It is denoted by 𝐷𝑚 consisting of 

those elements g which fulfils 

1.g is in 𝐷𝑀 . 

2.g(c)=0, pg′(c)=0, g(d)=0, pg′(d)=0. 

The minimal operator 𝐿𝑚  is defined by making 𝐿𝑚g=lg for all g in 𝐷𝑚.                  

 

Definition 2.2.3 (The operator L) [19]. It is denoted by D consisting of those 

elements g which fulfils 

1.g is in 𝐷𝑀. 

2.𝛼11 g(c)+ 𝛼12 pg′(c)+𝛽11g(d)+ 𝛽12 pg′(d) = 0. 

𝛼21 g(c)+ 𝛼22 pg′(c)+𝛽21g(d)+ 𝛽22 pg′(d) = 0. 

 The operator L is defined by making Lg=lg for all g in D. 

                                       

Theorem 2.2.4 [19]. The domains 𝐷𝑀 and 𝐷𝑚 are dense in 𝐿𝑤
2  (c, d). 

𝐿𝑚
∗ = 𝐿𝑀, 𝐿𝑀

∗ = 𝐿𝑚. 

 

Proof [20]. The proof of this theorem can be embedded into the proof of the 

Theorem 3.2.1. 

                                                                                                                                □                                                                                                                                                                              

 

Since we know the form of the adjoint operator, its domain can be calculated with 

the help of Green’s formula. Suppose that g is in D and u is in the domain of adjoint 

D* [20]. Then 

0= (Lg, u) − (g, L*u) 

=∫ �̅�
𝑑

𝑐
 (− (pg′)′ + qg) dx − ∫ (−(𝑝𝑢′)′ + 𝑞𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑

𝑐
 g dx 

= p( g�̅�′ − g′�̅�) | 𝑐
𝑑 

= ( �̅�  𝑝𝑢′̅̅ ̅̅ ) (
0 −1
1 0

) (
𝑔

𝑝𝑔′) |𝑐
𝑑. 
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Let J= (
0 −1
1 0

)  ,  G=(
𝑔

𝑝𝑔′)  , U=( 𝑢
𝑝𝑢′
) . 

Then it is found 0=𝑈∗𝐽𝐺|𝑐
𝑑 or 

0= (𝑈∗(𝑐) 𝑈∗(𝑑) ) (
– 𝐽 0
0 𝐽

) (𝐺
(𝑐)

𝐺(𝑑)
). 

 

Let E and F be chosen so that the square matrix (
𝐾 𝑆
𝐸 𝐹

)  is nonsingular. Then 

(𝐾′
∗ 𝑆′∗

𝐸′∗ 𝐹′∗
) require (𝐾′

∗ 𝐸′∗

𝑆′∗ 𝐹′∗
) (
𝐾 𝑆
𝐸 𝐹

) =(
– 𝐽 0
0 𝐽

). Therefore, it is found  

K′*K + E′*E= -J, 

K′*S + E′*F= 0, 

S′*K + F′*E= 0, 

S′*S + F′*F= J. 

The Green’s formula afterwards is  

0= ( 𝑈∗(c) 𝑈∗(d))  (𝐾
′∗ 𝐸′

∗

𝑆′
∗
𝐹′
∗) (

𝐾 𝑆
𝐸 𝐹

) (𝐺
(𝑐)

𝐺(𝑑)
) 

or 

0= (K′U(c)+S′U(d))*(KG(c)+ SG(d)) +(E′U(c)+F′U(d))*(EG(c)+FG(d)). (3) 

 

KG(c)+SG(d)=0, while EG(c)+FG(d) is arbitrary; if u is in D* then E′U(c)+F′U(d) = 

0.  (3) is called adjoint boundary condition. 

 

The adjoint parametric conditions are tantamount to the originals. These adjoint  

parametric conditions are developed as follows [20]: 

KG(c) + SG(d) = 0, 

EG(c) + FG(d) = α. 

(
J 0
0 −J

) (𝐾′
∗ 𝐸′∗

𝑆′∗ 𝐹′∗
) (
K S
E F

) (G
(c)
G(d)

) =  (
J 0
0 −J

) (𝐾′
∗ 𝐸′∗

𝑆′∗ 𝐹′∗
)  (
0
α
),  

where 

(
K′ S′

E′ F′
) (
𝐾 𝑆
𝐸 𝐹

) = (
−J 0
0 J

). 

Then 

(
J 0
0 −J

) (
−J 0
0 J

) (G
(c)
G(d)

) = (
J 0
0 −J

) (𝐸′
∗α

𝐹′∗α
) 
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and 

(
−J2 0

0 −J2
) (G

(c)
G(d)

) =  ( 𝑇𝐸′
∗α

−𝑇𝐹′∗α
),  

where  −J2 = I, 

⇒ (G
(c)
G(d)

) = ( 𝑇𝐸′
∗α

−𝑇𝐹′∗α
).  (4) 

 

Likewise, as above the parametric boundary condition for U(c) and U(d) can be 

developed as 

(U
(c)

U(d)
) =  (−𝑇𝐾′

∗α
𝑇𝑆′∗α

) (5) 

with boundary conditions     

K′U(c) + S′U(d) = α, 

E′U(c) + F′U(d) = 0. 

 

(4) and (5) are critical for proving the Theorem 2.2.5. 

 

Now let us consider the following MG(c)+NG(d)=0 for g in D and  PU(c)+QU(d)= 𝛼 

for u in D*  boundary conditions. 

 

Theorem 2.2.5 [20]. L=L*if and only if MJM*=NJN*.                                                   

 

Proof [20]. For self-adjointness occur, both form and domain must be the same. Let 

L=L* exist. Then D =D*. U(c)= -JM*ɸ and U(d)= JN*ɸ are achieved for D*. If the 

condition that MG(c)+NG(d)=0 is written by changing G(c) and G(d) with U(c) and 

U(d), M(-JM*ɸ) +N(JN*ɸ) =0 will be found. Then -MJM*ɸ+NJN*ɸ= 0 and            

(-MJM*+ NJN*) ɸ =0 are encountered. This means that MJM*= NJN*. 

 

Conversely, let MJM*=NJN* exist. Then -MJM*+NJN*= 0 is found. This equality 

may be shown in matrix multiplication form as (−𝑀𝐽     𝑁𝐽) (𝑀
∗

𝑁∗
)= 0 where M* and 

N* are adjoints of M and N respectively.  

On the other side,  (
𝑀 𝑁
𝑃 𝑄

) (𝐺
(𝑐)

𝐺(𝑑)
) = (

0
α
) ⇒  (

𝑀 𝑁
𝑃 𝑄

)  (
𝐽𝑃′∗α

−𝐽𝑄′∗α
) = (

0
α
)    
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⇒ (
𝑀𝐽𝑃′∗α − 𝑁𝐽𝑄′∗α

−𝑃𝐽𝑃′∗α − 𝑄𝐽𝑄′∗α
) = (

0
α
)    ⇒   (𝑀𝐽𝑃′∗ − 𝑁𝐽𝑄′∗)α = 0 ⇒  

(−𝑀𝐽     𝑁𝐽) (
𝑃′∗

𝑄′∗
)  = 0.  

Then there takes place such an B* matrix so that  (
𝑃′∗

𝑄′∗
) B* = (𝑀

∗

𝑁∗
) is achieved or so 

is (M N)= B(
𝑃′

𝑄′
). This leads that the conditions of MG(c)+NG(d)= 0 and 

P′G(c)+Q′G(d)=0 are tantamount. This leads to conclude that D= D*. Because the 

forms are the same, one gets L= L*.                                            

                                                                                                                                      □                                                                                                                                            

 

Theorem 2.2.6 [20]. Eigenfunctions corresponded to different eigenvalues are 

mutually orthogonal. Eigenfunctions corresponded to each eigenvalue 𝜆𝑗 can be 

made mutually orthogonal. 

 

Proof [20]. Let  𝑔1 be an eigenfunction associated with 𝜆1, 𝑔2 be an eigenfunction 

associated with  𝜆2. Then using (3) with g =ℎ1, u =ℎ2 

L𝑔1 = 𝜆1𝑔1,  L𝑔2 = 𝜆2𝑔2 .  

 𝜆1(ℎ1, ℎ2)  = ( 𝜆1ℎ1, ℎ2) = ( 𝐿ℎ1, ℎ2) = ( ℎ1, 𝐿ℎ2) = ( ℎ1, 𝜆2ℎ2) =  𝜆2(ℎ1, ℎ2). 

Since 

𝜆1 ≠ 𝜆2 ,  (ℎ1, ℎ2) = 0. 

 

Now let  𝑔1, … , 𝑔𝑀  are eigenfunctions corresponded to λ. Suppose    

𝑡1 = 𝑔1 / ‖𝑔1‖. 

It is then defined inductively  

𝑣𝐾  =  𝑔𝐾 -∑ 𝑡İ
𝑘−1
𝑖=1 (𝑡İ, 𝑔𝐾)   and 𝑡𝑘 = 𝑣𝐾 / ‖𝑣𝐾‖. 

Therefore 𝑡𝑘  is orthogonal to 𝑡1,…, 𝑡𝑘−1.                                                                     

                                                                                                                                      □                                            

 

Now let us consider the construction of Green’s function [21]. 

Let  

1/p, q,w, f ∈ 𝐿1 (B,ℂ), B= (c,d), -∞< c<d<∞, 𝜆 ∈ ℂ, 



15 

 

P= (
0 1/𝑝
𝑞 0

), W= (
0 0
𝑤 0

), F= (
0
𝑓
),  G=(

𝑔

𝑝𝑔′),  M,N ∈ 𝑀2(ℂ). 

The bvp  

-(pg')' + qg = 𝜆wg +f,  MG(c) + NG(d) = 0, 

is tantamount to the system  

G' = (P-𝜆W)G +F, MG(c) + NG(d) = 0. 

Suppose that 𝜁= 𝜁(.,.,𝜆) is the primary fundamental matrix of the homogeneous 

system 

G' = (P-𝜆W)G. 

Keep in mind that 

ζ(t,u,𝜆)= ζ(t,c,𝜆) ζ(c,u,𝜆) for c≤ t, u≤ d.  

This comes from 

  ζ(t,u,𝜆) = G(t) 𝐺−1(u)  

for any fundamental matrix solution G of G' = (P-𝜆W)G. 

 

Theorem 2.2.7 [21]. Let  

1/p, q,w, f ∈ 𝐿1 (B,ℂ), B= (c,d), -∞≤ c<d≤∞, 𝜆 ∈ ℂ, 

P= (
0 1/𝑝
𝑞 0

), W= (
0 0
𝑤 0

), F= (
0
𝑓
),  G=(

𝑔

𝑝𝑔′),  M,N ∈ 𝑀2(ℂ). 

Let us consider the scalar bvp 

-(pg')' + qg = 𝜆wg +f,  MG(c) + NG(d) = 0  (6) 

and vector bvp  

G' = (P-𝜆W)G +F,  MG(c) + NG(d) = 0.      (7) 

Then these three statements are tantamount: 

1)When f= 0 on B, the bvps (6) and (7) possess only the trivial solution. 

2)The matrix  

[M+Nζ(d,c,𝜆)] 

has an inverse. 

3)For every f ∈ 𝐿1 (B,ℂ) each of the problems (6) and (7) possess a unique solution. 

Furthermore, if 

[M + Nζ(d, c, 𝜆)] −1  

exists, the matrix function V is defined by 
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V(t, u ,𝜆) = {
ζ(t, c, 𝜆)U(𝜆)ζ(d, u, 𝜆)                              c ≤ 𝑡 < 𝑢 ≤ 𝑑,

ζ(t, c, 𝜆)U(𝜆)ζ(d, u, 𝜆) +  ζ(t, u, 𝜆)         c ≤ 𝑡 < 𝑢 ≤ 𝑑   
 

where 

U(𝜆)= -[M + Nζ(d, c, 𝜆)] −1N. 

 

Theorem 2.2.8 [21]. For any f ∈ 𝐿1 (B,ℂ), the unique solution g of (6) and the unique 

solution G of (7) respectively are given by 

g(t) = ∫ 𝑉12
𝑑

𝑐
(t,u, 𝜆)f(u)du,       c ≤ 𝑡 ≤ 𝑑, 

G(t) = ∫ 𝑉
𝑑

𝑐
(t,u, 𝜆)f(u)du,          c ≤ 𝑡 ≤ 𝑑,  

where 

V = (
𝑉11 𝑉12
𝑉21 𝑉22

). 

 

Proof [21]. G is a solution of  

G' = (P-𝜆W)G +F on B 

 if and only if g is a solution of  

-(pg')' + qg = 𝜆wg +f on B, 

where 

G=(
𝑔

𝑝𝑔′). 

For  

D= (
𝑑1
𝑑2
),  𝑑𝑗 ∈ ℂ, 

determine a solution G of G' = (P-𝜆W)G +F on B by the initial condition  

G(c, 𝜆) = D. 

Then g is a solution of  

-(pg')' + qg = 𝜆wg +f 

constrained by the initial conditions  

g(c, 𝜆) =  𝑑1, 

(pg') (c, 𝜆)= 𝑑2. 

Keep in mind that 

G(t, 𝜆) = ζ(t, c, 𝜆)𝐷,       c ≤ 𝑡 ≤ 𝑑, 

and from the variation of parameters formula one obtains 
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G(t, 𝜆) = ζ(t, c, 𝜆)𝐷 + ∫ ζ(t, s, 𝜆)
𝑡

𝑐
F(s)ds,          c ≤ 𝑡 ≤ 𝑑. 

In particular, 

G(d, 𝜆) = ζ(d, c, 𝜆)𝐷 + ∫ ζ(d, s, 𝜆)
𝑑

𝑐
F(s)ds, 

 

Keep in mind that the existence of the first integral above (f ∈ 𝐿1 (B,ℂ)) shows that 

the solutions have finite limits at the end points and are bounded in a neighborhood 

of each point. 

 

Let  

E(𝜆) = [M+N ζ(d, c, 𝜆)] 

then one may see that 

MG(c,𝜆)+ NG(d,𝜆) = E(𝜆)D +N∫ ζ(d, s, 𝜆)
𝑑

𝑐
F(s)ds. 

 

When f= 0 on B, G and g are nontrivial solutions if and only if D is not the zero 

vector. See from the above equation that, when f= 0 on B, there takes place a 

nontrivial solution G which fulfils the boundary condition MG(c,𝜆)+ NG(d,𝜆) = 0 if 

and only if E(𝜆) is singular. This is also true for the nontrivial solution g which 

satisfies the boundary condition MG(c,𝜆)+ NG(d,𝜆) = 0. It is also true that there 

takes place a unique solution G which fulfils the boundary condition MG(c)+NG(d) 

= 0 for every f ∈ 𝐿1 (B,ℂ) if and only if E(𝜆) is nonsingular. This is again true for the 

nontrivial solution g satisfying the boundary condition MG(c)+ NG(d) = 0 for every 

f ∈ 𝐿1 (B,ℂ) if and only if E(𝜆) is nonsingular. 

 

Now suppose that E(𝜆) is nonsingular. Let 

H=𝐸−1(𝜆) (-N)∫ ζ(d, s, 𝜆)
𝑑

𝑐
F(s)ds. 

Then  

MG(c,𝜆)+ NG(d,𝜆) = 0 

and 

G(t, 𝜆) = ζ(t, c, 𝜆)[𝐸−1(𝜆) (-N)∫ ζ(d, s, 𝜆)
𝑑

𝑐
F(s)ds] +∫ ζ(t, s, 𝜆)

𝑡

𝑐
F(s)ds 

=∫ ζ(t, c, 𝜆)[𝐸−1(𝜆) (−N)
𝑑

𝑐
ζ(d, s, 𝜆)F(s)ds] + ∫ ζ(t, s, 𝜆)

𝑡

𝑐
F(s)ds 
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=∫ V(t, s, 𝜆) 
𝑑

𝑐
F(s)ds,              c ≤ 𝑡 ≤ 𝑑. 

 

The property of  ζ(d, s, 𝜆) = ζ(d, c, 𝜆)ζ(c, s, 𝜆) and definition of V are used in the last 

equation.                                                                                                                        

                                                                                                                                      □   

                      

Theorem 2.2.9 [20]. (𝐿 − 𝜆𝐼)−1 is a bounded operator and holds for all nonreal 𝜆. It 

is a bounded operator and takes place also for all real 𝜆 for which  

det[M + NG(d, 𝜆 )] ≠ 0. 

 

Proof [20]. (L − λI)−1 is obtained by the formula  

G= ∫ 𝐵(
𝑏

𝑎
𝜆, x, 𝜉 ) A(𝜉) F(𝜉) d𝜉 

as long as  

det[M + NG(d, 𝜆 )] ≠ 0.  

Since L possesses self-adjointness it must hold for all complex 𝜆. It definitely holds 

for all real 𝜆 except the zeros of  

det[M + NG(d, 𝜆 )] = 0.  

To see that (L − λI)−1 is bounded, suppose that  

f(𝜉) = A(𝜉)1/2 F(𝜉)  

holds and 

M(𝜆, x, 𝜉 ) = A(𝜉)1/2𝐵( 𝜆, x, 𝜉 ) A(𝑥)1/2. 

Then 

‖𝐺‖2 = ∫ 𝐺∗
𝑑

𝑐
(x) A(x) G(x) dx 

=∫ [
𝑑

𝑐
∫ 𝑓∗
𝑑

𝑐
(𝜉)𝑀∗(𝜆, x, 𝜉 )d𝜉] [∫ M(𝜆, x, 𝜂 )

𝑑

𝑐
 f(𝜂) d𝜂] 𝑑𝑥. 

When Schwarz’s inequality is applied to both terms, 

‖𝐺‖2 ≤ ‖𝑀‖2 ‖𝐹‖2 

is found where  

‖𝑀‖2 =∫ ∫ ∑ ∑ |  𝑀𝑖𝑗
2 (𝜆, 𝑥, 𝜉 )| d𝜉dx𝑛

𝑗=1
𝑛
𝑖=1

𝑑

𝑐

𝑑

𝑐
 

 

with  
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M=𝑀𝑖𝑗.                                                                                                                           

                                                                                                                                      □ 

 

 

2.3 THE DIRICHLET FORMULA 

 

The Dirichlet formula is a formula that forms a new setting for the bvp of the 

previous section [19]. If the second derivative term of 

∫ (𝑙𝑔)
𝑑

𝑐
 �̅� w d𝑥  (8) 

 is integrated by parts, one has [5] 

−(p𝑔′)�̅�) | 𝑐
𝑑 + ∫ [ 𝑝𝑔′

𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥.  (9) 

 

If the boundary conditions are thought to be separated, then pg′ is said to be 

eliminated at c and d [19]. When the coefficients have proper signs, a new form (a 

Sobolev space) is generated where the bvp remains self-adjoint [19]. If c and d are 

singular points, then under various conditions a Sobolev space may be constructed in 

which the boundary value problem remains self-adjoint [19]. 

 

The regular case when the boundary terms at c and d are mixed together will be 

considered here. First the g-terms together and the pg′-terms together are put with a 

minus sign with the term pg′(d). Then it is found that 

(
𝛼11 𝛽11
𝛼21 𝛽21

)  (𝑔(𝑐)
𝑔(𝑑)

) - (
−𝛼12 𝛽12
−𝛼22 𝛽22

) ( 𝑝𝑔′(𝑐)
−𝑝𝑔′(𝑑)

)=   (0
0
).     

Three situations may arise as follows: 

1-(
−𝛼12 𝛽12
−𝛼22 𝛽22

)  is nonsingular. 

2-(
−𝛼12 𝛽12
−𝛼22 𝛽22

)  is singular but not zero. 

3-(
−𝛼12 𝛽12
−𝛼22 𝛽22

) is zero. 

 

1-The nonsingular case [19]: It is assumed that 𝛼22𝛽12 -𝛼12𝛽22 = 1 and then from 

the original coefficient matrix above   
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( 𝑝𝑔
′(𝑐)

−𝑝𝑔′(𝑑)
) = (

𝛼11𝛽22  − 𝛼21𝛽12 𝛽11𝛽22  − 𝛽12𝛽21
𝛼11𝛼22  − 𝛼12𝛽21 𝛼22𝛽11  − 𝛼12𝛽21

) (𝑔(𝑐)
𝑔(𝑑)

) 

 is found.                                                                                                                 

If the matrix is positive, then using the (8) and (9) Dirichlet formula becomes 

∫ (𝑙𝑔)
𝑑

𝑐
 �̅� w d𝑥 = 

∫ [ 𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅�] 𝑑𝑥  + (𝑢(𝑐)̅̅ ̅̅ ̅̅   𝑢(𝑑)̅̅ ̅̅ ̅̅  ) 

(
𝛼11𝛽22  − 𝛼21𝛽12 𝛽11𝛽22  − 𝛽12𝛽21
𝛼22𝛼11  − 𝛼12𝛼21 𝛼22𝛽11  − 𝛼12𝛽21

) (𝑔(𝑐)
𝑔(𝑑)

). 

 

If the matrix is positive, the right side of the Dirichlet formula may be used to define 

an Sobolev inner product. 

 

Example 1: 𝛼11 = 1,  𝛼12 = 0,  𝛼21 = 1,  𝛼22= 1, 𝛽11 = 1, 𝛽12 = 0, 𝛽21 = 1, 𝛽22 = 1 

Then from the above formula 

( 𝑝𝑔
′(𝑐)

−𝑝𝑔′(𝑑)
) = (

1 1
1 1

)  (𝑔(𝑐)
𝑔(𝑑)

) 

is found. 

 

2-The Singular, Non-zero Case [19]: When the matrix (
−𝛼12 𝛽12
−𝛼22 𝛽22

) is singular, 

the rows are said to be dependent. Then there takes place a number k such that 

k (-𝛼12 𝛽12) = (−𝛼22 𝛽22). 

Hence k𝛼12 = 𝛼22 , k𝛽12 = 𝛽22.  The following is found by row manipulation: 

(
𝛼11 𝛽11

𝛼21 − 𝑘𝛼11 𝛽21 − 𝑘𝛽11
) (g

(c)

g(d)
)  -  (

−𝛼12 𝛽12
0 0

)  ( 𝑝𝑔
′(𝑐)

−𝑝𝑔′(𝑑)
) =(0

0
). 

Assume that 𝛼12
2  + 𝛽12

2  = 1 and define  𝑔𝑐, 𝑔𝑑, 𝑔𝑐′, 𝑔𝑑′ by 

(
−𝛼12 𝛽12
𝛽12 𝛼12

) (g
(c)

g(d)
)  = ( 𝑔𝑐

𝑔𝑑
), 

(
−𝛼12 𝛽12
𝛽12 𝛼12

)  ( 𝑝𝑔
′(𝑐)

−𝑝𝑔′(𝑑)
)  =  ( 𝑔𝑐′

𝑔𝑑′
). 

Because 𝛼12
2  + 𝛽12

2  = 1,  

(
−𝛼12 𝛽12
𝛽12 𝛼12

) ( 𝑔𝑐
𝑔𝑑
) = (g

(c)

g(d)
), 
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(
−𝛼12 𝛽12
𝛽12 𝛼12

)  ( 𝑔𝑐′
𝑔𝑑′
)=  ( 𝑝𝑔

′(𝑐)

−𝑝𝑔′(𝑑)
). 

The coefficient equation becomes 

(
−𝛼11𝛼12 + 𝛽11𝛽12 𝛼11𝛽12 + 𝛽11𝛼12 

−𝛼12(𝛼21 − 𝑘𝛼11) + 𝛽12(𝛽21 − 𝑘𝛽11) 𝛽12(𝛼21 − 𝑘𝛼11) + 𝛼12(𝛽21 − 𝑘𝛽11 
)  

( 𝑔𝑐
𝑔𝑑
) –(

1 0
0 0

) ( 𝑔𝑐′
𝑔𝑑′
)  =   (0

0
). 

Two constraints are found from above. If first matrix is shown by (
𝑃 𝑄
𝑅 𝑆

) then 

P𝑔𝑐+Q𝑔𝑑 = 𝑔𝑐′   and  R𝑔𝑐+S𝑔𝑑 = 0 and the boundary terms change to 

(𝑢(𝑐)̅̅ ̅̅ ̅̅   𝑢(𝑑)̅̅ ̅̅ ̅̅  ) ( 𝑝𝑔
′(𝑐)

−𝑝𝑔′(𝑑)
) = ( 𝑢𝑐̅̅ ̅ 𝑢𝑑̅̅ ̅ ) (

−𝛼12 𝛽12
𝛽12 𝛼12

) (
−𝛼12 𝛽12
𝛽12 𝛼12

) ( 𝑔𝑐′
𝑔𝑑′
) 

=( 𝑢𝑐̅̅ ̅ 𝑢𝑑̅̅ ̅ ) (
 𝑔𝑐′
𝑔𝑑′
) 

=𝑢𝑐̅̅ ̅𝑔′𝑐+𝑢𝑑̅̅ ̅𝑔′𝑑. 

 

Since substitution can only be made for  𝑔′𝑐,  it is required that 𝑢𝑑 = 0. The boundary 

terms are equal to 𝑢𝑐(P𝑔𝑐+Q𝑔𝑑). Since 𝑔𝑑 = 0,  the boundary terms are equal to 

𝑢𝑐P𝑔𝑐.  

 

The Dirichlet formula is found as below because R-S constraint vanishes since the 

self-adjointness criterion dictates that 𝛼11 𝛼22 - 𝛼12 𝛼21 = 𝛽11 𝛽22 - 𝛽12 𝛽21 and    

k𝛼12  = 𝛼22, k𝛽12 =  𝛽22. Since 𝛼12 (𝛼11𝑘- 𝛼21) = 𝛽12 ( 𝛽11k-𝛽21 ) exists, R is found 

0. If there is a parameter j such that j𝛼12  = 𝛽11k-𝛽21 and j𝛽12 = 𝛼11𝑘- 𝛼21, S is found 

0. 

  

Then from (8) and (9) the Dirichlet formula becomes 

∫ (𝑙𝑔)
𝑑

𝑐
 �̅� w d𝑥  =  ∫ [ 𝑝𝑔′

𝑑

𝑐
�̅�′ + qg�̅� ] 𝑑𝑥   +(- 𝛼12 𝑢(𝑐) +  𝛽12 u(d) ) (−𝛼11𝛼12 +  

𝛽11 𝛽22)  (- 𝛼12 𝑔(𝑐) + 𝛽12 𝑔(𝑑) ), 

where g and u satisfy 

𝛽12 g(c)  +  𝛼12 g(d) = 0,             𝛽12 u(c) +  𝛼12  u(d) = 0. 

                                                           

The right-hand side of the Dirichlet formula may be used to define Sobolev inner 

product again. 
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Example 2 [19]: 𝛼11 = 0.6,   𝛼12 =0.6, 𝛽11= 0.8, 𝛽12 =0.8, 𝛼21 =0.21, 𝛼22=1.2, 𝛽21 

=1,  𝛽22 =1.6 

The matrix (
−𝛼12 𝛽12
−𝛼22 𝛽22

)  is singular. The Dirichlet formula is 

∫ (𝑙𝑔)
𝑑

𝑐
 �̅� w d𝑥  = 

∫ [ 𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥 + (−0.6 𝑢(𝑐)+ 0.8u(d)(0.28)(-0.6g(c)+0.8g(d)), 

where g and u must satisfy the constraints  

0.8g(c)+0.6g(d)= 0,         0.8u(c)+0.6u(d)= 0. 

 

3-The zero case [19]: This case is the case when the matrix (
−𝛼12 𝛽12
−𝛼22 𝛽22

) is zero. 

The boundary conditions become 

(
𝛼11 𝛽11
𝛼21 𝛽21

) (g
(c)

g(d)
)  = (0

0
). 

Because the coefficient matrix possesses rank 2, the matrix above is nonsingular. 

Hence the boundary conditions are tantamount to g(c)= 0 and g(d)= 0. Then the 

Dirichlet formula becomes  

∫ (𝑙𝑔)
𝑑

𝑐
 �̅� w d𝑥  = ∫ [ 𝑝𝑔′

𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥. 

 

 

2.4 𝑯𝟏 THEORY 

 

See the differential expression lg= (-(pg′)′ + qg) /w whose domain is constrained by 

boundary conditions (2). 

 

The new  inner products will be defined that depends on whether the matrix  

(
−𝛼12 𝛽12
−𝛼22 𝛽22

) is nonsingular, singular/nonzero or zero. These are respectively given 

by 

1- < 𝑔, 𝑢 > 𝐻1 = ∫ [ 𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥  + (𝑢(𝑐)̅̅ ̅̅ ̅̅   𝑢(𝑑)̅̅ ̅̅ ̅̅  )  

(
𝛼11𝛽22  − 𝛼21𝛽12 𝛽11𝛽22  − 𝛽12𝛽21
𝛼22𝛼11  − 𝛼12𝛼21 𝛼22𝛽11  − 𝛼12𝛽21

) (g
(c)

g(d)
), 
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where α-β matrix is assumed to be positive,  

                                                                                                                

2-< 𝑔, 𝑢 > 𝐻1 = ∫ [ 𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥   +(- 𝛼12 𝑢(𝑐) +  𝛽12 u(d) ) (−𝛼11𝛼12 +  

𝛽11 𝛽22)(- 𝛼12 𝑔(𝑐) + 𝛽12 𝑔(𝑑) ), 

where −𝛼11𝛼12 +  𝛽11 𝛽22 ≥ 0 and 

𝛽12𝑔 (c)+ 𝛼12 𝑔(d) = 0, 

 

3-< 𝑔, 𝑢 > 𝐻1= ∫ [ 𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅� ] 𝑑𝑥 

which satisfies the constraints 𝑔 (c)= 0 and 𝑔 (d)= 0.     

  

Let us define the operator 𝓛. 

Definition 2.4.1 (Operator 𝓛) [19]. It is denoted by Ɗ consisting of those elements 

g in 𝐻1 which fulfils 

1-g is absolutely continuous on every closed subinterval of [c, d]. 

2-pg′ is absolutely continuous on every closed subinterval of [c, d]. 

3-lg =(-(pg′)′ +qg)/w exists a.e and is in 𝐻1.                                                 

 The operator ℒ is defined by making ℒg = lg for all g in Ɗ.                                                                                                   

 

Theorem 2.4.2 [19]. L, acting on D in 𝐿𝑤
2  (c,d)  is bounded below by 𝜀.                      

 

Proof. For g 𝜖 D one obtains 

  (L𝑔, 𝑔)L2 = ∫ 𝐿𝑔
𝑑

𝑐
�̅�wdx = ∫ (−(𝑝𝑔′′

𝑑

𝑐
)′ + q𝑔)/w) �̅�wdx = ∫ [−( 𝑝𝑔′)′′

𝑑

𝑐
 + q𝑔]�̅� dx 

= -∫ (𝑝𝑔′′
𝑑

𝑐
)′�̅� 𝑑x +  ∫ 𝑞𝑔�̅�dx 

𝑑

𝑐
 = −(p𝑔′)�̅�  | 𝑐

𝑑 + ∫  𝑝|𝑔′| 2
𝑑

𝑐
 dx +  ∫  𝑞|𝑔| 2

𝑑

𝑐
 dx  = 

< 𝑔, 𝑔 >𝐻1  ≥ ∫  𝑞|𝑔| 2
𝑑

𝑐
 dx ≥  𝜀 ∫  𝑤|𝑔| 2

𝑑

𝑐
 dx =  𝜀(𝑔, 𝑔)L2 =  𝜀 ‖𝑔‖L2

2  

and consequently,  

(L𝑔, 𝑔)L2 - 𝜀(𝑔, 𝑔)L2 = (L𝑔 − 𝜀𝑔, 𝑔)L2 =  ((L − 𝜀𝐼)𝑔, 𝑔)L2 > 0.                                

                                                                                                                                      □ 
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Theorem 2.4.3 [19]. L−1 exists and is given by a Green’s function G (x,𝜉) .                 

L−1 f(x)= ∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑤(𝜉)𝑑𝜉
𝑏

𝑎
. 

L−1 is bounded by 1/ 𝜀.                               

 

Proof. We know that 

(𝐿𝑔, 𝑔)L2 = < 𝑔, 𝑔 >𝐻1 ≥  𝜀(𝑔, 𝑔)L2  . 

Let Lg= f then 𝐿−1𝑓 = 𝑔 implies 

(𝑓, 𝐿−1𝑓)L2 = < 𝐿
−1𝑓, 𝐿−1𝑓 >𝐻1 ≥  𝜀 (𝐿

−1𝑓, 𝐿−1𝑓)L2 

𝜀 (𝐿−1𝑓, 𝐿−1𝑓)L2 ≤ (𝑓, 𝐿
−1𝑓)L2 ≤ |(𝑓, 𝐿−1𝑓)L2| . 

When Schwarz inequality is applied 

𝜀 ‖𝐿−1𝑓‖ 2 ≤  ‖𝑓‖ ‖𝐿−1𝑓‖ 

‖𝐿−1𝑓‖ ≤ 1/ 𝜀‖𝑓‖.                                                                                                               

                                                                                                                                      □ 

 

Theorem 2.4.4 [19]. ℒ is symmetric.                                                                                             

 

Proof [19]. The Dirichlet formula shows 

(Lg, u)L2 = < g, u >𝐻1 

for g in Ɗ, u in 𝐻1. Suppose that u is also in Ɗ and change u by ℒu. 

Then  

(Lg, Lu)L2 = < g, ℒu >𝐻1. 

This also shows 

(Lg, Lu)L2 = < ℒg, u >𝐻1, 

and symmetry is achieved.                                                                                            

     □                        

 

Theorem 2.4.5 [19]. ℒ−1 exists and is bounded.                                                             

 

Proof.  ℒ−1 g= f may be solved by means of Green’s function. When Schwartz’s 

inequality is applied,  

(𝑓,  𝐿−1𝑓)L2 = 
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<  ℒ−1𝑓,  ℒ−1𝑓  >𝐻1 = ‖ ℒ−1𝑓‖𝐻1
𝟐   ≤  ‖𝑓‖L2(

1

ε
) ‖𝑓‖L2 ≤  (

1

ε
) 2 ‖𝑓‖𝐻1

2 . 

Therefore  

‖ ℒ−1‖𝐻1   ≤ (
1

ε
) 

is found.                                                                                                                        

 □ 

                                    

Theorem 2.4.6 [19]. ℒ is self-adjoint in  𝐻1.                                                                                    

 

Proof. (L-λI)Ɗ = 𝐻1 where g 𝜖 Ɗ and f 𝜖 𝐻1 .  

(L-λI)g=f ⇔ g=(L − λI)−1 f 

Rf=g=∫ 𝐺(𝑥, 𝑡)𝑓(𝑡)𝑤(𝑡)𝑑𝑡
𝑏

𝑎
. 

g=Rf ∈ 𝐻1. Hence  the range of  ℒ  is the whole 𝐻1.  So ℒ is maximally extended and 

symmetric and therefore self-adjoint.                                                                            

□                                                                         

 

Theorem 2.4.7 [19]. The spectrum of ℒ possesses the same eigenvalues as L, {𝜆𝑖}𝑖=1
∞    

and the same eigenfunctions {𝑔𝑖}𝑖=1
∞ . Because ‖𝑔𝑖‖𝐻1

2  = 𝜆𝑖 ‖𝑔𝑖‖
2 = 𝜆𝑖, i=1,2,…, 

however they must be normalized. These eigenfunctions create a complete 

orthogonal set in 𝐻1.                                                                                                                

 

Proof [19]. It is known that 

(𝑙𝑔, 𝑢)L2 = < 𝑔, 𝑢 >𝐻1 . 

Let l𝑔𝑛= 𝜆𝑛𝑔𝑛 exist.           

< 𝑔𝑛, 𝑔𝑛 >  𝐻1  = (𝑙𝑔𝑛, 𝑔𝑛)L2 = (𝜆𝑛𝑔𝑛, 𝑔𝑛)L2  = 𝜆𝑛(𝑔𝑛, 𝑔𝑛)L2 = 𝜆𝑛‖𝑔𝑛‖L2
2 ,  

‖𝑔𝑛‖𝐻1 
2 = 𝜆𝑛‖𝑔𝑛‖L2

2  ⇒ 1/𝜆𝑛‖𝑔𝑛‖𝐻1 
2 = ‖𝑔𝑛‖L2

2      ‖√1/𝜆𝑛𝑔𝑛‖𝐻1
2

 = ‖𝑔𝑛‖L2
2 . 

Suppose u possesses orthogonality to the span of  {𝑔𝑖}𝑖−1
∞ . Then  

 (𝐿𝑔𝑖, 𝑢)L2   = < 𝑔𝑖, 𝑢 >𝐻1  = 0 

implies the orthogonality of u to the range of L. But this is whole 𝐿𝑤
2 (𝑐, 𝑑) so u=0 in  

𝐿𝑤
2 (𝑐, 𝑑). Hence u=0 in 𝐻1.                                                                                           

□ 
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CHAPTER 3 

 

REGULAR HAMILTONIAN SYSTEMS  

 

 

3.1. INTRODUCTION 

 

It can be seen from [22] that second order Sturm-Liouville equation of                        

–(pg')' +qg =𝜆wg + wf can be written in linear Hamiltonian format. It is defined on 

an interval (c,d) with p and w bigger than zero and both of them with q are continuos 

on (c,d). If it is permitted to write g1= g, g2= pg', then  

g′1= (1/p)𝑦2, 

-g′2 = 𝜆wg1-qg1+wf, 

or  

(
0 −1
1 0

) (
g1
g2
) ′    = [𝜆 (

𝑤 0
0 0

) + (
−𝑞 0
0 1/𝑝

)] (
g1
g2
) + (

𝑤 0
0 0

) (
𝑓
0
). 

Above equation can be put in  

JG' =[𝜆𝒜 +𝔅]G +𝒜F  (10), 

where  

J=(
0 −1
1 0

),    G'=(
g1
g2
)
′

,   𝒜=(
𝑤 0
0 0

) , 𝔅=(
−𝑞 0
0 1/𝑝

) ,  F=(
𝑓
0
). 

The classical linear, scalar fourth order differential equation  

(pg'')'' – (qg')' + rg = 𝜆wg + wf 

can also be written in a linear Hamiltonian format. If it is permitted to write 

g1= g, 

g2= g', g3= -(pg'')' + qg', g4 =pg''   

then 
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(

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)(

g1
g2
g3
g4

) 

 

= [ 𝜆 (

𝑤 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)  +  (

−𝑟 0 0 0
0 −𝑞 1 0
0 1 0 0
0 0 0 1/𝑝

) ](

g1
g2
g3
g4

)  + (

𝑤 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)   (

𝑓
0
0
0

) 

which is in the form (10). 

 

More generally any scalar equation which is self-adjoint can be written in 

Hamiltonian form  

JG' =[𝜆𝒜 +𝔅]G  (11), 

where 

J=(
0 −1
1 0

), 

𝒜 and 𝔅 are equal to their adjoints and 𝒜 is bigger than or equal to zero. They are 

also all real [23]. 

The regular second order boundary value problems in left definite context contains 

the Hermitian form 

∫ [𝑝𝑔′
𝑑

𝑐
�̅�′ + q𝑔�̅�  ]d𝑥 + KH, 

where KH represents boundary terms.  

In the same way, the fourth order problems involve 

∫ [𝑝𝑔′′
𝑑

𝑐
�̅�′′ + q𝑔′�̅� + 𝑟𝑔�̅�  ]d𝑥 +KH. 

 

Higher order problems have the same form but they were not investigated in depth 

because of the extreme complexity of the boundary terms. All of these complexities 

are studied through the vector algebra in (11) in left definite context. The new 

variables are added to the system to formulate the boundary conditions. 

 

The notations belong to Hinton and Shaw [24-26], Schneider and Niessen [11,12].   

(10) with constraint  

AG(c) + BG(d)= 0, 
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will considered as follows: 

The equation (10) with its constraint is considered over a finite interval [c,d], where 

G possesses dimension 2n, J=(
0 −𝐼
𝐼 0

),  I is the n⨯n identity matrix, 𝒜 = (
𝐸 0
0 0

) , 

where the components are all n⨯n and E=𝐸∗ ≥0 where B=𝐵∗ is 2n⨯2n. 

If G satisfies (11) and 

∫ 𝐺∗
𝑑

𝑐
AG dx = 0 

then G is identically 0 which is called Atkinson definiteness condition. 

The boundary coefficients A and B are 2n⨯2n constant matrices which satisfy the 

classical situation for self –adjoint boundary conditions 

AJ𝐴∗ = BJ𝐵∗. 

 The Hilbert space is generated by the inner product 

(𝐺, 𝑈)𝒜 =∫ 𝑈∗
𝑑

𝑐
AG d𝑥 (12). 

 (12) is the classical context for boundary value problem. The space of these 

equivalent classes for the Hilbert space is denoted by 𝐿𝒜
2 (c,d). 

 

Now let us investigate the 𝐿𝒜
2  theory, the Dirichlet formula, and 𝐻1 theory 

respectively. 

 

 

3.2 𝑳𝒜
𝟐  THEORY 

 

The problem of determining a self-adjoint operator in 𝐿𝒜
𝟐 (c, d) is closely related with 

the boundary conditions appearing in the bvp. 

 

Now let us define the operators 𝐿𝑀 , 𝐿𝑚 and L. 

Definition 3.2.1 (Maximal Operator) [22]. Let 𝐷𝑀 denote the set of those elements 

G in 𝐿𝒜
2 (c,d) which fulfils 

(1)  JG'-𝔅G=𝒜F exists a.e. and F is in 𝐿𝒜
2 (c,d). 

 The maximal operator 𝐿𝑀  is defined by making 𝐿𝑀G= F when JG'-𝔅G=𝒜F,  

G in 𝐷𝑀.   
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Definition 3.2.2 (Minimal Operator) [22]. Let  𝐷𝑚 denote the set of  those elements 

G in 𝐿𝒜
2 (c,d) which fulfils 

(2) G is in 𝐷𝑀. 

(3) G(c) = 0, G(d) = 0. 

 The minimal operator 𝐿𝑚  is defined by making 𝐿𝑚G = F when JG'-𝔅G=𝒜F,  

G in 𝐷𝑚.   

                                                                                                                

Definition 3.2.3 (Operator L) [22]. Let D denote the set of those elements G 

in 𝐿𝒜
2 (c,d) which fulfils   

(1) G is in 𝐷𝑀. 

(2) AG(c) + BG(d)= 0 where A and B are 2n⨯2n matrices with rank A: B = 2n.   

The operator L is defined by making LG=F  when JG'-𝔅G= 𝒜F, G in D.                              

 

Theorem 3.2.4 [22]. In  𝐿𝒜
2 (c,d),  𝐿𝑚

∗  = 𝐿𝑀, 𝐿𝑀
∗  = 𝐿𝑚.                                                     

 

Proof [20]. Suppose that G is in 𝐷𝑚 and suppose that U is in the domain of 𝐿𝑚
∗ .  

Then 

(𝐿𝑚𝐺,𝑈)𝒜 =  (𝐺, 𝐿𝑚
∗ 𝑈)𝒜 . 

This is tantamount to 

∫ 𝑈∗
𝑑

𝑐
[JG' –𝔅G] d𝑥 =  ∫ [𝐿𝑚

∗ 𝑈]∗
𝑑

𝑐
𝒜G d𝑥, 

or 

∫ 𝑈∗
𝑑

𝑐
JG' d𝑥 -∫ [𝔅𝑈 +𝒜(𝐿𝑚

∗ 𝑈)]∗
𝑑

𝑐
G d𝑥 = 0. 

Integration by parts to the second integral is done, remembering that G(c) =0, G(d)= 

0. 

∫ 𝑈∗
𝑑

𝑐
JG' d𝑥 + ∫ [

𝑑

𝑐
 ∫ [𝔅𝑈 +𝒜(𝐿𝑚

∗ 𝑈)]𝑑𝜉] ∗
𝑣

𝑐
G' d𝑥 = 0, 

or 

∫ [−𝐽𝑈
𝑑

𝑐
+ ∫ [𝔅𝑈 +𝒜(𝐿𝑚

∗ 𝑈)]𝑑𝜉] ∗
𝑣

𝑐
G' d𝑥 = 0. 

Elements that are orthogonal to G' will be found now. 

If the bracketed term is a constant R, then 

∫ 𝑅∗
𝑑

𝑐
G' d𝑥= 𝑅∗G|𝑐

𝑑= 0. 
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Suppose that the bracketed term is V. By drawing upon the Gram-Schmidt 

procedure, it is assumed that 

(𝑉, 𝑅)I = ∫ 𝑅∗
𝑑

𝑐
V d𝑥 = 0. 

Because the constant can be arbitrary, 

∫ 𝑉
𝑑

𝑐
d𝑥 =0. 

Now let 

�̃� =∫ 𝑉
𝑥

𝑐
d𝜉. 

Then �̃�(𝑐) = 0, �̃�(𝑑) = 0. �̃�′ is an acceptable S' (is in the domain of  𝐿𝑀
∗ ).  Thus �̃�′ is 

orthogonal to V. But �̃�′ = V in 𝐿I
2(c,d), and so V= 0. 

It is concluded that the bracketed term must be constant, and 

-JU +∫ [𝔅𝑈 +𝒜(𝐿𝑚
∗ 𝑈)] 𝑑𝜉  

𝑣

𝑐
= 𝑅. 

This explains that U can be differentiable and 

𝒜𝐿𝑚
∗ 𝑈 = JU' – 𝔅U. 

Setting 𝐿𝑚
∗ 𝑈= H, we see 𝐿𝑚

∗ 𝑈= H if and only if  

JU' – 𝔅U = 𝒜H. 

The form of 𝐿𝑚
∗  was found. Because there are no constraints for U at c or d, it is 

found that 𝐿𝑚
∗  and 𝐿𝑀 possess the tantamount sort of form and that the domain of 

𝐿𝑚
∗ :  𝐷𝐿𝑚∗ ⊂ 𝐷𝑀. Thus 𝐿𝑚

∗ ⊂ 𝐿𝑀. 

 

Conversely, let G be in 𝐷𝑚, U be in 𝐷𝑀, and 𝐿𝑚G= F, 𝐿𝑀𝑈 =H. Then 

JG'-𝔅G= 𝒜F, 

JU'-𝔅U= 𝒜H, 

with F and H in 𝐿𝒜
2 (c,d). It is computed that 

(𝐿𝑚𝐺,𝑈)𝒜 =∫ 𝑈∗
𝑑

𝑐
(𝐿𝑚G) d𝑥 (13) 

=∫ 𝑈∗
𝑑

𝑐
𝒜F d𝑥 

=∫ 𝑈∗[JG′ –𝔅G
𝑑

𝑐
] d𝑥. 

 (13) is tantamount to 

𝑈∗JG |𝑐
𝑑 + ∫ [𝐽𝑈′ −

𝑑

𝑐
𝔅U]∗G d𝑥. 

Because G is in 𝐷𝑚, G(c)= 0, G(d)=0, and 

(13) becomes 
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= ∫ [𝐽𝑈′ −
𝑑

𝑐
𝔅U]∗G d𝑥 

=∫ 𝐻∗
𝑑

𝑐
𝒜G d𝑥 

=∫ (𝐿𝑀𝑈)
∗𝑑

𝑐
𝒜G d𝑥 

=(𝐺, 𝐿𝑀𝑈)𝒜. 

This explains that U is in 𝐷𝐿𝑚∗ , 𝐷𝑀 ⊂ 𝐷𝐿𝑚∗ , and 𝐿𝑀 𝑈 =  𝐿𝑚
∗ 𝑈: 𝐿𝑀. ⊂ 𝐿𝑚

∗ . Hence 𝐿𝑚
∗ = 

𝐿𝑀. 

 

It is firstly noted that 𝐿𝑚 ⊂ 𝐿𝑀 , that is, 𝐷𝑚 ⊂ 𝐷𝑀 and for G in 𝐷𝑚, 𝐿𝑚𝐺 = 𝐿𝑀𝐺.  

Now suppose that U is in 𝐷𝑀∗ and G is in 𝐷𝑚, a subset of 𝐷𝑀. Then (𝐿𝑀𝐺,𝑈)𝒜 = 

(𝐿𝑚𝐺,𝑈)𝒜. If the previous proof is again performed, it shows that U is in 𝐷𝑀 and  

𝐿𝑀
∗ 𝑈 =𝐿𝑀𝑈 . So 𝐿𝑀

∗  ⊂ 𝐿𝑀 .  

 

If the Green’s formula is again applied, it shows that U(c) = 0, U(d)= 0, because G is 

in 𝐷𝑀,  G(c) and G(d) are arbitrary. Thus 𝐷𝑀∗ ⊂ 𝐷𝑚 and  𝐿𝑀
∗  ⊂ 𝐿𝑚. 

Green’s formula implies that  𝐿𝑚 ⊂ 𝐿𝑀
∗ , and so 𝐿𝑀

∗  = 𝐿𝑚.                                             

□                                              

                        

The operator L is self-adjoint when L is tantamount to its adjoint and these operators 

are determined by using boundary conditions [22]. 

 

The key way to guarantee that operator is self-adjoint is to use Green’s formula. A 

and B are adjointed to 2n⨯2n matrices K and S such that the 4n⨯4n matrix (
𝐴 𝐵
𝐾 𝑆

) 

has rank 4n (is nonsingular).  Then let 𝐴,̃ 𝐵,̃ 𝐾,̃ �̃� be 2n⨯2n matrices determined by 

requiring the following 

(�̃�
∗ �̃�∗

�̃�∗ �̃�∗
) (
𝐴 𝐵
𝐾 𝑆

) =(
−𝐽 0
0 𝐽

). 

 

Theorem 3.2.5 [22]. (Green’s Formula) Suppose that G and U are in 𝐷𝑀, then   

∫ 𝑈∗
𝑑

𝑐
(𝐿𝑚G) d𝑥 - ∫ (𝐿𝑀𝑈)

∗𝑑

𝑐
𝒜G d𝑥 = 

[�̃�U(c)  + �̃�U(d)] ∗ [AG(c) + BG(d)] +[𝐾U(c)  + �̃�U(d)] ∗ [KG(c) + SG(d)]. (14) 
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Proof [20]. Let 𝐿𝑚G = AF, 𝐿𝑀𝑈 = AH. Then the left-hand side of (14) 

∫ 𝑈∗
𝑑

𝑐
(𝐿𝑚G) d𝑥 - ∫ (𝐿𝑀𝑈)

∗𝑑

𝑐
𝒜G d𝑥 

becomes 

∫ 𝑈∗
𝑑

𝑐
(AF) d𝑥 - ∫ (𝐴𝐻)∗

𝑑

𝑐
G d𝑥 

=∫ [𝑈∗
𝑑

𝑐
(JG'-BG)- (𝐽𝑈′ − 𝐵𝑈)∗G] d𝑥 

=∫ [𝑈∗
𝑑

𝑐
JG' +  U′∗𝐽𝐺] d𝑥 

=  𝑈∗ JG|𝑐
𝑑 . 

Now 

𝑈∗ JG|𝑐
𝑑    = 𝑈∗(d)JG(d)- 𝑈∗(c)JG(c) 

=(𝑈∗(c), 𝑈∗(d)) (
−𝐽 0
0 𝐽

) (
𝐺(𝑐)
𝐺(𝑑)

) . 

If the substitution is made for the middle matrix, 

(𝑈∗(c), 𝑈∗(d)) (�̃�
∗ �̃�∗

�̃�∗ �̃�∗
) (
𝐴 𝐵
𝐾 𝑆

) (
𝐺(𝑐)
𝐺(𝑑)

) 

is found. This is equivalent to 

[(�̃� �̃�
�̃� �̃�

) (
𝑈(𝑐)

𝑈(𝑑)
)]∗ [(

𝐴 𝐵
𝐾 𝑆

) (
𝐺(𝑐)
𝐺(𝑑)

)] 

=(
�̃�𝑈(𝑐) + �̃�U(d)

�̃�U(c) + �̃�𝑈(𝑑) 
)

∗

 (
𝐴𝐺(𝑐) + 𝐵𝐺(𝑑)

𝐾𝐺(𝑐) + 𝑆𝐺(𝑑)
) 

=  [�̃�U(c)  + �̃�U(d)] ∗ [AG(c) + BG(d)] +[�̃�U(c)  + �̃�U(d)] ∗ [KG(c) + SG(d)].    

This completes the proof. 

□ 

 

Theorem 3.2.6 [22].  The domain of 𝐿∗, 𝐷∗ possesses those elements U in 𝐿𝒜
2 (c,d) 

which fulfil   

(1) U is in 𝐷𝑀, 

(2) �̃�U(c) + �̃�U(d) = 0. 

For U in 𝐷∗, 𝐿∗U = H if and only if  

JU' – 𝔅U = 𝒜H. 
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Proof [20]. Because 𝐿0 ⊂ L ⊂ 𝐿𝑀, 𝐿0 ⊂ 𝐿∗  ⊂ 𝐿𝑀 also exist . The form of 𝐿∗ is 

tantamount to that of L. Suppose that G is in D, U is in 𝐷∗ and perform (14). The 

left-hand side of the equation 

∫ 𝑈∗
𝑑

𝑐
(𝐿𝑚G) d𝑥 - ∫ (𝐿𝑀𝑈)

∗𝑑

𝑐
𝒜G d𝑥 = 

[�̃�U(c)  + �̃�U(d)] ∗ [AG(c) + BG(d)] +[�̃�U(b) + �̃�U(d)] ∗ [KG(c) + SG(d)] 

vanishes, and the second term on the right, AG(c) + BG(d) also vanishes. But the 

term KG(c)+SG(d) is arbitrary, and this leads U to make �̃�U(c)+�̃�U(d) = 0. 

 

Conversely, if U possesses the properties listed above, then U is in the domain of the 

adjoint.                                                                                                                           

□                                                                                                                     

 

To prove the self-adjointness condition of L, parametric conditions are needed. It is 

firstly noted that if G is in D and U is in 𝐷∗, then 

AG(c) + BG(d) = 0,     �̃�U(c) +�̃�U(d) =𝜓, 

KG(c) + SG(d) = 𝜑,    �̃�U(c) +�̃�U(d) = 0, 

where 𝜑 and 𝜓 are arbitrary.                                                                           

 

These can be solved for G(c), G(d), U(c), U(d), leading to 

G(c) = -J�̃�∗𝜓,     U(c) = -J𝐴∗𝜑, 

G(d) = J�̃�∗𝜓,       U(d) = J𝐵∗𝜑, 

by requiring that D is equal to its adjoint yields U to have the A-B boundary 

condition [22].       

 

Theorem 3.2.7 [22]. The boundary value problem on the operator L, possesses self-

adjointness if and only if  

AJ𝐴∗= BJ𝐵∗. 

 

Proof [20]. If L possesses self-adjointness, then Z has the D-boundary conditions. 

Therefore   A[-J𝐴∗𝜑] + B[J𝐵∗𝜑] = 0, and [-AJ𝐴∗+ BJ𝐵∗] 𝜑 = 0. Since 𝜑 is arbitrary, 

-AJ𝐴∗+ BJ𝐵∗= 0. 
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Conversely, if AJ𝐴∗= BJ𝐵∗, then (-AJ BJ)(
𝐴∗

𝐵∗
) = 0. This explains that the columns 

of (
𝐴∗

𝐵∗
)  for n independent solutions to the equation (-AJ BJ)X = 0. But from the 

equations computed earlier, (-AJ BJ) (�̃�
∗

�̃�∗
) = 0 as well. Again full complement of n 

solutions exist. Thus there must take place a constant, nonsingular matrix 𝑉∗ such 

that    (�̃�
∗

�̃�∗
) 𝑉∗ = (

𝐴∗

𝐵∗
), or (A B) = V (�̃� �̃� ).  

 

This says that the boundary conditions are of the form 

AG(c) + BG(d) = 0 

and 

�̃�G(c) +�̃�G(d) = 0. 

Since the forms of L and its adjoint are equivalent, L is tantamount to its adjoint.      

□                                           

 

Lemma 3.2.8 [20]. Suppose that Ƙ (x, 𝜆) is a fundamental matrix for (11) which 

fulfils Ƙ (a, 𝜆) = I. (That is, Ƙ (x, 𝜆) is an 2n×2n matrix whose columns fulfil the 

differential equation. With x = a, Ƙ (a, 𝜆) = I, where I is a 2n×2n identity matrix)  

Then for all x, 

Ƙ∗(x, �̅�) J Ƙ (x, 𝜆) = J.    

 

Proof [20]. Ƙ∗(x, �̅�) fulfils 

−Ƙ∗(x, �̅�)′ J = Ƙ∗(x, �̅�)[𝜆A + B], 

while Ƙ (x, 𝜆) fulfils  

                                  J Ƙ (x, �̅�)′ = [𝜆A + B] Ƙ (x, 𝜆).           

Right multiply the first by Ƙ (x, 𝜆), left multiply the second by Ƙ∗(x, �̅�), and subtract 

because J is constant 

Ƙ∗(x, �̅�)′ J Ƙ (x, 𝜆) + Ƙ∗(x, �̅�) J Ƙ′ (x, 𝜆) 

= [Ƙ∗(x, �̅�) J Ƙ (x, 𝜆)] ' = 0 

and Ƙ∗(x, �̅�) J Ƙ (x, 𝜆) = C. If x = a, Ƙ∗ = Ƙ = I, and so C = J.                             

□ 
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Theorem 3.2.9 [21]. Let L be self-adjoint. The spectrum of L is discrete, possessing 

real eigenvalues {𝜆𝑖} 𝑖=1
∞  which are supplied by det(A Ƙ (c, 𝜆) + B Ƙ (d, 𝜆) ) = 0 and 

which converge only at ∞. If 𝜆 is not an eigenvalue, then LG = F can be determined 

for G. The solution is as follows:  

G(x) =∫ 𝑅(
𝑑

𝑐
𝜆, 𝑥, 𝜉 ) 𝒜 (𝜉) F(𝜉) d𝜉, 

where 

R (𝜆, 𝑥, 𝜉) = - Ƙ (x, 𝜆)(A Ƙ (c, 𝜆)) + (B Ƙ (𝑑, 𝜆)) −1 AƘ (c, 𝜆) JƘ∗(𝜉, �̅�), 

c< 𝜉 < x < d, 

=  Ƙ (x, 𝜆)(A Ƙ (c, 𝜆)) + (B Ƙ(𝑑, 𝜆)) −1 B Ƙ (c, 𝜆) JƘ∗(𝜉, �̅�), 

c< x <  𝜉 < d. 

 

Proof [20]. Since the solutions to the homogeneous equation are determined by 

G(x, 𝜆) =  P Ƙ (x, 𝜆), for some constant P, one shall draw upon the method of the 

variation of parameters. There exist, with P now variable, 

JG' = J' Ƙ P + J Ƙ P', 

[𝜆𝐴+B]G =[𝜆𝐴+B] Ƙ P. 

Thus 

JG'-[𝜆𝐴+B]G = {J' Ƙ -[𝜆𝐴+B] Ƙ }P +J Ƙ P' 

=J Ƙ P' 

=AF. 

Therefore 

J Ƙ P'= AF. 

Now from the Lemma 3.2.8 

(𝐽𝐺)−1 = -JƘ∗(x, �̅�) 

exists. So  

P' = -J Ƙ∗(x, �̅�) A(x) F(x). 

Thus 

G= - Ƙ (x, 𝜆) 𝐽Ƙ∗(𝜉, �̅�) A(𝜉) F(𝜉)d𝜉 + Ƙ (x, 𝜆)T. 

But also perform the boundary condition  

AG(c) + BG(d) = 0. 

Here 

G(c) = T, 
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G(d) = - Ƙ (d, 𝜆) ∫ 𝐽
𝑑

𝑐
 Ƙ∗ (𝜉, �̅�) A(𝜉) F(𝜉)d𝜉 + Ƙ (d, 𝜆)T. 

These yield 

G(x) =   −Ƙ(x, 𝜆) [A + BƘ(d, 𝜆)]  −1 A∫ 𝐽
𝑥

𝑐
Ƙ∗(𝜉, �̅�) A(𝜉) F(𝜉)d𝜉 

+Ƙ(x, 𝜆) [A + BƘ(d, 𝜆)]  −1 B∫ 𝐽
𝑑

𝑐
 Ƙ∗(𝜉, �̅�) A(𝜉) F(𝜉)d𝜉, 

which is written as 

G(x) =∫ 𝑅(
𝑑

𝑐
𝜆, 𝑥, 𝜉 ) 𝒜 (𝜉) F(𝜉) d𝜉, 

R(𝜆, 𝑥, 𝜉) = −(Ƙx, 𝜆) [A + BƘ(d, 𝜆)]  −1 AJ Ƙ∗(𝜉,�̅�),  c <  𝜉 < x < d 

=Ƙ(x, 𝜆) [A + BƘ(d, 𝜆)]  −1 BJƘ∗(𝜉, �̅�),  c <  x <  𝜉 < d. 

 

Since L possesses self-adjointness L must take place for all complex 𝜆. It definitely 

holds for all real 𝜆  apart from the zeros of det [A +BG(d, 𝜆)]  = 0. Since the 

determinant is analytic in 𝜆 and is not identically zero, it may possess only isolated 

zeros, which may accumulate only at  ∓ ∞.                                                                 

 □  

                                  

                               

3.3 THE DIRICHLET FORMULA 

 

It is known from [22] that the Dirichlet formula is an important tool to construct a 

new inner product and a self-adjoint operator in the corresponding Sobolev space. A 

Sobolev inner product space will be found by the matrix 𝔅 with additional inner 

product entries determined by the boundary coefficient A and B. To obtain this new 

inner product Dirichlet formula will be used.  

𝔅 will be decomposed into (
−𝐵11 𝐵12
𝐵12
∗ 𝐵22

) and assume that −𝐵11 ≤ 0 ≤ 𝐵22 and for 

some 𝜚 >0, 𝜚E≤ 𝐵11. G and U will be decomposed into (
𝐺1
𝐺2
)  and (

𝑈1
𝑈2
).   

 

The notation of Schneider and Niessen [11,12] will be used. Two inner products will 

also be used. The first, 

(𝐺, 𝑈)𝒜 = ∫ 𝑈1
∗𝑑

𝑐
𝐸 𝐺1 d𝑥 
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= ∫ 𝑈∗
𝑑

𝑐
𝒜 𝐺 d𝑥, 

generates the classical 𝐿𝒜
2  space where   𝒜 = (

𝐸 0
0 0

).                                         

The second, 

(𝐺, 𝑈)𝒜 = ∫ [𝑈1
∗𝑑

𝑐
𝐵11𝐺1 + 𝑈2

∗ 𝐵22𝐺2] d𝑥 

= ∫ 𝑈∗
𝑑

𝑐
 (
𝐵11 0
0 𝐵22

) G d𝑥 

will be drawn upon as piece of the inner products in various Sobolev spaces. 

 

A beginning variant of the Dirichlet formula is used to connect these inner products. 

𝓁G = JG' – 𝔅G = 𝒜F may be used to define LG=F. Without evaluating boundary 

terms, it is computed that 

(𝐿𝐺, 𝑈)𝒜 = ∫ 𝑈∗
𝑑

𝑐
(LG) d𝑥 = ∫ 𝑈∗

𝑑

𝑐
(𝒜F) d𝑥 

=∫ (
𝑑

𝑐
𝑈1
∗ 𝑈2

∗) (
𝐸 0
0 0

) (
𝐹1
𝐹2
) d𝑥 = ∫ 𝑈1

∗𝐸
𝑑

𝑐
𝐹1d𝑥. 

Now JG' – 𝔅G = 𝒜F is the same as 

-𝐺2
′  + 𝐵11𝐺1 -𝐵12𝐺2 = E𝐹1, 

𝐺1
′  - 𝐵12

∗ 𝐺1 -𝐵22𝐺2 = 0, 

because 

(
0 −𝐼
𝐼 0

) (
𝐺1
′

𝐺2
′) -(

−𝐵11 𝐵12
𝐵12
∗ 𝐵22

) (
𝐺1
𝐺2
) = (

𝐸 0
0 0

) (
𝐹1
𝐹2
). 

Therefore,  

∫ 𝑈1
∗𝐸

𝑑

𝑐
𝐹1d𝑥 = ∫ 𝑈1

∗[
𝑑

𝑐
 -𝐺2

′  + 𝐵11𝐺1 -𝐵12𝐺2] d𝑥 

= -𝑈1
∗𝐺2|𝑐

𝑑 + ∫ [𝑈1
∗′𝑑

𝑐
𝐺2 + 𝑈1

∗𝐵11𝐺1-𝑈1
∗𝐵12𝐺2] d𝑥 

= -𝑈1
∗𝐺2|𝑐

𝑑 + ∫ [(𝐵12
∗ 𝑈1  + 𝐵22𝑈2)

∗𝑑

𝑐
 𝐺2 +  𝑈1

∗𝐵11 𝐺1 -𝑈1
∗𝐵12 𝐺2] d𝑥 

= -𝑈1
∗𝐺2|𝑐

𝑑 + ∫ [(
𝑑

𝑐
𝑈1
∗𝐵12 𝐺2 + 𝑈2

∗𝐵22 𝐺2 + 𝑈1
∗𝐵11 𝐺1 - 𝑈1

∗𝐵12 𝐺2] d𝑥 

= -𝑈1
∗𝐺2|𝑐

𝑑 + ∫ [𝑈1
∗𝐵11 𝐺1 

𝑑

𝑐
+  𝑈2

∗𝐵22 𝐺2 ] d𝑥. 

 The second component of arbitrary U will be defined as: 

𝑈1
′- 𝐵12

∗  𝑈1 = 𝐵22𝑈2. 

 

One then may introduce the following Dirichlet formula: 
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(𝐿𝐺, 𝑈)𝒜 = -𝑈1
∗𝐺2|𝑐

𝑑 + < 𝐺,𝑈 >𝐻1. (14) 

The first term on the right-hand side of (14) will be worked on. 

So see the boundary condition 

AG(c)+BG(d) = 0, 

which may be rewritten as 

(𝐴1, 𝐴2,  𝐵1, - 𝐵2) (

𝐺1(𝑐)
𝐺2(𝑐)
𝐺1(𝑑)
−𝐺2(𝑑)

) = 0, 

or 

(𝐴1, 𝐵1, 𝐴2, - 𝐵2) (

𝐺1(𝑐)
𝐺1(𝑑)
𝐺2(𝑐)
−𝐺2(𝑑)

) = 0. 

If (𝐴1, 𝐵1) = M,   (−𝐴2, 𝐵2) = N, (
𝐺1(𝑐)
𝐺1(𝑑)

) = 𝑔1, (
𝐺2(𝑐)
𝐺2(𝑑)

) = 𝑔2 are set, the below 

exists: 

M𝑔1 - N𝑔2 = 0. 

 

As it can be seen, the rank of M: N can be 2n. Suppose that the rank of N is z, 0≤

𝑧 ≤ 2n. The sizes of 𝐴1, 𝐴2,  𝐵1,  𝐵2 are all 2n⨯n; M and N are 2n⨯2n. M𝑔1 - N𝑔2 = 

0 will be solved for as many of the terms in 𝑔2 as possible. 

 

Unitary matrices B and W exist in such a way that 

M𝑔1 - N𝑔2 = MB𝐵∗𝑔1 - NB𝐵∗𝑔2 = (
𝑀1
𝑀2
)𝐵∗𝑔1 - (

𝑁1
0
)𝐵∗𝑔2 = 0, 

and 

W(
𝑀1
𝑀2
)𝐵∗𝑔1 - W(

𝑁1
0
)𝐵∗𝑔2= (

𝑀11 𝑀12
𝑀22 𝑀22

) (
𝑔11
𝑔12
) - (

𝑁11 0
0 0

) (
𝑔21
𝑔22
) = 0, 

where 𝑁11 is nonsingular and the following exists: 

MB= (
𝑀1
𝑀2
),   NB= (

𝑁1
0
), 

W(
𝑀1
𝑀2
) = (

𝑀11 𝑀12
𝑀21 𝑀22

), W(
𝑁1
0
) = (

𝑁11 0
0 0

), 

𝐵∗𝑔1 = (
𝑔11
𝑔12
),    𝐵∗𝑔2 = (

𝑔21
𝑔22
). 
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Therefore, the boundary condition is decomposed into two parts: 

𝑔21 = 𝑁11
−1(𝑀11𝑔11 + 𝑀12𝑔12) = 𝑁11

−1𝑀1𝐵
∗𝑔1, 

and 

𝑀21𝑔11 + 𝑀22𝑔12 = 𝑀2𝐵
∗𝑔1 = 0. 

 

The first one will be used. The second constraint will be zero.  

The boundary term in the Dirichlet formula becomes 

-𝑈1
∗𝐺2|𝑐

𝑑 = (𝑈1
∗(c) 𝑈1

∗(d)) (
𝐺2(𝑐)
−𝐺2(𝑑)

) 

=  𝑢1
∗𝑔2 = (𝐵∗𝑢1)

∗(𝐵∗𝑔2) 

=  ( 𝑢11
∗  𝑢12

∗ ) (
𝑔21
𝑔22
) 

=   𝑢11
∗ (𝑁11

−1(𝑀11 𝑀12) (
𝑔11
𝑔12
) +  𝑢12

∗ 𝑔22 

=   𝑢11
∗ (𝑁11

−1(𝑀11𝑔11+ 𝑀12𝑔12)) + 𝑢12
∗ 𝑔22 

=    𝑢11
∗ (𝑁11

−1𝑀11 ) 𝑔11 + 𝑢11
∗ (𝑁11

−1𝑀12 ) 𝑔12 + 𝑢12
∗ 𝑔22. 

 

There exists no control over 𝑔22. Hence the restriction 𝑔12 =0, 𝑢12 = 0 will take 

place. With this constraint, one has 

-𝑈1
∗𝐺2|𝑐

𝑑 =    𝑢11
∗ (𝑁11

−1𝑀11 ) 𝑔11 

=      𝑢11
∗  𝑢12

∗  (𝑁11
−1𝑀11 0
0 0

) (
𝑔11
𝑔12
) 

=      𝑧1
∗ 𝐵 (𝑁11

−1𝑀11 0
0 0

)𝐵∗𝑔1. 

𝑁11
−1𝑀11 ≥ 0 is assumed and it will be showed that it is symmetric. 

 

Next see the constraint  𝑀2𝐵
∗𝑔1 = 0. It is easy to infer that 

V= (M, -N) (

𝐼 0
0 0
0 𝐼
0 0

),     X=(M, -N) (

0 0
𝐼 0
0 0
0 −𝐼

). 

Thus the self-adjointness condition VJ𝑉∗ = XJ𝑋∗ is tantamount to M𝑁∗= N𝑀∗. 

 

Placing the unitary matrix B, the equation 

(MB)(𝑁𝐵)∗ = (NB)(𝑀𝐵)∗ 
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exists. This equivalence is the same as 

(
𝑀1
𝑀2
) (
𝑁1
0
) ∗ = (

𝑁1
0
) (
𝑀1
𝑀2
) ∗ . 

Multiply from the right by 𝑊∗, from the left by W, it is obtained 

(
𝑀11 𝑀12
𝑀21 𝑀22

)  (
 𝑁11
∗  0
0 0

)   = (
𝑁11 0
0 0

) (
𝑀11
∗ 𝑀21

∗

𝑀12
∗ 𝑀22

∗ ) 

⇒ (𝑁11
−1 0
0 0

)   (
𝑀11 𝑀12
𝑀21 𝑀22

)  (
𝐼 0
0 0

) =  (
𝐼 0
0 0

) (
𝑀11
∗ 𝑀21

∗

𝑀12
∗ 𝑀22

∗ ) (
𝑁11

∗−1 0
0 0

) 

⇒ (𝑁11
−1 0
0 0

) (
𝑀11 0
𝑀21 0

) = (
𝑀11
∗ 𝑀21

∗

0 0
) (𝑁11

∗−1 0
0 0

). 

This leads 

𝑀11 𝑁11
∗  =   𝑁11 𝑀11

∗  

or 

𝑁11
−1𝑀11 = (𝑁11

−1𝑀11)
∗. 

Therefore the symmetry is achieved and 

𝑀21𝑁11
∗  = 0. 

Since 𝑁11 is nonsingular, this makes 𝑀21 = 0. 

The second boundary condition thus changes to 𝑀22𝑔12 = 0. Hence the boundary 

conditions change to 

(
𝑀11 𝑀12
0 𝑀22

) (
𝑔11
𝑔12
)  -  (

𝑁11 0
0 0

) (
𝑔21
𝑔22
) = (

0
0
). 

 

Since the rank of (
𝑀11 𝑀12 𝑁11 0
0 𝑀22 0 0

) is 2n, 𝑀22 is nonsingular. Therefore It is 

concluded that, if G possesses the original boundary conditions, then 𝑔12 = 0. 

 

In summary, the Dirichlet formula 

(𝐿𝐺, 𝑈)𝒜 = < 𝐺,𝑈 >𝐻1 +   𝑧1
∗ 𝐵 (𝑁11

−1𝑀11 0
0 0

)𝐵∗𝑔1  (15) 

exists, where 

𝑔1 =(
𝐺1(𝑐)

𝐺1(𝑑)
),    𝑢1 =(

𝑈1(𝑐)

𝑈1(𝑑)
). 

The elements of G and U will be 𝑔12 = 0 and 𝑢12 = 0, where 

𝐵∗𝑔1 =(
𝑔11
𝑔12
)  and 𝐵∗𝑢1 =(

𝑢11
𝑢12
). 
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The right-hand side of (15) leads an inner product space which is known as the 

Sobolev space. The subspace is constrained by the linear constraint 𝑔12 = 𝑢12 =  0. 

This subspace is the context which it is sought to be. 

 

 

3.4 𝑯𝟏 THEORY 

 

As the left definite problem is known from [22], it is assumed that if ‖𝐺‖ 𝒜= 0, then 

‖𝐺‖ 𝐻1= 0 as well. Because 𝐿𝒜
2 (c,d) can be an collection of equivalence classes, so 

also can 𝐻1 be. In addition, both norms are positive definite for scalar 

representations. 

 

It must be assumed that  ‖𝐺‖ 𝐻1= 0, then ‖𝐹‖ 𝐻1 = 0 so that ℒ is well defined. 

There is little control over the matrices 𝐵11 and 𝐵22. For example, in the case of a 

fourth order scalar problem one should have 

𝐵11 = (
𝑟 0
0 𝑞

) and 𝐵22 =(
0 0
0 1/𝑝

). 

It may be possible that both of them or only 𝐵22 is singular. 

 

Let us define operator ℒ. 

Definition 3.4.1 (Operator 𝓛) [22]. It is denoted by Ɗ consisting of those elements 

G in 𝐻1 fulfilling 

(1) 𝓁G = JG'-𝔅G = 𝒜F exists a.e. and F is in 𝐻1 (𝒜 =(
𝐸 0
0 0

)). 

(2) AG(c) + BG(d) = 0, where A and B are 2n⨯2n matrices with rank (A:B)= 2n 

and AJ𝐴∗= BJ𝐵∗. 

 The operator ℒ is defined by making ℒG = F for all g in Ɗ.  

                          

Theorem 3.4.2 [22]. L, acting on D in 𝐿𝒜
2 (c,d), is bounded below by 𝜚.                        

 

Proof [22]. The Dirichlet formula indicates 

(𝐿𝐺, 𝐺)𝒜 = < 𝐺, 𝐺 >𝐻1 = 𝜚 (𝐺, 𝐺)𝒜. 
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This implies that   

( (L- 𝜚)G, G) ≥ 0. 

□ 

 

Corollary 3.4.3 [22]. L−1 holds acting on 𝐿𝒜
2 (c,d) and is bounded above by 𝜚−1.         

 

Proof [22]. Let LG = F,  L−1 F = G. Then 

(𝐹,  𝐿−1 𝐹)𝒜   ≥  𝜚 ( 𝐿−1 𝐹,  𝐿−1 𝐹)𝒜 

Apply the Schwartz’s inequality on the left. 

|(𝐹,  𝐿−1 𝐹)𝒜| ≤ ‖𝐹‖ ‖ 𝐿−1 𝐹‖ 

Hence,  

‖𝐹‖ ‖ 𝐿−1 𝐹‖ ≥ |(𝐹,  𝐿−1 𝐹)𝒜| ≥ 𝜚  ‖ 𝐿−1 𝐹‖2 

and 

‖ 𝐿−1 ‖ = sup ‖ 𝐿−1 𝐹‖ / ‖𝐹‖ ≤ 1/𝜚. 

□ 

Theorem 3.4.4 [22]. ℒ is symmetric.                                                                               

 

Proof [22]. The Dirichlet formula shows 

(𝐿𝐺, 𝑈)𝒜 = < 𝐺,𝑈 >𝐻1 .  (16) 

Let G in Ɗ and U in 𝐻1. Suppose that U is also in Ɗ and change U by ℒU. Then 

(𝐿𝐺, 𝐿𝑈)𝒜 = < 𝐺, ℒ𝑈 >𝐻1 

exists. This implies that 

(𝐿𝐺, 𝐿𝑈)𝒜 = < ℒ𝐺, 𝑈 >𝐻1 

and symmetry is achieved.                                                                                            

□                                                     

 

Theorem 3.4.5 [22]. ℒ−1 exists and is bounded.   

 

Proof [22]. ℒG = F may be solved with the help of the Green’s function. (16) 

provides 

(𝐹,  𝐿−1 𝐹)𝒜    =  <  𝐿−1 𝐹,  𝐿−1 𝐹 >𝐻1. 

Applying the Schwarz inequality on the left we have 
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‖ 𝐿−1 𝐹‖𝐻1
2 ≤ ‖𝐹‖𝒜 ‖ 𝐿−1 𝐹‖𝒜 ≤ ‖𝐹‖𝒜 ‖𝐹‖𝒜/ 𝜚 ≤ ‖𝐹‖𝐻1 ‖𝐹‖𝐻1/ 𝜚 2 

Here we take into account the inequality 

‖ 𝐿−1 𝐹‖𝐴 ≤ ‖𝐹‖𝐴/ 𝜚 

from Corollary 3.4.3. Thus 

‖ 𝐿−1 𝐹‖𝐻1 ≤ ‖𝐹‖𝐻1/ 𝜚 

⇒ sup ‖ 𝐿−1 𝐹‖𝐻1/ ‖𝐹‖𝐻1 ≤  𝜚−1 

⇒ ‖ 𝐿−1‖𝐻1 ≤  𝜚−1. 

Therefore, the proof is completed.                                                                                                                                   

□ 

Theorem 3.4.6 [22]. ℒ possesses self-adjointness in 𝐻1.                                                                   

 

Proof [22]. The range of ℒ is the whole 𝐻1. So ℒ is maximally extended, symmetric 

operator. Hence it is self-adjoint.                                                                                  

□                                 

 

Theorem 3.4.7 [22]. The spectrum of ℒ possesses the same eigenvalues as L, 

{𝜆𝑖} 𝑖=1
∞ , with the same eigenfunctions {𝐺𝑖} 𝑖=1

∞  . Because ‖𝐺İ‖ 𝐻1
2   = 𝜆𝑖‖𝐺İ‖ 𝒜

2  = 𝜆𝑖, 

i=1,2,3,… however, they must be renormalized. These eigenfunctions make a 

complete orthogonal set in 𝐻1.                                                                                             

 

Proof [22]. If Ƙ𝑖 = 𝐺İ/√𝜆İ , renormalize the eigenfunctions. (Keep in mind that Ƙ𝑖 

has the boundary conditions. Hence 𝑔12= 0 and Ƙ𝑖 is in 𝐻1. ) To prove completeness, 

suppose that there takes place an element U which possesses orthogonality to the 

span of {Ƙ𝑖} 𝑖=1
∞  . Then (16) 

(𝐿Ƙ𝑖, 𝑈)𝒜 = < Ƙ𝑖, 𝑈 >𝐻1= 0 

leads that U possesses orthogonality to the range of L. In addition, this is whole 𝐿𝒜
2  

(c,d). Hence U = 0 in 𝐿𝒜
2  (c,d). Therefore U= 0 in 𝐻1.                                                 

□                               
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3.5 EXAMPLE 

 

These examples are shown in [22]. Suppose that 

 𝑔1= 𝑔 , 𝑔2= 𝑔' , 𝑔3= -(p𝑔'')' + q𝑔', 𝑔4 =p𝑔''. 

The fourth order problem 

(p𝑔'')'' – (q𝑔')' + r𝑔 = 𝜆w𝑔 + wf 

can be shown by a four dimensional Hamiltonian system (11). 

 

First see the boundary conditions created by the coefficients 

𝛼11 = 𝑐𝑜𝑠𝛼,   𝛼13 = -sin𝛼,   𝛼22  = 𝑐𝑜𝑠𝛽,      𝛼24 = sin𝛽, 

𝛽31 = cos𝛾,    𝛽33= sin𝛾,   𝛽42 = cos𝛿,   𝛽44 = sin𝛿, 

0< 𝛼, 𝛽, 𝛾, 𝛿 <  𝜋/2, 

with all others 𝛼𝑖𝑗, 𝛽𝑖𝑗 set equal to zero. 𝑔3 and 𝑔4  can be solved at both c and d, 

𝑔3(𝑐) = cot𝛼𝑔1(𝑐),      𝑔4(𝑐) = cot𝛽𝑔2(𝑐), 

𝑔3(𝑑) = cot𝛾𝑔1(𝑑),       𝑔4(𝑑) = cot𝛿𝑔2(𝑑), 

and so the Dirichlet formula is 

∫ [
𝑑

𝑐
(p𝑔′′)′′ – (q𝑔′)′ +  r𝑔] u̅d𝑥 = ∫ [

𝑑

𝑐
p𝑔′′u̅′′ – q𝑔′u̅′ +  r𝑔u̅]d𝑥 + cot𝛼𝑔1(𝑎) �̅� 1(c) 

+ cot𝛽𝑔2(𝑐) �̅� 2(c) + cot𝛾 𝑔3(𝑑) �̅� 3(d) + cot𝛿𝑔4(𝑑) �̅� 4(d). 

 

If 𝛼= 0, then there exists a subspace constrained by g(c) =0, u(c)=0. The 𝛼 term in 

the formula above is not included. The other cases  𝛽 = 0, 𝛾 = 0, 𝛿 = 0 are worked 

similarly.  

If any of 𝛼, 𝛽, 𝛾 𝑜𝑟  𝛿 is 𝜋/2, then again the various terms above are zero, but there 

does not take place subspace restriction. 

 

Consider the boundary condition  

(
. 6𝐼 . 6𝐼
. 4𝐼 1.2𝐼

) (
𝐺1(𝑐)
𝐺2(𝑐)

) + (
. 8𝐼 . 8𝐼
1.0𝐼 1.6𝐼

) (
𝐺1(𝑐)
𝐺2(𝑐)

) =  (
0
0
), 

where I=(
1 0
0 1

),  𝐺1 =(
𝑔1
𝑔2
),    𝐺2 =(

𝑔3
𝑔4
). 

When the above is rearranged, it is 

(
. 6𝐼 . 8𝐼
. 4𝐼 1.0𝐼

) (
𝐺1(𝑐)
𝐺2(𝑑)

) - (
−.6𝐼 . 8𝐼
−1.2𝐼 1.6𝐼

) (
𝐺1(𝑐)
−𝐺2(𝑑)

) =  (
0
0
). 
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If this is multiplied by the unitary matrix W = (
𝐼 0
−2𝐼 𝐼

), the result is 

(
. 6𝐼 . 8𝐼
−.8𝐼 −.6𝐼

) (
𝐺1(𝑐)
𝐺1(𝑑)

) - (
−.6𝐼 . 8𝐼
0 0

) (
𝐺1(𝑐)
−𝐺2(𝑑)

) =  (
0
0
). 

The boundary condition is broken into two pieces. 

If it is permitted that 

(
𝐺1(𝑐)
𝐺2(𝑑)

) = (
. 6𝐼 −.8𝐼
. 8𝐼 −.6𝐼

) (
𝑔11
𝑔12
),     (

𝐺1(𝑐)
−𝐺2(𝑑)

) = (
−.6𝐼 −.8𝐼
. 8𝐼 −.6𝐼

) (
𝑔21
𝑔22
) exists, 

then 

(
𝑔11
𝑔12
) =(

−.6𝐼 . 8𝐼
−.8𝐼 −.6𝐼

) (
𝐺1(𝑐)

𝐺2(𝑑)
) ,    (

𝑔21
𝑔22
) = (

−.6𝐼 . 8𝐼
−.8𝐼 −.6𝐼

) (
𝐺1(𝑐)

−𝐺2(𝑑)
)  exists. 

Placing the first into the boundary condition supplies 

(
. 28𝐼 −.96𝐼
0 𝐼

) (
𝑔11
𝑔12
) –(

𝐼 0
0 0

) (
𝑔21
𝑔22
) =(

0
0
). 

 

Thus 𝑔12= 0, and also 𝑔21= .28𝑔11-.96𝑔12. The term 𝑈1
∗𝐺2|𝑐

𝑑 in the Dirichlet formula 

takes place as .28𝑧11
∗ 𝑦11. Placing this into the Dirichlet formula while substituting 

for 𝑔11 and 𝑢11, the below exists: 

∫ [
𝑑

𝑐
(pg′′)′′ – (qg′)′ +  rg] u̅d𝑥 

= ∫ [
𝑑

𝑐
pg′′u̅′′ – qg′u̅′ +  rgu̅]d𝑥 

+(�̅�(c)�̅�′(c)�̅�(d)�̅�′(d))(

. 1008 . 1008 . 1344 . 1344

. 1008 . 1008 . 1344 . 1344

. 1344 . 1344 . 1792 . 1792

. 1344 . 1344 . 1792 . 1792

)

(

 

𝑔(𝑐)

𝑔′(𝑐)
𝑔(𝑑)

𝑔′(𝑑))

  . 

 

The constraint 𝑔12 =0 takes place as 

.8g(c) + .6g(d) = 0, .8g'(c) + .6g'(d) = 0. 
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CHAPTER 4 

 

WEYL’S THEORY  

 

 

4.1. INTRODUCTION 

 

In this chapter the bvp will be considered on the interval [0, ∞). The bvp will be 

considered as regular at zero and singular at infinity [27], [28]. Boundary condition 

can be given at 0 but it cannot be given directly at infinity. In 1910, Hermann Weyl 

introduced an extraordinary way for boundary-value problem considered on an 

infinite interval [9]. According to this way, differential equations can be classified at 

two groups: 

        A-All solutions are of the class 𝐿𝑤
2 (0,∞) (limit-circle case) 

        B-Only one linearly independent solution is of the class 𝐿𝑤
2 (0,∞) (limit-point 

case). 

 

4.2. RIGHT DEFINITE CASE 

The interval under consideration is [0, ∞). If every solution of 

Lg: = [-(p(x)g′)′ +q(x)g] / w(x) =λg   

satisfies 

∫ |𝑔|𝟐w(x) 𝑑𝑥
∞

0
 < ∞  

for a particular complex number 𝜆0, then L is called the limit-circle type at infinity, 

otherwise L is called the limit-point type at infinity. It must be kept in mind that the 

classification is related to only on L and not to the particular 𝜆0 chosen. 

 

Theorem 4.2.1 [27].  If every solution of Lg =𝜆0g is of class 𝐿𝑤
2 (0,∞) for some 𝜆0 ∈ 

ℂ, then for arbitrary complex λ, every solution of  Lg= λg is of class 𝐿𝑤
2 (0,∞). 
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Proof [27]. It is given that 𝜁, 𝜂 are the linearly independent solutions of Lv = 𝑙0v that 

are of the class 𝐿𝑤
2 (0,∞). Let V be any solution of Lv = lv. Then 

Lv =𝑙0v + (l-𝑙0)v 

exists. 

The variation of constants formula leads the following  

V(t)= 𝑐1𝜁(t) + 𝑐2𝜂(t) + (l-𝑙0) ∫ [𝜁(t) 𝜂(r) 
𝑡

𝑐
- 𝜁(r) 𝜂(t)]V(r)w(r) dr 

where 𝑐1 and 𝑐2 are constants. 

If the notation 

‖𝑉‖𝑐 = (∫ (|𝑉|2
𝑡

𝑐
𝑤𝑑𝑡)1/2 

is used and if M is chosen such that ‖𝜁‖𝑐 ≤ M, ‖𝜂‖𝑐 ≤ M for all t≥c, then the 

Schwarz inequality provides 

| ∫ [𝜁(t)𝜂(r) 
𝑡

𝑐
- 𝜁(r)𝜂(t)]V(r)w(r)dr | ≤ M(|𝜁(t)| +|𝜂(t)|) ‖𝑉‖𝑐. 

Using this in  

V(t)= 𝑐1𝜁(t) + 𝑐2𝜂(t) + (l-𝑙0) ∫ [𝜁(t)𝜂(r) 
𝑡

𝑐
- 𝜁(r)𝜂(t)]V(r)w(r)dr 

the Minkowski inequality gives 

‖𝑉‖𝑐 ≤ (|𝑐1|+ |𝑐2|)M + 2| l-𝑙0|𝑀
2‖𝑉‖𝑐. 

If c is thought large enough so that  

| l-𝑙0|𝑀
2 < ¼, 

then 

‖𝑉‖𝑐 ≤ 2(|𝑐1|+ |𝑐2|)M. 

Since the right-hand side of this inequality does not depend on t, V is of 

class 𝐿𝑤
2 (0,∞).     

□                

                              

Theorem 4.2.2 [27]. If Im λ ≠0 and 𝜁, 𝜂 are the linearly independent solutions of Lg 

= lg which satisfy 

𝜁 (0, λ) = sinα,                           𝜂 (0, λ) = cosα, 

p(0) 𝜁′(0, λ) = - cosα,                 p(0) 𝜂′ (0, λ) = sinα, 

where 0≤α<π, 

then the solution V= 𝜁 + 𝑚𝜂 has the real boundary condition 
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cosβ g(d) + sinβ p(d) g′(d) = 0,  (0≤β<π) for some point d where 0<d<∞ if and only 

if m is on a circle 𝐶𝑑 in the complex plane whose equation is 

[VV](d) = 0, 

where W[g,u] = [g,�̅�]. 

As d→ ∞ either 𝐶𝑑 → 𝐶∞ , a limit circle, or 𝐶𝑑 → 𝑚∞ , a limit point. All solutions of 

Lg = lg are 𝐿𝑤
2 (0,∞) in the former case, and if Im λ ≠0 exactly one linearly 

independent solution is 𝐿𝑤
2 (0,∞) in the latter case. Moreover, in the limit-circle case, 

a point is on the limit circle  𝐶∞ (l) if and only if  

[VV] (∞) = 0. 

 

Proof [27]. Suppose that 𝜁, 𝜂 are two solutions of Lg= λg which satisfy  

𝜁 (0, λ) = sinα,                           𝜂 (0, λ) = cosα, 

p(0) 𝜁′(0, λ) = - cosα,                 p(0) 𝜂′(0, λ) = sinα, 

where 0≤α<π.                                                                                                                     

Then 𝜁, 𝜂 are linearly independent solutions and 𝜁′, 𝜂′, 𝜁, 𝜂  are entire functions of λ 

and continuos in (x, λ).  Besides, since  

W[𝜁, 𝜂] (0) = p(0)[ 𝜁(0)𝜂′(0)- 𝜁′(0)𝜂(0)]= 1, W[𝜁, 𝜂] (g)= 1 

exists for all g. These solutions are real for real λ and meet the following boundary 

conditions at zero: 

cosα 𝜁(0, λ) + sinα p(0) 𝜁′(0, λ) = 0, 

sinα 𝜂(0, λ) – cosα p(0) 𝜂′(0, λ) = 0. 

Every solution 𝑉 of Lg= λg apart from 𝜂 is, for a constant multiple, in the form of  

V=  𝜁 + 𝑚𝜂 

for some 𝑚 which depends on λ. 

Consider now a real boundary condition at d where 0< d< ∞: 

cosβ g(d) + sinβ p(d) g′(d) = 0,  (0≤β<π). 

𝑚 = -(cotβ 𝜁(𝑑, λ) + p(d) 𝜁′(d, λ) )/ (cotβ 𝜂 (d, λ) + p(b) 𝜂′ (d, λ)) 

when the solution V satisfies the boundary condition. Since 𝑚 = 𝑚(λ,d,β) and  𝜁′, 

𝜂′, 𝜁, 𝜂  are entire in λ, 𝑚 is meromorphic in λ and real for real λ.  

If z = cotβ and if (λ, β) are held fixed, then  

𝑚 =- (Pz + R) / (Sz +T) 

exists. 
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Here  P, R, S, T are fixed, z is varying over the real line and β is varying from 0 to π.       

The real axis of the z-plane has its image a circle 𝐶𝑑 in the 𝑚-plane. Therefore V 

meets the boundary condition if and only if  𝑚 lies on 𝐶𝑑. 

From  

z = - (R +T𝑚) / (P+S𝑚) 

the equation of the image of the real axis (i.e. Imz=0) becomes 

(R +T𝑚) / (P+S𝑚) =( �̅�+�̅��̅�) /(𝑃̅̅ ̅+𝑆̅�̅�) ⇔ 

(�̅�+𝑆̅�̅�)( R +T𝑚) –( P+𝑆𝑚)( �̅�+�̅��̅�)=0 

which is the equation for 𝐶𝑑: 

𝑚�̅�(𝑆̅𝑇-𝑆�̅�) +�̅�(𝑆̅𝑅-P�̅�)+ 𝑚(�̅�T-S�̅�)+ �̅�R-P�̅�= 0. 

𝑚�̅�+�̅�(𝑆̅𝑅- P�̅�/𝑆̅𝑇- 𝑆�̅�)+ 𝑚(�̅�T-S�̅�/𝑆̅𝑇-𝑆�̅�)+( �̅�R-P�̅�/(𝑆̅𝑇-𝑆�̅�) = 0. 

Hence the center of 𝐶𝑏 is 

𝑚𝑑=  (�̅�T-S𝑅 ̅)  / (𝑆̅𝑇-𝑆�̅�) 

and the radius is 

|𝑃𝑇 − 𝑅𝑆|/|𝑆̅𝑇 − 𝑆�̅�|. 

Because V=  𝜁 +𝑚𝜂 and W[V,�̅�] (d)= 0, the equation of 𝐶𝑑 is  

W[V,�̅�] (d)=  0. 

Since   

P�̅� −  𝑆̅𝑅= W[𝜁, �̅�](d), 

𝑆̅𝑇 - 𝑆�̅�=-W[𝜂, �̅�](𝑑), 

PT-RS=W[𝜁,𝜂](d)=1. 

𝑚𝑑 = - W[𝜁, �̅�](d)/ W[𝜂, �̅�](𝑑),     𝑟𝑑= 1/ W[𝜂, �̅�](𝑑) 

exist respectively.                       

It follows that the interior of 𝐶𝑑 in the 𝑚-plane is 

W[V,�̅�](b)/W[𝜂, �̅�](𝑑) < 0. 

A direct calculation, that is (3) gives  

W[𝜂, �̅�](𝑑) = 2iIm𝜆 ∫ |𝜂|2
𝑑

0
 dx 

and  

W[V,�̅�](b)= 2iIm𝜆 ∫ |𝑉|2
𝑑

0
𝑤(𝑥) dx +W[V,�̅�](0). 

Because  

W[V,�̅�](0)= -2iIm𝑚, 
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W[V,�̅�](d)= 2iIm𝜆 ∫ |𝐺|2
𝑑

0
𝑤(𝑥) dx-2iIm𝑚 

 exists. 

Substitution gives  

2iIm𝜆 ∫ |𝑉|2
𝑑

0
𝑤(𝑥) dx-2iIm𝑚 /2iIm𝜆 ∫ |𝜂|2

𝑑

0
𝑤(𝑥) dx < 0 

and  

∫ |𝑉|2𝑤(𝑥)
𝑑

0
dx< Im𝑚 / Im𝜆 

which determines the interior of 𝐶𝑑.                                

Points 𝑚 are on 𝐶𝑑 if and only if  

∫ |𝑉|2𝑤(𝑥)
𝑑

0
dx= Im𝑚 / Im 𝜆   (Im 𝜆 ≠ 0) 

The radius 𝑟𝑑 is given for Im 𝜆 > 0 by 

𝑟𝑑= 1/(2Im𝜆 ∫ |𝜓|2
𝑑

0
 w(x) dx). 

Now 0< 𝑐 < 𝑑 < ∞.  Then if 𝑚 is inside or on 𝐶𝑑 

∫ |𝑉|2
𝑐

0
𝑤(𝑥) dx < ∫ |𝑉|2

𝑑

0
 w(x) dx ≤ Im𝑚 / Im𝜆 

so 𝑚 is inside 𝐶𝑐.                                       

This leads to conclude that 𝐶𝑐 contains 𝐶𝑑 in its interior if c<d.  

 

As d→∞ the circles 𝐶𝑑 converge either to a circle 𝐶∞ or to a point 𝑚∞ for a given 𝜆. 

If the  𝐶𝑑 converge to a circle, then its radius 𝑟∞ = lim 𝑟𝑑 is positive and this implies 

that 𝜂 𝜖 𝐿𝑤
2 (0,∞). If 𝑚∞ is any point on 𝐶∞, then 𝑚∞ is inside any 𝐶𝑑 for d>0. 

Therefore  

∫ | 𝜁 + 𝑚∞𝜂 |
2𝑑

0
𝑤(𝑥) dx <Im𝑚∞/ Im𝜆. 

 

If  d→∞, 𝜁 + 𝑚∞𝜂 𝜖 𝐿𝑤
2 (0,∞). In the case 𝐶𝑑 → 𝐶∞ all solutions are of class 

𝐿𝑤
2 (0,∞) for Im𝜆 ≠ 0. This shows the limit-circle case with the existence of the 

circle 𝐶∞. Correspondingly the limit-point case is known with the existence of the 

point 𝑚∞. In the case 𝐶𝑑 → 𝑚∞, this leads to a lim𝑟𝑑= 0. This situation implies 

that 𝜂 is not of class 𝐿𝑤
2 (0,∞).                                                                                                                

□                                                                                          

 

 



51 

 

4.3 LEFT DEFINITE CASE 

 

Consider the homogeneous differential equation 

–(pg')' +qg = λwg  (17) 

where p, q and w are bigger than zero and they are measurable functions over (c,d),   

-∞ ≤c<d≤∞; 1/p is in 𝐿𝑙𝑜𝑐
1 (c,d); q and w satisfy ԑ1w≤ q≤ ԑ2w and are in 𝐿𝑙𝑜𝑐

1 (c,d) 

[29]. 

 

It is known that there are two linearly independent solutions of (17) for all values of 

the complex parameter λ. 

 

The problem will be investigated in two contexts. The Hilbert space is defined by 

𝐿𝑤
2 (c, d) = {f: (c,d) → C |  ∫ |𝑓(x)|2  

𝑑

𝑐
w(x) d𝑥 < ∞ } 

with inner product 

(𝑔, 𝑢)𝐿2 = ∫ 𝑔(𝑥) 𝑢(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑤(𝑥) 𝑑𝑥.
𝑑

𝑐
 

The Sobolev space is defined by 

𝐻1:= 𝐻1 (c,d;p,q) = {f: (c,d) → C | f 𝜖 𝐴𝐶𝑙𝑜𝑐 (𝑐, 𝑑);  𝑝
1/2 𝑓 ′ , 𝑞1/2𝑓 𝜖 𝐿2(c,d) } 

with inner product 

<  𝑔, 𝑢 >𝐻1 =∫ [𝑝𝑔′�̅�′  + 𝑞𝑔�̅�] 𝑑𝑥
𝑑

𝑐
 . 

Hence 

𝐻1 (c,d; p,q) ⊂ 𝐿2(𝑐, 𝑑; 𝑤) . 

The equation (17) when multiplied by �̅� and integrated from e to d', d'𝜖 (e,d) leads 

the following: 

∫ [−(𝑝𝑔′)′
𝑑′

𝑒
 +q𝑔] �̅� dx ≡ 𝜆 ∫ |𝑔|2

𝑑′

𝑒
 w dx. 

If one uses the method of integration by parts, one has the following Dirichlet 

formula   

∫ [𝑝|𝑔′|2
𝑑′

𝑒
 +q|𝑔|2] dx −(p𝑔′)�̅�  | 𝑒

𝑑′ =  𝜆 ∫ |𝑔|2
𝑑′

𝑒
 w dx  𝜖 𝐿𝑤

2  . 

Let 𝜁(𝑥, 𝜆) be the solution which fulfils the initial conditions at e in (c,d), 

𝜁(𝑑, 𝜆) = 𝑐𝑜𝑠𝛾,    p(d)𝜁′(𝑑, 𝜆) =  −𝑠𝑖𝑛 𝛾, 

for some fixed 𝛾, real.                               

Let 𝜂(x,𝜆) be the solution fulfilling 
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𝜂(e,𝜆) = sin𝛾,  p(e)𝜂' (e, 𝜆) = cos𝛾. 

It is obviously seen that 𝜁 and 𝜂 are linearly independent, that is, 

pW [𝜁, 𝜂]= p[𝜁𝜂′ −  𝜁′𝜂] ≡ 1 

and 𝜂 fulfils  

cos𝛾𝜂 (e,𝜆)- sin𝛾 p(e) 𝜂′(e,𝜆)= 0 

while 𝜁 fulfils  

sin𝛾𝜁(𝑒, 𝜆) + 𝑐𝑜𝑠𝛾p(e) 𝜁′(𝑐, 𝜆) = 0. 

These are two regular boundary conditions which are independent at e in (c,d). 

 

 

4.3.1 The Dirichlet formula and 𝑯𝟏 solutions 

 

The preliminary form of the Dirichlet formula is 

∫ [−(𝑝𝑔′)′
𝑑′

𝑒
 +q𝑔] �̅� dx ≡ 𝜆 ∫ |𝑔|2

𝑑′

𝑒
 w dx 

where d'𝜖 (e,d).                               

If one performs the integration by parts to the p term, it is found that 

∫ [𝑝|𝑔′|2
𝑑′

𝑒
 +q|𝑔|2] dx −(p′𝑔)�̅�  | 𝑒

𝑑′ =  𝜆 ∫ |𝑔|2
𝑑′

𝑒
 w dx. 

The term (p𝑔')�̅� is troublesome. It is suitable to let it zero at b'. Hence it is required 

that  

p(d’) 𝑔'(d’) = 0. 

If a general boundary condition at d' is imposed, 

cos𝛿𝑔(d') +sin𝛿 p(d') 𝑔'(d') = 0 

for some real 𝛿, then the solution of (17)  must be in the form 

𝜉(v,𝜆) = 𝜁(v,𝜆) + 𝑚(𝜆)𝜂(v,𝜆). 

Here 𝑚(𝜆) is determined by 

𝑚(𝜆)= -(cos𝛿𝜁 (d',𝜆) + sin𝛿 p(d') 𝜁′(d',𝜆)/ cos𝛿 𝜂(d',𝜆) + sin𝛿 p(d') 𝜂′(d',𝜆)) 

and tan𝛿  is determined by 

tan𝛿 = -( 𝜁(d',𝜆) + 𝑚(𝜆)𝜂(d',𝜆)) / (p(d') 𝜁′(d',𝜆) + 𝑚(𝜆) 𝜂′(d',𝜆)). 

It can be seen that as 𝛿 changes over real values from 0 to 𝜋, 𝑚(𝜆) shows  a circle in 

the complex plane. As d' approaches d, the circles approach a limit circle or a limit 

point. If  𝑚 is on the limit circle or point, then 𝜉 is in 𝐿𝑤
2 (c,d). 



53 

 

Because  

𝜉(e,𝜆)  = cos𝛾 + 𝑚(𝜆)sin𝛾, 

p(e) 𝜉 ′(e,𝜆) = - sin𝛾 + 𝑚(𝜆)cos𝛾, 

it is also true that 

𝜉̅(e, 𝜆) = cos𝛾 + 𝑚(𝜆)̅̅ ̅̅ ̅̅ ̅ sin𝛾, 

p(e) 𝜉 ′(e, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =- sin𝛾 + 𝑚(𝜆)̅̅ ̅̅ ̅̅ ̅ cos𝛾. 

Therefore 

p (e) 𝜉′(e,𝜆) 𝜉̅(e, 𝜆)=[|𝑚|2-1] sin𝛾 cos𝛾+ 𝑚cos2𝛾 -�̅�𝑠𝑖𝑛2𝛾. 

In addition to this, 

𝜉(d',𝜆) = K sin𝛿, 

p(d') 𝜉′(d',𝜆) = -K cos𝛿, 

and 

𝜉(d′, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =�̅� sin𝛿, 

p(d')  𝜉′(d′, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = -�̅� cos𝛿, 

so 

p(d') 𝜉′(d',𝜆) 𝜉̅ (d',𝜆) = -|𝐾|2 sin𝛿 cos𝛿, 

where 

|𝐾|2 = |𝜉(d′, 𝜆)|2 +|p(d′) 𝜉 ′(d′, 𝜆) |2. 

If 𝑔 is changed by 𝜉 in 

∫ [𝑝|𝑔′|2
𝑑′

𝑒
 +q|𝑔|2] dx −(p𝑔′)�̅�  | 𝑒

𝑑′ 

and boundary values  

𝜉̅(e, 𝜆) = cos𝛾 + 𝑚(𝜆)̅̅ ̅̅ ̅̅ ̅ sin𝛾 

p(e) 𝜉′(e, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =- sin𝛾 + 𝑚(𝜆)̅̅ ̅̅ ̅̅ ̅ cos𝛾 

𝜉(d′, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =�̅� sin𝛿 

p(d')  𝜉′(d′, 𝜆) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = -�̅� cos𝛿 

are inserted, the following is found:  

∫ [𝑝
𝑑′

𝑒
|𝜉′|2 +q|𝜉|2] dx + |𝐾|2 sin𝛿 cos𝛿 + [|𝑚|2-1] sin𝛾 cos𝛾 +𝑚cos2𝛾 -�̅�𝑠𝑖𝑛2𝛾 (18) 

=(𝜇 + iv) ∫ |𝜉|2
𝑑′

𝑒
𝑤 𝑑𝑥,        𝜆= 𝜇 + iz. 

The imaginary part of (18) is  

Im(𝑚) = v ∫ |𝜉|2
𝑑′

𝑒
𝑤 𝑑𝑥. 
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The real part of (18) is 

∫ [𝑝
𝑑′

𝑒
|𝜉′|2 +q|𝜉|2] dx + |𝐾|2 sin𝛿 cos𝛿= 

[1-|𝑚|2] sin𝛾 cos𝛾 –Re(𝑚) cos2𝛾 + Re(𝑚) 𝑠𝑖𝑛2𝛾 + 𝜇 Im(𝑚)/z. 

If d' approaches d, 𝑚 approaches the limit point or a point on the limit circle. 

Nonetheless, only if 𝛿 is in [0, 𝜋/2], it is seen that 𝜉 is in 𝐻1 (e,d; p,q), since 

otherwise the two terms on the left in the above formula become infinite. 

If  𝛿 is fixed at 𝜋/2 with 

𝑚(𝜆) = -𝜁' (d', 𝜆)/𝜂′(d', 𝜆), 

it is encountered that 

∫ [𝑝
𝑑′

𝑒
|𝜉′|2 +q|𝜉|2] dx = [1-|𝑚|2] sin𝛾 cos𝛾 –Re(𝑚) cos2𝛾 + Re(𝑚) 𝑠𝑖𝑛2𝛾 + 𝜇 

Im(𝑚)/z. 

If d' is fixed in the upper limit in the integral and suppose that all other d'’s approach 

d, the following is found: 

∫ [𝑝
𝑑′

𝑒
|𝜉′|2 +q|𝜉|2] dx ≤ [1-|𝑚|2] sin𝛾 cos𝛾 –Re(𝑚) cos2𝛾 + Re(𝑚) 𝑠𝑖𝑛2𝛾 + 𝜇 

Im(𝑚)/z. 

where, now, all of the 𝑚’s are on the limit point or limit circle. 

 

Therefore, one may pass to the following theorem. 

Theorem 4.3.1.1 [29]. For all 𝜆, Im(𝜆) ≠ 0, there takes place a solution 

𝜉𝑑(x,𝜆) = 𝜁 (x,𝜆) +𝑚𝑑(𝜆) 𝜂 (x,𝜆) 

of  (17)  which is in 𝐻1 (e,d; p,q), the Sobolev space with inner product 

<  𝑔, 𝑢 >𝐻1 =∫ [𝑝𝑔′�̅�′  + 𝑞𝑔�̅�] 𝑑𝑥
𝑑

𝑐
. 

 

Even if (17)  is in the limit circle case with two solutions in 𝐿𝑤
2 (e,d), there need not 

be more than one solution 𝜉𝑑(x,λ) in 𝐻1 (e,d;p,q). Even if the  𝐿𝑤
2 (e,d) theory is limit-

circle with two 𝐿𝑤
2 (e,d) solutions for (17), there is one solution 𝜉𝑑(x,λ) 

in 𝐻1 (e,d;p,q). 

 

Theorem 4.3.1.2 [29]. Let 𝜉𝑑 (x,λ) be the solution of (17)  in  𝐻1  (e,d; p,q) generated 

by approaching solutions 𝜉𝑑 ' (x,λ)  satisfying                         

p(d') 𝜉𝑑′'(d',λ)= 0. 
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Then  

lim
𝑥→𝑑 

𝑝(𝑥) 𝜉𝑑 '(x,λ)= 0. 

 

 

Proof [29].           p(d') 𝜉𝑑 '( d',λ)-p(d′) 𝜉𝑑′'(d',λ) = (𝑏𝑑 -𝑏𝑑′) p(d') 𝜁′ (d′,λ) 

exists. Now 

p(d') 𝜁′(d′,λ) = p (e) 𝜁′ (e,λ) + ∫ (p′𝜁′)′
𝑑′

𝑒
𝑑𝑥=                                                               

p(e) 𝜁′ (e,λ)+∫ [𝑞(𝑥) − 𝜆 𝑤(𝑥)]𝜁(𝑥, 𝜆)𝑑𝑥.
𝑑′

𝑒
 

Thus by the triangle inequality 

| p(d') 𝜁′ (d′,λ) | ≤ | p (e) 𝜁′ (e,λ) |+ K ∫ 𝑤
𝑑′

𝑒
 | 𝜁 | dx 

and by Cauchy-Schwartz inequality 

≤ | p (e) 𝜁′ (e,λ) |+ K[∫ 𝑤
𝑑′

𝑒
𝑑𝑥]1/2 [∫ 𝑤

𝑑′

𝑒
 |𝜁|2𝑑𝑥]1/2 

In the limit point case 

|𝑚d  − 𝑚d′| < 2/ |z| ∫ w
d′

e
 |𝜁|2dx. 

Thus 

|𝑚d  − 𝑚d′| |p(d′)𝜁′ (d′, λ) | ≤ (A + B[∫ w
d′

e
 |𝜁|2dx]1/2) / (∫ w

d′

e
 |𝜁|2 dx) 

which approaches 0 as d' approaches d. 

In the limit circle case one has 

|p(d′)𝜁′ (d′, λ) | < K. 

Since 

𝑚d′ → 𝑚d 

one obtains 

lim
d′→d

p(d′)𝜁′ (d′, λ) (𝑚d′ → 𝑚d) = 0.                                                                      

□ 

 

Theorem 4.3.1.3 [29]. Suppose that g and u are in  𝐻1 (e,d;p,q) and  

lim
𝑥→𝑑

p(x)𝑔′(x) = 0   

If 

 lim
𝑥→𝑑

p(x)𝑔′(x)u(𝑥)̅̅ ̅̅ ̅̅    
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exists, then 

lim
𝑥→𝑑

p(x)g′(x)u(𝑥)̅̅ ̅̅ ̅̅  = 0.   

 

Proof [29]. Keep in mind that 𝑝1/2𝑔' and 𝑝1/2u' are in 𝐿2(e,d). Let 

𝛼 = lim
𝑥→𝑑

p(x)𝑔′(x)u(𝑥),̅̅ ̅̅ ̅    

and let 𝛼 ≠ 0. Then near b, 

𝑝1/2𝑔' ~ 𝛼 / (𝑝1/2�̅�). 

However 𝑝1/2𝑔' is in 𝐿2(e,d), so it will be deduced that (𝑝1/2 �̅�)−1 is in 𝐿2(𝑒0,d), for 

some 𝑒0 in (e,d). 

Now 𝑝1/2u′ is in 𝐿2(e,d), so  

u'/u = (𝑝1/2u′) (𝑝1/2u)−1 

is in 𝐿1(𝑒0,d). However, then  

(ln |u|)′ = (Re u'�̅� ) / (uu̅) 

is in 𝐿1(𝑒0,d).  Thus lim
𝑥→𝑑

ln|u| exists and is finite. Hence u is bounded as x 

approaches d. This makes a contradiction, since u is bounded and  

lim
𝑥→𝑑

p(x)g′(x)  = 0.   

  implies 𝛼 = 0.                                                                             

                                                                                                                                      □                                                    

 

As a corollary the following can be stated:                                                                                                                                       

Theorem 4.3.1.4 [29]. Suppose that g and u be are  H1 (e,d;p,q), let p𝑔' be in ACloc 

(c,e), and 

limx→c p(x)g
′(x) = 0 

If 

limx→c p(x)g
′(x) u(x)̅̅ ̅̅ ̅̅  exists, 

then 

limx→c p(x)g
′(x) u(x)̅̅ ̅̅ ̅̅  = 0. 
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CHAPTER 5 

 

CONCLUSION AND DISCUSSION  

 

In this thesis, we have collected some results on regular and singular Sturm-Liouville 

equations and operators. As is known that real-world problems can be identified by 

second/fourth/… order Sturm-Liouville equations with appropriate boundary 

conditions. A useful method to get some information about the spectrum of such 

problems is to pass to the associated operators defined on suitable spaces. 

Positiveness condition of the function appearing at the right-hand side of the 

equation 

-(p(x)𝑔')' + q(x)𝑔 = 𝜆w(x)𝑔, x 𝜖 (c,d), 

gives rise the well-known Lebesgue space 𝐿𝑊
2  (c,d) with the usual inner product 

(𝑔,u) = ∫ 𝑔
𝑑

𝑐
u̅w d𝑥. 

On the other side, if one considers Lg instead of g in the inner product, where 

L𝑔 = [ -(p(x)𝑔')' + q(x)𝑔] / w(x) 

then a nice formula (9) arises as follows 

(L𝑔,u) = -p𝑔'u̅ |𝑐
𝑑 + ∫ 𝑝𝑔′

𝑑

𝑐
u̅′d𝑥 +∫ 𝑞𝑔

𝑑

𝑐
u̅ d𝑥. 

In the literature, some authors have tried to make the right-hand side of the equation 

an inner product. This aim now depends on p, q and the remaining part 

-p𝑔'u̅ |𝑐
𝑑 = -p(d) 𝑔'(d) u̅(d) + p(c) 𝑔'(c) u̅(c). 

Krall achieved to construct an inner product by choosing appropriate boundary 

conditions and p,q>0. Then he investigated some properties of the operators in this 

new inner product space. Moreover, the similar results have been obtained for the 

left-definite Hamiltonian systems. 

 

Another important problem in the literature is to determine the number of the linearly 

independent solutions of the equation  
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-(p(x)𝑔')' + q(x)𝑔= 𝜆w(x)𝑔, x 𝜖 [c,∞) 

belonging to the Lebesgue space 𝐿𝑤
2  (c,∞). This problem was solved by H. Weyl in 

1910. He showed that at least one of the linearly independent solutions must lie in  

𝐿𝑤
2  (c,∞). Furthermore, both of them may lie in 𝐿𝑤

2  (c,∞). These cases are known as 

limit-point and limit-circle cases, respectively. However, such a result has not been 

introduced for left-definite case until 1992. Krall and Race have showed that at least 

one solution must lie in the Sobolev space 𝐻1(c,∞;p,q) but there is not more 

information about the other linearly independent solution. 
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