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ABSTRACT 
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M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT 

 

May 2017, 60 pages 

 

 

 

Cooperative adaptive cruise control (CACC) is an advanced technology allowing 

vehicle following at a small inter-vehicle spacing. In its classical usage, CACC 

assumes that vehicles are arranged in the form of a vehicle string and follow each 

other at a velocity-dependent distance. Nonetheless, practical driving situations 

include the case of lane changes, where vehicles can join or leave a vehicle string. In 

such case, it is required that gaps for joining vehicles are provided or gaps after 

leaving vehicles are closed in order to ensure safe and efficient driving.  

This thesis is concerned with gap opening and closing maneuvers in vehicle strings. 

Introducing a suitable control architecture, gap opening and closing maneuvers can 

be realized by the generation of feedforward input signals. To this end, the first 

contribution of the thesis is the development of five methods for the computation and 

representation of gap opening and closing trajectories that fulfill additional safety 

and comfort constraints. The first method is based on the solution of an optimal 

control problem, the second method uses a polynomial trajectory and plant inversion, 

the third method concatenates three polynomials and uses nonlinear programming to 

determine the polynomial coefficients, the fourth method uses a high-order 

polynomial and the fifth method uses concatenated polynomials in order to 

approximate the optimal control solution. A simulation study shows that the fifth 



 v 

 

method is particularly useful in practical applications since it computes trajectories 

that approximate the optimal control solution in real-time. The second contribution 

of the thesis is the implementation of a vehicle model that realizes CACC and 

additional feedforward signals in the form of a Matlab S-function.  
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ÖZ 
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Kooperatif Otomatik Seyir Kontrolü (CACC), araçlar arasındaki dar boşlukta araç 

takibine izin veren gelişmiş bir teknolojidir. Klasik kullanımda CACC araçların bir 

araç dizisi halinde düzenlendiğini ve birbirini hıza bağlı bir mesafede takip ettiğini 

varsayar. Bununla birlikte pratik sürüş durumları araçların bir araç dizisine 

katılabildiği ve ayrılabildiği durumları da içerir. Böyle bir durumda boşlukların, 

katılacak araçlar için açılması veya araçlar ayrıldıktan sonra emniyetli ve etkili bir 

şekilde kapanması gerekmektedir. 

Bu tez araç dizilerindeki boşluk açma ve kapatma manevraları ile ilgilidir. Uygun bir 

kontrol mimarisinde, boşluk açma ve kapatma manevraları ileri besleme giriş 

sinyallerinin üretilmesi ile gerçekleşebilir. Bu amaca ulaşmak için, tezin ilk katkısı 

ek güvenlik ve konfor kısıtlamalarını karşılayan boşluk açma ve kapatma 

yörüngelerinin hesaplanması ve gösterimi için beş yöntem geliştirilmesidir. Birinci 

yöntem optimal kontrol probleminin çözümüne dayanır, ikinci yöntem bir polinom 

yörüngesi ve plant ters çevirmesi kullanır, üçüncü yöntem üç polinomu birbirine 

bağlar ve polinom katsayılarını belirlemek için doğrusal olmayan programlamayı 

kullanır, dördüncü yöntem yüksek dereceli bir polinom kullanır ve beşinci yöntem 

optimal kontrol çözümünü yakınsamak için birbirine bağlanmış polinomları kullanır. 

Beşinci yöntemin gerçek zamanlı olarak optimal kontrol çözümüne yaklaşan 

yörüngeleri hesaplaması nedeniyle pratik uygulamalarda özellikle kullanışlı 
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olduğunu gösteren bir simülasyon çalışması yapıldı. Tezin ikinci katkısı, CACC ve 

ilave ileri besleme sinyallerini bir Matlab S-fonksiyonu şeklinde gerçekleştiren bir 

araç modelinin uygulanmasıdır. 

 

 

 

Anahtar Kelimeler: Akıllı Ulaştırma Sistemleri, Kooperatif Otomatik Seyir 

Kontrolü, İleri beslemeli sinyal,  
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CHAPTER 1

INTRODUCTION

Intelligent Transport Systems (ITS) are developed with theaim of improving the traffic

infrastructure, driving safety and efficiency [1, 19, 20, 5]and addressing problems such

as traffic congestion, fuel consumption and air pollution [3, 4].

An important application of ITS is platooning, where vehicles follow each other in

the form of vehicle strings with a small inter-vehicle spacing. The most recent tech-

nology for the realization of platooning is cooperative adaptive cruise control (CACC)

[13, 6]. CACC is an extension of adaptive cruise control (ACC). Measuring the inter-

vehicle distance and relative velocity between vehicles byRADAR or LIDAR and

receiving data from the predecessor vehicles via vehicle tovehicle (V2V) communi-

cation, CACC allows controlling the throttle and brake to maintain a certain desired

distance.

CACC is applicable for vehicle following in vehicle strings, where vehicles are already

arranged at a desired distance. In contrast, practical driving situations require lane

change maneuvers, where vehicles join or leave a vehicle string. In order to maintain

driving safety, such maneuvers necessitate the opening (for a joining vehicle) or clos-

ing (after a leaving vehicle) of gaps in vehicle strings. A basic version of this problem

has been addressed for the first time in [10, 11]. The idea of the method is to define a

trajectory for the distance signal in the form of a polynomial and then use plant inver-

sion to determine the feedforward input signal. However, several disadvantages of that

method such as a long maneuver duration and the violation of velocity and acceleration

constraints can be identified.

The main aim of this thesis is the development of methods for computing trajec-

tories for gap opening and closing maneuvers. Hereby, the focus is on feedforward

input signals for fast maneuvers without violating the defined constraints. The first

method formulates and optimal control problem, whose solution provides the feedfor-

ward signal with the shortest possible maneuver while meeting all constraints. On the

downside, the computation times for finding the optimal control solution is not suitable

for a real-time implementation. A further method with threepiecewise polynomials

and velocity/acceleration constraints is formulated in the form of a nonlinear program.
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Its solution can be obtained faster than the optimal controlcomputation but is still

not suitable for a real-time implementation. In addition, alonger maneuver duration

has to be accepted for this method. To reduce the computationtime, an approxima-

tion/interpolation method has been developed. It computessuitable trajectories ap-

proximating the nonlinear programming solution for a grid of parameter values offline.

Then, trajectories for any parameter combination that is not on the grid can be obtained

by linear interpolation. It is shown that this method leads to very good approxima-

tions. In order to further reduce the maneuver duration, thesame interpolation method

is applied to polynomial approximations of the optimal control solution itself. As a

result, fast trajectories are obtained. Slight violationsof the acceleration constraints are

possible if the optimal control solution is approximated bya single polynomial. On

the contrary, an approximation by five concatenated polynomials proves very suitable

because it directly captures the shape of open/close gap trajectories.The quality of the

approximations is demonstrated by various simulation examples. In addition, the thesis

implements a simulation model of the vehicle with CACC and the feedforward signal

computation in the form of an S-function.

The thesis is organized as follows. Chapter 2 provides background information. In

Chapter 3, the developed methods for opening and closing gapsfor safe lane changes

are presented. Chapter 4 implements a simulation model of thevehicle with CACC and

feedfoward signal generation as an S-function and Chapter 5 gives conclusions.
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CHAPTER 2

BACKGROUND

This chapter gives the necessary background on vehicle following that is realized using

the technique of cooperative adaptive cruise control (CACC). Section 2.1 explains the

general concept of vehicle following and CACC, Section 2.2 explains the concept of

string stability and gives several simulation examples. The controller design for CACC

used in this report is described in Section 2.3.

2.1 CACC and Vehicle Following

CACC is developed for overcoming the shortcomings of adaptivecruise control (ACC)

[7, 12, 13, 8]. Measuring the inter-vehicle distance, ACC automatically controls the

throttle position and brake to maintain a certain desired distance to the predecessor

vehicle. CACC extends ACC by also using data that is transmittedfrom other vehicles

by vehicle-to-vehicle communication. That is, CACC is an emerging technology that

supports vehicle following at small inter-vehicle distances as shown in Fig. 1.

Figure 1: Vehicle string with CACC.

In this figure, the following parameters/variables are used:

• Li: Length of vehiclei,

• vi: Velocity of vehiclei,

• qi : Rear bumper position of vehiclei,

• di : Distance between vehiclei−1 and vehiclei.
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There are two ways to obtain sensor information for each vehicle:

• vehicle distance from sensor measurements such as RADAR OR LIDAR,

• sensor information from other vehicles (such as velocity oracceleration) via

vehicle-to-vehicle (V2V) communication.

In order to formulate an analytical model of CACC according to Fig. 1, the actual

distancedi between vehiclei and vehiclei−1 is evaluated as

di(t) = qi−1(t)−qi(t)−Li . (2.1)

In addition, the desired distancedi,r (also denoted as spacing policy) needs to be con-

sidered. In this thesis, we use the constant headway time policy which is mostly used

in the recent literature. It is given in the following equation.

di,r = r i +hvi. (2.2)

di,r describes the desired distance between vehiclei and vehiclei−1. r i is the distance

at standstill andhi shows the headway time. When the velocity is zero, the desired

distance isr i anddi,r increases proportionally withvi. Subtracting (2.2) from (2.1), the

spacing errorei(t) is computed as

ei(t) = di(t)−di,r(t) = (qi−1(t)−qi(t)−Li)− (r i +hvi(t)). (2.3)

2.2 String Stability

For safe and comfortable driving, it is required to ensure that errors and signal levels

decrease along a vehicle string as in Fig. 1. In other words, any changes of vehicle

i should not be amplified by the follower vehiclei+1 and other followers. In the

literature, the aforementioned condition is described as strict string stability. Consider

a linear system that is modeled by the transfer function

Γi(s) =
Ui(s)

Ui−1(s)
. (2.4)

Strict string stability can be ensured for all vehiclesi between the control inputsUi(s)

andUi−1(s) if

||Γi(s)||∞ ≤ 1. (2.5)

4



Here,Ui(s) represents the Laplace transform of the signalUi(t) and also|| • ||∞ repre-

sents theH∞-norm.

Figure 2: Vehicle string with 4 vehicles.

To give a better understanding of string stability, we prepared an example scenario

with 4 vehicles. The leader vehicle (vehicle 1 in dark-blue color) accelerates from 0 to

2 m/sec2 within about 5 sec and then decelerates -2 m/sec2 within approximately 5 sec

as is shown in the acceleration plot (right-hand plot) of Fig. 3. The follower vehicles

(green, red and blue colors) show a reduced acceleration anddeceleration. The velocity

plot (center plot) shows an analogous result for the vehiclevelocity. In addition, it can

be seen that the desired safe distance between the vehicles is maintained by looking at

the position plot (left-hand plot).
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Figure 3: Vehicle string with 4 vehicles and CACC design that realize strict string
stability, a) Position b) Velocity c) Acceleration.

Fig. 4 zooms in on the relevant part of the plots in Fig. 3 in order to clarify better

the signal attenuation of a strictly string stable vehicle string.
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Figure 4: Zoom of Figure 2.3, Velocity and Acceleration plots.

In contrast, the same vehicle string in Fig. 2 is simulated for the case where strict

string stability is violated in Fig. 5. Here, the acceleration plot (right-hand plot) and

velocity plot (center plot) suggest and increase in the signal amplitude. Again, Fig. 6

with the additional zoom clarifies the violation of strict string stability.
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Figure 5: Vehicle string with 4 vehicles and CACC design that realize notstrict string
stability, a) Position b) Velocity c) Acceleration.
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2.3 Controller Design for CACC and Simulations

In the literature, systems are mostly designed for homogeneous strings, that is, all ve-

hicles have the same dynamic features. In the most recent studies the spacing policy in

(2.2) is used and the vehicle plant is modeled by the transferfunction

Gi(s) =
e−φi s

(1+sτi)s2 =
Qi(s)
Ui(s)

. (2.6)

φi is a possible plant delay andτi is the time constant of the low level drive line dy-

namics. The first integration obtains the vehicle velocity from the acceleration and the

second integration obtains the vehicle position from the velocity.

Then, CACC is realized in the following block diagram in Fig. 7.For vehiclei−1,

Figure 7: Block diagram of CACC.

the input signalui−1 is transmitted to vehiclei via V2V communication andD = e−θ s

shows a possible communication delay.H = 1+hs is used to implement the spacing

policy in (2.2) with headwayh. K is the controller transfer matrix and it can be written

as below.

K =
[

K f f K f b

]

. (2.7)

• K f f is a feedforward filter for data input transmitted by the preceding vehicle,

• K f b is also a feedback control transfer function in order to control spacing error

ei based on measurement distancedi between the current and desired distance.

For homogeneous vehicles,τi = τi−1 value is provided for every vehiclei and we can

write G(s) = Gi(s). Then, the transfer functionΓi(s) in (2.4) can be written as

Γ(s) =
DK f f +GKf b

H (1+GKf b)
. (2.8)

8



Therefore, according to (2.5),K has to be designed such that

||Γ(s)||∞ ≤ 1. (2.9)

There are different designs in the literature that achieve this task. The work in this

report is based on the controller design in [8].
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CHAPTER 3

OPENING AND CLOSING GAPS FOR SAFE LANE CHANGES

This chapter describes different methods for opening and closing a gap for safe lane

changes within a vehicle string. Section 3.1 shows the basicmaneuvers and small

examples for opening and closing a gap. Section 3.2 outlinesthe requirements and

important parameters, Section 3.3 to 3.7 explain differenttypes of feedforward control

computations.

3.1 Basic Maneuvers

We first describe the basic scenario of a lane change and explain the requirement of

opening/closing gaps. Consider the example in Fig. 8 with four vehicles, a target lane

and a current lane. Vehicles 1, 2, 3 travel on the target lane and the colored vehicle

travels on the current lane before the lane change in Fig. 8 (a). In order to join the

colored vehicle to the string, a gap needs to be opened between vehicle 1 and 2 in Fig.

8 (b). After the lane change, all 4 vehicles travel on the target lane and follow each

other using CACC in Fig. 8 (c).

Figure 8: Opening gap or adding vehicle in the string.

A similar procedure is needed when a vehicle leaves a string.For example, when

the colored vehicle leaves the vehicle string, a large gap iscreated between vehicle 1

and 2 in Fig. 9 (b). This gap needs to be closed to obtain the original desired distance

according to (2.2) when using CACC in Fig. 9 (c). The idea of thiswork is to apply

additional feedforward input signals for opening or closing a gap between vehiclei and

its preceding vehiclei−1. To this end, we use the control architecture in Figure 10.

The figure shows three consecutive vehiclesi − 1, i, i + 1. Vehicle i implements the

desired maneuver. First, it holds that the feedback controlarchitecture is not changed

compared to the architecture in Section 2.3. The controllerKi =
[

Kff ,i Kfb,i

]

consists

10



Figure 9: Closing gaps or leaving vehicle in the string.

Figure 10: Block diagram for extended CACC by input signaluff
i and desired distance

∆qi for opening and closing a gap

of the feedforward controllerKff ,i that receives signal data from the predecessor vehicle

i − 1 and the feedback controllerKfb,i controls the distance errorei. In addition, the

control architecture in Figure 10 has an exogenous input signal uff
i that can be used to

perform arbitrary maneuvers of vehiclei. There is an additional path with the transfer

functionHi ·Gi betweenuff
i andei. This path ensures that the reference signal is adjusted

whenuff
i is applied. Without this path, the feedback controllerKfb,i will consideruff

i as a

disturbance and hence try to reject the signal instead of enabling the desired maneuver.

In this thesis, we use the state space model below to model vehicle i in the block

diagram for the case of PD control and direct input signal feedforward. That is,Kfb,i =

Kp+Kd s andKff ,i = 1 [15].

q̇i = vi . (3.1)

v̇i = ai . (3.2)

ȧi =
−1
τ

·ai +
1
τ
·ui . (3.3)

u̇i =
−1
h

·ui +
1
h
· (Kp · (qi−1−qi,FF −qi −h·vi −Li − r i)+ (3.4)

(Kd · (vi−1−vi,FF −vi)+(ui−1+ui,FF +h· u̇i,FF)).

The control architecture in Figure 10 has not been used in theliterature before. In

the existing literature, changes in the inter-vehicle distance of a vehiclei are usually

realized as reference signal steps with a very bad effect on the following vehicles [9].

The proposed architecture has two additional advantages. First, the control method for

11



vehicle following is not changed compared to Section 2.3. That is, the controller design

method in Section 2.3 for vehicle following is still suitable. Second, the application

of uff
i only affects the vehicle plantGi but not the feedback control loop. That is,

the additional vehicle maneuvers can be designed independent of the control loop for

vehicle following.

In order to show position, velocity and acceleration plots when a gap is opened,

we prepared a scenario with four vehicles. Positions, velocity and acceleration of the

vehicles are plotted in Fig. 11. We used 10 seconds for the time duration of opening

a gap. The leader vehicle travels at a constant velocity of 20m/s. After applying the

feedforward input signal to the colored vehicle, a gap is opened between the times 8 sec

and 18 sec. After the determined time, vehicle 3 follows the colored vehicle by means

of CACC.
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Figure 11: Plots of opening a gap by the dyed vehicle in a string that has four vehicles,
a) Position b) Velocity c) Acceleration.

In order to show a close gap maneuver, we consider a scenario with 3 vehicles. Posi-

tions, velocity and acceleration graphs of the vehicles areplotted in Fig. 12. We also

selected time duration of 10 sec for closing a gap. The leadervehicle moves at 20 m/sec

12



as before. The gap is closed between 8 and 18 sec.
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3.2 Requirements and Parameters

The maneuvers for opening/closing gaps of a vehiclei are maneuvers that are carried

out in addition to following the predecessor vehiclei − 1. That is, they constitute a

difference to the trajectory of vehiclei − 1. We write∆qi(t), ∆vi(t), ∆ai(t) for the

position difference, velocity difference, acceleration difference, respectively. These

difference signals depend on several parameters. First, weconsider what happens after

completion of a maneuver, whereby we assume that the maneuver starts at timet = 0

and its duration is denoted asT. At time T, it is desired that vehiclei follows vehicle

i−1 at a certain distance difference∆qat the same velocity and at the same acceleration.

That is we want that

∆qi(T) = ∆q (3.5)

∆vi(T) = ∆q̇i(t) = 0 (3.6)

∆ai(T) = ∆q̈i(t) = 0 (3.7)

Looking at timet = 0, the position difference starts from zero, whereas there might be

a velocity difference to the predecessor vehiclei −1 denotes asVi. Finally, we assume

that maneuvers are carried out as long vehicles do not accelerate. In summary, this

leads to the following constraints.

∆qi(0) = 0 (3.8)

∆vi(0) = ∆q̇i(0) =Vi (3.9)

∆ai(0) = ∆q̈i(0) = 0. (3.10)

That is, the free parameters for designing additional maneuvers are the desired gap dis-

tance∆q and the initial velocity differenceVi. The parameters of an example maneuver

are discussed in Fig. 13. Here, a trajectory is determined for ∆q= 64 andVi = 0 and

T = 10 sec. The figure both shows the position trajectory and the related input signal

uff
i .

The main subject of this thesis is the computation of suitable trajectories for real-

izing open/close gap maneuvers. Such trajectories should fulfill several properties as

follows.

• The distance between vehiclei and vehiclei−1 is changed to a pre-defined value

∆q as identified above,

• A potential initial velocity differenceVi of the vehicles is respected and the final
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Figure 13: An example of polynomial trajectories for∆qi anduff
i .

velocity difference of the vehicles is zero,

• Accelerations/decelerations of vehiclei should be tolerable for human passen-

gers. That is, the acceleration should remain between a lower boundamin and

an upper boundamax. Suitable bounds identified from the literature are about

amax = 2 m/s2 for the maximum acceleration andamin = −2 m/s2 for the mini-

mum acceleration [16, 17, 18],

• The velocity difference of vehiclei should remain between a minimum velocity

vmin and should not exceed a maximum velocityvmax,

• The maneuver should be completed in the shortest possible time.

In the following sections, we develop five methods for the trajectory computation that

attempt to fulfill the above items.
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3.3 Trajectory Computation using Optimal Control

Firstly, we formulate and optimal control problem that addresses the items in Section

3.2. We want to determine

min
∫ T

0
1dt (3.11)

subject to the dynamic constraints

q̇i = vi (3.12)

v̇i = ai (3.13)

ȧi =
−1
τ

·ai +
1
τ
·ui (3.14)

initial conditions

qi(0) = 0, vi(0) =Vi, ai(0) = 0 (3.15)

terminal conditions

qi(T) = ∆q, vi(T) = 0, ai(T) = 0 (3.16)

additional constraints

vmin ≤ vi(t)≤ vmax (3.17)

amin ≤ ai(t)≤ amax (3.18)

The formulated problem is an optimal control problem with linear dynamics and state

constraints. It tries to minimize the completion time of themaneuver, while meeting the

specified initial and final conditions as well as the velocityand acceleration constraints.

We use the ”PROPT solver” that is part of the Tomlab library [14] for the solution of

this optimal control problem.

In order to demonstrate the computation of optimal trajectories for open gap ma-

neuvers, we select different parameter values for the final position difference∆q and

the initial velocityVi. Recall, the values of the initial positionqi(0) = 0, the initial

accelerationai(0) = 0, the final velocityvi(T) = 0 and the final accelerationai(T) = 0.

We further usevmin =−10 m/s,vmax= 10 m/s,amin =−2 m/s2 andamax= 2 m/s2.

In the first experiment, we choose∆q= 40 andVi = −5. The result of the optimal
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control computation is shown in Fig. 14. Second, Fig. 15 gives the result for∆q= 60
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Figure 14: Optimal Control’s results with∆qi = 40, Vi = −5 a) Desired distance b)
Input signal c) Velocity d) Acceleration.

andVi =−5.
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Figure 15: Optimal Control’s results with∆qi = 60, Vi = −5 a) Desired distance b)
Input signal c) Velocity d) Acceleration.

Next, Fig. 16 uses the parameters∆q= 40 andVi = −8. Finally, we use∆q= 60

andVi = 3 in Fig. 17.
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Figure 16: Optimal Control’s results with∆qi = 40, Vi = −8 a) Desired distance b)
Input signal c) Velocity d) Acceleration.

We next describe several observations from the optimal control results.

First, looking at Fig. 14, 15 and 16, it holds that the position difference first becomes

negative before reaching the desired positive value. This effect is caused by the fact that

the initial velocity is negative. That is the position difference first decreases until the

velocity reaches positive values. This is different in Fig.17, where the initial velocity

is positive.

Second, we compare Fig. 14 and 15. Here, the initial velocities are the same but the

desired distance is different. It can be seen that increasing the desired distance leads

to a longer duration of the maneuver. In this case, it can alsobe seen that the velocity

limit is reached in Fig. 15.

Third, we compare Fig. 14 and 16 with the same desired distance but a different

initial velocity. Since the initial velocity is smaller in Fig. 16 the maneuver duration is

longer.

Finally we compare Fig. 15 and 17. Here, the increased initial velocity in Fig. 17

leads to a shorter maneuver.

In summary, the optimal control formulation is suitable fordetermining additional

input signals for open gap maneuvers. Hereby, all constraints are met since they are

included in the formulation. We note that the same formulation can be used for closing

gaps. In this case, it is only required to choose∆q negative. Unfortunately, there is one

important shortcoming of this approach. The execution timefor evaluating the optimal

control problem is too large for a real-time implementation, which would be required

when using the additional input signals in a practical application. For example, the

execution time for the experiment with∆q= 40 m andVi =−5 m/s is about 11 sec on a
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Figure 17: Optimal Control’s results with∆qi = 60,Vi = 3 a) Desired distance b) Input
signal c) Velocity d) Acceleration.

laptop computer with the features below. Because of this reason, the following sections

provide different methods for computing/representing input signal trajectories that can

be evaluated in shorter time.

• Processor: Intel(R) Core(TM) 2 Duo CPU E750 @ 2.93GHz,

• Installed memory (RAM): 8.00 GB,

• System type: 64 bit Operating System,

3.4 Trajectory Computation using 1 Polynomial

A method for computing vehicle trajectories was proposed inthe Master thesis [10].

The advantages/disadvantages of this method are also examined in this thesis. The

idea of the method is to define a trajectory for the distance signal∆q in the form of a

polynomial and then use plant inversion to determine the feedforward inputuff
i .

The plant model is

G(s) =
∆Q(s)
U(s)

=
1

(1+ τ s)s2 (3.19)

and the desired distance signal is

∆q(t) =







0 for t < 0

f (t) for 0≤ t ≤ T

∆q otherwise.

19



Hereby, the polynomial

f (t) = v0+v1 t +v2 t2+ ...+vl t
l (3.20)

models the transition from the initial distance 0 to the finaldistance∆q. Respecting

the additional conditions on the initial and final velocity and acceleration, a polynomial

with degreel = 7 has to be chosen. Then, the polynomial coefficients are obtained from

the conditions

f (0) = 0 and f (T) = ∆q. (3.21)

ḟ (0) =Vi and ḟ (T) = 0 (3.22)

f i(0) = 0 and f i(T) = 0 for i = 2,3. (3.23)

That is, using

y(t) = v0+v1 t +v2 t2+v3 t3+v4 t4+v5 t5+v6 t6+v7 t7
. (3.24)

dy(t)
dt

= v1+2v2 t +3v3 t2+4v4 t3+5v5 t4+6v6 t5+7v7 t6
. (3.25)

d2y(t)
dt2

= 2v2+6v3 t +12v4 t2+20v5 t3+30v6 t4+42v7 t5
. (3.26)

dy3(t)
dt3

= 6v3+24v4 t +60v5 t2+120v6 t3+210v7 t4
. (3.27)

the following equations for the polynomial coefficients areobtained.

y(0) = v0 = y0, (3.28)

y(T) = v0+v1T +v2T2+v3T3+v4T4+v5T5+v6T6+v7T7 = yf (3.29)

ẏ(0) = v1 = 0, (3.30)

ẏ(T) = v1+2v2T +3v3T2+4v4T3+5v5T4+6v6T5+7v7T6 = 0 (3.31)

d2y(0)
dt2

= v2 = 0 (3.32)

dy2(T)
dt2

= 2v2+6v3T +12v4T2+20v5T3+30v6T4+42v7T5 = 0 (3.33)

dy3(0)
dt3

= v3 = 0, (3.34)

d3y(T)
dt3

= 6v3+24v4T +60v5T2+120v6T3+210v7T4 = 0 (3.35)
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Using the vector of unknown parameters

v=
[

v0 v1 v2 v3 v4 v5 v6 v7,

]T
(3.36)

the polynomial coefficients follow from the solution of the linear equationAv= b with

A=




















1 0 0 0 0 0 0 0

1 T T2 T3 T4 T5 T6 T7

0 1 0 0 0 0 0 0

0 1 2T 3T2 4T3 5T4 6T5 7T6

0 0 2 0 0 0 0 0

0 1 2 6T 12T2 20T3 30T4 42T5

0 0 0 6 0 0 0 0

0 1 2 6 24T 60T2 120T3 210T4




















(3.37)

and the vector b

b=




















0

∆q

Vi

0

0

0

0

0




















(3.38)

That is,

v= A−1 ·b. (3.39)

Computing a solution with the symbolic toolbox of Matlab, thepolynomial coefficients

21



are determined as

v0 = 0

v1 =Vi

v2 = 0

v3 = 0

v4 =
35∆q

T4 −
Vi (−T2+15T +120)

6T3

v5 =
Vi (−T2+14T +90)

2T4 −
84∆q

T5

v6 =
70∆q

T6 −
Vi (−T2+13T +72)

2T5

v7 =
Vi (−T2+12T +60)

6T6 −
20∆q

T7

That is, the polynomialf (t) can be evaluated analytically for all combinations ofT, ∆q

andVi. In addition, it is possible to determine the input signaluff
i by plant inversion. It

holds that

U(s) = (τ s3+s2)∆Q(s)⇒ u(t) = τ ·
d3∆q(t)

dt3
+

d2∆q(t)
dt2

. (3.40)

Hence,

u(t) =







0 for t < 0

τ ·
d3 f (t)

dt3
+

d2 f (t)
dt2

for 0≤ t ≤ T

0 otherwise

(3.41)

Accordingly,u(t) can also be represented by a polynomial for all values ofT, ∆q and

Vi.

In order to evaluate the generation of the additional input signal as described in this

section, we use the same combinations of∆q andVi as in Section 3.3. The resulting

trajectories are shown in Fig. 18 to 21. Hereby,T = 15 sec was chosen for all examples

as the maximum time duration observed in the experiments in Section 3.3.

In comparison, we make the following observations. In Fig. 18 and 20, it can be

seen that increasing the distance∆q leads to high acceleration values. Similarly, look-

ing at Fig. 18 and 20, high acceleration values are needed when decreasing the initial

velocity, while keepingT and∆q the same. Conversely, smaller acceleration values are

required if the initial velocity is increased as can be verified in Fig. 18 and 21.

The main advantage of using the trajectory generation method in this section is its easy

22



0 5 10 15
−20

0

20

40

time [sec]

∆ 
q

i [m
]

a)

 

 
Deltaq=40

0 5 10 15
−4

−2

0

2

4

time [s]

u
iff
 [m

]

b)

0 5 10 15
−5

0

5

10

time [sec]

ve
lo

ci
ty

 [m
/s

]
c)

 

 
Vi=−5

0 5 10 15
−4

−2

0

2

4

time [sec]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

d)

Figure 18: Results for single polynomial with∆qi = 40,Vi = −5 a) Desired distance
b) Input signal c) Velocity d) Acceleration.

computation. Since all polynomial coefficients are analytically available, they can be

computed in very short time for all combinations ofT, ∆q andVi. On the downside,

the suggested polynomial does not approximate the optimal control solution well. As

can be seen from all experiments, comparably large acceleration and velocity values

are needed, violating the respective constraints. This is true even if larger values ofT

are selected compared to Section 3.3. The methods in the subsequent section attempt

to address this problem.
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Figure 19: Results for single polynomial with∆qi = 60,Vi = −5 a) Desired distance
b) Input signal c) Velocity d) Acceleration.
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Figure 20: Results for single polynomial with∆qi = 40,Vi = −8 a) Desired distance
b) Input signal c) Velocity d) Acceleration.

3.5 Trajectory Computation with 3 Polynomials Using Nonlinear Optimization

It was concluded from Section 3.4 that the usage of a single polynomial with degree

7 leads to considerable violations of the velocity and acceleration limitations. In the

suggested method, we propose to concatenate three polynomials of degree 4 and to

formulate a nonlinear optimization problem whose solutionmeets all constraints.

3.5.1 Trajectory Computation

To this end, we divide the time interval[0,T] for the maneuver into three parts and use

a trajectory∆q(t) as follows.

∆q(t) =







p1(t) for 0≤ t ≤ t1

p2(t) for t1 ≤ t ≤ t2

p3(t) otherwise

p1(t) = v0+v1 t +v2 t2+v3 t3+v4 t4
, (3.42)

p2(t) = w0+w1 t +w2 t2+w3 t3+w4 t4
, (3.43)

p3(t) = z0+z1 t +z2 t2+z3 t3+z4 t4
. (3.44)
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Figure 21: Results for single polynomial with∆qi = 60,Vi = 3 a) Desired distance b)
Input signal c) Velocity d) Acceleration.

Then, we list the constraints for the coefficients that arisefrom the conditions at time 0

and timeT as well as the constraints at the intermediate timest1 andt2. At time t = 0,

it must hold that

p1(0) = v0 = 0, (3.45)

d p1(0)
d t

= v1 =Vi, (3.46)

d2 p1(0)
d t2

= 2v2 = 0. (3.47)

At t = t1, it must hold that

p2(t1) = w0+w1 t1+w2 t2
1 +w3 t3

1 +w4 t4
1 = p1(t1)

= v0+v1 t1+v2 t2
1 +v3 t3

1 +v4 t4
1, (3.48)

d p2(t1)
d t

= w1+2w2 t1+3w3 t2
1 +4w4 t3

1

=
d p1(t1)

d t
= v1+2v2 t1+3v3 t2

1 +4v4 t3
1 (3.49)

d2 p2(t1)
d t2

= 2w2+6w3 t1+12w4 t2
1 =

d2 p1(t1)
d t2

= 2v2+6v3 t1+12v4 t2
1. (3.50)
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At t = t2, it must hold that

p3(t2) = z0+z1 t2+z2 t2
2 +z3 t3

2 +z4 t4
2 = p2(t2)

= w0+w1 t2+w2 t2
2 +w3 t3

2 +w4 t4
2, (3.51)

d p3(t2)
d t

= z1+2z2 t2+3z3 t2
2 +4z4 t3

2

=
d p2(t2)

d t
= w1+2w2 t2+3w3 t2

2 +4w4 t3
2 (3.52)

d2 p3(t2)
d t2

= 2z2+6z3 t2+12z4 t2
2 =

d2 p2(t2)
d t2

= 2w2+6w3 t2+12w4 t2
2. (3.53)

Finally, it must hold att = T that

p3(T) = z0+z1T +z2T2+z3T3+z4T4 = ∆q, (3.54)

d p3(T)
d t

= z1+2z2T +3z3T2+4z4T3 = 0, (3.55)

d2 p3(T)
d t2

= 2z2+6z3T +12z4T2 = 0. (3.56)

Using (3.42) to (3.56), linear constraints in the form

Ax= b

with the parameter vector

x=
[

v0 v1 v2 v3 v4 w0 w1 w2 w3 w4 z0 z1 z2 z3 z4

]T
. (3.57)

can be formulated. Since the matrixA is large, we write it in two parts as follows.

A=

[

A1

A2

]

with

A1 =















1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

1 t1 t2
1 t3

1 t4
1 −1 −t1 −t2

1 −t3
1 −t4

1 0 0 0 0 0

0 1 2t1 3t2
1 4t3

1 0 −1 −2t1 −3t2
1 −4t3

1 0 0 0 0 0

0 0 2 6t1 12t2
1 0 0 −2 −6t1 −12t2

1 0 0 0 0 0















.

(3.58)
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A2 =















0 0 0 0 0 1 t2 t2
2 t3

2 t4
2 −1 −t2 −t2

2 −t3
2 −t4

2

0 0 0 0 0 0 1 2t2 3t2
2 4t3

2 0 1 −2t2 −3t2
2 −4t3

2

0 0 0 0 0 0 0 2 6t2 12t2
2 0 0 −2 −6t2 −12t2

2

0 0 0 0 0 0 0 0 0 0 1 T T2 T3 T4

0 0 0 0 0 0 0 0 0 0 0 1 2T 3T2 4T3

0 0 0 0 0 0 0 0 0 0 0 0 2 6T 12T2















.

(3.59)

In addition, we get

b=
[

0 Vi 0 0 0 0 0 0 0 ∆q 0 0
]T

. (3.60)

Finally, it is possible to formulate the velocity and acceleration constraints as nonlinear

constraints. For the velocity, consider for polynomialp1(t) that

ṗi(t) = v1+2v2 t +3v3 t2+4v4 t3

p̈1(t) = 2v2+6v3 t +12v4t
2

...
p1(t) = 6v3+24v4 t

Evaluating ¨p1(t) = 0 gives the solutions

tv
1,2 =−

3v3±
√

9v2
3−24v2v4

12v4
.

That is, ṗ1(t) has a maximum or minimum attv
1,2. Accordingly, we formulate the

nonlinear constraint

vmin ≤ ṗ1(t
v
1,2)≤ vmax. (3.61)

Similarly, we compute for
...
p1(t) = 0 that

ta =−
v3

4v4
.

That is,p̈1(t) has a maximum or minimum atta and we add the constraint

amin ≤ p̈1(t
a)≤ amax. (3.62)

The same constraints are added for the polynomialsp2(t) andp3(t).

27



Then, we want to solve the nonlinear optimization problem

min{x2} (3.63)

subject to the constraints

Ax= b (3.64)

vmin ≤ ṗ1(t
v
1,2)≤ vmax (3.65)

amin ≤ p̈1(t
a)≤ amax (3.66)

vmin ≤ ṗ2(t
v
1,2)≤ vmax (3.67)

amin ≤ p̈21(ta)≤ amax (3.68)

vmin ≤ ṗ3(t
v
1,2)≤ vmax (3.69)

amin ≤ p̈3(t
a)≤ amax. (3.70)

This optimization problem can be solved using thefmincon solver of Matlab. We

next evaluate the same examples as in Section 3.3. Hereby, werepresent the different

trajectories by different colors as follows.

• Blue trajectories describeq1 at times between 0 and determinedt1,

• Green trajectories describeq2 at times betweent1 and determinedt2,

• Red trajectories describeq3 at times betweent2 and determinedt3.

The resulting plots for the four example scenarios are givenbelow. Again, we choose

T = 15.
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Figure 22: Optimal control’s results with 3 polynomial at∆qi = 40 andVi = −5. a)
Desired distance b) Input signal c) Velocity d) Acceleration.
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Figure 23: Optimal control’s results with 3 polynomial at∆qi = 60 andVi = −5. a)
Desired distance b) Input signal c) Velocity d) Acceleration.

In all example cases, an optimal solution was found and a trajectory that fulfills the

given constraints could be obtained. Hereby, the trajectories in Fig. 22 and 23 reach

the acceleration limit. Differently, the trajectory in Fig. 24 does not reach the lower

acceleration limit. The reason is that this trajectory already starts with a lower velocity

such that less deceleration is needed to open the desired gap. Finally, the trajectory in

Fig. 25 does not reach the upper acceleration limit because the trajectory already starts

with a larger velocity.

In summary, the proposed method with 3 polynomials is suitable for computing tra-

jectories that meet the velocity and acceleration limits. On the one hand, the maneuver
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Figure 24: Optimal control’s results with 3 polynomial at∆qi = 40 andVi = −8. a)
Desired distance b) Input signal c) Velocity d) Acceleration.

time T has to be selected larger than the maneuver time for the optimal control solu-

tion in Section 3.3. On the other hand, the computation time for solving the nonlinear

optimization problem is in the order of 1 sec and hence smaller than that of the optimal

control problem. Nevertheless, it is still too large for a real-time implementation.

3.5.2 Parametrization of the Solution

Because of the large computation time when using optimization, we suggest to deter-

mine the solutionx of the nonlinear optimization problem offline for a grid of parameter

combinations of∆q andVi. Then, we determine an interpolation of the found parame-

ters in order to cover the whole relevant range of parameter combinations.

We consider a range of∆q ∈ [20,60] and a range ofVi ∈ [−10,10] for our eval-

uation. Then, we determine the solutionx∆q,Vi for combinations of∆q = 20+qgrid j,

j = 0, . . . ,kq andVi = −10+ vgridk, k = 0, . . . ,kv as grid points. Here,qgrid andvgrid

determine the granularity of the grid andkq andkv determine the number of grid points

in the direction of∆q andVi, respectively. That is, for each entryx(l) of the solution

vectorx, we obtain the entriesx∆q,Vi for all combinations(∆q,Vi).

In order to compute the coefficient vectorx for a given combination(∆q,Vi) that

does not belong to the computed grid, we first determine the neighboring grid points

∆ql < ∆q< ∆qu andV l
i <Vi <Vu

i . Using the grid points(∆ql ,V l
i ), (∆qu,V l

i ), (∆ql ,Vu
i )

and(∆qu,Vu
i ) and the corresponding valuesx(∆ql ,V l

i )
, x(∆qu,V l

i )
, x(∆ql ,Vu

i )
andx(∆qu,Vu

i )
, we

compute a two-dimensional linear interpolation polynomial pl (a,b) = p0,0
l + p1,0

l a+

p0,1
l b in order to representx∆q,Vi(l) in the whole range of[∆ql,∆qu]× [V l

i ,V
u
i ]. Hereby,
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Figure 25: Optimal control’s results with 3 polynomial at∆qi = 60 andVi = 3. a)
Desired distance b) Input signal c) Velocity d) Acceleration.

we assume that the coefficient values change smoothly between the computed values.

Examples forx(4) = v3 andx= w2 are shown in Fig. 26.
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Figure 26: x∆q,Vi(4) = v3 andx∆q,Vi(8) = w2 for the specified values of∆q andVi.

Then, usingpl (a,b), each coefficientx(l) for a given combination of∆q andVi can

be evaluated aspl (∆q,Vi). That is, storingpl for l = 1, . . . ,15 in the form of a look-

up table allows a very fast computation of an approximation of the trajectory for each

value of∆q andVi.

In order to illustrate this computation, we determine trajectories for values of∆q

andVi that are between the computed supporting points. In the example, we use∆q=

24.3 m andVi = −2.7 m/s,qgrid = 0.5 m andvgrid = 0.5 m/s. That is, the neighboring
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grid points are

(∆ql
,V l

i ) = (24.0,−3.0), (∆qu
,V l

i ) = (24.5,−3.0),

(∆ql
,Vu

i ) = (24,0,−2.5), (∆qu
,Vu

i ) = (24.5,−2.5).

For example, inspecting the coefficientx(5) = v4, the corresponding values

x(24.0,−3.0)(5) =−0.0223, x(24.5,−3.0)(5) =−0.0221,

x(24,0,−2.5)(5) =−0.0199, x(24.5,−2.5)(5) =−0.0197

are obtained. The corresponding interpolation polynomialis

p5(a,b) =−0.02+4.99210−4a+4.748·10−3b.

Then, the approximated coefficientx(5) for the given values∆q = 24.3 m andVi =

−2.7 m/s is

p5(24.3,−2.7) =−0.0208.

The same computation can be performed to obtain all coefficients x and hence deter-

mine the trajectory for the parameters∆q = 24.3 m andVi = −2.7 m/s. The resulting

trajectory is shown in Fig. 27.

0 5 10 15 20
−5

0

5

10

15

20

25

time [s]

∆ 
q i [m

]

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

time [s]

u iff  [m
]

0 5 10 15 20
−4

−2

0

2

4

time [s]

v iff  [m
/s

]

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

time [s]

a iff  [m
/s

2 ]

Figure 27: Approximated trajectory for∆q= 24.3 m andVi =−2.7 m/s.

It is readily observed that the trajectory very well approximates the desired behavior.

The final distance value is≈−24.3 m and the final velocities and accelerations are very
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close to zero. In addition, the velocity and acceleration constraints are met. A similar

observation can be made in the next example with∆q = 55.4 m andVi = −8.3 m/s.

Here, the distance value is larger and the initial velocity is smaller. Nonetheless, a

suitable trajectory is obtained as can be seen in Fig. 28.
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Figure 28: Approximated trajectory for∆q= 55.4 m andVi =−8.3 m/s.

In summary, this section proposes a method for computing trajectories for open-

ing/closing gaps using 3 concatenated polynomials. First,it is shown that trajectories

that meet the formulated constraints can be computed using nonlinear programming.

Since it turns out that obtaining trajectories by nonlinearprogramming is too time-

consuming for a real-time implementation, an approximation of the obtained trajec-

tories is suggested. To this end, a sufficient number of trajectories is generated for a

grid of values in∆q andVi using nonlinear programming. Then, the trajectory for each

parameter combination(∆q,Vi) that is not on the grid can be found using a similar lin-

ear interpolation. Our test results show that the resultingtrajectories are suitable for

the desired open/close gap maneuvers and can be computed in very short time. The

only disadvantage of this method is the usually larger completion times for maneuvers

compared to the optimal control solution in Section 3.3.

3.6 Approximation of the Optimal Control Trajectory

The next method attempts to obtain a good polynomial approximation of the optimal

control trajectory in order to reduce the completion time ofeach maneuver compared

to the method in Section 3.5. To this end, we take a similar approach to the previous
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section. We first find polynomial approximations of pre-computed optimal control so-

lutions for combinations of∆q = 20+ qgrid j, j = 0, . . . , jgrid andVi = −10+ vgridk,

k = 0, . . . ,kgrid. Then, the same linear interpolation as in Section 3.5 is used to de-

termine the polynomial coefficients for combinations of∆q andVi that are not on the

grid.

Consider the optimal control solutionq∆q,Vi(t) for a given combination(∆q,Vi).

Regarding the approximation of the optimal control trajectory, a polynomial

p(t) = p0+ p1 t + · · ·+ pl−1 t l−1+ pl t
l (3.71)

is used. We first evaluate the initial and terminal conditions for this polynomial. It must

hold that

p(0) = p0 = 0 (3.72)

ṗ(0) = p1 =Vi (3.73)

p̈(0) = 2p2 = 0 (3.74)

p(T) = p0+ p1T + · · ·+ pl−1T l−1+ pl T
l = 0 (3.75)

ṗ(T) = p1+2p2T + · · ·+(l −1) pl−1T l−2+ l pl T l−1 = 0 (3.76)

p̈(T) = 2p2+ · · ·+(l −1)(l −2) pl−1T l−3+ l (l −1) pl T
l−2 = 0 (3.77)

That is, the first three coefficients of this polynomial are already fixed by (3.72) to (3.74)

and there are three more linear constraint equations for theremaining coefficients in

(3.75) to (3.77). We next solve these equations to eliminatethree more coefficients of

p(t) using

p3T3+ p4T4+ p5T5 =−Vi T − p6T6−·· ·− pl−1T l−1− pl T l
,

3p3T2+4p4T3+5p5T4 =−Vi −6p6T5−·· ·− (l −1) pl−1T l−2− l pl T l−1
,

6p3T +12p4T2+20p5T3 =−30p6T4−·· ·− (l −1)(l −2) pl−1T l−3−

l (l −1) pl T l−2
.

This can be written as







T3 T4 T5

3T2 4T3 5T4

6T 12T2 20T3













p3

p4

p5






= A







p3

p4

p5






= B







p6
...

pl






⇒







p3

p4

p5






= A−1B







p6
...

pl






.

That is, the coefficientsp0, . . . , p5 can be represented by the coefficientsp6, . . . , pl .
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Hereby, it is ensured that all initial and terminal conditions are met. In order to de-

termine the remaining coefficients, we perform a nonlinear optimization that tries to

minimize the least square error(p(t)−q∆q,Vi)
2 between the polynomial approximation

and the optimal control solution as

min
p6,...,pl

∫ T

t=0
(p(t)−q∆q,Vi (t))

2dt. (3.78)

Then, we perform the same approximation with a two-dimensional linear polynomial

for values(∆q,Vi) that are not on the grid. The polynomial order that was found suitable

in our experiments isl = 11.

We consider the same examples as in Section 3.5. First, let∆q= 24.3 m andVi =

−2.7 m/s. The resulting trajectory is shown in Fig. 29. It can be seen that, as specified,

∆qi reaches the desired terminal value, whereas the terminal velocity and acceleration

are zero. Due to the polynomial approximation, there is a violation of the acceleration

constraint. Nevertheless, in comparison to Fig. 27 the maneuver can be completed in a

much shorter time.
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Figure 29: Approximated trajectory for∆q= 24.3 m andVi =−2.7 m/s.

A similar observation is made for∆q = 54.4 m andVi = −8.3 m/s in Fig. 30 in

comparison to Fig. 28.
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Figure 30: Approximated trajectory for∆q= 54.4 m andVi =−8.3 m/s.
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3.7 Piecewise of Approximation of the Optimal Control Trajectory

Our last method is based on the evaluation of the general shape of the acceleration

signal when opening/closing a gap. This shape is shown together with the velocity and

position signal in Figure 31.

Figure 31: Piecewise Approximation of the Optimal Control trajectory figures a) De-
sired distance b) Velocity c) Acceleration

It can be observed from the figure that the acceleration signal can be divided into 5

different parts. The respective time instants are denoted as T1,T2,T3,T4 andTf and the

time durations of each part are∆T1,∆T2,∆T3,∆T4,∆T5. Then, it holds that the acceler-

ation increases from 0 to its maximum value untilT1, the acceleration is constantamax

betweenT1 andT2, the acceleration decreases from its maximum value to its minimum

value betweenT2 andT3, the acceleration assumes its minimum value betweenT3 and

T4 and the acceleration becomes zero again at the end of the maneuver. In addition, the

velocity starts from the initial valueVi and becomes zero at the end of the maneuver
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and the position difference evolves from 0 to∆q. DefiningT0 = 0, we denote the po-

sition, velocity and acceleration values of the optimal control solution at the respective

times instants as∆qi = ∆q(Ti), vi = v(Ti) andai = a(Ti) for i = 0, . . . ,5. In particular,

∆q0 = 0, ∆q5 = ∆q, v0 =Vi, v5 = 0, a0 = 0 anda5 = 0.

Respecting this separation into five parts, we propose to concatenate five polynomi-

als of appropriate degrees and to determine their coefficients using the given conditions

on the acceleration, velocity and position. The polynomials capture the position∆q as

follows

∆q(t) =







P1(t) = a1+b1 t +c1 t2+d1 t3+e1 t4+ f1 t5 for 0≤ t ≤ T1

P2(t) = a2+b2 t +c2 t2 for T1 ≤ t ≤ T2

P3(t) = a3+b3 t +c3 t2+d3 t3+e3 t4+ f3 t5 for T2 ≤ t ≤ T3

P4(t) = a4+b4 t +c4 t2 for T3 ≤ t ≤ T4

P5(t) = a5+b5 t +c5 t2+d5 t3+e5 t4+ f5 t5 for T4 ≤ t ≤ Tf

(3.79)

Hereby, the polynomialsP2 andP4 are chosen with degree 2 since the respective parts

of the trajectory show a constant acceleration. The polynomials P1, P3, P5 are chosen

with degree 5 in order to provide a sufficient number of coefficients for the existing

conditions.

The conditions for the polynomial coefficients are fori = 1,2,3,4,5

Pi(0) = qi−1 andPi(Ti) = ∆qi . (3.80)

Ṗi(0) = vi−1 andṖi(Ti) = vi . (3.81)

P̈i(0) = ai−1 andP̈i(Ti) = ai (3.82)

Using the above conditions, it directly follows that

P2(t) = q1+v1 t +amaxt
2 (3.83)

P4(t) = q3+v3 t +amin t2 (3.84)

In addition, we consider the time derivatives of the remaining polynomials fori =

1,3,5:

Ṗi(t) = bi +2ci t +3di t
2+4ei t

3+5 fi t
4
. (3.85)

P̈i(t) = 2ci +6di t +12ei t
2+20 fi t

3
. (3.86)

Then, the following equations for the polynomial coefficients are obtained fori =
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1,3,5:

Pi(0) = ai = qi−1. (3.87)

Pi(∆Ti) = ai +bi ∆Ti +ci ∆T2
i +di ∆T3

i +ei ∆T4
i + fi ∆T5

i = qi . (3.88)

Ṗi(0) = bi =Vi−1. (3.89)

Ṗi(∆Ti) = bi +2ci ∆Ti +3di ∆T2
i +4ei ∆T3

i +5 fi ∆T4
i = vi . (3.90)

P̈i(0) = 2ci = ai−1. (3.91)

P̈i(∆Ti) = 2ci +6di ∆Ti +12ei ∆T2
i +20 fi ∆T3

i = ai . (3.92)

Considering thatai ,bi,ci are already known from (3.87), (3.89) and (3.91), it re-

mains to computedi ,ei, fi for i = 1,3,5 from (3.88), (3.90) and (3.92). Using the vector

of unknown parameters

r i =
[

di ei fi
]

, (3.93)

we obtain the following linear equation







∆T3
i ∆T4

i ∆T5
i

3∆T2
i 4∆T3

i 5∆T4
i

6∆Ti 12∆T2
i 20∆T3

i







︸ ︷︷ ︸

Mi

r i =







qi −vi ∆Ti −qi−1−
ai−1

2 ∆T2
i

vi −vi−1−ai−1∆Ti

ai −ai−1







︸ ︷︷ ︸

l i

. (3.94)

SinceMi is invertible, the polynomial coefficients are obtained by computing

r i = M−1
i · l i . (3.95)

Computing a solution with the symbolic toolbox of Matlab, thepolynomial coefficients

are determined as

di =
20qi −20qi1 −28∆Ti vi +8∆Ti vi−1+∆T2

i ai −3∆T2
i ai−1

2∆T3
i

ei =−
30qi −30qi−1−44∆Ti vi +14∆Ti vi−1+2∆T2

i ai −3∆T2
i ai−1

2∆T4
i

fi =
12qi −12qi−1−18∆Ti vi +6∆Ti vi−1+∆T2

i ai −∆T2
i ai−1

2∆T5
i

That is, the polynomialPi can be evaluated analytically for all combinations of∆Ti, qi ,

qi−1, vi, vi−1, ai andai−1 for i = 1,3,5. Considering thatP2 andP4 are already given

by (3.83) and (3.84), the polynomial approximation of the optimal control trajectory in
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(3.79) is fully determined. In addition, it is possible to determine the input signaluff by

plant inversion. We again separate the input signal into fiveparts such that

u(t) =







u1(t) = for 0≤ t ≤ T1

u2(t) = for T1 ≤ t ≤ T2

u3(t) = for T2 ≤ t ≤ T3

u4(t) = for T3 ≤ t ≤ T4

u5(t) = for T4 ≤ t ≤ Tf

(3.96)

Using the plant model and noting thatqi(t) = Pi(t), it holds that

Ui(s) = (τ s3+s2)Qi(s)⇒ u(t) = τ ·
d3pi(t)

dt3
+

d2pi(t)
dt2

. (3.97)

Hence,

ui(t) =







2amax for i = 2

2amin for i = 4

τ (6di +24ei t +60 fi , t2)+2ci +6di t +12ei t2+20 fi t3 for i = 1,3,5

(3.98)

In order to evaluate the quality of this approximation, we consider the same exam-

ples as in Section 3.5. First, let∆q= 24.3 m andVi =−2.7 m/s. The resulting trajectory

is shown in color in Fig. 32 together with the trajectories ofthe neighboring grid points.

It can be seen that the desired maneuver is performed in the same time as the optimal

control solution. In addition, the velocity constraints and acceleration constraints are

met.

Secondly, let∆q = 59 m andVi = −10 m/s. The resulting trajectory is shown in

Fig. 33. Again, the desired maneuver is performed without violating the constraints.

It has to be noted that the proposed interpolation method allows determining suitable

trajectories in practically no time.

3.8 Comparison

We next perform a comparison of the different feedforward trajectories determined in

the scope of this thesis. The methods used are listed as

1: optimal control

2: using a single polynomial and plant inversion
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Figure 32: Piecewise Approximation of the Optimal Control trajectory for ∆q= 24.3 m
andVi =−2.7 m/s.

3: nonlinear optimization

4: optimal control approximation with a single polynomial

5: piecewise optimal control approximation with five polynomials

Fig. 34 shows the computation for opening a gap of∆q= 40 m, whereby the initial

velocity difference between vehicle i and its predecessor vehicle isVi=-4m/s. It can be

seen that methods 1,4,5 perform the maneuver in a shorter time compared to methods

2. This is due to the fact that method 1 constitutes the optimal control solution for

a minimum time maneuver. Methods 4,5 are approximations of the optimal control

solution and hence also perform the maneuver in the shortestpossible time. Hereby,

the approximation with a single high-order polynomial shows some deviation from the

actual optimal control solution. In particular, the acceleration constraint of±2 m/s2 is

violated when using this trajectory. In contrast, trajectory 5 very closely approximates

the optimal control trajectory. This is due to the fact that the piecewise approximation

is chosen in order to follow the characteristic shape of the acceleration trajectory.

In summary, we conclude that the method in Section 3.7 is mostsuitable for com-

puting input signal trajectories for open/close gap maneuvers. This method requires
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Figure 33: Piecewise Approximation of the Optimal Control trajectory for ∆q= 59 m
andVi =−10 m/s.

computing the optimal control solution for a grid of values for the desired gap distance

∆q and the initial velocity differenceVi of the vehicles, which can be done offline. Then,

the actual trajectories for any combination of∆q andVi are evaluated by a simple linear

interpolation, which can be performed in real time.
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CHAPTER 4

VEHICLE IMPLEMENTATION IN THE FORM OF AN S-FUNCTION

The aim of this chapter is the development of a vehicle model that performs vehicle

following using CACC and additional open/close gap maneuversin Simulink. In order

to obtain a model that can be used in the scope of a large simulation with many vehicles,

the vehicle model is implemented in the form of an S-function. Hence, the chapter first

gives a brief description of S-functions in Simulink in Section 4.1. Then, requirements

for the desired S-function are summarized in Section 4.2. Implementation details are

given in Section 4.3.

4.1 General S-Function Description

S-functions (system-functions) are a powerful tool in order to efficiently use Simulink.

Using an S-Function a simulation block in Simulink can be programmed in C, C++ or

another computer language. S-functions depend on sub-functions that can be loaded

and executed by the MATLAB execution engine by itself. Thereare many applications

to use S-functions such as;

• To create new Simulink blocks for a special aim

• To add blocks that describe a hardware device

• To define a dynamic system for certain mathematical equations

• To use graphical animations

S-function offer various callback methods. Some of them aremandatory, whereas

others are optional when implementing an S-function. The most important required

callback methods are;

• mdlInitializeSizes

• mdlInitializeSampleTimes

• mdlOutputs
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• mdlTerminate

We next describe the most important callback functions and their usage.

4.1.1 mdlInitializeSizes

Required Syntax: void mdlInitializeSizes(SimStruct * S)

This function defines the number of inputs, outputs, states,parameters, and other

items of the S-function.

• Define the number of parameters usingssSetNumSFcnParams .

• Define the number of states usingssSetNumContStates and

ssSetNumDiscStates .

• Define the number of input ports usingssSetNumInputPorts .

• Define the dimensions of the input ports usingssSetInputPortWidth or

ssSetInputPortMatrixDimensions .

• Define whether it has direct feed-through for each inputs using

ssSetInputPortDirectFeedThrough .

• Define the number of output ports usingssSetNumOutputPorts .

• Define the dimensions of the outputsmdlSetOutputPortWidth .

• Define the number of DWork vectors usingssSetNumDWork .

• Define the dimensions of the DWork vectors usingssSetDWorkWidth .

• Define the stored data type of a DWork vector usingssSetDWorkDataType .

• Define the name of a stored data type work vector usingssSetDWorkName .

4.1.2 mdlInitializeSampleTimes

Required Syntax: void mdlInitializeSampleTimes(SimStruct * S)

This function describes the sample time(s) in the S-function.

• Define the sample time for each sample rate using

ssSetSampleTime(S, sampleTimeIndex, sample-time) .

• Define the offset time for each sample rate using

ssSetOffsetTime(S, offsetTimeIndex, offset-time) .
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4.1.3 mdlOutputs

Required Syntax: void mdlOutputs(SimStruct * S, int-T tid) This

function computes the output signals of the S-function.

• Get the numeric type of an output port using

Signal-T ssGetOutputPortComplexSignal(SimStruct * S,

int-T port) .

• Get a pointer to an output signal of type double using

real-T * ssGetOutputPortRealSignal(SimStruct * S,

int-T port) .

• Get the vector of signal elements emitted by an output port using

void * ssGetOutputPortSignal(SimStruct * S, int-T port) .

4.1.4 mdlTerminate

Required Syntax: void mdlTerminate(SimStruct *S)

When external termination of the simulation is required, this function will take precau-

tions. There is not any function inside the S-function for terminating the simulation.

In addition to the mandatory callback methods, there are various optional callback

methods. In the context of this thesis, the most important optional callback methods

are;

• mdlDerivatives

• mdlStart

• mdlUpdate

• mdlInitializeConditions

4.1.5 mdlDerivatives

Required Syntax:void mdlDerivatives(SimStruct * S)

• Get the derivatives of a block’s continuous states using

real-T * ssGetdX(SimStruct * S) .

4.1.6 mdlStart

Required Syntax:void mdlStart(SimStruct * S)

Initialize the state vectors of the S-function.

46



4.1.7 mdlUpdate

Required Syntax:void mdlUpdate(SimStruct * S, int-T tid)

Update the state vectors in S-function.

4.1.8 mdlInitializeConditions

Required Syntax:void mdlInitializeConditions(SimStruct * S)

Initialize the DWork vectors (internal memory) in the S-function.

4.2 Requirements for Vehicle Model

Using the generic callback methods mentioned in the previous section, this section

states requirements for the vehicle model to be realized in the scope of this thesis. We

focus on a vehicle that can occupy two different lanes on a road and that has several

surrounding vehicles and a road side unit (RSU) nearby. Vehicles communicated with

each other using V2V communication and the vehicles and RSU communicate with

infrastructure to vehicle communication (I2V). The following schematic illustrates the

described scenario.

134 2

57 6

I2V

RSU

I2VI2VI2V

7

I2V I2VI2V

Figure 35: General model with vehicles and RSU.

In our vehicle S-function, the following implementation choices were made:

• The dynamic vehicle parameters, initial values and controller parameters are pro-

vided as block parameters

• Input, acceleration, position and velocity signals of all vehicles are collected by

the RSU and provided to all vehicles (inputs Ui1, Ai i, Vi 1, Qi 1)

• The desired distance, and start times of the feedforward signals for open/close

gap maneuvers come from the RSU (input Ts)
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• The method in Section 3.7 is used for the computation of feedforward signals.

The parameter values for the computed grid points are provided as input vectors

(inputs X7 to X12 and Tf) to the S-function

• Each vehicle has a number and an initial value for the lane (inputs vehiclenumber

and LC).

• Each vehicle provides its position, velocity, acceleration and input signal as an

output (outputs Ui, Ai, Vi, Qi)

• Additional outputs for test purposes are the computed feedforward signal (FF)

and the current lane (LC)

The basic Simulink block for the required functionality is shown in Fig.
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Figure 36: Vehicle S-Function Block.
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4.3 Vehicle S-function Implementation

Inputs

• Communicated from RSU: Input signal, Acceleration signal, Velocity signal, Po-

sition signal, Sequence number, Desired Distance gap, Initial velocity, Start time

and Final time.

• Vehicle number.

Outputs

• Communicated to RSU: Input signal, acceleration signal, velocity signal, position

signal

• For observation: feedforward signals.

Parameters

• Initial position, Initial velocity, length of vehicle, headway time, distance at

standstill constant and some controller constants

4.3.1 Input implementation

We used many inputs, parameters and DWork parameters in the Vehicle S-function

of our thesis. There are seventeen inputs, nine parameters and 21 allocated DWork

parameters.

The inputs for the acceleration, velocity, position, inputsignal and vehicle se-

quence have different dimensions depending on the number ofvehicles in the simu-

lation. For example, if there are 7 vehicles, we usessSetInputPortWidth(S,

1, 7); for the acceleration input signal vector. Here, 1 is the index number of the

input and 7 is the dimension of the signal vector. The vehiclenumber is a scalar

that is assigned byssSetInputPortWidth(S, 5, 1); . The desired feedfor-

ward signal is specified by the inputs ”DeltaQ”, ”Vi” and ”Ts”. For example, for

DeltaQ, the input is allocated asssSetInputPortWidth(S, 6, 1); . 6 is the

index number of the input. The grid values of the optimal control approximation

are provided as the input values X7 to X12 and Tf. Thy are allocates in the form

ssSetInputPortMatrixDimensions(S, 8, 21, 11); . For example, for

X7, 8 is the index number of the input. 21 and 11 define the dimension of the parameter

matrix. In addition, there are some supplementary functions that specify properties of
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the inputs. ssSetInputPortRequiredContiguous(S, 0, true); speci-

fies that the input signals are contiguous.ssSetInputPortDirectFeedThrough(S,

0, 0); defines that the respective input is not a direct feed throughport.

There are 9 parameters such as initial velocity and positionof the vehicle in the ve-

hicle S-function. For illustration, considerssSetSFcnParamTunable(S,0,false);, which

allocates the parameter with index number 0. Here, ”false” indicates that the parameter

is not tunable that is, the parameter can not change during simulation.

In addition, our vehicle model uses 21 Dwork memory blocks inthe vehicle S-

function to store internal data. For example, one Dwork memory is allocated for the

input signal Ui-1 as

ssSetDWorkWidth(S, 0, 1);

ssSetDWorkDataType(S, 0, SS-DOUBLE);

ssSetDWorkName(S, 0, "Ui-1");

0 is the index number of Dwork and 1 is the width of the Dwork block. SS-

DOUBLE is the data type of the Dwork and ”Ui-1” is the name of theDwork block.

There are 21 such Dwork block in the vehicle S-function.

4.3.2 Output implementation

There are 6 outputs in the vehicle S-function implementation. For example, the veloc-

ity output is configured asssSetOutputPortWidth(S, 2, 1); 2 is the index

number of the output and 1 is the defined width of the output. There are 5 outputs like

this and there is 1 output with width 4.

4.3.3 Update Function Implementation

In the update function, we define the required and updated output values, parameters,

Dwork memory blocks and external inputs. These values are computed according to

Section 3.7 and include the coefficients for the optimal control approximation. In order

to evaluate the approximation of the optimal control trajectory, a linear interpolation on

a grid with 4 points is needed. These points are arranged around the desired point as

can be seen in the following table. Here,P is desired value andQ11, Q12, Q21 andQ22

are the values at the neighbor points. The respective coordinates arex,y andx1 < x< x2

andy1 < y< y2 are the grid points.
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Neighbor Points

x1 x x2

y1 Q11 Q21

y P

y2 Q12 Q22

In order to determineP from the neighbor points, we use the bilinear interpolation

equation below.

P≈ (Q11)
(x2−x)(y2−y)
(x2−x1)(y2−y1)

+(Q21)
(x−x1)(y2−y)
(x2−x1)(y2−y1)

(4.1)

+(Q12)
(x2−x)(y−y1)

(x2−x1)(y2−y1)
+(Q22)

(x−x1)(y−y1)

(x2−x1)(y2−y1)
.

This equation is evaluated for all relevant coefficients in Section 3.6. These coefficients

are then used to determine the feedforward position, velocity, acceleration and input

signal for opening and closing gaps.

4.3.4 Derivative Implementation

In this callback function, the state space model of the vehicle with CACC is realized

according to (3.1). Each state derivative is allocated in the form real-T * dx =

ssGetdX(S); In our vehicle S-function, we use 4 state derivative values for the ve-

hicle model and one state derivative for the simulation time.

4.3.5 Example Simulations

In this section, we show simulation examples with 3 Vehiclesby using the vehicle S-

function.

Firstly, we opened a desired distance of 29 m between the firstand second vehicle

using the computed feedforward signal. The feedforward signal is computed by the

vehicle S-function instance of vehicle 2 such that vehicle 2opens a gap to the first

vehicle. Its follower vehicle 3 slows down together with vehicle 2 due to the usage of

CACC. The maneuver can be inspected in Figure 37.

Secondly, we opened a desired distance of 29 m between vehicle 2 and 3. The

resulting response can be seen in Figure 38.

Finally, we close a gap of 29 m between vehicle 2 and 3. The resulting position plot is

shown in Figure 39.
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Figure 37: Position of vehicles when applying a gap opening maneuver tovehicle 2.
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Figure 38: Position of vehicles when vehicle 3 opens a gap.
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Figure 39: Position response when vehicle 3 closes a gap.
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CHAPTER 5

CONCLUSION

The subject of the thesis is the realization of gap opening and closing maneuvers in

vehicle strings. To this end, the control architecture for cooperative adaptive cruise

control (CACC) is extended by a feedforward signal.

Using this architecture, five methods for the computation and representation of

open/close gap trajectories for vehicles in vehicle strings are proposed. The first method

is based on the solution of an optimal control problem, the second method uses a poly-

nomial trajectory and plant inversion, the third method concatenates three polynomials

and uses nonlinear programming to determine the polynomialcoefficients, the fourth

method uses a high-order polynomial and the fifth method usesconcatenated polyno-

mials in order to approximate the optimal control solution.

Hereby, the optimal control solution represents the desired solution which performs

the respective maneuver in the shortest possible time whilemeeting all constraints.

However, the computation times for finding the optimal control solution are not suit-

able for a real-time implementation as would be required in practice. The polynomial

trajectory obtained by plant inversion can be computed veryquickly. Nevertheless,

a longer maneuver duration needs to be selected and the acceleration constraints are

usually violated. The method of concatenating three polynomials allows meeting the

acceleration constraints and its computation time is shorter than the optimal control

computation. Nevertheless, a longer maneuver duration hasto be accepted. In order to

further reduce the computation time, an interpolation method has been developed. It

computes suitable trajectories for a grid of parameter values offline. Then, trajectories

for any parameter combination that is not on the grid can be obtained by linear interpo-

lation. It is shown that this method leads to very good results. In order to further reduce

the maneuver duration, the same interpolation method is applied to polynomial approx-

imations of the optimal control solution itself. As a result, fast trajectories are obtained.

Slight violations of the acceleration constraints are possible if the optimal control so-

lution is approximated by a single polynomial. In contrast,an approximation by five

concatenated polynomials proves very suitable since it directly captures the shape of

open/close gap trajectories. In addition, the vehicle model with CACC and feedfor-
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ward computation is implemented in the form of an S-functionfor fast simulation in

Simulink. Simulation examples confirm the suitability of the computed trajectories.
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