DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA
FPGA DEVICES

Shakir Salman Ahmad

DECEMBER, 2017

DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA
FPGA DEVICES

A THESISSUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES OF
CANKAYA UNIVERSITY

BY
SHAKIR SALMAN AHMAD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER
IN
THE DEPARTMENT OF
ELECTRONIC AND COMMUNICATION ENGINEERING

DECEMBER, 2017

Title of the Thesis : DIGITAL IMPLEMENTATION OF TRIGONOMETRIC
FUNCTIONS VIA FPGA DEVICES

Submitted by SHAKIR SALMAN AHMAD

Approval of the Graduate School of Natural and Applied Sciences, Cankaya University.

-

Prof. Dr. Can COGUN
Director

I certify that this thesis satisfies all the requirements by way of thesis for the degree of
Master of Science.

Prof, Dr. Sitki Kemal IDER

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and quality, by way of thesis for the degree of Master of Science.

O C\»}z} 1
Assoc. Prof. Dr. Orhan GAZI

Supervisor
Examination Date: 19.12.2017

Examining Committee Members

Assoc. Prof. Dr. Orhan GAZ] (Cankaya Univ.) O (/VTYI

Assist. Prof. Dr. Javad RAHABI (Turkish Aeronautical
Association
Univ.)

Assist. Prof. Dr. Goker SENER (Cankaya Univ.) /;D'%—’q

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. I also declare that, by way of
required by these rules and conduct, I have fully cited and referenced all material and

results that are not original to this work.

Name, Last Name : Shakir Salman Ahmad

Signature 3 C

Date 19122017

iii

ABSTRACT

DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA
FPGA DEVICES

AHMAD, Shakir Salman
M.Sc., Department of Electronics and Communication Engineering
Supervisor: Assoc. Prof. Dr. Orhan GAZI

December. 2017, 52 Pages

As the technology improves, the importance of dynamic hardware design gains
more and more attention in the scientific world. FPGA devices are used for digital
circuit design purposes, and recently a significant improvement has been observed in
FPGA technology. Many communication systems employed in wireless and satellite
systems employ FPGAs.

Trigonometric functions, such as sine or cosine, are vital components of
communication systems. With the invention of coordinate rotation digital computer, i.e.,
CORDIC in short, algorithm in 1956, it became possible to generate the trigonometric
functions in digital devices, such as calculators, microcontrollers, and electronic chips
etc.

In this thesis work, we first implement the CORDIC algorithm in MATLAB
environment, and analyze the iteration number of the algorithm considering the accuracy
of the calculated sine or cosine value. Next, we implement the CORDIC algorithm in
FPGA environment using the VHDL programming language. For this purpose, we used
the FGPA board involving SPARTAN-3 FPGA chip produced by the XILINX company.
Later, we followed an alternative approach for the generation of sine signal. For this

purpose, we generated 1Hz sine signal in MATLAB and considering the ratio among

sine samples, we generated an integer sequence keeping approximately the same ratio
among samples, and using this integer sequence we generated sine signal in FPGA
platform and using the D/A converter, we observed the generated sine signal on
OSCILLOSCOPE screen. With this alternative approach, it became possible to generate
sine signal with any frequency and much less hardware complexity. To generate
different sine signals with different frequencies, we divide the clock of the FPGA device

by a desired amount and use it while sending the sine samples to the output port.

Keywords: Cordic algorithm, FPGA, VHDL, and Cosine function

OZET

FPGA CIFAZLARI ILE TRIGONOMETRIK FONKSIYONLARIN DIiJiTAL
GERCEKLESTIRIMI

AHMAD , Shakir Salman

YL, Elektronik ve Haberlesme Miihendisligi BélUmi
Danigman: Dogent Dr. Orhan GAZI
Aralik 2017, 52 Sayfa

Teknolojinin gelisimi ile birlikte dinamik donanim yapilarinin tasarlanmasi gln
gectikce daha da 6nem kazanmaktadir. FPGA cihazlari dinamik donanimlar tasarlanmak
icin kullanilan ve gittikce diinyada popiilaritesi artan elektronik iinitelerdir. FPGA
cihazlar1 giiniimiizde bir¢cok kablosuz ve uydu iletisim sistemlerinde kullanilmaktadir.

Sinlis ve kosinlis gibi trigonometrik fonksiyonlar iletisim sistemlerinin
vazgecilmez unsurlaridirlar. CORDIC algoritmasinin = 1956 yilinda icadi ile
trigonometrik fonksiyonlarin sayisal elektronik cihazlarindaki gergeklestirimlerinin 6nii
acilmigtir. Bugiin giinlimiizde kullanilan birgok elektronik cihaz, mesela hesap makinesi,
mikrokontroller ve elektronik yongalar CORDIC algoritmasini kullanmaktadir.

Bu tez ¢alismasinda ilk olarak CORDIC algoritmasinin MATLAB ortaminda
gerceklestirimini yapiyoruz ve algoritmada kullanilan yineleme sayisi ile elde edilen
sinuslin veya kosinisiin gergek degerinden ne kadar sapma gosterdigini inceliyoruz.
Daha sonra ise algoritmayr FPGA ortaminda VHDL programlama dili kullanarak
gergeklestiriyoruz. Bunun i¢in XILINX firmasinin iiretmis oldugu SPARTAN-3 yonga
iceren FPGA platformu kullaniyoruz. Tezin iigiincii ¢alismasinda siniis veya kosiniis
sinyallerini Gretmek icin daha basit bir yol takip ediyoruz. Bunun igin frekans1 1Hz olan
sinis veya kosints sinyallerinin bir periyodunu MATLAB ortaminda iiretiyoruz. Daha
sonra tretilen sayilar arasindaki orant g6z Oniine alarak bir tam sayr dizini
olusturuyoruz. Olusturulan tam say1 dizinini FPGA ortaminda tasiyarak VHDL dili ile

FPGA cihazimin saat darbe sayisi istedigimiz gibi ayarlayarak herhangi bir frekansa

Vi

sahip olan sinls veya kosinus sinyalini dretiyoruz. Kullandigimiz bu yontem CORDIC

algoritmasina gore daha basit ve donanim karmasiklig1 cok daha az olmaktadir.

Anahtar kelimeler: Cordic Algoritmasi, FPGA, VHDL, Kosin(s fonksiyon.

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assoc. Prof. Dr. Orhan GAZI for his

supervision, special guidance, suggestions, and encouragement through the development

of this thesis.

It is a pleasure to express my special thanks to my family for their valuable support.

viii

TABLE OF CONTENTS

ABSTRACT ...ttt se st et s et s e s sse e st s e st sae st sae e st s et seesesae et e et sae e sesa st e et ssessssesenessantasn v
OZgih. ... 0 A A AR M .o Vi
ACKNOWLEDGEIMENTScocetietreeinenestnestnseiseeestssesessessssesessssessssesssssssssssessssessssssssssssssssasssnes Vil
TABLE OF CONTENTSoooueotietriecntretrsetsesesessestssestssssesessessssssssssssssssesssssssssssssessessssesssssssssssasssnes IX
LIST OF FIGURES............oooteieteeetreireeenteestssetssssesessestssesssssstssssssssssstssssssssssssssestsssssssssssessesssnssssns XI
CHAPTER ONE ...t eetretste e sae e e s e s sse e sse et e et saesases et s et sessssas et s e e ssssassssesessanessssenes 1
INTRODUCTION TO ISE SUITE.......coiiieeeeecetieceseeeeteesesesesseesessessssesssssssssssessssessssssssssssssssenssnes 1
1.2 OVERVIEW OF ISE..ciitiiieieiiiiiitiiiiiie e eettttiiiiee e s e e e eeeeaasiesseeeeeesensssnnsssseeassnnsssnnnnssesannns 2
1.2.1. Project NQVIGQtOr INtEIfACE..........c.uueeeeeciiieeesiieeeeeieeeeescteeessaaesssitaeeesssaaaeesaees 2
1.3. DESIGN PANEL «.etttuieetiie s ettt eetiie s eetiee s e setes s e saae s s etaaaa s s e tasaseenssaesanssaseenesansenesnnns 2
1.3.1. SOUICES VW e s s s e s s s s s s s s s nnas 2
1.3.2. ProCeSSES VIBWcceeveeeeeieiieiiiiiieieeeeeeeeeeeeeteeeeeeeeeteeete ettt ettt eaeaaaeaeaees 3
1.3.3. FIlES PANEL..........eeeeeeeeeeeeeeeeee ettt e ettt a e e e e e ettt aaa e e e e e e s s ssssaees 5
1.3.4. LiDIQIri@S PANEIcoveeeeeeeeeeee ettt e ettt e e e e e e e taae e e e e e e e s ennanees 5
1.3.5. CONSOIE PANE ...ttt e et ee e e e e e e s s aaeees 5
1.3.6. o 4 e T -1 USRS 5
1.3.7. WAININGS PANEIuveeeeeeeeeeeeeeeeeee ettt eeeetttteeea e e e e s et siaeraaaaeesesians 5
1.3.8. WOTKSPDACE......ccocecereeeeeeee ettt eee e ettt e e e e e e sttt s e e e e e s s ssissasasaseeenessans 5
1.4. ISE CONSOLE WINDOW ..eiiieiieiiieiieieeeeee e e et eee eeeaeeeeeaseeeeeeaeaaaeeeeas 6
1.5. ISE REPORTS/EDIT WINDOWuvveeureeerreereesureeseessseesseesseesseessseensessssesssesssessssssnsessnsssnsesnnns 6
CHAPTER TWO......eeeeecte et eests st et sse s sse e ss et s et sas s ss s e se s et sassssss e st s et sassessssenessenessnsnnes 7
FUNDAMENTAL OF VHDL AND FPGA ...ttt eets et s e s sssssss st s et sas s ssssessssenssnns 7
2.1. DEFINITION AND BACKGROUND ON VHDL ..uueiiiiiiiiiiiiiiciie et 7
2.1.1. DeSign FIOW iN VHDLoooeeeeeeeeeeeeeee ettt e e ettt a e e e e et s ssaaanaaaaaeeeenians 8
2.1.2. Code StruCture iN VHDLoooeeeeeeeeeeeeee et esee e e s taaeesieae e 9
2.2. DEFINITION AND BACKGROUND ON FPGAL.....uuuiuiiiiii s 10
2.2.1. FPGA APPIICATION . ..cveeeeeeeeeceeeeieeeeeeesecreieeee e eeeettitaveeea e e eeesssisssveeseaeeeessans 11
2.2.2. AQVANTAGES Of FPGA ...ttt e e ettt ataaaa e e e e e s e e 13
CHAPTER THREE ...ttt et s et ss st s e et e s sas e sas s e s et s et s e ea s et s et sananns 14

FUNCTION CALCULATION USING CORDIC...........ccirririiiiinnnssssnssssssssssssenes 14

3.1. TRIGONOMETRIC FUNCTIONS .uuuueieeererertuuuaeseeeeereeruunaesesessssesssnnsseseessesssmnaseeseesssemsnnnnnees 14
3.2. NUMERICAL EXAMPLE FOR CORDIC ...ciiiiiiiiiiiiiii, 18
CHAPTER FOUR ...ttt s e sas e ses et s et sse e ssssese s et sssssssssasas et ssesssasssssssesessensssensans 23
IMPLEMENTING CORDIC IN FPGA USING VHDL.........ccovvietretreirerenenenssreesesesessessssessssssens 23
4.1. OVERVIEW OF CORDIC ARCHITECTURES ..uuuuuuuuununnnnnnnnnnnnnnnnsnnnnnnnsnsnnnsnsssnsssnnnssnssnnsnnsnnsnsnsnns 23
4.2. FPGA IMPLEMENTATION TO CORDIC ALGORITHM .uuiiiieiitiiiiiieeeeeeeeeteiniiesesesessennsnnnsneeaaanens 25
CHAPTER FIVE ...ttt ets et saesessssess s e e sse e sse e sss s s s e s sas st sss e ss et sassesassesssssnssnsnesnsnenns 27
GENERATION OF SINUSOIDAL SIGNALS..........oorrerenrerertsesessesesssessesssssssessessesssssssesssssenes 27
5.1. DIGITAL TO ANALOG CONVERTER ..eeevtvriuuunreeeeerernrsnnnnseesersenmssnnsssssessssnesssnnssssssssnsnnnns 27
SIMULATION AND RESULTcortiitretreisenesesesesesessessssssessssessssssssssssssssessssessssessssssessssessssensans 29
5.2. INTRODUCTION 1uuuunieeeeeieuuinuniesseeeereensanneseseeereessssnssssseesssesssssnssssesessesesssnsssesssssnessnns 29
I B G-t [o[B 1 [1 = [P UUURR 29
5.3. BEHAVIORAL SIMULATION USING ISIM..eeueiieiiieieiiiiiieee e s e e e e eeeeeee e e e e e eeeeaanas 30
5.3.1. HOW t0 OPEN PrOjJECE.......ccooee e 31
5.4. HOW TO ADD AN HDL TEST BENCH ..eeeiiiiieiee ettt e e e e e e e aaaee e e e e e e e e eaaa e 32
5.5. BEHAVIORAL SIMULATION USING ISIM .eviutiuieiiieeiiiiiiiiie e e s eeeeeeaiiee e e e e e e eeeaaaee e e s e e e eeeannan e s 33
5.6. INFORMATION FROM VHDL TEST BENCH ...ueiiiiiiiiiiiiiineeeeeeeeiiiiiieee e e eeeeenenininsseseeesnesnnns 38
5.7. HOW TO SET-UP AND TEST NEXYS3 BOARD......ccetttruuieneeieeieeririiieeeeeeeeeennninnnnseseeeenennnes 38
5.8. SWITCHES AND 7-SEGMENTS DISPLAYS ...etvvtvuuunieeeeereruursnnnnereeereenesmnnssssesesssnsssnnssssssseees 39
20 B 1 0 S UUUPR 40
5.8.2. 5even SEGMeNt DiSPIAYScccuueeeeeeiiieeeeiiieeesciieeeesitaeeesiteaeesstaaesssiaaaeessseaes 41
O AN ol o = SR 41
5.8.4. PUSH BULEONS......oeeeeeeeeeeeeeeee et e st e e e st a e e staa e e e ssaaaeesseaaeesasnes 42
CHAPTER SIX ...ttt ts et sae e sas e ses et s et s e st s e st s et sas e sas e e s et see st sae e ses et ssnsssnnanans 52
CONCLUSIONS AND FUTURE WORKS.cooeeeeretreeree et sassessssesesesessesssssssssssssssessssssnans 52
REFERENCES. ...ttt s et s et sse e ste et s et sse s se s et sae e sae s sss et s se e sseseessenessennsnnsssnnsens 53

LIST OF FIGURES

Figure 1: Project NaVIQator.........c.cceiieieiieiee e see s ee et 3
Figure 2 Design FIOW SUMMArization.ccoccoiiiiiiiiieieie e 8
Figure 3. VHDL Code COMPONENLESooveiiiiiiiiisiesiieiieieie et 9
Figure 4 Classification 0f VLSI CIFCUILSccccoiiiiiiiiieicieeee e, 11
Figure 5 A field-programmable gate array architecture.............ccccoovvvrinvenenen, 12
Figure 6 CORDIC representation using rotation mode.............c.ccoccoevrvriineeieennen, 15
Figure7 number of iterations and angles..........c.covivriiieiciiicc e, 20
Figure8 iteration With rror ratio...........cccoereieniiiiinieeee e, 22
Figure 9 Basic Architecture of CORDIC ..o, 24
Figure 10 Nexys 3™ FPGA Board Reference..........c.cccvvviniiiiiinciincnen, 25
Figure 11 Digital t0 Analog CONVEITE.c.ccveiiiiiiiiieieee e, 28
Figure 12 How to create design file.cccoooeiieiiiii i 30
Figure 13. Project navigator WiNAOWcccooveiieiieiieiice e 31
Figure 14 Explain choices Implementation and Simulation options 31
Figure 15.creat teSt DENCHocvviiieice 32
Figure 16 To save test bench file ..o, 33
Figure 17. HOW t0 SEIECE ISIM.......cviiiiiiccece e 34
Figure 18 How to select Simulate Behavioral Modelcccocovviiviiiiicenen, 35
Figure 19. Change properties and behavioral simulation properties..................... 36
Figure 20. How to perform simulation............ccccoveveiieiecic s 37
Figure 21 Setup NEXYS3 D0Ard.......c.ccoveiiiiiiieiicic e 39
Figure 22 Connection from LEDs to NEXYS 3 Boardcccccvevevveiieeciecienen, 40
Figure23 Results Of COSINE VAIUES...........coeiiriiriiiiiieeee e, 43
FIQUIE24 COSINE WAVE........otiiiitiiiiiiieieeeet ettt bbbt 45
Figure 25 Cosine wave With Shift............cccooiiiiiii e, 45
Figure 26 R-2R [ad0er ..ot 50
Figure 27 practical CIFCUITc.cviiiiiiiice e 50
Figure 28The waveform we generated it.c.coovveriiiieieiese e, 51
FIQUIE 29 SINE WAVE ...ttt 51

Xi

CHAPTER ONE

Introduction to ISE Suite

1.1. Definition and Background

"Xilinx ISE (Integrated Synthesis Environment)" is a software tool produced by
Xilinx for synthesis and analysis of HDL designs, enabling the developer to synthesize
("compile™) their designs, perform timing analysis, examine RTL diagrams, simulate a
design's reaction to different motivations, and configure the target device with the

programmer.

Xilinx ISE is a software development platform for FPGA supplied from Xilinx,
and it was tightly-coupled to the architecture of given chips, and cannot be used with
FPGA products from other retailers. The Xilinx ISE is fundamentally utilized for circuit
design and synthesis, while ISIM or the ModelSim logic simulator is utilized for
framework level analysis. Different parts dispatched with the Xilinx ISE include the a
Software Development Kit (SDK) , Embedded Development Kit (EDK), and ChipScope

Pro.

Since 2012, Xilinx ISE has been stopped for VDS, that aids the same roles by
way of ISE with extra highlights for framework on a chip progression. Xilinx released
the last version of ISE in October 2013 (version 14.7), and states that "ISE" has moved
into the supporting period of its item life cycle, and there are not any more arranged ISE

out.

1.2. Overview of ISE

All parts of design flow are controlled by ISE. Through the interface of Project
Navigator (PG)6 we can get the majority of the tools implementation design and entry

design. By this way, we can get files and documents related with our project.

1.2.1. Project Navigator Interface

Practically the Interface of Project Navigator is classified into four types of panel
sub-windows as explained in Figure 1. On the top-left of screen we see file, design and
libraries panel are displayed and they lead to source file of the project. At the lower part
of the Project Navigator we have the console, warnings and errors which show status
messages' warnings and errors. We see the multi-document- interface (MDI) window
indicate to workspace. We can use it to show schematics, text files, design reports, and
simulation of waveforms. Every window might be resized, undocked from PN, moved to
another area inside the fundamental PG window, tiled, layered, or shut. Boards might be

opened or shut by utilizing the View then Panels then menu choices.

1.3. Design Panel
1.3.1. Sources View

We can see the name of project by the sources view in order to display the name
of project documents of user the required device and source of design files related with
design view choices. The Design View ("Sources for") drop-down rundown at the
highest point of the Sources tab enables you to see just those source documents related

with the design view we choose, for example, Synthesis/Implementation or Simulation.

Every file has an icon referring to the type file (HDL, text, core, schematic). In
order to know the source type and their related icons we can use help in ISE™ . For this
purpose we can chose help and then select help contents. And search about “source file
type” after click on index tab. The sign ‘+’on the icon of the file refers to it has more

than one level of hierarchy and we can open these levels. We can expand and show the

contains of the file by click on the sign ‘+’and the file

the file name then double click.

will be opened by indicating on

[ISE Project Navigato w1 1. 1MSEASEexamplestwiut_vhdwiut_vhd.xise - [Design S
B File Edt view Praject Sowce Process Tools Window Help I
[E)= S 0 o PR KA AR mEooileipEP:Q
Design =0 & x] ([& Dol Srenien weuk_vh Project Status (06/12/2009 - 15:02:09) 2]
[if | Sources for: Jlmplement tion b) 2] 198 Properties Project File: whut_vhd.ise State: Fie Generated
o] | Herarchy & [E] Meodule Level Utiizstion Module Name: | stopwatch «Errors: o Errors
. & weue_vhd @ [l Timing Constraints - =
2] IS - [E] Pinut Report Target Device: | xc3s700a-4fg45+ - Warnings: 10 Warnings
=]) [%] 2 clock Report Product Versic ISE11.2 *Routing Results: | 4ll Sianals Completely Routed
P! r_preset. xco) @ Static Timing Design Goal: Balanced i | &l Constraints Mt
& X Tnst_demi - demi {demi xan) = Errors and Warnings - —
[ck_divider - clk_div_262k - chvide (clk_iv_262k,vhd) 3B Syrthesis Messages Design Strategy: | xiinx Default {uniocked) «Final Timing Score: |0 (Setup: id: 0, Companert
o i = : 0) (Timing Fepart)
[i el _inst - e _conkrol - led_control_sveh (kd_conwrolvhdi | g [E) Tanslation Messages Switching Limit: 0} (Timing Report
2 [y mode_debounce - debaunce - Behaviaral {debonce. vhd) [E] Map Messages
- [%] strtstop_debounce - dsbounce - Behavioral (dsbounce.vhd) [E] Place snd Routs Messages _
[fg] lap_Joad_debounce - debounce - Behavioral {debounce. vhd) [2] Timing Messages Device Utilization Summary 1
['g] timer_inst - time_cntt - time:_cni_arch (time_crit.vhdy ~ 8] Bitgen Messages Logic Utilization Used |Available |Utilization |Mote(s)
& T [Al Current Messages
& Detaled Reports number of Slice Fiip Flops 229 11,776 1%
W | Processes: stopwatch - stopwatch_arch 5] 5Wtf:ﬂ'5 Report Mumber of 4 input LUTs a7 11,776 Y
- . Translation Report
3| o E boskn SunmaryiRenorts Fliees Number of occupied Slces 284 5,088 o
| o S Degn rities R
2t 8 Create schematic symbol [2) Place and Route Report Humber of sices contaning only related logic 284 284 100%
= View Cammand Line Log File E :“‘“p‘:l S’E:‘C Timing Report umber of Slices cortaining unrelaked lagic 0 284 0%
[5] viewHDL Instantiation Template [Power Report . .
. Bitgen Report Total Number of 4 input LUTs 443 11,776 3%
= | B BF User Constraints 12
B create Tming Constraints Secondary Reports Humber used as logic 371
f€] 10 Fin Flanning (FlanAhead) - Pre-Synthesis Number used as a route-thru 72
€] 110 Pin Planning (PlanAhead) - Post-Synthesis -
€ Fioorplan AreafofLogic (Planahead) Lt AL 1 a2 il
BL\ Synthesize - X5T humber of BUFGMLIXS 3 24 127
R lmblemwll Design Humber of DCMs 1 5 12%
1\, Translate r
(L;}‘ s aneTpeitss Average FanoLk of Non-Clack Nets 3.43
2.1\ Map Enable Enhanced Design Summary
22 Place & Route L] Display Incremental Messages
(&) Generate Programming File [Enable Message Filtering
= F# Configure Target Device Optional Design Summary Contents Performance Summary -1
@ Generate Target PROM/ACE File [Shew Clack Repart Final Timing Score: | 0 {Setup: 0, Hold: 0, Companent Switching Limit: 0) | Pinout Daka: | Pinout Report
3 Manage Configuration Project (IMPACT) [show Failing Constraints
®1 Uptiate Bitstreem with Processor Data L] Show warnings Routing Results: All Signals Completely Routerd Clock Data: | Cinck Report
€% Analyze Design Using Chipscope [E| Show Errors Timing Constraints: | Al Constraints Met
[Show Partition Data
[Detailed Reports =5
< I > I Secondary Reports I [E15
Cesign | Fies | Libraries = Design summary (Proorsmming Fle Generated) | (3 e
Console w08 x
Launching : "Generate FRON/ACE File”
Process "Generate PROM/ACE File" completed successTully
< | >
Console | Errors | Warnings | Find in Files Resuls

Figure 1: Project Navigator
1.3.2. Processes View

The Processes view is important context and we can change its state depending
on what we choose of the source type in sources part and top-level of source in our
project. By this way, we choose the necessary function for setting, in order to run our

design and analyzing. By using processes, we get several functions such as:
1-Report or design summary.

We can access the report of design and results data and message from summary
design.

2- Utilities of design.

We can access from utilities of design create schematic symbol, view command
log file and view HDL instantiation template.

3- Users constraints.

We get several branches such as: create timing constraints, 1/0 pin planning
(planned Ahead)-pre synthesis, 1/O pin planning (planned Ahead)-post synthesis and
floor plan areal /10/logic (planned Ahead).

4- Syntheses

Synthesis contains many parts such as: view of RTL (register transfer level)
schematic, view technology schematic, check syntax and great post- synthesis
simulation model.

5- Implement design.

Implement of design part contains several levels

A- Translate.

Translate contains generate post-translate simulation model.

B- Map

Map contains several levels: Generate post-map static timing, analyze post-map
static timing, manually place and route (FPGA Editor) and generate post-map simulation
model.

C- Place and Route.

Place and Route panel has several types such as: Generate post-place and route
static timing, analyze post-place and route static timing, analyze timing/floor plan design
(plan Ahead), view/edit routed design (FPGA Editor), Analyze power distribution (x
power Analyzer), Generate text power report, generate post-place and route simulation
model, Generate IBIS model, view IBIS model, Back-annotate pin locations, view

locked pin constraints and generating programming file.
D-Configure target device.

Configure target device contains: generate target PROM/ACE file, manage

configuration project (IMACT) and analyze design using chip scope.

1.3.3. Files Panel

We get a list of flat sortable source files in our project from the files panel. We can
have sorted these file in view by any columns, we can modify and view properties to
every file by selecting the option source properties after indicating the file and right

clicking on it.

1.3.4. Libraries Panel

HDL libraries and related source files of HDL can be managed by the tab of
libraries we can get, show the libraries and edit their libraries related with sources.

1.3.5. Console Panel

From project navigator and from run process, the Console panel gives us all output in
standard state. We see error in symbol (x) in red color and yellow color for warning in

symbol (i) with information about warning by way of a message.

1.3.6. Errors Panel

Only messages of error have been displayed here. Other massages are neglected out

consol.

1.3.7. Warnings Panel

If we have error of synthesis or message in console panel of warning or errors to
location of error in HDL file. We select the messages of errors or by right click and
chose the option go to source then HDL file will open and the indicator transfer to line
where the errors lies. Only messages of warning displayed in this panel. Other console
messages are neglected out. We can go to http://www.xilinx.com/support website to find

answer to our problems and errors

1.3.8. Workspace

The Workspace refers to the place of design editors with viewers with analysis
tools when it is opened. ISE Text Editor, Schematic Editor, Timing Constraint Editor,

Design Summary & Report Viewer, RTL and Technology Viewers, and Timing
Analyzer are included. Other tools such by way of Plan Ahead for I/O planning and
floor planning, ISE Simulator (ISim), 3rd party Text Editors, XPower Analyzer, and

IMPACT open in separate windows outside the main PN environment when invoked.

1.3.9. Report Viewer & Design Summary

We get a summary of main design data from design summary also get all the
reports and message from implementation and synthesis tools and gives important
information about our project and we can overview information summary of device
utilization performance data collected from place and route report summary and

constraint information from all reports individual links.

1.4. ISE Console window

The ISE console window provides narrative from the design processes by way of
they operate. Most of the scripts that the ISE runs and messages that are emitted by the
various processes can be gotten by way of a running display in the Console
window—seeing it while a design is being treated can be quite informative.
Infrequently, some message will flash by and trigger an insight into a
design’s characteristics or defects. When the processing of a design has ended or
finished, the “Errors” or “Warnings” tab will filter all of the process

dialog down to the important details.

1.5. ISE Reports/Edit window

This shows a viewer for the numerous reports produced in the Processes
window. It also becomes a very useful syntax-coloring editor for Verilog and

VHDL sources in the Sources window.

CHAPTER TWO

Fundamental of VHDL and FPGA

2.1. Definition and Background on VHDL

VHDL means VHSIC Hardware Description Language. VHSIC is itself acronym
to "Very High Speed Integrated Circuits" furnished through United States Department of
Defense in 1980s. It is a language to a hardware description. It is a language to a system
or electronic circuit behavioral description. It is the language for circuit simulation in

addition to circuit synthesis [2].

Its early version is VHDL 87, next developed to a so-called VHDL 93. It is the
first hardware description language and innovative standardized via Institute of
Electrical and Electronics Engineers with IEEE 1076 standard. Furthermore, IEEE 1164,

has been added to present a multi-valued logic system.

A major encouragement inspiration for utilizing VHDL (or its competitor,
Verilog) is that VHDLSs are a standard, technology/vendor standalone language, and is to
portable and reusable. VHDL have two topmost instantaneous applications that are: 1) to
area of ASICs (Application Specific Integrated Circuits) 2) To area of Programmable
Logic Devices that comprising FPGAs—Field Programmable Gate Arrays and
CPLDs—Complex Programmable Logic Devices. VHDL codes are written for two
purposes: 1) it used to manufacture a chip of ASIC or to carry out circuit inside a

programmable device such as Xilinx, Atmel and Altera. Presently, numerous

multifaceted marketable chips have been designed utilizing this approach, e.g.,

microcontrollers.

2.1.1. Design Flow in VHDL

As explained previously, VHDL is mainly used for synthesis in FPGA or in PLD
or in ASIC. Design flow of VHDL is given in Figure 2 [2]. VHDL codes are saved in a
file with extension .vhd and they have similar name as that of ENTITY’s name.

Compilation is primary stage of a synthesis process [2].

VHDL entry <
(RTL level) <
Compilation
Netlist
(Gate level)
Synthesis _< Optimization
Optimized netlist
(Gate level) Simulation
|
Place & Route
Physical
device E Simulation

Figure 2 Design Flow Summary [2].

It is a high-level VHDL language that defines every circuit at Register Transfer Level
(RTL) and feed it in a net list at gate level. Then, optimization is second step that is done

on gate-level. At this level, simulation of design is implemented. Lastly, it possible to
generate a physical layout to a FPGA and PLD chips or generate covers to ASIC through

place and-route (fitter) software

2.1.2. Code Structure in VHDL

VHDL code is comprised from three components [2]:

1. LIBRARY declarations: Covers a list of libraries that is utilized in design.
Such as: ieee, std, work, etc.

2. ENTITY: Indicate 1/O pins of a circuit.

3. ARCHITECTURE: Comprises VHDL code that defines the way circuit

should function.

LIBRARY h
declarations
Basic
ENTITY VHDL code
ARCHITECTURE
_/

Figure 3. VHDL Code Components [2]

To announce a LIBRARY and to make it visible to design; two lines of code
required, one is the name of library, and the other indicating the name of the package to

be used.

LIBRARY library name;
USE library name.package name.package parts;

An ENTITY is a list containing all input and output pins named as PORTS. Its

syntax is given below.

ENTITY entity name IS
PORT (-
port_name : signal mode signal_type;
port name : signal mode signal type;
A
END entity name;

ARCHITECTURE is an explanation that according to it a circuit should
function. Its syntax is following:

ARCHITECTURE architecture name OF entity name IS
[declarations]

BEGIN
(code)

END architecture_ name;

2.2. Definition and Background on FPGA

VLSI circuits have been categorized as shown in Fig. 2.3. FPGA member of a
class of devices called field-programmable logic (FPL) [3]. FPLs describe
programmable devices covering repetitive fields of elements and small logic blocks. It is
seen that an FPGA is an ASIC technology of FPGAs application-specific 1Cs. Moreover,
a design of a classic ASIC needs extra semiconductor dispensation stages essential to an
FPL. Extra stages deliver higher-order ASICs in addition of energy consumption benefit
but also with high Non-Recurring Engineering (NRE) expenses.

The architecture of FPGA device is given in Fig. 5. Fundamental logic blocks
include 4 to 5-bit input tables, 1 or 2-bit output. Routing channel selections varies from
short too long. Programmable 1/0 block with flip-flops is connected to physical

boundary of device.

Traditionally, FPGA is not energy efficient, slower and usually given not much

functional compared to their fixed ASIC counterparts. Nowadays, FPGAs by Altera

10

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Altera

Stratix 5 have come to opposing like ASIC or Xilinx Virtex-7 and ASSP keys by giving
considerably less power usage, higher speed, less resources cost, insignificant
implementation real-estate, and more potentials to reconfiguration 'on- -fly'. Previously,
a project is comprised 6 to 10 ASICs, now same project can be implemented utilizing
only one FPGA [3].

2.2.1. FPGA Application

Any computable problem can be solved through FPGA. This is slightly
established via fact of FPGA that is utilized to implement a soft microprocessor.

Monolithic highly
integrated circuits

. ~.

Standard Custom
circuits circuits
Fixed Custom- Semi- Hand
wires programmable custom layout
Anmnalog ecircuits
Standard logic
Memory- Wire- Programme-) . ; -
Gate Standard Full Cell
programim- pProgramin- able
N array cell custom based
able able logic
FPL
Sea of gates
RAM FROM CPLD ULA Megacell
nC EPROM FPGA Masterslice = Composite cells
prog. DSP ROM SPLD NAND array

classic ASIC
ASIC

Figure 4 Classification of VVLSI circuits [3]

FPGAs initially started as a competition to CPLDs to carry out glue logic to PCBs
considering their size, abilities, and speed improved. The created multipliers inside
FPGA architectures in late 1990s,

11

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Application-specific_standard_product
https://en.wikipedia.org/wiki/Computable
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/CPLD
https://en.wikipedia.org/wiki/Glue_logic
https://en.wikipedia.org/wiki/Printed_circuit_board

Programmable
interconnect

point (PIP)

[Routing channel s]

Multiplier

[Lc:-gic blocks]

[B lok mem Of}’]

Figure 5 A field-programmable gate array architecture [3]

One more trend in utilizing of FPGAs is hardware acceleration is that it is
possible to utilize FPGA to speed up given parts of algorithm and dividend part of
calculation between FPGA and a generic processor.

12

Usually, FPGAs reserved to exact vertical applications where size of
manufacture is not large. To these small size applications, premium that companies pay
in hardware costs per unit to a programmable chips not less affordable compared to
development resources consumed on making an ASIC to a small-size application.
Nowadays, fresh cost and performance dynamics broadened variety of feasible

applications.

2.2.2. Advantages of FPGA

FPGAs have turned out to be extremely prominent in current years due to its
abundance of benefits. FPGA enable parallel processing operations do be done reducing
the computation overhead of complex algorithms. Programming time of FPGA can be
considered small relative to its ASIC counterparts. Re-programmability property of the

FPGAs provide us with great flexibility of circuit design.

NRE cost is zero: NRE denotes to one-time cost of investigating, developing,
designing and testing a new product. Since FPGAS are
re-programmable and can be utilized without any loss of quality every time,
NRE cost is not present. This significantly decreases initial cost of manufacturing

ICs since program is applied and verified on FPGAs free of cost. Due to look up table
which used by FPGA technology, the execution time will be much less compared to
ASIC technology. FPGAs are produced in great numbers, considering their benefits,
they can be accepted as cheap in price and they are too friendly to the designer. In

addition, power consumption is too less.

13

https://en.wikipedia.org/wiki/Vertical_application

CHAPTER THREE

Function Calculation using CORDIC

3.1. Trigonometric functions

Calculation of sine and cosine can be achieved via CORDIC. We start our
discussion with those two simple functions to verify simplification of CORDIC.
Differences between CORDIC classes not complicated in derivative and concept point
of view, hence considering one or two classes can lead to other classes’ derivation and
calculation. Thereto, considering those classes will serve to provide details to one class

of function and extension to another class.

Sine and cosine calculations performed in rotation scenario and named by way of
rotation mode. Rotating a (technically) is unit-length vector over any predetermined
angle. Let us assume to calculate cos 6 and sin 8, to give angle 6. If we consider a
vector (X,,Y,) 2 (1,0), rotate it on circle X + Y2 = 1, over a sequence of positive
angles, 6,,0,,...,0,, such that 6, + 6; +---,0,, = 6, and finish with vector
(Xns1,Yns1), then Y, ., = sin @ and X,,.; = cos. Then, let us take look at rotation

technique in CORDIC in rotation mode.

Figure 3.1 gives steps of rotation, by an angle 6;, of unit-length vector
with coordinates (X;Y;) at an angle ¢ from x axis. Coordinates,

(X{11, Y1), of new vector given as:

Xiyy = cos(6; + @)
14

Xi{., = cos ¢ cos (6;) — sin ¢ sin (6;)
Xiv1 = Xicos (0;) — Y;sin (6))
Xivi = (X — Yitan (6))) cos (6;)

@
Yo = sin(6; + ¢)
Yii1 = sin (@) cos (6;) — cos (¢) sin (6;)
Y1 = Xicos (6) — Y;sin(6;)
Yiio = (X — Yitan (6))) cos (6;)
(2
Y
(0,1)

(Xi+]" Yi+])

X .Y
{ i+1 7 Ti+l

(1,0)

Figure 3.1 Rotation mode CORDIC algorithm.

In CORDIC, rotation of (X;,Y;) to (X;,4,Y;:1), is shown in Figure 3.1 and this

rotation can mathematically be expressed as follows

15

Xip1 = Xi — Yitan (6))
Yisp = Xi — Y tan (6)))

@)

As we shall see below, utilization of a pseudo-rotation, in place of an exact
rotation can reduce complexity and hardware implementation of the algorithm that is

most important feature of CORDIC.

A comparison of Equations 1-2 and Equation 3 demonstrations that
vector(X;,,Y;+1), is lengthier than vector (X, Y1), by a factor of(1/ cos6;).
Consequently, to obtain sin & and cos 8 at end of final rotations of algorithm, it is
important to multiply (scale) each X; and Y; by this factor. Then, if magnitudes of
rotation angles are constant and total number of rotations also constant, nevertheless of
given angle, 6 and thus, same situation with recurrences above if ; suitably selected
then multiplying of scaling factors is also constant. Thereto, rather than scaling by
(1/ cos 6;) at each given step, i, to n + 1 iterations, it is adequate to simply multiply
(scale) last out come by factor

3

(4)

Actually, the last process, i.e., scaling by K can be avoided by setting X, to the
initial valuel/K. This initial scaling in X subsequently introduces a similar scaling in
Y.

Rotation by angle 8; can be converted into shifting by carefully selecting the

rotations angles as will be explained now. Let us select 8; = tan~" 27, this yields

16

Xiyp = X — Y 27
Yiepn = X — y; 27

()
where 2~ signifies a simple shift to right by i bits, and the constant term is
n
k = H\/l + 272,
i=0
(6)

Last issue in this presentation is convergence. We might dive into points of
interest of that beneath, however we make some preparatory comments here with a

specific end goal to finish definition of algorithm.

In order to choose whether to add or subtract at the current iteration in the
algorithm, total rotation angle so far is subtracted from 6. If difference is negative, then
an addition takes place; and if it is positive, then a subtraction takes place. Alternatively,
we can look at the difference between the accumulated angle and target angle. If last
rotation was to forward (backward), then next one can be backward (toward). In
algorithm, the difference is calculated incrementally by way of 6, + 6,,6, +6; +
6,,0,+ 6, +6, 065, etc. and preceding actions thereto correspond to making
adjustments according to “how much farther we have to go”. Angle residual is computed

in a third variable Z;.

To summarize, recurrences to computation of sine and cosine are done as

1 .
Xo =7 Yo=0,Zy =60 and 6; = tan"1 27"

X1 =Xi— 5271y,
Vi =Y +5, 270X,
Ziy1 =Zi—5; 6;

17

_{1 ifZ; >0
SiTl-1ifz, <0

3.2. Numerical Example for CORDIC

In this section, a numerical example is given about rotation mode of CORDIC
algorithm. We are going to evaluate sin and cos of the angle 0.735 radians.

First we need to find and set initial values of algorithms as:

Yl =0) Zl = 300 - 0523 I‘d, S1 = +1

10
. 1
k = 1_[\/ 14272t =1.1644, X; = P 0.8588
i=1

Then, iterations are performed as follows:
Fori =0,
6, = 0.7853 rd
X,=X,—5,271Y, - X,=08588— 1x 271 x0 = 0.8588
Y,=Y, —5,271X, - Y, =0+s, 271 X, = 0.4294

Zy=Zy—s5,0, > Z; = 0523 — s, 0.7853 = —0.2623

Fori=1,
0, = 0.46367d, Z, <0,5,= —1
Xz = X1 - Sl 2_1 Y1 - XZ = 08588 + 1 X 2_1 X 0 = 08588

Y2=Y1_512_1X1 il Y1=O_512_1X1=_0.4‘294‘

18

Z,=7Z,—506,->7Z; = —0.262 + s;0.4636 = —0.2016
Fori =2,
0, = 0.2450 rd, Z, <0,s,=—1
X;=X,—5,272Y, > X, =0.8588+ 1 x 272x0.4294 = 0.75145
Yo=Y, +5,272X, > Y, =0.4294 — 5,272 X, = 0.2147
Zy =17, —5,0, > Z3 = —0.2016 + s, 0.2450 = —0.0434
and so on -+, and lastly
Fori = 10,
010 = 0.0020rd, Z, <0,5,0= —1
X11=X10— 51027V » X;0=0.8659 + 1 x 271°%x 0.5002 = 0.8569
Y11 = Y10 + 510 279 X3 = Y30 = 0.5002 — 1 x 271% x 0.8659 = 0.5002
Zy1 =Zy9 — S10 010 = Z10 = —0.0002 4+ 1 x 0.002 = —0.002

We wrote a program in MATLAB to calculate the cosine and sine values
of the angles, and find the number of iterations needed considering the accuracy
of the calculated value, the program and its outputs are depicted in Fig. 3.2 and
Fig. 3.3.

clc;clear all;close all
format short

s=input ('enter angle');
i=0;

flag=1;

k=atan (27-1) *180/pi;
Z(1)=k;

while flag==

if abs(k-s)<=0.01
flag=0;

end

if k>s

i=i+1;

19

k2=atan (27-1) *180/pi
k=k-k2

Z (1+1)=k;

else

i=i+1;

k2=atan (27-1) *180/pi
k=k+k2

Z(1+1)=k;

end

end

plot (Z)

grid on; hold on;
_Iteration=i

= Z Figure 1 @E‘g‘

@ Editor - DX\matlab program my werking\Untitled27.m

|. matlabcoswave.m | angles.m | anglel.m | anglm e Lol G Meao Usds Disshp Sl Sd

i|= cleyelear agll;close all D@HQ|%|%%W@@K'|@‘DE‘.Q

2 - format short

3 - s=input ('enter angle');

4 - i=0; 4

5 — flag=1;

& — k=atan(2"-1i)*180/pi;

7= Z{1l)=k: 40

8 — [Jwhile flag==1

9 - if abs (k-3)<=0.01
10 — flag=0; £
ali Lo end
12 — if k»=
13|= i=i+l; 30
14 - k2=atan(2~-1i) *180/pi
15 — k=k-k2
16 — Z(it+1)=k; 25+
17 — else

1
Command Window
a0t
30.0061
15
No_Iteration = 1] 2 4] B 10 12 14
13

Figure 3.2 Number of iterations w.r.t angles.

clc;clear all;close all
%epserror=[3 2 1 0.1 0.05 0.01 0.001 0.0001]

epserror=[0.0001 0.001 0.01 0.1 0.5 1]

z0 in=[35 14 65]

colorset={[1 0 0];[0 O 1];[0 1 0]}

colorset =cell2mat (colorset)

for k=1:3

for j=l:length (epserror)
m=0;
x1=0.607252935;

yi=0;

z0=z0_in(k);

zi=z0;

theta=[45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1]
for i=0:1length (theta)

if (zi>=0)
xil=xi-(2"-1) *yi;
yil=yi+ (27-1) *xi;
zil=zi-theta (i+1);
else
xil=xi+(2"-1) *yi;
yil=yi-(27-1) *xi;
zil=zi+theta (i+1);
end
Xi=xil;
yi=yil;
zi=z1i1l;

m=m+1;
if (abs(zil)<=epserror (j))

break;
end
end

itr(3)=m;
end
C=colorset (k, :);

figure (1)
plot (epserror,itr, 'color',C); xlabel ('epserror'),
ylabel ('iteration'),hold on;

legend ('35'","14",'65")
pause

end

x1i
cos (z0*pi/180)
yvi
sin(z0*pi/180)

HOME

I:Il:'I:| = E [Find Files. <@

5] compare » g GoTo v

Comment % i %

PUBLISH

nsert 5] fx -

o

’> L@ [=] Run section

HAabLRe

(2} search Dacumentation

New Open Save Breakpoints Run Runand =il Advance Run and
v v v [Pt v Find ~ Indent - ~ Advance Time
FILE NAVIGATE EDIT BREAKFOINTS RUN
<> EE » D: + matlab program my working -
Current Folder @ | [Z Editor - DAmatlab program my working\cordic2.m 2 Figure 1
N 3 I Untitled27. hakirsimanahmad. +
16 asmzim 2 | anglm | Untifled?7.m 3 | shalirsimanahmadm § (e ™ o i Insert Tools Desktop Window Help D-D
-5-2017.m o
38 - end = N =)
T angiom NEE® [kX094 2000
#) angle3.m " g
] angled.m gla - | sc ;
T anglerm £ itz(3)=m; 9
) angles.m 42 end 35
) anglesbm |23 - C=colorset (k,) 85 14
) cordicl.m 4 - figure(1) 65
) cordic2.m 45 - | plot(epserzor,itr, 'color',C); xlabel 8
] cordiclL.m 46 - | legena('35','14",'65")
) hhyperbolic.m 47 - | pause 75
%) matlabcoswave.m e - end
newsolution.m a9 s v
& 2 S
) shakir_h_w.m s0 - oxi £
) shakir h w2m T s1- cos(z0%pi/180) 5 65 3
cordic2.m ipt A |52 = yi =
. i1 6
Workspace CHES s3in(z0*pi/180) L
54 =
Name Value 5.5 -
Command Window ®
FH ans 0.0063 a 5
FHc 101,01 0.9014
[colorset [1,0,0:0.0.1:0,1,0] E
E 4.5
FH epserror [1.0000-04,1.0000e-0.
HH i 3 L4 - . . . '
H it [9,8,0,9.44] e o
itr 0 01 02 03 04 05 06 07 08 08
J 6 0.90863
E K 3 epserror
g m 4 || »> Ty

Figure 3.3 Iteration number w.r.t accuracy parameter.

22

CHAPTER FOUR

Implementing CORDIC in FPGA using VHDL

4.1. Overview of CORDIC Architectures

Architecture of CORDIC algorithm is presented in this section. Generally,
architectures are categorized into two parts: first unfolded and second folded as depicted
in Figure 9. We can have folded-architectures by implementing difference equations in
hardware for CORDIC algorithm and time multiplexing of whole iterations inside a
single efficient part. Folded-architectures give mechanism to an interchange zone into
signal processing architectures to timing. Folded architectures has been divided to bit-
serial and word-serial architectures subject to whether functional unit carry out logic into

one bit or one word for every iteration of traditional CORDIC algorithm [4].

Traditionally, CORDIC algorithm can be implemented using serial bit
architecture including, and entire iterations can be performed using the same hardware.
In such implementations, computing device gets slow-down and, is not appropriate for
high-speed application. An iterative CORDIC architecture is word serial architecture
proposed in [5, 6] which is fast compared to classical implementations. Suitable simple

angles 6; are retrieved from lookup-table.

Carry or borrow generation, addition or subtraction and variable
shifting operations have degrading speed factors throughout iterations of word serial
architecture, however, these operations in traditional CORDIC implementation causes

the hardware to function very slowly. Thereto, through unfolding iteration process,

23

drawbacks have been overcome by performing same iteration at each processing

elements as shown in Figure 4.1. Unfolded pipelined architecture possess large

throughput because of hardwired shifts instead of time and region consuming barrel

shifters and removal of ROM that is main benefit of unfolded pipelined architecture

over Folded architecture. Pipelined architectures give throughput enhancement by a

factor of n to n-bit precision at the price of rising hardware complexity by factor not

more than n.
Xo Yo
\T e \/
% +/— % +/—
X Y, =sign (Y)} MUX
:_Wicd_ shift (1) Wired Shift (1),

j\%ﬁj

Xi

Sy
a1 +—
Y2

—sign (Y) MUX
e l
| Y ”
[i
WS)| | Wi it)
MUX

Oi+1 J’

Figure 9 Basic Architecture of CORDIC [4]

24

4.2. FPGA Implementation to CORDIC Algorithm

Nexys 3™ FPGA Board Reference is used for algorithm implementations.
Nexys 3 is a complete, ready-to-utilizing digital circuit development platform involving
Xilinx Spartan-6 LX16 FPGA. Spartan-6 is enhanced to high performance logic, and
gives not less than 50% more capacity, improved performance, and additional resources
over Nexys 3™ Spartan-3 500E FPGA can be found in [7].

Pmod
Power Select Power Done
EOMNGE Jumper Good LED /:onnectors JTAG

Jack \

Power

Switch
Adept . 3 ¢ 3 [H : | IrrgDEr
USBPort o 3 i LY = "

L1 "‘Er'v 3
. - 7 27 hangwik
: RENEETE
10100 o fammt®

Ethernet [r— i) TIEAS

USB HID
Host Port

LEDs Slide switches Push buttons

Figure 10 Nexys 3™ FPGA Board Reference
Structures of Nexys 3™ FPGA Board are:
1. 16 Mbyte Cellular RAM x16
2. Xilnx Sprtan-6 LX16 FPGA a 324-pin BAG package

25

16 Mbyts SIP PMC non-volatile memory

16 Mbyts parallel PCM non-volatile memory

10/100 Ethernet PHY

On-board USB2 port to programming & data xfer
USB-UART and USB-HID port (to mouse/keyboard)
8-bit VGA port

100 MHz COMS oscllator

10. 72 1/0O routed to expnsion connectors

© © N o 0o bk~ o

11. GIPO comprises 8 LEDs, 5 buttons,8 slide switches and 4-digit seven-segment
display USB2 programming cable comprised

Besides Spartan-6 FPGA, Nexys 3 gives better group of peripherals comprising
32Mbytes of Micron's latest Phase Change Nonvolatile memory, a 10/100 Ethernet
PHY, 16Mbytes of Cellular RAM, a USB-UART port, a USB host port to mice and
keyboards, and an enhanced high-speed expansion connector. Large FPGA and broad
set of peripherals make Nexys 3 board a perfect host to a wide variety of digital systems,
comprising embedded processor designs founded on Xilinx's MicroBlaze. Nexys 3 is
well-matched with every Xilinx CAD tools, comprising ChipScope, EDK, and free
WebPack. Nexys 3 utilizes Digilent's latest Adept USB2 system that gives FPGA and
ROM programming, automatic board tests, virtual 1/0, and basic user-data transmission

services.

26

CHAPTER FIVE

Generation of Sinusoidal Signals

In order to generate an output signal having a sinusoidal waveform, we will be
use a digital stores at different locations binary-coded amplitudes at equally spaced
instants of time during a complete cycle of a sine wave. Those locations are addressed in
turn by incomes of a pulse counter and the signals supplied by the memory are passed to
a digital/analogue converter from which the required output signal is resultant. The pulse
signal supplied to the counter is achieved from a sequence of clock pulses by a
programmable divider. To get a frequency change in the output signal (for the purpose
of signaling binary data), the frequency of the divider is changed in a sequence of steps
so that the overall change in output frequency is less quick than would otherwise be the

case.

5.1. Digital to analog Converter

The abbreviation DAC is refers to converts from digital to analog. A device
gives an analogue signal from convert’s digital data. The digital to analogue converter
takes serial numbers of discrete values as input values and gives an analogue signal that
Is instantaneous with the equivalent numerical value. Several kinds of Digital to Analog

converter ICs are obtainable commercially built on this same standard. The R-2R ladder

27

circuit is constructed by a set of resistors of two values. It makes the circuit simpler and

economical for several applications.

R-2R biased resistor ladder circuit consumptions only 2 set of resistors- R and
2R. If you need to construct a very fixed DAC, be accurate while selecting the values of

resistors that will exactly equal to the R-2R ratio

J—_- 20k
IsB 0 L
20k l
10k
1 E—f
20k
10k
- T
|

3 -=——;
20k

=
20k
10k
5
20k
10k
6 I1— I

20k

~1
L
——f

osC

Figure 11 Digital to Analog Converter

28

Simulation and Result

5.2. Introduction

In order to test a circuit by software we can use simulator platforms.
Conventionally, we can build a digital circuit on board using chips to test logical circuit
but this state has some disadvantages. One of the important disadvantages is high cost,
because in this method we need heavy expensive lab equipment and hardware. Cost can
increase more because many chips may be hooked up and incorrectly destroyed. Some
errors often difficult to detect on board. Solution to these problems is design re-usable

circuits. In next step, we will explain Xilinx ISE Design Suite 14.5 ISim Simulator.
We will learn the following topics:

1. How to use a simulator and learn different capabilities of it?
2. How to create a test bench in (VHDL) in order to be used by simulator?

3. How to verify functionality (CORDIC Algorithm) by using Xilinx ISim Simulator?

5.2.1. Getting Started

In this section, we will describe requirements to conducting behavioral
simulations. To create design files in VHDL, we open icon (file) and chose open (new

project) option and name it, see Fig. 12.

e To simulate design, we need a bench file to provide stimulus to design.
¢ Simulation Libraries: We need Xilinx simulation libraries when we use

Xilinx primitive or IP core in design.

29

-

File Edit View Project Source Process Tools

ISE Project Navigator (P.28xd)

Y -

DPEFLxpEx|ea| JrraprRizaocieir @

Start

Welcome to the ISE® Design Suite

Project commands

Recent projects

Double dick on a projectin the list below to open

@mat:ltﬂl’mjmt
Specify project location and type.

shl

wavesin

WAVE
cordicAlgerithversionl

Additional resources:

Enter a name, locations, and comment for the project

Name: ‘cord\:nlgcnﬂ\mveryonl

Location: |D:\SE_projects\cordicAlgorithmversion 1

Working Directory: | D:\[SE_projects\cordicalgorithmversion1

Description:

Tutorials on the Web
Design Resources
Application Notes
Select the type of top-level source for the project
Top-level source type:
hoL
Errars

Figure 12 How to create a design file.

5.3. Behavioral Simulation Using ISim

The steps to be followed to simulate your design are:

1. Open your design project (cordicAlgorithversionl).

2. Choose simulation mode.

3. Add a HDL test bench to your existing design.

4. ldentify simulations.

5. Determine simulation properties.

6. Simulation performance.

7. Add signals.

30

5.3.1.

8. Signal analysis.

How to open project

Open Project Navigator from all programs Xilinx ISE design suite 14.5.

We see project navigator window Figure 13.
We have two method to open any project:

1. Directly open project and chose project from list.

2. Open existing project on screen and we will see previous project to example

(cordicAlgorithversionl) and chose it.

D3P L] % Xwa| A rRRARF BET FRIPCLQ
b=ir o0ax s Dﬂ%‘ E‘U’:‘;;Z”” = cordic_main Project Status (10/18/2017 - 15:15:57)
(5] | iew: © 4§} implementation © &) Smulation — Y " .
@ [2) 108 Properties. Project File: Parser Errors: No Errars
(] | Hierarchy [£] Module Level Utilization Module Name: cordic_man —~—
4 & cordicAlgorithmVersionl 5] [2 Timing Constraints E - & Design Properties)
= = — Target Device: xchsbx16-3csg324
——| = A xchsbd6-3csg3d o [2 Pinout Report
- & [ty cordic_main - Behavioral (cordic_main. % Clock Report Product Version: ISE 14.5 Mame: cordicAlgorithmyersion 1
- inn.ucf d Static Timing L4 .
g & v 4| & o ama Waings DeswGoat Balanced Location: Di\VHDLprogram \cordiclgerithmVersion
= Design Strategy: i
i)) Parser Messages = L0 | orking drectory: D:WHDLprogram cordicalgorthmierson 1
PRER i 3 ﬂ [E) Translation Messages Desaiption:
Map Messages
W | T NoProcesses Rumning [2 Place and Route Messages
= Timing M -
¢ | No single design moduleis selected. [2) Timing Messages Slice Logic Utilization br
9|23 Design Utiities Design Properties Nrmber of Sice Ragsters Property Name. [Value B
= €2 Update All Schematic Files. [7] Enable Message Filtering Top-Level Source Type HoL T=]
Y &) CompileHDL Simulation Libraries Optional Design Summary Contents humber of Slce LUTS
- %] Regenerate All Cores [C] Show Clock Report Number of occupied Slices
& CheckAll Core Versions [C] Show Failing Constraints b oFMUNCY: st Evaluation Board [+]
[F] Show Warnings moer o 5 st Product Category All [+]
[C] Show Errors umber of LUT Fip Flop pairs used Family Spartan =
= Start | B3 Design |IL] Fles | [) Lirares | T S) BH Device XCBSLX16 =
Package CsG324 [+]
Console specd 3 =k
i) INFO:HDLCompiler:1061 - Parsing VHDL file "D:/VEDLprogram/cordicAlgorithmVersionl/cordic_TB.vhd" into L
i) INFO:HDLCompiler:1061 - Parsing VHDL file "D:/VHDLprogram/cordicAlgerithmVersionl/cordie_main.vhd" into
I)INFO:HDLCompiler:1061 - Parsing VHDL file "D:/VHDLprogram/cordicAlgorithmVersionl/cordic_package.vnar if | | SynthesisTool XST (VHDL/Verilog) [~]
I)INFO:ProjectMomt - Parsing design hierarchy completed successfully. Simulator ISim (VHDL Verilog) [+]
i) INFO:HDLCompiler:1061 - Parsing VHDL file "D:;\T-lDLpngran;cnId)cAlgnritm\’exﬂlnn]jcn)djcinalﬁ.vnd” intol | | preferred Lanquage VHDL =
3) INFO: EDLCompiler:1061 - Parsing VHDL file "D:/VADLprogram/cordichlgorithmVersionl/cordic_package.vhd” | |, Specit
- tion in Project File | Store all val =
4/ INFO:ProjectMont - Parsing design hierarchy completed successfully. gmcectyispechcation in Brofectflegg) Store 2l values =]
Launching Design Summary/Report Viewer... Manual Compile Order [§]
VHDL Source Analysis Standard VHDL-200X =~
- ancel el
Console | @ Emors | 1, Vamings | {4 FindinFiks Resulis

Figure 13. Project navigator window
We see two choices, implementation or simulation, See Fig. 14.

b ISE Proj avig - DM
i File Edit View Project Source Process Tools Window Layout Help
ORI % Xlwa| A 2,BRARIR =EDZ LR PELT

Design

+08 x| .

. - i
@Dlemenmﬁan @ Sim@ i
Behavioral |z| O

Hierarchy 9
& cordicAlgorithmVersionl Q
= B xchshdB-3csg324
cordic_main_tb - bench (cordic_TB.wvhd)

'||'«_ *|m|§u|ﬁf‘@[|
|= || B

Figure 14 Explanation of the choices for the implementation and simulation options

5. You should use implementation mode when you want to design a circuit using

VHDL. On other hand, you should switch to simulation mode when you want to

31

simulate your design. To simulate the design, we should use Simulation mode

and chose implementation mode when you want to design a circuit using VHDL.

*When we use simulation mode, we see behavioral check syntax and simulate behavioral

model, translate simulation (that is executed after synthesis), mapping (that is

implemented after executing design), route simulation (that is achieved after mapping,

placement and routing).

5.4. How to add an HDL Test Bench

In order to create a new test bench file to our project and modify by editing it

with statements, we should follow these steps:

1. Highlight our project and then click on new source and select VHDL Test Bench

and enter “cordicAlgorithversionl_tb”, and click next, see Fig. 15.

Design axi

[Hf | e) {8} implementation (@) [simulation 6

g] o

& hy o

= cordicAlgorithversion1 [4

i | B £ websil6-3csg324 m

a cordicAlgerithversion - Behavioral (cordicAl =

®

2 L)
< >

»

7 ion1 - Behavioral

=

= T2 Behavioral Check Syntax

St Simulate Behavioral Model

=

[i}
o
o

e 5

oooo§os

Figure 15.Creating a test bench.

>

cordicAlgorithversion1 Project Status

Project File:

cordicalgorithversion Laise

Parser Errors:

Module Name:

ion 1

Target Device:

xchsh16-3csg324

(€5elect Source Type

d its location.

g
e}
[}
[}
[}
[}
E] Select source type, fle name an
[
[N
O
[
B
I
El
O
[
O

New Source Wizard

Add to project.

2:03:31

32

To save
all

- |[#][x
w X |0 o ¢ AR R RGN 2] ¢
wDax [Degn Ovenie = — T
tion @ G Smulation) 15:15:57)
@ ion Projectcrdcign
State:

9
1 [cordic_main_tb - bench [co

£ o Processes Ruming

£ | oo single design module s selected.

|5 % Designutites

File name:

corticalgerishmersion1 -t

Locatan:

D: WHDLprogram cardcAlgorithmbersion 1

Shce Logic | Used | Available | Utilization | Nate
Itilization (=)

~O&x

) Add ta project
e o) o

| & consoe @ Eros [1) Wornins | m Pt PlesRess

Figure 16 Saving a test bench file

2. We will see new file with our project in Hierarchy pane
(cordicAlgorithversionl.vhd) and a skeleton VHDL file in Workspace panel on
right hand side of screen.

3. We write a test bench program and save it.

4. To save test bench file see Fig. 16.

5.5. Behavioral Simulation Using I1Sim

After we get a test bench in our project, we can implement behavioral simulation
using 1Sim and ISE software full integration. ISE software supports 1Sim to create

directory, compile main files, load design, and implement simulation.
How to Select ISim

We can do double-click in device line in hierarchy pane of Project Navigator Design
panel, right-click device line and select Design Properties and set Simulator field to
ISim(VHDL/Verilog) and press OK., see Fig. 17.

33

Broject Settings

Top-Level Source Type

Evaluation Development Board
Product Category

Family

Device

Package

Speed

Synthesis Tool
Simulator

Preferred Lanquage

EAamuial (T ammmila Ordar

HDL

Mone Specified

All

Spartanf

KCB5LX16

C5G324

-3

ST (WHDL Verilog)

1Sim (VHDL Verilog)

YHDL

Property Specification in Project File

Store non-default values only

Figure 17. How to select ISim

34

How to locate 1Sim processes
a. Select Simulation, and select Behavioral from drop-down list and
select test bench file (cordicAlgorithversionl- TB), see Fig. 18.

Design [
[| View:) Il':.ﬁ Implementation (@ FEE Simulation

s Behavioral v
HIEJ Hierarchy

— 'Eﬂ cordicAlgeorithversion

w5t | B Bl uchslk16-3csg324

E cordicAlgarithversion1 - Behavioral (cordicAlgorithw
B

£ >

€2 Mo Processes Running

Processes: cordicAlgorithversion] - Behavioral

= ‘ﬁ' 1Sim Simulater
) Behavioral Check Syntax

I Simulate Behavioral Model

H SRR v

Figure 18 How to select Simulate Behavioral Model

b. Expand ISim Simulator in Processes pane to view list of processes.
c. At beginning check syntax, and simulate behavioral model. If all goes
fine, we will get message ("Completed successfully).

35

How to do behavioral simulation:
We can change properties and see behavioral simulation properties by
apply these steps:
d. Choice test bench files (cordicAlgorithmversionl_tb).
e. Expand ISim Simulator, right-click Simulator Behavioral Model, and
choice Process Properties.
f. Set Property display level to Advance in Process Properties dialog
box.

Convert Simulation Run Time, say 200 ns.

h. Click on apply.
i. Click OK, see Fig. 19.

E 7 Process Properties - ISim Properties o x|
Switch Name Property Name Value
Use Custom Simulation Command File |~
Custom Simulation Command File _l
-incremental | Incremental Compilation v
-nodebug Compile for HDL Debugging v
Use Custom Project File -
pri Custom Project Filename /Z _I
Run for Specified Time v
Simulation Run Time 200 ns
Waveform Database Filename C:\xilinxprojects\SchemHalfAdder 2\HalfAdderCkt_sch_tb_isim_beh.wdb _l
Use Custom Waveform Configuration File |~
Custom Waveform Configuration File __I
Other Compiler Options
rangecheck | Value Range Check -
Library for Verilog Sources
Bl Specify Search Directories for 'Include _I +... |
-d Specify 'define Macro Name and Value
Specify Top Level Instance Names work.HalfAdderCkt_sch_tb
Load glbl v
Other Simulator Commands

Property display level: ;Advanced v] [V Display switch J Default |
elp

| o« | cace | a0y | vep |

Z

Figure 19. Change properties and behavioral simulation properties

36

How to perform simulation

To obtain the simulation waveforms, we follow the following steps:

a. Will need to use zoom tools (zoom out and in), and we can click in

) L Q2 b
restart simulation icon— .

As an example, if we choose the angle value as 10, and run the cordic
algorihm, we get cos(10) = 0.984375, see Fig. 20.

IS1Im (P.28xd) - |Default.wctg) - =
E|
o2 alz N ®|o o | & EEMS AR AR AR |t 1 B b pE | Loous [6= 3 Redaunch
nstancesan... + 0 & x||Objects 08 x| &
GlEEEg »| smeton b frshi o

TN : 0
Instance and Process Naj K Kol il Vo 1 8 [2§ anglelr:a) ——-mmmmm——
B o Object Name v 2 Mg cosincion gy
% std_logic_1164 3§ anglel7-g] @
] numeric_std 25 cosinelt:-7] o1
W math_real @
] textio =
| fixed_float_types
=
W fixed_pkg =
] shi_package 1 il Calculator
i View Edit Help
1
b
= (@ Degrees () Radians Grads + B
Inv (x|

< >
£ Instanc Mk < >

ez I . _ | | FE || Exp || Mod || log || 107 0 B
a0 ps, Instance /shi thiuut/ : Warning: :fixed pka:">=": metavalue detected, refurming FALSE

(E]

Default.wefg B n ||tanh|| tan || x Jx || 1 2 3

int || sinn Z ! 9 %
X1: 1,000,000 ps ‘
dms || cosh r ¥ 6 & /
<0

Figure 20. How to perform simulation

37

5.6. Information from VHDL Test Bench

We can use test bench program to with timing utility. When we want to write a suitable

test bench we need provide simulation data to test the behavior of the circuit.

Every test bench consist three elements:

e Unit under test (UUT)

e Stimulus generate

e Response monitor.

Unit Under Test: A test bench is top-level VHDL program that includes an

instantiation of the module under consideration.

We can achieve authentication in simple project test-benches by visual

examination of UUT’s outputs in simulator’s waveform window.

However, a more efficient approach is to include code in test bench so that we

can automatically check real UUT output values in contrast to probable values. We

consider test bench by self-checking .We will get a message if any error appears during

the test.

5.7. How to set-up and test NEXYS3 board

Setup of NEXYS 3 boards is not difficult. We will use LEDs by way of outputs. The
following steps are pursued for the setting up of FPGA board.

1. We connect NEXYS 3 board to USB cable.
2. We connect USB cable to our computer.

3.
4

Small yellow LED is energized when power is turned on.
By using Digilent Adept tool we can test, if digilent NEXYS3 board is
active.

On Test icon click “Start Peripherals Test”.

On LEDs we will have different output values depending on the used angle value.

38

In order to reset board to industry settings, we press the “reset button’. At top left part of
board, we use slide switch to power off, see Fig. 21.

el
& Connect: |Nexys3 ZI
NEXYS 3 e s

Config | Memory Test | Register I/0 | File I/0 | 1/0 Ex | Settings |

AunAEMFlashTest | O
— Feripherals Tiest
Test Shorts | O
Switches: Button?:)
O
Connect YGA monitor and USB-Mouse.

Start Peripherals Test | @ Stop Perhipherals Test I

Board information loaded. ;]
Found device ID: 34002093
Initialization Complete.
Device 1: XC65LX16
Programming test configuration...
Test Started.
v

Figure 21 Setting up of NEXYS3 board

5.8. Switches and 7-Segments displays

We use NEXYS 3 Board.

We need to know connection and location of DIP switches and LEDs.

39

5.8.1. LEDs

NEXYS 3 Board affords a sequence of eight LEDs (LDO-LD?7) to use. Every
LED glows when high”1-logic”is applied on it.

In this thesis, we use the LED locations listed in Table 1 as illustrated in Fig. 22.
In Table 1, connections from LEDs to NEXYS 3 Board and UCF constraints are shown.

- ISE Project Navigator (P.28xd) - D:\ISE_projects\cordicAlgorithversion1\cordicAlgorithversion.xise - [pins.ucf] -0
NER
RELCE I R)
Design 1
Hf [view: ® 3 implementation () [smulation i
5] | Hierarchy +
| - 8 cordicAlgorithversiont s
= & £ xebohlf-dcsgIzd & nk = 2 in
i}] i - i it| 7 N 1
G| e @3@ <;v:;<ufzwfgummersmn1 Behavioral (cordicAlgor T = New Source Wizard n
Q; (€5select Source Type
Select source type, file name and its location.
— BMM File
&4 ChipScope Definition and Connection File
¥ Implementation Constraints File
{ IP (CORE Generator & Architecture Wizard)
MEM File
< >
[©] Schematic
User Document e name:
| B2 MoFrocesses Running [E] User
= Verilog Module
71 | Processes: cordicAlgorithversion! - Behavioral) 4] Verilog Test Fixture
: Logation:
9f| - & Design Summary/Reparts [VHDL Module
— |2 % Design Utilities [y VHDL Library D:\[SE _projects\cordicAlgonithuersion 1
Ei T) Creste Schematic Symbol [F] VHDL Package
— [Z) View Command Line Log File £s VHDL Test Bench
[Z] ViewHDL Instantistion Template g% Erbedded Processor
@ User Constrsints
5 Creste Timing Constraints
/0 Pin Planning (PlanAhead) - Pre-Synthesis
1/ Pin Planning (PlanAhead) - Post-Synthesis Add to project
[€] Floorplan Area/I0/Logic (PlanAhead) >
£ TAED Synthesize - XST —
More Info Next > Cancel
) ViewRTL Schematic I = anee 8
View Technology Schematic ¥ eOax
< S >

Figure 22 Connection from LEDs to NEXY'S 3 Board

Table 1: NEXYS 3 (Light Emitting Diodes) LEDs

Description Location

NET LDO LOC = U16
NET LD1 LOC = U16
NET LD2 LOC =U15
NET LD3 LOC =U15
NET LD4 LOC =U11
NET LD5 LOC =U11
NET LD6 LOC =U11
NET LD7 LOC =U11

40

5.8.2. Seven Segment Displays

Digilent NEXYS 3 Board includes 4 multiplexed 7-segment displays to use.

If we need to display on 7-segment displays, we can use the addresses in Table 2 for

UCEF file.

5.8.3. Switches

Table 2: NEXYS 3 (7-Segment display)

Description
NET CA
NET CB
NET CC
NET CD
NET CE
NET CF
NET CG
NET DP
NET ANO
NET AN1
NET AN2
NET AN3

Location
LOC =T17
LOC =T16
LOC = U17
LOC =M14
LOC = N14
LOC=1L14
LOC = M13
LOC =N16
LOC = N15
LOC =P19
LOC = P17
LOC =T17

We see eight slide switches available on NEXYS 3 board. When we put switch at

ON state, each DIP switch pull pin of NEXYS 3 Board is connected to the ground, but
when DIP switch is at OFF state, pin is drawn high through a 10K resistance.

In Table 3 below we show connections of switches to Digilent NEXYS 3 Board.

41

Table 3: NEXYS 3 (Slide Switches)

Description Location

NET SWO LOC=T10
NET SW1 LOC=T9
NET SW2 LOC =V9
NET SW3 LOC = M8
NET SW4 LOC = N8
NET SW5 LOC = U8
NET SW6 LOC =V8
NET SW7 LOC =T5

5.8.4. Push Buttons

We see five pushbuttons (labeled BTNS through BTNR) on Digilent NEXYS 3 board
available to the user. When pushed, each pushbutton is connected to the ground pin of
NEXYS 3 Board. Else, pin is drawn high through a 10K resistor.

In Table 4 we see connections from push buttons to Digilent NEXYS 3 Board.

Table 4: NEXYS 3 (Pushbuttons)

Description Location

NET BTNS LOC =B8§
NET BTNS LOC = A8
NET BTNS LOC=C4
NET BTNS LOC =C9
NET BTNS LOC =D9

42

We get the following results, when we use our code as shown below

ISim (.58} - Detaut

File Edit View Simulation Window Layout Help
12 E|2 ®|lo oM % mE M T e AR A R | @ b pZ[roous [] 6= | £ Redounch |

Simulation Objects for cosinegen

[EEEGEE)

Design Unit Block Type|

nibe... VHDL Entity|| Object Name Value
(1164 VHDL Packal Bw 01111210
VHDL Packay 25 2 01111110
WVHDL Packa)| 2B 01111011
VHDL Packal 25 | 01110110
fixed_float_ty.. VHDL Packa| 2 15 01110010
fixed_pkg VHDL Packa| 2 6 01101180
cardic_package VHDL Packal Bm 01100110
g = 01011010
25| olo01111
& no] 01000111
25 1y Q0111200
&g nz 00110010
&3 n3) 00100010
2 14 aoo10110
23 ns] 00001110
25 ne] 11111101

10011100010001

s Instances and Processes memory | |2 Source Files

Figure23 Results of cosine values

cos(0.0000)=01111111=1/2+1/4+1/8+1/16+1/64+1/128----------- >=0.9884375

c0s(05.6250)=01111110=1/2+1/4+1/8+1/16+1/32+1/64------- >=0.984375

co0s(11.2500)=01111110=1/2+1/4+1/8+1/16+1/32+1/64------ >=0.984375

cos(16.8750)=01111011=1/2+1/4+1/8+1/16+1/64+1/128-----> = 0.9609375

cos(22.5000)=01110110=1/2+1/4+1/8+1/32+1/64----------- >=0.921875
c0s(28.1250)=01110010=1/2+1/4+1/8+1/64---------------- >=0.890625
cos(33.7500)=01101100=1/2+1/4+1/16+1/32--------------- >=0.84375
cos(39.3750)=01100110=1/2+1/4+1/32+1/64--------------- >=0.796875

43

cos(45.0000)=01011010=1/2+1/8+1/16+1/64--------------- >=0.703125

cos(50.6250)=01001111=1/2+1/16+1/32+1/64+1/128-------- >=06171875

cos(56.2500)=01000111=1/2+1/32+1/64+1/128------------ >=0.5546875
cos(61.8750)=00111100=1/4+1/8+1/16+1/32--------------- >=0.46875
cos(67.5000)=00110010=1/4+1/8+1/64 >=0.390625
cos(73.1250)=00100010=1/4+1/64 >=0.265625
cos(78.7500)=00010110=1/8+1/32+1/64-------------------- >=0.171875
cos(84.3750)=00001110=1/16+1/32+1/64------------------- >=0.109375

€0s(90.0000)=11111101="zero

The MATLAB code to create a vector representing the values of cosine is written as:

clc
Clear all
Close all
x1=[0.9884375 0.984375 0.984375 0.9609375 0.921875 0.890625 0.84375
0.796875 0.703125 0.6171875 0.5546875 0.46875 0.390625 0.265625
0.171875 0.109375 0];
x2=-x1(end-1:-1:1);
x3=-x1(2:1:end) ;
x4=x1 (end-1:-1:2);
xn=[x1 x2 x3 x4]
plot(1:64,xn)
figure;
stem(1l:64,xn)

44

PUBLISH

BEHLEBS

File Edit View Insert Tools Desktop Window Help

NEHL kR UDEL- 3|0 a0

1

08

06 %

04

02

o %l

06

lliﬁﬁ

08 o

-1

0 10 20 30 40 50 60 70

L

]
oo oo o I _

Find Files Insert el ~
e < £ B E e
- compars ~ GoTo > Comment 3
New Open Saye L O ~ * & Run Runand | Advance Runand
v v =Pt~ A\ Find ~ Indent =] w:f |z ~ = Advance Time
FILE | A | E | BREAKPOINTS | RUN
“@aep [| v G > ProgramFiles » MATLAB » MATLAB Production Server » R2015a »
Current Folder ® [Editor - D:Amatlab program my working\matlzbcoswave.n
Name | matlabcoswavern | + |
appdata |57 = clear 21l
bin 58 - close all
bugreport | |s®
client 5|60 - x1=[0.9884375 0.984375 0.984375 0.9609375 0.921875 0.830
etc 61
eamples 62 - x2=-x1(end-1:-1:1);
etem 63 - x3=-x1(2:1:end);
help 64 — x4=x1 (end-1:-1:2):
Java 65 - xn=(x1 x2 =3 x4]
lie 66 — plot(l:64,xn)
licenses 67 - figure:
man -||ea - stem(1:64,xn)
Details ~ |63
70
Workspace [C] 141 =]
WL Al Command Window
= Dud7 double 0.5547 0.6172 0.7031 0.7963 0.8438 0.8906
HH 2 116 double
clc

clear all
close all

x1=[0.9884375 0.984375 0.984375 0.9609375 0.921875 0.890625 0.84375
0.796875 0.703125 0.6171875 0.5546875 0.46875 0.390625 0.265625

0.171875 0.109375 01,

x2=-x1(end-1:-1:1);
x3=-x1(2:1:end) ;
x4=x1 (end-1:-1:2);
xn=[x1 x2 x3 x4];
xnl=ceil ((xn+1)*128)
plot (1l:64,xnl)
figure;
stem(1:64,xnl)

= EHA » C: » ProgramFiles » MATLAB » MATLAB Production Server » R2015a » (@] Figure 2 =E
Current Folder ® [Editor - DAmatlab program my workingmatlabcoswave.m
—_— File Edit View Insert Tools Desktop Window Help
Name = | matlabcoswavern | + | ——
<[NEEHS kRS OUDEL- (S| 08| DO
appdata all56 = c1c
e oo cieer
parepe s8 - close 300
client
ete 2| 5°
cxomples 60 - %1=[0.988437%5 0.984375 0.984375 0.9609375 0.221.
extern sl 250 [t
= &2 - x2=-w1(end-1:-1:1);
jova &3 — ®3=_w1(2:1tend);
lib &4 — x4=xl{end-1:-1:2); 200 \it Y
licenses &5 — =n=[xz1 =2 =3 x4];
man 66 — xnl=ceil((xn+l) *128)
mer 67 — plot (1:64,xnl)
notebook 68 — figure; 10 I \t
polvspace T es - stem(1:64,xnl)
help (Foider) A || 70
100
Workspace @] 7 ?
Il i o
Mame = Value = T
ommand Window
i 117 double 50
H2 Lo deubls Columns 1 througn 20 It ol
HH xt 115 double 0
ES wn st double 255 25 2se 251 246 242 236 230 21 ® P = = I o = =
H xm1 [l
Columns 21 thrsugn 40
e 78 (1 57 49 38 26 20 14 10 5 2 2 2 2 2 5 10 14 20 26

Figure 25 Cosine wave with shift

45

xnl1=[255 254 254 251 246 242 236 230 218 207 199 188 178 162 150 142
128 114 106 9478 68 57 49 38 26 20 14 10 5 2 2 2 2 2 5 10
14 20 2638 49 57 68 78 94 106 114 128 142 150 162 178 188 199 207
218 230 236 242246 251 254 254]

The VHDL code loaded into FPGA

Main program

1 library ieee_proposed;
2 use ieee proposed.fixed pkg.all;
3 use work.cordic pakage.all;
4
5 entity cordicAlgorithm i=s
6 porti{angle:in sfixed(il downto £1):;
7 cozine:ont ufixed (i downto £)
8):
4
10 end cordichAlgorithm;
11
12 architecture Behavioral of cordicAlgorithm i=
13
14 begin
15
16 cosine<=cordicAlgorithm(angle)
17
8 end Behavioral;

The package program

46

W =] N L Ry

B3 ORD BRI ORI R ORI ORI RS R RS e e e s s s
W =] o b Ll R D0 -] LN s L R D

30
31
32
33
34
35
36
=17)
38
39
40
41
42
43
44
45
46
47
48
49
50
&l
52
&5
o4
&)
56
=i

library ieee;
use ieee.numeric std.all;

library IEEE proposed;
use ieee proposed.fixed pkg.all:;

package cordic package 1s

constant i: integer:=0;
constant f: integer:=-7;

constant il: integer:=
constant fl: integer:=-8;

constant N:integer:=11;

——zgignal angle2: sfixed(7 downto -

8) :=T0_SFIXED(&0.0,7,-

8

) :

constant X0: ufixed(0 downto -7):=T0 UFIXED(0.6072,0,-7);

type phases is array(natural range<>)

function cordiclflgorithm(signal anglel:sfixed)

end cordic package:

package body cordic package is

function cordicAlgorithm(signal anglel:sfixed)

varliable £1: srixed(il downto Il);
wvariable Zil: =sfixed (il downto £1):
wvariable Xi: ufixed({i downto f£):
wvariable Yi: ufixed(i downto f£):
wvariable Xil: ufixed (i downto f):
wvariable Yil: ufixed (i downto f):;

wvariable index: integer range -1 to 10;

variakble phase wector: phases (N-1 downto 0):=(T0_SFIXED(45.0,1i1,f1),
TC _SFIXED(26.6,il1,f1),
TC SFIXED(14.0,11,f1),
TO SFIXED(7.
TO SFIXED(3.
TC SFIXED(L.
TC SFIXED(O.
TC SFIXED(O.
TC_SFIXED(O.
TC_SFIXED(O.
TC_SFIXED(O.

begin

Xi:=X0;

¥i:=TO UFIXED(D.0,i,f):
Zi:=anglel;

for index in 0 to N-1 loop

)z

of sfixed (il downto £1):

return ufixed;

return ufixed i=s

1,i1,£1),
6,il,£1),
8,i1,£1),
9,i1,£1),
4,11, £1),
2,11, £1),
1,i1,f£1),
05,11, f1)

47

57 for index in 0 to N-1 loop

58

£9 if(signed(Zi)>=signed(to_sfixed(0.0,7,-8))) then

&0 ¥il:=resize((((Xi-(¥i SREL index)))),i,f):

68l Yil:=resize((((Yi+(Xi SRL index)))),i,f):

a2 Zil:=resize((((Zi-phase vector (N-index-1)))),11,f1);
63 el=if(signed(Zi)<signed(to_sfixed(0.0,7,-8))) then

64 Hil:=resize((((Xi+(¥1i S5RL index)))),i,f):

a5 Yil:=resize((((¥i-(Xi 5RL index)))),i,f):

66 Zil:=resize((((Zi+phase vector (N-index-1)})},1il,£fl):
a7 end if;

68

63 Z2i:=Zil;

70 X

Hil:

71 Yi:=¥il;
72 end loop;

7j5]

74 return Xi;

)

76 end function ;

77

T8 end cordic_package H

Program to create a vector of sine values

L T T I T I e I e e e e e e e e el

30
31
32
33
34
35
36
37
38
35
40
41
42

library IEEE_proposed:
use ieee proposed.fixed pkg.all:
use work.cordic package.all;

coaineGen is

cosine wvalues:
cosine 2 part:
cosine 3 part:
cosine 4 part:

numArrayl (0
numArrayl (0
numArrayl (0
numArrayl (0

type numlArray is array(natural range<>)
type numlArrayl is array(natural range<>)

numArray (0 to 16):={(
TO_SFIXED(0.0,il,£1),TC_SFIXED(5.6250,i1,fl),TC_SFIXED(11.2500 ,il,fl),TO_SFIXED(16.8750 ,il,£1),
TO_SFIXED(22.5000 ,il,£1),TO _SFIXED(28.1250 ,il,f1),TO_SFIXED(33.7500 ,il,f1),TO SFIXED(39.3750 ,il,f1),
TO_SFIXED(45.0000,il1,£1),TC_SFIXED(50.6250 ,il,f1),TC_SFIXED(56.2500,1il1,f1),TO_SFIXED(61.8750,11,f1),

TC _SFIXED(67.5000 ,il,f1),TC SFIXED(73.1250
TO SFIXED(90.000,i1,f1)

to
to
to
to

cosine all parts: numbrrayl (0
cos_val: ufixed(i downto L)

i:natural range 0 to 16;

1

2

3

4

5] entity

6 end cosineGen;

T

8

9

1]

1

2

3

4 signal phases:

3

6

T

8

9

])i

1

2 signal

3 signal

4 signal

5] signal

[signal

7 =ignal

8

g signal
begin
process (i)

begin

if (i<17) then

cosine_ values (1) <=cordichklgorithm(phases(i)):

end if;
i<=i+1;

end process;

end behavioral;

architecture behavioral of cosineGen is

16):
15):
14);
13);
to 61);

of sfixed (il downto £1);

of ufixed(i downto £):

,i1,f1),TC_SFIXED(78.7500 ,il,fl),TO_SFIXED(84.3750,11,£1),

48

Program to generate sine and cosine wave

W o =] Nk R

LRI ORI RY ORI PR RY RS ORD ORI ORI e e e S
[TV o = - S I R 4 Y O N T V' O = S I T L Y O L T S Y e

30
21
32
33
24
35
1
37
38
38
40
41
42
43
44
45
486
47
48
43
50
51
52
&3
54

cc

library ieese;
use ieee.std logic 1164.all:
use ieee.std logic arith.all;

entity dac _=sin genesrate is
port { clk 100MHz: in std logic:
dac_inp: out std logic vector (7 downto 0))z
end entitcy:;

architecture logic flow of dac sin generate is
gignal count: natural range 1 to 50 _000;
signal sin count: positive range 1 to 64:
signal clk 1EHz: =td_logic;
type int vector 1s array (natural range <») of integer range 0 to 255;
signal dat wvec: int wvector(l to 64);

begin

dat_vec<=(122,141,153,166,177,189,199,208,219,227,235,241,246,251,
254,255,255,255,254,251,246,241,235,227,219,209,199,189,177,
166,153,141,129,116,104,91, 80, 68,58, 48, 38, 30,22, 16,
11,%6,3,2,1,2,3,6,11,16,22, 30, 38,48, 58, 68, 80,91, 104, 116) ;

-- dat_vec<=(255,254,254,251,246,243,336,230,218,207,199,188, 178, 162,
—-150,142,128,114,108,94,78, 68,57, 49,38, 26,20,14,10,5,2,2,2,2,2,5, 10,
—-14,20,26,38,49,57,68, 78,94,106,114,128,142,150,162,178, 188,199, 207,

--218,230,236,242,246,251,254,254) ;
process (clk _100MHz)

process (clk_100MHz)
begin
if (rising_edge (clk_100MHz)} then
count <= count + 1;
if (count=50_000) then
clk 1FKHz<=not clk 1KHz;
count<=1;
end if;
end if;
end process;

process (clk_1EKHz)
begin
if (riszing edge(clk 1KHz)} then
dac_inp<=conv_std logic_vector(dat_wvec(sin_count),8);
if(=2in_count=64} then
sin count<=1;
else
sin_count <= sin_count + 1;
end if;
end if;
end process;

end architecture;

And then connect R-2R ladder and the output of R-2R ladder connect to oscilloscope.

We get the figures of waves.

49

We designed R-2R ladder in order to use it in our circuit as shown in Fig. 26.

Figure 26 R-2R ladder

We connect all the parts of our circuit as shown in Fig. 27.

Figure 27 practical circuit

We get the waveform shown in Fig. 28.

50

Figure 28 The waveform we generated it.

The Fig. 29 shows the sin wave we generated.

221

KEYSIGHT
=

Figure 29 The generated sine wave

51

CHAPTER SIX

Conclusions and Future Works

In this thesis work, we studied the CORDIC algorithm in details. We implemented the
algorithm in MATLAB platform and inspected its iteration number considering the
accuracy of the calculated sine or cosine value. Later on, we implemented the algorithm
on FPGA platform using the VHDL language.

Considering the hardware complexity of the CORDIC algorithm, we proposed a simpler
technique for the generation of trigonometric waveforms. In this method, we first
generate the signal in MATLAB platform and take samples from the generated signal
and then represent each simple by an integer value. considering the ration between
samples. Later, the obtained integer sequence is carried on to the VHDL program and
using the clock frequency of the FPGA any sine signal with any frequency is generated.
The proposed method is simple and effective to use, and very flexible. In fact, the
method used for the generation of sine waves can be used for the generation of any
waveform used in communication, such as square root raised cosine filter design, low
pass filter design etc.

Future Work

1- Design and implementation of multistage band pass filter on FPGA.
2- FPGA implementation of special DSP processor.
3- Implementation of frequency analysis of real discrete signal.

4- Hardwar implementation of Ethernet signal analysis on FPGA.

52

REFERENCES

1. ISE in depth tutorial “www.xillinx.com'

2. Volnei A. Pedroni “Circuit Design with VHDL”, MIT Press Cambridge,
Massachusetts London, England, 2004.

3. Uwe Meyer-Baese “Signals and Communication Technology', Springer-Verlag
Berlin Heidelberg 2014.

4. B. Lakshmi and A. S. Dhar “CORDIC Architectures: A Survey” Hindawi
Publishing Corporation, Volume 2010, Article ID 794891, 19 pages
d0i:10.1155/2010/794891.

5. J. E. Volder, “The birth of CORDIC,” Journal of VLSI Signal Processing, vol. 25,
no. 2, pp. 101-105, 2000.

6. M. D. Erecegovac and T. Lang, “Digital Arithmetic”, Elsevier, Amsterdam, The
Netherlands, 2004.

8. Eva Murphy and Colm Slattery “www.analog.com/dds”

9. Antonius P. Renardy*, Nur Ahmadi, Ashbir A. Fadila, Naufal Shidqi, Trio
Adiono “FPGA Implementation of CORDIC Algorithms for Sine and Cosine
Generator” The 5th International Conference on Electrical Engineering and Informatics
2015 August 10-11, 2015, Bali, Indonesia

53

http://www.analog.com/en/analog-dialogue/articles/all-about-direct-digital-synthesis.html#author
http://www.analog.com/en/products/clock-and-timing/direct-digital-synthesis.html

APPENDIX

CURRICULUM VITAE

PERSONAL INFORMATION
Surname, Name: Shakir Salman Ahmad

Nationality: Iraqi

Date and Place of Birth: 23.Feb.1974, Mosul, Iraq
Marital status: Married
Phone: 009647701638934

E-mail: shakirsalman3@gmail.com

EDUCATION

Degree Institution Year of Graduation
Cankaya University

M.SC. College 9f engineering o 2017
Electronic and Communication
Department

B.Sc. AL- Mosul University 1998

WORK EXPERIENCE

Year

Place

Occupation

1999- Present

Ministry of Electricity

Department Manager

54

