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In this study, we consider a customer order scheduling problem in which each 

customer can request a variety of products (also called jobs) in an order. All products 

are processed on a two-machine flow shop in which each product has one operation 

on each machine, and all products are first processed by machine 1 and then by 

machine 2. Each customer order is delivered to the customer when the processing of 

all products in the customer order is completed. Thus, the completion time of the job 

sublot processed as the last product in a customer order defines the completion time 

of the customer order. Our goal is to find a sequence of the job lots as well as the 

sequences of the sublots in each job so that the total completion time, which is the 

sum of the completion times of the customer orders, is minimized. We develop a 

mixed integer linear programming model capable of solving small-sized problem 

instances optimally, and propose a tabu-search based heuristic algorithm that obtains 

optimal and near-optimal solutions for medium and large-sized problem instances. 

The results of our computational experiments performed to evaluate the performance 

of our solution approaches in terms of both quality and time show that the proposed 

heuristic algorithm finds optimal or near-optimal solutions in very short time. 

 

Keywords: Customer order scheduling; lot streaming; two-machine flow shop; total 

completion time; mixed integer linear programming; tabu-search
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SİPARİŞLERİNİN TAMAMLANMA ZAMANLARI TOPLAMININ 

ENKÜÇÜKLENEREK KAFİLE KAYDIRMALI OLARAK 

ÇİZELGELENMESİ 
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Bu çalışmada, çeşitli ürünleri (işleri) içerebilen müşteri siparişlerini çizelgeleme 

problemi ele alınacaktır. Bir ürün işlenirken, o ürüne ait her müşteri siparişi alt 

kafileleri (bir ürünün özdeş grupları) olarak işlenir ve aynı ürünün tüm alt kafileleri 

aynı makinada aralıksız olarak işlenir ve aynı ürünün diğer alt kafileleri makina 1’ de 

işlenirken, işlenen alt kafileler makina 1’den makina 2’ye aktarılır. Bu durum, aynı 

ürünün alt kafilelerinin birbirine karışmasına izin vermeksizin iki operasyonun 

örtüşmesi anlamına gelir (yani bir ürünün ilk alt kafilesi bir makinaya ulaştığında, o 

ürüne ait tüm alt kafileler tamamlanana kadar başka ürünlerin alt kafileleri bu 

makinaya atanamaz). Müşteri siparişinde yer alan tüm ürünlerin üretimi 

tamamlandıktan sonra müşterinin siparişi teslim edilir. Bir müşteri siparişinde son 

ürün olarak işlem gören son alt kafilenin tamamlanma zamanı, müşteri siparişinin 

tamamlanma zamanıdır. Amacımız, müşteri siparişlerinin tamamlanma zamanlarının 

toplamını enküçükleyen iş kafilelerinin sırasını ve her iş kafilesindeki alt kafilelerin 

sırasını bulmaktır. Küçük ölçekli problemleri optimal olarak çözebilen bir karışık 

tamsayılı doğrusal programlama modeli ile büyük ve orta ölçekli problemler için 

optimal veya optimale yakın sonuçlar verebilen tabu arama esaslı sezgisel bir 

algoritma geliştirdik. Çözüm yöntemlerinin süre ve kalite açısından değerlendirilmesi 
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için yapılan deneylerin sonuçları, önerilen sezgisel algoritmanın çok kısa sürede 

optimal ya da optimale yakın sonuçlar bulduğunu göstermektedir.  

Anahtar Kelimeler: Müşteri siparişi çizelgeleme; kafile kaydırma; iki makinalı akış 

tipli atölye; toplam tamamlanma zamanı; karışık tamsayılı doğrusal programlama; 

tabu arama 
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CHAPTER 1 
 

 

INTRODUCTION 

 
 

 

In today’s world customer satisfaction has great importance for all of the companies. 

This situation promotes the companies to select make-to-order (order-based) 

manufacturing strategy. In make-to-order manufacturing environments, scheduling is 

usually referred to as customer order scheduling (COS). Manufacturing operations 

start after a customer order is placed. To provide customer satisfaction, the questions 

“when to deliver orders”, “which quantities should be produced” and “which 

sequence of jobs should be produced” must be answered. Although answering these 

questions are difficult enough, product variety and constraints like order lead times 

increase the complexity of customer order scheduling problem.  

Customer orders can have multiple product types with different quantities. Also, each 

product type can be produced by using different operations and different number of 

operations. These operations can be conducted on different machines. Moreover, 

each product can be manufactured by using different machines which may need 

setups, release times or other operations before starting the manufacturing of the 

products. In the flow shop environment, the operations follow each other on different 

types of machines. If the flow shop environment allows changes in the product (job) 

sequence on all machines, it is called non-permutation flow shop environment. 

Otherwise, the product (job) sequence is same on all machines, and this type of flow 

shop is called as permutation flow shop. In this study, we deal with two-machine 

permutation flow shop environment.  

Job lots having different orders are split in to sublots. This technique of splitting the 

jobs into sublots and processing these different sublots simultaneously over different 

machines is called lot streaming (LS). Lot streaming has a lot of advantages in make-

to-order manufacturing environment to improve delivery times if setup times are 
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significantly large. Lot streaming problems are divided into two groups that are 

single-lot and multi-lot problems. While single-lot problems determine the number of 

sublots and their sizes, multi-lot problems determine the number of sublots, sublot 

sizes and sequence of the sublots. In this study, we deal with the multi-lot problems 

with customer order scheduling.   

The problem considered in this thesis is the scheduling of K  customer orders in 

which each customer gives order for several types of products (or jobs). N  jobs are 

processed firstly on the first machine and then on the second machine in a two-

machine flow shop environment. A customer order can only be delivered when all 

jobs of that customer order are completed on the second machine.  

In this problem defined above, decisions are made as to determine the sequence of 

the products (jobs) as well as the sequence of customer orders in each job to 

minimize the total completion time of the customer orders. Throughout this study, 

we will call the sequences of jobs and customer orders as job sequence and sublot 

sequence, respectively. Furthermore, a schedule in which both job and sublot 

sequences are specified will be called a schedule.  

Before we proceed with our analysis, it seems appropriate to illustrate the problem 

by a numerical example. Consider a simple instance of the problem in which there 

are three customer orders and two products (jobs). Customers 1 and 2 order 100 units 

of product 1. Customers 1, 2 and 3 have ordered 100, 50 and 25 units of product 2, 

respectively. Setup and unit processing times for operations 1 and 2 of Job 1 are (10; 

1) and (10; 2), respectively. Similarly, Setup and unit processing times for operations 

1 and 2 of Job 2 are (10; 2) and (10; 1), respectively. As it is illustrated in Fig. 1, the 

optimal job (product) sequence with the optimal sublot (customer order) sequences in 

each job is )()( 2111232 OOJOOOJ  . The completion times of the orders 1, 2 

and 3 are 680, 880 and 95 time units, respectively, and the total completion time of 

the orders is 680 + 880 + 95 = 1655 time units. 

The contribution of our study in this thesis is threefold. First, to the best of our 

knowledge, there is no study that considers the flow shops with both customer order 

scheduling and lot streaming. Second, we formulate the total completion time 

minimization problem as a mixed integer linear programming (MILP) model to solve 
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the problem under consideration optimally. Third, our proposed tabu-search based 

heuristic algorithm for solving the problem is straightforward and easy to implement 

for finding optimal and near-optimal solutions for medium and large-sized problem 

instances in which a solution cannot be obtained by solving the MILP model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Gantt Chart for the Example Problem with Three Customers and Two 

Products 

 

The remainder of this report is organized as follows. Chapter 2 defines the problem 

and provides the problem complexity and some structural properties of the optimal 

schedule for the problem under consideration. Chapter 3 provides a review of the 

most relevant works to our study on customer order scheduling and lot streaming. 

Chapter 4 proposes a mixed-integer linear programming model and a tabu-search 

based heuristic algorithm. We also provide a numerical example for better 

understanding of the proposed heuristic algorithm. The computational tests to 

evaluate the performance of the mathematical model and the proposed heuristic 

algorithm are given in Chapter 5. Finally, our main findings and several directions 

for future research are discussed in Chapter 6. 
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CHAPTER 2 

 

 

PROBLEM DEFINITION, COMPLEXITY AND PRELIMINARIES 

 
 

 

In this chapter, the problem under consideration is defined, its complexity is 

discussed, and some properties of the optimal schedule, which will be used in the 

development of the heuristic algorithm, are provided. 

 

2.1. Problem Definition 

 

Consider a scheduling problem of K  customer orders ( Kk ,...,2,1 ) in which each 

customer can request a variety of products (also called jobs) in an order. There are 

N  products ( Nj ,...,2,1 )  to be processed on a two-machine flow shop in which 

each product has one operation on each machine and all products are first processed 

by machine 1 and then by machine 2.  

Each customer order k
 
has 

jkD ,
 units of identical items of product j, where this 

quantity is called the product sublot (or job sublot) size. While processing a product, 

each customer order for that product is processed as a sublot (a batch of identical 

items of a product), and all sublots of the same product must be processed 

continuously by the same machine, and each processed sublot of the same product is 

transferred from machine 1 to machine 2 for the second operation, while other 

sublots of the same product are processed on machine 1. This means that overlapping 

of the two operations on the same product through the use of sublots (i.e., lot 

streaming) is allowed without intermingling the sublots of other products (i.e, once 

the first sublot of a product arrives at a machine, the other sublots of different 

products cannot be assigned to this machine until all of the sublots are processed).  

Unit processing time of the job j  on machine m  ( 2,1m ) is 
mjp ,

, and a sequence 

independent attached setup time 
mjt ,

  is needed to set up the tools, jigs, fixtures, etc.
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before processing the first sublot of job j  on machine m . In the case of attached 

setups, the setup on machine 2 cannot start until the first sublot is available on 

machine 2. Besides, the following assumptions are considered: 

 Preemption of the sublots is not allowed; i.e., any sublot cannot be interrupted 

until the completion of its operation. 

 No setup is necessary between successive sublots of the same product. 

 All customer orders are available for processing at the same time, say time 0. 

 Each machine is available at time zero and remains continuously available. 

 Each machine can process at most one sublot at a time and each sublot can be 

processed on only one machine at any given time. 

 Sufficient storage space exists to stock the processed sublots on machine 1. 

 Transportation times between machines are considered to be negligible. 

Each customer order is delivered to the customer when the processing of all products 

in the customer order is completed. Thus, the completion time of the job sublot 

processed as the last product in a customer order defines the completion time of the 

customer order. Our goal is to find a sequence of the jobs as well as the sequences of 

the sublots in each job so that the total completion time, which is the sum of the 

completion times of the customer orders, is minimized to increase the customer 

satisfaction. 

 

2.2. Problem Complexity 

 

Theorem 1 Customer order scheduling problem with lot streaming to minimize the 

total completion time in a two-machine flow shop is NP-hard in the strong sense. 

Proof Consider a special case of the problem, where (a) the number of customer 

orders is equivalent to the number of products (jobs), i.e., NK  , (b) each customer 

gives an order with exactly one product different from the products in the other 

customer orders, i.e., 1,  jkj DD  for j , and (c) the setup times are omitted, i.e., 

0, mjt  for mj, . This special case is equivalent to the total completion time 

minimization problem in the classical two-machine flow shop without lot streaming

 jCF //2 , which has been proven to be NP-hard in the strong sense by Gonzalez 
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and Sahni (1978). Hence, the problem under consideration is also NP-hard in the 

strong sense.     

2.3. Preliminaries 

 

Given the complexity of the problem under consideration, it is desirable to develop a 

heuristic algorithm to obtain optimal and/or near-optimal solutions for large scale 

problem instances in reasonable CPU times. Thus, we now give some definitions and 

theorems to derive the structural properties, which will be used in the development of 

a heuristic algorithm, of the optimal solution for the problem under consideration. 

Definition 1 (Smith et al., 1975) The M-machine N -job flowshop is called an 

ordered flowshop if the following two properties are satisfied: 

   (i)  If a particular job has a smaller processing time on any machine than does a 

second job on the same machine, this implies that the processing time of this 

first job is less than or equal to the processing time of the second job on all 

corresponding machines. 

   (ii)  If a job has its r th smallest processing time on some machine m , 

m 1,2,...,M , this implies that every other job will have its r th smallest 

processing time on the same machine m  where Mr ,...,2,1 .  

Using the results of Smith et al. (1975), Panwalker and Khan (1979) gives the 

following result for the ordered flow shops. 

Lemma 1 (Panwalker and Khan, 1979)  In the optimal solution of the ordered flow 

shop problem to minimize the total completion time, jobs are arranged in 

nondecreasing order of their processing times. 

Çetinkaya and Gupta (1994) gives the following result for the single-job lot 

streaming problem in the M-machine flowshop. 

Lemma 2 (Çetinkaya and Gupta, 1994) The single-job lot streaming problem with 

consistent sublots satisfies the characteristics of the ordered flowshops.  

Proof  Proof is obvious from two facts. First, if a sublot has the k th smallest 

processing time on a machine m  across all sublots, then it has the k th smallest 

processing time on every other machine due to consistency. Second, if a sublot has 
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its k th smallest processing time on machine m , then every other sublot has the k th 

smallest processing time on machine m  due to proportionality of processing times 

with sublot sizes.    

The following theorem describes the optimal schedule of the problem under 

consideration for the single-job case. 

 

Theorem 1 For the problem under consideration, there exists an optimal schedule in 

which the customer orders (sublots) are processed in non-decreasing order of their 

sublot sizes if each customer gives an order with exactly one product that is the same 

product (job) in all customer orders. 

Proof If each customer gives an order with exactly one product which is the same 

product (job) in all customer orders, then the problem reduces to the single-job lot 

streaming problem to minimize the total completion time of the customer orders. 

From Lemmas 1 and 2, it is clear that the customer orders (sublots) are processed in 

non-decreasing order of their sublot sizes.   

The following theorem describes the schedule of the sublots of the last job in the last 

position of the optimal schedule for the problem under consideration. 

Theorem 2 For the problem under consideration, there exits an optimal schedule in 

which all sublots of the last job in the job sequence are processed in non-decreasing 

order of their sublot sizes. 

Proof Note that the sum of the completion times for the customer orders (sublots) 

having no demand for the product (job) processed in the last position of the job 

sequence does not depend on the sequence of the sublots of the job processed as the 

last in the job sequence. Thus, the problem of finding the sequence of the sublots of 

the job in the last position of the job sequence can be considered as the single-job 

case as given in Theorem 1, and all sublots of the last job in the job sequence are 

sequenced in non-decreasing order of their sublot sizes.    

 

Definition 2 (Run-in Time) Run-in time 
jRI  of the job j is the time that elapses 

between the starts of the setups for job j on machines 1 and 2 in the flow shop 

environment, and is calculated as: 

jjjj s ptRI ],1[1,1,  , 
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where js ],1[  is the size of the first sublot (customer order) in job j. 

To illustrate the run-in times, we consider a problem instance in which there are four 

products (jobs) and five orders (sublots). Unit processing times (
mjp ,

), sequence 

independent setup time (
mjt ,  

) and requirement of product j  for customer order k     

(
jkD ,
) are given in Table 1. 

 

Table 1 Data Set for the Run-in Time Numerical Example Illustrating the Run-in 

Times 

jkD ,
 

mjp ,
  

mjt ,  
  

 

1O  2O  3O  
4O  5O  

1m  2m  1m  2m  

1J  100 100 - - - 1 2 10 10 

2J  - 50 25 100 - 2 1 10 10 

3J  25 - - 50 100 1 3 10 10 

4J  50 50 - 100 - 4 1 10 10 

 

 

Run-in times for all jobs are illustrated by the Gantt charts in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Products (j) 

Orders (
kO ) 
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(a) Job 1J  

 
 (b) Job 2J  

 
(c) 3J  

 

(d) Job 4J  

Figure 2 Run-in Times of the Jobs 
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CHAPTER 3 

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, the most relevant works to our study on customer order scheduling 

and lot streaming are reviewed in detail.  

 

3.1. Literature Review for the Customer Order Scheduling Problems 

 

In the literature of machine scheduling, our problem to be studied in this thesis falls 

in the intersection of two main areas of research: “Customer order scheduling” and 

“Lot streaming”. In an order-based manufacturing environment, scheduling is usually 

referred to a customer order scheduling (COS) problem in which there are several 

customer orders consisting of one or more individual products. The composition of 

products in each customer order is pre-specified by the customer. Furthermore, 

different customers may give orders having the same products, and all products in 

each order are shipped as a group at the same time to the customer (Julien and 

Magazine (1990) and Ahmadi and Bagchi (1990)). Julien and Magazine (1990) have 

introduced the COS problem and have used polynomial time algorithm for a given 

order processing sequence. Also, they have examined the structure of optimal 

schedules. Ahmadi and Bagchi (1990) have studied the order scheduling problem to 

minimize the total weighted completion time.  

The research on COS problems are scarce in the literature. COS problem has been 

studied for single-machine, parallel machines, open shops and job shops with various 

scheduling criteria such as makespan, total completion time, and maximum lateness. 

In most of these studies, the focus has been on the parallel-machine environments. 

 

3.1.1. Single Machine Problems 

 

Gupta et al. (1997) study on non-preemptive single machine bi-criteria scheduling 
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problems with m customer orders having n  varied job types. The initial objective of 

the study is minimizing the makespan. The objective has the same aim as the 

objective of minimizing the total set-up time between job classes. Another objective 

is minimizing the total carrying costs of the customer orders. Carrying cost is thought 

as length of time interval between completion time of the first and last job in a 

customer order. Polynomial time algorithm is developed for the two objectives 

above. 

Gerodimos et al. (2000) study on the scheduling of the jobs that consist of standard 

and specific components. Minimizing the number of late jobs is the objective of this 

study. Because of the NP-hardness, they develop dynamic programming algorithm 

with pseudo-polynomial time.  

Erel and Ghosh (2007) examine COS problem with orders that have varied products 

from varied product families (when the product families switch, setup time is 

needed). Minimizing the total order lead time (order completion time) is the aim of 

this study while finding a production schedule. A dynamic programming is 

developed based on exact solution algorithm by them. 

Hazir et al. (2008) study on customer order scheduling problem to minimize average 

customer order flow time on single machine. Because of the NP hardness problem of 

COS, four major metaheuristics: simulated annealing, genetic algorithm, ant colony 

optimization and tabu-search are developed. They observe that tabu-search algorithm 

and ant colony optimization methods perform better for large problems, while 

simulated annealing performs better for smaller problems. 

 

3.1.2. Parallel Machines Problems 

 

For parallel machines, Yang and Postner (2005) examine the scheduling of the job 

batches (customer orders). Their objectives are to minimize the sum of completion 

times of batches and to minimize the total work-in-process in production shop 

environment where jobs are dispatched in batches. Two heuristic algorithms are 

constructed for one and two parallel machines.  

Yang (2005) examines the scheduling of a set of jobs (called as customer orders) on 

two parallel machine environments that is shipped concurrently. Minimizing the 
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completion time of orders is the aim of this study. He study on several objective 

functions like; minimizing the last batch completion time (makespan), the maximum 

batch lateness, the total batch completion time and so on. He analyses the 

computational complexity with different types of objectives. However, this study is 

constructed for minimizing the sum of the batch completion times on two parallel 

identical machines.   

Leung et al. (2006) consider the orders having various due dates and study on 

minimizing the maximum lateness objective and the total number of late orders on  

m  non-identical parallel machine environment. To minimize the total number of late 

orders is the objective of this study and they propose an exact algorithm based on 

constraint propagation and bounding strategy. Also, Leung et al. (2007) study for 

minimizing the total weighted completion time of the orders on m dedicated parallel 

machine that can produce only one type of product. This study concentrates on both 

design and analysis of the efficient heuristics for the cases with and without release 

dates. Finally, performance analyses are conducted to make comparative analysis and 

control the heuristic bounds. 

Lin and Kononov (2007) examine to minimize the number of late jobs on non-

identical parallel machine. A fully polynomial time approximation scheme (FPTAS) 

is applied for due date case and a heuristic algorithm is designed. The performance of 

the heuristic algorithm is analyzed to measure the performance for the unweighted 

case. Also, LP based approximation algorithm is applied for multi-cover problems. 

Wang and Cheng (2007) study on the scheduling of customer orders consisting of 

several different types of jobs. It is assumed that m different facilities and each job 

can be produced on one type of facility. All jobs are scheduled to minimize the total 

weighted order completion time that is the aim of this study. A heuristic algorithm is 

developed since the problem is the NP-hard.  

Su et al. (2013) examine also COS problem and orders are assumed to be dispatched 

in batches. This problem is studied on parallel machines that can produce only one 

job at a time and process simultaneously the jobs from a batch. Minimizing the 

maximum lateness is the aim of this study. Three heuristic algorithms based on 

simple scheduling rules are developed and algorithms are compared based on their 
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effectiveness. 

Xu et al. (2015) examine COS problem with product type splitting property on 

unrelated parallel machines. The objective of this study is minimizing the total 

completion time of the orders. Three heuristic algorithms are developed and 

compared based on their effectiveness of the lower bound. Also, the effectiveness of 

the heuristic algorithms is determined with the help of numerical studies. 

 

3.1.3. Open Shop and Job Shop Problems 

 

Wagneur and Sriskandarajah (1993) study scheduling on two-machine open shop 

environments where each job must be processed on both machines and a job may 

overlap. The objective is to minimize the total completion time. 

Liu (2010) studies on coordinated scheduling of customer orders system that is 

thought for order based production systems with job shop environments. Also, 

releasing and dispatching the jobs at station level are thought for that system where 

several jobs are produced for a determined customer order. The aim of this study is 

minimizing the customer order flow time that is time between the release of the first 

job and completion time of the last job of the order.  

 

3.2. Literature Review for Multi-Job Lot Streaming Problems   

 

The concept of lot streaming (LS) was first introduced by Reither (1966) and 

rediscovered in the late 1980s to early 1990s. In the past three decades, with the 

increasing interest in just-in-time and optimized production technology philosophies 

in manufacturing systems, the application of the lot streaming idea in scheduling 

problems has received considerable attention. Considering the number of job lots, the 

literature on lot streaming problems can easily be divided into two main categories, 

one category dealing with a single job lot and the other category addressing the 

multi-job case, given various job and shop characteristics.  

In this study, we provide a brief overview of the lot streaming studies on the multi-

job case with an aim to facilitate the proper positioning of our study in the literature. 

A comprehensive review of scheduling problems with lot streaming concept for both 

single job lot and multi-job cases can be found in Chang and Chiu (2005) and in 
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Sarin and Jaiprakash (2007).   

Vickson and Alfredsson (1992) consider effects of transfer batches in two and three 

machine flow shop environment. For the two-machine flow shop makespan 

minimization problem and the special case of the three-machine flow shop problem, 

the modified Johnson’s Algorithm (1954) is used.  

Vickson (1995) examines multiple product lot streaming problem in two machine 

flow shop environment to minimize the makespan. Job setup times and sublot 

transfer times are considered in this study. Optimal solution can be obtained with 

continuous subots, while a polynomial algorithm is developed for integer valued lot 

sizes. 

Kalir (1999) studies both single and multi-job streaming problem. Equal sublot sizes 

are used for both single and multi-job problems. Goal programming approach is used 

for solving the single job problem with multiple objectives that include makespan, 

the mean flow time, average work in process, and the setup and handling related 

costs. A near optimal heuristic is developed for the multi-job problem. 

Kalir and Sarin (2001) study on sequencing the set of batches with equal sublots in 

flow shop environment. The objective of this study is to minimize the makespan. A 

new heuristic method called bottleneck minimal idleness heuristic is developed. The 

solutions that are obtained from the heuristic method are close to the optimal 

solutions. 

Defersha and Chen (2010) consider lot streaming problems with variable sublots to 

minimize makespan. Although the problems with variable sublots are difficult to 

solve, they provide an improvement on the makespan. Efficient solution methods, 

which are mathematical model and hybrid genetic algorithm, are developed to solve 

n-job m-machine lot streaming problems with variable sublots and setup times. 

Feldmann and Biskup (2008) examine the multi-job streaming problem in 

permutation flow shop environment. Their aim is to find optimal sublot sizes and 

sequence the sublots optimally. To split the order quantities of different products into 

sublots, a mixed integer programming model is developed. This model gives the 

optimal solution for small and medium sized problem instances. 
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Glass and Possani (2011) study on multi-job streaming problem as well. The aim of 

this study is to minimize the makespan. A polynomial time algorithm is developed to 

solve this problem that also contains attached setups on the first machine and 

transportation times between machines.  

Mortezaei and Zulkifli (2013) have developed a mathematical model to integrate lot 

sizing and flow shop scheduling with lot streaming. A mixed integer linear 

programming model is developed to determine optimal production quantities, 

optimal inventory levels, optimal sublot sizes, and an optimal sequence. The 

mathematical model is developed for eight different types of cases, which are 

consistent sublots with intermingling, consistent sublots and no intermingling 

between sublots of the products (without intermingling), equal sublots with 

intermingling, equal sublots without intermingling, no-wait consistent sublots with 

intermingling, no-wait equal sublots with intermingling, no-wait consistent sublots 

without intermingling, and no-wait equal sublots without intermingling. The best 

makepan is obtained when consistent sublots with intermingling case are considered.  

Kumar et al. (2000) consider an m-machine flow shop environment for multiple 

products lot streaming. The aim of this study is minimizing the makespan for multi-

product problem with continuous-sized sublots. Optimal sequence is obtained by 

solving a traveling salesman problem. Also, a genetic algorithm is developed for this 

lot streaming and sequencing problem.  

Hall et al. (2003) study the lot streaming problem with multiple products and 

attached setup times in a no-wait flow shop environment. A dynamic programming 

algorithm is developed. They show that this problem is equivalent to a classical 

traveling salesman problem with a pseudo-polynomial number of cities. 

Çetinkaya (1994) considers two-machine multi-product flow shop problem with lot-

detached setups and removal times and shows that the sublot sizing and sublot 

sequencing problems are independent and optimal sequences of lots are determined 

by using modification of Johnson’s Algorithm (1954) to minimize maximum flow 

time (makespan). 

Çetinkaya and Kayalıgil (1992) study the scheduling of multiple job lots with unit 

sized transfer batches on a two machine flow line. The aim of this study is 
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minimizing the makespan. Optimal solution procedure, which is is similar to 

Johnson’s Rule (1954), is developed. 

Çetinkaya and Duman (2010) consider the lot streaming problem of multiple jobs in 

a two-machine mixed shop with two different job types. An optimal solution method 

is developed for the mixed shop scheduling problem with flow shop and open shop 

jobs. 

Liu (2009) studies on both COS and LS problems for a job shop environment. To 

solve this problem a mixed integer mathematical model is constructed using 

minimization of makespan, maximum lateness and finished goods. Because of the 

complexity of the problem, Genetic Algorithm is applied to determine lot streaming 

conditions. Lot Streaming – Genetic Algorithm heuristic is applied to solve the COS 

problem with lot streaming. 

There are many studies in the scheduling literature that deal with the customer order 

scheduling and the multi-product lot streaming. However, to the best of our 

knowledge, both customer order scheduling and lot streaming for flow shops are 

studied first in this thesis. 
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CHAPTER 4 

 

 

SOLUTION APPROACHES: 

MATHEMATICAL PROGRAMMING MODEL AND A PROPOSED TABU-

SEARCH BASED HEURISTIC ALGORITHM 

 

 

In this chapter, two solution approaches, which are the mathematical programming 

model and the proposed tabu-search based heuristic algorithm, are explained in 

detail. 

4.1. Mathematical Programming Model 

 

In this section, we develop a mixed integer linear programming (MILP) model, 

which is an extension of the generic model for the classical two-machine multi-job 

lot streaming problem by Sarin and Jaiprakash (2007), to determine the job sequence 

(i.e., sequence of the products) as well as the sublot sequence (i.e., sequence of the 

customer orders) in each job to minimize the total completion time of customer 

orders. The following indices, sets, parameters and decision variables are used in our 

model. 

Parameters, indices and sets: 

 

 K  Number of customer orders 

 k  Index for customer orders ( Kk ,...,2,1 ) 

 N  Number of jobs 

 j  Index for jobs ( Nj ,...,2,1 ) 

 kO  Set of jobs in customer order k  

 jJ  Set of customer orders having demand for job j  

 jn  Number of customer orders having demand for job j  

 kjD ,
 Demand (number of identical items) for job j  in customer order k  

 jL  Lot size (total demand) for j , where  


jJk kjj DL ,



18  

 i  Index for sublots 

 m  Index for machines ( 2,1m ) 

 mjp ,
 Unit processing time for job j  on machine m  

 mjt ,
  Attached setup time for job j  on machine m  

 V  Sufficiently large positive number 

 

Decision variables: 

 

 




                                                             otherwise0

order customer   tobelongs  job ofsublot th  if1
,,

kji
X kji

  

 




              otherwise0

 recedes  job if1
,

jph
Y jh

  

 jis ,
Size of the i th sublot of job j  

 mjiC ,,
Completion time of i th sublot of job j on machine m  

 kCT Completion time of the customer order k  

 

MILP model: 

 

Minimize 


K

k

kCT
1

  (1) 

Subject to; 

 



jn

i

jji Ls
1

,  for Nj ,...,2,1  (2) 

 



jn

i

kjiX
1

,, 1 for Kk ,...,2,1 ; kOj  (3) 

 



jJk

kjiX 1,,  for Nj ,...,2,1 ; 
jni ,...,2,1  (4) 

 



jJk

kjikjji XDs ,,,,  for Nj ,...,2,1 ; 
jni ,...,2,1  (5) 

 
1,,11,1,,1  jjjj tspC   for Nj ,...,2,1   (6) 

 
1,,,11,1,,1  jijijji CspC  
 for Nj ,...,2,1 ; 1,...,2,1  jni   (7) 

 
2,1,,1,12,2,,1  jjjjj tCspC   for Nj ,...,2,1   (8) 

 
1,,1,12,2,,1  jijijji CspC    for Nj ,...,2,1 ; 1,...,2,1  jni   (9) 

 
2,,,12,2,,1  jijijji CspC  
 for Nj ,...,2,1 ; 1,...,2,1  jni   (10) 
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






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

 

            





1

1

,,

i

r

jrmj sp   for jh  ; hne ,...,2,1 ; Nh ,...,2,1  

 

 
 
 
 

;            

jni ,...,2,1 ; Nj ,...,2,1 ; 2,1m            (11) 

 ) () ( ,,,,,,,, jimjmjihemhmhe spCspC   

 

 
mhmj

i

r

jrjjh tpsLYV ,,

1

1

,, 







 





 

 





1

1

,,

e

r

hrmh sp  for jh  ; hne ,...,2,1 ; Nh ,...,2,1  

   
jni ,...,2,1 ; Nj ,...,2,1 ; 2,1m   (12) 

 

 )1( ,,2,, kjijik XVCCT          for Kk ,...,2,1 ; kOj ;
jni ,...,2,1 (13) 

  1 ,0, ,,, jhkji YX   for kjih ,,,  (14) 

 0,, ,,, kmjiji CTCs   for mkji ,,,  (15) 

 

In the above MILP model, the objective in (1) is to minimize the total completion 

time of customer orders. Constraint set (2) ensures that the sum of the items in the 

sublots of a job must be equal to the total number of items in that job. That is, the 

sum of the sublot sizes of a job must be equal to the lot size for that job. Constraint 

set (3) guarantees that each job of a customer order is assigned to only one sublot of 

that job. Constraint set (4) ensures that each sublot of a job can be assigned to only 

one customer order. Constraint set (5) guarantees that the sum of the items in a sublot 

of a job must be equal to the demand for that job in the customer order assigned to 

sublot. Constraint set (6) ensures that the processing of the first sublot, of any job 

appearing first in the sequence of the jobs, on machine 1 begins after the setup on the 

same machine has been completed. Constraint set (7) guarantees that a sublot, except 

the first sublot, of a job begins processing on machine 1 after the previous sublot is 

completed on the same machine. Constraint set (8) ensures that the first sublot of a 

job begins processing on machine 2 after it is completed on machine 1 and the setup 

on machine 2 has been completed. Constraint set (9) guarantees that all the sublots, 

excluding the first sublot, of a job begin processing on machine 2 after they are 

completed on machine 1. Constraint set (10) ensures that a sublot, except the first 

sublot, of a job begins processing on machine 2 after the previous sublot is 
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completed on the same machine. The terms on the right hand side of the constraint 

set (11) ensures that the difference between the start times of sublots  e  and i   is at 

least equal to the sum of the processing times of the sublots  e  to hn
 
of job h    and 1 

to 1i  of job j  and the setup time for job. Note that either constraints set (11) or 

(12) is valid for an optimal solution. Constraint set (13) ensures that the completion 

time of a customer order is the maximum of completion times of the jobs in that 

customer order. Constraint sets (14) and (15) impose binary and non-negativity 

restrictions on the decision variables, respectively. 

Selecting the value of parameter V in the constraint sets (11), (12) and (13) affects 

the computational burden of the model, since it defines the feasible region. Our 

mathematical model is solved with a 3-hour time limit for every problem instance. 

Also, the 3-hour time limit increases the importance of the V -value. When V -value 

is estimated, total demand of the customer orders, processing times and setup times 

of machines are considered and we take the V -value as: 

2

, ,

1 1

[( ) ]
N

j j m j m

m j

L p t
 

  

Note that V -value must be bigger than one of the maximum order’s completion time. 

While V -value is estimated, the solution of the formulation below is rounding up. 

The numerical example is explained below to facilitate to understand.  

When we consider the date in Table 2 below, the V -value is calculated as 1833. But 

we are rounding up 1833 to 2000 to prevent the infeasibility problem. On the other 

hand, this V -value affects the solution performance of GAMS. The example below 

is considered to compare the performance. When we take theV -value as 10 times 

bigger than the calculated one, the solution increases by nearly 54.5%. Also the 

iteration number increases nearly by 57%.  
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Table 2 Calculation of the V-Value 

kjD ,
  

jL  

 

mjp ,
 

mjt ,
 

V  

2000 

kjD ,
 

1O  2O  3O  
4O  5O  

1m  2m  1m  2m  

1J  - 6 10 - - 16 1 6 89 87 288 

2J  3 4 10 2 8 27 5 9 73 55 506 

3J  - - - 9 5 14 10 8 2 60 314 

4J  9 8 8 4 7 36 4 9 38 80 586 

5J  4 - - - - 4 3 7 68 31 139 

 

4.2. Proposed Tabu-search Based Heuristic Algorithm 

The size of the MILP model discussed in Section 4.1 increases drastically as the 

number of products (jobs) and the number of customer orders (sublots) increase. 

Therefore, the optimal solution for large-sized problems by solving the mathematical 

model is unlikely to be obtained within a reasonable amount of computation time. 

Moreover, suboptimal solutions are quite satisfactory for most real life problems. 

This reason motivated us to develop a fast tabu-search algorithm that provides 

optimal or near-optimal solutions. 

Our proposed tabu-search based heuristic algorithm consists of four main phases: 

Finding an Initial Job Sequence, Improving the Initial Job Sequence by the Insertion 

Algorithm, Improving the Job Sequence Obtained in the Second Phase by Pairwise 

Exchanges of the Sublots in Each Job, and Finding a Better Solution by the Tabu-

search Algorithm.  

 

Phase 1: Finding an Initial Job Sequence 

In the first phase of our proposed algorithm, we find an initial job sequence. The 

stepwise description of Phase 1 is given below. 

Step 1.  Construct the customer order and job list by arranging the customer orders 

(sublots) in each job in ascending order. 

Step 2.  To obtain the order list, sort the customer orders in ascending order of their 

number of jobs. If there is more than one customer order having the same 

number of jobs, then calculate the completion time for these orders and sort 

the customer orders in ascending order of their completion times.  

Step-3.  Consider the first customer order in the sorted order list, and check whether 
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this customer order has only one job or several jobs. If the customer order 

has more than one job, then calculate the run-in times of these jobs and sort 

the jobs in ascending order of their run-in times. 

Step 4.  Select the first job of this customer order as the first job of the initial job 

sequence.  Remove the selected job in Step 3 from the order list and go back 

to Step 2 until all jobs are sequenced in the initial job sequence. At this step, 

the completion times of orders are calculated according to run-in time job 

sequence in ascending order. 

Step 5. Calculate the total order completion time of the initial sequence by 

considering the sublot sequence from Step 1. 

 

Phase 2:  Improving the Initial Job Sequence by the Insertion Algorithm 

Insertion algorithm is a kind of neighborhood algorithm used first by Nawaz et al. 

(1983) which solves the m-machine flow shop makespan minimization problem. In 

this phase of our proposed algorithm we adapt the insertion algorithm to improve the 

initial job sequence obtained in Phase 1. The stepwise description of Phase 2 is given 

below. 

Step 1.  Consider the initial job sequence obtained in Phase 1, and select the first two 

jobs from this sequence. From two partial sequences such that the first 

selected job is in the first and second positions in these partial sequences, 

respectively. For each partial sequence, compute the total order completion 

time, and select the best partial sequence. 

Step 2.  Pick the job that is in the next position of the initial job sequence obtained in 

Phase 1. Generate all possible partial sequences by placing the new job in all 

possible positions (beginning, between and ending) in the partial sequence 

developed so far. Compute the total order completion times of all partial 

sequences, and select the best partial sequence giving the minimum total 

order completion time. 

Step 3. If all jobs of the initial sequence obtained in Phase 1 are considered, then 

stop; otherwise, go to Step 2. 
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Phase 3: Improving the Job Sequence Obtained in Phase 2 by Pairwise 

Exchanges of the Sublots in Each Job 

In the first two phases of our proposed algorithm, we assume that the customer 

orders (sublots) in each job are sequenced in ascending order of their sizes 

(demands). However, the total order completion time may be improved by pairwise 

exchanges of the sublots in each job. The stepwise description of this phase of our 

algorithm is given below.   

Step 1.  Consider the first job of the job sequence obtained in Phase 2 as the current 

job. 

Step 2.  (i)  Check whether there is a sublot (customer order) in the current job such 

that this customer order does not appear in the following jobs of the job 

sequence obtained in Phase 2. 

 (ii) If there is no such customer order then 

(a) Consider the next job of the sequence as the current job. 

(b) If the current job is the last job in the sequence then stop; 

otherwise, go to Step 2(i).  

Step 3.   (i)  Consider the first customer order which does not appear in the 

following jobs as the current customer order. 

 (ii)  Temporarily pairwise exchange the positions of the current customer 

order and the customer order which immediately precedes the current 

customer order. 

 (iii) Check whether the pairwise exchange in Step 3(ii) improves the total 

completion time of all customer orders.  

 (iv) If the pairwise interchange does not improve the total completion time, 

then do not make this exchange and go to Step 3(v); otherwise, 

(a) Make this pairwise exchange. 

(b) If the new position of the current customer order is the first position 

in the current job, then go to Step 3 (v); otherwise go to Step 3 (ii). 

(v) Check for the next customer order which does not appear in the 

following jobs and go to Step 2(ii).   
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Phase 4: Finding a Better Solution by the Tabu-Search Algorithm 

Tabu-search is a higher level heuristic method to find a local optima. Principle of the 

tabu-search algorithm is to obtain improvement by pairwise interchanging the jobs. 

After determining the tabu list size and number of iterations, tabu iterations are 

conducted when the tabu list size and number of tabu iterations are reached to pre-

determined values. 

The job sequence obtained in Phase 3 will be the initial sequence of the tabu-search 

algorithm. By pairwise interchanging of the jobs, the total order completion time is 

improved. In the classical application of the tabu-search algorithm, all possible 

children are determined and the total order completion times of all possible children 

are calculated. The child with the minimum total order completion time is selected, 

and the tabu list is updated. The next tabu-search iteration continues with the new job 

sequence. However, we change the application of tabu-search by inserting a new step 

before selecting the best child. The new step is attached to the tabu-search algorithm 

to provide improvement on the total order completion time. Phase 3 is inserted as the 

new step of the tabu-search, and implemented before selecting the best child and 

after producing the sequences of the children. If the total order completion time is not 

improved after applying Phase 3, then we continue with the previous total order 

completion time and job sequence. 

There are two stopping conditions for the tabu-search algorithm. Firstly, if all 

possible children are worse than the root, the algorithm automatically terminates. If 

the iteration count exceeds the pre-determined tabu iteration size, which we select as 

5 then the algorithm stops. For the tabu-search algorithm, we specify the tabu list 

size as 3. 

 

4.3. Numerical Example 

 

In this section, a numerical example is provided to demonstrate the Proposed 

Heuristic Algorithm. We consider a problem instance in which there are five 

products (jobs) and five orders (sublots). Also, the unit processing time (
mjp ,

), 

sequence independent setup time (
mjt ,  

)
 
and demand for product j  in customer order 

k  (
jkD ,
) are given in Table 3. 
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Table 3 Data Set for the Numerical Example 

jkD ,
 

mjp ,
  

mjt ,  
  

 1O  2O  3O  
4O  5O  

1m  2m  1m  2m  

1J  - 6 10 - - 1 6 89 87 

2J  3 4 10 2 8 5 9 73 55 

3J  - - - 9 5 10 8 2 60 

4J  9 8 8 4 7 4 9 38 80 

5J  4 - - - - 3 7 68 31 

 

Phase 1: Finding an Initial Job Sequence 
 

Step 1: Using the data given in Table 3 the order and job lists are constructed as 

follows: 

Order list: 

} , , { 5421 JJJO  , } , , { 4212 JJJO  , } , , { 4213 JJJO  , } , , { 4324 JJJO   and 

} , , { 4325 JJJO   

Job list: 

[10]} [6], { 321 OOJ 
 

} [10][8],[4], [3], [2], { 352142 OOOOOJ 
 

[9]} [5], { 453 OOJ 
 

4 4 5 2 3 1{ [4], [7], [8], [8], [9]}J O O O O O  

[4]} { 15 OJ   

 

Step 2: From the order list in Step 1, it is clear that all customer orders have the same 

number of jobs, which is three. Thus, the order completion time for each customer 

order is independently calculated to sort the customer orders. As an illustration, the 

Gantt chart for order 1O  is given in Figure 3 below. From this figure, it is clear that 

order 1O  is completed in 390 time units. Similarly, the completion times for the other 

customer orders can be determined as 461)( 2 OCT , 543)( 3 OCT , 

423)( 4 OCT , 483)( 5 OCT . Finally, the sorted list becomes 1O  - 4O - 2O - 5O - 

3O . 

 

Products (j) 

Orders (
kO ) 

73 162 

Job2 Job4 Job5 
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Figure 3 Gantt Chart for the Customer Order 1O  

 

Step 3: The first customer in the sorted order list is order 1O , which has more than 

one job. To select the first job of the initial sequence, run-in times for the jobs 2J , 

4J  and  5J  in the customer order 1O  must be calculated. The run-in times of 2J , 4J  

and 5J  equals to 83, 54, and 80, respectively. Thus, job 4J  will be the first job of the 

initial sequence since it has the minimum run-in time. 

Step 4: We remove job 4J  from all orders having this job, and obtain the updated 

order list below: 

Updated order list: 

}  , { 521 JJO  , } , { 212 JJO  , } , { 213 JJO  , } , { 324 JJO   and } , { 325 JJO   

Step 2: From the updated order list in Step 4, it is clear that all customer orders have 

the same number of jobs which is two. The completion times for the customer orders 

are independently re-calculated according to jobs run-in time sequence and obtained 

as 250)( 1 OCT , 309)( 2 OCT , 391)( 3 OCT , 307)( 4 OCT , 

340)( 5 OCT . Finally, the new sorted list becomes 1O  - 4O - 2O - 5O - 3O . 

Step 3: The first customer order in the new sorted order list is order 1O , which has 

two jobs 2J  and 5J . To select the second job of the initial sequence, the run-in times 

for the jobs 2J  and 5J  in the customer order 1O  must be calculated. The run-in times 

of jobs 2J  and 5J  equals to 83 and 80, respectively. Thus, job 5J  becomes the 

second job of the initial sequence. 

1M
 

2M  

88 126 

88 143 170 

]9[4J
 

230 

]4[5J

 

242 

250 331 

]3[2J  

]3[2J
 

362 

]9[4J
 

390 

]4[5J  
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Step 4: The second job of the initial sequence is selected at Step 3. So, the job 5J  is 

removed from the order list and the list is updated. Steps 2, 3 and 4 are repeated until 

all jobs are scheduled at the initial sequence, and we obtain the updated order list 

below:  

Updated Order list: 

} { 21 JO  , } , { 212 JJO  , } , { 213 JJO  , } , { 324 JJO   and } , { 325 JJO   

Step 2: From the updated order list in Step 4, it is clear that order 1O  has only one 

job. Thus, there is no need for any completion time calculation.  

Step 3: The first customer order in the new sorted order list is order 1O  which has 

only one job 2J . Thus, there is no need for any run-in time calculation to select the 

candidate job. Job 2J  becomes the third job of the initial sequence. 

Step 4: We remove job 2J  from all orders having this job and obtain the updated 

order list below:  

Updated Order list: 

} { 12 JO  , } { 13 JO  , } { 34 JO   and } { 35 JO   

Step 2: From the updated order list in Step 4, it is clear that all customer orders have 

the same number of jobs which is one. The completion times for the customer orders 

are independently re-calculated according to jobs run-in time sequence and obtained 

as 218)( 2 OCT , 246)( 3 OCT , 224)( 4 OCT , 152)( 5 OCT .  Finally, the 

new sorted list becomes 5O - 2O - 4O - 3O . 

Step 3:  The first customer order in the new sorted order list is order 5O  which has 

only job 3J .  Thus, there is no need for any run-in time calculation to select the 

candidate job. Job 3J  becomes the fourth job of the initial sequence. 

Step 4: We remove the job 3J  from all orders having this job and obtain the updated 

order list below: 

Updated Order list: 
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} { 12 JO   and } { 13 JO   

Step 2: From the updated order list in Step 4, it is clear that remaining two orders 

2O  and 3O  have the same number of jobs which is one. Thus, the completion times 

for orders 2O  and 3O  are independently re-calculated according to jobs run-in time 

sequence, and obtained as 218)( 2 OCT  and 246)( 3 OCT . Finally, the new 

sorted order list becomes 2O - 3O . 

Step 3:  The first customer order in the new sorted order list is order 2O , which has 

only job 1J . Thus there is no need for any run-in time calculation to select the 

candidate job. Job 1J  becomes the last job of the initial sequence. 

Step 4: All jobs are considered, 4J  - 5J  - 2J  - 3J  - 1J  is the initial sequence and the 

jobs and orders schedule is as follows: 

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - [4])( 15 OJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ - [9]) [5],( 453 OOJ - [10]) [6],( 321 OOJ  

Step 5: The associated total order completion for the initial schedule is 4799 time 

units. 

Phase 2:  Improving the Initial Job Sequence by the Insertion Algorithm 

 

Step 1: From the initial sequence ( 4J - 5J - 2J - 3J - 1J ) obtained in Phase 1, we select 

the first two jobs 4J   and 5J . We from two partial sequences 4J - 5J   and 5J - 4J , 

and obtain the total order completion times for these partial sequences as given in 

Table 4 below. 

Table 4 Total Order Completion Times for Two Partial Sequences 

Job and Order Sequence Total Order Completion Time 

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - [4])( 15 OJ  1602 

[4])( 15 OJ - 4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O  1968 

 

The selected partial sequence is 4J - 5J  since its total completion time is smaller than 
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that of the partial sequence 5J - 4J . 

Step 2: We select the next job, which is job 2J , from the initial job sequence 

obtained in Phase 1, and form three partial sequences 2J - 4J - 5J , 4J - 2J - 5J  and 4J -

5J - 2J , and obtain the total order completion time of each partial sequence as given 

in Table 5.  

Table 5 Total Order Completion Times for Three Partial Sequences 

 

Job and Order Sequence Total Order Completion Time 

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

3237 

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

[4])( 15 OJ  

3362 

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ  

3400 

 

The selected partial sequence is 2J - 4J - 5J  since its total completion time is the 

smallest one among the total completion times of the three partial sequences above. 

Step 2: We select the next job 3J  from the initial job sequence obtained in Phase 1, 

and form four partial sequences 3J - 2J - 4J - 5J , 2J - 3J - 4J - 5J , 2J - 4J - 3J - 5J , and 

2J - 4J - 5J - 3J , and compute the total order completion times of each partial 

sequence as given in Table 6. 
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Table 6 Total Order Completion Time for Four Partial Sequences 

Job and Order Sequence Total Order Completion Time 

[9]) [5],( 453 OOJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

3947 

[10])[8],[4], [3], [2],( 352142 OOOOOJ - 

[9]) [5],( 453 OOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

4097 

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[9]) [5],( 453 OOJ - 

[4])( 15 OJ  

4194 

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ - 

[9]) [5],( 453 OOJ  

4140 

 

The selected partial sequence is 3J - 2J - 4J - 5J  since its total order completion time is 

the smallest one among the total order completion times of the above four partial 

sequences. 

Step 2: We select the next job 1J  from the initial job sequence obtained in Phase 1, 

and form five partial sequences 1J - 3J - 2J - 4J - 5J , 3J - 1J - 2J - 4J - 5J , 3J - 2J - 1J - 4J -

5J , 3J - 2J - 4J - 1J - 5J  and 3J - 2J - 4J - 5J - 1J , and obtain the total order completion 

time of each partial sequence as given in Table 7. 

The selected partial sequence is 3J - 2J - 4J - 5J - 1J  since it has the smallest total order 

completion time. 
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Phase 3:  Improving the Job Sequence Obtained in Phase 2 by Pairwise 

Interchanging the Sublots of the Jobs 

 

Step 1:  The first job of the sequence obtained in Phase 2 is [9]) [5],( 453 OOJ , which 

is considered as the current job.  

Step 2:  The sublots of job 3J  are order 5O  and order 4O , and these orders exist in 

the following jobs 2J , 4J  and 5J  of the job sequence obtained in Phase 2. 

Thus, the next job, i.e., job 2J  has all types of sublots and these sublots 

exist in the following jobs 4J  and 5J . Thus, no sublot swapping is possible. 

Therefore, we must consider the next job of the sequence obtained in Phase 

2, which is job 4J . Some of the sublots cannot be seen in the following 

jobs. So, we can pass to the next step. 

Step 3:  Order 5O  is the second customer order in job 4J .  Orders 4O  and 5O  can 

be pairwise interchanged, and the total order completion time increases to 

4632. Thus, this pairwise interchange does not improve the total order 

completion time, and we don’t make this interchange. We check the 

remaining sublots for possible improvement. Orders 1O , 2O  and 3O  exist in 

the following jobs 4J  and 1J  of the sequence obtained in Phase 2. 

Therefore, we go to Step 2 again. 

 

 

 

 

 

 



32  

Table 7 Total Order Completion Time for Five Partial Sequences 

Job and Order Sequence Total Order Completion Time 

[10]) [6],( 321 OOJ - 

[9]) [5],( 453 OOJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

5072 

[9]) [5],( 453 OOJ - 

[10]) [6],( 321 OOJ - 

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

4922 

[9]) [5],( 453 OOJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

[10]) [6],( 321 OOJ - 

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ  

4862 

[9]) [5],( 453 OOJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O -

[10]) [6],( 321 OOJ - 

[4])( 15 OJ  

4670 

[9]) [5],( 453 OOJ -

[10])[8],[4], [3], [2],( 352142 OOOOOJ -

4 4 5 2 3 1( [4], [7], [8], [8], [9])J O O O O O - 

[4])( 15 OJ - 

[10]) [6],( 321 OOJ  

4605 

Step 2: The next job 5J  has only one customer order, so we could not make any 
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pairwise interchange. Now, our current job is job 1J , which is the last job of the 

sequence obtained in Phase 2. The algorithm stops here without customer order 

(sublot) swapping. 

 

Phase 4: Finding a Better Solution by the Tabu-Search Algorithm 

The first iteration of the tabu-search algorithm is given in Figure 4. The initial 

sequence and the associated total order completion time are taken from the solution 

obtained in Phase 3. When we apply Phase 3 to all job sequences generated from 

these initial sequences, we observe that no improvement is obtained for some job 

sequences generated. 

However, the total order completion time is decreased from 4605 to 4579 as 

illustrated in Figure 4. The tabu list is updated with pair of ( 4J , 5J ). The detail of the 

second iteration is given in Figure 5. It is clear that no further improvement on the 

total order completion time is achieved in this iteration. Thus, tabu-search algorithm 

terminates before reaching the tabu-search iteration size of 5. Moreover, the updated 

tabu list does not change. 

The Gantt chart of the schedule obtained for the example is illustrated in Figure 6, 

where the sum of the completion time of the customer orders is 4579 

(=842+1109+1169+698+761). This completion time is equivalent to that of the 

optimal solution.  
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Figure 4 Tabu-search Iteration -1 

 

 

 

 

 

 

 
Figure 5 Tabu-search Iteration-2 
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Figure 6 Gantt Chart of the Schedule Obtained for the Numerical Example 
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CHAPTER 5 

 

 

COMPUTATIONAL EXPERIMENTS 

 

 

 

In this chapter, we describe our computational tests with randomly generated 

problems to evaluate the effectiveness and efficiency of the MILP model and the 

proposed heuristic algorithm in finding optimal or near optimal schedules. The 

mathematical model is solved by using GAMS 24.1 and all computations are 

conducted on a computer with Intel (R) Xeon (R) CPU E52650 0@ 2.00GHz 2.00 

GHz (2 Processors) and 128 GB RAM under Windows 10 operating system. Also the 

proposed heuristic algorithm is coded in Java programming language. All 

computational experiments are conducted on a personal computer with Intel Core i7 

Dual-Core 2.00 GHz CPU and 8 GB RAM under Windows 10 operating system. 

 

5.1. Computational Settings for the Test Problems 

 

The values of the parameters used in our experiments will be generated as follows: 

1. Number of customer orders ( K ): They are taken as 5 and 10. 

2. Number of jobs ( N ): They are taken as 5, 10, 15 and 20. 

3. Number of customer orders having demand for each job ( jn ): They are randomly 

generated from a DU1, K . 

4. Demand (number of identical items) for each job in each customer order ( kjD , ): 

They are randomly generated from a discrete uniform distribution DU1, 10. 

5. Processing times ( mjp , ): They are randomly generated from a discrete uniform 

distribution DU1, 10.  

6. Setup times ( mjt , ): They are randomly generated from a discrete uniform 

distribution DU0, 100f, where f  is taken as 0.0, 0.5, 1.0, 1.5, and 2.0.  

For each possible combination of the above parameters, 5 replicates (problem 
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instances) are generated, and totally 200 problem instances are tested for the setup 

case. Also, 5 replicates are generated for each possible combination of the above 

parameters excluding setup times, and totally 200 problem instances are tested for no 

setup case. Hence, totally 400 problem instances are tested.  

 

5.2. Performance Measures 

 

The solver GAMS gives two types of solutions for the MILP models. One of the 

solutions is the best integer solution which is the desired one; other solution is the 

best non-integer solution in which some of the variables are not integers. If the best 

non-integer solution obtained is equal to the best integer solution, then we conclude 

that the optimal solution is achieved by the MILP model. Otherwise we are uncertain 

about optimality of the solution. For the problems with optimal solutions, we 

compare the total completion time obtained by our heuristic algorithms with the total 

completion time of the optimal solution. However, for the problems with the best 

integer solutions, we compare the total completion time obtained by our heuristic 

algorithms with the total completion time of the best integer solution. 

To measure the effectiveness of the heuristic algorithms for the cases in which an 

optimal solution is obtained by the MILP model, we calculate the percent deviation 

of the total completion time obtained by the heuristic algorithm from the total 

completion time of the optimal solution. The following notation is used to measure 

the effectiveness of the Proposed Tabu-search Based Heuristic Algorithm. 

OPD : Percent deviation from the optimal solution. 

HTC  : Total completion time solution obtained by heuristic algorithm. 

OTC  : Total completion time solution obtained by the MILP model 

OOHO TCTCTCPD /)(100   

Similarly, for the cases in which an optimal solution is not guaranteed (but a best-

integer solution exists) by the MILP model, we calculate the percent deviation of the 

total completion time obtained by each heuristic algorithm from the total completion 

time of the best-integer solution. Also, the following extra notation is used to 

evaluate the effectiveness of the proposed heuristic algorithm. 

            BPD : Percent deviation from the best integer solution 
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BTC  : Total completion time of the best integer solution obtained by the 

MILP model 

BBHB TCTCTCPD /)(100   

The efficiency measure of the MILP model and the heuristic algorithm is the 

computational time required to solve the problem. In our experiments, we limit the 

run time of the GAMS for obtaining the optimal solution of each problem instance to 

10,800 seconds (3 hours). The computational time for the proposed heuristic 

algorithm is relatively very small, less than 45 seconds, for all problem instances. 

Also note that the computational time required for solving a problem instance 

increases as the number of jobs and the number of customer orders increase. But the 

computational time is again very small, which is less than 45 seconds generally.   

 

5.3. Discussions of the Results 

 

In this section the performance of the solution approaches is discussed. We first 

examine the performance of the MILP model, and then discuss the performance of 

the heuristic algorithm for the setup and no setup cases. The solution approaches are 

examined with respect to the number of jobs and the number of customer orders. 

 

5.3.1. Setup Case 

 

5.3.1.1. Performance of the MILP model 

 

In this section, performance of the MILP is discussed. Performance of the MILP is 

impacted by the complexity of the problem. We deal with both COS and lot 

streaming problem. Also, the number of machine increases the complexity of the 

problem. These mentioned situations affects the problem solution duration seriously. 

We limit the runtime of the MILP to 3 hours.  

Depending on the number of jobs and number of customer orders, problem 

complexity increases directly. As shown in Table 8, when the number of jobs and the 

number of customer orders are 5, all problem instances give the optimal solution. 

When the number of jobs is 10 and the number of customer orders is 5, the MILP 

found only one optimal solution within three hours’ time limit. Finally, four optimal 

solutions are found when the number of jobs is 5 and the number of customer orders 
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is 10. For the remaining problem instances, best integer solutions are obtained and 

there is no unsolved problem among the experiment set. 

 

Table 8 Performance of the MILP Model for the Setup Case 

Number of customer orders (K) 5 10 

Number of jobs (N) 5 10 15 20 5 10 15 20 

Total number of problem instances 

considered 
25 25 25 25 25 25 25 25 

Number of optimum integer 

solutions obtained in 3 hours 
25 1 0 0 4 0 0 0 

Number of best integer solutions 

obtained 
0 24 25 25 21 25 25 25 

Average gap (%) 0 45 78 87 38 85 91 93 

Total Average gap (%) 64.7 

 

To emphasize the performance of MILP model, we should investigate the quality of 

solutions which are not optimal. It is a common phenomenon that MILP model ends 

up with a gap between solution found and the best possible. Therefore, gap values 

are examined in order to indicate the percentage difference of integer solution from 

the theoretical optimum. Gap values are analyzed for 170 non-optimally solved 

problem instances under three circumstances; best case, worst case, and average case. 

For some of the problem instances, so many iterations are done and integer solutions 

found become closer to the theoretical optimum after each iteration. However, 

GAMS is terminated because of time limitation before reaching the optimum 

solution. But, this case is the best case since until 3-hour time limitation is 

completed, gap values are very close to zero. 

On the other hand, for some problem instances branching becomes very difficult and 

time consuming. When branching is slow, the number of iterations is moderate 

which leads to higher gap values than the best case and lower gap values than the 

worst case. Experiments that are conducted according to generated data from Section 

5.1, has gap values as in Table 8. When the number of jobs and the number orders 

are 5, all of the gap values equal to zero which means that MILP can solve all 

experiment set optimally.  

When the number of orders is five, the average gap value for 100 problem instances 
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solved equal to 52.7%. Also the average gap value for 100 problem instances solved 

equals to 77 % when the number of orders is 10. The details of the average gap 

values can be seen in Table 8. 

 

5.3.1.2. Performance of the proposed heuristic algorithm 

 

In this section, we discuss the effects of changes in the problem parameters on the 

performance of the proposed heuristic algorithm. Table 9 is prepared to show the 

average percent deviations of the heuristic algorithm. Also, the maximum deviations 

can be seen in this table. These analyses are made based on the optimal solution and 

the best integer solution that are analyzed in Section 5.3 For all problem instances, 

average percent deviation of the heuristic algorithm is founded 0.57% as you can see 

in Table 9.  

Table 9 Average Percent Deviations of the Heuristic Algorithm from the Optimal 

and Best Integer Solution for the Setup Case 

N K 

Number 

of 

Problem 

Instances 

Give 

Optimal 

Solution 

Average 

Percent 

Deviation of 

Heuristic 

Algorithm 

from 

Optimal 

Solution 

Number 

of 

Problem 

Instances 

Give 

Best 

Integer 

Solution 

Average 

Percent 

Deviation of 

Heuristic 

Algorithm 

from Best 

Integer 

Solution 

Overall 

AVG. 

MAX. 

DEV. 

5 
5 25 0.36% - - 0.36% 2.59% 

10 4 0.00% 21 1.51% 1.27% 7.66% 

Grand Avg_5 0.81% 

10 
5 1 0.61% 24 1.11% 1.09% 9.34% 

10 - -  25 0.82% 0.82% 4.54% 

Grand Avg_10 0.96 % 

15 
5 

10 

- - 25 0.52% 0.52% 3.52% 

10 - - 25 0.44% 0.44% 7.11% 

Grand Avg_15 0.48% 

20 
5 -  - 25 0.08% 0.08% 1.62% 

10 - - 25 0.00% 0.00% 0.00% 

Grand Avg_20 0.04% 

AVG_TOTAL 0.57% 

 

When the number of jobs is 5, 29 problem instances give optimal solution. Also, the 

grand average of the heuristic algorithm is obtained as 0.81%. When the number of 

orders is 5, all of the problem instances are solved optimally and the average percent 

deviation of the heuristic algorithm is 0.36%. Also, maximum deviation of these 
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problem instances is derived as 2.59%. This value is smaller than the 7.66% that is 

the maximum deviation when the number of orders is 10. Moreover, 4 problem 

instances whose average percent deviation is obtained as 0.00% are solved optimally. 

The average percent deviation of the remaining problem instances is 1.51% and 

overall average percent deviation is derived as 1.27% while 25 problem instances are 

being considered. On the other hand, when the maximum deviation value (7.66%) is 

not considered, the grand average percent deviation decreases from 0.81% to 0.66%.  

When the number of jobs is 10, only 1 problem instance gives optimal solution. Also, 

the grand average of the heuristic algorithm is obtained as 0.96%. The average 

percent deviation for the optimal problem instance is derived as 0.61% when the 

number of orders is 5. Also, average percent deviation of the remaining problem 

instances are obtained as 1.11% and average percent deviation of overall problem 

instances is obtained as 1.09%. MILP cannot find any optimal solution under time 

limitation when the number of orders is 10. The average percent deviation is 

obtained as 0.82% for these problem instances. Also, the maximum deviations are 

obtained as 9.34% and 4.54% when the number of orders is 5 and 10 respectively. If 

the maximum deviation (9.34%) is omitted, grand average percent deviation 

decreases from 0.96% to 0.77%.   

Optimal solution could not be obtained under 3-hour time limitation when the 

number of jobs is 15. While the complexity of the problem is increasing, the number 

of problem instances having better heuristic algorithm solution than best integer 

solution also increases. For this experiment set, 34 instances are observed with the 

same situation, and negative deviations for these problem instances are taken as 

0.00%. Also, the grand average percent deviation is 0.48%. When we take into 

account these negative deviations, the grand average percent deviation is obtained as 

 -1.85%. The average percent deviations are obtained as 0.52% and 0.44% when the 

number of orders is 5 and 10, respectively. On the other hand, the maximum 

deviations are obtained as 3.52% and 7.11% for these experiments. If the maximum 

deviation is omitted, the grand average percent deviation decreases from 0.48% to 

0.34%. 

Finally, none of the problem instances are solved optimally under less than 3-hour 

time limitation when the number of jobs is 20. For the 48 instances, the heuristic 

algorithm solutions are closer to the optimal solution than the best integer solution, 
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and the negative percent deviation for these instances is taken as 0.00%. As it is 

understood, the heuristic algorithm gives better solutions than the best integer 

solutions while complexity of the problem increases. Also, the grand average percent 

deviation is obtained as 0.04%. When we take into account the negative percent 

deviations, the average percent deviation is obtained as -5.99%. The average percent 

deviations are obtained as 0.08% and 0.00% when the numbers of orders are 5 and 

10, respectively. On the other hand, the maximum deviations are derived as 1.62% 

and 0.00% for these experiments.  

Consequently, the total average percent deviation is 0.57% including the problem 

instances which have maximum deviations. If the maximum deviations are omitted, 

the total average percent deviation decreases from 0.57% to 0.45%. Furthermore, 

when the negative deviations are considered, the total average deviation decreases to 

-1.53%. On the other hand, 47 problem instances are solved with 0.00% deviation 

among the 200 problem instances. While 21 of them can be solved optimally, 26 of 

them are best integer with 59% average gap value. Among 21 problem instances 17 

of them are obtained when the numbers of jobs and orders are considered as 5. All 

the remaining 4 of them are obtained when the number of jobs is considered as 5 and 

the number of orders is considered as 10. Among 26 problem instances, 13 of them 

are obtained when the number of jobs is 10. 5 of them are obtained when number of 

jobs is 15 and all remaining 8 of them are obtained when the number of jobs is 5.  

 

5.3.2. No Setup Case  
 

 

5.3.2.1. Performance of the MILP model 

In this section, performance of the MILP is discussed for the no setup case. Much as 

setup times affect the performance of the MILP, problem complexity that is why 

COS and LS problems are both considered at the same time could not be ignored. 

Also, the 3-hour run time limit is still valid for no setup case that is same as with 

setup case. While the problem instances for the no setup case is generated, the f  

value which is described in Section 5.1 is taken as 0.0. 

As it is mentioned before, the complexity is impressed by the number of jobs and 

number of orders. As shown in Table 10, when the number of jobs and the number of 
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customer orders are 5, all problem instances give the optimal solution. When the 

number of jobs is 10 and the number of customer orders is 5, the MILP gives 2 

optimal solutions within 3-hour time limit. Also, 4 optimal solutions are obtained 

when the number of jobs is 5 and the number of customer orders is 10. The 

remaining solutions among the whole problem instances are obtained as best integer 

solution by using GAMS.  

 

Table 10 Performance of the MILP Model for the No Setup Case 

Number of customer orders (K) 5 10 

Number of jobs (N) 5 10 15 20 5 10 15 20 

Total number of problem 

instances considered 
25 25 25 25 25 25 25 25 

Number of optimum integer 

solutions obtained in 3 hours 
25 2 0 0 4 0 0 0 

Number of best integer solutions 

obtained 
0 23 25 25 21 25 25 25 

Average GAP (%) 0 42 80 89 38 90 94 96 

Total Average GAP (%) 66.4 

 

The gap values are also analyzed for the no setup case. As mentioned before the gap 

values are examined in order to indicate the percentage difference of integer solution 

from the theoretical optimum. The gap values are analyzed for 169 non-optimal 

problems for the no setup case. It is expected that the gap values for no setup case is 

better than the gap values for setup case. However, committed branching operations 

affect the gap values seriously. The details of the gap values can be seen in Table 10. 

Totally, the average percent of the gap value is obtained 66.4% for the no setup case. 

 

5.3.2.2. Performance of the proposed heuristic algorithm 
 

In this section, we discuss the effects of changes in the problem parameters on the 

performance of the proposed heuristic algorithm for the no setup case. Average 

percent deviations of the proposed heuristic algorithm are analyzed for the no setup 

case. These analyses are made based on the optimal and best integer solutions that 

are analyzed in Section 5. For all problem instances, average percent deviation of the 

heuristic algorithm is 1.24% as it can be seen in Table 11. 
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When the number of jobs is 5, 29 problem instances give optimal solution. Also the 

grand average of the heuristic algorithm is obtained as 1.61%.  All of the problem 

instances are solved optimally when the number of orders is 5 and the average 

percent deviation of the heuristic algorithm from the optimal is 2.26%. The reason 

that is why the high average percent deviation is obtained is the number of problem 

instances having high deviations and also the maximum deviation. When the 

maximum deviation is omitted, the average percent deviation decreases from 2.26% 

to 1.75%. Also the maximum deviation is 7.93% when we consider the problem 

instances having 10 orders. Among 25 problem instances, 4 of them are solved 

optimally, and the heuristic algorithm solutions are same as the optimal solutions. 

The average percent deviation is 1.14% for the remaining problem instances, and the 

overall deviation is 0.96% when the number of orders is 10. When the maximum 

deviations are omitted, the grand average percent deviation decreases from 1.61% to 

1.20%.       

When the number of jobs is 10, 2 problem instances give the optimal solution. The 

average percent deviation is 8.52% for the problem instances solved optimally when 

the number of orders is 5. Also, the grand average percentage of the heuristic 

algorithm is obtained as 2.00%. Also, the average percent deviation of all remaining 

problem instances and the overall average percent deviation are 2.52% and 3.00% 

respectively. The maximum deviation in this experiment set is 14.73% while this 

value is 3.98% when the number of orders is 10. None of the problem instances in 

this experiment set can be solved optimally and the average percent deviation is 

1.00%. If the maximum deviation is omitted, the grand average percent deviation 

decreases from 2.00% to 1.45%. On the other hand, the proposed heuristic algorithm 

obtains better solutions than the best integer solutions provided by the MILP.  

Optimal solution could not be obtained under 3-hour limitation, when the number of 

jobs is 15. While the complexity of the problem is increasing, the number of problem 

instances having better heuristic algorithm solution than the best integer solution also 

increase. For this experiment set, 24 instances are observed with the same situation, 

and negative deviations are taken as 0.00%. The grand average percent deviation is 

1.03%. When we take into account this negative deviations, the grand average 

percent deviation is obtained as -0.94%. The average percent deviations are obtained 

as 1.55% and 0.50% when the number of orders is 5 and 10 respectively. Also, the 
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maximum deviations are 8.26% and 3.71% for this experiment set.   

Finally, none of the problem instances are solved optimally under 3-hour time 

limitation when the number of jobs is 20. For the 44 instances, the heuristic 

algorithm solutions are closer to the optimal solution than the best integer solution, 

and the negative percent deviation for these instances is taken as 0.00%. Also the 

grand average percent deviation is obtained as 0.32%. When we take into account the 

negative percent deviations, the grand average percent deviation decreases from 

0.32% to -0.94%. The average percent deviations are obtained as 0.18% and 0.46% 

when the number of orders is 5 and 10, respectively. Also, the maximum deviations 

are 1.76% and 6.57% for these experiments. 

Consequently, the total average percent deviation is 1.24% including the problem 

instances which the maximum deviations. If the maximum deviations are omitted, 

the total average percent deviation decreases from 1.24 % to 0.99%. Furthermore, 

when the negative deviations are considered, the total average deviation decreases to 

-0.91%. On the other hand, 27 problem instances are solved with 0.00% deviation 

among the 200 problem instances. While 17 one of them can be solved optimally, 10 

of them are best integer with 42% average gap value. Among 17 problem instances 

17 of them are obtained when the number of jobs is considered as 5. Among 10 

problem instances, 6 of them are obtained when the number of jobs is 5. 4 of them 

are obtained when number of jobs is 10. 
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Table 11 Average Percent Deviations of the Heuristic Algorithm from the Optimal 

and Best Integer Solution for the No Setup Case 

N K 

Number 

of 

Problem 

Instances 

Give 

Optimal 

Solution 

Average 

Percent 

Deviation 

of Heuristic 

Algorithm 

from 

Optimal 

Solution 

Number 

of 

Problem 

Instances 

Give 

Best 

Integer 

Solution 

Average 

Percent 

Deviation of 

Heuristic 

Algorithm 

from Best 

Integer 

Solution 

Overall 

AVG. 

MAX. 

DEV. 

5 
5 25 2.26% - - 2.26% 12.64% 

10 4 0.00% 21 1.14% 0.96% 7.93% 

Grand Avg_5 1.61% 

10 
5 2 8.52% 23 2.52% 3.00% 14.73% 

10 - -  25 1.00% 1.00% 3.98% 

Grand Avg_10 2.00 % 

15 
5 

10 

- - 25 1.55% 1.55% 8.26% 

10 - - 25 0.50% 0.50% 3.71% 

Grand Avg_15 1.03% 

20 
5 -  - 25 0.18% 0.18% 1.76% 

10 - - 25 0.46% 0.46% 6.57% 

Grand Avg_20 0.32% 

AVG_TOTAL 1.24% 

5.4. Comparison of the Setup and No Setup Cases  

All of the performance details of the heuristic algorithm are discussed for both setup 

and no setup cases. Totally, 400 problem instances are analyzed. 200 of them are 

analyzed for setup case and the remaining 200 problem instances are analyzed for no 

setup case. In this section, we compare the setup and no setup cases for both MILP 

and proposed heuristic algorithm performances. 

 

5.4.1. Comparison of the Setup and No Setup Cases for the MILP Performance    

Table 12 illustrates the summary for both setup and no setup cases when the number 

of customer orders is 5. For both cases optimal solutions are obtained when the 

number of jobs is 5. When the number of jobs is 10, among 25 problem instances 

solved 1 optimal solution is obtained for the setup case and 2 optimal solutions are 

obtained for the no setup case. Impact of the setup time can be seen on the Gap 

values. While the average Gap values for the setup case and no setup case are 45%, 

and 42%, respectively. Totally all remaining 147 problem instances cannot be solved 

optimally for both cases. Also, the Gap values can be seen in Table 11 when the 
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numbers of jobs are 15 and 20. From Table 12, it is clear that the performance of the 

MILP model is almost same for setup and no setup cases when the number of 

customer order is 5.  

 

Table 12 Comparison of the Setup and No Setup Cases for MILP Performance for 5 

orders 

Case Setup Case No Setup Case 

Number of customer orders (K) 5 5 

Number of jobs (N) 5 10 15 20 5 10 15 20 

Total number of problem instances  25 25 25 25 25 25 25 25 

Number of optimum integer 

solutions  
25 1 0 0 25 2 0 0 

Number of best integer solutions  0 24 25 25 0 23 25 25 

Average GAP (%) 0 45 78 87 0 42 80 89 

Total Average GAP (%) 52.7 53.2 

 

Table 13 gives the summary for both setup and no setup cases when the number of 

customer orders is 10. For both cases 4 optimal solutions are obtained when number 

of jobs is 5. Totally all remaining 192 problem instances cannot be solved optimally 

for both cases. Also, the average gap values can be seen in Table 13.Again the 

performance of the MILP model is almost same for both setup and no setup cases 

when the number of customer order is 10, as it can be observed from Table 13. 

 

Table 13 Comparison of the Setup and No Setup Cases for MILP Performance for 

10 orders 

Case Setup Case No Setup Case 

Number of customer orders (K) 10 10 

Number of jobs (N) 5 10 15 20 5 10 15 20 

Total number of problem instances  25 25 25 25 25 25 25 25 

Number of optimum integer 

solutions  
4 0 0 0 4 0 0 0 

Number of best integer solutions  21 25 25 25 21 25 25 25 

Average GAP (%) 38 85 91 93 38 90 94 96 

Total Average GAP (%) 77 80 

 

 

 

 

 



48  

5.4.2. Comparison of the Setup and No Setup Cases for the Heuristic Algorithm 

Performance    

Table 14 illustrates the performance of the heuristic algorithm for both setup and no 

setup cases. When the solutions are analyzed, it is seen that the heuristic algorithm is 

more successful for the setup case. Average percent deviation for the setup case is 

0.57% and this value is more than two times smaller than the average percent 

deviation of the no setup case. 

Heuristic algorithm is seriously more successful for the setup case when the number 

of jobs is considered as 5. While the grand average percent deviation is obtained as 

0.81% for the setup case, the grand average percent deviation is obtained as 1.61% 

for the no setup case. Also, the maximum deviations can be seen from Table 9.    

When the number of jobs is considered as 10, the heuristic algorithm is again more 

successful for the setup case. The grand average percent deviations are 0.96% and 

2.00% for the setup and no setup cases, respectively. However, the grand maximum 

percent deviations are 6.94% and 9.35 % for the setup and no setup cases, 

respectively.  

When the number of jobs is considered as 15, the grand average percent deviations 

are 0.48% and 1.03% for the setup and no setup cases, respectively. Although the 

difference between the grand average percent deviations is so different, it is seen that 

the grand maximum percent deviations are so close to each other.  

The grand average percent deviations are closer to each other when the number of 

jobs is considered as 20. The grand average percent deviations are 0.04% and 0.32% 

for the setup and no setup cases, respectively. Among all grand average percent 

deviations, the smallest deviation is for the large-sized problems. This situation is 

also valid for the grand maximum deviations.  

As a conclusion, the proposed heuristic algorithm is better perform for more large-

sized problem sets, and is more successful for the setup case than the no setup case. 

Furthermore, the heuristic algorithm solves the problem in very short time for large-

sized problems.  
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Table 14 Average and Maximum Percent Deviations for Setup and No Setup Cases 

N K 

Number 

of 

Problem 

Instances 

Setup Case No Setup Case 

Average 

Percent 

Deviation  

Maximum 

Percent 

Deviation  

Average 

Percent 

Deviation 

Maximum 

Percent 

Deviation 

5 
5 25 0.36% 2.59% 2.26% 12.64% 

10 25 1.27% 7.66% 0.96% 7.93% 

Grand Avg / 

Total 
50 0.81% 5.12% 1.61% 10.28% 

10 
5 25 1.09% 9.34% 3.00% 14.73% 

10 25 0.82% 4.54% 1.00% 3.98% 

Grand Avg / 

Total 
50 0.96% 6.94% 2.00% 9.35% 

15 
5 

10 

25 0.52% 3.52% 1.55% 8.26% 

10 25 0.44% 7.11% 0.50% 3.71% 

Grand Avg / 

Total 
50 0.48% 5.31% 1.03% 5.98% 

20 
5 25  0.08% 1.62% 0.18% 1.76% 

10 25 0.00% 0.00% 0.46% 6.57% 

Grand Avg / 

Total 
50 0.04% 0.81% 0.32% 4.16% 

Total Avg 

/Total 
200 0.57% 4.55% 1.24% 7.45% 
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

 

In this study, we consider a scheduling problem of several customer orders in which 

each customer can request a variety of products (also called jobs) in an order. All 

products are processed on a two-machine flow shop in which each product has one 

operation on each machine, and all products are first processed by machine 1 and 

then by machine 2. While processing a product, each customer order for a product is 

processed as a sublot (a batch of identical items of a product), all sublots of the same 

product must be processed continuously by the same machine, and each processed 

sublot of the same product is transferred from machine 1 to machine 2, while other 

sublots of the same product are processed on machine 1. This means that overlapping 

of the two operations on the same product through the creation of sublots (i.e., lot 

streaming) is allowed without intermingling the sublots of other products (i.e, once 

the first sublot of a product arrives at a machine, the other sublots of different 

products cannot be assigned to this machine until all of the sublots are processed).  

Each customer order is delivered to the customer when the processing of all the 

products in the customer order is completed. Thus, the completion time of the job 

sublot processed as the last product in a customer order defines the completion time 

of the customer order. Our goal is to find a sequence of the jobs as well as the 

sequences of the sublots in each job so that the total completion time, which is the 

sum of the completion times of the customer orders, is minimized and equivalent to 

minimizing total work-in-process inventory focusing on increasing the customer 

satisfaction. 

We have shown that the problem is NP-hard in the strong sense, and developed a 

mathematical programming model and a tabu-search heuristic algorithm to determine 

optimal and near-optimal solutions, respectively. We prepared two types of 

experiment set for the setup and no setup cases. From our experiments it is observed 
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that solving the problem by a standard MILP solver seems not to be useful 

alternative for both cases, especially for large-sized problem instances. While our 

proposed heuristic algorithm cannot give the successful results, it finds promising 

results for setup case. Moreover, the proposed heuristic algorithm can solve small- 

and medium-sized problem instances optimally and heuristic algorithm can find 

near-optimal solutions for large-sized problem instances in very short computational 

times. 

There is a considerable number of issues remaining open for future research. Several 

extensions of our study can be investigated. In our study, we do not allow for the 

intermingling the sublots of different products (jobs). However, this assumption can 

be relaxed. Our problem studied in this study can also be extended for more complex 

machining environments such as flow shops having more than two machines, job 

shops, and open shops. Study of the same problem for different performance 

measures such as total or maximum lateness, total tardiness, and the number of tardy 

customer orders would be some other extensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52  

REFERENCES 

 

 

Ahmadi, R.H., and Bagchi, U. (1990), “Scheduling of multi-job customer orders in 

multi-machine environments”, ORSA/TIMS, Philadelphia. 

Chang, J.H., and Chiu, H.N. (2005), “A comprehensive review of lot streaming”, 

International Journal of Production Research, 2005. 43: 1515-1536. 

Çetinkaya, F.C., and Kayalıgil M.S., (1992), “Unit sized transfer batch scheduling 

with setup times”, Computers and Industrial Engineering, 22(2): 177-182. 

Çetinkaya, F.C. (1994), “Lot streaming in a two-stage flow shop with set-up, 

processing and removal times separated”, Journal of Operational Research Society, 

45(12): 1445-1455. 

Çetinkaya, F.C., and Gupta, J.N.D. (1994), Flowshop lot streaming to minimize 

total weighted flow time. Research Memorandum No. 94-24, School of Industrial 

Engineering, Purdue University, West Lafayette, Indiana. 

Çetinkaya, F.C., and Duman, M. (2010), “Lot streaming in a two-machine mixed 

shop”, International Journal of Advanced Manufacturing Technology, 49: 1161-

1173. 

Defersha, F. M., and Chen, M. (2010), “A hybrid genetic algorithm for flowshop 

lot streaming with setups and variable sublots”, International Journal of Production 

Research, 48(6): 1705-1726. 

Erel, E., and Ghosh, J.B. (2007), “Customer order scheduling on a single machine 

with family setup times: complexity and algorithms”, Applied Mathematics and 

Computation, 185: 11-18. 

Feldmann, M., and Biskup, D. (2008), “Lot streaming in a multiple product 

permutation flow shop with intermingling”, International Journal of Production 

Research, 46(1): 197-216.



53  

Gerodimos, A.E., Glass, C.A., and Potts, C.N. (2000), “Scheduling the production 

of two-component jobs on a single machine”, European Journal of Operational 

Research, 120: 250-259. 

Glass, C.A., and Possani, E. (2011), “Lot streaming multiple jobs in a flow shop”, 

International Journal of Production Research, 49(9): 2669-2681. 

Gonzales, T., and Sahni, S. (1978), “Flow shop and job shop scheduling: 

complexity and approximation”, Operations Research, 26: 36-52. 

Gupta, J.N.D., Ho, J.C., and van der Veen, J.A.A. (1997), “Single machine 

hierarchical scheduling with customer orders and multiple job classes”, Annals of 

Operations Research, 70: 127-143. 

Hall, N.G., Laporte, G., Selvarajah, E., and Sriskandarajah, C. (2003), 

“Scheduling and lot streaming in flowshops with no-wait in process”, Journal of 

Scheduling, 6: 339-354. 

Hazır, Ö., Günalay, Y., and Erel, E. (2008), “Customer order scheduling problem: 

a comparative metaheuristics study”, International Journal of the Advanced 

Manufacturing Technology, 37: 589-598. 

Johnson, S.M. (1954), “Optimal two- and three-stage production schedules with 

setup times included”, Naval Research Logistics Quarterly, 1: 61-67. 

Jullien, F.M., and Magazine, M.J. (1990), ‘Scheduling customer orders: an 

alternative production scheduling approach’, Journal of Manufacturing and 

Operations Management, 3: 177-199. 

Kalir, A.A. (1999), “Optimal and heuristic solutions for the single and multiple 

batch flow shop lot streaming problems with equal sublots”, PhD thesis, State 

University, Virginia. 

Kalir, A.A., and Sarin, S.C. (2001), “A near-optimal heuristic for the sequencing 

problem in multiple-batch flow shops with small equal sublots”, Omega, 29(6): 577-

584. 

Kumar, S., Bagchi, T.P. and Sriskandarajah, C. (2000), “Lot streaming and 



54  

scheduling heuristics for m-machine no-wait flowshops”, Computers and Industrial 

Engineering, 38: 149-172. 

Lee, I.S. (2013), “Scheduling on parallel machines to minimize maximum lateness 

for the customer order problem”, International Journal of Production Economics, 

144: 128-134. 

Leung, J.Y.T., Li, H., and Pinedo, M. (2005), “Order Scheduling in an 

Environment with Dedicated Resources in Parallel”, Journal of Scheduling, 8: 355-

386. 

Leung, J.Y.T., Li, H., and Pinedo, M. (2006), “Scheduling orders with multiple 

product types with due date related objectives”, European Journal of Operational 

Research, 168: 370-389. 

Leung, J.Y.T., Li, H., and Pinedo, M. (2007), “Scheduling orders for multiple 

product types to minimize total weigthed completion time”, Discrete Applied 

Mathematics, 155: 945-970. 

Lin, B.M.T., and Kononov, A.V. (2007), “Customer order scheduling to minimize 

the number of late jobs”, European Journal of Operational Research, 183: 944-948. 

Liu, C.H. (2009), “Lot streaming for customer order scheduling problem in job shop 

environments”, International Journal of Computer Integrated Manufacturing, 22: 

890-907. 

Liu, C.H. (2010), “A coordinated scheduling system for customer orders scheduling 

problem in job shop environments”, Expert Systems with Applications, 37: 7831-

7837. 

Mortezaei, N., and Zulkifli, N. (2013), “Integration of lot sizing and flow shop 

scheduling with lot streaming”, Journal of Applied Mathematics, vol. 2013, Article 

ID 216595, 9 pages, 2013.doi:10.1155/2013/216595. 

Nawaz, M., Enscore, E., and Ham, I. (1983), “A heuristic for the m-machine, n-

job flow shop sequencing problem”, Omega, 5: 11: 91. 

Panwalker, S.S., and Khan, A.W. (1976), “An ordered flow-shop sequencing 



55  

problem with mean completion time criterion”, International Journal of Production 

Research, 14: 631-635. 

Reiter, S. (1966), “A system for managing job-shop production”, The Journal of 

Business, 39: 371-393. 

Sarin, S.C., and Jaiprakash, P. (2007), Flow shop lot streaming, Springer. 

Smith, M.L., Panwalker, S.S., and Dudek, R.A. (1975), “Flowshop sequencing 

problem with ordered processing time matrices: A general case”, Management 

Science, 21:544-549. 

Su, L.H., Chen, P.S., and Chen, S.Y. (2013), “Scheduling on parallel machines to 

minimize maximum lateness for the customer order problem”, International Journal 

of Systems Science, 44: 926-936. 

Vickson, R.G. (1995), “Optimal lot streaming for multiple products in a two-

machine flow shop”, European Journal of Operational Research, 85: 556-575. 

Vickson, R.G. and Alfredsson, B.E.(1992), “Two- and three-machine flow shop 

scheduling problems with equal sized transfer batches”, International. Journal of 

Production Research, 30: 1551-1574. 

Wagneur, E., and Sriskandarajah, C. (1993), “Open shops with jobs overlap”, 

European Journal of Operational Research, 71: 366-378. 

Wang, G., and Cheng, T.C.E. (2007), “Customer order scheduling to minimize 

total weighted completion time”, Omega, 35: 623-626. 

Xu, X., Ma, Y., Zhou, Z., and Zhao, Y. (2015), “Customer order scheduling on 

unrelated parallel machines to minimize total completion time”, IEEE Transactions 

on Automation Science and Engineering, 12: 244-257. 

Yang, J., and Posner, M.E. (2005), “Scheduling parallel machines for the customer 

order problem”, Journal of Scheduling, 8: 49-74. 

Yang, J. (2005), “The complexity of customer order scheduling problems on parallel 

machines”, Computers and Operations Research, 32: 1921-1939. 




