CUSTOMER ORDER SCHEDULING WITH LOT STREAMING TO
MINIMIZE THE TOTAL ORDER COMPLETION TIME IN A TWO-
MACHINE FLOW SHOP

GUNCE YOZGAT

FEBRUARY 2018

CUSTOMER ORDER SCHEDULING WITH LOT STREAMING TO
MINIMIZE THE TOTAL COMPLETION TIME IN
A TWO-MACHINE FLOW SHOP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

CANKAYA UNIVERSITY

BY

GUNCE YOZGAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
FOR THE DEGREE OF MASTER OF SCIENCE
IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

FEBRUARY 2018

Title of the Thesis : Customer Order Scheduling with Lot Streaming to

Minimize the Total Completion Time in a Two-Machine
Flow Shop

Submitted by Giince YOZGAT

Approval of the Graduate School of Natural and Applied Scj ces, Cankaya
University

Prof. Dr. Can COGUN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science

[

AssocTProf. Dr. Ferda Can CETINKAYA
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science
Assoc. Prof. Dr. Ferda Can CETINKAYA
Supervisor

Examination Date: 05.02.2018
Examining Committee Members

Assoc. Prof. Dr. Sedef MERAL (METU)

Assoc. Prof. Dr. Ferda Can CETINKAYA (Cankaya Uni

r\
Asst. Prof. Dr. HakanOZAKTAS (Cankaya Univ.) @é([tu W‘

STATEMENT OF NON PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : _©dnce. YoRlohT
Signature : %@

Date N Ry B2 ki

iii

ABSTRACT

CUSTOMER ORDER SCHEDULING WITH LOT STREAMING TO
MINIMIZE THE TOTAL COMPLETION TIME IN
A TWO-MACHINE FLOW SHOP

YOZGAT, Giince

M.Sc., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Ferda Can CETINKAYA

February 2018, 55pages

In this study, we consider a customer order scheduling problem in which each
customer can request a variety of products (also called jobs) in an order. All products
are processed on a two-machine flow shop in which each product has one operation
on each machine, and all products are first processed by machine 1 and then by
machine 2. Each customer order is delivered to the customer when the processing of
all products in the customer order is completed. Thus, the completion time of the job
sublot processed as the last product in a customer order defines the completion time
of the customer order. Our goal is to find a sequence of the job lots as well as the
sequences of the sublots in each job so that the total completion time, which is the
sum of the completion times of the customer orders, is minimized. We develop a
mixed integer linear programming model capable of solving small-sized problem
instances optimally, and propose a tabu-search based heuristic algorithm that obtains
optimal and near-optimal solutions for medium and large-sized problem instances.
The results of our computational experiments performed to evaluate the performance
of our solution approaches in terms of both quality and time show that the proposed
heuristic algorithm finds optimal or near-optimal solutions in very short time.

Keywords: Customer order scheduling; lot streaming; two-machine flow shop; total
completion time; mixed integer linear programming; tabu-search

0z

IKi MAKINALI AKIS TiPi URETIM HATTINDA MUSTERI
SIPARISLERININ TAMAMLANMA ZAMANLARI TOPLAMININ
ENKUCUKLENEREK KAFIiLE KAYDIRMALI OLARAK
CiZELGELENMESI

YOZGAT, Giince
Yiiksek Lisans, Endiistri Mithendisligi
Anabilim Dali Tez Yéneticisi: Dog. Dr. Ferda Can CETINKAYA

Subat 2018, 55sayfa

Bu calismada, cesitli iirlinleri (isleri) icerebilen miisteri siparislerini cizelgeleme
problemi ele alinacaktir. Bir iirlin iglenirken, o {iriine ait her miisteri siparisi alt
kafileleri (bir iriinlin 6zdes gruplari) olarak islenir ve ayni iriiniin tiim alt kafileleri
ayni makinada araliksiz olarak islenir ve ayni iiriiniin diger alt kafileleri makina 1’ de
islenirken, islenen alt kafileler makina 1’den makina 2’ye aktarilir. Bu durum, ayni
iriiniin alt kafilelerinin birbirine karismasma izin vermeksizin iki operasyonun
Ortlismesi anlamina gelir (yani bir {irliniin ilk alt kafilesi bir makinaya ulastiginda, o
tiriine ait tim alt kafileler tamamlanana kadar baska triinlerin alt Kafileleri bu
makinaya atanamaz). Miisteri siparisinde yer alan tim driinlerin {retimi
tamamlandiktan sonra miisterinin siparisi teslim edilir. Bir miisteri siparisinde son
tiriin olarak igslem goren son alt kafilenin tamamlanma zamani, miisteri siparisinin
tamamlanma zamanidir. Amacimiz, miisteri siparislerinin tamamlanma zamanlarinin
toplamin1 enkiiciikleyen is kafilelerinin sirasin1 ve her is kafilesindeki alt kafilelerin
sirasin1 bulmaktir. Kiigiik 6lcekli problemleri optimal olarak ¢dzebilen bir karisik
tamsayilt dogrusal programlama modeli ile biiyiik ve orta 6l¢ekli problemler igin
optimal veya optimale yakin sonuglar verebilen tabu arama esasli sezgisel bir
algoritma gelistirdik. Coziim yontemlerinin siire ve kalite agisindan degerlendirilmesi

icin yapilan deneylerin sonuglari, onerilen sezgisel algoritmanin ¢ok kisa siirede
optimal ya da optimale yakin sonuglar buldugunu gostermektedir.

Anahtar Kelimeler: Miisteri siparisi ¢izelgeleme; kafile kaydirma; iki makinali akis
tipli at6lye; toplam tamamlanma zamani; karisik tamsayili dogrusal programlama;
tabu arama

Vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Ferda
Can CETINKAYA for his endless support, suggestions, guidance and

encouragement during this thesis.

I would like to express my appreciation to my family for their sincere love, support

and positiveness.

Lastly, 1 would like to give special thanks to my husband for his endless

inexpressible support and motivation.

Vil

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM.....oooiiiiiie ettt ii
ABSTRACT .. iv
OZ oot v
ACKNOWLEDGEMENTSooiiiii it Vii
TABLE OF CONTENTS ...ttt Viii
LIST OF FIGURES.......co oottt X
LIST OF TABLESottt e e e snae e e nnne e Xi
LIST OF ABBREVIATIONS ...ttt Xii

CHAPTERS:

1. INTRODUCGTIONci ittt e e e e ssbe e e snteeesnaeeennneeaneeens 1
2. PROBLEM DEFINITION, COMPLEXITY AND PRELIMINARIES.................. 4
2.1 Problem DefiNItioNccoiiiiiiiieese e 4
2.2 Problem COMPIEXILYcooiiiiiiieieese e 5
2.3 PrelimMiNaries.o 6

3. LITERATURE REVIEW.coiiiii e 10
3.1 Literature Review for the Customer Order Scheduling Problems 10
3.1.1 Single Machine Problems.............cccovveiiiieiecie e 10

3.1.2 Parallel Maching Problems.............cooiiiiiiiiiciicic e 11
3.1.3 Open Shop and Job Shop Problems ... 13

3.2 Literature Review for Multi-Job Lot Streaming Problemsccccceoeinne. 13

4. SOLUTION APPROACHES: MATHEMATICAL PROGRAMMING
MODEL AND A TABU-SEARCH BASED PROPOSED HEURISTIC

ALGORITHM ..ottt st era e e 17
4.1 Mathematical Programming Modelccccooviiiiiiiiiicc e, 17
4.2 Proposed Tabu-search Based Heuristic Algorithm ... 21

viii

4.3 NUMETICAl EXAMPIE.....coiiiieiieeeee et 24

5. COMPUTATIONAL EXPERIMENTS ..o 36
5.1 Computational Settings for the Test Problems...........cccocooveiieiiiiiicc e, 36
5.2 Performance MEASUIEScccueieierieiesiesie st 37
5.3 Discussions of the RESUILS...........ccooiiiiiiiiiccc e 38

5.3.1 SEUUP CASEciiiuiiiieeiiet et 38
5.3.1.1 Performance of the MILP modelccooooiiiiiiiiiiiee, 38
5.3.1.2 Performance of the heuristic algorithm...........ccccoeiiiiiiiiiicen, 40

5.3.2 INO SEIUP CBSE ...ttt 42
5.3.2.1 Performance of the MILP modelccooeoiiiiiiiniiccee 42
5.3.2.2 Performance of the heuristic algorithm...........ccccooooiiiiiiiiieen, 43

5.4 Comparison of the Setup and NO Setup Casesccccevvrverriereniesieeneaee e 46

5.4.1 Comparison of the Setup and No Setup Cases for the MILP
PEITOIMANCEooviiiiieiiiee ettt esne e nreas 46

5.4.2 Comparison of the Setup and No Setup Cases for the Heuristic

Algorithm Performance...........cccoveiiieieece e 48
6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONSccccvevennne. 50
REFERENGCES.......cciiiitiieiee ettt sttt be st eenaanas 52

Figure 1

Figure 2
Figure 3

Figure 4
Figure 5

Figure 6

LIST OF FIGURES

Gantt Chart for the Example Problem with Three Customers and Two

PROTUCTES ...t 3
RuNn-in Times of the JODS.........cccoiiiiii s 9
Gantt Chart for the Customer Order O, ... 26
Tabu-search Iteration-1...........ccceueieiiieiesieee e 34
Tabu-Search Ieration-2............cccoieieieieieieeseee e 34
Gantt Chart of the Schedule Obtained for the Numerical Example........... 35

LIST OF TABLES

Table 1 Data Set for the Run-in Time Numerical Example Illustrating the Run-in Times..... 8
Table 2 Calculation 0f the V-ValUe.............coiiiiiii e 21
Table 3 Data Set for the Numerical EXample.......c.ccccoviiiiiii i 25
Table 4 Total Order Completion Times for Two Partial SeqUENCEScccccvvveveveeieiennnee 28
Table 5 Total Order Completion Times for Three Partial Sequences...........c.ccocvvvrvreriennn. 29
Table 6 Total Order Completion Time for Four Partial SEQUENCEScccoveveeveieciieieenne, 30
Table 7 Total Order Completion Time for Five Partial Sequences.........cccocvovvvrineneniennen. 32
Table 8 Performance of the MILP Model for the Setup Case........ccccevvviieveieeie e 39

Table 9 Average Percent Deviations of the Heuristic Algorithm from the Optimal and Best
Integer Solution TOr the SEtUP CaSEccuiiiiiirie e 40
Table 10 Performance of the MILP Model for the No Setup Caseccccevveveeveieeiesennns 43
Table 11 Average Percent Deviations of the Heuristic Algorithm from the Optimal and Best
Integer Solution for the NO SETUP CaSEcc.eviiiiieieee e 46

Table 12 Comparison of the Setup and No Setup Cases for MILP Performance for 5 orders

Xi

COS
GAMS
MILP
NP

LP

LS

LIST OF ABBREVIATIONS

Customer Order Scheduling
General Algebraic Modelling System

Mixed Integer Linear Programming
Non-Deterministic Polynomial

Linear Programming
Lot Streaming

Xii

CHAPTER 1

INTRODUCTION

In today’s world customer satisfaction has great importance for all of the companies.
This situation promotes the companies to select make-to-order (order-based)
manufacturing strategy. In make-to-order manufacturing environments, scheduling is
usually referred to as customer order scheduling (COS). Manufacturing operations
start after a customer order is placed. To provide customer satisfaction, the questions
“when to deliver orders”, “which quantities should be produced” and “which
sequence of jobs should be produced” must be answered. Although answering these
questions are difficult enough, product variety and constraints like order lead times

increase the complexity of customer order scheduling problem.

Customer orders can have multiple product types with different quantities. Also, each
product type can be produced by using different operations and different number of
operations. These operations can be conducted on different machines. Moreover,
each product can be manufactured by using different machines which may need
setups, release times or other operations before starting the manufacturing of the
products. In the flow shop environment, the operations follow each other on different
types of machines. If the flow shop environment allows changes in the product (job)
sequence on all machines, it is called non-permutation flow shop environment.
Otherwise, the product (job) sequence is same on all machines, and this type of flow
shop is called as permutation flow shop. In this study, we deal with two-machine

permutation flow shop environment.

Job lots having different orders are split in to sublots. This technique of splitting the
jobs into sublots and processing these different sublots simultaneously over different
machines is called lot streaming (LS). Lot streaming has a lot of advantages in make-

to-order manufacturing environment to improve delivery times if setup times are

significantly large. Lot streaming problems are divided into two groups that are
single-lot and multi-lot problems. While single-lot problems determine the number of
sublots and their sizes, multi-lot problems determine the number of sublots, sublot
sizes and sequence of the sublots. In this study, we deal with the multi-lot problems

with customer order scheduling.

The problem considered in this thesis is the scheduling of K customer orders in
which each customer gives order for several types of products (or jobs). N jobs are
processed firstly on the first machine and then on the second machine in a two-
machine flow shop environment. A customer order can only be delivered when all

jobs of that customer order are completed on the second machine.

In this problem defined above, decisions are made as to determine the sequence of
the products (jobs) as well as the sequence of customer orders in each job to
minimize the total completion time of the customer orders. Throughout this study,
we will call the sequences of jobs and customer orders as job sequence and sublot
sequence, respectively. Furthermore, a schedule in which both job and sublot
sequences are specified will be called a schedule.

Before we proceed with our analysis, it seems appropriate to illustrate the problem
by a numerical example. Consider a simple instance of the problem in which there
are three customer orders and two products (jobs). Customers 1 and 2 order 100 units
of product 1. Customers 1, 2 and 3 have ordered 100, 50 and 25 units of product 2,
respectively. Setup and unit processing times for operations 1 and 2 of Job 1 are (10;
1) and (10; 2), respectively. Similarly, Setup and unit processing times for operations
1 and 2 of Job 2 are (10; 2) and (10; 1), respectively. As it is illustrated in Fig. 1, the
optimal job (product) sequence with the optimal sublot (customer order) sequences in
each job isJ,(0, -0, -0,) - J,(0, -0,). The completion times of the orders 1, 2

and 3 are 680, 880 and 95 time units, respectively, and the total completion time of
the orders is 680 + 880 + 95 = 1655 time units.

The contribution of our study in this thesis is threefold. First, to the best of our
knowledge, there is no study that considers the flow shops with both customer order
scheduling and lot streaming. Second, we formulate the total completion time

minimization problem as a mixed integer linear programming (MILP) model to solve

2

the problem under consideration optimally. Third, our proposed tabu-search based
heuristic algorithm for solving the problem is straightforward and easy to implement
for finding optimal and near-optimal solutions for medium and large-sized problem

instances in which a solution cannot be obtained by solving the MILP model.

Job2 Jobl
N
- ~ - ~
) O o) @) (@)
M l% 3 2 1 /ﬂ 1 2
10 60 160 360 370 470 570
Job2 Jobl
A
AN / A
74 0 0 0 0 0
M 2 ﬁ 3 2 1 é 1 2
70 95 210 460 480 680 880
CT, =95 CT, =680 CT, =880

Figure 1 Gantt Chart for the Example Problem with Three Customers and Two
Products

The remainder of this report is organized as follows. Chapter 2 defines the problem
and provides the problem complexity and some structural properties of the optimal
schedule for the problem under consideration. Chapter 3 provides a review of the
most relevant works to our study on customer order scheduling and lot streaming.
Chapter 4 proposes a mixed-integer linear programming model and a tabu-search
based heuristic algorithm. We also provide a numerical example for better
understanding of the proposed heuristic algorithm. The computational tests to
evaluate the performance of the mathematical model and the proposed heuristic
algorithm are given in Chapter 5. Finally, our main findings and several directions

for future research are discussed in Chapter 6.

CHAPTER 2

PROBLEM DEFINITION, COMPLEXITY AND PRELIMINARIES

In this chapter, the problem under consideration is defined, its complexity is
discussed, and some properties of the optimal schedule, which will be used in the

development of the heuristic algorithm, are provided.

2.1. Problem Definition

Consider a scheduling problem of K customer orders (k=12,..., K') in which each
customer can request a variety of products (also called jobs) in an order. There are
N products (j=12,..,N) to be processed on a two-machine flow shop in which
each product has one operation on each machine and all products are first processed

by machine 1 and then by machine 2.

Each customer order k has D, ; units of identical items of product j, where this

quantity is called the product sublot (or job sublot) size. While processing a product,
each customer order for that product is processed as a sublot (a batch of identical
items of a product), and all sublots of the same product must be processed
continuously by the same machine, and each processed sublot of the same product is
transferred from machine 1 to machine 2 for the second operation, while other
sublots of the same product are processed on machine 1. This means that overlapping
of the two operations on the same product through the use of sublots (i.e., lot
streaming) is allowed without intermingling the sublots of other products (i.e, once
the first sublot of a product arrives at a machine, the other sublots of different

products cannot be assigned to this machine until all of the sublots are processed).

Unit processing time of the job j on machine m (M=12)is P, . and a sequence

independent attached setup time t; ~ is needed to set up the tools, jigs, fixtures, etc.

4

before processing the first sublot of job j on machine m. In the case of attached
setups, the setup on machine 2 cannot start until the first sublot is available on
machine 2. Besides, the following assumptions are considered:
e Preemption of the sublots is not allowed; i.e., any sublot cannot be interrupted
until the completion of its operation.
e No setup is necessary between successive sublots of the same product.
e All customer orders are available for processing at the same time, say time 0.
e Each machine is available at time zero and remains continuously available.
e Each machine can process at most one sublot at a time and each sublot can be
processed on only one machine at any given time.
e Sufficient storage space exists to stock the processed sublots on machine 1.

e Transportation times between machines are considered to be negligible.

Each customer order is delivered to the customer when the processing of all products
in the customer order is completed. Thus, the completion time of the job sublot
processed as the last product in a customer order defines the completion time of the
customer order. Our goal is to find a sequence of the jobs as well as the sequences of
the sublots in each job so that the total completion time, which is the sum of the
completion times of the customer orders, is minimized to increase the customer

satisfaction.

2.2. Problem Complexity

Theorem 1 Customer order scheduling problem with lot streaming to minimize the

total completion time in a two-machine flow shop is NP-hard in the strong sense.

Proof Consider a special case of the problem, where (a) the number of customer
orders is equivalent to the number of products (jobs), i.e., K=N, (b) each customer

gives an order with exactly one product different from the products in the other

customer orders, i.e., D;, =D; =1 for Vj, and (c) the setup times are omitted, i.e.,
t;n =0 for vj,m. This special case is equivalent to the total completion time

minimization problem in the classical two-machine flow shop without lot streaming

FZIIZCJ. , which has been proven to be NP-hard in the strong sense by Gonzalez

and Sahni (1978). Hence, the problem under consideration is also NP-hard in the

strong sense. [
2.3. Preliminaries

Given the complexity of the problem under consideration, it is desirable to develop a
heuristic algorithm to obtain optimal and/or near-optimal solutions for large scale
problem instances in reasonable CPU times. Thus, we now give some definitions and
theorems to derive the structural properties, which will be used in the development of

a heuristic algorithm, of the optimal solution for the problem under consideration.

Definition 1 (Smith et al., 1975) The AM-machine N-job flowshop is called an
ordered flowshop if the following two properties are satisfied:

(i) If a particular job has a smaller processing time on any machine than does a
second job on the same machine, this implies that the processing time of this
first job is less than or equal to the processing time of the second job on all
corresponding machines.

(i) If a job has its rth smallest processing time on some machine m,
m=1,2,...,M, this implies that every other job will have its »th smallest

processing time on the same machine m where r =12,....M .

Using the results of Smith et al. (1975), Panwalker and Khan (1979) gives the
following result for the ordered flow shops.

Lemma 1 (Panwalker and Khan, 1979) In the optimal solution of the ordered flow
shop problem to minimize the total completion time, jobs are arranged in

nondecreasing order of their processing times.

Cetinkaya and Gupta (1994) gives the following result for the single-job lot

streaming problem in the M-machine flowshop.

Lemma 2 (Cetinkaya and Gupta, 1994) The single-job lot streaming problem with
consistent sublots satisfies the characteristics of the ordered flowshops.

Proof Proof is obvious from two facts. First, if a sublot has the kth smallest
processing time on a machine m across all sublots, then it has the kth smallest

processing time on every other machine due to consistency. Second, if a sublot has

its k th smallest processing time on machine m , then every other sublot has the k th
smallest processing time on machine m due to proportionality of processing times

with sublot sizes. [

The following theorem describes the optimal schedule of the problem under

consideration for the single-job case.

Theorem 1 For the problem under consideration, there exists an optimal schedule in
which the customer orders (sublots) are processed in non-decreasing order of their
sublot sizes if each customer gives an order with exactly one product that is the same
product (job) in all customer orders.

Proof If each customer gives an order with exactly one product which is the same
product (job) in all customer orders, then the problem reduces to the single-job lot
streaming problem to minimize the total completion time of the customer orders.
From Lemmas 1 and 2, it is clear that the customer orders (sublots) are processed in

non-decreasing order of their sublot sizes. [

The following theorem describes the schedule of the sublots of the last job in the last

position of the optimal schedule for the problem under consideration.

Theorem 2 For the problem under consideration, there exits an optimal schedule in
which all sublots of the last job in the job sequence are processed in non-decreasing
order of their sublot sizes.

Proof Note that the sum of the completion times for the customer orders (sublots)
having no demand for the product (job) processed in the last position of the job
sequence does not depend on the sequence of the sublots of the job processed as the
last in the job sequence. Thus, the problem of finding the sequence of the sublots of
the job in the last position of the job sequence can be considered as the single-job
case as given in Theorem 1, and all sublots of the last job in the job sequence are

sequenced in non-decreasing order of their sublot sizes. [

Definition 2 (Run-in Time) Run-in time RI; of the job j is the time that elapses

between the starts of the setups for job j on machines 1 and 2 in the flow shop

environment, and is calculated as:

RIj =t;,+ Dy Sy,

where Sy ; is the size of the first sublot (customer order) in job j.

To illustrate the run-in times, we consider a problem instance in which there are four
products (jobs) and five orders (sublots). Unit processing times (p,), sequence
independent setup time (t;,,) and requirement of product j for customer order k

(D, ;) are given in Table 1.

Table 1 Data Set for the Run-in Time Numerical Example Illustrating the Run-in
Times

Dk,j pj,m tj,m

Orders (O,)
0, 0, O, O, O, m | m, | m [m,

Products (j)

By 100 | 100 | - : - 1 [2]10]10
], - |50 [25 |10 | - [2 |1 10|10
3, 25 | - - [50 [100 | 1 | 3 |10 10
J 50 | 50 | - |00 | - [4 [1 [10]10

4

Run-in times for all jobs are illustrated by the Gantt charts in Figure 2.

M, 0, o
10 110 210
RI, =110
M, 77
- o 0,
///Q 1 2
120 320 320
(@) Job J,
M, 0 0, o,
10 60 160 360
M RI, =60
2 Q—% 0, o, 0,
60 70 05 160 210 360 160
(b) Job J,
M,
! o, 0, 0, ‘
10 35 85 185
M, RI; =35 7 ‘
= «—> o .
% 0, 4 0;
45 120 270 570
(©)J;
M1 0, ‘ 0, ‘ o, ‘
10 210 410 810
Iy RI, =210 7
2 - -; 0, ‘ ‘ 0, ‘ ‘ o, ‘
210 220 270 410 460 810 910
(d) Job J,

Figure 2 Run-in Times of the Jobs

CHAPTER 3

LITERATURE REVIEW

In this chapter, the most relevant works to our study on customer order scheduling

and lot streaming are reviewed in detail.

3.1. Literature Review for the Customer Order Scheduling Problems

In the literature of machine scheduling, our problem to be studied in this thesis falls
in the intersection of two main areas of research: “Customer order scheduling” and
“Lot streaming”. In an order-based manufacturing environment, scheduling is usually
referred to a customer order scheduling (COS) problem in which there are several
customer orders consisting of one or more individual products. The composition of
products in each customer order is pre-specified by the customer. Furthermore,
different customers may give orders having the same products, and all products in
each order are shipped as a group at the same time to the customer (Julien and
Magazine (1990) and Ahmadi and Bagchi (1990)). Julien and Magazine (1990) have
introduced the COS problem and have used polynomial time algorithm for a given
order processing sequence. Also, they have examined the structure of optimal
schedules. Ahmadi and Bagchi (1990) have studied the order scheduling problem to

minimize the total weighted completion time.

The research on COS problems are scarce in the literature. COS problem has been
studied for single-machine, parallel machines, open shops and job shops with various
scheduling criteria such as makespan, total completion time, and maximum lateness.

In most of these studies, the focus has been on the parallel-machine environments.

3.1.1. Single Machine Problems

Gupta et al. (1997) study on non-preemptive single machine bi-criteria scheduling

10

problems with m customer orders having n varied job types. The initial objective of

the study is minimizing the makespan. The objective has the same aim as the
objective of minimizing the total set-up time between job classes. Another objective
IS minimizing the total carrying costs of the customer orders. Carrying cost is thought
as length of time interval between completion time of the first and last job in a
customer order. Polynomial time algorithm is developed for the two objectives

above.

Gerodimos et al. (2000) study on the scheduling of the jobs that consist of standard
and specific components. Minimizing the number of late jobs is the objective of this
study. Because of the NP-hardness, they develop dynamic programming algorithm

with pseudo-polynomial time.

Erel and Ghosh (2007) examine COS problem with orders that have varied products
from varied product families (when the product families switch, setup time is
needed). Minimizing the total order lead time (order completion time) is the aim of
this study while finding a production schedule. A dynamic programming is

developed based on exact solution algorithm by them.

Hazir et al. (2008) study on customer order scheduling problem to minimize average
customer order flow time on single machine. Because of the NP hardness problem of
COS, four major metaheuristics: simulated annealing, genetic algorithm, ant colony
optimization and tabu-search are developed. They observe that tabu-search algorithm
and ant colony optimization methods perform better for large problems, while

simulated annealing performs better for smaller problems.

3.1.2. Parallel Machines Problems

For parallel machines, Yang and Postner (2005) examine the scheduling of the job
batches (customer orders). Their objectives are to minimize the sum of completion
times of batches and to minimize the total work-in-process in production shop
environment where jobs are dispatched in batches. Two heuristic algorithms are

constructed for one and two parallel machines.

Yang (2005) examines the scheduling of a set of jobs (called as customer orders) on
two parallel machine environments that is shipped concurrently. Minimizing the

11

completion time of orders is the aim of this study. He study on several objective
functions like; minimizing the last batch completion time (makespan), the maximum
batch lateness, the total batch completion time and so on. He analyses the
computational complexity with different types of objectives. However, this study is
constructed for minimizing the sum of the batch completion times on two parallel

identical machines.

Leung et al. (2006) consider the orders having various due dates and study on
minimizing the maximum lateness objective and the total number of late orders on
m non-identical parallel machine environment. To minimize the total number of late
orders is the objective of this study and they propose an exact algorithm based on
constraint propagation and bounding strategy. Also, Leung et al. (2007) study for
minimizing the total weighted completion time of the orders on m dedicated parallel
machine that can produce only one type of product. This study concentrates on both
design and analysis of the efficient heuristics for the cases with and without release
dates. Finally, performance analyses are conducted to make comparative analysis and
control the heuristic bounds.

Lin and Kononov (2007) examine to minimize the number of late jobs on non-
identical parallel machine. A fully polynomial time approximation scheme (FPTAS)
is applied for due date case and a heuristic algorithm is designed. The performance of
the heuristic algorithm is analyzed to measure the performance for the unweighted

case. Also, LP based approximation algorithm is applied for multi-cover problems.

Wang and Cheng (2007) study on the scheduling of customer orders consisting of
several different types of jobs. It is assumed that m different facilities and each job
can be produced on one type of facility. All jobs are scheduled to minimize the total
weighted order completion time that is the aim of this study. A heuristic algorithm is

developed since the problem is the NP-hard.

Su et al. (2013) examine also COS problem and orders are assumed to be dispatched
in batches. This problem is studied on parallel machines that can produce only one
job at a time and process simultaneously the jobs from a batch. Minimizing the
maximum lateness is the aim of this study. Three heuristic algorithms based on

simple scheduling rules are developed and algorithms are compared based on their

12

effectiveness.

Xu et al. (2015) examine COS problem with product type splitting property on
unrelated parallel machines. The objective of this study is minimizing the total
completion time of the orders. Three heuristic algorithms are developed and
compared based on their effectiveness of the lower bound. Also, the effectiveness of
the heuristic algorithms is determined with the help of numerical studies.

3.1.3. Open Shop and Job Shop Problems

Wagneur and Sriskandarajah (1993) study scheduling on two-machine open shop
environments where each job must be processed on both machines and a job may

overlap. The objective is to minimize the total completion time.

Liu (2010) studies on coordinated scheduling of customer orders system that is
thought for order based production systems with job shop environments. Also,
releasing and dispatching the jobs at station level are thought for that system where
several jobs are produced for a determined customer order. The aim of this study is
minimizing the customer order flow time that is time between the release of the first

job and completion time of the last job of the order.

3.2. Literature Review for Multi-Job Lot Streaming Problems

The concept of lot streaming (LS) was first introduced by Reither (1966) and
rediscovered in the late 1980s to early 1990s. In the past three decades, with the
increasing interest in just-in-time and optimized production technology philosophies
in manufacturing systems, the application of the lot streaming idea in scheduling
problems has received considerable attention. Considering the number of job lots, the
literature on lot streaming problems can easily be divided into two main categories,
one category dealing with a single job lot and the other category addressing the

multi-job case, given various job and shop characteristics.

In this study, we provide a brief overview of the lot streaming studies on the multi-
job case with an aim to facilitate the proper positioning of our study in the literature.
A comprehensive review of scheduling problems with lot streaming concept for both

single job lot and multi-job cases can be found in Chang and Chiu (2005) and in

13

Sarin and Jaiprakash (2007).

Vickson and Alfredsson (1992) consider effects of transfer batches in two and three
machine flow shop environment. For the two-machine flow shop makespan
minimization problem and the special case of the three-machine flow shop problem,
the modified Johnson’s Algorithm (1954) is used.

Vickson (1995) examines multiple product lot streaming problem in two machine
flow shop environment to minimize the makespan. Job setup times and sublot
transfer times are considered in this study. Optimal solution can be obtained with
continuous subots, while a polynomial algorithm is developed for integer valued lot

sizes.

Kalir (1999) studies both single and multi-job streaming problem. Equal sublot sizes
are used for both single and multi-job problems. Goal programming approach is used
for solving the single job problem with multiple objectives that include makespan,
the mean flow time, average work in process, and the setup and handling related

costs. A near optimal heuristic is developed for the multi-job problem.

Kalir and Sarin (2001) study on sequencing the set of batches with equal sublots in
flow shop environment. The objective of this study is to minimize the makespan. A
new heuristic method called bottleneck minimal idleness heuristic is developed. The
solutions that are obtained from the heuristic method are close to the optimal

solutions.

Defersha and Chen (2010) consider lot streaming problems with variable sublots to
minimize makespan. Although the problems with variable sublots are difficult to
solve, they provide an improvement on the makespan. Efficient solution methods,
which are mathematical model and hybrid genetic algorithm, are developed to solve

n-job m-machine lot streaming problems with variable sublots and setup times.

Feldmann and Biskup (2008) examine the multi-job streaming problem in
permutation flow shop environment. Their aim is to find optimal sublot sizes and
sequence the sublots optimally. To split the order quantities of different products into
sublots, a mixed integer programming model is developed. This model gives the

optimal solution for small and medium sized problem instances.

14

Glass and Possani (2011) study on multi-job streaming problem as well. The aim of
this study is to minimize the makespan. A polynomial time algorithm is developed to
solve this problem that also contains attached setups on the first machine and

transportation times between machines.

Mortezaei and Zulkifli (2013) have developed a mathematical model to integrate lot
sizing and flow shop scheduling with lot streaming. A mixed integer linear
programming model is developed to determine optimal production quantities,
optimal inventory levels, optimal sublot sizes, and an optimal sequence. The
mathematical model is developed for eight different types of cases, which are
consistent sublots with intermingling, consistent sublots and no intermingling
between sublots of the products (without intermingling), equal sublots with
intermingling, equal sublots without intermingling, no-wait consistent sublots with
intermingling, no-wait equal sublots with intermingling, no-wait consistent sublots
without intermingling, and no-wait equal sublots without intermingling. The best

makepan is obtained when consistent sublots with intermingling case are considered.

Kumar et al. (2000) consider an m-machine flow shop environment for multiple
products lot streaming. The aim of this study is minimizing the makespan for multi-
product problem with continuous-sized sublots. Optimal sequence is obtained by
solving a traveling salesman problem. Also, a genetic algorithm is developed for this

lot streaming and sequencing problem.

Hall et al. (2003) study the lot streaming problem with multiple products and
attached setup times in a no-wait flow shop environment. A dynamic programming
algorithm is developed. They show that this problem is equivalent to a classical

traveling salesman problem with a pseudo-polynomial number of cities.

Cetinkaya (1994) considers two-machine multi-product flow shop problem with lot-
detached setups and removal times and shows that the sublot sizing and sublot
sequencing problems are independent and optimal sequences of lots are determined
by using modification of Johnson’s Algorithm (1954) to minimize maximum flow

time (makespan).

Cetinkaya and Kayaligil (1992) study the scheduling of multiple job lots with unit

sized transfer batches on a two machine flow line. The aim of this study is

15

minimizing the makespan. Optimal solution procedure, which is is similar to
Johnson’s Rule (1954), is developed.

Cetinkaya and Duman (2010) consider the lot streaming problem of multiple jobs in
a two-machine mixed shop with two different job types. An optimal solution method
is developed for the mixed shop scheduling problem with flow shop and open shop

jobs.

Liu (2009) studies on both COS and LS problems for a job shop environment. To
solve this problem a mixed integer mathematical model is constructed using
minimization of makespan, maximum lateness and finished goods. Because of the
complexity of the problem, Genetic Algorithm is applied to determine lot streaming
conditions. Lot Streaming — Genetic Algorithm heuristic is applied to solve the COS

problem with lot streaming.

There are many studies in the scheduling literature that deal with the customer order
scheduling and the multi-product lot streaming. However, to the best of our
knowledge, both customer order scheduling and lot streaming for flow shops are

studied first in this thesis.

16

CHAPTER 4

SOLUTION APPROACHES:
MATHEMATICAL PROGRAMMING MODEL AND A PROPOSED TABU-
SEARCH BASED HEURISTIC ALGORITHM

In this chapter, two solution approaches, which are the mathematical programming
model and the proposed tabu-search based heuristic algorithm, are explained in
detail.

4.1. Mathematical Programming Model

In this section, we develop a mixed integer linear programming (MILP) model,
which is an extension of the generic model for the classical two-machine multi-job
lot streaming problem by Sarin and Jaiprakash (2007), to determine the job sequence
(i.e., sequence of the products) as well as the sublot sequence (i.e., sequence of the
customer orders) in each job to minimize the total completion time of customer
orders. The following indices, sets, parameters and decision variables are used in our

model.

Parameters, indices and sets:

K Number of customer orders

k Index for customer orders (k =1,2,...,K')

N Number of jobs

j Index forjobs (j=12,..,N)

O, Setof jobs in customer order k

J. Set of customer orders having demand for job j

n. Number of customer orders having demand for job |

D;, Demand (number of identical items) for job j in customer order k

L, Lot size (total demand) forj, where L;=)> D,

17

i Index for sublots
m Index for machines (m=12)
P, Unitprocessing time for job j on machine m

t;, Attached setup time for job j on machine m

V Sufficiently large positive number

Decision variables:

0 otherwise
_ |1 if jobh precedes j
"0 otherwise

B {1 if ith sublot of job j belongs to customerorderk
i,j.k —

s, ; =Size of the i th sublot of job]
C. ;. = Completion time of i th sublot of job j on machine m

CT, = Completion time of the customer order k

MILP model:

K
Minimize > CT,

k-1
Subject to;
Zsi,j =L, for j=12,..,N
i-1
] Xijx =1 for k=12,..K; jeO,
=
zxi,j,k =1 for j=12,...,N;i=12,.. n,
ker
S5= 205X for j=12,...,N;i=12..n,
ked;
Cl,j,l_ pj,l Sl,j th,l for] =1,2,..., N
Ci+1,j,1_ PjiSiiej =Ci,j,1 for j =12,..,N =12, n -1
Cliz—Pj28,;2C 1+, for j=12,..,N
Citj2—Pj2Si; 2Ciaja for j=12,.,N;i=12,., n,—1
Citi2— P25 2C for j=12,.,N;i=12,.., n, -1

1)

(@)

3)

(4)

()

(6)
(7)
(8)
(9)
(10)

18

(Ci,j,m - pj,m Si,j)_(ce,h,m - ph,m se,h)

el
+V(1—Yh,j) 2 [Lh_zsfyh]ph'm Tim

r=1

i1 .
+ pj‘mzl“sr'j forh= je=12,..., n, h=12,...,N

112,001 =12, N 3M=12 (11)
(Ce,h,m - ph,m se,h) _(Ci,j,m - pj,m Si,j)

-1
+VYh’j Z[Lj— sm—jpj'm +tm
=1

r

e—1 .
+ ph,mZ_l:Sr,h forh#j;e=12..n;h=12..,N
i=12,..,n;;]=12..,N;m=12 (12)

CTi=Cj VA= X5 fork=12,...K;je0,;i=12,..,n;(13)
Xiiko Yo ‘5{011} for Vh,i, J,k (14)
$.i7CijmCT 20 for Vi, j,k,m (15)

In the above MILP model, the objective in (1) is to minimize the total completion
time of customer orders. Constraint set (2) ensures that the sum of the items in the
sublots of a job must be equal to the total number of items in that job. That is, the
sum of the sublot sizes of a job must be equal to the lot size for that job. Constraint
set (3) guarantees that each job of a customer order is assigned to only one sublot of
that job. Constraint set (4) ensures that each sublot of a job can be assigned to only
one customer order. Constraint set (5) guarantees that the sum of the items in a sublot
of a job must be equal to the demand for that job in the customer order assigned to
sublot. Constraint set (6) ensures that the processing of the first sublot, of any job
appearing first in the sequence of the jobs, on machine 1 begins after the setup on the
same machine has been completed. Constraint set (7) guarantees that a sublot, except
the first sublot, of a job begins processing on machine 1 after the previous sublot is
completed on the same machine. Constraint set (8) ensures that the first sublot of a
job begins processing on machine 2 after it is completed on machine 1 and the setup
on machine 2 has been completed. Constraint set (9) guarantees that all the sublots,
excluding the first sublot, of a job begin processing on machine 2 after they are
completed on machine 1. Constraint set (10) ensures that a sublot, except the first

sublot, of a job begins processing on machine 2 after the previous sublot is

19

completed on the same machine. The terms on the right hand side of the constraint
set (11) ensures that the difference between the start times of sublots e and i is at
least equal to the sum of the processing times of the sublots e to n, of job h and 1
to i—1 of job j and the setup time for job. Note that either constraints set (11) or
(12) is valid for an optimal solution. Constraint set (13) ensures that the completion
time of a customer order is the maximum of completion times of the jobs in that
customer order. Constraint sets (14) and (15) impose binary and non-negativity

restrictions on the decision variables, respectively.

Selecting the value of parameter V in the constraint sets (11), (12) and (13) affects
the computational burden of the model, since it defines the feasible region. Our
mathematical model is solved with a 3-hour time limit for every problem instance.
Also, the 3-hour time limit increases the importance of the V -value. When V -value
is estimated, total demand of the customer orders, processing times and setup times

of machines are considered and we take the V -value as:

2 N

ZZ[(LJ pj,m)+tj,m]

m=1l j=1

Note that V -value must be bigger than one of the maximum order’s completion time.
While V -value is estimated, the solution of the formulation below is rounding up.

The numerical example is explained below to facilitate to understand.

When we consider the date in Table 2 below, the V -value is calculated as 1833. But
we are rounding up 1833 to 2000 to prevent the infeasibility problem. On the other
hand, this V -value affects the solution performance of GAMS. The example below
is considered to compare the performance. When we take theV -value as 10 times
bigger than the calculated one, the solution increases by nearly 54.5%. Also the

iteration number increases nearly by 57%.

20

Table 2 Calculation of the V-Value

D; L, Pjm Lim v
DJ"k Ol 02 03 O4 O5 ml m2 ml m2
J; - 6 |10] - | - | 16 6 | 89 | 87 | 288
J 3 | 4 10| 2| 8| 27 | 5| 9 | 73| 55 | 506 | 2000
Js - - | -] 9|5 | 14 |10]| 8 | 2 | 60| 314
J4 8 |8 | 4] 7| 3 | 4] 9 | 3|80 | 586
Js 4 - -] - 4 7 | 68 | 31 | 139

4.2. Proposed Tabu-search Based Heuristic Algorithm

The size of the MILP model discussed in Section 4.1 increases drastically as the
number of products (jobs) and the number of customer orders (sublots) increase.
Therefore, the optimal solution for large-sized problems by solving the mathematical
model is unlikely to be obtained within a reasonable amount of computation time.
Moreover, suboptimal solutions are quite satisfactory for most real life problems.
This reason motivated us to develop a fast tabu-search algorithm that provides

optimal or near-optimal solutions.

Our proposed tabu-search based heuristic algorithm consists of four main phases:
Finding an Initial Job Sequence, Improving the Initial Job Sequence by the Insertion
Algorithm, Improving the Job Sequence Obtained in the Second Phase by Pairwise
Exchanges of the Sublots in Each Job, and Finding a Better Solution by the Tabu-

search Algorithm.

Phase 1: Finding an Initial Job Sequence

In the first phase of our proposed algorithm, we find an initial job sequence. The

stepwise description of Phase 1 is given below.

Step 1. Construct the customer order and job list by arranging the customer orders
(sublots) in each job in ascending order.

Step 2. To obtain the order list, sort the customer orders in ascending order of their
number of jobs. If there is more than one customer order having the same
number of jobs, then calculate the completion time for these orders and sort
the customer orders in ascending order of their completion times.

Step-3. Consider the first customer order in the sorted order list, and check whether

21

Step 4.

Step 5.

this customer order has only one job or several jobs. If the customer order
has more than one job, then calculate the run-in times of these jobs and sort
the jobs in ascending order of their run-in times.

Select the first job of this customer order as the first job of the initial job
sequence. Remove the selected job in Step 3 from the order list and go back
to Step 2 until all jobs are sequenced in the initial job sequence. At this step,
the completion times of orders are calculated according to run-in time job
sequence in ascending order.

Calculate the total order completion time of the initial sequence by
considering the sublot sequence from Step 1.

Phase 2: Improving the Initial Job Sequence by the Insertion Algorithm

Insertion algorithm is a kind of neighborhood algorithm used first by Nawaz et al.

(1983) which solves the m-machine flow shop makespan minimization problem. In

this phase of our proposed algorithm we adapt the insertion algorithm to improve the

initial job sequence obtained in Phase 1. The stepwise description of Phase 2 is given

below.
Step 1.

Step 2.

Step 3.

Consider the initial job sequence obtained in Phase 1, and select the first two
jobs from this sequence. From two partial sequences such that the first
selected job is in the first and second positions in these partial sequences,
respectively. For each partial sequence, compute the total order completion
time, and select the best partial sequence.

Pick the job that is in the next position of the initial job sequence obtained in
Phase 1. Generate all possible partial sequences by placing the new job in all
possible positions (beginning, between and ending) in the partial sequence
developed so far. Compute the total order completion times of all partial
sequences, and select the best partial sequence giving the minimum total
order completion time.

If all jobs of the initial sequence obtained in Phase 1 are considered, then

stop; otherwise, go to Step 2.

22

Phase 3: Improving the Job Sequence Obtained in Phase 2 by Pairwise
Exchanges of the Sublots in Each Job

In the first two phases of our proposed algorithm, we assume that the customer

orders (sublots) in each job are sequenced in ascending order of their sizes

(demands). However, the total order completion time may be improved by pairwise

exchanges of the sublots in each job. The stepwise description of this phase of our

algorithm is given below.

Step 1. Consider the first job of the job sequence obtained in Phase 2 as the current

Step 2.

Step 3.

job.

(i)

(i)

(i)

(i)

Check whether there is a sublot (customer order) in the current job such
that this customer order does not appear in the following jobs of the job
sequence obtained in Phase 2.

If there is no such customer order then

(@) Consider the next job of the sequence as the current job.

(b) If the current job is the last job in the sequence then stop;
otherwise, go to Step 2(i).
Consider the first customer order which does not appear in the

following jobs as the current customer order.
Temporarily pairwise exchange the positions of the current customer
order and the customer order which immediately precedes the current

customer order.

(iii) Check whether the pairwise exchange in Step 3(ii) improves the total

completion time of all customer orders.

(iv) If the pairwise interchange does not improve the total completion time,

(V)

then do not make this exchange and go to Step 3(v); otherwise,

(@) Make this pairwise exchange.

(b) If the new position of the current customer order is the first position
in the current job, then go to Step 3 (v); otherwise go to Step 3 (ii).

Check for the next customer order which does not appear in the

following jobs and go to Step 2(ii).

23

Phase 4: Finding a Better Solution by the Tabu-Search Algorithm

Tabu-search is a higher level heuristic method to find a local optima. Principle of the
tabu-search algorithm is to obtain improvement by pairwise interchanging the jobs.
After determining the tabu list size and number of iterations, tabu iterations are
conducted when the tabu list size and number of tabu iterations are reached to pre-

determined values.

The job sequence obtained in Phase 3 will be the initial sequence of the tabu-search
algorithm. By pairwise interchanging of the jobs, the total order completion time is
improved. In the classical application of the tabu-search algorithm, all possible
children are determined and the total order completion times of all possible children
are calculated. The child with the minimum total order completion time is selected,
and the tabu list is updated. The next tabu-search iteration continues with the new job
sequence. However, we change the application of tabu-search by inserting a new step
before selecting the best child. The new step is attached to the tabu-search algorithm
to provide improvement on the total order completion time. Phase 3 is inserted as the
new step of the tabu-search, and implemented before selecting the best child and
after producing the sequences of the children. If the total order completion time is not
improved after applying Phase 3, then we continue with the previous total order

completion time and job sequence.

There are two stopping conditions for the tabu-search algorithm. Firstly, if all
possible children are worse than the root, the algorithm automatically terminates. If
the iteration count exceeds the pre-determined tabu iteration size, which we select as
5 then the algorithm stops. For the tabu-search algorithm, we specify the tabu list

size as 3.
4.3. Numerical Example

In this section, a numerical example is provided to demonstrate the Proposed
Heuristic Algorithm. We consider a problem instance in which there are five

products (jobs) and five orders (sublots). Also, the unit processing time (p;),
sequence independent setup time (t; ,) and demand for product j in customer order

k (D, ;) are given in Table 3.

24

Table 3 Data Set for the Numerical Example

Dy ; Pim tim

ders (0,)

Prod?sg(N 01 02 03 O4 O5 m, m, m, m,
J, - 6 | 10 - - 1 6 | 89 | 87
J, 3 4 | 10 | 2 8 9 | 73 | 55
J,) ; - 9 5 | 10 | 8 2 | 60
J 9 8 8 4 7 4 9 | 38 | 80
Je 4 - - - - 3 7 68 31

Phase 1: Finding an Initial Job Sequence

Step 1: Using the data given in Table 3 the order and job lists are constructed as
follows:
Order list:

0,={J3,,9,,3.}.0,={J,,3,,3,}. 0, ={J,,3,,3,}. 0, ={J,,3,,J,} and
O, ={J,,3,,3,}
Job list:
J, ={0,[6], O,[10]}
J, ={0,[2], O,[3], O,[4], O;[8], O,[10]}
J; ={0;[5], O,[91}
J, ={ G,[4], Gs[7], O,[8], G,[8], O,[91}
J; ={0/[4]}

Step 2: From the order list in Step 1, it is clear that all customer orders have the same
number of jobs, which is three. Thus, the order completion time for each customer

order is independently calculated to sort the customer orders. As an illustration, the

Gantt chart for order O, is given in Figure 3 below. From this figure, it is clear that
order O, is completed in 390 time units. Similarly, the completion times for the other
customer orders can be determined as CT(0O,)=461, CT(O;)=>543,
CT(O,) =423, CT(O,) =483. Finally, the sorted list becomes O, - O, - O, - O,-

Job2 Job4 Job5
N A A 25

73 162

M1% 3,131 J,09] Js[4]

88 126 230 242
M J,[3] J4[9]%35[4]
2
88 143 170 250 331 362 390

Figure 3 Gantt Chart for the Customer Order O,

Step 3: The first customer in the sorted order list is order O,, which has more than
one job. To select the first job of the initial sequence, run-in times for the jobs J,,
J, and J, in the customer order O, must be calculated. The run-in times of J,, J,
and J, equals to 83, 54, and 80, respectively. Thus, job J, will be the first job of the

initial sequence since it has the minimum run-in time.

Step 4: We remove job J, from all orders having this job, and obtain the updated

order list below:

Updated order list:
O1 ={J2, ‘]5}: O2 :{Jl’ Jz}v 03 :{‘Jl’ Jz}v O4 :{‘]2’ ‘Js} and Os :{sz ‘]3}

Step 2: From the updated order list in Step 4, it is clear that all customer orders have
the same number of jobs which is two. The completion times for the customer orders
are independently re-calculated according to jobs run-in time sequence and obtained

as CT(0)=250, CT(O,)=309, CT(0,)=391, CT(O,)=307,

CT (O;) =340. Finally, the new sorted list becomes O, - O, - O, - O,- O,.

Step 3: The first customer order in the new sorted order list is order O,, which has
two jobs J, and J.. To select the second job of the initial sequence, the run-in times
for the jobs J, and J, in the customer order O, must be calculated. The run-in times

of jobs J, and J, equals to 83 and 80, respectively. Thus, job J, becomes the

second job of the initial sequence.

26

Step 4: The second job of the initial sequence is selected at Step 3. So, the job J; is

removed from the order list and the list is updated. Steps 2, 3 and 4 are repeated until
all jobs are scheduled at the initial sequence, and we obtain the updated order list

below:

Updated Order list:
Ol :{‘Jz}r Oz :{J11 Jz}v 03 :{‘]l’ Jz}v 04 :{‘]2’ ‘]3} and O5 :{sz ‘]3}

Step 2: From the updated order list in Step 4, it is clear that order O, has only one

job. Thus, there is no need for any completion time calculation.

Step 3: The first customer order in the new sorted order list is order O, which has
only one job J,. Thus, there is no need for any run-in time calculation to select the

candidate job. Job J, becomes the third job of the initial sequence.

Step 4: We remove job J, from all orders having this job and obtain the updated

order list below:

Updated Order list:
02 :{‘]1 } 03 :{J1}r 04 Z{‘]3} and 05 :{Js}

Step 2: From the updated order list in Step 4, it is clear that all customer orders have
the same number of jobs which is one. The completion times for the customer orders

are independently re-calculated according to jobs run-in time sequence and obtained

as CT(0,)=218, CT(O,) =246, CT(0,) =224, CT(O,)=152. Finally, the

new sorted list becomes O,- O, -0, - O,.

Step 3: The first customer order in the new sorted order list is order O, which has
only jobJ,. Thus, there is no need for any run-in time calculation to select the

candidate job. Job J, becomes the fourth job of the initial sequence.

Step 4: We remove the job J, from all orders having this job and obtain the updated

order list below:

Updated Order list:
27

0, ={J, }and O, ={J;}

Step 2: From the updated order list in Step 4, it is clear that remaining two orders

O, andO, have the same number of jobs which is one. Thus, the completion times
for orders O, and O, are independently re-calculated according to jobs run-in time
sequence, and obtained as CT(0O,) =218 and CT(O;) =246. Finally, the new

sorted order list becomes O, - O,.

Step 3: The first customer order in the new sorted order list is order O, , which has
only job J;. Thus there is no need for any run-in time calculation to select the

candidate job. Job J, becomes the last job of the initial sequence.

Step 4: All jobs are considered, J, -J. -J, -J; -J; is the initial sequence and the
jobs and orders schedule is as follows:

J,(G,[4], Gs[71, G,[8], G;[8], O,[9]) - J5 (O, [4]) -

J,(0,[2], 6,[3], O,[4], O5[8], O;[10]) - J5(O;[3], O, [9]) - J, (O, [6], O,[10])

Step 5: The associated total order completion for the initial schedule is 4799 time

units.

Phase 2: Improving the Initial Job Sequence by the Insertion Algorithm

Step 1: From the initial sequence (J,-J,-J,-J,-J,) obtained in Phase 1, we select

the first two jobs J, and J,. We from two partial sequences J,-J, and J.-J,,

and obtain the total order completion times for these partial sequences as given in
Table 4 below.
Table 4 Total Order Completion Times for Two Partial Sequences

Job and Order Sequence Total Order Completion Time
J4(G,[4], O4[7], G,[8], O,[8], O,[9])- J5(O,[4]) 1602
J5(0,[4]) - J,(O,[4], G5[7], O,[8], G;[8], O,[9]) 1968

The selected partial sequence is J,-J. since its total completion time is smaller than

28

that of the partial sequence J.-J,.

Step 2: We select the next job, which is job J,, from the initial job sequence

obtained in Phase 1, and form three partial sequences J,-J,-J, J,-J,-J, and J,-

J.-J,, and obtain the total order completion time of each partial sequence as given

in Table 5.

Table 5 Total Order Completion Times for Three Partial Sequences

Job and Order Sequence

Total Order Completion Time

J 2 (04 [2]1 01[3]1 Oz [4], O5 [8]: Os [10]) -
J4 (04 [4]’ 05[7]1 Oz [8]’ 03[8]’ 01[9]) -

J5(O,[4])

3237

J.(O,[4], O[7], O,[8], O,[8], O,[9])-
J,(0,[2], O[3, O,[4], O5[8], O5[10]) -

J5(O,[4])

3362

J4(O4[4], 05[7], 02[8]1 03[8]’ 01[9])‘
J5(0,[4]) -
J,(0,[2], G,[3], O,[4], O5[8], O;[10])

3400

The selected partial sequence is J,-J,-J. since its total completion time is the

smallest one among the total completion times of the three partial sequences above.

Step 2: We select the next job J, from the initial job sequence obtained in Phase 1,

and form four partial sequences J,-J,-J,-J., J,-J,-J,-J., J,-J,-J;-J, and

J,-J,-J.-J;, and compute the total order completion times of each partial

sequence as given in Table 6.

29

Table 6 Total Order Completion Time for Four Partial Sequences

Job and Order Sequence Total Order Completion Time
J3(Cs[5], O,[9]) -
J2(0,[2], G,[3], O, [4],O;[8], O;[10]) -
J4(C,[4], G:[7], G,[8], G;[8], O,[9]) -
Js(O1[4])
J2(0,[2], G,[3], G, [4], O;[8], O;[10]) -
J3(Gs[5], O,[9]) -
J,(G,[4]. Gs[71. G,[8], G;[8], O,[9]) -
Js(O,[4])
J,(0,[2], G,[3], O,[4],O;[8],0;[10]) -
J4(C,[4], G:[7], G,[8], G581, O,[9]) -
J3(Gs[5], O,[9]) -
J5(G,[4])
J2(0,[2], 6,[3], G,[4], O [8], O;[10]) -

3947

4097

4194

J3,(0,[4], Gs[7], O,[8], O4[8], O,[9]) -
J5(0,[4]) -
J;(Os[5], O,[9])

4140

The selected partial sequence is J,-J,-J,-J; since its total order completion time is

the smallest one among the total order completion times of the above four partial

sequences.

Step 2: We select the next job J; from the initial job sequence obtained in Phase 1,
and form five partial sequences J,-J,-J,-J,-J, J;-J;-J,-J,-J;, J;-J,-J,-J,-
Jg, J;-J,-J,-3,-3; and J,-J,-J,-J.-J;, and obtain the total order completion

time of each partial sequence as given in Table 7.

The selected partial sequence is J,-J,-J,-J.-J, since it has the smallest total order

completion time.

30

Phase 3: Improving the Job Sequence Obtained in Phase 2 by Pairwise

Interchanging the Sublots of the Jobs

Step 1:

Step 2:

Step 3:

The first job of the sequence obtained in Phase 2 is J,(O,[5], O,[9]) , which

is considered as the current job.

The sublots of job J, are order O, and order O,, and these orders exist in
the following jobs J,, J, and J, of the job sequence obtained in Phase 2.
Thus, the next job, i.e., job J, has all types of sublots and these sublots

exist in the following jobs J, and J.. Thus, no sublot swapping is possible.

Therefore, we must consider the next job of the sequence obtained in Phase
2, which is job J,. Some of the sublots cannot be seen in the following

jobs. So, we can pass to the next step.

Order O, is the second customer order in job J,. Orders O, and O, can

be pairwise interchanged, and the total order completion time increases to
4632. Thus, this pairwise interchange does not improve the total order
completion time, and we don’t make this interchange. We check the

remaining sublots for possible improvement. Orders O,, O, and O, exist in

the following jobs J, and J, of the sequence obtained in Phase 2.

Therefore, we go to Step 2 again.

31

Table 7 Total Order Completion Time for Five Partial Sequences

Job and Order Sequence Total Order Completion Time
J,(G,[6], G,[10]) -

J3(Gs[51, 6, [9]) -
J2(0,[2], G,[3], G, [4], O;[8], O;[10]) - 5072
J,(G,[4], Gs[71. G,[8], G;[8], O,[9]) -
J5(G,[4])

‘]3(05 [5], 04 [9]) -

J,(0,[6], O,[10]) -
J2(0,[2], G,[3], G, [4], O;[8], O;[10]) - 4922
J,(G,[4], Gs[71, G,[8], G;[8], O;[9]) -
J5(O,[4])

J3(G5[5], O,[9]) -

J,(0,[2], 6,[3], O,[4],O;[8], O;[10]) -
J1(G,[6], G,[10]) - 4862
J3,(G,[4], Gs[71, G,[8], O;[8], O,[9])-
J5(O,[4])

J3(0s[5], O,[9]) -

J,(0,[2], O,[3], G,[4], O;[8], O,[10]) -
J,(G,[4], Gs[71, G,[8], G;[8], O,[9]) - 4670
J,(0,[6], O,[10]) -
J5(0,[4])
J3(Gs[5], O,[9]) -

J,(0,[2], O,[3], O,[4], O5[8], O,[10]) -
J,(0,[4], G,[7], G,[8], O;[8], O.[9]) - 4605
J5(O,[4]) -

J,(0,[61, O;[10])

Step 2: The next job J. has only one customer order, so we could not make any

32

pairwise interchange. Now, our current job is job J,, which is the last job of the

sequence obtained in Phase 2. The algorithm stops here without customer order
(sublot) swapping.

Phase 4: Finding a Better Solution by the Tabu-Search Algorithm

The first iteration of the tabu-search algorithm is given in Figure 4. The initial
sequence and the associated total order completion time are taken from the solution
obtained in Phase 3. When we apply Phase 3 to all job sequences generated from
these initial sequences, we observe that no improvement is obtained for some job

sequences generated.

However, the total order completion time is decreased from 4605 to 4579 as
illustrated in Figure 4. The tabu list is updated with pair of (J,,J,). The detail of the
second iteration is given in Figure 5. It is clear that no further improvement on the
total order completion time is achieved in this iteration. Thus, tabu-search algorithm
terminates before reaching the tabu-search iteration size of 5. Moreover, the updated
tabu list does not change.

The Gantt chart of the schedule obtained for the example is illustrated in Figure 6,
where the sum of the completion time of the customer orders is 4579
(=842+1109+1169+698+761). This completion time is equivalent to that of the

optimal solution.

33

J(O[3]: O.[5])

[

[

.

(01D
/(0,161 0.110)

.

[

L(OR]. O3] O.[4] C.[5]. O.[10])
L(OH]. 0.7]. O.[3]. O.[8]. O [5])

ZCT_ =4735

ScT, =478

SCT, =4723

YT, =4670

L(O.[2]. O3] O.[4]. O.[8]. O.[10],
T (O[3 0.[9]

O 0.1 O8] O[] O[°])
J(O[]

/(0. [6]. O-[10])

7031 012D
L(OH]L 0.0 0.5 O.[5L O [7])

[

[

L(O.2]. O3], O:[4]. G.[8]. O,[10])
JA(O[H]
J.(0.[6]. 0.[10])

[

(0,151, 0.[9)

7(0.[21. 03] O.[4]. O8], 0.[10]
T.(0.14]

7.(0.[41.0.[7]. 0.[8]. 0.[8]. O[9)
7.(0.16], 0.[10)

[

[

.

t

.

[

[

X

.

[

(0,151, 0[]

(0,121, 031 O.[4]. O8], O.[10)
7.(0,41.0.71. 0.[81. 0.[8]. 0, [3]
7.(0.161. 0,[10)

L(O[4D

3ICT, =4782

30T, =4735

ST, =467

[

[

t

1(0.121. 03] 0.[4]. O3], O.[10°
7.(0.[51.0.19)

(0171, 0,41 0.8}, 0.[81. 0.[9)
(01D

7.(0.[61, 0.[10)

L0 015D

L(OH]. 0.07]. O.[3]. O.[8]. O [2])
L(O.[2]. O.[8]. @3] O.[4]. C.[10])
JLORD

J(0,[6]. O.[10])

(X

.

[

L0 0.[5]

(0,21 O3] O.[4]. O.[8]. O.[10])
J(O[HD

O[] 0.7 O[], 0.[3]. O.[3])
J.(0,[6]. 0,[10])

(X

7051, 0.[5)

70,121, 051 0.[4]. O,[81. 0,[10])
(O[], G4, 0181, 0181, 0]
7.(0.[61. 0,[10])

(O[D

Figure 4 Tabu-search Iteration -1

X

t

%

.

[

(G O.°D

7.(0.[2]. O[] O.[4]. O.[E]. O. [10])
(O[]

T.(0,[#]0.[7].0.[9] O.[8]. O.[5])
7 (G.[6]. O.[10])

YT, =4728

[

t

(%

(0,121, 0.[3], 0.[41.0.]8].0.[10])
(0,151, 0.[9)

(O[]

L(O.14], O.1.0[8). O8], 0.18)
7.(0.161. 0.[10))

YT, =4736

[

[

t

t

[

7.(0.2]) @ [3]. O:[4]. O.[8]. O, [10])
L(O[3]. O.[5]

J(O,[4]: O.[7]. O.[8]. O.[3]. O.[9])
(G4

J(0.[6]. O.[10])

‘ 3 CT, = 4634

J.(0.[51.0.15D

(01D

J.(0.[21.0.[3). 0.[41.0.[5L.0.[10]
70,14} 0[7.0[1. 0.[8). 0.[8)
|7 ©.81.0.110D)

ICT, =4702

[

T

(051, 0.[5D

(01D

/(0,21 03], 0,[41.0.8).O,[10)
(041081 0.1}, 0.[5]. .18

(©0.16]. 0.[10)

%

[

[

5

%

(0151 0.13]

7.(0,[21, 0,31, 0.[41, 0.[8], O.[10]
20

7.(0.[6]. 0.[10]

(0,141 0,171, O 51, O.[8]. O.[3]

YT, =5116

[

(X

t

(%

[

LO[3]: O[5
1(OL[2] O/[3]. O.[4]. O:[8]. 0. [10])
A
7 (0.[8]. G.[10])
(O[3, O7].0 %] O.[8]. O.[3])

Figure 5 Tabu-search Iteration-2

34

Figure 6 Gantt Chart of the Schedule Obtained for the Numerical Example

Job 3 J&b\Z Job 5 Job 4 Job 1
ZJQ] J,[0,] %Z[OJJZ[Q] J,[0,113,[0:]| 3,[O,] 7 J5[0,] IJ,[Q J,[0,15,10.] 3,[0,1]9,[0,] %31[02131[03]
e
2 52 142 215 225 230 250 290 340 408 420 458 474 502 538 570 02 691 697 707
P
JH.IJS[OS] ‘]3[0] W//%’ ‘] [01] JZ[OZ] ‘]2[05] J [O] %J [O]% ‘] [O] ‘]4[05] ‘]4[01] ‘]4[02] J4[03]f 1[02] \]1[03]
e
52 112152 224 280 298 325 361 433 523 554 582 662 698 761 842 914 986 1073 1109 1169
CT, =698
CT, =761
CT, =842

CT, =1109

CT, =1169

35

CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we describe our computational tests with randomly generated
problems to evaluate the effectiveness and efficiency of the MILP model and the
proposed heuristic algorithm in finding optimal or near optimal schedules. The
mathematical model is solved by using GAMS 24.1 and all computations are
conducted on a computer with Intel (R) Xeon (R) CPU E52650 0@ 2.00GHz 2.00
GHz (2 Processors) and 128 GB RAM under Windows 10 operating system. Also the
proposed heuristic algorithm is coded in Java programming language. All
computational experiments are conducted on a personal computer with Intel Core i7
Dual-Core 2.00 GHz CPU and 8 GB RAM under Windows 10 operating system.

5.1. Computational Settings for the Test Problems

The values of the parameters used in our experiments will be generated as follows:
1. Number of customer orders (K): They are taken as 5 and 10.
2. Number of jobs (N): They are taken as 5, 10, 15 and 20.

3. Number of customer orders having demand for each job (n;): They are randomly

generated from a DU[1, K.

4. Demand (number of identical items) for each job in each customer order (D;,):

They are randomly generated from a discrete uniform distribution DUJ[1, 10].

5. Processing times (p;,): They are randomly generated from a discrete uniform

distribution DUJ[1, 10].

6. Setup times (t;): They are randomly generated from a discrete uniform

distribution DU[0, 100f], where f istakenas 0.0, 0.5, 1.0, 1.5, and 2.0.

For each possible combination of the above parameters, 5 replicates (problem

36

instances) are generated, and totally 200 problem instances are tested for the setup
case. Also, 5 replicates are generated for each possible combination of the above
parameters excluding setup times, and totally 200 problem instances are tested for no

setup case. Hence, totally 400 problem instances are tested.

5.2. Performance Measures

The solver GAMS gives two types of solutions for the MILP models. One of the
solutions is the best integer solution which is the desired one; other solution is the
best non-integer solution in which some of the variables are not integers. If the best
non-integer solution obtained is equal to the best integer solution, then we conclude
that the optimal solution is achieved by the MILP model. Otherwise we are uncertain
about optimality of the solution. For the problems with optimal solutions, we
compare the total completion time obtained by our heuristic algorithms with the total
completion time of the optimal solution. However, for the problems with the best
integer solutions, we compare the total completion time obtained by our heuristic

algorithms with the total completion time of the best integer solution.

To measure the effectiveness of the heuristic algorithms for the cases in which an
optimal solution is obtained by the MILP model, we calculate the percent deviation
of the total completion time obtained by the heuristic algorithm from the total
completion time of the optimal solution. The following notation is used to measure

the effectiveness of the Proposed Tabu-search Based Heuristic Algorithm.

PDC: Percent deviation from the optimal solution.
TC" : Total completion time solution obtained by heuristic algorithm.

TC® : Total completion time solution obtained by the MILP model
PD® =100x (TC" —TC®)/TC®

Similarly, for the cases in which an optimal solution is not guaranteed (but a best-
integer solution exists) by the MILP model, we calculate the percent deviation of the
total completion time obtained by each heuristic algorithm from the total completion
time of the best-integer solution. Also, the following extra notation is used to
evaluate the effectiveness of the proposed heuristic algorithm.

PD® : Percent deviation from the best integer solution

37

TC® : Total completion time of the best integer solution obtained by the
MILP model

PD® =100x(TC" —TC®)/TC®

The efficiency measure of the MILP model and the heuristic algorithm is the
computational time required to solve the problem. In our experiments, we limit the
run time of the GAMS for obtaining the optimal solution of each problem instance to
10,800 seconds (3 hours). The computational time for the proposed heuristic
algorithm is relatively very small, less than 45 seconds, for all problem instances.
Also note that the computational time required for solving a problem instance
increases as the number of jobs and the number of customer orders increase. But the
computational time is again very small, which is less than 45 seconds generally.

5.3. Discussions of the Results

In this section the performance of the solution approaches is discussed. We first
examine the performance of the MILP model, and then discuss the performance of
the heuristic algorithm for the setup and no setup cases. The solution approaches are

examined with respect to the number of jobs and the number of customer orders.

5.3.1. Setup Case
5.3.1.1. Performance of the MILP model

In this section, performance of the MILP is discussed. Performance of the MILP is
impacted by the complexity of the problem. We deal with both COS and lot
streaming problem. Also, the number of machine increases the complexity of the
problem. These mentioned situations affects the problem solution duration seriously.
We limit the runtime of the MILP to 3 hours.

Depending on the number of jobs and number of customer orders, problem
complexity increases directly. As shown in Table 8, when the number of jobs and the
number of customer orders are 5, all problem instances give the optimal solution.
When the number of jobs is 10 and the number of customer orders is 5, the MILP
found only one optimal solution within three hours’ time limit. Finally, four optimal

solutions are found when the number of jobs is 5 and the number of customer orders

38

is 10. For the remaining problem instances, best integer solutions are obtained and

there is no unsolved problem among the experiment set.

Table 8 Performance of the MILP Model for the Setup Case

Number of customer orders (K) 5 10

Number of jobs (N) 5110|1520 5 | 10| 15| 20
Total number of problem instances
considered

Number of optimum integer
solutions obtained in 3 hours
Number of best integer solutions

25 | 25 [25| 25 | 25 | 25 [25 | 25

25 | 1 0 0|1 410([0]O0

0 |24 | 252521 | 25| 25| 25

obtained
Average gap (%) O |45 (|78 |87 |38 (85|91] 93
Total Average gap (%) 64.7

To emphasize the performance of MILP model, we should investigate the quality of
solutions which are not optimal. It is a common phenomenon that MILP model ends
up with a gap between solution found and the best possible. Therefore, gap values
are examined in order to indicate the percentage difference of integer solution from
the theoretical optimum. Gap values are analyzed for 170 non-optimally solved
problem instances under three circumstances; best case, worst case, and average case.
For some of the problem instances, so many iterations are done and integer solutions
found become closer to the theoretical optimum after each iteration. However,
GAMS is terminated because of time limitation before reaching the optimum
solution. But, this case is the best case since until 3-hour time limitation is

completed, gap values are very close to zero.

On the other hand, for some problem instances branching becomes very difficult and
time consuming. When branching is slow, the number of iterations is moderate
which leads to higher gap values than the best case and lower gap values than the
worst case. Experiments that are conducted according to generated data from Section
5.1, has gap values as in Table 8. When the number of jobs and the number orders
are 5, all of the gap values equal to zero which means that MILP can solve all

experiment set optimally.

When the number of orders is five, the average gap value for 100 problem instances

39

solved equal to 52.7%. Also the average gap value for 100 problem instances solved
equals to 77 % when the number of orders is 10. The details of the average gap

values can be seen in Table 8.

5.3.1.2. Performance of the proposed heuristic algorithm

In this section, we discuss the effects of changes in the problem parameters on the
performance of the proposed heuristic algorithm. Table 9 is prepared to show the
average percent deviations of the heuristic algorithm. Also, the maximum deviations
can be seen in this table. These analyses are made based on the optimal solution and
the best integer solution that are analyzed in Section 5.3 For all problem instances,
average percent deviation of the heuristic algorithm is founded 0.57% as you can see
in Table 9.

Table 9 Average Percent Deviations of the Heuristic Algorithm from the Optimal
and Best Integer Solution for the Setup Case

Average Number Average
Number
of Percent of Percent
Problem Deviation of | Problem Deviation of
Instances Heuristic Instances Heuristic Overall | MAX.
Give Algorithm Give Algorithm AVG. DEV.
Optimal from Best from Best
Soplution Optimal Integer Integer
N K Solution Solution Solution
5 5 25 0.36% - - 0.36% | 2.59%
10 4 0.00% 21 1.51% 1.27% | 7.66%
Grand Avg_5 0.81%
10 5 1 0.61% 24 1.11% 1.09% | 9.34%
10 - - 25 0.82% 0.82% | 4.54%
Grand Avg_10 0.96 %
15 5 - - 25 0.52% 0.52% | 3.52%
10 - - 25 0.44% 0.44% | 7.11%
Grand Avg_15 0.48%
5 - - 25 0.08% 0.08% | 1.62%
20 10 - - 25 0.00% 0.00% | 0.00%
Grand Avg_20 0.04%
AVG_TOTAL 0.57%

When the number of jobs is 5, 29 problem instances give optimal solution. Also, the
grand average of the heuristic algorithm is obtained as 0.81%. When the number of
orders is 5, all of the problem instances are solved optimally and the average percent

deviation of the heuristic algorithm is 0.36%. Also, maximum deviation of these

40

problem instances is derived as 2.59%. This value is smaller than the 7.66% that is
the maximum deviation when the number of orders is 10. Moreover, 4 problem
instances whose average percent deviation is obtained as 0.00% are solved optimally.
The average percent deviation of the remaining problem instances is 1.51% and
overall average percent deviation is derived as 1.27% while 25 problem instances are
being considered. On the other hand, when the maximum deviation value (7.66%) is

not considered, the grand average percent deviation decreases from 0.81% to 0.66%.

When the number of jobs is 10, only 1 problem instance gives optimal solution. Also,
the grand average of the heuristic algorithm is obtained as 0.96%. The average
percent deviation for the optimal problem instance is derived as 0.61% when the
number of orders is 5. Also, average percent deviation of the remaining problem
instances are obtained as 1.11% and average percent deviation of overall problem
instances is obtained as 1.09%. MILP cannot find any optimal solution under time
limitation when the number of orders is 10. The average percent deviation is
obtained as 0.82% for these problem instances. Also, the maximum deviations are
obtained as 9.34% and 4.54% when the number of orders is 5 and 10 respectively. If
the maximum deviation (9.34%) is omitted, grand average percent deviation
decreases from 0.96% to 0.77%.

Optimal solution could not be obtained under 3-hour time limitation when the
number of jobs is 15. While the complexity of the problem is increasing, the number
of problem instances having better heuristic algorithm solution than best integer
solution also increases. For this experiment set, 34 instances are observed with the
same situation, and negative deviations for these problem instances are taken as
0.00%. Also, the grand average percent deviation is 0.48%. When we take into
account these negative deviations, the grand average percent deviation is obtained as
-1.85%. The average percent deviations are obtained as 0.52% and 0.44% when the
number of orders is 5 and 10, respectively. On the other hand, the maximum
deviations are obtained as 3.52% and 7.11% for these experiments. If the maximum
deviation is omitted, the grand average percent deviation decreases from 0.48% to
0.34%.

Finally, none of the problem instances are solved optimally under less than 3-hour
time limitation when the number of jobs is 20. For the 48 instances, the heuristic

algorithm solutions are closer to the optimal solution than the best integer solution,
41

and the negative percent deviation for these instances is taken as 0.00%. As it is
understood, the heuristic algorithm gives better solutions than the best integer
solutions while complexity of the problem increases. Also, the grand average percent
deviation is obtained as 0.04%. When we take into account the negative percent
deviations, the average percent deviation is obtained as -5.99%. The average percent
deviations are obtained as 0.08% and 0.00% when the numbers of orders are 5 and
10, respectively. On the other hand, the maximum deviations are derived as 1.62%

and 0.00% for these experiments.

Consequently, the total average percent deviation is 0.57% including the problem
instances which have maximum deviations. If the maximum deviations are omitted,
the total average percent deviation decreases from 0.57% to 0.45%. Furthermore,
when the negative deviations are considered, the total average deviation decreases to
-1.53%. On the other hand, 47 problem instances are solved with 0.00% deviation
among the 200 problem instances. While 21 of them can be solved optimally, 26 of
them are best integer with 59% average gap value. Among 21 problem instances 17
of them are obtained when the numbers of jobs and orders are considered as 5. All
the remaining 4 of them are obtained when the number of jobs is considered as 5 and
the number of orders is considered as 10. Among 26 problem instances, 13 of them
are obtained when the number of jobs is 10. 5 of them are obtained when number of

jobs is 15 and all remaining 8 of them are obtained when the number of jobs is 5.

5.3.2. No Setup Case

5.3.2.1. Performance of the MILP model

In this section, performance of the MILP is discussed for the no setup case. Much as
setup times affect the performance of the MILP, problem complexity that is why
COS and LS problems are both considered at the same time could not be ignored.
Also, the 3-hour run time limit is still valid for no setup case that is same as with
setup case. While the problem instances for the no setup case is generated, the f

value which is described in Section 5.1 is taken as 0.0.

As it is mentioned before, the complexity is impressed by the number of jobs and
number of orders. As shown in Table 10, when the number of jobs and the number of

42

customer orders are 5, all problem instances give the optimal solution. When the
number of jobs is 10 and the number of customer orders is 5, the MILP gives 2
optimal solutions within 3-hour time limit. Also, 4 optimal solutions are obtained
when the number of jobs is 5 and the number of customer orders is 10. The
remaining solutions among the whole problem instances are obtained as best integer

solution by using GAMS.

Table 10 Performance of the MILP Model for the No Setup Case

Number of customer orders (K) 5 10

Number of jobs (N) 5110|115 (20| 5 |10 (15| 20
Total number of problem
instances considered

Number of optimum integer
solutions obtained in 3 hours
Number of best integer solutions

25 | 25 [25 | 25| 25| 25 | 25 | 25

251210 0141010 0

obtained
Average GAP (%) 0 | 42|80 (8|38 |90 |94 |96
Total Average GAP (%) 66.4

The gap values are also analyzed for the no setup case. As mentioned before the gap
values are examined in order to indicate the percentage difference of integer solution
from the theoretical optimum. The gap values are analyzed for 169 non-optimal
problems for the no setup case. It is expected that the gap values for no setup case is
better than the gap values for setup case. However, committed branching operations
affect the gap values seriously. The details of the gap values can be seen in Table 10.

Totally, the average percent of the gap value is obtained 66.4% for the no setup case.

5.3.2.2. Performance of the proposed heuristic algorithm

In this section, we discuss the effects of changes in the problem parameters on the
performance of the proposed heuristic algorithm for the no setup case. Average
percent deviations of the proposed heuristic algorithm are analyzed for the no setup
case. These analyses are made based on the optimal and best integer solutions that
are analyzed in Section 5. For all problem instances, average percent deviation of the

heuristic algorithm is 1.24% as it can be seen in Table 11.

43

When the number of jobs is 5, 29 problem instances give optimal solution. Also the
grand average of the heuristic algorithm is obtained as 1.61%. All of the problem
instances are solved optimally when the number of orders is 5 and the average
percent deviation of the heuristic algorithm from the optimal is 2.26%. The reason
that is why the high average percent deviation is obtained is the number of problem
instances having high deviations and also the maximum deviation. When the
maximum deviation is omitted, the average percent deviation decreases from 2.26%
to 1.75%. Also the maximum deviation is 7.93% when we consider the problem
instances having 10 orders. Among 25 problem instances, 4 of them are solved
optimally, and the heuristic algorithm solutions are same as the optimal solutions.
The average percent deviation is 1.14% for the remaining problem instances, and the
overall deviation is 0.96% when the number of orders is 10. When the maximum
deviations are omitted, the grand average percent deviation decreases from 1.61% to
1.20%.

When the number of jobs is 10, 2 problem instances give the optimal solution. The
average percent deviation is 8.52% for the problem instances solved optimally when
the number of orders is 5. Also, the grand average percentage of the heuristic
algorithm is obtained as 2.00%. Also, the average percent deviation of all remaining
problem instances and the overall average percent deviation are 2.52% and 3.00%
respectively. The maximum deviation in this experiment set is 14.73% while this
value is 3.98% when the number of orders is 10. None of the problem instances in
this experiment set can be solved optimally and the average percent deviation is
1.00%. If the maximum deviation is omitted, the grand average percent deviation
decreases from 2.00% to 1.45%. On the other hand, the proposed heuristic algorithm

obtains better solutions than the best integer solutions provided by the MILP.

Optimal solution could not be obtained under 3-hour limitation, when the number of
jobs is 15. While the complexity of the problem is increasing, the number of problem
instances having better heuristic algorithm solution than the best integer solution also
increase. For this experiment set, 24 instances are observed with the same situation,
and negative deviations are taken as 0.00%. The grand average percent deviation is
1.03%. When we take into account this negative deviations, the grand average
percent deviation is obtained as -0.94%. The average percent deviations are obtained

as 1.55% and 0.50% when the number of orders is 5 and 10 respectively. Also, the
44

maximum deviations are 8.26% and 3.71% for this experiment set.

Finally, none of the problem instances are solved optimally under 3-hour time
limitation when the number of jobs is 20. For the 44 instances, the heuristic
algorithm solutions are closer to the optimal solution than the best integer solution,
and the negative percent deviation for these instances is taken as 0.00%. Also the
grand average percent deviation is obtained as 0.32%. When we take into account the
negative percent deviations, the grand average percent deviation decreases from
0.32% to -0.94%. The average percent deviations are obtained as 0.18% and 0.46%
when the number of orders is 5 and 10, respectively. Also, the maximum deviations
are 1.76% and 6.57% for these experiments.

Consequently, the total average percent deviation is 1.24% including the problem
instances which the maximum deviations. If the maximum deviations are omitted,
the total average percent deviation decreases from 1.24 % to 0.99%. Furthermore,
when the negative deviations are considered, the total average deviation decreases to
-0.91%. On the other hand, 27 problem instances are solved with 0.00% deviation
among the 200 problem instances. While 17 one of them can be solved optimally, 10
of them are best integer with 42% average gap value. Among 17 problem instances
17 of them are obtained when the number of jobs is considered as 5. Among 10
problem instances, 6 of them are obtained when the number of jobs is 5. 4 of them

are obtained when number of jobs is 10.

45

Table 11 Average Percent Deviations of the Heuristic Algorithm from the Optimal
and Best Integer Solution for the No Setup Case

Average Number Average
Number
of Percent of Percent
Problem Deviation Problem Deviation of
Instances of Heuristic | Instances Heuristic Overall | MAX.
Give Algorithm Give Algorithm AVG. DEV.
Ootimal from Best from Best
Soplution Optimal Integer Integer
N K Solution Solution Solution
. 5 25 2.26% - - 2.26% | 12.64%
10 4 0.00% 21 1.14% 0.96% | 7.93%
Grand Avg_5 1.61%
10 5 2 8.52% 23 2.52% 3.00% | 14.73%
10 - - 25 1.00% 1.00% | 3.98%
Grand Avg_10 2.00 %
5 - r 25 1.55% 1.55% | 8.26%
15 10 - - 25 0.50% 0.50% | 3.71%
Grand Avg_15 1.03%
20 5 - - 25 0.18% 0.18% | 1.76%
10 - - 25 0.46% 0.46% | 6.57%
Grand Avg_20 0.32%
AVG _TOTAL 1.24%

5.4. Comparison of the Setup and No Setup Cases

All of the performance details of the heuristic algorithm are discussed for both setup
and no setup cases. Totally, 400 problem instances are analyzed. 200 of them are
analyzed for setup case and the remaining 200 problem instances are analyzed for no
setup case. In this section, we compare the setup and no setup cases for both MILP

and proposed heuristic algorithm performances.

5.4.1. Comparison of the Setup and No Setup Cases for the MILP Performance

Table 12 illustrates the summary for both setup and no setup cases when the number
of customer orders is 5. For both cases optimal solutions are obtained when the
number of jobs is 5. When the number of jobs is 10, among 25 problem instances
solved 1 optimal solution is obtained for the setup case and 2 optimal solutions are
obtained for the no setup case. Impact of the setup time can be seen on the Gap
values. While the average Gap values for the setup case and no setup case are 45%,
and 42%, respectively. Totally all remaining 147 problem instances cannot be solved

optimally for both cases. Also, the Gap values can be seen in Table 11 when the

46

numbers of jobs are 15 and 20. From Table 12, it is clear that the performance of the
MILP model is almost same for setup and no setup cases when the number of

customer order is 5.

Table 12 Comparison of the Setup and No Setup Cases for MILP Performance for 5

orders
Case Setup Case No Setup Case
Number of customer orders (K) 5 5
Number of jobs (N) 5110|1520 | 5 (10| 15| 20

Total number of problem instances 25 |1 25 | 2525 | 25| 25| 25 | 25
Number of optimum integer

25 | 1 0 0 | 25| 2 010

solutions

Number of best integer solutions 0 |24 1 25|25| 0 [23]| 25| 25
Average GAP (%) O |45 |78 (87 | O |42 |80 | 89
Total Average GAP (%) 52.7 53.2

Table 13 gives the summary for both setup and no setup cases when the number of
customer orders is 10. For both cases 4 optimal solutions are obtained when number
of jobs is 5. Totally all remaining 192 problem instances cannot be solved optimally
for both cases. Also, the average gap values can be seen in Table 13.Again the
performance of the MILP model is almost same for both setup and no setup cases

when the number of customer order is 10, as it can be observed from Table 13.

Table 13 Comparison of the Setup and No Setup Cases for MILP Performance for

10 orders
Case Setup Case No Setup Case
Number of customer orders (K) 10 10
Number of jobs (N) 5110|115 (20| 5 | 10|15 20

Total number of problem instances | 25 | 25 | 25 | 25 | 25 [25 | 25 | 25
Number of optimum integer

4 0 0 0 4 0 0 0

solutions

Number of best integer solutions 21 | 25 [25 [25| 21| 25| 25 | 25
Average GAP (%) 38 [85191 |93 |38 (90| 94| 96
Total Average GAP (%) 77 80

47

5.4.2. Comparison of the Setup and No Setup Cases for the Heuristic Algorithm

Performance

Table 14 illustrates the performance of the heuristic algorithm for both setup and no
setup cases. When the solutions are analyzed, it is seen that the heuristic algorithm is
more successful for the setup case. Average percent deviation for the setup case is
0.57% and this value is more than two times smaller than the average percent

deviation of the no setup case.

Heuristic algorithm is seriously more successful for the setup case when the number
of jobs is considered as 5. While the grand average percent deviation is obtained as
0.81% for the setup case, the grand average percent deviation is obtained as 1.61%

for the no setup case. Also, the maximum deviations can be seen from Table 9.

When the number of jobs is considered as 10, the heuristic algorithm is again more
successful for the setup case. The grand average percent deviations are 0.96% and
2.00% for the setup and no setup cases, respectively. However, the grand maximum
percent deviations are 6.94% and 9.35 % for the setup and no setup cases,

respectively.

When the number of jobs is considered as 15, the grand average percent deviations
are 0.48% and 1.03% for the setup and no setup cases, respectively. Although the
difference between the grand average percent deviations is so different, it is seen that

the grand maximum percent deviations are so close to each other.

The grand average percent deviations are closer to each other when the number of
jobs is considered as 20. The grand average percent deviations are 0.04% and 0.32%
for the setup and no setup cases, respectively. Among all grand average percent
deviations, the smallest deviation is for the large-sized problems. This situation is

also valid for the grand maximum deviations.

As a conclusion, the proposed heuristic algorithm is better perform for more large-
sized problem sets, and is more successful for the setup case than the no setup case.
Furthermore, the heuristic algorithm solves the problem in very short time for large-

sized problems.

48

Table 14 Average and Maximum Percent Deviations for Setup and No Setup Cases

Number Setup Case No Setup Case
N K Proct))];em Average Maximum Average Maximum
Instances Percent Percent Percent Percent
Deviation Deviation Deviation Deviation

5 5 25 0.36% 2.59% 2.26% 12.64%

10 25 1.27% 7.66% 0.96% 7.93%

Gra??) ';"9 / 50 0.81% 5.12% 1.61% 10.28%

10 5 25 1.09% 9.34% 3.00% 14.73%

10 25 0.82% 4.54% 1.00% 3.98%

Grand Avg/ 50 0.96% 6.94% 2.00% 9.35%
Total

5 5 25 0.52% 3.52% 1.55% 8.26%

10 25 0.44% 7.11% 0.50% 3.71%

Gragdgvg / 50 0.48% 5.31% 1.03% 5.98%
Total

b 5 25 0.08% 1.62% 0.18% 1.76%

10 25 0.00% 0.00% 0.46% 6.57%

Grand Avg / 50 0.04% 0.81% 0.32% 4.16%
Total

Total Avg 200 0.57% 4.55% 1.24% 7.45%
[Total

49

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this study, we consider a scheduling problem of several customer orders in which
each customer can request a variety of products (also called jobs) in an order. All
products are processed on a two-machine flow shop in which each product has one
operation on each machine, and all products are first processed by machine 1 and
then by machine 2. While processing a product, each customer order for a product is
processed as a sublot (a batch of identical items of a product), all sublots of the same
product must be processed continuously by the same machine, and each processed
sublot of the same product is transferred from machine 1 to machine 2, while other
sublots of the same product are processed on machine 1. This means that overlapping
of the two operations on the same product through the creation of sublots (i.e., lot
streaming) is allowed without intermingling the sublots of other products (i.e, once
the first sublot of a product arrives at a machine, the other sublots of different
products cannot be assigned to this machine until all of the sublots are processed).

Each customer order is delivered to the customer when the processing of all the
products in the customer order is completed. Thus, the completion time of the job
sublot processed as the last product in a customer order defines the completion time
of the customer order. Our goal is to find a sequence of the jobs as well as the
sequences of the sublots in each job so that the total completion time, which is the
sum of the completion times of the customer orders, is minimized and equivalent to
minimizing total work-in-process inventory focusing on increasing the customer

satisfaction.

We have shown that the problem is NP-hard in the strong sense, and developed a
mathematical programming model and a tabu-search heuristic algorithm to determine
optimal and near-optimal solutions, respectively. We prepared two types of

experiment set for the setup and no setup cases. From our experiments it is observed

50

that solving the problem by a standard MILP solver seems not to be useful
alternative for both cases, especially for large-sized problem instances. While our
proposed heuristic algorithm cannot give the successful results, it finds promising
results for setup case. Moreover, the proposed heuristic algorithm can solve small-
and medium-sized problem instances optimally and heuristic algorithm can find
near-optimal solutions for large-sized problem instances in very short computational

times.

There is a considerable number of issues remaining open for future research. Several
extensions of our study can be investigated. In our study, we do not allow for the
intermingling the sublots of different products (jobs). However, this assumption can
be relaxed. Our problem studied in this study can also be extended for more complex
machining environments such as flow shops having more than two machines, job
shops, and open shops. Study of the same problem for different performance
measures such as total or maximum lateness, total tardiness, and the number of tardy

customer orders would be some other extensions.

51

REFERENCES

Ahmadi, R.H., and Bagchi, U. (1990), “Scheduling of multi-job customer orders in
multi-machine environments”, ORSA/TIMS, Philadelphia.

Chang, J.H., and Chiu, H.N. (2005), “A comprehensive review of lot streaming”,
International Journal of Production Research, 2005. 43: 1515-1536.

Cetinkaya, F.C., and Kayalgil M.S., (1992), “Unit sized transfer batch scheduling
with setup times”, Computers and Industrial Engineering, 22(2): 177-182.

Cetinkaya, F.C. (1994), “Lot streaming in a two-stage flow shop with set-up,
processing and removal times separated”, Journal of Operational Research Society,
45(12): 1445-1455.

Cetinkaya, F.C., and Gupta, J.N.D. (1994), Flowshop lot streaming to minimize
total weighted flow time. Research Memorandum No. 94-24, School of Industrial

Engineering, Purdue University, West Lafayette, Indiana.

Cetinkaya, F.C., and Duman, M. (2010), “Lot streaming in a two-machine mixed
shop”, International Journal of Advanced Manufacturing Technology, 49: 1161-
1173.

Defersha, F. M., and Chen, M. (2010), “A hybrid genetic algorithm for flowshop
lot streaming with setups and variable sublots”, International Journal of Production
Research, 48(6): 1705-1726.

Erel, E., and Ghosh, J.B. (2007), “Customer order scheduling on a single machine
with family setup times: complexity and algorithms”, Applied Mathematics and
Computation, 185: 11-18.

Feldmann, M., and Biskup, D. (2008), “Lot streaming in a multiple product
permutation flow shop with intermingling”, International Journal of Production
Research, 46(1): 197-216.

52

Gerodimos, A.E., Glass, C.A., and Potts, C.N. (2000), “Scheduling the production
of two-component jobs on a single machine”, European Journal of Operational
Research, 120: 250-259.

Glass, C.A., and Possani, E. (2011), “Lot streaming multiple jobs in a flow shop”,
International Journal of Production Research, 49(9): 2669-2681.

Gonzales, T., and Sahni, S. (1978), “Flow shop and job shop scheduling:

complexity and approximation”, Operations Research, 26: 36-52.

Gupta, J.N.D., Ho, J.C., and van der Veen, JA.A. (1997), “Single machine
hierarchical scheduling with customer orders and multiple job classes”, Annals of

Operations Research, 70: 127-143.

Hall, N.G., Laporte, G., Selvarajah, E., and Sriskandarajah, C. (2003),
“Scheduling and lot streaming in flowshops with no-wait in process”, Journal of
Scheduling, 6: 339-354.

Hazr, O., Giinalay, Y., and Erel, E. (2008), “Customer order scheduling problem:
a comparative metaheuristics study”, International Journal of the Advanced
Manufacturing Technology, 37: 589-598.

Johnson, S.M. (1954), “Optimal two- and three-stage production schedules with
setup times included”, Naval Research Logistics Quarterly, 1: 61-67.

Jullien, F.M., and Magazine, M.J. (1990), ‘Scheduling customer orders: an
alternative production scheduling approach’, Journal of Manufacturing and

Operations Management, 3: 177-199.

Kalir, ALA. (1999), “Optimal and heuristic solutions for the single and multiple
batch flow shop lot streaming problems with equal sublots”, PhD thesis, State

University, Virginia.

Kalir, A.A., and Sarin, S.C. (2001), “A near-optimal heuristic for the sequencing
problem in multiple-batch flow shops with small equal sublots”, Omega, 29(6): 577-
584.

Kumar, S., Bagchi, T.P. and Sriskandarajah, C. (2000), “Lot streaming and

53

scheduling heuristics for m-machine no-wait flowshops”, Computers and Industrial
Engineering, 38: 149-172.

Lee, I.S. (2013), “Scheduling on parallel machines to minimize maximum lateness
for the customer order problem”, International Journal of Production Economics,
144: 128-134.

Leung, J.Y.T., Li, H., and Pinedo, M. (2005), “Order Scheduling in an
Environment with Dedicated Resources in Parallel”, Journal of Scheduling, 8: 355-
386.

Leung, J.Y.T., Li, H., and Pinedo, M. (2006), “Scheduling orders with multiple
product types with due date related objectives”, European Journal of Operational
Research, 168: 370-389.

Leung, J.Y.T., Li, H., and Pinedo, M. (2007), “Scheduling orders for multiple
product types to minimize total weigthed completion time”, Discrete Applied
Mathematics, 155: 945-970.

Lin, B.M.T., and Kononov, A.V. (2007), “Customer order scheduling to minimize

the number of late jobs”, European Journal of Operational Research, 183: 944-948.

Liu, C.H. (2009), “Lot streaming for customer order scheduling problem in job shop
environments”, International Journal of Computer Integrated Manufacturing, 22:
890-907.

Liu, C.H. (2010), “A coordinated scheduling system for customer orders scheduling
problem in job shop environments”, Expert Systems with Applications, 37: 7831-
7837.

Mortezaei, N., and Zulkifli, N. (2013), “Integration of lot sizing and flow shop
scheduling with lot streaming”, Journal of Applied Mathematics, vol. 2013, Article
ID 216595, 9 pages, 2013.doi:10.1155/2013/216595.

Nawaz, M., Enscore, E., and Ham, I. (1983), “A heuristic for the m-machine, n-

job flow shop sequencing problem”, Omega, 5: 11: 91.

Panwalker, S.S., and Khan, AW. (1976), “An ordered flow-shop sequencing

54

problem with mean completion time criterion”, International Journal of Production
Research, 14: 631-635.

Reiter, S. (1966), “A system for managing job-shop production”, The Journal of
Business, 39: 371-393.

Sarin, S.C., and Jaiprakash, P. (2007), Flow shop lot streaming, Springer.

Smith, M.L., Panwalker, S.S., and Dudek, R.A. (1975), “Flowshop sequencing
problem with ordered processing time matrices: A general case”, Management
Science, 21:544-549.

Su, L.H., Chen, P.S., and Chen, S.Y. (2013), “Scheduling on parallel machines to
minimize maximum lateness for the customer order problem”, International Journal

of Systems Science, 44: 926-936.

Vickson, R.G. (1995), “Optimal lot streaming for multiple products in a two-
machine flow shop”, European Journal of Operational Research, 85: 556-575.

Vickson, R.G. and Alfredsson, B.E.(1992), “Two- and three-machine flow shop
scheduling problems with equal sized transfer batches”, International. Journal of
Production Research, 30: 1551-1574.

Wagneur, E., and Sriskandarajah, C. (1993), “Open shops with jobs overlap”,
European Journal of Operational Research, 71: 366-378.

Wang, G., and Cheng, T.C.E. (2007), “Customer order scheduling to minimize
total weighted completion time”, Omega, 35: 623-626.

Xu, X., Ma, Y., Zhou, Z., and Zhao, Y. (2015), “Customer order scheduling on
unrelated parallel machines to minimize total completion time”, IEEE Transactions

on Automation Science and Engineering, 12: 244-257.

Yang, J., and Posner, M.E. (2005), “Scheduling parallel machines for the customer
order problem”, Journal of Scheduling, 8: 49-74.

Yang, J. (2005), “The complexity of customer order scheduling problems on parallel
machines”, Computers and Operations Research, 32: 1921-1939.

55

