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ABSTRACT 

 

 

FRACTIONAL DERIVATIVES WITH MITTAG-LEFFLER KERNEL AND 

THEIR APPLICATIONS 

 

CAN, Halil Sezgin 

M.Sc., Department of Mathematics 

Supervisor : Assist. Prof. Dr. Dumitru BALEANU 

 

February 2018, 50 pages  

 

In this thesis, we concentrate on studying the properties of a new fractional 

derivative with Mittag-Leffler kernel and presenting its discrete version. After that, 

we show some applications of these new fractional operators to couple real-world 

phenomena from the fields of engineering. In these applications, the results obtained 

from existing fractional derivatives are kept to express the performance of the 

considered new fractional derivative. 

  

 

Keywords: Mittag-Leffler Function, Fractional Calculus, Atangana-Baleanu 

Fractional Derivative, Mittag-Leffler Kernel. 
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ÖZ 

 

 

MITTAG-LEFFLER ÇEKİRDEĞİ İLE FRAKSİYONEL TÜREVLER VE 

UYGULAMALARI 

 

CAN, Halil Sezgin 

Yüksek Lisans, Matematik Anabilim Dalı 

Tez Yöneticisi : Yrd. Doç. Dr. Dumitru BALEANU 

 

Şubat 2018, 50 sayfa 

 

  Bu tez çalışmasında Mittag-Leffler çekirdeği kullanılarak yeni bir kesirli 

türevin özellikleri üzerinde durulmakta ve bunun ayrık versiyonu sunulmaktadır. 

Bunun ardından mühendislik alanlarından gerçek dünya olgularıyla eşleştirecek 

şekilde bu yeni kesirli operatörlerin bazı uygulamaları gösterilmektedir. Bu 

uygulamalarda, mevcut kesirli türevlerin sonuçlarıele alınan yeni kesirli türevin 

performansını vurgulamak için korunmuştur.    

 

 

Anahtar Kelimeler: Mittag-Leffler Fonksiyonu, Kesirli Hesaplamalar, Atangana-

Baleanu Kesirli Türevi, Mittag-Leffler Çekirdeği. 
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CHAPTER 1 

INTRODUCTION 

 

Fractional calculus deals with the derivatives and integrals of any real or 

complex order [1-40]. This type of calculus was initiated and developed by many 

great scientists like Leibniz, L’Hospital, Euler, Bernoulli, Riemann, Liouville, and 

many others [10-11]. Since its beginning many people have been working in this 

field to help its development and its applicability to various areas of mathematics, 

physics and engineering. It has been found that fractional calculus can be extensively 

used for many physical phenomena as a strong and effective tool to describe 

mathematical modeling [41-62].  

Valuable uses for the Mittag-Leffler (M-L) functions have also been 

identified in various fields of the physical and applied sciences. In the last 20 years, 

about nine decades after being discovered by Swedish mathematician GM. Mittag-

Leffler [3-8], these functions have grown in importance because they can potentially 

be utilized to solve problems in various applications, such as engineering, biological 

and physical sciences.  

The aim of this master thesis is to introduce the new fractional derivative so 

called Atangana-Baleanu derivative as well as present some of its applications. 

In this attempt to introduce readers of this thesis to the current state of 

research on M-L type functions and kernels, some particular articles are of key 

importance. The work by Atangana and Baleanu [1] made a significant contribution 

to the field of fractional derivatives and is valuable for its applications to models of 

heat transfer. In 2016, Abdeljawad and Baleanu [2] introduced discrete versions of 

fractional derivatives employing the M-L function together with proofs for formulas 

for the discrete integration by parts, further extending the field of applications for 

these functions. The following year, the same authors in [3] focused on monotonicity 

in the case of fractional difference operators with comparisons to the classical cases. 

Significant work has been done recently to establish the roles of Riemann-Liouville 

derivatives [2], Liouville-Caputo and Caputo-Fabrizio operators [3], and Bateman-

Feshbach-Tikochinsky oscillators [5] in the context of M-L functions and kernels. In 



 

2 

2016 some work was conducted on applying such M-L function-based derivatives to 

finding the solutions for electrical RLC (resistor, inductor, capacitor) circuits, a type 

of circuit that happens to demonstrate fractality. Therefore its becomes an interesting 

example of the real-world demonstration for applications of these functions and 

derivatives [6].  

The thesis is structured on five chapters. In the second section some basic 

tools regarding the Mittag-Leffler function, Riemann-Liouville and Caputo 

Fractional derivative and Atangana-Baleanu fractional derivative are given. Section 3  

is devoted to the discrete Mittag-Leffler function and its properties. Section 4 deals 

with some properties of the discrete fractional derivatives with Mittag-Leffler kernel. 

Section 5 presents some illustrative applications. The conclusion part ends this 

master thesis. 
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CHAPTER 2 

BASIC TOOLS 

 

The Mittag-Leffler (M-L) function has a significant place in solving 

fractional-order differential equations. It can be applied in diverse fields, both 

theoretical and practical, including the flow of fluids, electric networks, probability, 

the theory of statistical distribution [8]. 

 

2.1  Mittag-Leffler Function and Its Properties 

We denote by    𝐸𝛼 (x)  the Mittag-Leffler  function and by  𝐸𝛼,𝛽 (x)  its 

generalized version. 

 

Definition 2.1 [11]:(Mittag-Leffler Function-one parameter) 

 𝐸𝑎(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

,  𝛼 ∈ 𝐶,  𝑅(𝛼) > 0. (2.1) 

 

Definition 2.2[11]:(Generalized Mittag-Leffler Function-two parameter) 

 𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

,  𝛼, 𝛽 ∈ 𝐶,  𝑅(𝛼) > 0,  𝑅(𝛽) > 0. (2.2) 

It follows from the definition that if we put α = 1, β = 1 we get 𝐸1,1(𝑧) = 𝑒𝑧. 

For α = 1 and  β = 2 or  β = 3 , we conculude [11] 

                                               𝐸1,2(𝑧) =
𝑒𝑧−1

𝑧
                (2.3) 

 𝐸1,3(𝑧) =
𝑒𝑧−1−𝑧

𝑧2
 

Also we  have [11]  

 𝐸1,𝑚(𝑧) =
1

𝑧𝑚−1
{𝑒𝑧 − ∑

𝑧𝑘

𝑘!

𝑚−1

𝑘=0

}. (2.4) 

Second, the hyperbolic sine and cosine are also specific cases of the M-L function, 

 𝐸2,1(𝑧
2) = ∑

𝑧2𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

=∑
𝑧2𝑘+1

(2𝑘)!

∞

𝑘=0

=
𝑐𝑜𝑠ℎ ( 𝑧)

𝑧
, (2.5) 
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 𝐸2,2(𝑧
2) = ∑

𝑧2𝑘

𝛤(𝛼𝑘 + 2)

∞

𝑘=0

=
1

2
∑

𝑧2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

=
𝑠𝑖𝑛ℎ ( 𝑧)

𝑧
, (2.6) 

and we continue with the hyperbolic function. We look at the order of n [11]: 

 ℎ𝑟(𝑧, 𝑛) = ∑
𝑧𝑛𝑘+𝑟−1

(𝑛𝑘 + 𝑟 − 1)!

∞

𝑘=0

= 𝑧𝑟−1𝐸𝑛,𝑟(𝑧
𝑛), (2.7) 

which it is also a M-L function. 

The other one is an error function. We take the general form of the M-L 

function and put a instead of ½ and b instead of 1 [11]. 

 𝐸1
2
,1
(𝑧) = 𝐸𝛼,𝛽(𝑧) = ∑

𝑧𝑘

(
𝑘
2 + 1)

∞

𝑘=0

= 𝑒𝑧
2
𝑒𝑟𝑓𝑐(𝑧). (2.8) 

The error function is also defined by the following: 

𝑒𝑟𝑓𝑐(𝑧) =
2

√𝜋
∫ 𝑒−𝑡

2
∞

𝑧

. 

 

Laplace transform (LT) of the Mittag-Leffler (M-L) Function 

We will examine the relationship of the LT and the M-L function [10]. First, let us 

prove the following [11]. 

 ∫ 𝑒−𝑡
∞

0

𝑒±𝑧𝑡𝑑𝑡 =
1

1 ± 𝑧
                 |𝑧| < 0, (2.9) 

 

∫ 𝑒−𝑡
∞

0

𝑒±𝑧𝑡𝑑𝑡 =
1

1 − 𝑧
=∑

(±𝑧)𝑘

𝑘!

∞

𝑧=0

∫ 𝑒−𝑡
∞

0

𝑡𝑘𝑑𝑡 = ∑(

∞

𝑘=0

± 𝑧)𝑘

=
1

1 ± 𝑧
, 

(2.10) 

 ∫ 𝑒−𝑡
∞

0

𝑡𝑘𝑒ℎ±𝑧𝑡𝑑𝑡 =
𝑘!

(1 − 𝑧)𝑘+1
            |𝑧| < 1. (2.11) 

 

Derivatives of the Mittag-Leffler Function 

Using Riemann-Liouville (R-L) fractional-order differentiation 0𝐷𝑡
𝛾
 (γ is an 

arbitrary real number) of series demonstration, we obtain [11] 

 0𝐷𝑡
𝛾
(𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽

(𝑘)
(𝛾𝑡𝑎)) = 𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽−𝛾

(𝑘) (𝜆𝑡𝑎). (2.12) 

Take the particular case of the relationship for k=0, λ=1 and infer that γ is given [11]: 
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 (
𝑑

𝑑𝑡
)
𝑚

(𝑡𝛽−1𝐸𝑚/𝑛,𝛽(𝑡
𝑚/𝑛)) = 𝑡𝛽−1𝐸𝑚

𝑛
,𝛽
(𝑡
𝑚
𝑛 ) + 𝑡𝛽−1∑

𝑡
−𝑚𝑘
𝑛

𝛤 (𝛽 −
𝑚𝑘
𝑛 )

𝑛

𝑘=1

. (2.13) 

Performing the substitution 𝑡 = 𝑧
𝑛

𝑚 and m =1 we obtain [11], 

 
1

𝑛

𝑑

𝑑𝑧
(𝑧(𝛽−1)𝑛𝐸1/𝑛,𝛽(𝑧)) = 𝑧𝛽−1𝐸1

𝑛
,𝛽
(𝑧) + 𝑧𝛽𝑛−1∑

𝑧−𝑘

𝛤 (𝛽 −
𝑘
𝑛)

𝑛

𝑘=1

. (2.14) 

 

Differential Equations for the Mittag-Leffler Function 

Showing the M-L function and its corresponding equations differential equation, we 

indicate the following [11]. 

𝑦1(𝑡) = 𝑡𝛽−1𝐸𝑚
𝑛
,𝛽
(𝑡
𝑚
𝑛 ) ,        𝑦2(𝑡) = 𝑡

𝛽−1𝐸𝑚
𝑛
,𝛽
(𝑡𝑚), 

𝑦3(𝑡) = 𝑡
(𝛽−1)𝑛
𝑚 𝐸𝑚

𝑛
,𝛽
(𝑡),         𝑦4(𝑡) = 𝑡

(𝛽−1)𝑛𝐸𝑚
𝑛
,𝛽
(𝑡). 

Then these functions satisfy the following respective differential equations[11]:  

 
𝑑𝑚𝑦1(𝑡)

𝑑𝑡𝑚
− 𝑦1(𝑡) = 𝑡

𝛽−1∑
𝑡−
𝑚
𝑛
𝑘

(𝛽 −
𝑚
𝑛 𝑘)

𝑛

𝑘=1

, (2.15) 

 
𝑑𝑚𝑦𝑔(𝑡)

𝑑𝑚𝑚
− 𝑦2(𝑡) = 0, (2.16) 

 (
𝑚

𝑛
𝑡1−

𝑛
𝑚
𝑑

𝑑𝑡
)
𝑚

𝑦3(𝑡) − 𝑦3(𝑡) = 𝑡
(𝛽−1)𝑛
𝑚 ∑

𝑡−𝑘

(𝛽 −
𝑚
𝑛 𝑘)

𝑛

𝑘=1

, (2.17) 

 
1

𝑛

𝑑𝑦4(𝑡)

𝑑𝑡
𝑦4(𝑡) − 𝑡

𝑛−1𝑦4(𝑡) = 𝑡𝛽𝑛−1∑
𝑡−𝑘

(𝛽 −
𝑘
𝑛)

𝑛

𝑘=1

. (2.18) 

 

Summation Formulas 

We have [11], 

 ∑ 𝑒𝑖2𝜇𝜈𝑘/𝑚
𝑚−1

𝜈=0

= {
𝑚, if 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑚),
0, if 𝑘 ≢ 0 (𝑚𝑜𝑑 𝑚).

 (2.19) 

We start with the apparent  formula. 

 ∑ 𝑒
𝑖2𝜇𝜈𝑘
2𝑚

+1

𝑚

𝜈=−𝑚

= {
2𝑚 + 1, if 𝑘 ≡ 0 (𝑚𝑜𝑑 2𝑚 + 1),
0, if 𝑘 ≢ 0 (𝑚𝑜𝑑 2𝑚 + 1).

 (2.20) 

We then acquire the following [11].  
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𝐸𝛼,𝛽(𝑧) =
1

2𝑚 + 1
∑ 𝐸 𝑎

2𝑚+1
,𝛽

𝑚−1

𝜈=−𝑚

(𝑧
1

2𝑚+1𝑒
𝑖2𝜇𝜈
2𝑚

+1). (2.21) 

A generalization of the summation formula has thus been obtained. 

∑ 𝐸𝛼,𝛽

𝑚−1

𝜈=0

(
𝑧𝑖2𝜇𝜈

𝑚
)𝑒

𝑖2𝜇𝜈(𝑚−𝑛)
𝑚 = 𝑚𝑧𝑛𝐸𝑚,𝛼,𝛽+𝑛𝛼(𝑧

𝑚). (2.22) 

Apparently, for n=0, the relationship gives the summation formula. 

 

Integration of the Mittag-Leffler Function 

We have [11], 

∫ 𝐸𝛼,𝛽

𝑧

0

(𝜆𝑡𝛼)𝑡𝛽−1𝑑𝑡 = 𝑧𝛽𝐸𝛼,𝛽+1(𝜆𝑧
𝛼), (𝛽 > 0). (2.23) 

We acquire a more general relationship. 

1

𝛤(𝜈)
∫ (
𝑧

0

𝑧 − 𝑡)𝜈−1𝐸𝛼,𝛽(𝜆𝑡
𝛼)𝑡𝛽−1𝑑𝑡 = 𝑧𝛽+𝛾−1𝐸2𝛼,𝛽+𝛾(𝜆𝑧

𝛼), (2.24) 

∫ 𝑡𝛽−1
𝑧

0

𝐸𝛼,𝛽(𝛼𝜏
𝛼)(𝑡 − 𝜏)𝛾−1𝐸𝛼,𝛾(−𝑎(𝑡 − 𝜏)

𝛼)𝑑𝑡 = 𝑡𝛽+𝛾−1𝐸2𝛼,𝛽+𝛾(𝑎
2𝑡2𝛼). (2.25) 

 

Asymptotic Expansions 

Integration of the relationship gives [11], 

𝐸1
𝑛
,𝛽
(𝑧) = 𝑧(1−𝛽)𝑛𝑒𝑧

𝑛
{𝑧0
(1−𝛽)𝑛

𝑒−𝑧0
𝑛
𝐸1
𝑛
,𝛽
(𝑧0) ,                      

                      +𝑛∫ 𝑒−𝜏
𝑛

𝑧

𝑧0

(∑
𝜏−𝑘

(𝛽 −
𝑘
𝑛)

𝑛

𝑘=1

𝜏3𝑛−1)𝑑𝑡},       (𝑛 ≤ 1), 

(2.26) 

which is valid for arbitrary z0 ≠ 0. 

Then we put β = 1 , z0 = 0 [11], 

 𝐸1
𝑛
,1
(𝑧) = 𝑒𝑧

𝑛
{1 + 𝑛∫ 𝑒−𝜏

𝑛
𝑧

0

(∑
𝜏𝑘−1

(
𝑘
𝑛
)

𝑛−1

𝑘=1

)} ,  (𝑛 ≥ 2). (2.27) 

Taking n=2 as before, we acquire the following formula: 

 𝐸1
2
,1
(𝑧) = 𝑒𝑧

2
{1 +

2

√𝜋
∫ 𝑒−𝜏

2
𝑧

0

𝑑𝑡𝜏}. (2.28) 

from which the following asymptotic formula follows [11]:  

 𝐸1
2
,1
∼ 2𝑒𝑧

2
, | arg ( 𝑧)| <

𝜋

4
, |𝑧| → ∞. (2.29) 
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Wright Function 

The Wright function is significant for the explanation of particular linear fractional 

equations. This function is connected to the M-L function in two parameters, 𝐸𝛼,𝛽 (x) 

[10]. 

 We give the definition of the Wright function [11]: 

 𝑊(𝑧; 𝛼, 𝛽) = ∑
𝑧𝑘

𝑘! 𝛤(𝛼𝑘 + 𝛽)
.

∞

𝑘=0

 (2.30) 

We can also represent this function with the integral formula given below: 

 𝑊(𝑧; 𝛼, 𝛽) =
1

2𝜋𝑖
∫ 𝜏−𝛽

𝐻𝑎

𝑒𝜏+𝑧𝜏
−𝑎
𝑑𝑡. (2.31) 

Finally, we can write the LT of the Wright function to also contain the M-L function. 

 𝐿{𝑡; 𝛼, 𝛽); 𝑠} = 𝐿 {∑
𝑧𝑘

𝑘! 𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

}  

 =∑
1

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

1

𝑠𝑘+1
 (2.32) 

 = 𝑠−1𝐸𝛼,𝛽(𝑠
−1).  

 

2.2 Basics of Riemann-Liouville and Caputo Fractional Operators 

The Riemann-Liouville Fractional Differential Operator 

First, it is helpful if the fractional integration operator is defined. Let us assume that  

a > 0, t > α,  α, a, t ϵ R. Then the fractional operator [11] 

 𝐽𝑎𝑓(𝑡):=
1

𝛤(𝛼)
∫ (
𝑡

0

𝑡)(𝑡 − 𝜏)𝑎−1𝑑𝑡. (2.33) 

is referred to as the R-L fractional integral of order a [12]. Next we show the R-L 

fractional differential operator. 

Supposing that a > 0, t > α, α, a, tϵR [12]: 

 𝐷𝛼𝑓(𝑡):=

{
 

 
1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑛

𝑡

0

𝑑𝑡, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁,

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡), 𝛼 = 𝑛 ∈ 𝑁.

 (2.34) 

and this is referred to as the R-L fractional derivative or the R-L fractional 

differential operator of order a [12]. 
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The Caputo Fractional Differential Operator 

Let us assume that a>0, t>α, α, a, tϵR. The fractional operator 

 𝐷∗
𝛼𝑓(𝑡):=

{
 

 
1

𝛤(𝑛 − 𝛼)
∫

𝑓𝑛(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑛

𝑡

0

𝑑𝑡, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁,

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡) 𝛼 = 𝑛 ∈ 𝑁.

 (2.35) 

is the Caputo fractional derivative or Caputo fractional differential operator of order 

a [13]. 

 

LT of the Basic Fractional Operator 

Suppose that p > 0 and additionally that F(s) is the LT of f(t); then the following 

statements hold. 

 The LT of the R-L fractional differential operator of order a is given as shown 

here, 

 
𝐿{𝐷𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) −∑ 𝑠𝛼−𝑘−1

𝑛−1

𝑘=0

[𝐷𝑘𝐼𝑛−𝛼𝑓(𝑡)]𝑡=0 , 

𝑛 − 1 < 𝛼 < 𝑛.                     

(2.36) 

Let the LT of the Caputo fractional differential operator of order a be given by [10] 

 𝐿{𝐷∗
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) −∑ 𝑠𝛼−𝑘−1

𝑛−1

𝑘=0

𝑓(𝑘)(0) ,  𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁. (2.37) 

This can also be acquired in the form below, as well [10]. 

 𝐿{𝐷∗
𝛼𝑓(𝑡)} =

𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−1𝑓′(0) − ⋯− 𝑓(𝑛−1)(0)

𝑠𝑛−𝛼
. (2.38) 

Next, LT of the two-parameter function of M-L type can be given as follows [14]. 

 𝐿{𝑡𝛼𝑚+𝛽−1𝐸𝛼,𝛽(𝑚)(±𝜆𝑡
𝑎)} =

𝑚! 𝑠𝛼−𝛽

(𝑠𝑎𝜆)𝑚+1
,      𝑅𝑒(𝑠) > |𝜆|

1
𝑎. (2.39) 

 

2.3 Fractional Atangana-Baleanu Derivative 

Definition 2.3[1]: If we take 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1], we have the definition 

of the new fractional derivative as follows: 

 𝐷𝑏
𝐴𝐵𝐶

𝑡
𝛼 (𝑓(𝑡)) =

𝐵(𝛼)

1 − 𝛼
∫ 𝑓´(𝑥)𝐸𝛼

𝑡

𝑏

[−𝛼
(𝑡 − 𝑥)𝛼

1 − 𝛼
]𝑑𝑥. (2.40) 

Here, B(𝛼) has properties similar to those in the Caputo and Fabrizio case. The above 

definition is important in discussing practical real-world problems. It will also be of 
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great help when we use LT to solve some physical problems under the initial 

conditions. However, if alpha is 0, we do not regain the original function except 

when the function vanishes at the origin. The following definition is proposed with 

the goal of avoiding this situation. 

 

Definition 2.4[1]: Letting f ∈ H1(a, b), b > 𝑎, 𝛼 ∈ [0,1], the new fractional 

derivative can be defined as follows:                                            

𝐷𝑏
𝐴𝐵𝑅

𝑡
𝛼 (𝑓(𝑡)) =

𝐵(𝛼)

1 − 𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑥)𝐸𝛼

𝑡

𝑏

[−𝛼
(𝑡 − 𝑥)𝛼

1 − 𝛼
]𝑑𝑥. (2.41) 

Equations (2.40) and (2.41) have a kernel that is nonlocal. Additionally, in equation 

(2.40), we obtain zero if the function is a fixed function. 

 

Properties  

We begin here with the relationship between both derivatives and the LT. It can be 

concluded by a straightforward calculation that [1] 

ℒ{ 𝐷0
𝐴𝐵𝑅

𝑡
𝛼 (𝑓(𝑡))}(𝑝) =

𝐵(𝛼)

1 − 𝛼

𝑝𝛼ℒ{𝑓(𝑡)}(𝑝)

𝑝𝛼 +
𝛼

1 − 𝛼

 (2.42) 

and 

ℒ{ 𝐷0
𝐴𝐵𝐶

𝑡
𝛼  (𝑓(𝑡))}(𝑝) =

𝐵(𝛼)

1 − 𝛼

𝑝𝛼ℒ{𝑓(𝑡)}(𝑝) − 𝑝𝛼−1𝑓(0)

𝑝𝛼 +
𝛼

1 − 𝛼

, (2.43) 

respectively. 

Proceeding from this, the following result is then reached. 

 

Theorem 2.1[1]: Letting 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1], the following relation is 

obtained. 

𝐷0
𝐴𝐵𝐶

𝑡
𝛼 (𝑓(𝑡)) =  𝐷0

𝐴𝐵𝑅
𝑡
𝛼  (𝑓(𝑡)) + 𝐻(𝑡). (2.44) 

 

Proof [1]: If we take definition (2.44) and apply the LT on both sides, the result 

below can be easily obtained: 

ℒ{ 𝐷0
𝐴𝐵𝐶

𝑡
𝛼  (𝑓(𝑡))}(𝑝) =

𝐵(𝛼)

1 − 𝛼

𝑝𝛼ℒ{𝑓(𝑡)}(𝑝)

𝑝𝛼 +
𝛼

1 − 𝛼

−
𝑝𝛼−1𝑓(0)

𝑝𝛼 +
𝛼

1 − 𝛼

𝐵(𝛼)

1 − 𝛼
. (2.45) 

Following equation (2.42), we have: 
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ℒ{ 𝐷0
𝐴𝐵𝐶

𝑡
𝛼  (𝑓(𝑡))}(𝑝) = ℒ{ 𝐷0

𝐴𝐵𝑅
𝑡
𝛼 (𝑓(𝑡))}(𝑝) −

𝑝𝛼−1𝑓(0)

𝑝𝛼 +
𝛼

1 − 𝛼

𝐵(𝛼)

1 − 𝛼
. (2.46) 

If we apply the inverse Laplace on both sides of equation (2.46), the result will be as 

follows: 

𝐷0
𝐴𝐵𝐶

𝑡
𝛼  (𝑓(𝑡)) = 𝐷0

𝐴𝐵𝑅
𝑡
𝛼 (𝑓(𝑡)) − 𝑐 𝑓(0)𝐸𝛼 (−

𝛼

1 − 𝛼
𝑡𝛼). (2.47) 

The proof is thus completed. 

 

Theorem 2.2[1]: Taking a continuous function on the closed interval [a,b] gives the 

following inequality on [a,b] 

‖ 𝐷0
𝐴𝐵𝑅

𝑡
𝛼 (𝑓(𝑡))‖ <

𝐵(𝛼)

1 − 𝛼
𝐾, ‖ℎ(𝑡)‖ = 𝑚𝑎𝑥𝑎≤𝑡≤𝑏|ℎ(𝑡)|. (2.48) 

 

Proof [1]: 

‖ 𝐷0
𝐴𝐵𝑅

𝑡
𝛼 (𝑓(𝑡))‖ =  ‖

𝐵(𝛼)

1 − 𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑥)𝐸𝛼 [−𝛼

(𝑡 − 𝑥)𝛼

1 − 𝛼
]𝑑𝑥

𝑡

0

‖      

                                      <
𝐵(𝛼)

1 − 𝛼
‖
𝑑

𝑑𝑡
∫ 𝑓
𝑡

0

(𝑥)𝑑𝑥‖ =
𝐵(𝛼)

1 − 𝛼
‖𝑓(𝑥)‖. 

(2.49) 

If we take K to be ‖𝑓(𝑥)‖, we complete the proof. 

 

Definition 2.5[4]: We can define the fractional integral associated with the 

derivative with the nonlocal kernel is as follows: 

𝑎
𝐴𝐵𝐼𝑡

𝛼{𝑓(𝑡)} =
1 − 𝛼

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑓
𝑡

𝑎

(𝑦)(𝑡 − 𝑦)𝛼−1𝑑𝑦. (2.50) 
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CHAPTER 3 

DISCRETE MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES 

 

Definition 3.1[4]: (∇ discrete M-L) For μ ∈ ℝ, |μ| < 1, and 𝛼, 𝛽, 𝑧 ∈ ℂ with 

𝑅𝑒(𝛼) > 0, the nabla discrete M-L function can be given as:  

 𝐸𝛼,𝛽(𝜇, 𝑧) =∑𝜇𝑡
∞

𝑡=0

𝑧𝑡𝛼+𝛽−1

𝛤(𝛼𝑡 + 𝛽)
. (3.1) 

For the case of 𝛽 = 1, we have the following: 

 𝐸𝑎̅(𝜇, 𝑧) ≜ 𝐸𝛼,1(𝜇, 𝑧) =∑𝜇𝑡
∞

𝑡=0

𝑧𝑡𝛼

𝛤(𝛼𝑡 + 1)
    ,     |𝜇| < 1. (3.2) 

The generalized M-L function with three parameters was previously introduced as 

follows[4]:  

 𝐸𝛼,𝛽
𝜌 (𝑧) =∑(

∞

𝑡=0

𝜌)𝑡
𝑧𝑡

𝑡! 𝛤(𝛼𝑡 + 𝛽)
. (3.3) 

Here (𝜌)𝑡 = 𝜌(𝜌 + 1)⋯(𝜌 + 𝑡 − 1). Notice that (1)𝑡 = 𝑡! and so 𝐸1𝑁𝛼, 𝛽(𝑧) =

𝐸𝛼,𝛽
1 , (𝑧).  

Moving on to the discrete process, it is necessary to define the version of the 

M-L function of three parameters as follows:  

 𝐸𝛼,𝛽
𝜌 (𝜇, 𝑧) =∑𝜇𝑡

∞

𝑡=0

(𝜌)𝑡
𝑧𝛼𝑡+𝛽−1

𝑡! 𝛤(𝛼𝑡 + 𝛽)
. (3.4) 

 

Definition 3.2[4]: The (∇) discrete general M-L function having the three parameters 

𝛼, 𝛽, and 𝜌 is defined as shown here: 

 𝐸
𝛼,𝛽̅̅ ̅̅ ̅
𝜌 (𝜇, 𝑧) =∑𝜇𝑡

∞

𝑡=0

(𝜌)𝑡
𝑧𝑡𝛼+𝛽−1

𝑡! 𝛤(𝛼𝑡 + 𝛽)
. (3.5) 

Here, it can be noted that 𝐸
𝛼,𝛽
1 (𝜇, 𝑧) = 𝐸𝛼,𝛽(𝜇, 𝑧).  
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Proposition 3.1[4]: (Summation and difference for the discrete M-L functions)  

𝛻𝑡𝐸𝛼̅(𝜇, 𝑧) = 𝐸𝛼,𝛼̅̅ ̅̅ ̅(𝜇, 𝑧),  

𝛻𝑡𝐸1,𝛽̅̅ ̅̅̅(𝜇, 𝑧) = 𝐸1,𝛽+1̅̅ ̅̅ ̅̅ ̅̅ ̅(𝜇, 𝑧),  

𝛻𝑡𝐸𝛼,𝛽̅̅ ̅̅ ̅
𝛾(𝜇, 𝑧) = 𝐸𝛼,𝛽−1̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛾(𝜇, 𝑧),      (3.6) 

∑ 𝐸𝛼,𝛽(𝜇, 𝑡 − 𝑎) = 𝐸𝛼,𝛽+1(𝜇, 𝑧 − 𝑎).

𝑧

𝑡=𝑎+1

 

 

Definition 3.3[4]: Suppose that function 𝑓 is defined on ℕ0. Thus, for 0 < 𝛼 ≤ 1, 

we have its 𝛼-order Caputo fractional derivative as follows:  

𝐶𝛻0
𝛼𝑓(𝑘) = 𝛻0

−(1−𝛼)
𝛻𝑓(𝑘)  

=
1

𝛤(1−𝛼)
∑ (𝑘
𝑠=1 𝑘 − 𝜌(𝑠))−𝑎̅̅ ̅̅ 𝛻𝑓(𝑠),  (3.7) 

where 𝜌(𝑠) = 𝑠 − 1 and 𝛻0
−𝛼𝑓(𝑘) =

1

𝛤(𝛼)
∑ (𝑘
𝑠=1 𝑘 − 𝜌(𝑠))𝛼−1 𝑓(𝑠) is seen to be the 

∇ left fractional sum with the order of 𝛼.  

If we take f as being defined on ℕ, it will follow that 𝐶𝛻0
𝛼𝑓(𝑘)  is defined 

on  

ℕ1 = {1,2,3, … }. 

For the Caputo fractional difference possessing the order of 𝑚 − 1 < 𝛼 ≤ 𝑚 

beginning from 𝑎(𝛼) = 𝑎 +𝑚 − 1, please see [46]. 

 

Example 3.1[4]: Take 0 < 𝛼 ≤ 1, 𝑎 ∈ ℝ, as well as the ∇ left Caputo 

nonhomogeneous fractional difference equation as follows: 

 𝐶𝛻0
𝛼𝑦(𝑡) = 𝜆𝑦(𝑡) + 𝑓(𝑡),        𝑦(0) = 𝑎0,       𝑡 ∈ ℕ0. (3.8) 

Now it is possible for one to write the solution for (3.8) in the following way:  

 𝑦(𝑡) = 𝑎0𝐸𝛼(𝜆, 𝑡) +∑𝐸𝛼,𝛼

𝑡

𝑠=1

(𝜆, 𝑡 − 𝜌(𝑠))𝑓(𝑠). (3.9) 

 

Remark 3.1[4]: The solution of (3.12) with 𝛼 = 1 and 𝑎0 = 1 is  

𝑦(𝑡) = ∑𝜆𝑘
∞

𝑘=0

𝑡𝑘

𝑘!
+∑∑𝜆𝑘

∞

𝑘=0

𝑡

𝑠=1

(𝑡 − 𝜌(𝑠))𝑘

𝑘!
𝑓(𝑠). (3.10) 
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The function 𝑒̂𝜆(𝑡, 0) = (1 − 𝜆)−𝑡, a ∇ discrete .exponential function, 

represents the first part of the solution above, with |𝜆| < 1. Please see [49] for more 

information.  

Next we will review some facts about the discrete LT of the M-L type and 

convolution type functions (for detailed information, refer to [48]).  

 

Definition 3.4[4]: Take 𝑠 ∈ ℝ, 0 < 𝛼 < 1, and 𝑓, 𝑔: ℕ𝑎 → ℝ. Then the ∇ discrete 

convolution of f with 𝑔 can be given according to the following:  

 (𝑓 ∗ 𝑔)(𝑘) = ∑ 𝑔

𝑘

𝑠=𝑎+1

(𝑘 − 𝜌(𝑠))𝑓(𝑠). (3.11) 

Here, 𝜌(𝑠) = 𝑠 − 1 is understood to be a backward jumping operator employed in 

the case of 𝛻-analysis for the time scale of ℤ. Such a backward jumping operator is 

required for showing the following discrete convolution theorem. It is also needed in 

order to acquire the dual relations existing between the left and right fractional sums 

and the differences by way of the 𝑄-operator.  

 

Proposition 3.2[4]: Let a function 𝑓 be defined on ℕ𝑎. Then the nabla discrere 

Laplace transform has the form 𝒩𝑓(𝑧) = ∑ (1 − 𝑧)𝑡−1𝑓(𝑡),∞
𝑡=1  𝒩𝑎𝑓(𝑧) =

∑ (1 − 𝑧)𝑡−1𝑓(𝑡).∞
𝑡=𝑎1   In the case of any 𝛼 ∈ ℝ\{. . . , −2, −1,0},𝑚 ∈ ℝ, and 𝑓, 𝑔 

defined on ℕ𝑎, the following can be written: 

 (𝒩𝑎(𝑓 ∗ 𝑔))(𝑘) = (𝒩𝑎𝑓)(𝑘)(𝒩𝑔)(𝑘). (3.12) 

 

Proof [4]:  

(𝒩𝑎(𝑓 ∗ 𝑔))(𝑘) = ∑ (

∞

𝑡=𝑎+1

1 − 𝑘)𝑡−1 ∑ 𝑓

𝑡

𝑚=𝑎+1

(𝑚)𝑔(𝑡 − 𝜌(𝑚))  

= ∑ ∑(

∞

𝑡=𝑚

∞

𝑚=𝑎+1

1 − 𝑘)𝑡−1 ∑ 𝑓

𝑡

𝑚=𝑎+1

(𝑚)𝑔(𝑡 − 𝜌(𝑚)) (3.13) 

= ∑ ∑(

∞

𝑟=1

∞

𝑚=𝑎+1

1 − 𝑘)𝑟−1(1 − 𝑘)𝑚−1𝑓(𝑚)𝑔(𝑟)  

= (𝒩𝑎𝑓)(𝑘)(𝒩𝑔)(𝑘).  

where the alteration of variable 𝑟 = 𝑡 − 𝜌(𝑚) has been applied. 

For more information about the situation in which 𝑎 = 0 and 𝑔(𝑡) = 𝑡𝛼, 

please consult [48].  
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Lemma 3.1[4]: For and 𝛼 ∈ ℝ{… ,−2,−1,0}, 

i. 𝒩(𝑡𝑎−1̅̅ ̅̅ ̅̅ )(𝑘) =
𝛤(𝑎)

𝑘𝑎
, |1 − 𝑘| < 1,              (3.14) 

ii. 𝒩(𝑡𝑎−1̅̅ ̅̅ ̅̅ 𝑏−𝑡)(𝑘) =
𝑏𝑎−1𝛤(𝑎)

(𝑘+𝑏−1)𝑎
, |1 − 𝑘| < 𝑏.             (3.15) 

 

Lemma 3.2[4]: If we assume that f is a function that is defined on ℕ, we have: 

 (𝒩𝛻(𝑓(𝑡))) (𝑘) = 𝑘(𝒩𝑓)(𝑘) − 𝑓(0). (3.16) 

Lemma 3.2 can be generalized as follows.  

 

Lemma 3.3[4]: Assume that the function 𝑓 is defined on 𝒩𝑎. For this case, the 

following result holds:  

 (𝒩𝑎𝛻(𝑓(𝑡)))(𝑘) = 𝑘(𝒩𝑎𝑓)(𝑘) − (1 − 𝑘)
𝑎𝑓(𝑎). (3.17) 

To express this in a more general fashion,  

(𝒩𝑎(𝛼)𝛻
𝑛𝑓)(𝑘) = 𝑘𝑛(𝒩𝑎(𝛼)𝑓)(𝑘) − (1 − 𝑘)

𝑎(𝛼)∑𝑘𝑛−𝑎−𝑖𝛻𝑖

𝑛−1

𝑖=0

𝑓(𝑎 + 1).  (3.18) 

 

Lemma 3.4[4]: For any positive real number 𝜈,  

(𝒩𝑎−1𝛻𝑎−1
−𝑣 𝑓)(𝑠) = 𝑠−𝑣(𝒩𝑎−1𝑓)(𝑠).  (3.19) 

A different proof can be provided for the lemma below, avoiding convolutions as can 

be seen in the work presented in [48].  

 

Lemma 3.5[4]: If f is defined on ℕ0 and 0 < 𝛼 ≤ 1, we have the following:  

 (𝒩𝐶𝛻0
𝛼𝑓)(𝑘) = 𝑘𝛼(𝒩𝑓)(𝑘) − 𝑘𝛼−1𝑓(0). (3.20) 

 

Proof: We get the following thanks to the definition and Lemma 3.2 that were 

established in [50]:  

(𝐶𝛻0
𝛼𝑓)(𝑡) = (𝛻0

−(1−𝛼)∇𝑓)(𝑡) = ∇(𝛻0
−(1−𝛼)𝑓)(𝑡) −

𝑡𝑎̅̅̅̅

𝛤(1 − 𝛼)
𝑓(0). (3.21) 

By employing the ∇ discrete LT and also using Lemma 3.1 and Lemma 3.2, the 

following is obtained:  

 (𝒩𝐶𝛻0
𝛼𝑓)(𝑘) = 𝑘(𝒩𝛻0

−(1−𝛼)𝑓)(𝑘) − (𝛻0
−(1−𝛼)𝑓)(0) −

𝛤(1 − 𝛼)

𝛤(1 − 𝛼)𝑘1−𝛼
𝑓(0). (3.22) 

The result then follows by Lemma 3.4 with 𝑎 = 1 and (𝛻0
−(1−𝛼)

)𝑓(0) = 0.   
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Remark 3.2[4]: It is possible to generalize Lemma 3.5 as follows. We get the 

following for 𝑓 when it is defined on Na and 0 < 𝛼 ≤ 1:  

 (𝒩𝑎 𝐶𝛻𝑎
𝛼𝑓)(𝑘) = 𝑘𝛼(𝒩𝑎𝑓(𝑘)) − (1 − 𝑘)

𝑎𝑘𝛼−1𝑓(𝑎). (3.23) 

Remark 3.1 allows this to be proved.  

 

Lemma 3.6[4]: Supposing that 0 < 𝛼 ≤ 1 and letting f be defined on ℕ0, we have:  

i. (𝒩𝐸𝛼(𝜇, 𝑡))(𝑘) =
𝑘𝛼−1

𝑘𝛼−𝜇
, (3.24) 

ii. (𝒩𝐸𝛼,𝛼(𝜇, 𝑡)) (𝑘) =
1

𝑘𝛼−𝜇
. (3.25) 

 

Proof [4]: The proof of (ii) is repeated because of an error in the calculation in 

Lemma 3.4 (ii) in [40]. (ii) Here it can be easily seen that 𝛻𝐸𝛼(𝜇, 𝑡) = 𝜇𝐸𝛼,𝛼(𝜇, 𝑡). 

In fact,  

𝛻𝐸𝛼(𝜇, 𝑘) =∑𝜇𝑧
∞

𝑧=0

𝑧𝑎𝑘𝑧𝛼−1

𝛤(𝛼𝑧 + 1)
. (3.26) 

Division by balls of the gamma function results in zero, which subsequently results 

in  

𝛻𝐸𝛼(𝜇, 𝑡) = ∑ 𝜇𝑧
∞

𝑘=1

𝑘𝑧𝛼−1

𝛤(𝛼𝑧)
= 𝜇∑ 𝜇𝑧

∞

𝑘=0

𝑘𝑧𝛼+𝑎−1

𝛤(𝛼𝑘 + 𝛼)
= 𝜇𝐸𝛼,𝛼(𝜇, 𝑡). (3.27) 

Using 𝒩 along with (i) and Lemma 3.2, it can be concluded that  

(𝒩𝐸𝛼,𝛼(𝜇, 𝑡)(𝑘) = 𝜇−1[𝑘𝒩𝐸𝛼(𝜇, 𝑡))(𝑘) − 𝐸𝛼(𝜇, 0)]  (3.28) 

            = 𝜇−1 [
𝑘𝛼

𝑘𝛼−𝜇
− 1] =

1

𝑘𝛼−𝜇
.       
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CHAPTER 4 

PROPERTIES OF THE CONTINUOUS AND DISCRETE FRACTIONAL 

DERIVATIVES  WITH  MITTAG-LEFFLER KERNEL 

 

4.1  Right Fractional Derivatives and the Formula for Integration by Parts 

Defining f on the interval of [c,d], the Q-operator’s action can then be written 

in the form of (𝑄𝑓)(𝑡) = 𝑓(𝑐 + 𝑑 − 𝑡) [2]. 

 

Definition 4.1[2]: Assuming that f ∈  H1(c,d), c < d ,  𝛼 ∈ [0,1], the new (Left 

Caputo) fractional derivative in the way defined in the work of Atangana and 

Baleanu has the following definition: 

( 𝐷𝛼𝑓𝑐
𝐴𝐵𝐶 )(t) =

𝐵(𝛼)

1−𝛼
∫ 𝑓′(𝑥)𝐸𝛼[−𝛼

(𝑡−𝑥)𝛼

1−𝛼
]𝑑𝑥

𝑡

𝑐
. (4.1) 

In the left R-L sense, it is defined by: 

 ( 𝐷𝛼𝑓)(𝑡)𝑐
𝐴𝐵𝑅 =

𝐵(𝛼)

1−𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑥)𝐸𝛼 [−𝛼

(𝑡−𝑥)𝛼

1−𝛼
] 𝑑𝑥.

𝑡

𝑐
 (4.2) 

The associated fractional integral is given by: 

 ( 𝐼𝛼𝑓𝑐
𝐴𝐵 )(𝑡) =

1−𝑎

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)
( 𝐼𝛼𝑎 𝑓)(t). (4.3) 

The new right R-L fractional derivative being proposed here can be indicated by 

𝐷𝑑
𝑐𝐴𝐵𝑅  and its corresponding integral by 𝐼𝑑

𝑐𝐴𝐵 . Classical fractional calculus shows us 

that ( 𝐼𝑎𝑄𝑓)(𝑡) = 𝑄(𝐼𝑑
𝑐𝑓)(𝑡)𝑐  and ( 𝐷𝑎𝑐 𝑄𝑓)(𝑡) = 𝑄(𝐷𝑑

𝑐𝑓)(𝑡). This relation should 

be satisfied for the new left and right fractional derivatives as well as for the integrals 

[2]. 

( 𝐷𝛼𝑄𝑓𝐴𝐵𝑅
𝑎

)(𝑡)  =
𝐵(𝛼)

1 − 𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑐 + 𝑑 − 𝑥)𝐸𝛼[−𝛼

(𝑡 − 𝑥)𝛼

1 − 𝛼
]𝑑𝑥

𝑡

𝑎

 

(4.4) 

=
𝐵(𝛼)

1 − 𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑢)𝐸𝛼 [−𝛼

(𝑢 − (𝑐 + 𝑑 − 𝑡)𝛼

1 − 𝛼
] 𝑑𝑥.

𝑑

𝑐+𝑑−𝑡

 

Here the alteration of the variable u = c + d – x has been applied. Relation (4.4) leads 

to a definition for these new right fractional derivatives as follows. 
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Definition 4.2[2]: The new right fractional derivative having a M-L kernel of the 

order of 𝛼 ∈ [0,1] can be defined in the manner given below: 

( 𝐷𝑏
𝛼𝐴𝐵𝑅 𝑓)(𝑡) = −

𝐵(𝛼)

1−𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑥)
𝑏

𝑡
𝐸𝛼 [−𝛼

(𝑥−𝑡)𝛼

1−𝛼
] 𝑑𝑥. (4.5) 

Furthermore, we have [2]: 

( 𝐼𝛼𝑎
𝐴𝐵 𝑄𝑓)(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝑓(𝑎 + 𝑏 − 𝑡) +

𝛼

𝐵(𝛼)
( 𝐼𝛼𝑎 𝑄𝑓)(𝑡) 

(4.6) =
1 − 𝛼

𝐵(𝛼)
𝑓(𝑎 + 𝑏 − 𝑡) +

𝛼

𝐵(𝛼)
𝑄(I𝑏

𝛼𝑓)(𝑡) 

= 𝑄 [
1 − 𝛼

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)
(I𝑏
𝛼𝑓)(𝑡)]. 

The equation ( 𝐷𝑏
𝛼𝐴𝐵 𝑓)(𝑡) = 𝑢(𝑡) can also be solved. Indeed, 

( 𝐷𝑏
𝛼𝐴𝐵 𝑓)(𝑡) = ( 𝐷𝑏

𝛼𝐴𝐵 𝑄𝑄𝑓)(𝑡) = (𝑄 𝐷𝛼𝑎
𝐴𝐵 𝑄𝑓)(𝑡) = 𝑢(𝑡) 

or 

( 𝐷𝛼𝑎
𝐴𝐵 𝑄𝑓)(𝑡) = 𝑄𝑢(𝑡), 

(4.7) 

and hence 

𝑄𝑓(𝑡) =
1 − 𝛼

𝐵(𝛼)
𝑄𝑢(𝑡) +

𝛼

𝐵(𝛼)
𝐼𝛼𝑎 𝑄𝑢(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝑄𝑢(𝑡) +

𝛼

𝐵(𝛼)
𝑄𝐼𝑏

𝛼𝑢(𝑡). (4.8) 

If we apply 𝑄 to both of the sides as given above, the following result is obtained: 

𝑓(𝑡) =
1 − 𝛼

𝐵(𝛼)
𝑢(𝑡) +

𝛼

𝐵(𝛼)
𝐼𝑏
𝛼𝑢(𝑡). (4.9) 

Relations (4.6) and (4.9) yield a definition of the new right fractional integral as 

follows. 

 

Theorem 4.1[2]: The functions ( Dαa
ABR f)(t) and ( Db

αABR f)(t) are found to satisfy 

the following respective equations: 

( 𝐼𝛼𝑎
𝐴𝐵 𝑔)(𝑡) = 𝑓(𝑡)  ,                 ( 𝐼𝑏

𝛼𝐴𝐵 𝑔)(𝑡) = 𝑓(𝑡). (4.10) 

 

Proof [2]: Here only the left case is demonstrated. It is possible to demonstrate the 

right case using the Q-operator. According to the definition, it can be said that the 

first equation has equivalency with the following: 

1 − 𝛼

𝐵(𝛼)
𝑔(𝑡) +

𝛼

𝐵(𝛼)
( 𝐼𝛼𝑎 𝑔)(𝑡) = 𝑓(𝑡). (4.11) 

Applying the LT makes it possible to state that 
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1 − 𝛼

𝐵(𝛼)
𝐺(𝑠) +

𝛼

𝐵(𝛼)
𝑠−𝛼𝐺(𝑠) = 𝐹(𝑠), (4.12) 

from which it follows that 

𝐺(𝑠) =
𝐵(𝛼)

1 − 𝛼

𝐹(𝑠)𝑠𝛼

𝑠𝛼 +
𝛼

1 − 𝛼

. (4.13) 

In the end, the Laplace inverse leads to 𝑔(𝑡) = ( 𝐷𝛼𝑎
𝐴𝐵𝑅 𝑓)(𝑡). 

 

Definition 4.3[2]: The definition of the new (right) Caputo fractional derivative with 

the order of  0 < α < 1 can be given as 

( 𝐷𝑏
𝛼𝐴𝐵𝐶 𝑓)(𝑡) = −

𝐵(𝛼)

1 − 𝛼
∫ 𝑓′
𝑏

𝑡

(𝑥)𝐸𝛼 [−𝛼
(𝑥 − 𝑡)𝛼

1 − 𝛼
] 𝑑𝑥. (4.14) 

Next, the right version of  

( 𝐷𝛼0
𝐴𝐵𝐶 𝑓)(𝑡) = ( 𝐷𝛼0

𝐴𝐵𝑅 𝑓)(𝑡) −
𝐵(𝛼)

1−𝛼
𝑓(0)𝐸𝛼 (−

𝛼

1−𝛼
(𝑡)𝛼)   can be given by 

employing the Q-operator that was discussed above. 

 

Proposition 4.1[2]: The following identity is used in order to relate the new right R-

L fractional derivative along with the new right Caputo fractional derivative: 

( 𝐷𝑏
𝛼𝐴𝐵𝐶 𝑓)(𝑡) = ( 𝐷𝑏

𝛼𝐴𝐵𝑅 𝑓)(𝑡) −
𝐵(𝛼)

1 − 𝛼
𝑓(𝑏)𝐸𝛼 (−

𝛼

1 − 𝛼
(𝑏 − 𝑡)𝛼). (4.15) 

 

Proof [2]: Applying the Q-operator to identity 

 ( 𝐷𝛼0
𝐴𝐵𝐶 𝑓)(𝑡) = ( 𝐷𝛼0

𝐴𝐵𝑅 𝑓)(𝑡) −
𝐵(𝛼)

1−𝛼
𝑓(0)𝐸𝛼 (−

𝛼

1−𝛼
(𝑡)𝛼)  and employing both 

𝑄( 𝐷𝛼0
𝐴𝐵𝑅 𝑓)(𝑡) = ( 𝐷𝑏

𝛼𝑄𝐴𝐵𝑅 𝑓)(𝑡) and 𝑄( 𝐷𝛼0
𝐴𝐵𝐶 𝑓)(𝑡) = ( 𝐷𝑏

𝛼𝑄𝐴𝐵𝐶 𝑓)(𝑡) allows one 

to obtain that [2] 

( 𝐷𝑏
𝛼𝐴𝐵𝐶 𝑄𝑓)(𝑡) = ( 𝐷𝑏

𝛼𝐴𝐵𝑅 𝑄𝑓)(𝑡) −
𝐵(𝛼)

1 − 𝛼
𝑓(0)𝐸𝛼 (−

𝛼

1 − 𝛼
(𝑏 − 𝑡)𝛼). (4.16) 

Replacing 𝑓(𝑡) with (𝑄𝑓)(𝑡) = 𝑓(𝑏 − 𝑡) makes it possible for the claim to be 

concluded. 

 

Proposition 4.2[2]: (Integration by parts for the Caputo fractional derivative  

∫ (
𝑏

0
𝐷𝛼𝑎

𝐴𝐵𝐶 𝑓)(𝑡)𝑔(𝑡) =  ∫ 𝑓(𝑡)
𝑏

0
( 𝐷𝑏

𝛼𝐴𝐵𝑅 𝑔)(𝑡) +
𝐵(𝛼)

1−𝛼
𝑓(𝑡)𝐸

𝛼,1,
−𝛼

1−𝛼
,𝑏−

1 𝑔)(𝑡)|0
𝑏,  (4.17) 

∫ (
𝑏

0
𝐷𝑏
𝛼𝐴𝐵𝐶 𝑓)(𝑡)𝑔(𝑡) = ∫ 𝑓(𝑡)

𝑏

0
( 𝐷𝛼0
𝐴𝐵𝑅 𝑔)(𝑡) +

𝐵(𝛼)

1−𝛼
𝑓(𝑡)𝐸

𝛼,1,
−𝛼

1−𝛼
,0+

1 𝑔)(𝑡)|0
𝑏.  (4.18) 
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Proof [2]: ( 𝐷𝛼0
𝐴𝐵𝐶 𝑓)(𝑡) = ( 𝐷𝛼0

𝐴𝐵𝑅 𝑓)(𝑡) −
𝐵(𝛼)

1−𝛼
𝑓(0)𝐸𝛼 (−

𝛼

1−𝛼
(𝑡)𝛼) and (4.16) 

allow for the first part to be proved, while proving the second part is further made 

possible. 

Definition 4.4[3]: When 𝑚 ∈ (0,1) and 𝑓 are defined on ℕ𝑚 or 𝑛ℕ in the right 

case, the following definitions can be obtained:  

The new left (∇) Caputo fractional difference: 

(𝑚
𝐶𝐹𝐶𝛻𝛼𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
∑ (

𝑧

𝑘=𝑚+1

𝛻𝑘𝑓)(𝑘)(1 − 𝛼)
𝑡−𝜌(𝑘) 

(4.19) 

 = 𝐵(𝛼) ∑ (

𝑧

𝑘=𝑚+1

𝛻𝑘𝑓)(𝑘)(1 − 𝛼)
𝑧−𝑘. 

The new right (∇) Caputo fractional difference: 

(𝐶𝐹𝐶𝛻𝑛
𝑚𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
∑(

𝑛−1

𝑘=𝑧

− 𝛻𝑘𝑓)(𝑘)(1 − 𝛼)
𝑘−𝜌(𝑧) 

(4.20) 

  = 𝐵(𝛼)∑(

𝑛−1

𝑘=𝑧

− 𝛻𝑘𝑓)(𝑘)(1 − 𝛼)
𝑘−𝑧 . 

The new left (∇) Riemann fractional difference: 

(𝑚
𝐶𝐹𝑅𝛻𝛼𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
𝛻𝑧 ∑ 𝑓(𝑘)(1 − 𝛼)𝑧−𝜌(𝑘)

𝑧

𝑠=𝑚+1

 

(4.21) 

 = 𝐵(𝛼)𝛻𝑧 ∑ 𝑓(𝑘)(1 − 𝛼)𝑧−𝑘
𝑧

𝑠=𝑚+1

. 

The new right (∇) Riemann fractional difference: 

(𝐶𝐹𝑅𝛻𝑛
𝑚𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
(−Δ𝑧)∑𝑓

𝑛−1

𝑘=𝑧

(𝑘)(1 − 𝛼)𝑘−𝜌(𝑘) 

(4.22) 

 = B(𝛼)(−Δz)∑ 𝑓(k)(1 − 𝛼)k−z
𝑛−1

𝑘=𝑧

. 

Here, 𝐵(𝛼) is a normalizing positive constant that is dependent on 𝛼 and satisfies 

𝐵(0) = 𝐵(1) = 1.  

 

Remark 4.1[3]: In the limiting cases of 𝛼 → 0 and 𝛼 → 1, the following remarks can 

be made:  

(𝑎
𝐶𝐹𝐶𝛻𝛼𝑓) → 𝑓(𝑘) − 𝑓(𝑎)    𝑎𝑠    𝛼 → 0, 
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and 

(𝑎
𝐶𝐹𝐶𝛻𝛼𝑓)(𝑘) → 𝛻𝑓(𝑘)    𝑎𝑠 𝛼 → 1, 

 

(𝐶𝐹𝐶𝛻𝑏
𝛼𝑓)(𝑘) → 𝑓(𝑘) − 𝑓(𝑏) 𝑎𝑠    𝛼 → 0, 

and 

           (𝐶𝐹𝐶𝛻𝑏
𝛼𝑓)(𝑘) → −Δ𝑓(𝑘)    𝑎𝑠    𝛼 → 1, (4.23) 

 

(𝑎
𝐶𝐹𝐶𝛻𝛼𝑓)(𝑘) → 𝑓(𝑘)    𝑎𝑠    𝛼 → 0, 

and 

(𝑎
𝐶𝐹𝑅𝛻𝛼𝑓)(𝑘) → 𝛻𝑓(𝑘)    𝑎𝑠    𝛼 → 1, 

 

(𝐶𝐹𝑅𝛻𝑏
𝛼𝑓)(𝑘) → 𝑓(𝑘)     𝑎𝑠    𝛼 → 0, 

and 

(𝐶𝐹𝑅𝛻𝑏
𝛼𝑓)(𝑘) → −Δ𝑓(𝑘)    𝑎𝑠    𝛼 → 1. 

 

Remark 4.2[3]: (the discrete 𝑄-operator’s action) The 𝑄-operator presents regular 

action between the left and right new fractional differences, which can be shown as 

follows:  

(𝑄𝑎
𝐶𝐹𝑅𝛻𝛼𝑓)(𝑘) = (𝐶𝐹𝑅𝛻𝑏

𝛼𝑄𝑓)(𝑘), 

(𝑄𝑎
𝐶𝐹𝐶𝛻𝛼𝑓)(𝑘) = (𝐶𝐹𝐶𝛻𝑏

𝛼𝑄𝑓)(𝑘), 
(4.24) 

where (𝑄𝑓)(𝑘) = 𝑓(𝑎 + 𝑏 − 𝑘).  

 

Definition 4.5[3]: For 0 < 𝛼 < 1 and 𝑢:ℕ𝑎 → ℝ, 𝑎 < 𝑏 , 𝑎 ≡ 𝑏 (mod 1), it was 

found that the corresponding left fractional sum can be defined as:  

 (𝑎
𝐶𝐹𝛻−𝛼𝑢)(𝑘) =

1 − 𝛼

𝐵(𝛼)
𝑢(𝑘) +

𝛼

𝐵(𝛼)
∑ 𝑢

𝑘

𝑠=𝑎+1

(𝑠)𝑑𝑠, (4.25) 

the right fractional sum can be defined by  

 (𝐶𝐹𝛻𝑏
−𝛼𝑢)(𝑘) =

1 − 𝛼

𝐵(𝛼)
𝑢(𝑘) +

𝛼

𝐵(𝛼)
∑𝑢

𝑏−1

𝑠=𝑘

(𝑠)𝑑𝑠. (4.26) 

In [29], it was shown that,  (𝑎
𝐶𝐹𝛻−𝛼   𝑎

𝐶𝐹𝛻𝛼)(𝑘) = 𝑓(𝑘)  and 

( 𝐶𝐹𝛻𝑏
−𝛼   𝐶𝐹𝛻𝑏

𝛼𝑓)(𝑘) = 𝑓(𝑘)  It was furthermore shown that 

(𝑎
𝐶𝐹𝛻𝛼   𝑎

𝐶𝐹𝛻−𝛼𝑓)(𝑘) = 𝑓(𝑘)  and  (𝐶𝐹𝛻𝑏
𝛼   𝐶𝐹𝛻𝑏

−𝛼𝑓)(𝑘) = 𝑓(𝑘). 
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Proposition 4.3[3]: (relation of Riemann- and Caputo-type fractional differences 

with exponential kernels)  

 

(𝑎
𝐶𝐹𝐶𝛻𝛼𝑓)(𝑘) = ((𝑎

𝐶𝐹𝑅𝛻𝛼𝑓)(𝑘) −
𝐵(𝛼)

1−𝛼
𝑓(𝑎)(1 − 𝛼)𝑘−𝑎,  

(𝐶𝐹𝐶𝛻𝑏
𝛼)(𝑘) = (𝐶𝐹𝑅𝛻𝑏

𝛼)(𝑘) −
𝐵(𝛼)

1 − 𝛼
𝑓(𝑏)(1 − 𝛼)𝑏−𝑘 . 

(4.27) 

For us to be able to continue, the lemma below is required.  

 

Lemma 4.1[3]: When 0 < 𝛼 < 1 and for 𝑔 defined on ℕ𝑎, the following is found:  

i. (𝐶𝐹 𝛻𝑎
−𝛼(1 − 𝛼)𝑡)(𝑡) =

(1−𝛼)𝑎+1

𝐵(𝛼)
, 

(4.28) 

ii. 𝛻𝑠(1 − 𝛼)
𝑡−𝑠 = 𝛼(1 − 𝛼)𝑡−𝑠, 

iii. (𝑎
𝐶𝐹𝛻−𝛼𝛻𝑔)(𝑡) = (𝛻𝑎

𝐶𝐹𝛻−𝛼𝑔)(𝑡) −
𝛼

𝐵(𝛼)
𝑔(𝑎), 

iv. 𝛻(1 − 𝛼)𝑡 = −𝛼(1 − 𝛼)𝑡−1, 

v. (𝑎
𝐶𝐹𝑅𝛻𝛼)(1 − 𝛼)𝑡(𝑡) = 𝐵(𝛼)(1 − 𝛼)𝑡−1[1 − 𝛼(𝑡 − 𝑎)], 

vi. (𝑎
𝐶𝐹𝑅𝛻𝛼1)(𝑡) = 𝐵(𝛼)𝑡−𝑎−1. 

 

Proof [13]: It is only necessary to provide the proofs (i), (iii), (v), and (vi) as the 

proofs of the others are straightforward.  

Proof of (i) [13]: 

(𝑎
𝐶𝐹𝛻−𝛼)(1 − 𝛼)𝑡(𝑡) =

1 − 𝛼

𝐵(𝛼)
(1 − 𝛼)𝑡 +

𝛼

𝐵(𝛼)
∑ (1 − 𝑎)𝑠
𝑡

𝑠=𝑎+1

 

(4.29) 

 =
1 − 𝛼

𝐵(𝛼)
(1 − 𝛼)𝑡 +

𝛼

𝐵(𝛼)
(1 − 𝛼)𝑎+1

1 − (1 − 𝛼)𝑡−𝑎

1 − (1 − 𝛼)
 

 =
1

𝐵(𝛼)
[(1 − 𝛼)𝑡+1 + (1 − 𝛼)𝑎+1 − (1 − 𝛼)𝑡+1] 

 =
1 − 𝛼𝑎+1

𝐵(𝛼)
. 

Proof of (iii) [13]:  

(𝑎
𝐶𝐹𝛻−𝛼𝛻𝑔)(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝛻𝑔(𝑡) +

𝛼

𝐵(𝛼)
∑ 𝛻

𝑡

𝑠=𝑎+1

𝑔(𝑠) 

(4.30) 

=
1 − 𝛼

𝐵(𝛼)
𝛻𝑔(𝑡) +

𝛼

𝐵(𝛼)
[𝑔(𝑡) − 𝑔(𝑎)] 
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= 𝛻 [
1 − 𝛼

𝐵(𝛼)
𝑔(𝑡) +

𝛼

𝐵(𝛼)
∑ 𝑔

𝑡

𝑠=𝑎+1

(𝑠)] −
𝛼

𝐵(𝛼)
𝑔(𝑎) 

= (𝛻𝑎
𝐶𝐹𝛻−𝛼𝛻𝑔)(𝑡) −

𝛼

𝐵(𝛼)
𝑔(𝑎). 

Proof of (v): By (iv) we have [13]  

(𝑎
𝐶𝐹𝑅𝛻𝛼(1 − 𝛼)𝑡)(𝑡) = 𝐵(𝛼)𝛻 ∑ (

𝑡

𝑠=𝑎+1

1 − 𝛼)𝑡−𝑠(1 − 𝛼)𝑠 

(4.31) = 𝐵(𝛼)𝛻[(𝑡 − 𝛼)(1 − 𝛼)𝑡] 

= 𝐵(𝛼)𝛻[(𝑡 − 𝛼)𝑡−1 − 𝛼(𝑡 − 𝑎)(1 − 𝛼)𝑡−1] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−1[1 − 𝛼(1 − 𝑎)]. 

Proof of (vi) [13]:  

(𝑎
𝐶𝐹𝑅𝛻𝛼1)(𝑡) = 𝐵(𝛼)𝛻𝑡 ∑ (

𝑡

𝑠=𝑎+1

1 − 𝛼)𝑡−𝑠 

(4.32) 

= 𝐵(𝛼) [1 + ∑ 𝛻𝑡

𝑡

𝑠=𝑎+1

(1 − 𝛼)𝑡−𝑠] 

= 𝐵(𝛼) [1 − 𝛼 ∑ (

𝑡

𝑠=𝑎+1

1 − 𝛼)𝑡−1−𝑠] 

= 𝐵(𝛼) [1 − 𝛼 ∑ (

𝑡−𝑎−2

𝑖=0

1 − 𝛼)𝑖] 

= 𝐵(𝛼) [1 − 𝑎
1 − (1 − 𝛼)𝑡−𝑎−1

1 − (1 − 𝛼)
] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−𝑎−1. 

 

Definition 4.6[3]: If the function 𝑦:ℕ𝑏 → ℝ satisfies 𝑦(𝑏) ≥ 0, then y is said to be 

an 𝑏-increasing function on ℕ𝑏 if  

 𝑦(𝑘 + 1) ≥ 𝑏𝑦(𝑘) for  all k ∊ ℕ𝑏. (4.33) 

Furthermore, if 𝑦 is increasing on ℕ𝑏, then 𝑦 is said to be an 𝑏-increasing function on 

ℕ𝑏, and if 𝑏 = 1, we have coincidence between the concepts of increasing and 𝑏-

increasing.  

 

Definition 4.7[3]: If the function 𝑦:ℕ𝑏 → ℝ satisfies 𝑦(𝑏) ≤ 0, then y is said to be 

an 𝑏-decreasing function on ℕ𝑏 if  
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 𝑦(𝑘 + 1) ≤ 𝑏𝑦(𝑘) for all  𝑘 ∈ ℕ𝑏. (4.34) 

Furthermore, if 𝑦 is decreasing on ℕ𝑏, then 𝑦 is said to be an 𝛼-decreasing function 

on ℕ𝑏, and if 𝑏 = 1, we have coincidence between the concepts of decreasing and 𝑏-

decreasing.  

 

4.2  Monotonicity Results  

Theorem 4.2[3]: Assume that 𝑦:ℕ𝑎−1 → ℝ. Further suppose that, for 0 < 𝛼 ≤ 1,  

 (𝑎−1
𝐶𝐹𝑅𝛻𝛼𝑦)(𝑘) ≥ 0,  𝑘 ∈ ℕ𝑎−1. (4.35) 

Then 𝑦(𝑘) is 𝛼-increasing.  

 

Proof [3]: It is possible to rewrite (𝑎−1
𝐶𝐹𝑅𝛻𝛼𝑦)(𝑘) = 𝐵(𝛼)𝛻𝑆(𝑘), where  

𝑆(𝑘) =∑ 𝑦
𝑘

𝑠=𝑎
(𝑠)(1 − 𝛼)𝑘−𝑠. 

By supposition, it is possible to write the following:  

 𝑆(𝑘) − 𝑆(𝑘 − 1) = 𝑦(𝑘) −
𝛼

1 − 𝛼
∑𝑦

𝑘−1

𝑠=𝑎

(𝑠)(1 − 𝛼)𝑘−𝑠 ≥ 0. (4.36) 

When we substitute 𝑘 = 𝑎 into (4.36), it can be seen that 𝑦(𝑎) ≥ 0, and when we 

substitute 𝑘 = 𝑎 + 1 into (4.36), we obtain the following:  

 𝑦(𝑎 + 1) −
𝛼

1 − 𝛼
𝑦(𝑎)(1 − 𝛼) = 𝑦(𝑎 + 1) − 𝛼𝑦(𝑎) ≥ 0. (4.37) 

As a result, 𝑦(𝑎 + 1) ≥ 𝑎𝑦(𝑎) ≥ 0. We can continue by induction on 𝑘 ∈ ℕ𝑎. It can 

be assumed that 𝑦(𝑖 + 1) ≥ 𝑎𝑦(𝑖) ≥ 0 for all 𝑖 < 𝑘. It can also be shown that 

 𝑦(𝑘 + 1) ≥ 𝑎𝑦(𝑘). If we replace 𝑘 with 𝑘 + 1 in (4.36), it results in  

𝑦(𝑘 + 1) ≥
𝛼

1 − 𝛼
[(1 − 𝛼)𝑘+1−𝑎𝑦(𝑎) + (1 − 𝛼)𝑘−𝑎𝑦(𝑎 + 1) + ⋯ 

                               + (1 − 𝛼)𝑦(𝑘)] 

(4.38) 

or  

 

𝑦(𝑘 + 1) ≥ [𝛼(1 − 𝛼)𝑘−𝑎𝑦(𝑎) + 𝑦(𝑎) + (1 − 𝛼)𝑘−𝑎−1𝑦(𝑎 + 1) + ⋯       

                         +𝛼𝑦(𝑘)] ≥ 𝛼𝑦(𝑘).  
(4.39) 

Q.E.D. 

The Caputo fractional difference monotonicity result can be stated as follows 

if Proposition 4.3 and Theorem 4.2 are used.  
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Theorem 4.3[3]: If the function 𝑦:ℕ𝑎−1 → ℝ satisfies 𝑦(𝑎) ≥ 0 and we assume 

that, for 0 < 𝛼 ≤ 1,  

(𝑎−1
𝐶𝐹𝐶𝛻𝛼𝑦)(𝑡) ≥

−𝐵(𝛼)

1 − 𝛼
𝑓(𝑎 − 1)(1 − 𝛼)𝑡−𝑎+1,  𝑡 ∈ ℕ𝑎−1, (4.40) 

then we see that y(t) is 𝛼-increasing. 

4.3  Discrete Fractional Differences Having Discrete Mittag-Leffler Kernels 

Definition 4.8[4]: If we assume that f is defined on Na, ℕ𝑎 ∩𝑐 ℕ, 𝑎 < 𝑐, 𝛼 ∈ [0,1], 

then it follows that the ∇ discrete new (left Caputo) fractional difference as given in 

the course of the work recently presented by Atangana and Baleanu has the following 

definition:  

 (𝑎
𝐴𝐵𝐶𝛻𝛼)(𝑘) =

𝐵(𝛼)

1 − 𝛼
∑ 𝛻𝑚

𝑘

𝑚=𝑎+1

𝑓(𝑚)𝐸𝑎 (
−𝛼

1 − 𝛼
, 𝑘 − 𝜌(𝑚)) 

(4.41) 

 =
𝐵(𝛼)

1 − 𝛼
[𝛻𝑓(𝑘) ∗ 𝐸𝑎 (

−𝛼

1 − 𝛼
, 𝑘)], 

while in the left Riemann sense it is defined by  

 (𝑎
𝐴𝐵𝑅𝛻𝛼)(𝑘) =

𝐵(𝛼)

1 − 𝛼
∑ 𝑓

𝑘

𝑚=𝑎+1

(𝑚)𝐸𝑎 (
−𝛼

1 − 𝛼
, 𝑘 − 𝜌(𝑚)) 

(4.42) 

 =
𝐵(𝛼)

1 − 𝛼
𝛻𝑘 [𝑓(𝑘) ∗ 𝐸𝑎 (

−𝛼

1 − 𝛼
, 𝑘)]. 

It is to be noted that since for 0 < 𝛼 <
1

2
 we have −1 < 𝜆 = −

𝛼

1−𝛼
> 0, and then 

𝐸𝛼(𝜆, 𝑘) is convergent for any  𝑘 ∈ ℕ. As an example, 𝐸𝛼(𝜆, 1) = (1 − 𝛼) if 0 <

𝛼 <
1

2
. As a result, all of the AB types of fractional differences have convergence 

under the constraint 0 < 𝛼 <
1

2
. Also note that since 𝑡𝛼 is increasing on ℕ0, 𝐸𝛼(𝜆, 𝑘) 

is found to be monotonically decreasing for 0 < 𝛼 <
1

2
, 𝑡 > 0, and 𝜆 =

−𝛼

1−𝛼
> 0 (for 

more detailed information about the continuous case 𝐸𝛼(−𝑘
𝛼) please refer to the 

work in [55]). We can show that 𝑙𝑖𝑚𝑜−0
1

𝜎
𝐸𝛼(

−1

𝜎
, 𝑘 − 𝜌(𝑚)) = 𝛿𝑚(𝑘) = {

1, 𝑘=𝑚

0, 𝑘≠𝑚,
=

𝛼 = 1; this is the delta Dirac function on the time scale of ℤ. Therefore, like it is 

possible to illustratively see in [56], it can be shown that, for 𝛼 → 0, we find 

(𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑘) → 𝑓(𝑘), and for 𝛼 → 1, one finds (𝑎

𝐴𝐵𝑅𝛻𝛼𝑓)(𝑘) → 𝛻𝑓(𝑘). Notice that 

𝐸1(
−1

𝛼
, 𝑘 − 𝜌(𝑚)) = (1 − 𝛼)𝑘−𝜌(𝑚), 𝜎 =

1−𝛼

𝛼
, and hence, for example,  

lim
𝛼→1

(𝑎
𝐴𝐵𝑅 𝛻𝛼𝑓)(𝑘) = lim

𝛼−1
𝐵 (𝛼)𝛻𝑘 ∑ 𝑓𝑘

𝑚=𝑎+1 (𝑚)(1 − 𝛼)𝑘−𝑚 = 𝛻𝑓(𝑘). 
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This is because the ∇ discrete exponential function possesses the following form: 

𝑒𝜆(𝑘, 𝜌(𝑚)) = (
1

1−𝜆
)𝑘−𝜌(𝑚) and 𝐸1(𝜆, 𝑘 − 𝜌(𝑚)) − 𝑒𝜆(𝑘, 𝜌(𝑚)).  

For derivation of the appropriate fractional difference for the fractional 

difference that was explained above, the following equation must be considered:  

 (𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑘) = 𝑢(𝑘). (4.43) 

With the application of 𝒩𝑎 to (4.43) above, as well as by using Lemma 3.3, 

Proposition 3.2 with 𝑔(𝑘) = 𝐸𝛼̅(𝜆, 𝑘) with 𝜆 =
−𝛼

1−𝛼
, and Lemma 3.6,  

 
𝐵(𝛼)

1 − 𝛼
𝒩𝑎(𝛻𝑓(𝑘) ∗ 𝐸𝛼̅(𝜆, 𝑘))(𝑘) =

𝐵(𝛼)

1 − 𝛼
𝑧(𝛻𝑎𝑓(𝑘) ∗ 𝐸𝛼(𝜆, 𝑘))(0) 

(4.44) 

  
𝐵(𝛼)

1 − 𝛼
𝑧 [(𝒩𝑎𝑓)(𝑘) ⋅

𝑧𝛼−1

𝑧𝛼 − 𝜆
] = (𝒩𝑎𝑢(𝑘))(𝑧).                          

That is,  

 (𝒩𝑎𝑓)(𝑧) =
1 − 𝛼

𝐵(𝛼)
(𝒩𝑎𝑢(𝑘))(𝑧) −

1 − 𝛼

𝐵(𝛼)

𝜆

𝑧𝛼
(𝒩𝑎𝑢(𝑘))(𝑧). (4.45) 

With the application of the inverse of 𝒩𝑎 and by using Proposition 3.2 and Lemma 

3.1, the following can be concluded:  

𝑓(𝑘) =
1 − 𝛼

𝐵(𝛼)
𝑢(𝑘) +

𝛼

𝐵(𝛼)
(𝛻𝑎

−𝛼)(𝑘). (4.46) 

From this, the definition below follows for the case of the fractional sum related to 

the fractional difference having a discrete M-L function kernel.  

 

Definition 4.9[4]: The fractional sum that associates with (𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑡) with order 

0 < 𝛼 < 1 has the following definition:  

 (𝑎
𝐴𝐵𝛻𝛼𝑓)(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)
(𝛻𝑎

−𝛼𝑓)(𝑡). (4.47) 

From this, it can be understood that 𝛼 = 0 yields the function 𝑓; furthermore, 𝛼 = 1 

yields ∑ 𝑓𝑡
𝑠=𝑎+1 (𝑠). 

We have what follows due to the definition of the discrete fractional integral:  

 (𝑎
𝐴𝐵𝑅𝛻𝛼 𝑎

𝐴𝐵𝑅𝛻−𝛼𝑓)(𝑡) = 𝑓(𝑡). (4.48) 

In addition, the following can be stated:  

 

Theorem 4.4[4]: For any 0 < 𝛼 ≤ 1 and 𝑓 being defined on ℕ𝑎, (𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑡) 

satisfies the equation  
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 𝑎
𝐴𝐵𝑅𝛻−𝛼𝑔(𝑡) = 𝑓(𝑡). (4.49) 

Proof [4]: Taking the fractional sum’s definition, the equation as stated in the 

theorem can now be taken as being equivalent to the following: 

 
1 − 𝛼

𝐵(𝛼)
𝑔(𝑡) +

𝛼

𝐵(𝛼)
(𝛻𝑎

−𝛼𝑔)(𝑡) = 𝑓(𝑡). (4.50) 

The discrete LT ℕ𝑎 can be applied and Lemma 3.4 can be used in order to acquire  

 
1 − 𝛼

𝐵(𝛼)
𝐺(𝑠) +

𝛼

𝐵(𝛼)
𝑠−𝛼𝐺(𝑠) = 𝐹(𝑠), (4.51) 

where 𝐺(𝑠) = (𝒩𝑎𝑔)(𝑠) and 𝐹(𝑠) = (𝒩𝑎𝑓)(𝑠). From this, it follows that  

 𝐺(𝑠) =
𝑠𝛼𝐵(𝛼)

(1 − 𝛼)𝑠𝛼 + 𝛼
𝐹(𝑠) =

𝐵(𝛼)

𝑓 − 𝛼

𝑠𝛼

𝑠𝛼 − 𝜆
𝐹(𝑠), (4.52) 

where 𝜆 =
−𝛼

1−𝛼
. Finally, the inverse of ℕ𝑎 can be applied and the discrete 

convolution theorem, Proposition 3.2, or (4.44) can be used in order to reach the 

conclusion that 𝑔(𝑡) = (𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑡).  

 

Theorem 4.5[4]: The following can be written:  

 (𝑎
𝐴𝐵𝐶𝛻𝛼𝑓)(𝑘) = (𝑎

𝐴𝐵𝐶𝛻𝛼𝑓)(𝑘) − 𝑓(𝑎)
𝑏(𝛼)

1 − 𝛼
𝐸𝑎(𝜆, −𝑎). (4.53) 

 

Proof [4]: From (4.44), we have  

 (𝒩𝑎 𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
[(𝒩𝑎𝑓)(𝑧)

𝑧𝛼

𝑧𝛼 − 𝜆
], (4.54) 

where 𝜆 =
𝛼

1−𝛼
. Now we also have  

 (𝒩𝑎 𝑎
𝐴𝐵𝐶𝛻𝛼𝑓)(𝑧) =

𝐵(𝛼)

1 − 𝛼
(𝒩𝑎𝛻𝑓(𝑘) ∗ 𝐸𝛼(𝜆, 𝑘))(𝑧)  

 

=
𝐵(𝛼)

1 − 𝛼
(𝒩𝑎𝛻𝑓)(𝑘)(𝐸𝛼(𝜆, 𝑘))(𝑧) 

=
𝐵(𝛼)

1 − 𝛼
[𝑧(𝒩𝑎𝑓)(𝑧) − (1 − 𝑧)

𝑎𝑓(𝑎)] [
𝛼−1

𝑧𝛼 − 1
] 

(4.55) 

 

 =
𝐵(𝛼)

1 − 𝛼
[(𝒩𝑎𝑓)(𝑧)

𝑧𝛼

𝑧𝛼 − 𝜆
] − (1 − 𝑧)𝛼𝑓(𝑎)

𝐵(𝛼)

1 − 𝛼
[

𝛼−1

𝑧𝛼 − 1
] 

From (4.54) and (4.55), we see that  

 (𝒩𝑎 𝑎
𝐴𝐵𝐶𝛻𝛼𝑓)(𝑧) = (𝒩𝑎 𝑎

𝐴𝐵𝑅𝛻𝛼𝑓)(𝑧) − (1 − 𝑧)𝛼𝑓(𝑎)
𝐵(𝛼)

𝛼
[

𝛼−1

𝑧𝛼 − 1
]. (4.56) 

If the inverse of 𝒩𝑎 is applied to (4.56), (4.53) can be concluded. Above,  
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(𝒩𝑎𝑓(𝑘 − 𝑎))(𝑧) = (1 − 𝑧)𝑎(𝑁𝑓(𝑘))(𝑧) has been used. 

With the Q-operator’s action on the left and right fractional sums and 

differences, it was found in recent work that the right fractional sums (𝐴𝐵𝛻𝑏
−𝛼𝑓)(𝑘) 

as well as the differences (𝐴𝐵𝛻𝑏
−𝛼𝑓)(𝑘) can then be defined as below.  

 

Definition 4.10[4]: If we take 0 < 𝛼 < 1, and if f is taken as being defined on 𝑏ℕ, 

the right fractional difference of f can then be written as  

 (𝐴𝐵𝑅𝛻𝑏
𝛼𝑓)(𝑡) =

𝐵(𝛼)

1 − 𝛼
(−Δ𝑡)∑𝑓

𝑏−1

𝑠=𝑡

(𝑠)𝐸𝛼 (
−𝛼

1 − 𝛼
, (𝑠 − 𝜌(𝑡))), (4.57) 

that of the right Caputo one can be written as  

 (𝐴𝐵𝐶𝛻𝑏
𝛼𝑓)(𝑡) =

𝐵(𝛼)

1 − 𝛼
∑(

𝑏−1

𝑠=𝑡

− Δ𝑓)(𝑡)𝐸𝛼 (
−𝛼

1 − 𝛼
, (𝑠 − 𝜌(𝑡))). (4.58) 

 

Definition 4.11[4]: (the new right fractional sum having M-L kernel) If we take 0 <

𝛼 < 1, and if 𝑓 is taken as being defined on 𝑏ℕ, it follows that the definition of the 

right fractional sum of 𝑓 can be written as  

 (𝐴𝐵𝛻𝑏
𝛼𝑓)(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)
(𝑏𝛻

𝛼𝑓)(𝑡). (4.59) 

 

Theorem 4.6[4]: Assuming that 𝑓 is a function that is defined on 𝑏ℕ and 0 < 𝛼 <

1, (𝐴𝐵𝑅𝛻𝑏
𝛼 𝐴𝐵𝛻𝑏

−𝛼𝑓)(𝑧) = 𝑓(𝑧) and (𝐴𝐵𝛻𝑏
𝛼 𝐴𝐵𝑅𝛻𝑏

−𝛼𝑓)(𝑧) = 𝑓(𝑧) are obtained. 

Applying the 𝑄-operator to both of the sides as well as replacing 𝑓(𝑧) with 

(𝑄𝑓)(𝑧) = 𝑓(𝑎 + 𝑏 − 𝑧), it is now possible for the following to be stated.  

 

Theorem 4.7[4]: It is now possible to write the following:  

 (𝐴𝐵𝐶𝛻𝑏
𝛼𝑓)(𝑡) = (𝐴𝐵𝑅𝛻𝑏

𝛼𝑓)(𝑡) − 𝑓(𝑏)
𝐵(𝛼)

1 − 𝛼
𝐸𝛼(𝜆, 𝑏 − 𝑡). (4.60) 

 

4.4 Integration by Parts for the Fractional Sums and Differences Having 

Discrete Mittag-Leffler Kernels 

A formula for integration by parts for fractional sums needs to be stated and 

proved first.  
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Theorem 4.8[4]: Assuming that both 𝑓 and 𝑔 are able to be defined on ℕ𝑎 ∩

ℕ𝑐 , 𝑎 ≡ 𝑐 (mod1), and 0 < 𝛼 < 1, we subsequently have the following:  

∑ 𝑔

𝑐−1

𝑡=𝑎+1

(𝑡)(𝑎
𝐴𝐵𝛻𝛼𝑓)(𝑡) =

1 − 𝛼

𝐵(𝛼)
∑ 𝑔

𝑐−1

𝑡=𝑎+1

(𝑡)𝑓(𝑡) +
𝛼

𝐵(𝛼)
∑ 𝑓

𝑐−1

𝑡=𝑎+1

(𝑡)(𝑐𝛻
−𝛼𝑔)(𝑡) 

 = ∑ 𝑓

𝑐−1

𝑡=𝑎+1

(𝑡)(𝐴𝐵𝛻𝑎
−𝛼𝑔)(𝑡). (4.61) 

Similarly, we have  

= ∑ 𝑔

𝑐−1

𝑡=𝑎+1

(𝑡)(𝑎
𝐴𝐵𝛻𝛼𝑓)(𝑡) 

 =
1 − 𝛼

𝐵(𝛼)
∑ 𝑔

𝑐−1

𝑐=𝑎+1

(𝑡)𝑓(𝑡) +
𝛼

𝐵(𝛼)
∑ 𝑓

𝑐−1

𝑡=𝑎+1

(𝑡)(𝛻𝑎
−𝛼𝑔)(𝑡) (4.62) 

 = ∑ 𝑓

𝑐−1

𝑡=𝑎+1

(𝑡)(𝑎
𝐴𝐵𝛻−𝛼𝑔)(𝑡).  

 

Proof [4]: Utilizing the new left fractional sum as it has been defined, the formula 

for integration by parts for the ∇ classical fractional sums [57], and finally the new 

right fractional sum as it has been defined, the proof follows.  

 

Theorem 4.9[4]: Assuming that both 𝑔 and 𝑓 are able to be defined on ℕ𝑎 ∩

ℕ𝑏 , 𝑎 ≡ 𝑐 (mod1), and 0 < 𝛼 < 1, one has the following:  

 ∑ 𝑔

𝑏−1

𝑠=𝑎+1

(𝑠)(𝑎
𝐴𝐵𝑅𝛻𝛼𝑔)(𝑠) = ∑ 𝑔

𝑐−1

𝑠=𝑎+1

(𝑠)(𝑎
𝐴𝐵𝑅𝛻𝑐

𝛼𝑓)(𝑠). (4.63) 

Likewise: 

∑ 𝑔

𝑐−1

𝑠=𝑎+1

(𝑠)(𝐴𝐵𝑅𝛻𝑐
𝛼𝑔)(𝑠) = ∑ 𝑔

𝑐−1

𝑠=𝑎+1

(𝑠)(𝑎
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑠). (4.64) 

 

Proof [4]: The proof can be accomplished by Theorem 4.9 and fact demonstrated 

earlier that these new fractional sums and differences can be said to be each other’s 

inverses. It is possible to write:  

∑ 𝑔

𝑐−1

𝑠=𝑎+1

(𝑠)(𝐴𝐵𝛻𝑐
𝛼𝑔)(𝑠) = ∑ (𝐴𝐵

𝑐−1

𝑠=𝑎+1

𝛻𝑐
−𝛼 𝐴𝐵𝛻𝑐

−𝛼𝑓)(𝑠)(𝑎
𝐴𝐵𝛻𝛼𝑔)(𝑠), 
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∑ (𝐴𝐵
𝑐−1

𝑠=𝑎+1

𝛻𝑐
−𝛼)(𝑠)(𝑎

𝐴𝐵𝛻−𝛼 𝑎
𝐴𝐵𝛻𝛼𝑔)(𝑠) = ∑ 𝑔

𝑐−1

𝑠=𝑎+1

(𝑠)(𝐴𝐵𝛻𝑐
𝛼𝑓)(𝑠). (4.65) 

For the presentation of a formula for the integration by parts intended for the Caputo 

type fractional differences having M-L kernels, it is now necessary for the discrete 

versions of the (left) generalized fractional integral operator to be defined. These 

were presented and discussed at length in [44]:  

(𝑬𝜌,𝜇,𝜔,𝑎
𝛾

𝜑) = ∫ (
𝑥

𝑎

𝑥 − 𝑡)𝜇−1𝐸𝜌,𝜇
𝛾
[𝜔(𝑥 − 𝑡)𝜌]𝜑(𝑡)𝑑𝑡,  𝑞 > 𝑎. (4.66) 

Here, 𝐸𝜌,𝜇
𝛾
(𝑧) = ∑

(𝛾)𝑘𝑧
𝑘

𝛤(𝜌𝑘+𝜇)𝑘!

∞
𝑘=0   is the generalized M-L function being defined for 

the complex 𝜌, 𝜇𝛾 (𝑅𝑒(𝜌) > 0) [10, 44]. In this thesis only the case of the discrete 

version for 𝛾 = 1 will be addressed.  

 

Definition 4.12[4]: The discrete (left) generalized fractional integral operator can be 

written as follows:  

 (𝑬𝜌,𝜇,𝜔,𝑎
1 𝜑)(𝑡) ∑ (

𝑡

𝑘=𝑎+1

𝑡 − 𝜌(𝑘))𝜇−1𝐸𝜌,𝜇(𝜔, 𝑡 − 𝜌(𝑘))𝜑(𝑘),  𝑡 ∈ ℕ𝑎 . (4.67) 

The discrete (right) generalized fractional integral operator can be written as follows: 

 (𝑬𝜌,𝜇,𝜔,𝑎
1 𝜑)(𝑡)∑(

𝑏−1

𝑘=𝑠

𝑘 − 𝜌(𝑡))𝜇−1𝐸𝜌,𝜇(𝜔, 𝑘 − 𝜌(𝑡))𝜑(𝑘),  𝑡 ∈𝑏 ℕ. (4.68) 

 

Theorem 4.10[4]: When both functions 𝑓 and 𝑔 are taken as being defined on ℕ𝑎 ∩

𝑏ℕ, it is possible to write  

∑𝑓

𝑏−1

𝑘=𝑎

(𝑘)(𝑎−1
𝐴𝐵𝐶𝛻𝛼𝑔)(𝑘) = ∑𝑔

𝑏−1

𝑘=𝑎

(𝑘)(𝐴𝐵𝑅𝛻𝑏−1
𝛼 𝑓)(𝑘) 

+𝑔(𝜌(𝑡))
𝐵(𝛼)

1 − 𝛼
(𝑬

𝛼,1𝜆,𝑎−
1 𝑓)(𝑡)|𝑎

𝑏 ,. 

(4.69) 

Similarly,  

∑ 𝑓

𝑏

𝑘=𝑎+1

(𝑘)(𝐴𝐵𝐶𝛻𝑏+1
𝛼 𝑔)(𝑘) = ∑ 𝑔

𝑏

𝑘=𝑎+1

(𝑘)(𝑎+1
𝐴𝐵𝑅𝛻𝛼𝑓)(𝑘) 

  −𝑔(𝜎(𝑡))
𝐵(𝛼)

1 − 𝛼
(𝑬

𝛼,1𝜆,𝑎+
1 𝑓)(𝑡)|𝑎

𝑏 , 

(4.70) 

where 𝜆 =
−𝛼

1−𝛼
.  
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Proof [4]: By (4.53) and Theorem 4.9 we have  

∑𝑓

𝑏−1

𝑘=𝑎

(𝑘)(𝑎−1
𝐴𝐵𝐶𝛻𝛼𝑔)(𝑘) 

 = ∑𝑓

𝑏−1

𝑘=𝑎

(𝑘) [(𝑎−1
𝐴𝐵𝑅𝛻𝛼𝑔)(𝑘) − 𝑔(𝑎 − 1)

𝐵(𝛼)

1 − 𝛼
𝐸𝛼(𝜆, 𝑘 − 𝜌(𝑎))] (4.71) 

= ∑𝑔

𝑏−1

𝑘=𝑎

(𝑘)(𝐴𝐵𝑅𝛻𝑏−1
𝛼 𝑓)(𝑘) − 𝑔(𝑎 − 1)

𝐵(𝛼)

1 − 𝛼
∑𝑓

𝑏−1

𝑘=𝑎

(𝑘)𝐸𝛼(𝜆, 𝑘 − 𝜌(𝑎)) 

= ∑𝑔

𝑏−1

𝑘=𝑎

(𝑘)(𝐴𝐵𝑅𝛻𝑏−1
𝛼 𝑓)(𝑘) + 𝑔(𝜌(𝑡))

𝐵(𝛼)

1 − 𝛼
(𝑬

𝛼,1,𝜆,𝑏−
1 𝑓)(𝑡)|𝑎

𝑏 . 

The second part of the above proceeds from (4.60) as well as from the secondary part 

of Theorem 4.9. 
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CHAPTER 5 

APPLICATIONS 

 

5.1  Fractional Euler-Langrange Equations 

Here the Euler-Langrange(E-L) equations for the case of the Lagrangian 

including a new Left Caputo derivative will be demonstrated [2].  

 

Theorem 5.1[2]: Take 0 < α ≤ 1 as a value that is a noninteger, c ∈ R, 0 < c, and let 

us suppose that the functional J: 

C2[0, c] → ℝ taking the form 

J(f) = ∫ L
c

0

(k, f(k), Dα0
ABC f(k)) dt, (5.1) 

possesses a local extremum in P = {y ∈ C2[0, c] : y(0) = A, y(c) = B} at some f ∈ P, 

where L:[0, c] ×  ℝ ×  ℝ → ℝ. It follows that 

[L1(s) + Dc
α

0
ABR L2(s)] = 0 for all s ∈ [0, c], 

where L1(s) =
∂L

∂f
(s) and L2(s) =

∂L

∂ Dα0
ABC f

(s). 

 

Proof [2]: Without losing the generality, it is possible to suppose that J possesses a 

local maximum in P located at f. As a result, we have the existence of 𝜖 < 0 such 

that 𝐽(𝑓) − 𝐽(𝑓) ≤ 0 for all cases of 𝑓 ∈ 𝑃 with ‖𝑓 − 𝑓‖ = 𝑠𝑢𝑝𝑘∈ℕ𝑎∩𝑐ℕ|𝑓(𝑘) −

𝑓(𝑘)| < 𝜖. For any case of 𝑓 ∈ 𝑃 we also have η ∈ H = {𝑦 ∈ 𝐶2[0, 𝑐], 𝑦(0) =

𝑦(𝑐) = 0} such that 𝑓 = 𝑓 + 𝜖𝜂. Following from this, the 𝜖-Taylor theorem implies 

this equality: 

𝐿(𝑘, 𝑓, 𝑓) = 𝐿(𝑘, 𝑓 + 𝜖𝜂, 𝐷𝛼0
𝐴𝐵𝐶 𝑓 + 𝜖 𝐷𝛼0

𝐴𝐵𝐶 𝜂) 

 = 𝐿(𝑘, 𝑓, 𝐷𝛼0
𝐴𝐵𝐶 𝑓) + 𝜖[𝜂𝐿1 + 𝐷𝛼0

𝐴𝐵𝐶 𝜂𝐿2] + 𝑂(𝜖
2). 

Furthermore, 

𝐽(𝑓) − 𝐽(𝑓) = ∫ 𝐿
𝑐

0

(𝑘, 𝑓(𝑘), 𝐷𝛼0
𝐴𝐵𝐶 𝑓(𝑡)) − ∫ 𝐿

𝑐

0

(𝑘, 𝑓(𝑘), 𝐷𝛼0
𝐴𝐵𝐶 𝑓(𝑘)) 

                             = 𝜖 ∫ [
𝑐

0

𝜂(𝑘)𝐿1(𝑘)( 𝐷𝛼0
𝐴𝐵𝐶 𝜂)(𝑘)𝐿2(𝑘)] + 𝑂(𝜖

2).                         
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Now we take 𝛿𝐽(𝜂, 𝑦) = ∫ [
𝑐

0
𝜂(𝑘)𝐿1(𝑘) + ( 𝐷𝛼0

𝐴𝐵𝐶 𝜂)(𝑘)𝐿2(𝑘)]𝑑𝑡 as the first 

variation of J. 

 Evidently, if η ∈  H it follows that −η ∈ H, and δJ(η, y) = −δJ(−η, y). For ǫ 

small, the sign of 𝐽(𝑓) − 𝐽(𝑓) is determined by the first variation’s sign, excepting 

the case in which δJ(η, y) = 0 for every η ∈ H. For the parameter to be η free, the 

integration by part formula of Proposition 4.2 can be used in order to obtain 

𝛿𝐽(𝜂, 𝑦) = ∫ 𝜂
𝑐

0

(𝑠)[𝐿1(𝑠) + ( 𝐷𝑐
𝛼

0
𝐴𝐵𝐶 𝐿2(𝑠)] + 𝜂(𝑘)

𝐵(𝛼)

1 − 𝛼
(𝑬

α,1,
−𝛼
1−𝛼

,𝑐−
1 𝐿2) (𝑡)|0

𝑐 = 0, 

for all η ∈ H. Now the conclusion follows due to the calculus of variation and its 

fundamental lemma. 

 The term (𝑬
α,1,

−𝛼

1−𝛼
,𝑐−

1 𝐿2) (𝑘)|0
𝑐 = 0 as shown above is referred to as the 

natural boundary condition. 

Employing a similar approach, if we assume that the Lagrangian is dependent 

upon the right Caputo fractional derivative, the following can be stated: 

 

Theorem 5.2[2]: Take 0 < α ≤ 1 as a value that is a noninteger, c ∈ R, 0 < c, and let 

us suppose that the functional J: 

C2[0, c] → ℝ taking the form 

J(f) = ∫ L
c

0

(k, f(k), Dc
αABC f(k)) dk, (5.2) 

possesses a local extremum in S = {y ∈ C2[0, c] : y(0) = A, y(c) = B} at some f ∈ S, 

where L: 

[0, b] ×  ℝ ×  ℝ → ℝ. It follows now that 

[L1(s) + Dα0
ABR L2(s)] = 0  for all  s ∈ [0, c]. 

 

Proof [2]: The proof is the same as in Theorem 5.1. from Proposition 4.2, the second 

integration by parts can be applied with the aim of obtaining a natural boundary 

condition that can be written as follows: (𝑬
α,1,

−𝛼

1−𝛼
,𝑐+

1 𝐿2) (𝑘)|0
𝑐 = 0. 

 

Theorem 5.3[2]: If we assume σ, λ , ρ, μ, γ, ν ∈ C (Re(μ), Re(ν), Re(ρ) > 0), it 

follows that 
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∫ (
x

0

x −  t)π−1Eρ,μ
γ
(λ[x − t]ρ)tν−1Eρ,ν

σ (λtρ)dt = xμ+ν−1Eρ,μ+ν
γ+σ (λtρ). (5.3) 

Furthermore, if μ = 1 , ρ = α and γ = 1, the following is yielded: 

∫ Eα(
x

0

λ[x − t]α)tν−1Eα,ν
σ (λtα)dt = xνEα,1+ν

1+σ (λtα). (5.4) 

From [10] we have the following helpful differentiation formula. For γ, λ , α, μ ∈ C 

(Re(α > 0) and n ∈ N the following can be written: 

(
d

dt
)
n

[zμ−1Eρ,μ
γ (λzα)] = zμ−n−1Eα,μ−n

γ (λzα). (5.5) 

Now, by the help of (5.4) and (5.5), we have 

Dα0
ABR [xν−1Eα,ν

σ (λxα)] =
B(α)

1 − α

d

dx
[xνEα,1+ν

1+σ (λxα)] =
B(α)

1 − α
xν−1Eα,ν

1+σ(λxα). (5.6) 

By the help of (5.4) and (5.5), we also have 

Dα0
ABR [xν−1Eα,ν

σ (λxα)] =
B(α)

1 − α
∫ xν
x

0

Eα(λ(x − 1)
α)
d

dx
[tν−1Eα,ν

σ (λxα)]dt (5.7) 

=
B(α)

1 − α
xν−1Eα,ν

1+σ(λxα).                   

 

Remark 5.1[2]: Due to (5.6) and (5.7), the function 

𝑔(𝑦) = lim
𝜈→0

1 − 𝛼

𝐵(𝛼)
𝑦𝜈−1𝐸𝛼,𝜈

−1(𝜆𝑦𝛼) (5.8) 

= 
𝛼𝑥𝛼−1

𝐵(𝛼)Γ(𝛼)
,  

is a nonzero function; furthermore, its fractional ABC and ABR derivative is also 

found to be zero. We can see that this is the case because (−1)0 = 1, (−1)1 = −1 and 

(−1)k = 0 for k = 2, 3, 4, ... and also because 

Eα,ν
0 (λ, y) =

yν−1

Γ(ν)
→ 0, ν → 0+. (5.9) 

Here we can also see that when α tends to 1 the function g(y) will tend to the 

constant function 1. 

 If we apply relation [53] 

( Dα0
ABC f)(t) = ( Dα0

ABC f)(t) −
B(α)

1 − α
f(0)Eα(λt

α) , λ =
−α

1 − α
, (5.10) 

along with the identity [54] 

( Iα0 tβ−1Eμ,β[λt
μ](y)) = yα+β−1Eμ,α+β[λt

μ], (5.11) 
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where the M-L function possessing the two parameters of α and β can be given by 

Eμ,β(m)∑
mk

Γ(αk + β)
  , (m, β ∈ ℂ;   Re(α) > 0)

∞

k=0

, (5.12) 

for which Eα,β(m) =  Eα(m), then the following conclusion can be stated. It is 

helpful for solving fractional dynamical systems within Caputo fractional derivatives 

having M-L kernels. 

 

5.2  Discrete Fractional Euler-Langrange Equations  

In this section, Euler-Langrange equations for the case of a Lagrangian 

possessing the left new discrete Caputo derivative will be demonstrated[4]. 

 

Theorem 5.4[4]: Take 0 < 𝛼 ≤ 1 to be a noninteger, 𝑎, 𝑐 ∈ ℝ, 𝑎 < 𝑐, 𝑎 ≡ 𝑐 (mod1). 

Furthermore, we can suppose that the functional able to be written as 

 𝐽(𝑓) = ∑𝐿

𝑏−1

𝑠=𝑎

(𝑠, 𝑓𝜌(𝑠),𝑎−1
𝐴𝐵𝐶 𝛻𝛼𝑓(𝑠)), (5.13) 

has its local extremum in 𝑆 = {𝑦: (ℕ𝑎−1 ∩𝑐−1 ℕ) → ℝ: 𝑦(𝑎 − 1) = 𝐴, 𝑦(𝑐 − 1) =

𝐵} at some 𝑓 ∈ 𝑆, for which 𝐿: (ℕ𝑎−1 ∩𝑐−1 ℕ) × ℝ ×ℝ → ℝ. Subsequently,  

 [𝐿1(𝑡)+
𝐴𝐵𝑅𝛻𝑏−1

𝛼 𝐿2(𝑡)] = 0 for  all 𝑡 ∈ (ℕ𝑎−1 ∩𝑐−1 ℕ), (5.14) 

where 𝐿1(𝑡) =
𝜕𝐿

𝜕𝑓𝜌
(𝑡) and 𝐿2(𝑡) =

𝜕𝐿

𝜕𝑎−1
𝐴𝐵𝐶𝛻𝛼𝑓

(𝑡).  

 

Proof [4]: Without losing generality here, we can say that 𝐽 possesses a local 

maximum in 𝑆 at 𝑓. Therefore, we have the existence of 𝜀 > 0 such that 𝐽(𝑓) −

𝐽(𝑓) ≤ 0 for all cases of 𝑓 ∈ 𝑆 with ∥ 𝑓 − 𝑓 ∥= sup
𝑡∈ℕ𝑎∩𝑏ℕ

| 𝑓(𝑠) − 𝑓(𝑠) < 𝜑. For any 

𝑓 ∈ 𝑆 we have 𝜂 ∈ 𝐻 = {𝑦: (ℕ𝑎−1 ∩𝑐−1 ℕ) → ℝ: 𝑦(𝑎 − 1) = 𝑦(𝑐 − 1) = 0} such 

that we also have 𝑓 = 𝑓 + 𝜑𝜂. Subsequently, the 𝜑-Taylor theorem together with the 

assumption imply the first variation quantity 𝛿𝐽(𝜂, 𝑦) = ∑ [𝑐−1
𝑡=𝑎 𝜂

𝜌(𝑠)𝐿1(𝑠) +

(𝑎−1
𝐴𝐵𝐶𝛻𝛼𝜂)(𝑠)𝐿2(𝑠)]𝑑𝑠 = 0, for all cases of 𝜂 ∈ 𝐻. For us to guarantee that the 

parameter is 𝜂 free, the integration by parts equation (4.69) can be utilized for 

obtaining the following:  

 𝛿𝐽(𝜂, 𝑓) =∑𝜂𝜌
𝑐−1

𝑡=𝑎

(𝑡)[𝐿1(𝑡)+
𝐴𝐵𝑅𝛻𝑐−1

𝛼 𝐿2(𝑡)] (5.15) 
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        +𝜂𝜌(𝑠)
𝐵(𝛼)

1−𝛼
(𝑬

𝛼,1,
−𝛼

1−𝛼
,𝑐−

1 𝐿2)(𝑠)|𝑎
𝑐 = 0, 

for all 𝜂 ∈ 𝐻. The result then follows due to calculus of variation and its discrete 

fundamental lemma.  

 (𝑬
𝛼,1,

−𝛼

1−𝛼
,𝑐−

1 𝐿2)(𝑠)|𝑎
𝑐 = 0 above is referred to as the natural boundary 

condition.  

Likewise, if the Lagrangian here depends on the discrete right Caputo 

fractional derivative, it is possible for the following result to be written.  

 

Theorem 5.5[4]: Take 0 < 𝛼 ≤ 1 to be a noninteger, 𝑎, 𝑐 ∈ ℝ, 𝑎 < 𝑐, 𝑎 ≡ 𝑐 (mod1). 

Furthermore, it is assumed that the functional 𝐽 possessing the following form of 

 𝐽(𝑓) = ∑𝐿

𝑐

𝑎+1

(𝑠, 𝑓𝜎(𝑠),𝐴𝐵𝐶 𝛻𝑐+1
𝛼 𝑓(𝑠)), (5.16) 

has its local extremum in 𝑆 = {𝑦: (ℕ𝑎+1 ∩𝑐+1 ℕ) → ℝ: 𝑦(𝑎 + 1) = 𝐴, 𝑦(𝑐 + 1) =

𝐵} at some 𝑓 ∈ 𝑆,  for which 𝐿: (ℕ𝑎+1 ∩𝑐+1 ℕ) × ℝ × ℝ → ℝ. Subsequently,  

 [𝐿1(𝑡)+𝑎=1
𝐴𝐵𝑅𝛻𝛼𝐿2(𝑡)] = 0 for  all 𝑡 ∈ (ℕ𝑎+1 ∩𝑐+1 ℕ), (5.17) 

where 𝐿1(𝑡) =
𝜕𝐿

𝜕𝑓𝜎
(𝑡) and 𝐿2(𝑡) =

𝜕𝐿

𝜕𝐴𝐵𝐶𝛻𝑐+1
𝛼 𝑓

(𝑡).  

 

Proof [4]: This proof is found to be similar to that of Theorem 5.11 with application 

of equation (4.70) for the second integration by parts in order to obtain the natural 

boundary condition able to be written as (𝑬
𝛼,1,

−𝛼

1−𝛼
,𝑐+

1 𝐿2)(𝑠)|𝑎
𝑐 = 0. 

 

Example 5.1[4]: Now an interesting physical action will be presented as a means of 

support for Theorem 5.4. The fractional discrete action can be considered as follows:  

(𝑦) = ∑ [𝑏−1
𝑡=𝑎

1

2
(𝑎−1
𝐴𝐵𝐶𝛻𝛼𝑦(𝑡))2 − 𝑉(𝑦𝜌(𝑡))], where we have 0 < 𝛼 < 1 and 

additionally with 𝑦(𝑏 − 1), 𝑦(𝑎 − 1) being assigned or having the natural boundary 

condition  

 (𝑬
𝛼,1,

−𝛼
1−𝛼

,𝑏−
1  𝑎−1

𝐴𝐵𝐶𝛻𝛼(𝑦))(𝑡)|𝑎
𝑏 = 0. (5.18) 

With application of Theorem 5.4, the E-L equation is  

 (𝐴𝐵𝑅𝛻𝑏−1
𝛼 ∘𝑎−1

𝐴𝐵𝐶 𝛻𝛼𝑦)(𝑠) −
𝑑𝑉

𝑑𝑦
(𝑠) = 0 for all 𝑠 ∈ (ℕ𝑎−1 ∩𝑏−1 ℕ). (5.19) 

The E-L equation above is interesting in cases of a composition comprising the 

discrete right and discrete left types of fractional derivatives. Please consult [50] to 



 

36 

find valuable comparisons with cases of classical discrete fractional E-L equations 

within ∇. We likewise suggest for the reader the references for the classical fractional 

dynamical systems comprising left and right fractional operators in such a case that 

delay exists.  

 

5.3 Fractional Bateman-Feshbach-Tikochinsky Oscillator 

The classical Lagrangian of the Bateman-Feshbach-Tikochinsky oscillator 

can be given as follows[5]:  

 𝐿 = 𝑚𝑞̇1𝑞̇2 + 𝜌(𝑞1𝑞̇2 − 𝑞̇1𝑞2) − 𝐾𝑞1𝑞2. (5.20) 

In this equation, 𝑞1 is the damped harmonic oscillator coordinate and 𝑞2 represents 

the time-reversed counterpart, while parameters 𝑚, 𝜌, and 𝐾 are time-independent. 

The fractional Lagrangian (5.20) can be written as [4] 

 𝐿𝐹 = 𝑚𝑎𝐷𝑡
𝛼𝑞1 𝑎𝐷𝑡

𝛼𝑞2 + 𝜌(𝑞1 𝑎𝐷𝑡
𝛼𝑞2−𝑎𝐷𝑡

𝛼𝑞1𝑞2, ) − 𝐾𝑞1𝑞2 (5.21) 

while the Lagrange model of fractional order is  

 
𝑚𝑎𝐷𝑡

𝛼 𝑎𝐷𝑡
𝛼𝑞1 + 𝜌𝑎𝐷𝑡

𝛼𝑞1 + 𝐾𝑞1 = 0,

𝑚𝑎𝐷𝑡
𝛼 𝑎𝐷𝑡

𝛼𝑞2 − 𝜌𝑎𝐷𝑡
𝛼𝑞2 + 𝐾𝑞2 = 0.

 (5.22) 

The generalized momentum can subsequently be written as follows [4]:  

 𝑝𝑖 =
𝜕𝐿𝐹

𝜕𝑎𝐷𝑡
𝛼𝑞𝑖

, (5.23) 

where LF is the Lagrangian of fractional order and i = 1, 2. The two generalized 

momentums can be written as  

 

𝑝1 =
𝜕𝐿𝐹

𝜕𝑎𝐷𝑡
𝛼𝑞1

= 𝑚𝑎𝐷𝑡
𝛼𝑞2 −

𝜌

2
𝑞2,

𝑝2 =
𝜕𝐿𝐹

𝜕𝑎𝐷𝑡
𝛼𝑞2

= 𝑚𝑎𝐷𝑡
𝛼𝑞1 −

𝜌

2
𝑞1.

 (5.24) 

When the Legendre transformation is applied, the Hamiltonian of fractional order 

can be obtained [4]: 

 𝐻𝐹(𝑡, 𝑞𝑖, 𝑝𝑖) =∑𝑝𝑖
𝑖

 𝑎𝐷𝑡
𝛼𝑞𝑖(𝑞𝑖 , 𝑝𝑖) − 𝐿(𝑡, 𝑞𝑖,𝑎 𝐷𝑡

𝛼𝑞𝑖(𝑞𝑖, 𝑝𝑖)). (5.25) 

Utilizing equation (5.25), we have the following: 

 𝐻𝐹 = (𝐾 −
𝜌2

4𝑚
)𝑞1𝑞2 +

𝜌

2𝑚
(𝑞2𝑝2 − 𝑞1𝑝1) +

𝑝1𝑝1
𝑚

. (5.26) 

We define 𝜔 = √𝐾
𝜌2

4𝑚
 and the Hamiltonian takes the following form:  

 𝐻1 = 𝜔2𝑞1𝑞2 +
𝜌

2𝑚
(𝑞2𝑝2 − 𝑞1𝑝1) +

𝑝1𝑝2
𝑚

. (5.27) 

The fractional Hamilton model of the B-F-T oscillator can be given as follows:  
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𝑎𝐷𝑡
𝛼𝑞1 = −

𝜌𝑞1
2𝑚

+
𝑝2
𝑚
,

𝑎𝐷𝑡
𝛼𝑞2 =

𝜌𝑞2
2𝑚

+
𝑝1
𝑚
,

𝑎𝐷𝑡
𝛼𝑝1 =

𝜌2𝑞2
4𝑚

+
𝜌𝑝1
2𝑚

− 𝐾𝑞2,

𝑎𝐷𝑡
𝛼𝑝2 =

𝜌2𝑞1
4𝑚

−
𝜌𝑝2
2𝑚

− 𝐾𝑞1.

 (5.28) 

Next the fractional operators of Liouville-Caputo (L-C) and Caputo-Fabrizio-Caputo 

(C-F-C) and the fractional derivative based in the M-L kernel will be considered.  

 

Case 5.1: We have the following in the L-C sense [5]:  

 

𝑞1(𝑡) = ∑𝑞1

𝑛−1

𝑖=0

(0)(𝑖)
𝑡𝑖

𝑖!
+

1

𝛤(𝛼)
∫ (
𝑡

0

𝑡 − 𝜅)𝛼−1 (−
𝜒𝑞1(𝜅)

2𝑚
+
𝑝2(𝜅)

𝑚
)𝑑𝜅,

𝑞2(𝑡) = ∑𝑞2

𝑛−1

𝑖=0

(0)(𝑖)
𝑡𝑖

𝑖!
+

1

𝛤(𝛼)
∫ (
𝑡

0

𝑡 − 𝜅)𝛼−1 (
𝜒𝑞2(𝜅)

2𝑚
+
𝑝1(𝜅)

𝑚
)𝑑𝜅,  𝑡 < 𝑇,

𝑝1(𝑡) = ∑𝑝1

𝑛−1

𝑖=0

(0)(𝑖)
𝑡𝑖

𝑖!
+

1

𝛤(𝛼)
∫ (
𝑡

0

𝑡 − 𝜅)𝛼−1 (
𝜒2𝑞2(𝜅)

4𝑚
+
𝜒𝑝1(𝜅)

2𝑚
− 𝐾𝑞2(𝜅))𝑑𝜅,

𝑝2(𝑡) = ∑𝑝2

𝑛−1

𝑖=0

(0)(𝑖)
𝑡𝑖

𝑖!
+

1

𝛤(𝛼)
∫ (
𝑡

0

𝑡 − 𝜅)𝛼−1 (
𝜒2𝑞1(𝜅)

4𝑚
−
𝜒𝑝2(𝜅)

2𝑚
− 𝐾𝑞1(𝜅))𝑑𝜅.

 (5.29) 

Numerical approximation of (5.29) can be achieved with the assistance of 

algorithm 4.  

 

Case 5.2: In the C-F-C sense [5]:  

 

𝑞1(𝑙+1)(𝑡) = 𝑞(1)(𝑡) + {
1 − 𝛼

𝐵(𝛼)
[− (

𝜌

2𝑚
)𝑞1(𝑙+1)(𝑡) + (

1

𝑚
)𝑝2(𝑙+1)(𝑡)]}

+
𝛼

𝐵(𝛼)
∑𝜀1,𝑧,𝑙

𝛼

𝑧=0

[− (
𝜌

2𝑚
)𝑞1(𝑙)(𝑡) + (

1

𝑚
)𝑝2(𝑙)(𝑡)] ,

𝑞2(𝑙+1)(𝑡) = 𝑞(2)(𝑡) + {
1 − 𝛼

𝐵(𝛼)
[(
𝜌

2𝑚
)𝑞2(𝑙+1)(𝑡) + (

1

𝑚
)𝑝1(𝑙+1)(𝑡)]}

+
𝛼

𝐵(𝛼)
∑𝜀2,𝑧,𝑙

𝛼

𝑧=0

[(
𝜌

2𝑚
)𝑞2(𝑙)(𝑡) + (

1

𝑚
)𝑝2(𝑙)(𝑡)] ,

𝑝1(𝑙+1)(𝑡) = 𝑝(1)(𝑡) + {
1 − 𝛼

𝐵(𝛼)
[(
𝜌2

4𝑚
)𝑞2(𝑙+1)(𝑡) + (

𝜌

2𝑚
)𝑝1(𝑙+1)(𝑡) − 𝑍𝑞1(𝑙+1)(𝑡)]}

+
𝛼

𝐵(𝛼)
∑𝜀3,𝑧,𝑙

𝛼

𝑧=0

[(
𝜌2

4𝑚
)𝑞2(𝑙)(𝑡) + (

𝜌

2𝑚
)𝑝1(𝑙)(𝑡) − 𝑍𝑞2(𝑙)(𝑡)] ,

𝑝2(𝑙+1)(𝑡) = 𝑝(2)(𝑡) + {
1 − 𝛼

𝐵(𝛼)
[(
𝜌2

4𝑚
)𝑞1(𝑙+1)(𝑡) − (

𝜌

2𝑚
)𝑝2(𝑙+1)(𝑡) − 𝑍𝑞1(𝑙+1)(𝑡)]}

+
𝛼

𝐵(𝛼)
∑𝜀4,𝑧,𝑙

𝛼

𝑧=0

[(
𝜌2

4𝑚
)𝑞1(𝑙)(𝑡) + (

𝜌

2𝑚
)𝑝2(𝑙)(𝑡) − 𝑍𝑞1(𝑙)(𝑡)] ,

 (5.30) 
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where  

𝜀(1,2,3,4),𝑧,𝑙+1 {
𝑙𝛼 − (1 − (1 − 𝛼)(𝑙 − 𝛼), 𝑧 = 0,

(𝑙 − 𝑧 + 2)𝛼+1 + (𝑙 − 𝑧)𝛼+1 − 2(𝑙 − 𝑧 + 1)𝛼+1, 0 ≤ 𝑧 ≤ 1.
 (5.31) 

 

Case 5.3: It is possible to use the numerical approximation scheme developed in [59] 

for the fractional derivative based on the M-L kernel [5]:  

 

0
𝐴𝐵𝐼𝑡

𝛼[𝑓(𝑡𝑙+1)] =
1 − 𝛼

𝐵(𝛼)
[
𝑓(𝑡𝑙+1) − 𝑓(𝑡𝑙)

2
] 

                     +
𝛼

𝛤(𝛼)
∑[

𝑓(𝑡𝑧+1) − 𝑓(𝑡𝑧)

2
]

∞

𝑧=0

𝑏𝑧
𝛼,    

(5.32) 

where  

 𝑏𝑧
𝛼 = (𝑧 + 1)1−𝛼 − (𝑧)1−𝛼, (5.33) 

and the system of (5.28) is further represented as follows:  

𝑞1(𝑙+1)(𝑡) − 𝑞1(𝑙)(𝑡) = 𝑞(1)
𝑙 (𝑡) + {

1 − 𝛼

𝐵(𝛼)
[− (

𝜒

2𝑚
)(
𝑞1(𝑙+1)(𝑡) − 𝑞1(𝑙)(𝑡)

𝑚
)  

+(
1

𝑚
)(
𝑝2(𝑙+1)(𝑡) − 𝑝2(𝑙)(𝑡)

2
)]} +

𝛼

𝐵(𝛼)
∑𝑏𝑧

𝛼

∞

𝑧=0

[− (
𝜌

2𝑚
)(
𝑞1(𝑧+1)(𝑡) − 𝑞1(𝑧)(𝑡)

2
) 

+(
1

2
) (
𝑝2(𝑧+1)(𝑡) − 𝑝2(𝑧)(𝑡)

2
)], (5.34) 

𝑞2(𝑙+1)(𝑡) − 𝑞2(𝑙)(𝑡) = 𝑞(2)
𝑙 (𝑡) + {

1 − 𝛼

𝐵(𝛼)
[(
𝜌

2𝑚
)(
𝑞2(𝑙+1)(𝑡) − 𝑞2(𝑙)(𝑡)

2
)  

+(
1

𝑚
)(
𝑝1(𝑙+1)(𝑡) − 𝑝1(𝑙)(𝑡)

2
)]} +

𝛼

𝐵(𝛼)
∑𝑏𝑧

𝛼

∞

𝑧=0

[(
𝜌

2𝑚
)(
𝑞2(𝑧+1)(𝑡) − 𝑞2(𝑧)(𝑡)

2
) 

+(
1

2
) (
𝑝1(𝑧+1)(𝑡) − 𝑝1(𝑧)(𝑡)

2
)], (5.35) 

𝑞1(𝑙+1)(𝑡) − 𝑞1(𝑙)(𝑡) = 𝑞(1)
𝑙 (𝑡) 

+{
1 − 𝛼

𝐵(𝛼)
[(
𝜌

2𝑚
)(
𝑞2(𝑙+1)(𝑡) − 𝑞2(𝑙)(𝑡)

𝑚
) + (

1

𝑚
)(
𝑝1(𝑙+1)(𝑡) − 𝑝1(𝑙)(𝑡)

2
) 

−𝑍 (
𝑞2(𝑧+1)(𝑡) − 𝑞2(𝑧)(𝑡)

2
)} +

𝛼

𝐵(𝛼)
∑𝑏𝑧

𝛼

∞

𝑧=0

(
𝜌

2𝑚
)(
𝑞2(𝑧+1)(𝑡) − 𝑞2(𝑧)(𝑡)

2
) 

 +(
1

𝑚
)(
𝑝1(𝑙+1)(𝑡) − 𝑝1(𝑙)(𝑡)

2
) − 𝑍 (

𝑞2(𝑧+1)(𝑡) − 𝑞2(𝑧)(𝑡)

2
)], (5.36) 

𝑝2(𝑙+1)(𝑡) − 𝑝2(𝑙)(𝑡) = 𝑝(2)
𝑙 (𝑡) 
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+{
1 − 𝛼

𝐵(𝛼)
[(
𝜌

2𝑚
)(
𝑝2(𝑙+1)(𝑡) − 𝑝2(𝑙)(𝑡)

𝑚
) + (

𝜌

𝑚
)(
𝑝2(𝑙+1)(𝑡) − 𝑝2(𝑙)(𝑡)

2
) 

−𝑍 (
𝑞1(𝑧+1)(𝑡) − 𝑞1(𝑧)(𝑡)

2
)]} +

𝛼

𝐵(𝛼)
∑𝑏𝑧

𝛼

∞

𝑧=0

(
𝜌

2𝑚
)(
𝑞1(𝑧+1)(𝑡) − 𝑞1(𝑧)(𝑡)

2
) 

 −(
𝜌

𝑚
)(
𝑝2(𝑙+1)(𝑡) − 𝑝2(𝑙)(𝑡)

2
) − 𝑍 (

𝑞1(𝑧+1)(𝑡) − 𝑞1(𝑧)(𝑡)

2
). (5.37) 

 

5.4 Fractional RLC Electrical Circuit 

With the work in [60], auxiliary parameter 𝜎 was presented together with the 

finality to preserve the temporal operator’s dimensionality: 

 
𝑑

𝑑𝑡
→

1

𝜎1−𝛼
⋅ 𝐷𝑡

𝛼 ,   𝜈 − 1 < 𝛼 ≤ 𝜈,   𝜈 = 1,2,3, . . ., (5.38) 

and  

 
𝑑2

𝑑𝑡2
→

1

𝜎2−𝛼
⋅ 𝐷𝑡

2𝛼 ,   𝜈 − 1 < 𝛼 ≤ 𝜈,   𝜈 = 1,2,3, . . ., (5.39) 

Here, s is in the dimension of seconds. It was stated that this parameter is related to 

temporal elements of the system [60]; in the case that a = 1, we see that (5.38) and 

(5.39) are recovered in the traditional sense. With the application of Kirchhoff’s 

laws, the RLC circuit has the following equation:  

 𝐷𝑡
2𝐼(𝑡) +

𝑅

𝐿
𝐷𝑡𝐼(𝑡) +

1

𝐿𝐶
𝐼(𝑡) =

1

𝐿
𝐸(𝑡). (5.40) 

Here, 𝐿 is inductance, 𝑅 is resistance, and 𝐸(𝑡) is source voltage. 

 

5.4.1. RLC Electrical Circuit with Fractional Operator with Mittag-Leffler 

Kernel 

In light of (5.38) and (5.39), the fractional equation that corresponds to (5.40) 

via the fractional operator with M-L kernel can be written as follows:  

 0
𝐴𝐵𝐶𝐷𝑘

2𝛼𝐼(𝑘) + 𝐴 
0

𝐴𝐵𝐶
𝐷𝑘
𝛼𝐼(𝑘) = 𝐵 𝐶 𝐸(𝑘) − 𝐵𝐼(𝑘),    0 < 𝛼 ≤ 1 (5.41) 

and the analytical solutions of equations (5.41) can be obtained with the 

consideration of different source terms[6].  

 

Case 5.4[6]: The unit step source, 𝐸(𝑘) = 𝑢(𝑘), 𝐼(0) = 𝐼0, (𝐼0 > 0), 𝐼(̇0) = 0, (5.41) 

has the following definition: 
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 0
𝐴𝐵𝐶𝐷𝑘

2𝛼𝐼(𝑘) + 𝐴 
0

𝐴𝐵𝐶
𝐷𝑘
𝛼𝐼(𝑘) = 𝐵 𝐶 𝑢(𝑘) − 𝐵𝐼(𝑘). (5.42) 

When we apply LT to (5.42), the current’s expression is:  

𝐼(𝑘) = 𝐵 [
(1 − 𝛼)𝑠2𝑎−1

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
+
2𝛼(1 − 𝛼)𝑠𝛼−1

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
+

𝛼2

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
+
1

𝑠
] 

 𝐵(𝛼)2
𝑠2𝛼−1𝐼0

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
+ 𝐴𝐵(𝛼)𝐼0

𝑠𝛼−1(𝑠𝛼(1 − 𝛼) + 𝛼)

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
. (5.43) 

With the inverse LT of (5.43) it is possible to obtain the analytical solution:  

𝐼(𝑘) = [𝐵(1 − 𝛼) +
𝐵(𝛼)2𝐼0
𝐾

+
𝐴𝐵(𝛼)2𝐼0(1 − 𝛼)

𝐾
] 

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚) [2𝛼(1 − 𝛼) +
𝐴𝐵(𝛼)𝐼0𝛼

𝐾
] 

 ∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚) (5.44) 

+
𝛼2

𝐾
∫ 𝜏2𝛼(𝑚+1)−1
𝑘

0

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑘𝛼 + (𝑛 + 1)2𝛼]

∞

𝑡=0

∞

𝑚=0

𝑘𝑡𝛼𝑑𝜏, 

where  

𝐾 = 𝐵(𝛼)2 + 𝐴𝐵(𝛼(1 − 𝛼) + 𝐷(1 − 𝛼)2, 

𝐿 = 𝐴𝐵(𝛼) + 2𝐷(𝛼)(1 − 𝛼), 

      𝑀 = 𝐷(𝛼)2, (5.45) 

𝐶 =
𝑀

𝐾
, 

𝐻 =
𝐿

𝐾
. 

 

Case 5.5[6]: The exponential source, 𝐸(𝑘) = 𝑒−𝑎𝑘, 𝐼(0) = 𝐼0, (𝐼0 > 0), 𝐼(̇0) = 0, 

(5.41) has the following definition:  

 0
𝐴𝐵𝐶𝐷𝑘

2𝛼𝐼(𝑘) + 𝐴 
0

𝐴𝐵𝐶
𝐷𝑘
𝛼𝐼(𝑘) = 𝐵 𝐶 𝑒−𝑎𝑘 − 𝐵𝐼(𝑘). (5.46) 

Upon application of LT to (5.46), the current’s expression is obtained as follows:  

𝐼(𝑘) = 𝐵 [
1

𝑠 + 𝑎
+ (

(1 − 𝛼)𝑠2𝛼−1

𝑠2𝛼𝐾 + 𝑆𝛼𝐿 +𝑀
+

2𝛼(1 − 𝛼)𝑠𝛼

𝑠2𝛼𝐾 + 𝑆𝛼𝐿 +𝑀
+

2𝛼

𝑠2𝛼𝐾 + 𝑆𝛼𝐿 +𝑀
)] 

+𝐵(𝛼)2
𝑠2𝛼−1𝐼0

𝑠2𝛼𝐾 + 𝑆𝛼𝐿 +𝑀
+ 𝐴𝐵(𝛼)𝐼0

𝑠𝛼−1(𝑠𝛼(1 − 𝛼) + 𝛼)

𝑠2𝛼𝐾 + 𝑆𝛼𝐿 +𝑀
. (5.47) 

After we take the inverse LT to (5.47), we are able to obtain the following solution:  
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𝐼(𝑘) = [
𝐵(𝛼)2𝐼0
𝐾

+
𝐴𝐵(𝛼)2𝐼0(1 − 𝛼)

𝐾
] 

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚) 

+
𝐴𝐵(𝛼)𝐼0(𝛼)

𝐾
𝑘𝛼 ∑∑

(−𝐶)𝑚(−𝐻)𝑡 (
𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚) 

+
2𝐵𝛼(1 − 𝛼)

𝐾
∫ 𝐸𝛼,𝛼

𝑘

0

(𝑎 − (𝑘 − 𝜏))𝜏𝛼−1 

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡

)

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼]

∞

𝑡=0

∞

𝑚=0

𝜏𝛼(𝑡+2𝑚)𝑑𝜏 (5.48) 

+
𝐵(1 − 𝛼)

𝐾
∫ 𝐸𝛼,𝛼

𝑘

0

(𝑎 − (𝑘 − 𝜏))𝜏−1 ∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼]

∞

𝑡=0

∞

𝑚=0

𝜏𝛼(𝑡+2𝑚)𝜏 

+
𝐵(𝛼)2

𝐾
∫ 𝐸𝛼,𝛼

𝑘

0

(𝑎 − (𝑘 − 𝜏))𝜏2𝛼(𝑚+1)−1 ∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (ö + 1)2𝛼]

∞

𝑡=0

∞

𝑚=0

𝜏𝑡𝛼𝑑𝜏 

for which K, L, M, C, and H are defined by (5.45).  

 

Case 5.6[6]: The periodic source, 𝐸(𝑘) = sin ( 𝑗𝑘), 𝐼(0) = 𝐼0, (𝐼0 > 0), 𝐼(̇0) = 0, 

(5.41) has the following definition:  

 0
𝐴𝐵𝐶𝐷𝑘

2𝛼𝐼(𝑘) + 𝐴 
0

𝐴𝐵𝐶
𝐷𝑘
𝛼𝐼(𝑘) = 𝐵 𝐶 sin ( 𝜑𝑘) − 𝐵𝐼(𝑘) (5.49) 

Upon application of LT to (5.49), the current’s expression is obtained as follows:  

𝐼(𝑠) = [
𝑠2𝛼(1 − 𝛼)2 + 2𝛼(1 − 𝛼)𝑠𝛼 + 𝑎2

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
]

𝜑

𝑠2 + 𝜑2
 

 +𝐵(𝛼)2
𝑠2𝛼−1𝐼0

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
+ 𝐴𝐵(𝛼)

𝑠𝛼−1𝐼0(𝑠
𝛼(1 − 𝛼) + 𝛼

𝑠2𝛼𝐾 + 𝑠𝛼𝐿 +𝑀
. (5.50) 

With the inverse LT to (5.50), we have the following solution:  

𝐼(𝑘) =
(1 − 𝛼)2

𝑡
∫ sin (
𝑘

0

𝜑(𝑘 − 𝜏))𝜏−1 

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚)𝑑𝜏 

+
2𝛼(1 − 𝛼)

𝐾
∫ sin (
𝑘

0

𝜑(𝑘 − 𝜏))𝜏−1 
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∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚)𝑑𝜏 (5.51) 

+
𝛼2

𝐾
∫ sin (
𝑘

0

𝜑(𝑘 − 𝜏))𝜏2𝛼(𝑚+1)−1 ∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝑡𝛼𝑑𝜏 

+ [
𝐵(𝛼)2𝐼0
𝐾

+
𝐴𝐵(𝛼)𝐼0(1 − 𝛼)

𝐾
+
𝐴𝐵(𝛼)𝐼0𝛼

𝐾
𝑘𝛼] 

∑∑
(−𝐶)𝑚(−𝐻)𝑡 (

𝑚 + 𝑡
𝑡 )

𝛤[𝑡𝛼 + (𝑚 + 1)2𝛼 − 2𝛼 + 1]

∞

𝑡=0

∞

𝑚=0

𝑘𝛼(𝑡+2𝑚)𝑑𝜏, 

for which 𝐾, 𝐿,𝑀, 𝐶, and 𝐻 are defined by (5.45). 

In order to compare our results with same other produced by different 

fractional derivatives we present below two different approches. 

 

5.5 Fractional Schrödinger Equation with Atangana-Baleanu Fractional 

Derivative 

Here the one-dimensional time-dependent Schrödinger equation involving the 

C-F fractional operator and the new operator with M-L kernel with arbitrary order 

will be analyzed [7]. 

 

Case 5.7[7]: Considering 𝐷𝑡
𝑎

𝑎
𝐴𝐵𝐶 𝑓(𝑡) =

𝐵(𝑎)

1−𝑎
∫ 𝑓(𝜃)𝐸𝑎 [−𝑎

(𝑡−𝜃)𝑎

1−𝑎
] 𝑑𝜃

𝑡

𝑎
, the fractional 

Schrödinger equation via the C-F fractional operator is given by  

 𝑖ℏ0
𝐶𝐹𝒟𝑡

𝛼Ψ(𝑥, 𝑡) =
ℏ2

2𝑚
𝛻2Ψ(𝑥, 𝑡) + 𝑉(𝑥)Ψ(𝑥, 𝑡), (5.52) 

in which ℏ is the Planck constant, 𝑚 is mass, and 𝜓(𝑥, 𝑡) is the particle’s wave 

function. We consider that 𝑉(𝑥) = 0 for |𝑥| < 1, 𝑉(𝑥) = ∞ for |𝑥| ≥ 1 (infinite 

square well). Now, considering 𝑉(𝑥) = 0, it is possible for us to write  

 
0
𝐶𝐹𝒟𝑡

𝛼Ψ(𝑥, 𝑡) = 𝑎
𝜕2𝛹

𝜕𝑥2
𝜓(𝑥, 𝑡), (5.53) 

for which Ψ(𝑥, 0) = Ψ0(𝑥) and 𝑎 = 𝑖
ℏ

2𝑚
. 

Upon application of LT to (5.53), the following is obtained:  

 
𝑠𝛹(𝑥, 𝑠) − 𝛹(𝑥, 0)

𝑠 + 𝛼(1 − 𝑠)
= 𝑎

𝜕2𝛹

𝜕𝑥2
Ψ(𝑥, 𝑠) (5.54) 
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The relationship between the Fourier transform (FT) operator and the C-F fractional 

operator was given in [61]. Applying the FT to (5.54), we have  

 
𝑠𝛹(𝑘, 𝑠) − 𝛹0(𝑘)

𝑠 + 𝛼(1 − 𝑠)
= 𝑎𝑘2Ψ(𝑥, 𝑡), (5.55) 

where [7] 

 Ψ(𝑘, 𝑠) =
𝛹0(𝑘)

𝑠 + 𝑎𝑘2(𝑠 + 𝛼(1 − 𝑠))
. (5.56) 

Now, applying the inverse FT and inverse LT to (5.56), we have  

 Ψ(𝑥, 𝑡) =
1

2𝜋𝑖
exp
𝑠𝑡
𝑑 𝑠

1

2𝜋
∫

𝑒𝑥𝑝
−𝑖𝑘𝑥

𝛹0 (𝑘)

𝑠 + 𝑎𝑘2(𝑠 + 𝛼(1 − 𝑠))

∞

−∞

𝑑𝑘. (5.57) 

Considering the initial condition to be equal to Ψ(𝑥, 0) = 𝛿(𝑥), equation (5.56) 

yields [7]  

 Ψ(𝑘, 𝑠) =
1

𝑠(1 + 𝑎𝑘2(1 − 𝛼)) + 𝑎𝛼𝑘2
, (5.58) 

applying the inverse Laplace and inverse FT to equation (5.58), we have  

 Ψ(𝑥, 𝑡) =
1

2𝜋
∫

𝑒𝑥𝑝
−𝑖𝑘𝑥

1 + 𝑎𝑘2(1 − 𝛼)

∞

−∞

(
𝑎𝛼𝑘2

1 + 𝑎𝑘2(1 − 𝛼)
) 𝑡 𝑑𝑘. (5.59) 

In the case when 𝛼 → 1, we have  

 Ψ(𝑥, 𝑡) =
1

2𝜋
∫ exp

−𝑖𝑘𝑥
∞

−∞

exp ( − 𝑎𝑘2)𝑡 𝑑𝑘. (5.60) 

Equation (5.59) describes the Schrödinger equation using the C-F fractional operator.  

 

Case 5.8[7]: Considering 𝐷𝑡
𝑎

𝑎
𝐴𝐵𝐶 𝑓(𝑡) =

𝐵(𝑎)

1−𝑎
∫ 𝑓(𝜃)𝐸𝑎 [−𝑎

(𝑡−𝜃)𝑎

1−𝑎
] 𝑑𝜃

𝑡

𝑎
, the fractional 

Schrödinger equation via the fractional operator with M-L kernel understood in the 

L-C sense is given by [7]  

 𝑖ℏ0
𝐴𝐵𝐶𝒟𝑡

𝛼Ψ(𝑥, 𝑡) = −
ℏ2

2𝑚
𝛻2Ψ(𝑥, 𝑡) + 𝑉(𝑥)Ψ(𝑥, 𝑡), (5.61) 

where we consider that 𝑉(𝑥) = 0 for |𝑥| < 1, 𝑉(𝑥) = ∞ for |𝑥| ≥ 1 (infinite square 

well). Now, considering V(x) = 0, we have [7] 

 
0
𝐴𝐵𝐶𝒟𝑡

𝛼Ψ(𝑥, 𝑡) = 𝑎
𝜕2𝛹

𝜕𝑥2
Ψ(𝑥, 𝑡), (5.62) 

where Ψ(𝑥, 0) = Ψ0(𝑥) and 𝑎 = 𝑖
ℏ

2𝑚
.  

Upon application of LT  (5.62), we have the following [7]:  
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𝐵(𝛼)

1 − 𝛼

𝑠𝛼𝛹(𝑥, 𝑠) − 𝑠𝛼−1𝛹(𝑥, 0)

𝑠𝛼 +
𝛼

1 − 𝛼

=
𝜕2𝛹

𝜕𝑥2
Ψ(𝑥, 𝑠), (5.63) 

The relationship between the FT operator and the fractional operator with the M-L 

kernel understood in the sense of L-C was given in [62]. Upon application of the FT 

to (5.55), we have the following equation [7]: 

 
𝐵(𝛼)

1 − 𝛼

𝑠𝛼𝛹(𝑥, 𝑠) − 𝑠𝛼−1𝛹(𝑥, 0)

𝑠𝛼 +
𝛼

1 − 𝛼

= −𝑎𝑘2Ψ(𝑥, 𝑠), (5.64) 

where  

 
Ψ(𝑘, 𝑠) =

𝐵(𝛼)

1 − 𝛼

1 − 𝛼

𝐵(𝛼) + 𝑎𝑘2(1 − 𝛼)

𝑠𝛼−1𝛹0(𝑘)

𝑠𝛼 +
𝑎𝛼𝑘2

𝐵(𝛼) + 𝑎𝑘2(1 − 𝛼)

. 
(5.65) 

Finally, applying the inverse Laplace and inverse FT(5.65) , we have [7] 

 

      Ψ(𝑥, 𝑡) =
𝐵(𝑎)

2𝜋
∫

𝑒𝑥𝑝
𝑖𝑘𝑥

𝐵(𝛼) + 𝑎𝑘2(1 − 𝛼)

∞

−∞

 

𝐸𝛼,1 [(−
𝑎𝛼𝑘2

𝐵(𝛼) + 𝑎𝑘2(1 − 𝛼)
) 𝑡𝛼]Ψ0(𝑘) 𝑑𝑘. 

(5.66) 

In the case when Ψ(𝑥0) = 𝛿1, we have  

 Ψ(𝑥, 𝑡) =
1

2𝜋
∫ exp

−𝑖𝑘𝑥
∞

−∞

exp ( − 𝑎𝑘2)𝑡Ψ0(𝑘) 𝑑𝑘, (5.67) 

where Ψ(𝑥, 0) = 𝛿(𝑥). Equation (5.66) describes the Schrödinger equation using the 

fractional operator with the M-L kernel understood in the sense of L-C. It should be 

noted now that this representation is the general case and the representation given in 

Equation (5.59) is a particular case of this representation. 
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6. CONCLUSION 

 

During the last few years in the area of fractional calculus some new 

fractional derivatives were introduced. Among those, there is one-so called-

Atangana-Baleanu derivative which is a non-singular fractional operator with a 

Mittag-Leffler kernel. The main aim of this thesis is to understand the fundamentals 

of this operator as well as its discrete version.  

In  this work, I reviewed, understood and applied the properties of the Mittag-

Leffler operator in several real-world problems appearing in engineering sciences. I 

realized through the presented applications that this operator is a good potential 

candidate to describe better the properties of non-locality which is different than the 

one described by Riemann-Liouville and Caputo fractional derivatives.  
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