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ABSTRACT
New Trends in Fractional Optimal Control Problems

Gadriah Jamaah Ali MADI
M.Sc: Department of Mathematics
Supervisor: Dr. Instructor Dumitru BALEANU
Co-Supervisor: Dr. Instructor Ozlem DEFTERLI
April 2018, 45 pages

In this thesis, | study the basics of some fractional derivatives (e. g. Riemann-
Liouville, Caputo) with the corresponding approximation based on Griinwald-
Letnikov definitions. Later, the fundamentals of fractional optimal control problem
are presented via mentioned fractional derivatives which are used in the definition of
constraints and optimality conditions given through the formulation. Some new
aspects are studied for the numerical solutions of fractional optimal control problems
in the sense of integrating new orthogonal polynomials to approximate the
considered fractional derivatives. In this respect, Bernstein polynomials, shifted
Chebyshev polynomials and shifted Legendre orthonormal polynomials are newly
used within the Legendre-Gauss quadrature method in order to approximate and
solve numerically the Caputo based fractional partial differential equations coming
from the formulation of fractional optimal control problem. Two dynamical systems
are considered as illustrative examples based on the given control functions and the
corresponding responses of the systems are presented under fractional derivatives.
Then the comparison with the classical derivative is discussed. It is observed from
numerical results and presented simulations that the system response increases as the
fractional order of the derivative decreases for the same point of the variable t.

Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative,
Griinwald-Letnikov definition, Bernstein polynomials, Chebyshev polynomials,
Legendre polynomials, Legendre-Gauss quadrature.
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Kesirli optimal control problemerinde yeni egilimler

Gadriah Jamaah Ail MADI
Yiksek Lisans,, Matematik

Tez Yoneticisi: Dr. Ogr. Uyesi Dumitru BALEANU
Ortak Tez Yoneticisi: Dr. Ogr. Uyesi Ozlem DEFTERLI
Nisan 2018, 45 sayfa

Bu tez calismasinda, bazi Kesirli tiirevlerin (6rn. Riemann-Liouville, Caputo )
temelleri  Griinwald-Letnikov tanimlarina dayanan ilgili yaklasigiyla beraber
calisilmistir. Daha sonra, kesirli optimal control probleminin temelleri, formiilasyon
da verilen kisitlamalarin ve optimalite kosullarinin tanimlanmasinda kullanilan bu
kesirli tiirevler araciligiyla sunulmaktadir. Go6z Oniine aliman Kesirli tiirevlerin
yaklasigi i¢in yeni orthogonal polinomlarin integrasyonu anlaminda kesirli optimal
kontrol problemlerinin sayisal ¢6ziimleri ig¢in bazi yeni yonelimler iizerinde
calistlmistir.  Bu baglamda, Bernstein polinomlari, kaydirtlmis Chebyshev
polinomlar1 ve kaydirilmis Legendre ortonormal polinomlar1 Legendre-Gauss
kareleme yontemin icerisinde kesirli optimal control probleminin formiilasyonundan
gelen Caputo tabanli kesirli kismi diferansiyel denklemleri sayisal olarak ¢6zmek
icin  kullanilmaktadir.Verilen control fonksiyonlarma dayanan iki dinamik
sistem,agiklayict ornekler olarak ele alinmis ve sistemlerin iliskili gelen karsiligi,
kesirli tirevler altinda sunulmus, daha sonra Klasik tiirev ile karsilastirilmistir.
Sayisal sonuglardan ve verilen simulasyonlardan system cevabinin, kesirli tiirevin
derecesi azaldikca t degiskeninin bazi noktalarinda arttigi gozlemlenmistir.
Anahtar Kelimeler: Riemann-Liouville kesirli tiirevi, Caputo tanimi, Griinwald —

Letnikov kesirli tiirevi , dik polinomlar , Legendre-Gauss kareleme yontemi.
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CHAPTER 1

INTRODUCTION

Fractional calculus deals with the study of so-called fractional integrals and
differential operators over real or complex domains and their application [1-20].
Over the past few decades, fractional differentiation have attracted more and more
attention in the study of so-called anomalous social and physical behaviors, where
the fractional scale power law seems to be commonly used as an empirical
description of this complex phenomenon [21-43]. It is worth noting that the standard
mathematical model with the integer-order derivatives, including the nonlinear
model, does not work well in many cases where the power law is obviously observed
[1-30]. In order to accurately reflect the non-local, frequency, and historical
correlation properties of the power law phenomenon, several alternative modeling
tools must be introduced into this fractional calculus. The study of fractional
differentiation is essentially multidisciplinary, and its application is dispersed in
various disciplines. As one would expect, since the fractional derivative is a
generalization of ordinary derivatives, it loses many of its basic properties. For
example, it loses its geometric or physical interpretation. The indexing method works
only when working in a very specific function space. The derivative of the product of
the two functions is difficult to obtain, and the chain rules are not suitable for direct
application. Fractional —order differential equations (i.e., equations involving real or
complex derivatives) play an important role in simulating the anomalous dynamic
processes of many processes associated with complex systems in the most diverse
areas of science and engineering. The thesis consists of six chapters. Chapter 1 is the
introduction part. Chapter 2 include some basic definitions identified with fractional
derivatives. In chapter 3, the principles of fractional optimal control problems are
given. In chapter 4, the descriptions of some use full orthonormal polynomials are
presented. Chapter 5, is about the useful Chebyshev polynomials to find the
numerical solutions of fractional optimal control problems. Chapter 6 is about

Legendre polynomials to be used for the same purpose.



CHAPTER 2
BASIC TOOLS

2.1 The Definitions of Riemann-Liouville and Caputo Fractional Derivatives
In this section we present some essential definitions identified with fractional

derivatives. The left Riemann-Liouville fractional integral and the right Riemann-

Liouville fractional-order integral are characterized Separately by [1 - 5]
1 s B
I’ f(s ——f S T -1 T dl; 2.1

1

Iff(s) :Tﬁ)

b
f (t — s)P~1 f(r)dr, (2.2)

where 8 >0,m—1 < B <mandTI'(B) represents the Gamma function.
The left Riemann-Liouville fractional derivative is defined as [1 — 5]

1
«DPf(s) =F(m——,8)(

d

g) fa (5= ™A F() da (2.3)

The right Riemann-Liouville fractional derivative is defined by [1 — 5]

B — 1 _i P _ m—-£F-1
D@ = =gy () | G- @ (24)

The Riemann-Liouville fractional derivatives of a constant can be calculated as
[1-5]

(s—a)#
B =2 __
DFC Cr(l_ﬁ), (2.5)
where as the fractional derivative of a power function takes the form [1 — 5]
rB+1(s—a)*#
oDP(s —a)* = B+ 1)(s—a) (2.6)

INa—p+1)

fora> -1, = 0.



The left Caputo fractional derivative is defined as [1 — 5]

m

1 s d
DPF() = s | =0 () s 27)

and the Right Caputo fractional derivative has the form [1 — 5]

1 b a\™
DY) = Fem = f -5 (-2) rdr, (28)

where S represents the order of the derivative such that m — 1 < < m. Note that the
Caputo partial derivative of a constant function is zero [1 — 5].

The Riemann-Liouville and Caputo fractional derivatives are related each other by
[1-5]

m-—1

c B f(j)(a) a
PHOPTO g0 @2
m-1 ¥
1) FW(p '
D} f(s) = D} f(s) — Z (m,)_%(b —5)/7A. (2.10)
j=0

The formulation in below gives a formula [1] for the fractional integration by parts in
[a, b].

Lemma 2.1.1 [1-5]

Let >0, w, z> 1, and %+ é <14+ p(w # 1and z # 1in this case when

1 1 —1
—t-=1+4p).
if neL,(ab)and y € L,(a,b) ,then
b b
[ 1006 = [ 26 asneas 2.11)

ife € If(LW) and f €, 1P(L,) , then

jbe(s)(aDﬁf)(s)ds = fbf(s)(Dbﬁe)(s)ds, (2.12)

where 418 (L,) = {f:f =, 1Pe,e€L,(a, b)} and



If(LW) = {f:f = Ife,e €L, (qa, b)}.

In [6] and [7] the fractional integration by parts on the subintervals [a, r] and [r, b]

are given by the next lemmas.

Lemma 2.1.2 [1-7]

Letg >0,w, ZZl,rE(a,b)and%+§£1+,8,W¢1and2¢1

in the case when%+§= 1+p6.

@ If nelL,(ab)andy € L,(a,b), then
[ 1060P 0@ ds = | 2@ (ifn))as
Soifee 1?(L,) and f €, IP(L,) , then

[ ey P ds = | 1@)(pke)s ds
(b) Ifn € L,(a,b)and y € L,(a,b), then

[P 0()GIP () ds = [ x(s)(15n)(s) ds+
1 r b y

Tﬁ)fa x(s) (fr n(t)(t — s)B dt) ds .

Ife € I°(L,,) and f € alf(L,), then

b b
[ e @prnesyas = | £ (pfe)esdds -

%ﬂ) f (aDPF)(s) ( f b(Df e)(t)(t - s)ﬁ-ldt) ds.

SO

b b
[ e@@nPnrds = [ res)(phe)isrds -

| ront ( [ (ote)ore sy dt) ds.

Lemma 2.1.3 [1-7]

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Let,8>0,w,221,re(a,b)and%+§£1+ﬁ,w¢1 z# 1 and %+§=1+

BlfnelL,(ab)and y € L,(a,b), then



fr bn(S)(I,f)() (s) ds = f G 0() ds(218)

and thus if e € ,18(L,,) and f € I°(L,), then

| e(o)(DEf))ds = | )PP ds (219)
(@) Ifn € L, (a,b)and y € L,(a,b) , then

L GRS ds = fa rx(s)(lf n)(s)ds +

1 b r _
Tﬁ)fr x(&) ([, n(®)(s — )P~ dt) ds. (2.20)

and hence if e € ,18(L,,) and f € 17 (L), then

f e (Df ) () ds = f F©) D) ()ds -

%ﬁ) rb(fo)(S)(f;(aDﬁe)(t)(s —t)f~1dt) ds. (2.21)
So, we have

[l e)(DEf)(s) ds = [ f()( DPe)(s)ds -

== I £() PP ([ (aDPe)(s)(s — )P dt) ds. (2.22)

2.2 The Griinwald-Letnikov Approximation
The Griinwald-Letnikov approximation of fractional derivatives defined as [1 — 14]

l
1
ngJ’(SL—Uz) = ﬁz Wj(a)yl_j, l=1,..,m, (2.23)
=0
1 m-—l1
D7 (sp4)0) = h_az w @, l=m—1,m—=2..0, (224
=

where wj(“), j=0, 1,..,m are the transactions. A recursive method for computing wj(“)

IS given by

a+1

It could be shown that for o= 1, Egs. (2.23) and (2.24) became [1-14].



d)’(Sz—l/z) V=V —dY(Sl+1/2) V= Vit
ds h ds B h

To build up a numerical technique the time space [0, 1] is divided into n equal parts
and the fractional derivatives D&y and,D{fA are approximated at the midpoint

from every subinterval through these approximations.

Additionally take y (s;—4 /) as an average of the two end values of the subinterval.
Therefore, y(sl_l/z) = (y;—1 + y:)/2. It makes the same approximations for
Msi=1/2): Y (S1-1/2), and A(s;41/2). Substituting these approximations into Euler —
Lagrange equations (,D&y = a(s)y — r~1(s)b?(s)A,s DA = q(s)y + a(s)A) it
gets [1-14]

l
1 (@) 1 1 4 2
= Wy =2 alh) G + 90 = 57 GRBA R Gy + )
j=0

(I=1,....m), (2.25)

m-—1
1 ’ 1 1
mz w(h,y = 74D G +y) +5alR) (-1 + 4),
j=0

(I=m-1,..., 0). (2.26)

Herel, =1 — Zl,l2 =1 +% equations (2.25) and (2.26) produce linear equations in

2m unknowns. One can also develop an iterative plan in that one can march forward
to compute y;'s and in backward to compute A;'s to save storage space and perhaps

computational time [1 — 14].



CHAPTER 3

THE FUNDAMENTALS OF FRACTIONAL OPTIMAL CONTROL

3.1 The Fractional Euler-Lagrange Equations
In this section, we briefly study the fractional Euler—Lagrange equations (FELE)

introduced in [10]. Among all functions x(s), the function x*(s) minimizes the

functional

b
J[x] = j F(s, X,a Dfx) ds (3.1)

and satisfies the boundary conditions [10]

x(a) = xg and x(b) = xp. (3.2)
At this point anx be the S order left Riemann-Liouville fractional derivative which
can be defined as [10]

1

oDy x(s) =
where m-1< 8 < m .The fractional derivative reaches to an ordinary derivative in
case 3 be an integer. It is exhibited in [10 ] that the solution of the problem which
was stated above must satisfy
a_F Y oF _
ox °°P aanx

0, (3.4)

where SDfx is the right Riemann —Liouville fractional derivative (RRLFD) of order
B define as [14]
1
B
D; x(s) = —(
Do x(8) = e =y

Equation (3.5) is going to played an impotant role in the formulation for fractional

d\"™ [?
_%) f (® — )™ F~1x(9) do. (3.5)

control optimal problems [14].

3.2 The Formulation of Fractional Optimal Control Problems
The problem here is to find the optimal control r(s) for a fractional derivative

schemes that minimizes the performance index [14]



1

fU)=jijJMS 3.6)

and also, fulfills the dynamical constraints

oDfy =g(y,1,5) (3.7)

with the initial condition

y(0) =y, (3.8)

Here y(s) is the state variable, s is for the time, j and g stand for arbitrary functions.
Not that order of the fractional derivative 0 < a < 1 and the upper limit of
integration is 1. Additionally; it is consider that y(s), r(s) and g(y, r, s) are all scalar
functions. The similar technique could be considered if the upper limit from

integration and a is bigger than 1, y(s), r(s) and g(y, r, s) are vector functions.

The performance index is modified as follows to get the optimal control [14]
_ 1
f) = [ 1HG.7.5) = aoDgy)ds, (3.9)

0

where H (y, r, A, s) is the Hamiltonian of the system defined via [14]

H(y,r,A,s) =j(y,1,s)+Ag(y,r1,s). (3.10)

Also, A represents the Lagrange multiplier. Applying the necessary conditions in
terms of Hamiltonian Eq. (3.4) result that [14]

u J0H
DA = 3y’ (3.11)
J0H
5 =0 (3.12)
D&y = oH (3.13)
o0Ys y - a/’{ .
According to the approach given in [11], the following condition is imposed
A(1) = 0. (3.14)

8



Here, the time derivative of the Hamiltonian does not zero along the optimal
trajectory even when j and g are not directly depend on s, which is a derivative of the
integer order optimal control theory. The following quadratic performance index can

be considered [14] as an example

f)= J, [a()y?(s) +u(s)r?] ds, (3.15)
where q(s) > 0 and u(s) > 0, and the system whose dynamics is described by the
linear FDE

oD&y = a(s)y + b(s)r. (3.16)

Utilizing Egs. (3.11) to (3.13), the essential Euler-Lagrange equations for the same

system obtained as [11]

oD§y = a(s)y —u™'(s)b?(s)A, (3.17)
sDI'A = q(s)y + a(s)A, (3.18)
and
r=-u"'(s)b(s)4, (3.19)

where they are all going to be used to build up a direct numerical method for a

fractional optimal control problem.

3.2.1 An Example in 2D
Considering the minimization problem of the performance index [14]

1 2
1= f [oDE DEO]ds, (3.20)
0

subjected to the next dynamic condition, o D | D¢ (s)= r(s). Taking a= 0 and b= 2,
and (D¢ ;D6 (s) is the successive derivative of 6. Using 6(s) =y, (s),
oDs'0(s) = y2(s).

The modified performance index in (3.20) becomes [14]

2
] = f [H(y,1,4) — AT ,D%u(s)] ds, (3.21)
0

where



H(y,r, 1) = %rz(s) + AT (Ay(s) + br(s)) (3.22)

is the Hamiltonian of the system and [14]

0=(o) 0=00)

b(s) = (‘1)) A= (g (1)) . (3.23)
Applying (3.7)-(3.9) the following system of equations are obtained [14]

DA =0,,DFA, — A4, =0,r+ A, =0,D%u;y —u, =0,, D&u, — r

=0. (3.24)

Take note of that variable r from the above equations could be eliminated by the
third equality introduction in (3.24). In addition to the above equations,
0(0) =, DZO(0) =0 and 6(2) =,DI6(2) =1
which translate into y;(0) =y,(0) =0 andy;(2) =y,(2)=1.
The presentation of the numerical strategy which is utilized to solve the cores
pending equations in (3.24) is shown below. This technique utilizes Griinwald-
Letnikov approximation, quickly, the schemes is given as [14]:

(1) Split the time area into N sub-spaces, where N is an integer.

(2) Estimate the fractional derivatives in (3.24) at every grid point the

Griinwald- Letnikov definitions given in (3.11).
(3) Impose the terminal conditions.

(4) Solve the concluding equations.

10



CHAPTER 4

BERNSTEIN AND SHIFTED LEGENDRE ORTHONORMAL
POLYNOMIALS

4.1 Bernstein Polynomials and Their Properties
The Bernstein polynomials (BPs) of z"-degree are characterized on the

interval [0,1] as [24 — 25]

4, = () —w*hi=01,..,z (4.1)
Corollary 4.1.1 [24-25]

The set {Ao,z(u),ALZ(u), ...,AZ,Z(u)} is a full basis in the Hilbert space L?[0, 1] and
polynomials from degree z; they are expanded by the linear combination from
Ai,(w)(i=0,1,..,2)as:

zZ

P = ) cidi @), (42)

i=0

Lemma 4.1.2 [24-25]

We can write ¢, (u) = BT,(u) such that B is an upper triangular matrix T,(u) =
[Lw,...,u"]"and ¢,(w) = [4o(w), 4, (W), ..., A, (W]

Proof [24 — 25] Using binomial increase of (1 — u)*~% we

A, (W) = (f) ui(1 —u)7!

(S QT Yo )= S () =0
j= j=

In this way can be writing [24 — 25]

¢, (u) = BT, (w), (4.3)
where [24 — 25]

z+1
B = (ai,P)i,pzland ai+1,p+1

11



:{( 7 (7) p—i)'=Pip=01,. 2
0 i >p,

Lemma 4.1.3 [26]
Let L2[0,1] be a Hilbert space with the inside product < k,r >=

fol k(u)r(u) dy,and x € L?[0,1]. After that, the single vector c=[c, c5, ..., c,]T can

be taken such that

Z

X0 ~ ) i) = ¢, (). (48

1=0
For Lemma 4.1.3 gets ¢cT =< k, ¢, > o1, such that

1
<k ¢, > j kW, W du = [< k, Ay, > <k Ay >, ., <k, Ay, >]
0

and

z+1

0 =(eip);,_,
as follows
VA Z
: 6
Qi+1,p+1 = Ai,Z(u)Ap,Z(u) du — ZZ ) llp -
0 2z + 1) (L. " p)

0,1,..,z (4.5)

Lemma 4.1.5[26]

Assume C(,41)x1 IS a random vector. The operational matrix of the product

C” z+1)x(z+1)Using BPs can give the following:

"o, W, W) = ¢, (W) c. (4.6)
Proof [26]

By equation (4.6) we have

CT¢Z(U)¢Z(U)T = CT¢Z (u) (Tz(u)TBT)
= [T, (W), u(cT ¢, (W), ..., u?(cT¢,(w))]|BT

VA VA VA
= [Z c;A; ,(w), Z ciud; ,(u), ..., Z ciu?A; ,(u)
i=0 i=0 0

i=

B.T

This time, u/A; ,(w) is used to approximate all functions ¢, (). So we
characterize e;; = [e;, e}, .., eﬁi]T, and by equation (4.46) it is written as:

12



wa; (W) = e ¢, (w),i,j = 0,1, .....2 [26].
So,

eji=0" (j; uin,z(u)¢z(u)du>

1 1
= Q_l [f uin,Z(u)AO,Z(u)du,X f uin,Z(u)Al,Z(u)du, »
0 0

T

1
X f wA; (WA, ,(wWdu
0

:e*(?)[(a Al <;>,] o
2z+j+1 (22+1>’(22+})’ ’(Zz+1) ,j =01,

i+j i+j+1 i+j+z

We have [26]

Z z Z

Y g, = Y o ) ey @

i=0 i=0 p=0

= ZZOAP'Z (w) <ZZ:0 ciej’fi>

i=

z z z T
= ¢Z(u)T [z Ciej(?i ,Z Ciejj:i AT .,Z Ciefi]

i=0 i=0 i=0
= ¢z(u)T[ej,0J ej,lf R ej,z]c = ¢z(u)TVj+1C ’
where V;.1(j = 0,1, ..., z) is matrix of (z+1) x (z+1) and each column has vector
eji(i=0,1,..,2). Ifitdefines C = [Vyc ,Vyc ,..,V,zc ], then get
CT,(w), ()" ~ b, (w)' CB. (4.7)
Then it obtains the operational matrix of product ¢ = CB”.
Corollary 4.1.6 [26]
Let y(s) ~ CT¢Z(S) ,u(s) ~ qubz(S)’y(S) ~ dT¢z(S) and é(z+1)x(z+1) be the
operational matrix of the product using BPs for vector c. it is obtained that the

approximate function for u(s) y(s) using BPs as :

y()u(s) = ¢,(s)"Cd. (4.8)
Proof [26] it can be proved by using Lemma 4.1.5.
Corollary 4.1.7

13



Assume that y(s) =~ cT¢,(s) and é(z+1)x(z+1) are the operational matrix of a vector
¢ using the product of BPs. Then can get an approximate function of y/(s)(j € N) ,
using the BPs as [26]
y1(s) = ¢,()7C;, (4.9)
where ¢; = (/7 ¢ .
Proof [26]
By using induction, get an approximate value of y/(s), (j € N) as:
for j=1 by (4.4) y(s) = cT¢,(s) and, for j=2 by Lemma 4.1.5 it gets
Y2(s) = ", ()P, ()T = ¢, (s) Ce.
For j=3 it is obtained y3(s) = cT¢,(s)¢,(s)7C"c = ¢,(s)"C?c .
So, by induction write it as [26]
yI(s) = T (), (s)"CI72 = ¢,(s)"C;, where C; = €.

4.2 Shifted Legendre Orthonormal Polynomials
The Legendre polynomial of degree j is noted by P;(w) and it is characterized on

the interval (-1, 1). P;(w) might be created by the repeating the formula [27 — 30]
2j +1 j

j+1 " j+1

Py(w) =1, Pi(w) = w.

Presenting w= 2s —1, the Legendre polynomials are characterized on the

Piri(w) = Pi(w) — Pi—1(w) 1=},

interval (0,1) which might be called shifted Legendre polynomials P;"(s) and are

produced by utilizing the iterative formulae [27 — 30]

. 2] +1 . j . )
Pi(s) = j+—1(25 — DP(s) T _1(s), 1<,
Pj(s) =1, P{(s) =2s — 1.

The orthogonality relation is [27 — 30]

for p=i

1
f Pi(s)ds={ 2j+1 (4.10)
0

0 for p #j.
The analytical type of shifted Legendre polynomial P;’(s) of degree j might be
composed as [27 — 30] for

14



1

1 .
[ meE@es={zF1 TS (411)
0 0 for p#j.
Presenting the shifted Legendre orthonormal polynomials for
P(s); PA(s) = /2] + 1P (s) we have [27 — 30]
1 .
; ; 1 for p=j,
a a —
| mort@as={; o 7] (412
and
+1 .
Pa(s) - 2] + Z( 1)]+l (]l)' ()l')z l- (4‘13)

Any squared integrable function x; characterized on the interival (0, 1), can be

represented by a shifted Legendre orthonormal polynomials Pf‘(s) as[27 — 30]

o]

x(s) = Z ijjd(s).

j=0

From that the coefficients, x; are given by

1
xj = f x(s)P(s)ds, 0<}, (4.14)
0
if x(s) approximates by firstly (H+1) —terms ,it can write [27 — 30]
H
xy(s) = Z x,PA(s). (4.15)
j=0

which alternatively can be written in the matrix form[27 — 30]:

xy(s) = XTAy(s) (4.16)
with
Xo [Pg ()]
=" du(e inS(S)Jl_ (4.17)
N P (s)

4.3 Shifted Jacobi Orthonormal Polynomials
The Jacobi polynomials of degree j, indicated by P}“'p) w);(=-1,p=-1

characterized on the interval [—1,1], constitutes an orthogonal system regarding the
weight function [31 — 38]

15



z&P (W) = (1 —=w)S(1+w)P, e,
1
-1
where &;, is the Kronecker function and [31 — 38]

oGP 24P T (h + ¢+ DQ(h +p + 1)
e T RhH{Hp+ DRT(h+{+p+ 1)

A shifted Jacobi polynomial with degree j, that is represented by PT(g.‘p )(s) ;0 =
—1,p = —1 and characterized at interval [0, T]. It is created by the change of
variable w= ZT—S —1,i.e., 13.(5”’) (? — 1) = PT(S."’) (s). At that point the shifted Jacobi
polynomials form an orthogonal system with respect to weight function

Wf'p )(s) = sP(T — s)° with the orthogonality property [31 — 37]
T
fo PEP ()PP (9w (s) ds = L85, (4.19)

where [31 — 37]

16P) (Z)GPH @) _ TSHHT(h+(+ DIh+p + 1)
rh =\2 O T Qh+i+p+ DRI+ i+p+ D)

Presenting the shifted Jacobi orthonormal polynomials PT(F,;”) (s), where [31 — 37]
1

PSP (s) = —=P57 (). (4.20)
/L(C,p)
T,h
Thus, it has
! 5.p) »(.p) ©.p)
j PT'(j’p (S)PT,{h’,p (S)ZTc’p (S) ds = 6]h (421)
0

The shifted Jacobi orthonormal polynomials are built up from the three-term iterative
formula [31 — 37]

ORI (R L VORI A ONES (422)
with
o JTSHHT(C + DI(p + 1)

VEC+p+3T({+p+2)
JTSHPH30(¢ + 2)I(p + 2)

PEP(s) =

(C+p+2)s—T(p+1)), (4.23)
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where [31 — 37]

:(2j+(+p+2)\/(2j+Z+p+3)(2j+C+p+1)

H TJG+{+DG+p+ DG+ DG+ +p+1D
g_z(21'2+(1+p)(c+p)+21'(€+p+1))J(Zj+€+p+3)(21+c+p+1)
! Qj+i+pVG+I+DG+p+ DG+ DG+ +p+1)

- Qj+3+p+2J@+{+p+3)jG+{+pG+ DG +p)

S =

@2j+¢+p @ +T+p—DG+{+ DG +p+ DG+ DG +{+p+1)
From the shifted orthonormal Jacobi polynomials, PT(FJ.“’) (s) of degree j are given

by [31 — 37]

S Nj-h . ~ .
' £ T4+ (j + {4+ p+ DT (R + p + 1) — R)A!
Furthermore, this turn means [31 — 37]
PT(,zj'p)(O) _ —1D)/JQj+E+p+DI(G+p+ DG+ +p+ 1) (4.25)
JTEHPHT( + ¢+ DjIT(p + 1)
P(fP)(O)
_ (1)) JRj+{+p+Dp'TG+p+DQ(+e+{+p+1) (4.26)

JT2+ P T+ {+ DI+ {+p+ Dl(e+p+ DG —e)!
which is going to be of important later [31 — 37].
Assuming that x(s) is a square integralable function of the Jacobi weight function
zg’p)(s) in (0, T), then it can be expressed as shifted Jacobi orthonormal

polynomials as [31 — 37]

o]

x(s) = Z ijT(Fj’p) (s).

j=0

From that the coefficient x; presented by [31 — 37]

X = f Tz§<'P)(s)x(s)PT(§'P)(s) ds, j=01,.., (4.27)
0

If it approximates x; by the first (H+1) terms, then it can be composed

xy(s)= Z xI,,P(Z 2 (s). (4.28)

This on the other hand might be composed in a grid frame
17



xp(s) = XTI/)T,H (s)
with

X
X:<xgi>» lPT,H(S) = |/
o \

P (s)
P (s)

P (s)

).

(4.29)

(4.30)
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CHAPTER 5
THE USE OF CHEBYSHEV POLYNOMIALS FOR NUMERICAL
SOLUTIONS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS

5.1 Shifted Orthonormal Chebyshev Polynomial
The classical orthogonal Chebyshev polynomial denoted by {Tj (z);j =01,.. }

and whose degree is j over the interval [-1, 1], constitutes an orthogonal weighted

system [39]

| T Temommdw = g
-1

where w(w) = ﬁ 8 be the Kronecker function and

h, =—m, & =2, & =1, k>1.

In order to use the orthogonal Chebyshev polynomials to solve the problem defined
in [0,1], we assume the change of variable w = 2s — 1 to propose the shifted

Chebyshev polynomials, i.e. Tj(2s — 1) = Tj‘ (s) .Then the Chebyshev polynomials

form an orthogonal system with the Wight function w*(s) = ﬁ which satisfy the

orthogonality feature [39]

f Tk(s)’f"]-(s)w*(s)ds = §jhy. (5.1)
0

The transformation Chebyshev polynomials get the shape [37]

Tjsa(s) = 2(2s = DT; = Tj_1(s), jz1
with [39]
To(s) = 1, T,(s) = 2s — 1.

The clear format for analysis of 7;(s) with degree j is represented as [39]
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(+k—1)122
(G — k)! (2k)!

J .
) = ) (17 (52)
k=0
Introducing the shifted orthonormal Chebyshev polynomials
1 .
T (s); T (s) = —=T;(s),

=t
1
f T ()T (5w’ (s)ds = B (5.3)

and

j
I T P (O L
E@)—ng; R e e

(5.4)

Assuming that u(x) is a square-integrable function with regard to the shifted
Chebyshev weight function w*(s) in [0,1], then it can be shifted orthonormal

Chebyshev polynomials Ty (s) as

0

u(s) = z u Ty (5).

k=0

From that the transactions u; are given by [39]
1

Uy =] u(s)Ty(s)w*(s)ds, 0<k. (5.5)
0

Approximate u(x) by means of the shifted orthonormal Chebyshev polynomials
yields [39]

N

uy(s) = ) w4 Ti(s). (5.6)
k=0

That can be expressed in terms of the matrix shape [39]

uy(s)=UT2y(s), (5.7)

with
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Uy /Ték (s)

Uq T (s)
U= \uz ) Ay(s) = | TZ*(S)) (5.8)
tn T3(5)

5.2 The Numerical Technique
The shifted orthonormal Chebyshev polynomials are basis functions of the
operational matrix of fractional derivatives for approximating the solution of the

fractional optimal control problem [39]:

Minimize. ] = fszlp(x(s),u(s),s)ds, (5.9
such that
ax(s) + bD"x(s) = e(s)x(s) + f(s)u(s) + g(s). (5.10)

According to boundary conditions [39]
x(sp) =c, x(s;) =4, (5.11)

where

ab#0,s)<5s<s5,05y<1.

5.2.1 Shifted Orthonormal Chebyshev Approximation
The shifted —based orthonormal Chebyshev polynomials T}, (x) approximate x(s)
and u(s) as [39]

x(s)=XTay(s), u(s)=UTay(s), (5.12)

where series X and series U given [39]

() ()

Also, we expand e(s), f(s) and g(s) as [39]

e(S)ZET2y(s),  f()=FTy(s), g(s)=GTy(s), (5.13)

where E, F and G are be written as [39]
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and
1
e =f e($)T{ (s)w*(s)ds, t=01,...,N,
0
1
fi= f f(s)Ty (s)o*(s)ds, i=01,..,N,
0
1
gi = f g(S)Ti*(S)(D*(S)dS; 1= Olll 1N (514)
0

Using the relations (5.12) and (5.13), the dynamic constraint (5.10) is able to be

approximated as [39]

aD(XT2y(s)) + bDY(UT2y(s))

= (ET2an())(XT2n(s)) + (FTan () (UT2N(s)) + (GT2N(s)).

That can be reduced using relation the Caputo fractional derivative of order the

shifted orthonormal Chebyshev polynomials vector writes as
with the matrix operations inside DY2y(s) = D®2,(s)

aXTDWa,(s) + bXTDM2,(s)
= ET2, ()L ()X + FT24 ()2 (s)U + GTay (). (5.15)

Let that [39]
ET2y ()35 ($)=2L ()RT, FT 2y (s)AR (s)=2R (s)LT, (5.16)

where R and L are Nx N matrices. For illustrating R and L, it might rewrite equation
(5.16) as [39]

N

> aTi@T ) = ) RyTi(s),
k=0

k=0
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N N
z T (S)T7 (s) = Z L Ti(s),j = 1,2, .., N. (5.17)
k=0 k=0

Multiplying both sides of equation (5.17) by T} (s)w*(s) and integrating from 0 to 1
yield

,Z:oek fo T3 ()T ($)T7 ()" (s)ds = kZORk,- fo T ()T ()" (s) ds,

PN RACIHCIAOIIOLE
k=0 0

j=1,..,N. (5.18)

~

N 1
> g j TET o (S)ds, i
k=0 0

So, using (5.3) are given [39]

N 1
Ry; = z ex ] Te ($)T; (s)T; (s)ds,
k=0 "0

N 1
L= & j T ST ST (S)ds, ij=1,..,N, (5.19)
k=0 0

By equation (5.16), rewrite equation (5.15) as [39]
aXTDW2a,(s) + bXTDW 1y (s) — AL (s)RTX — AL (s)LTU — GTay(s) = 0,
(aXTDW + bXTDW — RTX — LTU — GT)2y(s) = 0. (5.20)

The Caputo fractional derivative for the function f(s) is written as [39]
DY(Af (s) + ug(s)) = ADYf(s) + uD” g(s). (5.21)

Using equation (5.20), the dynamical system (5.21) is reduced into a linear system of

algebraic equations [39]

aXTDW + pXTDW —RTX — [TU — GT = 0. (5.22)
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In addition, it can be approximated the boundary conditions [39]

x(sg) =¢, x(s;) =d, wherea,b+ 0,5y <s<s5,0<y<1,

as

x(so):XTDN(So); x(51):XT3N(51) (5.23)
or

c— XTDN(SO):O, d— XTDN(Sl):O. (5.24)

5.2.2 Legendre -Gauss Quadrature Method
This time, using Equation (5.12) for approximating the performance index [39]

%012 [ p (), (U2 ). ) ds. (5.25)

So

In general, the previous integral cannot be computed exactly, in this case, it can use

the Legendre-Gauss quadrature formula [39]

first, we suppose the change of variable

Sl - SO Sl + SO
= 3 ) 5.26
s 5 $ + > (5.26)

That will be used for transforming the integration in the performance index (5.25)

into another one in the [—1,1] interval .Then, the equation (5.25) is equivalent to

JIX, U]= (51 ; SO) f_llﬁ(s‘)ds, (5.27)

where
P =p(((3®). (73v®).8),

with

Sl_SO ‘+SO+51>

() =2
W () =3y (F50s + 22
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Also, one can compute the integration in equation (5.27) by employing the Legendre-
Gauss quadrature rule as [39]

N
J01= (F522) ) 50w, (5.28)
r=0

where wy ,,0 < r < N,and sy,,0 < r < N, are the Christoffel numbers and zeros

of Legendre-Gauss quadrature respectively.

5.2.3 Lagrange Multiplier Technique

Here, there is a need to merge the linear algebraic equations derived as of the
dynamical system (5.22) with the boundary conditions (5.24) inside the performance
index at Legendre-Gauss quadrature rule as

N
Jx U1 = (252) Y p©mn,
r=0

therefore, the Lagrange multiplier method can be applied. Let [39]

]* [X, U, U1, Uz, ,U3]
=J[X,U] + (aX"D® + bX"DW) — RTX — L'U — GT)uy + Y,
+ ZT us. (5.29)

Here
YT =[x, — X"y (s0),0, ...,0],
7T = [x; — XT2(5,),0, ... 0], (5.30)

and w4, u,, us denote the unknown Lagrange multipliers that are able to be expressed
as [39]

JZ5T0) HUzo Uso
2551 HUzq HU3zq

H1 = H12/. Hz = ﬂzz/, H3z = .“32/- (5.31)
#iN l«léN liéN

The important conditions for the optimality of the performance index (5.9) subject to

dynamic constraints (5.10) and (5.11) are
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aJ* aJ" aJ" o] aJ*

=0, =0, =0, =0, = 0. 5.32
0X au aduq dau, s ( )
Here, aa;* = 0 represents the system zf =0,i =0,1, ..., N. The above-mentioned

system is able to be solved for X, U, uy, u,, ps using every standard iterative

technique .Thus, X, U, iy, u, and us given in (5.12) and (5.31) can be calculated.
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CHAPTER 6
THE USE OF LEGENDRE POLYNOMIALS FOR NUMERICAL
SOLUTIONS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS

A fractional differential equation can be solved numerically for example, by using
the finite difference method, and discretization technique [41]. The first order
derivative of a continuous function f(t) can be approximated by using the forward
finite difference method as following [41]

fEe+h) - f(®
h

fo = +0(h),

where h is a small increment of the variable t. The left side Caputo fractional
derivative of f(t) is defined by [41]

1 t dm
DO = Fomgy | = D" T f @
where the fractional derivative order is y € R and given within the range
m—1<y<m, m € N.

For a=0 and m=1, the left side Caputo fractional derivative is [41]
DY) = s [ (-2 e f
oD f rl-y)J, z deZ “

The variable t is discrtized time such that the time increment h = %” , Where ty is the

upper limit of the variable t and N is the number of discrete points of vector t,,. (for

more details refer to [41] ) .

6.1 Operational Matrix for Fractional Derivatives
Theorem 6.1.1 [27 — 30] The fractional derivative of order v from shifted Legendre

orthonormal polynomial vector Ay (s) given by [27 — 30]

DYAy(s) = DyAy(s), (6.1)
where
Df(y) = F(hl—v) foy(y — v 1fW()ds,h—1 < v < h. (6.2)
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The function f(y) in the Caputo logic, while D™ is the (H + 1) x (H + 1)

operational matrix of fractional derivative of order v and is defined by

0 0 0 0
0 0 0 0
v, (h,0) v, (h1) v, (h2)y,(hH)
Dwy = : : : t )
v,(00) v, 1) v,G2) v, H)
v, (H,0) v, (H,1) v, (H 2y, H H)
where
v, (6, ))
(—DHPH*I(i + )1 (1 + p)!
‘J(ZPH)(Z‘“)ZZ@ PTG —v+ D -G +1—v+ D &P

Proof [27-30] Utilizing (4.13) and (6.2), the fractional derivative of order v is shifted
Legendre orthonormal polynomials Pid(s) is given by [27 — 30]

vpa _ . \ _1\i+j (i+j)! voj
DYPA(s) —\/21+1;( 1) ]—(i—j)!(/'!)zD st

gy A3V 4 (i +)! -
_\/zl+1;(—1) S Tt eyt (6.4)

approximated s/~¥ by H+1 terms of shifted Legendre orthonormal polynomials
P£(s) as [27 — 30]:

H
-V _ Z H'jpppd(s)' (65)
p=0
where y;,, is given like in Eq. (6.3) with y(s) = s/~ , then [27 — 30]

1
Ujp =j sj_”de(s)ds =
0

+1 (p+l)' ' +j-v
e Z( v G,

+1 (p+l)!
\/ZPT 0( P (P-DIAN2(j—v+i+1) (6.6)
Employing Eqgs.(6.5)-(6.6)
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i H
DUPI(s) =VAFT Y ) (D) _].)U(._f;d)_ )

j=np=0
H
= PR, (6.7)
p=0
where (i, p)is given by Eq.(6.3). In the end, one can rewrite Eq.(6.7) in a vector
form as
D?PH(s) = [y, (i, 0), (i, 1), e, w, (i, D), oo, v, (§, )| Ag (s). (6.8)

Equation (6.8) completes the proof.

6.2 The Studied Model

Consider the dynamic system that is analytically studied in [40]

x(t) + D'x(t) = u(t) + t2 (6.9)
The response x(t) of the fractional order system in Eq. (6.9) can be obtained
numerically for a given input u(t). This can be accomplished by applying the
discretization technique that is described in the previous section. The first term of the
left hand side of Eq. (6.9) can be expressed by means of the forward finite difference
method as follows [39]

_x(t+h) —x(®

(0 .

+ 0(h). (6.10)

Applying the aforementioned discretization of the variable t, expressed as
follows [41]

n-1
1 z ti+1 ., d
gDZ/X(t) = I_'(l——]/)jzo jtj (t—2) YEX(Z)dZ. (6.11)

The forward finite difference is utilized to express the first derivative in Eq. (6.11)

generate the following [41]
n-—1
1 L x(tj41) — x(5)
cnY — AV Jj+1 ]
SDIx(6) = 77 —V)]ZOL (t—2) [ - ldz. (6.12)

Solving the integral in Eq. (6.12) gives
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DY x(t) = 1 fx(tjﬂ)—x(tj) {_ [(t )
0+t - F(l _ ]/) & h n j+1

~(ta—t)" "]} (6.13)
Equation (6.13) can be rewritten as [41]
DY x(t) = Lf[(n DV —(m—j— D' x(t41) — x()].  (6.14)
‘ re-n4 ! !

Substitute Eq. (6.13) and Eq. (6.14) into Eq. (6.9) to obtain

X(turs) —x(6) K
o Te-n4

= u(ty,) + t2. (6.15)
By applying the initial condition x(t,) = x, and for given input function u(t) the

n-1

[(n=N*Y = (n—j = D" ] [x(tj41) — x(2;)]

response of the system can be numerically obtained.

6.2.1 Numerical Result 1
The response of the dynamic system that given by Eqg. (6.9) is obtained for different

values of the fractional order y and the given input u(t) = t%e®¢; where b €

R. Figure 1 shows the system responses for y = 0.35 and y = 0.85 . The solution

verification is also illustrated in Figure 1 by comparing the response of classic

integer case with the fractional system response for y = 1.
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Fractional Vs. integer case
0.5 T T T T
———fractional y=1  |: : ; : ; !

0.45| —€ —integer case ........ ........ ......... ........ ........ ...... -
~—— Fractional y =0.35 | : : : : :
0.4 | ——— Fractional y=0.85 |

0.35

0.3

0.2

0.15

0.1

0.05

Figure 1: The solution verification and the responses of the system in Eq.(6.9) for
v=0.35 and y= 0.85.

6.2.2 Numerical Result 2
Consider the dynamic system that was studied in [40]

%X(t) + %Dyx(t) = —x(t) + u(t). (6.16)
The procedure that is used to obtain the response of case study 1 can be used to
obtain the response x(t) of the fractional order system in Eq. (6.16) for a given input
u ().

The response of the dynamic system that given by Eq. (6.16) is obtained for different
values of the fractional order y, the given input u(t) as[40] parabola, and initial
value x(t,) = x,.Figure 2 shows the system responses for y = 0.15 through
y =0.75.
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X(t)

Figure 2: The system in EQ.(6.16) responses for y= 0.15 through y= 0.75.

6.3 Shifted Legendre Polynomials
Assume that the Legendre polynomial of degree r is denoted by L,.(w) (interval

definition [-1, 1]).Then L,.(w) can be generated by the recurrence formulae [40]

2r+1
r+1

Lo(w)=1,Li(w) =w.

r
Lr+1(W) = WLr(W) - H__lLr(W)r 1< T,

The shifted Legendre polynomials L;.(s) is defined in the interval [0, 1] and is

generated using the following recurrence formula [40]

. 2r+1 . roo
Lyyq(s) = —— (2s = DL3(s) — H_—lLr—l(S): 1<,
Ly(s) =1, Li(s) =2s—1.
The orthogonality relation is [40]
1 1 fori —
f Li(s)L;(s)ds = {—Zr 1 T (6.17)
0 0, forj # r.
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We can write the explicit analytical form of the k degree shifted Legendre

polynomial L;.(s) as [40]

|
L*(s)—Z( 7 4 ;;%02 3 (6.18)

Introducing the shifted Legendre orthonormal polynomials L;.(s), Ly.(s) =

V2r + 1L;.(s), we have [40]

1 . . (1 forj =,
fo LeL©ds ={; o = (6.19)
and
r N
Li(s) =V2r + 12(—1)T+i%si. (6.20)
i=0

Let

Py = Span {Lj(s),L;(s), ..., Lyy(s)} and q is an arbitrary element at L? [0, 1].
Because Py is a finite-dimensional vector space, g has the single best approximation
out of Pylike gy € Py such that [40]

Vg€ Py, llg —anllz < llg — gll, where |lgll; = (g, ).
Every square integral function q(s) definite on the interval [0, 1] might be expressed

in terms of shifted Legendre polynomials L;.(s) as [40]

a(s) = ), L (s),
r=0
and the coefficients g, give via [40]
1
qr = j q(s)Ly(s)ds 0 <. (6.21)
0
If we approximate q (s) by the firstly (N+1) terms, we can write
M
qn(s) = Z qrLy(s), (6.22)
r=0

that alternatively might be written in the matrix shape [40]

an(s)=QTQy(s) (6.23)

by means of
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fo Lo(s)

o= aue =19 ) (6.24)
i W)

the fractional derivative of Q, (s)of order vas can be written as

D¥Qu (s)=DWQ,(s), (6.25)

where D® is the(N + 1) x (N + 1) operational matrix of fractional derivatives of
order v and is defined by Lotfi et al [40]
/ Dy4 Dy, Dyz - Div+1y
W — D:21 D:22 D:23 - Dz(,:vﬂ) ’ (626)
D(N+1)1 D(N+1)2 D(N+1)3..'. D(N+1)(N+1)
where
Dij = Bi 1 1, 1<ij<N+1.

and

By = Qi+ 1D(2j+ 1),

S (~DHTH( 4 ) (1 4 ))!
ZZ (=M Tr—-v+DG-D!'IN2(r+1l-v+1)

r=11=0

6.4 The Numerical Technique

In this section, we use the operational matrix of the fractional derivatives to solve the
following problems by means of the properties of the shifted Legendre orthogonal
polynomials [40].

min/ = %jSI(q(s)xz(s) + r(s)uZ(s))ds, (6.27)
Limited by the dynamical system [40]

nyx(s) + n,DVx(s) = a(s)x(s) + b(s)u(s). (6.28)
x(sp) = xo, x(s1) = xq, (6.29)

wheren;,n # 0,50 <s<s;,0<v<1.

6.4.1 Shifted Orthonormal Legendre Approximation

Now, we approximate x(s) and u(s) by the shifted Legendre orthonormal

polynomials L} (s) as [39]

x(s)=PTQy(s), u(s)=YTQy(s), (6.30)

where P and Y are indefinite coefficient matrices that are able to be written as [40]
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Po Yo
P = P:1 Y= }’:1
Py Yn
due to (6.30), approximate the performance index W=W[P,Y] as

wip, Y]:% f (4P ) + 1Ty ) ds. (6.31)

0

Consequentially,
a(s)=ATQy(s), b(s)=B"Qy(s), (6.32)

where A and B are famous coefficients matrices that might be written as [39]

ao bO
a=(%), B=[")
aN b.N

and

1
a; = .]_ a(s)L;(s)ds, i=01,.., N,
0

1
b, = f b(s)L;(s)ds, i=01,..,N. (6.33)
0

For general functions a(s) and b(s), it is hard to calculate the earlier integrals
precisely. Using the Legendre—Gauss quadrature formula, approximate the

coefficients a;and b; as [40]
N

4= 2 ai(swe)li(swe)@ne  i=01,..,N,

e=0

N
bi= Z bi(swe)Li(sne)@ne i =01, ..., N,
€=0

where sy, 0 < € < N, are the zeros of the Legendre Gauss quadrature in the interval
(0,1), with sy ¢, 0 < € < N being corresponding Christoffel numbers. Due to (6.25),
(6.30) and (6.31), the dynamic constraint (6.28) be able to be approximated like [40]
n,PTDMWQ, (s) + n,PTD®Qy (s)

=(4TQu () (P (5)) ) + (BT () (YT (5)))

nPTDWQL(s) + ny,PTD®Qy (s) — ATQp (s)QK ()P — BTQp (s)QL (s)Y

=0 (6.34)

Assume ATQy (s)0% (s) and BT Qy(s)Q% (s)are written in vector forms like [40]
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ATQy($)QN(5) = [fo(5), f1(5), -, fiy ()]

BTQxn(5)QN(5) = [ny(5),n.(5), ..., ny(5)], (6.35)
where

fi(s) = fioLo(s) + fuLix () + -+ fn Ly ()

hi(s) = hyoLy(s) + hLi;(s) + -+ + hiy Ly (s), 0<i<N, (6.36)
and [40]

fi = fo f(S)L()ds,

1
Ry =f hi(s)Lj(s)ds, 0<ij<N. (6.37)
0

So, we are able to write
ATQN ()N ()=QF (s)FT,

BTQy () (s)=Qy(s)HT, (6.38)
where [40]
F = [ﬁj]OSi,jSN' H = [Eij]OSi,jSN . (639)

Employing (6.38) in (6.34), one can
n PTDD A, (s) + n,PTD®Qy(s) —

QL (S)FTP - QL (s)HTY = 0. (6.40)
or
(nPTDW + n,PTD® — PTF — YTH)Qp(s) = 0. (6.41)

By virtue of (6.38), the dynamical system (6.28) is changed to the following linear
system of algebraic equations:

n,PTDW + n,PTD®W — pTF —YTH = 0. (6.42)
Using (5.54), one can write

x(SO):PTQN(SO) ;X(51):PTQN(51) (6.43)
or

xo — PTQpn(sg) =0 , x; — PTQu(s;) = 0. (6.44)
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6.4.2 The Lagrange Multiplier Technique
Let [40]

H*[P,Y, 71,25, A5]
= H[P,Y] + (n,P’DW + n,PSDW) x Ay + V52, + Z543, (6.45)

where
VS = [xO - PS‘QN(SO)ﬁO ...,O],
ZS = [Xl - PQN(Sl),O ...,O], (6-4‘6)

and 14, 1,, 15 are unknown Lagrange multipliers that can be expressed as [41]

Af = [A10, 211, s A1 ],

/1“28‘ = [A20, 421, -, Aan ],

A3 = [A30, A3 oorr A3n ] (6.47)
The current extreme conditions are

oH* oH* oH* oH* oH*

_ 9 _. = = 0. 6.48
ap - Y%y =% =%, =%, (6.48)

where Z’;f = 0, is the system ‘ZHST =0, i =0,1,..N. All equations in this part can be

i Di

solved for P,Y, A4, A,, A5 using the Newton iterative method.Consequently,
P,Y, 21,4, and A3 given in (6.30) and (6.47) can be calculated.
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CONCLUSION

The fractional calculus techniques were given intensively to discuss the optimal
control problems due to their huge applications in science and engineering.

In this thesis we presented the basic definitions and theorems of fractional calculus.
After that we discuss the fundamentals of fractional optimal control problems
formulation. Also we discus the description of some orthonormal polynomials and
more on properties of Chebyshev polynomials. Then, the numerical schemes based
on the use of these special polynomials are presented for obtaining the approximate
solutions of fractional optimal control problems.

Finally, two original examples were discussed in details and results are simulated
Figure 1 and Figure 2.

We hope that this thesis will be utilized by researchers who would like to do research

in the area of fractional optimal control with applications.
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