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Firstly, plane phase distribution sources and receivers with multi-values of 

topological charge were evaluated in this study. This evaluation was implemented in 

a computer environment. It is expected that our results will be beneficial to optical 

links incorporating the use of the Gaussian vortex, Elliptical Gaussian vortex, and 

Laguerre-Gaussian vortex beams. Computer modeling of the phase distributions of 

vortex beams was investigated by numerical simulation of propagation through free 

space. This work will help to know the phase distribution receiver by changing the 

numbers of the topological charge and to estimate those receivers’ messages in the 

photodetector device. Secondly, a scintillation index (SI) formulation was carried out 

for the Gaussian beam on the propagation length in a turbulent atmosphere 

depending on the generalized beam formulation of the field. The scintillation 



v 

methods were compared in order to determine the best method that describes the 

phenomenon. Three types of scintillation methods were examined: the Rytov, 

Huygens-Fresnel and Random Phase Screen. From our graphical outputs, it was 

observed that the Random Phase Screen exhibits an acceptable scintillation index 

value. Thirdly, the results indicate that the topological charge of the Laguerre-

Gaussian beam has a greater effect than the degree of the polynomial on the SI 

values. Moreover, if the polynomial degree is fixed, the SI has lower values in cases 

of a topological charge increase. Therefore, for a good state of transmission, it is 

recommended that the degree of the polynomial be made equal to 1 and the 

topological charge numbers equal to 0, 1, 2, 3, 4, 5 and 6. Fourthly, the Gaussian, 

Elliptical, Laguerre and Bessel vortex beams were selected and measurements of the 

SI were computed for different values of the n and m parameters for their beams. 

Then, it was found that the Elliptical beam with topological charges equaling 7 and 3 

was best. Fifthly, the Gaussian beam and Gaussian vortex beams were chosen and 

measurements of the scintillation index were computed for the different values of the 

parameters of the Gaussian vortex beams. Then, it was shown that the Gaussian 

vortex beams with the degree of the polynomial and the topological charge equaling 

values of n = 6, m = 3 and n = 5, m = 6 were better than the Gaussian beam. Despite 

the increasing propagation distance, the SI values of the Gaussian vortex beam 

remained between 0.04 and 0.14 with an increase in this propagation distance 

compared with the Gaussian beam, the value of whose scintillation index will 

increase with an increase in the propagation distance. Sixthly, receiver intensities for 

the Laguerre-Gaussian beam in free space are affected by changes in the polynomial 

parameters of the Laguerre beam. It becomes evident that when the degree of the 
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polynomial and the topological charge parameters are the same, the receiver 

intensities of the Laguerre-Gaussian beam become more separate. 

Finally, we compute the Symbol Error Rate for the Gaussian vortex beam for 8-Mary 

against a structure constant, and it appears that the Symbol Error Rate increases with 

an increasing structure constant parameter. The prime idea of this study is that 

distribution sources and receivers are more beneficial to optical channels, and the 

Random Phase Screen method is an acceptable method for computing the 

scintillation; then the Gaussian vortex beam is better than the Gaussian beam, and we 

can change the values of the topology parameter and polynomial degree of the 

Laguerre-Gaussian beam or other beams, such as the Gaussian vortex beam, to 

decrease the value of the scintillation index. In the end, the symbol error rate is 

increased by increasing the structure constant of turbulence. 
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ÖZ 

UZUN BAĞLANTI MESAFELİ SERBEST UZAY İLETİŞİM KANALINI 

GÜÇLENDİRMEK İÇİN DALGALI ATMOSFERDE ZAYIF VE GÜÇLÜ 

IŞINLARIN POTANSİYEL AVANTAJLARI ÇALIŞMAS 

ALI ABDULRAHMAN DHYEAB AL-SAJEE 

Yüksek Lisans, Elektronik ve Bilişim Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Halil T. Eyyuboğlu 

Tammuz 2018, 112 sayfa 

Bu çalışmada, ilk olarak, topolojik yükün çoklu-değerlerinde düzlemdeki faz dağıtım 

kaynakları ve alıcıları değerlendirilmiştir. Bu değerlendirme bilgisayar ortamında 

uygulanmıştır. Bulgularımızın, Gaussian vortex, Eliptik Gaussian vortex ve 

Laguerre-Gaussian vortex ışınlarının kullanılmasıyla ilgili optik bağlantılarda yararlı 

olması beklenmektedir. Vorteks ışınlarının faz dağılımlarının bilgisayar 

modellemesi, serbest uzay boyunca yayılımının sayısal simülasyonu ile 

incelenmiştir. Bu işlem, topolojik yükün sayılarının faz dağılımı alıcısında 

değişiminin bilinmesine ve bu alıcıların mesajlarının fotodetektör cihazında tahmin 

edilmesine yardımcı oldu, ki bu çalışmanın ilk kısmıydı. İkinci olarak, alanın 

genelleştirilmiş ışın formülasyonuna bağlı olarak dalgalı bir atmosferde yayılma 

uzunluğu üzerindeki Gaussian ışını için bir sintilasyon indeksi formülasyonu 

gerçekleştirilmiştir. Sintilasyon indeks yöntemleri, fenomeni en iyi nasıl 

tanımlayacağımızı seçmek için karşılaştırıldı. üç tip sintilasyon indeksi yöntemi 

incelendi: Rytov, Huygens-Fresnel ve Rastgele Faz Ekranı. Grafiksel 
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çıktılarımızdan, Rastgele Faz Ekranının kabul edilebilir bir sintilasyon indeksi değeri 

sergilediği gözlemlenmiştir. Üçüncü olarak, sonuçlar, SI değerleri üzerinde, 

LGVB’nin topolojik yükünün (m) polinom derecesine (n) göre daha büyük bir etkiye 

sahip olduğu ve topolojik yükün (m) değiştiği ve polinom derecesinin (n) 

sabitlendiği durumlarda, SI’nın daha düşük değerlere sahip olduğunu göstermektedir. 

Bu nedenle, iyi bir iletim durumu için, polinom derecesinin n = 1’e eşit olması ve 

topolojik yük sayısının gibi, 0, 1, 2, 3, 4, 5 ve 6’ya eşit olması önerilmektedir. 

Dördüncüsü, Gauss, Eliptik, Laguerre ve Bessel Vorteks Işınları seçildi ve SI’nın 

ölçümleri, n ve m parametrelerinin farklı değerlerindeki ışınları için hesaplandı. 

Daha sonra, topolojik yükü (m)’in 7 ve 3’e eşit olan Eliptik ışınının en iyisi olduğu 

bulunmuştur. Beşinci olarak, Gauss Işını ve Gaussian vortex Işınları seçilmiş ve 

Sintilasyon indeks ölçümleri GVB’nin (n) ve (m) parametrelerinin farklı değerleri 

için hesaplanmıştır. Daha sonra, polinom derecesi ve topolojik yükü eşitleme 

değerleri 6n  , 3m   and 5n  , 6m   olan GVB’nin, GB’den daha iyi olduğu 

gösterilmiştir. Her ne kadar artan bir yayılma mesafesi olsa da, GVB’nin SI değerleri 

0.04 ile 0.14 arasında kalmıştır ve bu yayılma mesafesi GB’deki SI değerlerine 

kıyasla artmaktadır. Altıncı olarak, serbest uzaydaki LGVB için alıcı yoğunlukları, 

Laguerre ışınının polinom parametrelerindeki değişikliklerden etkilenmektedir.      

(n) ve (m) parametrelerinin aynı olduğu durumlarda, LGVB’lerin alıcı 

yoğunluklarının daha ayrık olduğu ve bunun da düşük Sembol Hata Oranı değerine 

neden olacağı açıktır. Son olarak, 8-Mary için türbülans yapı sabiti ‘ye karşı Laguerr 

Gaussian vortex ışınları için Sembol Hata Oranı hesaplanmaktadır ve türbülans yapı 

sabiti parametresinin artırılmasıyla Sembol Hata Oranı arttığı açıkça görülmektedir.         

Bu çalışmanın önemi, dağıtım kaynakları ve alıcıları optik kanallar için daha faydalı 

ve RPS yönteminin, bilgisayarlı Sintilasyon indeks hesaplama için kabul edilebilir 
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bir yöntem, Gaussian vorteks ışınının Gaussian ışınından daha iyi olduğunun ve 

sintilasyon değerlerininin düşürülmesi için Gaussian ışınındaki veya diğer ışınlardaki 

topoloji parametresi (m) ve polinom derecesi (n) değerlerinde değişiklik 

yapabileceğimizin ve son olarak sembol hata oranı, türbülans yapı sabiti 2

nC ’nin 

artışı ile artabileceğinin gösterilmesindedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anhtar Kelimeler: Türbülans; Faz dağılımı; Sintilasyon indeksi (SI); Topolojik 

Yük; Sembol Hata Oranı (SER).  
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

1.1 Background 

The Navy in America depends intensely on radio frequency (RF) correspondence 

systems and this dependence creates two major operational constraints: bandwidth, 

and absence of possibility, the ability in cases of jamming or identification by 

enemies [1, 2]. One conceivable corresponding answer for current RF systems is the 

use of free-space optical (FSO) communication systems. Free-space optical 

communication links have high bandwidth and are highly directional, which makes 

them difficult to identify or jam. Optical free-space communications have the 

particular important points when compared with microwave systems and 

conventional radio frequency in terms of security and the capacity of transmission of 

information [3]. Therefore, interest in optical communication channels has been on 

the rise for the last 45 years [4]. Additionally, there has been a considerable measure 

of enthusiasm throughout the years in the likelihood of utilizing optical transmitters 

for satellite communications. In spite of a large number of the early formative 

projects ending because of financing reductions, there was recharged enthusiasm in 

the 1990s for the utilization of optical transmitters for correspondence channels 

interfacing ground/airborne-to-space or space-to-ground/airborne information links 
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through the atmosphere [5, 6]. The atmosphere alludes to the zone surrounding the 

surface of the Earth to a distance of a few hundred kilometers, and it is composed of 

numerous elements, principally nitrogen and oxygen, and compounds including 

water, carbon dioxide, carbon monoxide, nitrous oxide and ozone. These particles 

affect the transmission of an optical wave by scattering and absorbing it and 

changing its refractive index. Different layers of the atmosphere show one kind of 

temperature, pressure, and density characteristics, which assume an essential part in 

the refractive index. The absorbed radiation is one of the major functions of the 

atmosphere, and electromagnetic radiation in the atmosphere is weakened at visible 

and infrared (IR) ranges due to absorption and scattering. Both absorption and 

scattering are deterministic impacts which can be anticipated, in light of an 

assortment of atmospheric conditions, for example, latitude, altitude and 

meteorological range. 

The most injurious impacts of the atmosphere on a propagating laser beam are for 

the most part caused by small random temperature fluctuations which are shown as 

variations in the index of refraction. The cascade theory of turbulence, attributed to 

Kolmogorov, depicts turbulent air movement as a set of eddies, which are turbulence 

cells formed by pockets of air with a constant index of refraction ranging in scale 

and size from the inward size of turbulence 
0( )l  to the large size of turbulence 

0( )L

(Dorn 2001). In the layer at the surface up to around 100 meters, the outer scale is 

accepted to develop perpendicularly with the height over the ground, while the 

inward scale is an insignificant number of millimeters close to the surface (in spite of 

the fact that it can be as large as a few centimeters in the upper regions of the 

atmosphere). As they are affected by inertial forces, large eddies separate into 
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smaller eddies, shaping a series of scale sizes between
0( )L and 

0( )l  known as the 

inertial range. Vortices smaller than
0( )l  are thought to be in the dispersal extent. In 

spite of the fact that the cascade theory alludes to changes in speed, the turbulence 

prompted by the speed of the wind causes a non-stop blending which brings 

refraction fluctuations. The index of refraction fluctuations is only caused by 

temperature variations resulting from this mixing. All fluctuations occur in the 

visible and near infrared areas of the spectrum. The execution of a laser radar 

(LADAR) or lasercom system can be essentially decreased by turbulence-induced 

scintillation coming about because of beam propagation through the atmosphere [6]. 

In particular, scintillation can lead to power losses at the receiver side and in the long 

run to a fading of the received signal [6]. Optical turbulence is caused by the 

arbitrarily changing refractive index along the path of propagation, and it causes a 

distortion in the optical wave [3]. The refractive index structure parameter, 2

nC  is 

adequately steady in the instance of horizontal propagation paths; however, it is a 

function of altitude in the case of vertical or inclined paths, and it is thought to be the 

most basic parameter along the propagation path in describing the impacts of 

atmospheric turbulence [7]. In the case of plane or spherical waves, which are 

limiting cases of the Gaussian beam, the Rytov variance, 2 2 7/6 11/6

1 1.23 ,nC k L  which 

represents the irradiance fluctuations associated with an unbounded plane wave, 

determines what we consider to be weak 2

1( 1) , moderate, or strong 2

1( 1)   

fluctuation conditions. 2

nC  is the structure constant of the index of refraction, 

2 /k   , is wave number, L the distance of propagation, and ( ) is the 

wavelength. As indicated by Huygens’ Principle [8], all the subwaves at a specific 

distance contribute to the aggregate electric field at a greater propagation distance. In 
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this manner the further the wave propagates, the more distortion it endures. 

Additionally, these random phase velocities obtained by the electric field prompt 

random changes in beam direction and intensity fluctuations (scintillation). Apart 

from very dispersed particles, such as rain drops or snow flakes, scintillation is the 

most severe limitation to system performance in optical communications, such as a 

binary communication channel. It can represent the propagation in turbulence with a 

model such as the Random Phase Screen Model, for this method, two new steps are 

introduced: (1) Some random phase screens, say sN , must be placed between the 

source and receiver planes in order to model the atmospheric turbulence. The 

random phase distributions on these screens are to be in proportion to the 

atmospheric power spectral density function. (2) A number of realizations (runs), say 

RN , must be made to approach the averaged analytic result. The capacity to 

compensate for these impacts is of extreme significance to optical systems designers. 

Beforehand, plane wave, spherical wave or major Gaussian beams were dealt with in 

a large portion of the studies [9]. As of late, optical beams with singularity points or 

lines where the phase or amplitude of the field is undefined or changes or changes 

suddenly have drawn growing interest. In this thesis, we firstly determine the phase 

distribution for transmitters and receivers for different types of vortex beams that 

will be implemented. Secondly, we intend to make a comparison among the four 

types of computation of scintillation index methods, such as Rytov, Huygens-Fresnel 

and Random Phase Screen for the Gaussian beam. Thirdly, we build up the 

numerical modelling capacities to explore the higher request properties of vortex 

beams propagating through a turbulent atmosphere and we make comparisons with 
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the Gaussian beam and Gaussian vortex beams for the first time. Finally, we 

compute the Symbol Error Rate (SER) for Laguerre-Gaussian vortex beams. 

1.2. Motivation and Objectives 

The free-space optical laser communication system provides an attractive alternative 

to radio frequency (RF) systems because of its larger bandwidth data, higher antenna 

gain, higher reception apparatus, smaller component sizes and antenna, and lower 

component costs of optic systems [10, 11]. They have been broadly utilized as a part 

of numerous applications, such as space communications, impermanent system 

establishments, additional security items for important fiber links, flying-machine-

to-air-ship interchanges, last-mile arrangements and military applications [12, 13]. 

FSO communication systems, in spite of their promising focal points, are extremely 

influenced by climatic events, such as rain, haze and so on. Consequently, a large 

portion of the investigation concentrates on the accessibility of FSO systems under 

poor weather conditions. An FSO interface is seriously influenced by the physical 

medium of the channel, such as the growth of trees and the construction of new 

buildings. Consequently, future developments through the communication interface 

method should be precisely considered. Receiver and transmitter alignment 

constraints become dependent on building movements. Scintillation: As varying the 

temperature of the atmosphere increments, diverse air atoms from different media 

(house tops, ground, etc.) are warmed in an irregular manner causing fluctuations in 

the refractive index of the atmosphere in a period subordinate structure, which is 

called scintillation. Scintillation shows up as power fluctuations on the receiver side 

[14]. This study has an alternative approach to reducing the effect of scintillation by 
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selecting different types of vortex beams, and examining the scintillation behavior 

for each one. 

1.3. Problem Statement 

Free-Space Optical Communication (FSOC) can potentially provide high data rates 

as well as secured and license-free transmission. However, it is very helpless in 

atmospheric turbulence. This study researches the impact of atmospheric conditions 

on FSO systems to improve its achieve ability in hard conditions, which is the main 

objective. The specific objective of this research is to investigate attenuation caused 

by scintillation effects in Free Space Optics using statistical models and to study 

different light beams in order to choose a suitable one. 

1.4. Thesis Outline 

This thesis contains eight chapters. All the necessary information about the Free 

Space Optic, atmosphere turbulence, scintillation, symbol error rate are introduced. 

Chapter 1 is an introduction to the dissertation and its motivation and objectives. 

Then, the chapter presents an outline of the thesis. 

Chapter 2 presents a literature survey. 

Chapter 3 presents an introduction to the matrix optics approach with definitions of 

the Ray-Transfer Matrix and ABCD Ray-Matrix using Cartesian coordinates, 

including the paraxial approximation for the ABCD matrix and scintillation index 

using the Huygens-Fresnel Integral. 

Chapter 4 presents the computation of the scintillation index equation using the 

Rytov method. The Wave Equation is explored to deduce the Born approximation, 
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which will determine the first order of the perturbation field 
1( )U R  and higher-order 

perturbations. The Rytov approximation is determined by depending on the Born 

approximation; then the 1st-order and 2nd-order spectral representations are 

computed. 

Chapter 5 introduces a free-space-optic approach with details related to optical 

turbulence, vortex beams and scintillation of laser beams. 

Chapter 6 presents the theoretical background of the Gaussian and Gaussian vortex 

beams. They are explained, and expressions of them are defined with a formulation 

of source and receiver plane intensities. The methods for the SI are computed 

following the Huygens-Fresnel, Rytov and Random phase screen methods. 

Chapter 7 includes the Results and Discussion of phase distribution behavior with 

multi-values of topological charge for the Gaussian vortex, Elliptical Gaussian 

vortex, and Laguerre-Gaussian vortex beams and other results. 

The following are also presented: 

 Computation of the SI of the GB following the Rytov Method, Huygens-

Fresnel Method, and Random Phase Screen Methods. 

 Scintillation Index (SI) for the LGVB by changing the topological charge and 

the polynomial degree parameters. 

 Comparisons among Gaussian, Elliptical, Laguerre and Bessel vortex beams 

 A comparison between the Gaussian and Gaussian vortex beams. 

 Computation of the Symbol Error Rate for the Gaussian vortex beam 

Chapter 8 includes the conclusion and future work. 
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CHAPTER 2 

LITERATURE SURVEY 

The free-space optical communication system is defined as an optical 

communication innovation which utilizes air as a medium to transmit messages 

wirelessly from one place to another through light propagating in free space. “Free 

space” implies a space such as a vacuum [15]. It is possible to define the wireless 

infrared communication as indoor optical wireless communication while free-space 

optical communication as outdoor optical wireless communication [16]. The 

description of attenuations of FSO links for the most part come in two types: 

geometric and atmospheric attenuation. Geometric attenuation occurs by changing 

parameters such as transmitter diameter, divergence angle, link distance, and so on. 

However, this depends to a great extent on weather conditions such as fog and 

rain [17]. On June 3, 1880 at Bell’s in Washington, Alexander Graham Bell and his 

assistant Charles Sumner Tainted produced the world’s first wireless phone and 

photo phone. It was an ideal and most essential invention at that time, particularly for 

communication lines. Nevertheless, the assistance of that photo phone signal 

transmission at short distances, around 213 meters (700 feet), was communicated 

between two places [18-19]. To enhance the signal transmission distance as well as 

quality and security, the German military created another optical transmitter system 
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called the Heliograph Telegraphy transmitter. At that point, the German military 

considered utilizing optical Morse transmitters called ‘Blinkered,’ which was far 

better than the photo phone innovation of 1880. Additionally, unique Blinkgeräts 

were additionally effectively utilized for communication with tanks, balloons and 

airplanes [20]. 

In 1962, Massachusetts Institute of Technology (MIT) Lincoln Labs assembled 

experimental Optical Wireless Communications (OWC) links which utilized a light 

emitting GaAs diode that could transmit TV signals over a length of 30 miles 

(50 kilometers). 

In 1967, Harger considered the problem of estimating the unknown parameters of a 

signal of otherwise known form distorted by both multiplicative errors that was 

assumed to be due to propagation through a homogeneous, isotropic turbulent 

medium and an additive error that was assumed to be grain noise, etc. [21]. 

In 2001, the first device that transmitted data at 10 Mbps wirelessly using a beam of 

light the range of which was 1.4 km (0.87 miles) was invented by Reasonable 

Optical Near Joint Access (RONJA) FSO from the Czech Republic. However, their 

signal was not very secure. 

In 2003, the research group “OptiKom" performed reliability and availability tests on 

Free Space Optics (FSO) systems at the Department of Communications and Wave 

Propagation, where they obtained evaluation results for commercial use as well as 

for self-developed optical point-to-point and point-to-multipoint FSO-systems [22]. 

In 2006, Baykal and Eyyuboğlu created a formula for a flat-topped Gaussian beam 

source in atmospheric turbulence. The variations of the on-axis scintillations at the 

http://021051je5.y.http.ieeexplore.ieee.org.proxy.cankaya-elibrary.com:9797/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Robert%20O.%20Harger.QT.&newsearch=true
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receiver plane were evaluated versus the link length, the size of the flat-topped 

Gaussian source, and the wavelength at selected flatness scales. Their results showed 

that single Gaussian beam scintillation was smaller than those of flat-topped 

Gaussian beam scintillations when the source sizes were much smaller than the 

Fresnel zone [23]. 

In 2007, Fuji TV exhibited a Light Emmitt Diode (LED) backlit, Liquid Crystal 

Display (LCD) TV working while a data signal was transmitted to a Personal Digital 

Assistant (PDA) by means of light. The most redeeming feature of the device was its 

secure transmission of information. 

In 2008, the graphical outputs, source and receiver plane expressions, the complex 

degree of coherence, beam size variations and power in bucket performance for 

higher order partially coherent dark hollow beams propagating in a turbulent 

atmosphere were formulated and evaluated. The results showed that higher order 

partially coherent dark hollow beams would initially develop an outer ring around a 

central lobe, but would eventually evolve towards a Gaussian shape as the 

propagation distance increased. It was further observed that stronger turbulence 

levels and greater partial coherence had similar effects on the beam profile [24]. 

In 2008, MRV communication introduced an FSO based telescope TS-10GE system 

operating at a 10-Gbit/s data rate at a distance of 350 m (1,100 feet) [25]. 

In 2009, Eyyuboğlu, in his contribution, formulated the area scintillation of 

fundamental Gaussian and annular beams and made a comparison between them 

showing that under the same source power conditions, annular Gaussian beams 
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produced far fewer scintillations than the fundamental Gaussian beams at small 

source sizes [26]. 

In 2010, by Gurvich, Vorob’ev, and Fedorova, conducted a numerical investigation 

of the spectra of stellar scintillations observed through the Earth’s atmosphere from 

spacecraft. This investigation was carried out for the atmosphere containing 

anisotropic large-scale and isotropic small-scale inhomogeneities of the refractive 

index. It was shown that the strong scintillation spectra were not equal to the sum of 

the spectra formed by separate, statistically independent components [27]. 

In 2011, Pan, Zhang, Qiao and Dan introduced the study of the analytical formulas 

of the on-axis average irradiance and the on-axis scintillation index for a rectangular 

array Gaussian-Schell model (RAGSM) beams in atmospheric turbulence that was 

derived according to the paraxial form of the extended Huygens-Fresnel principle, 

their results showed that the correlated and uncorrelated superposition RAGSM 

beams exhibited a different on-axis intensity distribution and a similar variation of 

the on-axis scintillation and the bit error rate [28]. 

In 2013, Gilberto, Vítor and Cruz investigated the effect of the atmospheric 

scintillation phenomenon in a free-space optical communication system. This 

evalution was performed by BER computation of the FSO system for various 

parameters through simulations of the link combined with the already established 

scintillation model as the gamma-gamma model. The results showed how an FSO 

connection can be affected by any turbulence regime [29]. 

In 2014, Yang, Gao and Slim presented a comprehensive performance analysis for 

the free space optic communication systems with multiuser diversity (MD) over both 
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weak and strong atmospheric turbulence. It was observed that with multiuser 

diversity, strong turbulence could yield a higher capacity [30]. 

In 2016, Xiumin, Jian, and Lingling focused on the properties of the Hyperbolic-

Cosine-Gaussian beam, which contains a spiral optical vortex and a non-spiral 

optical vortex, which was researched numerically. In this study, the focal shift and 

focal split also appeared in the focal evolution with tunable parameters of vortex 

terms [31]. 

In 2017, Mansour, Mesleh and Abaza presented a review on new challenges in 

wireless communication systems and examined recent approaches to dealing with 

and addressing some of the lately raised issues in the wireless field. Theoretical and 

test results about light of a number of research projects or studies were given [32].  
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CHAPTER 3 

MATRIX OPTICS APPROACH 

3.1. Definition of Matrix Optics 

Matrix optics is a technique for tracing paraxial rays; the rays are assumed to travel 

only within a single plane. A ray is described by its position and its angle with 

respect to the optical z-axis. In the paraxial approximation, position and angle at the 

input and output planes of an optical system are related by two linear algebra 

equations. As a result, the optical system is described by a 2   2 matrix called the 

ray transfer matrix. The convenience of using matrix methods lies in the fact that the 

ray-transfer matrix of a cascade of optical components (or system) is a product of 

ray-transfer matrices. 

3.2. The Ray-Transfer Matrix 

The optical system formed by a succession of refracting and reflecting surfaces all 

center about the Z-axis. A ray crossing the transverse plane at Z is completely 

characterized by the Y-coordinate (Y) of its crossing point and the angle (θ), 

(see Fig. 1).  
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Figure 1: A ray is characterized by its coordinate (Y) and its angle (θ) [7]. 

An optical system is a set of optical components placed between two transverse 

planes (Z1 and Z2) referred to as the input and output planes (see Fig. 2). 

 

Figure 2: A ray enters an optical system at location 
1Z  with position 

1Y  and angle 
1  and 

leaves at position 
2Y  and angle 

2  at location 
2Z  [7]. 

where (sin    when   value is very close to zero ) , this will make the relation 

between ( 2Y , 2 ) and ( 1Y , 1 ) is linear 

2 1 1,Y AY B 
 (3.1-A) 
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2 1 2 ,DY C  
 (3.1-B) 

where A, B, C and D are real numbers. Eqs. (3.1-A) and (3.1-B) can be written in 

matrix form, thus: 

2 1

2 1

,
Y YA B

C D 

    
    
    

 (3.2) 

Therefore, M is a matrix whose elements are A, B, C and D, and M knows the ray-

transfer matrix. 

3.3. ABCD Ray-Matrix in Cartesian Coordinates 

Propagation of optical beams (Gaussian beams) through optical structures (lenses, 

apertures as 2 × 2 matrices) is known as ABCD ray matrices. Using such matrices 

allows us to describe the propagation of an optical beam through a series of optical 

elements using a cascade scheme by multiplying successive matrix representations of 

each optical element (lens, free space and 2 × 2 apertures) [33]. 

If we consider a ray of light propagating between two points denoted by 
1r  and 

2r  in 

parallel transverse planes at  
1z z  and  

2z z  separated by distance L (Fig. 3), 

2 1 1tan ,
r r dr

L dz


    (3.3) 

where Φ is the angle the light ray makes from point r1 to point r2. 

1
2 1 1 1

dr
r r L r Lr

dz
     (3.4) 
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Figure 3: Line-of-sight section of length L of optical ray [7]. 

It can be seen that the slope of 1r  is the same as 2r  

2 1r r   (3.5) 

When combining (3.5) and (3.4), we obtain the matrix equation: 

2 1

2 1

1

0 1

r rL

r r

    
            

 (3.6) 

Therefore, the  2 2  matrix on the right-hand side of Eq. (3.6) 
1

0 1

L 
 
 

 is the 

ABCD ray matrix of free-space propagation over a path of length L. Moreover, the 

ABCD matrices for a thin lens finite aperture stop with rotational symmetry are 

listed in Table 1. 
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Table 1: Ray Matrices for Various Optical Elements [7]. 

Structure Matrix 

Line-of-sight section (length L) 








10

1 L
 

Thin lens (focal length FG) 

1 0

1
1

GF

 
 
 

 
 

 

Finite aperture stop (aperture radius WG) 
2

1 0

2
1

G

j

kW

 
 
 
 
 

 

Gaussian lens (thin lens and aperture stop) 

2

1 0

1
1

2
G

G

j
F

kW

 
 

 
 

 
 

 

where 
1r  is a point at the source, 1

1

dr
r

dz

    
 

 the slope of 
1r , 

2r  a point at the receiver, 

2
2

dr
r

dz

    
 

 the slope of 
2r , L the propagation distance, 

GF  the focal length, and 
GW  

the aperture radius. 

3.3.1 Paraxial Approximation for the ABCD Matrix 

When considering an optical ray propagating through a sequence of rotationally 

symmetric optical elements, they are aligned and arranged in cascade fashion as 

illustrated in Fig. 4; therefore, the overall ABCD matrix for N such matrices is 

obtained: 







































11

11

11

11
............

DC

BA

DC

BA

DC

BA

DC

BA

NN

NN

NN

NN

 (3.7) 
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Input plane Output plane 

 

Figure 4: A ray-matrix optical system in cascade [7]. 

For a ray-matrix optical system in cascade for a general ABCD optical system, we 

have 

2 1 1 1

2 1 1 1

,
r r Ar BrA B

C Dr r Cr Dr

      
                     (3.8) 

It will deduce 

 1 2 1

1
,r r Ar

B
  

 (3.9) 

2 1 1 1 2 1( ),
D

r Cr Dr Cr r Ar
B

     
 (3.10) 

By using an important property of all ray matrices listed in table 1, is that 

(AD − BC) = 1, we will find  
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2 2 1

1
( ),r Dr r

B
  

 (3.11) 

By beginning with the one-dimensional geometry associated with free space line-of-

sight paraxial approximation as shown in Fig. 3 and redrawn in Fig. 5, it is assumed 

that an optical ray begins at point 0 in the plane 
1z z  at position 

1r  above the 

optical axis (z-axis) and finishes at point T in the plane 
2z z  at position 

2r   above 

the optical axis (z-axis). The paraxial approximation is then 

2

2 1

1
( )

2
R L r r L L

L
    

 (3.12) 

where 1 2r r L  and ,R OT L OP OS    

2

2 1

1
( )

2
L r r

L
  

 (3.13) 

By using the geometry of Fig. 5, ,L ST  and although not exact, 2QT L  .  

 

Figure 5: Geometry of propagation of the optical ray [7] 
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So that angle Φ in triangle ΔPQT: 

2 1 2 1

2
sin

QT L

r r r r


  

   (3.14) 

Using small angle approximation, sin Φ = tan Φ. This leads to 

2 1 2 2 1 1

1 1
( ) tan ( )

2 2
L r r r r r r      

  (3.15) 

where 1
1

dr
r

dz
  is the slope of 

1r , 
1r s , 2

2

dr
r

dz
    is the slope of 

2r , 
2 ,r s and by 

using (3.3) and (3.5). 

Recognizing that Φ in ΔPOT in Fig. 5 is the same as ΔQPT, we substitute 
1r  and 2r  

from (3.9) and (3.10) into (3.15) and find that 

2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1

1 1 1 1 1
( ) ( ( ) ( )) ( ( ) (( )),

2 2 2
L r r r r r Dr r r r Ar r Dr r r r Ar

B B B
           

 (3.16) 

Now the overall path length or (eikonal function) 1 2( , )r r of optical ray passing 

through the ABCD system from 
1r  to 

2r . 

where 

1 2( , ) ( , )r r s r 
 (3.17) 

In the plane at 
1z z  to position 2r  in the plane at 

2z z  leads to a general form of 

the paraxial a proximal 
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)2(
2

1
),( 2

221
2

121 rDrrAr
B

LLLrr 
 (3.18) 

3.3.2 Scintillation Index using the Huygens-Fresnel Integral 

Using the ABCD ray-matrix for the propagation media between the input and output 

planes with the length of propagation distance (Green’s Function) in the Huygens-

Fresnel Integral Eq. (3.19) assumes in more general form [33]: 

      2

0 0, 2 , ; ,0U r z ik G s r z U s d s





   
 (3.19) 

2 21 1
( ; ; ) exp[ ( , )] exp ( 2 )

4 4 2

ik
G s r L ik s r ikL As s r Dr

B B B


 

 
      

   (3.20) 

The factor 
1

4 B
 is necessary for power conservation. In terms of a more general 

Green’s Function, the Generalized Huygens-Fresnel integer can be deduced: 

     2

0 0

2 2, exp ,0 exp ( 2 )
4 2

ik ik
U r L ikL d sU s As s r Dr

B B





 
     

 
 

 (3.21) 

where A = D = 1 and B = L. Eq. (3.21) can be reduced to the standard form of the 

Huygens-Fresnel Integral Eq. (3.19), and when the optical field of a lowest order 

Gaussian-beam wave at the emitting aperture of a transmitter in the plane 0z   can 

be characterized by (assuming unit amplitude; 1cA  ). 

2

0 0

1
( ,0) exp ,

2
U s ks

 
  

   (3.22) 
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Now the field of the wave at the output plane z L  can be described by Eq. (3.19), 

which leads to  

   2 2 2 2

0 0

1
( , ) exp exp exp 2 ,

2 2 2

ik ik
U r L ikL d s ks As s r Dr

B B


 





   
        

   
 

 (3.23) 

 

  2

0

1 1
( , ) exp exp ( )

( ) 2
U r L ikL L kr

L




 
  

 
 (3.24) 

where 

0( ) ,L A i B  
 (3.25) 

0

2

0

2 1
( ) ,

D iC
L i

A i B kW F







  


 (3.26) 

where  2 / Re[ ( )]W k L   and 1/ Im[ ( )]F L  are, respectively [7]. 

The ABCD is defined in a matrix fashion and the combined transfer function of a 

propagating medium including optical elements on the way. In Fig. 6, the optical 

path does not contain optical elements [34]. 
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Figure 6: Propagation path without optical elements [34]. 



















10

1 L

DC

BA

 (3.27) 

The general form of the ABCD matrix is the Huygens-Fresnel Integral (also known 

as the Collins Integral). The Huygens-Fresnel Integral will be in Cartesian 

coordinates with a rectangular aperture placed on the source plane with the 

dimensions in Figure 6 [34]. 

2 2

1 1

2 2 2 2

2exp( )
( , )

2

( )exp [ ( ) 2( ) ( )] ,
2

y x

y x

t t

r

t t

s x y x x yx y y

ik ikz
U r z L d s

B

ik
U s A s s s r s r D r r

B




 

 
     

 

 

 (3.28) 

where A = D = 1, B represents L. C is not used, 1 1 2 2
, , ,

x y x y
t t t t    . 

Eq. (3.28) became identical to Eq. (3.23). 
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*( , ) ( , ) ( , )I r z L U r z L U r z Lr r   
 (3.29) 

where  and * refer to the mean value and conjugate operator, respectively. 

   

 

   

2

*

1 1 2 2 1 1 2 2

2 2 2 2

1 1 1 1 2 2 2 2

*

1 1 2 2

( , , ) , ,
2

exp 2 2 2 2
2

exp , ,

x y x y x y S x y S x y

x x x y y y x x x y y y

x y x y

k
I r r L ds ds ds ds U s s U s s

L

jk
s r s s r s s r s s r s

L

s s s s



   

   

 
  
 

 
       

 

  
 

   

 (3.30) 

Therefore, ( , )I r L  in Eq. (3.30) is given by Eq. (3.29) and this way, a source beam 

of  SU s  propagates in the turbulent  atmosphere will become the average intensity 

on the receiver plane , and    *

1 1 2 2, ,x y x ys s s s   is known as the wave structure 

function [35]. 

 

However, when the scintillation index (SI) is required, it is computed thus: 

2

2

2
( , )

( , ) 1,
( , )

I r L
r Lb

I r L
 

 (3.31) 
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CHAPTER 4 

SCINTILLATION INDEX EQUATION  

BY USING THE RYTOV APPROACH 

4.1 Introduction 

There are several different theoretical approaches that have been developed to 

describe random variations in amplitude and the phases of optical-electrical fields 

are based upon solving the wave equation. However, the remaining ABCD method 

greatly simplifies the analysis as compared with other techniques [36].  

4.2 Wave Equation 

The problem of the propagation of optical waves through infinite continuous media 

with smooth variations of the refractive index has a controlling differential equation 

with random coefficients [37-39]. 

Therefore, it is assumed that a sinusoidal time variation (a monochromatic wave) in 

the electric field has shown that (Maxwell’s equation) for the vector amplitude E(R) 

of a propagating electromagnetic wave leads directly to [40, 41]: 

2 2 2( ) 2 [ . log ( )] 0,E k n R E E n R     
 (4.1) 
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where,  , ,R x y z  indicates a point in space and ( )n R  is the refraction index 

whose time variations have been suppressed. 

2 2 2
2

2 2 2
,

x y z

  
   

  
 (4.2) 

where 
2   is the Laplace operator. 

Because the variations of the refractive index are slow, a quasi-steady-state approach 

can be used. As a result, ( )n R  becomes a function of position only. 

Eq. (4.1) can be reduced to Eq. (4.3) by imposing the following assumptions: 

1- Backscattering and the efforts of depolarization are neglected. 

2- The refractive index is data correlated in the direction of propagation [42]. 

Assumptions (1) and (2) follow the same idea. Because λ for the optical is much 

smaller than the smallest scale of turbulence (i.e., the inner scale 
0l ), the maximum 

scattering angle 
0( / )l  is nearly 

410
 rad. 

The final term on the left-hand side of Eq. (4.1) is negligible and Eq. (4.1) simplifies 

to Eq. (4.3) , thus: 

2 2 2( ) 0,E k n R E    (4.3) 

If we let ( )U R  denote a scalar component that is transverse to the direction of 

propagation along the positive z-axis, then Eq. (4.3) can be replaced with the scalar 

stochastic Helmholtz Equation: 
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2 2 2( ) 0,U k n R U    (4.4) 

Under Assumption (3), the refractive index can be expressed as: 

)()( 10 RnnRn 
 (4.5) 

For the free space: 

0 1( ) 1, ( ) 0,n n R so n R  
 (4.6) 

( , , ) ( , , ),x yR r r z orR r z 
 (4.7) 

The first approach to solving Eq. (4.4) depended on the Method of Green’s function, 

reducing Eq. (4.4) to an equivalent integral equation. However, exact solutions to 

Eq. (4.4) using Green’s function or any other method have never been found. Further 

attempts to solve Eq. (4.4) depended on the geometric optic method (GOM) and on 

two famous perturbation theories, namely the Born approximation and the Rytov 

approximation. 

4.3 The Born Approximation 

The Born approximation was first applied to the integral equation for scattering that 

can be derived directly from Schrödinger’s equation. It is intended to solve Eq. (4.4), 

which is called the stochastic Helmholtz Equation. 

( )U R  and U  are used synonymously. The Born and Rytov methods are the most 

well-known classical approaches to solving Eq. (4.4). The difference between the 

two methods is that the Born approximation depends on the addition of the 
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perturbation terms to the unperturbed field in contrast to the Rytov approximation 

involving the multiplication of perturbation terms. To solve Eq. (4.4) using the Born 

approximation, firstly it is written as the square of the index of refraction terms, thus: 

2 2

0 1 1( ) [ ( )] 1 2 ( ),n R n n R n R     (4.8) 

If the light beam propagates along the positive z-axis, it can expand U(R), thus: 

0 1 2( ) ( ) ( ) ( ) ...,U R U R U R U R     (4.9) 

where 
0 ( )U R  is the unperturbed (unscattered) portion of the field in free space 

(without turbulence), 
1( )U R  is the perturbed field due to first-order scattering (due 

to turbulence), 
2 ( )U R  is the perturbed field due to second-order scattering, 

3( )U R  

is the perturbed field due to third-order scattering, and so on. 

In general, it is assumed that 

3 2 1 0( , ) ( , ) ( , ) ( , ) ,U r L U r L U r L U r L    (4.10) 

By substituting Eq. (4.8) and Eq. (4.9) into Eq. (4.11), this work reduces Eq. (4.11) 

to a system of equations: 

2 2

0 0 0,U k U    (4.11) 

2 2 2

1 1 1 02 ( ) ( ),U k U k n R U R     (4.12) 

2 2 2

2 2 1 12 ( ) ( ),U k U k n R U R     (4.13) 
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The system of equations above means that once 
0U  is known, it is possible to 

determine higher order 
1( )U R , 

2 ( )U R , 
3( )U R . 

4.3.1 Computation of First-Order Field Perturbations U1(R) 

The solution to Eq. (4.12), by giving the unperturbed field 
0 ( )U R  and (Green’s 

Function, can be expressed in the integral form: 

1

2 3 2 3
1 0 1 0( ) ( , )[2 ( ) ( )] 2 ( , ) ( ) ( )

v v
U R G S R k n S U S d s k G S R n s U S d s    (4.14) 

where ( , ) ( , )G S R G R S  is the free space; it can define Green’s function by 

depending on the GOM. 

Eq. (4.14) represents the first Born approximation and has the physical interpretation 

that the field 
1( )U R  is a sum of spherical waves generated at various points (S) 

through volume ( )v . 

1
( , ) exp( )

4
G S R ik R S

R S
 


 (4.15) 

It can be observed that the maximum extent of the atmospheric effects in the 

transverse distance is far lower than the longitudinal distance from the transmitter to 

the receiver, so it is useful to use cylindrical coordinate representations: 

( , )R r L , ( , )S s z  (4.16) 
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where  s  is used as a dummy to receive the coordinate and should not be confused 

with source coordinate S. The variables r  and s  in ( , )R r L  and ( , )S s z  

transverse to the axis of propagation. Moreover, it is useful to use the paraxial 

approximation to rewrite Green’s Function (4.15) and to simplify the calculation. 

 By giving two points in space ( , )R r L  and ( , )S s z . The distance between the 

points R S  is 

1
1 2 2

2 2 2
2

( )
( ) ( ) 1 ,

( )

r s
R S L z r s L z

L z

 
        

 
 (4.17) 

In Fig. 7, when the transverse distance r s  is far less than the longitudinal 

distance L z , the distance R S  can be  

1
2 2

2

( )
1

( )

r s

L z

 
 

 
 approximated by the 

next factor. 

 

Figure 7: Two points of the optical path transverse to the axis of propagation 
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Finally, 

2

,
2

r s
R S L z

L z


   


      zLsr   (4.18) 

Then we can have Eq. (4.19) when substituting Eq. (4.18) into Eq. (4.15). 

2

1
( , ) ( , ; , ) exp ( ) ,

4 ( ) 2( )

ik s r
G S R G s r L z ik L z

L z L z

 
    

   

  (4.19) 

By inserting Eq. (4.19) into Eq. (4.14), we have Eq. (4.20): 

22

1
1 0

0

2 ( , )
( , ) exp ( ) ( , ) ,

2 2( )

L ik s r n s zk
U r L dz ds ik L z U s z

L z L z





 
   

   
    (4.20) 

Since 1( , ) 0n s z   by definition, 

1( , ) 0U r L   (4.21) 

4.3.2 Computation of Higher-Order Field Perturbations Um(r,L) 

To solve the second-order perturbation in Born approximation, the term on the right-

hand side of Eq. (4.13) is similar to Eq. (4.12). Using Green’s Function, similarly to 

the first-order perturbation, we have 

0

2 2
2 1

2 1

( , )( )
( , ) exp ( ) ( , ) ,

2 2 )

L
n s zk ik s r

U r L dz ds ik L z U s z
L z L z





 
   

  
     (4.22) 
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where 
1( , )U s z  is computed from Eq. (4.20). Here, 2( , ) 0U r L   and it is unlike 

1( , ) 0U r L 
. 

Then, generally the mth-order perturbation term can be expressed in the following 

form: 

22
2 1

1

0

( , )
( , ) exp ( ) ( , )

2 2( )

1,2,3...........

L

m m

ik s r n s zk
U r L dz d s ik L z U s z

L z L z

m








 
   

   



  
 (4.23) 

The Born approximation is valid only over short propagation distances based on 

experimental data obtained from [43]. 

4.4 The Rytov Approximation 

The Rytov approximation is a different approach to solving Eq. (4.4) (the stochastic 

Helmholtz equation). However, the most well-known classical approaches to solving 

this equation are approximation methods [44]. The main difference between these 

two approaches is that the Born method is based on the addition of perturbation 

fields to the unperturbed field 
0 ( )U R , whereas the Rytov method contains many 

perturbation terms of the field. 

1 2( ), ( ).............. ( ),mU R U R U R
 (4.24) 

The Rytov approximation was first applied to a problem of the wave equation in 

random media by Obukhov [45], after which the Rytov approximation was used in 

the well-known works of Tatarskii [46]. 
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In the Rytov method, the primary distinction is that perturbations due to the 

randomness of the propagation medium are represented by an exponential complex 

phase, thus: 

 0( ) ( , ) ( , )exp ( , ) ,U R U r L U r L r L  
 (4.25) 

Here,   (the complex phase perturbation) was produced by the turbulence. 

Now it can take ( , )r L  is the (random part of the complex phase) in the form 

1 2 3( , ) ( , ) ( , ) ( , ) ........,r L r L r L r L    
 (4.26) 

where 
1( , )r L  is the first-order of complex phase perturbation, 

2 ( , )r L  the 

second-order of complex phase perturbation, and so on. 

It is possible to apply Eq. (4.25) to Eq. (4.4) to obtain the Rytov solutions. 

However, this is not necessary because we can relate these perturbations that are 

already developed Born approximation. 

It is introduced the normalized Born perturbation: 

0

( , )
( , ) ,

( , )

m
m

U r L
r L

U r L
 

 
,.........3,2,1m

 (4.27) 

By equating the (first-order) of the Rytov and Born perturbations, 

0 1 0 1( , )exp[ ( , )] ( , ) ( , ),U r L r L U r L U r L  
 (4.28) 
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When applying Eq. (4.27) to  1 ,U r L , 

1 0 1( , ) ( , ) ( , )U r L U r L r L 
 (4.29) 

Substituting (4.29) into (4.28), and dividing by  0 ,U r L , it can obtain: 

1 1

1 1

1 1 1

exp[ ( , )] 1 ( , )

( , ) ln[1 ( , )]

( , ) ( , ), ( , ) 1,

r L r L

r L r L

r L r L when r L

  

  

    

 (4.30) 

Then  1 ,r L  will become 

1
1 1

0

( , )
( , ) ( , )

( , )

U r L
r L r L

U r L
  

 (4.31) 

Recalling Eq. (4.23) to get  1 ,U r L : 

22
2 0 1

1

00

( , ) ( , )
( , ) exp ( ) ,

2 2( ) ( , )( )

L ik s r U s z n s zk
r L dz d s ik L z

L z U r L L z





 
    

   
    (4.32) 

where  0 ,U r L is the optical field in the receiver at  z L  and  0 ,U s z  is the 

optical field in the receiver at an arbitrary plane along the propagation path. 

Similarly, it can compute 2 ( , )r L : 
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2
2

0

22
2 0 1 1

00

( , )
( , )

( , )

( , ) ( , ) ( , )
exp ( ) ,

2 2( ) ( , )( )

L

U r L
r L

U r L

ik s r U s z s z n s zk
dz d s ik L z

L z U r L L z





 

  
   

   
  

  (4.33) 

Most works based on the Rytov theory have made use of 
1  (first-order 

perturbation). The Rytov approximation is called a Single Scattering proximal 

because it is directly related to the first of the Born approximations. 

The first order perturbation  1 ,r L  is sufficient for the calculation of a number of 

statistical quantites of interest, such as the log-amplitude variance, phase variance, 

intensity and phase correlation functions and the wave structure function. Using the 

Rytov theory to obtain any of the statistical moments of the optical field, including 

the mean value  ,U r L , it becomes necessary to require  2 ,r L  in addition to 

first-order  1 ,r L  [47]. 

4.4.1 Computation of First-Order Spectral Representation. 

For the purpose of computing the static moment of the field, it is very important to 

develop a spectral representation of Born and Rytov. To compute it, it is necessary to 

know the refractive index 1( , )n s z  in 2D [48]. 

1 ,( , ) exp( . ) ( , )n s z i s dv z


   


 (4.34) 
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where dv( , z) is the random amplitude of the fluctuation of the refractive index, 

 , ,0x y    the wave vector practically with 0x  . 

 0 ,U r L  at distance L is 

2

0
0

1
( , ) exp ,

( ) 2 ( )

kr
U r L ikL

L L



 

 
  

 
 (4.35) 

0( ) 1L i L  
 (4.36) 

0 2

0 0

2 1
i

kW F
  

 (4.37) 

where, 
0W is the beam radius and 

0F  is the phase of the radius of curvature. 

 
2 2

0 0 0

0

( , ) ( )
exp exp exp ,

( , ) ( ) 2 ( ) 2 ( )

U s z ks krL
ik z L

U r L z z L

 

  

   
         

   
 (4.38) 

By substituting Eq. (4.33) and Eq. (4.38) into Eq. (4.32), and after some 

modifications and re-arranging, we have a first-order Spectral Representation 

 1 ,r L , thus: 

2

2

1

0

2
2

( , )
exp

( , ) ( ) 2( )
2

exp exp ,
2 ( )

L dv z i kr
k

r L dz L z L z

kr iks
d s i s

L z L z
















 
 

    

   
            

  

 

  (4.39) 
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where 

0

0

1( ) 1 ( )

( ) 1 ( )

i zz L

L i L z

 


   


   


 (4.40) 

By recalling (4.30) and   , we get the first-order spectral representation [7]. 

2

1 1

0

( , ) ( , ) ( , )exp . ( ) ,
2

L
i

r L r L ik dz d z i r L z
k

 
 





 
       

 
    (4.41) 

4.4.2 Computation of Second-Order Spectral Representation. 

The second-order spectral representation may be obtained using Eq. (4.33) by 

inserting Eqs. (4.34), (4.38) and (4.41) into Eq. (4.33) to get 

3

2

0 0

2 2

2
2

( , ) ( , )
( , )

2 ( )

exp ( )
2( ) 2

exp . exp ,
2 ( )

L z
ik d z d z

r L dz dz
L z

i kr i
z z

L z k

kr iks
d s is

L z L z

 

 

  












  
 



  
   

 

   
              

   

 

 (4.42) 

where 

0

0

1
,

1

i z

i z







 


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This leads to the second-order spectral representation for the normalized second-

order Born perturbation given by 
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From the expression above, we can obtain the second-order spectral representation. 

Despite the result of Eq. (4.45), it actually needs to compute the SI. 

Although direct use of the Born approximation in the optical wave propagation 

problem is not applicable, it is interesting that the Born approximation can play a 

central role in Rytov methods. There are three important integrals that define second-

order statistics for both the Born and Rytov approximations. 
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where 
0 ( )J x  is a Bessel function of the first kind and order zero. This will explore 

the steps of deriving the scintillation index formula by depending on the previous 

integral. As can be seen below, for the scintillation the use of  1 ,r L will be 

sufficient, whereas the calculation of  ,U r L  will require second-order 

perturbation. Now covering the first and second order perturbations
1( , )r s &

2( , )r s , we need the following ensemble of averages for the field, intensity and 

intensity square. 

1-  ,U r L  requires the calculation of 

     1 2exp[ , exp , , ,r L r L r L       (4.49) 

2-  ,I r L  requires the calculation of 
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3-  2 ,I r L requires the calculation of 
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 (4.51) 

By using the following order approximation Eq. (4.52) from (14) of Andrews (2005) 

on p. 184 and  1 0n R  , thus  1 , 0r L  , we can find for the ensemble 
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averages of the exp expressions in Eqs. (4.49), (4.50), (4.51), in another forms, Eqs. 

(4.53), (4.54), (4.55), ref. [35]. 
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 
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   1, exp ,0,0U r EL      (4.53) 
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Now, it possible to get quantities  2 ,I r L average intensity square and  
2

,I r L

squared average intensity by defining mutual coherence function  [35]. 
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4- 
2 ( , )I r L requires the calculation of 
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According to the Rytov method, without optical elements between the transmitter 

(input) and receiver (output), the propagation channel is characterized as line-of-

sight propagation, the receiver can “see” from the transmitter. 

By using the classical Rytov method, the propagation of beam under weak 

fluctuation can be analyzed [9, 40, 41,46 ], which is explained by Eq. (4.59). 

           1 2, , exp[ , , exp , , .. ,O OU r L U r L r L U r L r L r L           (4.59) 

where U ( r , L)  is the wave of the Gaussian beam at the receiver, Ψ ( r , L)  is the total 

complex phase perturbation of the field due to random inhomogeneity along the 

propagation path. Ψ
1

( r , L)  is the 1st-order perturbation and Ψ
2

( r , L)  is the 2nd-

order perturbation. 

Finally, the scintillation index can be deduced as a measure of normalized variance 

of amplitude fluctuations in the beam that propagates in a turbulent medium. 

Therefore, the scintillation index can be represented as 2( , ).SI b r L  Recalling 

Eq. (3.31) to compute the SI in another way: 
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 (4.60)  
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CHAPTER 5 

VORTEX BEAMS IN FREE-SPACE-OPTICS  

WITH TURBULENCE ATMOSPHERE 

5.1 Introduction 

The first working laser, an acronym for light amplification by stimulated emission of 

radiation, was introduced in 1960. Since then, the scientific community has focused 

a great deal of attention on the possible applications of the LASER, mainly 

suggesting that lasers can be used to extend radio-frequency atmospheric 

communication and radar techniques to the optical-frequency band. There are other 

places where laser technology is applied, such as weaponry, ranging, remote sensing, 

target designation, adaptive optics, and medical uses, among others. Though, 

regardless of the system using optical (visible) or infrared (IR) waves, what is to be 

considered is the general propagation effects associated with the medium as well as 

the impacts related with the wave itself. 

Most of the time, the propagation medium is the turbulent atmosphere for which 

small index-of-refraction fluctuations along the propagation path bring about a series 

of deleterious effects on the wave. Moreover, random fluctuations in the refractive 

index of the atmosphere are closely linked with minute changes in temperature as a 

result of the wind and convection turbulent movements. Despite such refractive-
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index fluctuations being only a few parts in 106, a propagating optical wave passes 

through a large number of refractive-index in homogeneities. As a consequence, the 

cumulative effect on the optical wave is rather significant; to illustrate, refractive-

index fluctuations are behind the twinkling of stars and limit the “seeing” ability of 

astronomers to resolve small objects to within a few seconds of arc. Such an 

atmospheric effect inspires the use of adaptive optics techniques and the placement 

of large telescopes in space, such as the famous Hubble Telescope. 

Earlier studies on the propagation of electromagnetic radiation and other waves 

through random media included starlight and sound waves propagation through the 

atmosphere and ocean, of microwaves through planetary atmospheres, and of radio 

waves through the ionosphere and interplanetary space. Thus, some of the theoretical 

work concerning this concept was already completed before the laser came to the 

fore. The propagation of laser light, being merely another form of electromagnetic 

radiation, is yet another topic of much of this early research. Both Chernov and 

Tatarskii published monographs before 1960 on the propagation of optical plane 

waves and spherical waves through turbulence; later, these monographs were 

translated into English in 1960 and 1961, respectively [40, 48]. Other preliminary 

studies on optical wave propagation in random media, along with many early 

references, include Lawrence and Strohbehn [50], Prokhorov et al. [51], Fante [52, 

53], Uscinski [54], Strohbehn [38], Ishimaru [41], Zuev [55], Rytov et al. [42], 

Tatarskii et al. [56], Sasiela [57], Andrews et al. [58], and Wheelon [59, 60]. 

There are many important applications for laser beam propagation through turbulent 

atmospheres in numerous fields including free space optical communications, Light 

Detection and Ranging (LIDAR), Laser Radar (LADAR), remote detecting and 
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imaging. The turbulence severely influences laser beam properties, thereby limiting 

FSOC efficiency. For this reason, one has to gain a better understanding of these 

properties for the sake of system optimization. In this respect, most previous studies 

have already addressed plane wave, spherical wave or fundamental Gaussian 

beams [9], while others have lately dealt with modified Gaussian beams or higher 

order Gaussian [61-68], all leading to the finding that initial beam properties (shape, 

phase, coherence, etc) strongly affect propagation results. More recently, there has 

been growing interest in applying optical vortex beams for free space optical 

communications as well as remote sensing [69-72]. 

5.2 Free space optics 

Today, optical wireless communications (OWC), better known as Free Space Optics, 

have many important applications due to the increasing demand for larger 

bandwidths and high-data-rate transfer of information required at optical 

wavelengths although earlier attention was paid rather to ever-increasing data rates 

afforded by optical systems over radio frequency (RF) systems. In general, we agree 

that laser communication has the following benefits: (i) It uses lower power, mass 

and volume as compared with Radio Frequency systems. (ii) It has an intrinsic 

narrow beam. (iii) It exploits the high-gain nature of laser beams. (iv) There are no 

limitations on frequency and bandwidth. 

Free space optics communication is a line-of-sight technology using a laser 

technique to supply optical bandwidth connections between locations. These days, 

FSOP can transmit up to 2.5 Gbps of voice, data and multimedia through free space 

by allowing optical connectivity without the use of fibre-optic technology. In the 

USA, only 5% of companies are connected to fibre-optic infrastructure, yet 75% are 
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placed within one mile of cables, known as the “Last Mile Problem”. With 

increasing the demand on bandwidth and with more businesses shifting to high-

speed local area network (LANs), it is becoming increasingly spiritless to be 

connected to the outside world through lower-speed connections (wire- and copper-

based technologies) such as cable modems, digital subscriber line (DSL), or T1s 

(transmission system 1). Therefore, in order to solve these problems, small FSOC 

networks were set up in Dallas, Denver, Seattle and Los Angeles [7]. 

In Europe, regional fibre-optic carriers are supplying companies that wish to acquire 

high-speed connections. Commercial FSO companies have offered equipment with 

transfer rates at a far higher level than coaxial cables or digital subscriber lines from 

10 Mbps to 1.25 Gbps, rates that are far above the level required by most high-end 

broadband services and applications. In addition, state-of-the-art laser diodes already 

on the market can be switched on and off at speeds that could transmit information at 

even higher rates—as much as 9.6 Gbps. Although this technology is still not 

adjusted for use by FSOs, it would be able to generate optical pulses lasting a mere 

100 picoseconds (100 trillionths of a second) each [7]. 

Ordinarily, laser wavelengths designed for FSO systems are 850 and 1550 nm. Low-

power infrared lasers functioning in an unlicensed electromagnetic frequency band 

are designed, or can be potentially arranged, to be active in an eye-safe fashion. 

Nevertheless, the restricted capacity of lasers’ in turn can limit the scope of its 

applicability. Given weather conditions, FSO links along horizontal near-ground 

paths may cover anywhere between a few hundred meters to one or more kilometers 

– a distance which is large enough to receive broadband traffic from a backbone to 

many end-users and all the way back. As unfavorable weather conditions, thick fog 
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in particular is capable of interfering with the reach of these line-of-sight equipment, 

each optical transceiver node or link head may be arranged so as to communicate 

with numerous other nodes closely in a network environment. 

This so-called “mesh topology” is in place to guarantee large amounts of data 

relayed without limitations from sensor sites to central control centers and users 

alike. The fog impact slows commercial deployment of near-ground FSO systems. 

Together with rain and snow to a lesser extent, fog can considerably limit the 

maximum range of an FSO link. As this phenomenon creates a major loss of optical 

power, a practical FSO link must then be designed with some specified “link 

margin,” i.e., extra optical power to overcome foggy conditions when required. On 

the other hand, in ideal weather conditions, the absolute reliability of a laser 

communication link through the atmosphere can yet be subject to absorption by 

atmospheric constituents and the ever-present turbulence [7]. 

In case of any given link margin, one has to address another important factor, link 

availability, which is the fraction of the total operating time that the link fails due to 

fog or any other physical hindering element. Link-availability objectives depend on 

the application; once used for private enterprise networking (for instance, to connect 

two offices located in separate buildings); FSO technology with 99.9-percent uptime 

can be regarded as satisfactory. Values like these are in line with a downtime of 

about nine hours per annum. On the contrary, public carrier-class service is provided 

to a carrier’s prime business customers, requiring link availability at 99.999 percent, 

(commonly referred to as “five-nine benchmark” in the telecommunications 

industry). This means only five minutes of allotted downtime each year. It should not 
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be forgotten that fiber optic systems regularly operate at the five-nines-service 

level [7]. 

The FSO technology was initiated in the 1960s; yet in the early 1970s, deleterious 

atmospheric effects on optical waves alongside the introduction of optical fibers 

brought about a major drop in the use of FSO. Nevertheless, these systems are 

capable of offering high-speed connections between buildings, between a building 

and the optical fiber network, aircraft to aircraft, or ground and satellite. 

Furthermore, given the circumstances, an FSO system is often installable within a 

few days or even hours; this is while weeks or months may be required to set up an 

optical fiber connection. Today, due to the need for high-data-rate connections 

across the globe as well as the inevitable hindrances associated with optical fiber 

networks in specific settings, FSO use is once again popular and on the rise [7]. 

5.3 Optical turbulence 

Atmospheric turbulence, generated by a temperature differential between the Earth’s 

surface and the atmosphere, can impact optical waves and, hence, has been subject to 

much effort and study by specialists for a very long time now. Throughout the day, 

the ground is warmer than the air, making the air nearest to the surface become 

hotter than the above layers. This negative temperature gradient generates rays of 

light parallel to the Earth to bend upward. If the negative temperature gradient is 

high enough, it can bring about an inverted image known as a “mirage” (another 

meteorological phenomenon). On the other hand, temperature gradients are positive 

at night, causing light rays to bend downward through refraction and allowing us to 

see objects, such as stars, somehow below the horizon. This is commonly referred to 

as “looming” [7]. 
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In essence, immediately prior to the sun sinking in the horizon at sunset; its position 

is in fact about a diameter already below the horizon. In line with this phenomenon, 

wave front distortions in the optical wave caused by atmospheric turbulence spread 

the beam beyond due to pure diffraction. A random variation of the beam centroid 

position is called “beam wander” and a random redistribution of the beam energy 

within a cross section of the beam leads to irradiance fluctuations. Perhaps, one of 

the most well-known effects of atmospheric turbulence is the twinkling of stars, a 

random fluctuation in the degree of image brightness. Moreover, the turbulence 

restricting astronomical seeing can slowly deteriorate the spatial coherence of a laser 

beam as it travels through the atmosphere, thus limiting beam collimation and 

concentration and resulting in major power reductions in optical communication and 

radar systems. Additionally, heterodyne detection optical receivers are quite 

susceptible to the loss of spatial coherence as it limits the effective aperture size of 

such detection systems [7]. 

Wave front distortions in the optical wave caused by atmospheric turbulence can 

result in beam scattering as a result of pure diffraction, irregularities in beam 

centroid position called beam wander, and a random redistribution of the beam 

energy within a cross section of the beam leading to irradiance fluctuations. Perhaps 

the most well-known effect of atmospheric turbulence is the twinkling of stars, 

which is an irregular change in brightness of the image. In addition, the atmospheric 

turbulence that limits astronomical seeing gradually destroys the spatial coherence of 

a laser beam as it propagates through the atmosphere. This loss of spatial coherence 

limits the extent to which laser beams may be collimated or focused, resulting in 

significant power level reductions in optical communication and radar systems.  
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Heterodyne detection optical receivers are very sensitive to the loss of spatial 

coherence because this limits the effective aperture size of such a detection system. 

Wind blowing over an aerodynamically uneven area of the Earth’s surface when 

there is a temperature gradient causes changes in the atmosphere’s refractive index, 

otherwise known as “optical turbulence”.  

One can define statistically the behavior of a sub portion of optical turbulence to set 

up the basis for most propagation theories. By the same token, the propagation of an 

optical/IR wave through optical turbulence can be defined in statistical terms. 

Generally speaking, theoretical approaches visible in analyses concerning optical IR 

wave propagation through optical turbulence are grouped as either in weak 

fluctuation terms or strong fluctuation terms [7]. 

5.4 Vortex Beams 

Today, vortex beams are quite popular following a great deal of research on the 

impact of turbulence on beam propagation [69, 73-81].The generation and 

propagation of vortex beams are two other important issues under the spotlight in the 

literature [82-87]. For a vortex beam, each photon carries a quantized intrinsic orbital 

angular momentum expected to use a beam’s topological charge l as the alphabet for 

the optical message. The propagation property of such a beam in a turbulent 

atmosphere plays an important role; yet to the best of our knowledge, the 

experimental study of the vortex beam propagating in a turbulent atmosphere has not 

been reported. 
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5.4.1 Phase Distribution of Vortex Beams 

Lately, much focus has been on the propagation of light beams carrying optical 

vortices [88-91]. These beams may be created using either static optical elements 

(such as spiral phase plates or computer-synthesized diffraction grating with “forks” 

and dynamic spatial light modulators [69-88]. Light beams with optical vortices 

possess orbital angular momentum (OAM) [88-90]. The main focus of this part of 

the thesis is Light beams with optical vortices possess OAM [2-5, 89, 91], this is the 

first part of our research. 

5.4.2 Scintillation of Laser Beams 

In recent years, optical wave propagation processing through random media has been 

studied. The turbulent medium is meaning the refraction index of it exhibits random 

spatial variations that are large with respect to the optical wavelength. No solution to 

the irradiance fluctuations problem by depending on principles of electromagnetic 

wave propagation applies to all conditions of optical turbulence. Early investigations 

concerning the propagation of unbounded plane waves and spherical waves through 

random media led to the classical monographs published in the early 1960s by 

Chernov  [40] and Tatarskii [48], but their scintillation results were limited to weak 

fluctuations. Experimentally work was done by Gracheva and Gurvich [92]. This 

work attracted much attention and stimulated a number of theoretical and 

experimental studies devoted to irradiance fluctuations under conditions of strong 

turbulence.  
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CHAPTER 6 

THEORETICAL BACKGROUND OF GAUSSIAN BEAM 

AND GAUSSIAN VORTEX BEAMS 

6.1. Introduction 

In this section, we explain the Gaussian vortex beams alongside and different types 

of vortex source beams in radial and Cartesian coordinates. Later, then these beams 

will be applied to estimate scintillation index in the strong beam, phase distribution 

for source and receiver planes and the symbol error rate. 

6.2. Expression of Gaussian Beam (GB) 

For the receiver coordinate representation, we choose r  , at 0z  . Therefore, s is 

the coordinate for the source plane. The source beams are defined either in radial, i.e. 

( , )s   or Cartesian, i.e. ( , )x ys s  coordinates. Hence, in what follows  ,sU s   is the 

field on source plane [34]. 

In cylindrical coordinates, 

2(s, )=A exp(-   s ),s s cU k   (6.1) 

where Ac
 refers to amplitude coefficient. 
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21/(   )+0.5j/F  s sk 
 (6.2) 

where 
s and Fs

refer to radial Gaussian source size and the focusing parameter, 

respectively [34]. 

6.3. Formulation of Source and Receiver Plane Intensities for Gaussian Beam 

The propagation geometry is depicted in Figure 6, where transversal planes,

( . . , 0)x yi e s s z  , ( , )x ys s s  are the coordinates of the transverse source plane, 

( , )x yr r r  represents the Cartesian coordinates of the transverse receiver plane, and 

the transverse source and receiver planes confront the axis of propagations z, at 

positions 0z   and ,z L  independently. Hence, L  link length estimation. 

Eq. (6.1) reveals the distribution field of the Gaussian beam around the point of 

origin ( . . , 0)x yi e s s z  . 

Numerous theoretical approaches have been created in order to describe random 

variation in the amplitude and phase of the electrical field of the optical wave 

propagating in the form of random medium-like atmospheric and phase fluctuations 

and through solving the related wave equation. In the following, we will introduce 

the methods used to compute the SI. 

6.4. The Methods for Computing Scintillation Index. 

At this stage, the ultimate goal is to achieve the best excitation level to decrease the 

degrading effects of turbulence in atmospheric optical links [93]. Scintillations as a 

result of turbulence in the atmosphere can bring about fluctuations in the intensity of 

the received beam. This, at the same time, is one of the major limiting factors in 
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atmospheric communication and imaging systems operating at optical frequencies; 

for this reason, the field has been under research for quite some time, both 

theoretically and experimentally, by many experts [94-100]. A comprehensive 

review of all contributions can be found in the works carried out by Tatarskii [47], 

Ishimaru [101], Andrews and Phillips [7], and Andrews et al [57]. First, one has to 

determine the received intensity profile that might influence the receiver design. 

Another issue under investigation in this work is the scintillation index, for which 

source plane excitation is described by a Gaussian laser beam. The average intensity 

profile of this beam is obtained at the receiver plane after passing through a turbulent 

atmosphere. The limiting cases of our formulation are compared with both the 

known Gaussian beam wave solution in the turbulent atmosphere and the Gaussian 

beam solution in free space (i.e., in the absence of turbulence). This yields exact 

conformity to these limiting cases. Numerical evaluations are made at various link 

lengths and turbulence levels. In the results, a Random Phase Screen (RPS) exhibits 

lower scintillations and, accordingly, has a likelihood of being better than a pure 

Gaussian beam, especially at long propagation lengths. Finally, we introduce a 

scintillation index analysis on the Gaussian beam and examine it using three 

methods. Here, our motivation is to determine different ways of computing the SI for 

the Gaussian beam in optical links as there exist different types of SI computation for 

beams to evaluate the performance of laser communication systems. 

The scintillation index can be deduced as a measure of normalized variance of 

amplitude fluctuations in the beam, which propagates in the turbulent medium. 

Consequently, the SI is represented as 2( , )SI b r L ; recall Eq. (3.31) to compute 

the SI. 



54 

Finally, the next sections will introduce the methods, those used to compute the SI in 

turbulence atmospheres. 

6.4.1 Huygens-Fresnel Method 

By depending on Section 4.3.2, integrations are made in a semi-analytic manner by 

the associated Matlab function, thereby preventing lengthy, time-consuming and 

error-prone hand derivations. The results are obtained for the Gaussian beam. By 

plotting the SI against the propagation distance, we illustrate the on-axis scintillation 

behaviors of this beam. 

6.4.2 Rytov Method 

In the Rytov method, the underlying difference is that perturbations due to the 

randomness of the propagation medium are introduced in the form of an exponential 

complex phase, as shown in Chapter 4. Then, we can apply Eq. (4.27) to arrive at the 

Rytov solutions; though this will very much resemble the already developed Born 

approximation. Finally, the SI is obtained with the Rytov method for Eq. (3.31). 

6.4.3 Random Phase Screen Method 

Herman and Strugala first investigated the subharmonics. While using an exceptional 

form of the subharmonic method, they proposed that the method produces phase 

screens that create a structure work agreeable to the actual theory. Moreover, they 

examined the normal Strehl proportion from their subharmonic screens, obtaining a 

close match with the hypothesis [102]. Later, Lane et al. formed the specific 

subharmonic technique, also in use in our research, showing that their screens also 

matched the theoretical structure function to a very great extent. Shortly after that, 
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Johansson and Gavel [103] examined the methodologies of Herman and Strugala and 

Lane et al., later to introduce their own subharmonic procedure with screens that 

form a structure work matching the hypothesis even more [103]. Later, while 

researching on the precision of no square subharmonic phase screens, Sedmak 

demonstrated a high level of concurrence with the stage structure capacity and the 

aperture-averaged phase [104]. 

In the case of the present thesis number of grid points ( gN ), tests revealed that 

gN  = 512 is an ideal option as it is also in concurrence with the qualities cited in the 

literature [105-107]. Here, the numerical computations of propagation of the beam in 

turbulence are represented by a Random Phase Screen (RPS), developed by Halil T. 

Eyyuboğlu [108]. 

The numeric is acquired by settling ( s = 1 cm) and considering the source. 

Furthermore, the propagation conditions are implemented using a suitable random 

phase screen numbers  sN  model and a wide range of intermediate planes is 

represented between the source and the receiver is taken to be 21. To ensure 

reliability, precautions are taken so that the RPS setup can withstand extreme 

turbulence conditions. This is achieved by opting for a wide range of grid points on 

supply and receiver planes, mainly gN = 1024 grids, where 
sL is source aperture 

length and 
rL  is the side length of square aperature opening of the receiver plane, so 

the source  s sL L  and the receiver  r rL L  plane dimensions are set at 

10 cm × 10 cm and 40 cm × 40cm, respectively. The receiver aperture has a square 

opening of 14 cm × 14 cm. The grid spacing of the source plane is d1, as in the 

following: 
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1
s

g

L
d

N
  (6.3) 

The grid spacing of the receiver plane is d2, thus: 

6 6

2 1.227 10 1.953 10d L       (6.4) 

The number of realization 
RN  must be made to approach the averaged analytic 

result, and it was adjusted to 500. All numerical computations with all of the 

numerical computations are carried out within a range of wavelengths (1350 μm to 

1550 μm). 

The vortex beams are explained in the next section and they are established in order 

to evaluate SI performance in strong turbulence. To define these beams, radial and 

Cartesian coordinates are used, i.e., ( , )ss   and ( , )x ys s .  

For cylindrical coordinates: 

( , ),ss s   (6.5) 

For Cartesian coordinates: 

2 2 ,x ys s s   (6.6) 

The mathematical model is explained in Eq. (6.7): 

 1 1( , , ) ( , ) ( , ) ( , ) ( , ) ,r x y s x y x y s x y x yU r r L F F U s s F h r r F U f f F H f f                     (6.7) 
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where ( , , )r x yU r r L  is the receiver field, ( , )s x yU s s  is the source field, ( , )x yh r r  is 

the spatial response of the propagation medium, ( , )x yr r  are the transverse 

coordinates in the receiver plane., F indicates the Fourier Transform, 1F  denotes 

the inverse Fourier Transform and the arguments ( , )x yf f  are the spatial frequencies. 

It is important to note that ( , )s x yU s s  and ( , )x yH f f  has the inclusion that the source 

and receiver coordinates are of the same scale or of the same increments. 

2 22
( , ) ( , ) exp exp ( ,x y x y x yH f f F h r r j L j L f f






 
         

   (6.8) 

By setting and the number of realizations (runs) is denoted by 
RN  and equal to 500, 

and the total numbers of random phase screens to 
SN  = 21, which goes from (n − 1) 

to the nth one [108]. 

    1( , , ) , , ( 1) exp ( , ) , ,r x y r x y x y x yU r r n L F F U r r n L j r r H f f          
 (6.9) 

where ( , )x yr r  signifies spatial phase distribution derived from the power spectral 

density function and ΔL is the distance between the two screens. Fig. 8 illustrates a 

picturesque view of modeling propagation in turbulence via random phase screens. 

*( , ) ( , ) ( , ) ,I r L U r L U r L
 (6.10) 

2 2 ,x yr r r 
 (6.11) 
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This can classify the scintillation index into the point like scintillation and aperture 

average scintillation, otherwise known as power scintillations [108]. 

r refers to a certain coordinate location, whereas the results are over a certain 

aperture opening with radius 
aR ,  denotes the mean value and ( , )I r L  is the 

receiver intensity. Eq. (3.31) is the scintillation index (SI) at a specific location on 

the receiver plane, and this equation is valid so long as 0.5 /aR L  ; otherwise, 

the aperture averaged scintillation or power scintillation will occur, defined as: 

0.5 0.5

0.5 0.5

( ) ( , , ) ,
a a

a a

R R

x y x y

R R

P L I r r L dr dr

 

  

    (6.12)  

2

2

2

( )
( ) 1,

( )

P L
b L

P L
   (6.13) 

where P(L) denotes the power of the beam at L, and this power can be collected by a 

circular aperture of radius Ra. In case the aperture is square-shaped, the 0.5 aR  is 

equivalent to the side length Lr [108]. 
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Figure 8: Random Phase Screen Model of the propagation of the beam in turbulence [108] 

6.5 Expression of Gaussian Vortex Source Beams 

A list of selected vortex source beams is provided whose phase distribution of the 

source and receiver are (
s &

r ) to be assessed 1 2 3 4 5( , , , , )U U U U U . 

As stated previously, these source beams are defined either in radial, i.e., (s,∅), or 

Cartesian coordinates, i.e., ( , )x ys s . 

Firstly, a simple form of the Gaussian vortex beam (GVB) has been utilized in many 

studies; for instance, in [109-111], with the source field expression as in the 

following: 

2

1 2
( , ) exp exp( ),

m

s s

s s
U s jm 

 

   
    
   

 (6.14) 
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where m  is known as the topological charge, while s  refers to the source size. 

Secondly, the field of the elliptical Gaussian vortex beam can be written as 

follows [112]. 

2 2

2 2
( , ) exp exp( tan ),

m

x s y x s y s y

x y

s s x

s j s s s s
U s s jm

s

  

 

   
     
   

 (6.15) 

where s stands for the degree of elasticity. 

Thirdly, the Laguerre-Gaussian beam is most commonly known in vortex 

beam [113-115]. 

2

3 2
( , ) exp exp( ),

m

m

n

s s

s s
U s L jm 

 

   
    
   

 (6.16) 

Fourthly, the Bessel-Gaussian type vortex beam can be written as follows: 

2

4 2
( , ) exp exp exp( )m

s s

s s
U s J jm 

 

   
    

   
 (6.17) 

Recently, flat-topped Gaussian vortex beams have been introduced with the related 

source field expression being [116]. 

 
2 2
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



   
      

   
  (6.18) 
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CHAPTER 7 

RESULTS AND DISCUSSION 

7.1 Introduction 

Vortex beams have become popular nowadays. In this section, it is possible to 

encounter extensive investigations of radiation, the OAM and the phase distribution 

of source and receiver fields. Moreover, a scintillation index formulation is carried 

out for the Gaussian beam on the propagation length in turbulent atmospheres, and 

depending on the generalized beam formulation of the field, the computation of 

scintillation index methods is compared in order to select the best way to describe 

the phenomenon. 

Three types of scintillation index methods are examined: the Rytov, Huygens-

Fresnel and Random Phase Screen methods. In addition, the variation of polynomial 

parameters (the m-radial number or topological charge number, n-orbital angular 

momentum quantum number or degree of the polynomial) of the Laguerre function 

is applied to the Laguerre-Gaussian vortex beam (LGVB) which is propagated into 

random media of an atmosphere modeled by the phase screen technique. This 

investigation is implemented by using the 7-Mary symbols of Laguerre Beams with 

different values of polynomial parameters that are transmitted in strong turbulence. 
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The Gaussian, Elliptical, Laguerre and Bessel vortex beams were selected and 

measurements of the SI were taken for different values of the n and m parameters for 

their respective beams. The Gaussian (GB) and Gaussian vortex beams (GVB) were 

selected and measurements of the SI were taken for different values of the n and m 

parameters of the GVB. 

7.2. Phase Distribution Behavior with Multi-values of Topological Charge of 

Vortex Beams 

In this section, we present the numeric results obtained for plane phase distribution 

source and receiver (
s ,

r ) with multi-values of topological charge for Gaussian 

vortex, Elliptical Gaussian vortex and Laguerre-Gaussian vortex beams, 

respectively. Their sources plane fields are given by Eqs. (6.14), (6.15) and (6.16) 

7.2.1. Gaussian Vortex Beam 

The source field expression of it is explained in Eq. (6.14) with the topological 

charges are −3, 3, −5, 5, −7 and 7 and s  = 1 cm. The phase distribution source and 

receiver with multi-values of topological charge are explored in Figure 9. 



63 

  

  

  

  

  

 

 

Figure 9: Source and receiver planes phase distribution of Gaussian vortex beam with the 
topological charge of  m  = m−3 = −3, m  = m3 = 3, m  = m−5 = −5, m  = m5 = 5,                

m  = m−7 = −7 and m  = m7 = 7 

7.2.2. Elliptical Gaussian Vortex Beam 

The source field expression of the Elliptical Gaussian vortex beam is explained in 

Eq. (6.15) with topological charges of −3, 3, −5, 5, −7 and 7, while s  = 1 cm and 

the s  degree of elasticity is equal to 0.8. We explore the phase distribution source 

and receiver with multi-values of the topological charges in Figure 10. 
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Figure 10: Source and receiver planes phase distribution of Elliptical Gaussian vortex beam 
with the topological charge of m = m−3 = −3, m = m3 = 3, m  = m−5 = −5, m  = m5 = 5, 

m  = m−7 = −7 and m  = m7 = 7 

7.2.3 Laguerre-Gaussian Vortex Beam 

The source field expression of the Laguerre-Gaussian vortex beam is explained in 

Eq. (6.16) with the topological charges being −3, 3, −5, 5, −7 and 7, s  = 1 cm, and 

n is the degree of the polynomial. We explore the phase distribution of the source 

and receiver with multi-values of topological charge in Figure 11. 

Finally, it is expected that the results in Section 7.2 will be beneficial to optical links, 

and this work is assisted to know the phase distribution receiver. Therefore, we 

collected the results into an article that had been acceepted for publication in a 

science journal [117]. 
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Figure 11: Source and receiver planes phase distribution of Laguerre-Gaussian vortex with 
the topological charge of m = m−3 = −3, m = m3 = 3, m = m−5 = −5, m = m5 = 5,               

m = m−7 = −7 and m = m7 = 7 

7.3 Computing the Scintillation Index of a Gaussian Beam Using Different 

Methods 

In this section, we present the numeric results obtained for scintillation 

characteristics in strong atmospheric turbulence for Gaussian beams at various 

propagation distances using Rytov, Huygens–Fresnel and Random Phase Screen 

methods. Their source plane field and the equations of the SI are given by: Equations 

(6.1) and (3.31). 

7.3.1. SI Results with the Rytov Method 

The source field expression was explained in Eq. (6.1), which is able to generate a 

Gaussian beam. We concentrate on the Rytov method to compute the SI of the 

Gaussian beam. For this, in Figures 12 and 13, we explore the scintillation index of 
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the Gaussian beam with a wavelength operation of   = 1.35 μm, 

2 15 -2/31.55 m, 10 m ,nC     and a source size 1s  cm. In this section, graphic 

illustrations were provided based on the numerical evaluation of Eq. (9) of Ref. 

[118]. Although the scintillation index expression of Eq. (9) is able to generate 

results for any type of beam composed of the summation of different fundamental 

Gaussian beams, in the current study, we concentrate only on the Gaussian beam. A 

comparison was made between the data available in Figure 13 and those of the 

mentioned Figure 1 in Ref. [118], a good agreement was found between the two 

cases. Figure 14 shows the SI of the GB with wavelengths of operation of                

 = 1.35 μm and  = 1.55 μm together. It is clear that an SI with   = 1.55 μm is 

better than an SI with   = 1.35 μm. 

 

Figure 12: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Rytov method for   = 1.35 μm 
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Figure 13: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Rytov method for   = 1.55 μm 

 

Figure 14: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Rytov method for   = 1.35 μm and   = 1.55 μm 

7.3.2. SI Results with the Huygens-Fresnel Method 

The source field expression was explained in Eq. (6.1), which can be used to 

generate a Gaussian beam. In the current study, we concentrate on the Huygens-
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Fresnel method to compute the SI for the beam, it was presented these scintillation 

calculations in weak atmospheric turbulence for he Gaussian beam based on the 

extended Huygens–Fresnel integral and a mathematical function designed by [119]. 

As demonstrated in Figures 15 and 16, we explore the scintillation index of the 

Gaussian beam with wavelengths of operation of 1.35 m   and 1.55 m  , 

2 15 -2/310 m ,nC   and source size 1s  cm. Adjusting of parameters in our study 

with those of Ref. [119], and based on the numerical computations of Eqs. (3), (6) 

and (9) of Ref. [119]. A comparison was made between the data available in Fig. 16 

and those of the mentioned Fig. 1 in Ref. [119], good agreement was found between 

the two cases. Finally, Fig. 17 shows the SI of the GB with wavelengths of operation 

of 1.35 m   and 1.55 m   together, and it is clear that the SI with 

1.55 m    is better than the SI with 1.35 m  . 

 

Figure 15: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Huygens-Fresnel method for   = 1.35 μm 
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Figure 16: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Huygens-Fresnel method for   = 1.55 μm 

 

Figure 17: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Huygens-Fresnel method for   = 1.35 μm and   = 1.55 μm 

7.3.3. SI Results using the Random Phase Screen Method 

The source field expression was explained in Eq. (6.1), which is able to generate a 

Gaussian beam. In the present work, we concentrate on the random phase screen to 
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compute the aperture averaged scintillation for the Gaussian beam as per Figures 18 

and 19. We explore the aperture averaged scintillation of the Gaussian beam with a 

wavelength of operation at 1.35 m   and 2 15 -2/31.55 m, 10 m ,nC     and a 

source size of 1s   cm. Applications of random phase screen to specific beam 

types have also appeared in the literature. Selecting the appropriate grid spacings and 

number of grid points, in turn, depends on source beam profile, diffractive beam 

properties and turbulence induced spreading of the propagation medium. In this 

process, the number of intermediate phase screen plates that are to be placed between 

the transmitter and the receiver is also determined. The detailed guidelines for such 

computations and constraints are stated in Ref. [120]. A comparison was made 

between the data available in Fig. 19 and those of the mentioned Fig. 6 in Ref. [120], 

a good agreement was found between the two cases. Figure 20 shows the aperture 

averaged scintillation of the GB with wavelengths of operation of 1.35 m   and

1.55 m   together, and it is clear that the that with 1.55 m   is better than the 

SI with 1.35 m  . 

In the previous sections, we presented the numerical results obtained for scintillation 

characteristics in atmospheric turbulence for the Gaussian beam at various 

propagation distances using the Rytov, Huygens Fresnel, and Random Phase Screen 

methods. From the graphical outputs in Figures 21 and 22, it can be observed that the 

Random Phase Screen method exhibits less scintillation and it is nearer to the 

experimental method. From the above three tests, we deduce that the designed 

random phase screen setup can safely and reliably be used to estimate the 

scintillations of the Gaussian beam. 
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Finally, we collected the results in an article that had been accepted for publication 

in a science journal [121]. 

 

Figure 18: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Random Phase Screen method for   = 1.35 μm 
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Figure 19: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Random Phase Screen method for   = 1.55 μm 

 

Figure 20: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Random Phase Screen method for   = 1.35 μm and   = 1.55 μm 
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Figure 21: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Rytov, Huygens-Fresnel and Random Phase Screen methods for   = 1.35 μm 

 

Figure 22: Scintillation behavior of the Gaussian beam against the propagation distance 

using the Rytov, Huygens-Fresnel and Random Phase Screen methods for   = 1.55 μm 

7.4. Results of the Scintillation Index for LGVB 

7.4.1. Topological Charge for LGVB Being Constant 

In this section, we discuss the values of the SI when an m  for the LGVB is constant. 

To begin with, m is adjusted as a constant value and made equal to 1, 3 or 7 for each 
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case and we set the degree of the polynomial (n) to different values such as 0, 1, 3, 4, 

5 and 6. 

7.4.1.1. Topological Charge (m = 1) 

In this case, we set 1 1 1 1 1 1 1

0 1 2 3 4 5 6( , , , , , , )L L L L L L L . Figure 23 explains the values of the SI 

as being increased with an increase in the polynomial degree and the propagation 

distance, and when L = 3.5 km, the highest value of the SI and for  m = 1 and n = 6,

1

6L   is equal to 0.1746 
-2/3m . 

7.4.1.2. Topological Charge (m = 3) 

In this case, we set 3 3 3 3 3 3 3

0 1 2 3 4 5 6( , , , , , , )L L L L L L L . Figure 24 shows the values of the SI 

increasing with an increase in the polynomial degree and the propagation distance. 

However, in this case, the values of the SI are greater than those in Section 7.4.1.1, 

and when L = 3.5 km, the highest value of the SI and for m = 3 and n = 6, 3

6L  is 

equal to 0.1864 -2/3m . 

7.4.1.3. Topological Charge (m = 5) 

In this case, we set 5 5 5 5 5 5 5

0 1 2 3 4 5 6( , , , , , , )L L L L L L L . Figure 25 shows the values of the SI 

increasing with an increase in the polynomial degree and the propagation distance. 

However, in this case, the values of the SI are greatest in Sections 7.4.1.1 and 

7.4.1.2, and when L = 3.5 km, the highest value of the SI and for m = 5 and n = 6,    

5

6L  is equal to 0.2433 -2/3m . 
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It can be seen from the results from the previous sections (7.4.1.1, 7.4.1.2 and 

7.4.1.3) that the values of the scintillation index increased with an increase in the 

values of the n and m parameters. 

7.4.2. Polynomial Degree for the LGVB Being Constant 

In this section, we discuss the values of the SI when the degree of the polynomial for 

the LGVB is constant. To begin, n is adjusted as a constant value and made equal to 

1 or 5 for each status. We set the topology charge (m) to different values, such as 0, 

1, 3, 4, 5 and 6. 

7.4.2.1. Polynomial Degree for LGVB (n = 1) 

In this case, we set 0 1 2 3 4 5 6

1 1 1 1 1 1 1( , , , , , , )L L L L L L L . Figure 26 shows the values of the SI 

increasing with an increase in the topological charge (m) and the propagation 

distance. When L = 3.5 km, the highest value of the SI and for n = 1 and m = 6,       

6

1L  is equal to 0.08238 -2/3m . 

7.4.2.2. Polynomial Degree for LGVB (n = 3) 

In this case, we set 0 1 2 3 4 5 6

3 3 3 3 3 3 3( , , , , , , )L L L L L L L . Figure 27 explains the values of the SI 

increasing with an increase in the m  and the propagation distance. When 

L = 3.5 km, the highest value of the SI and for n = 3 and m = 6, 6

3L  is equal to 

0.1249 -2/3m . 

7.4.2.3. Polynomial Degree for LGVB (n = 5) 

In this case, we set 
0 1 2 3 4 5 6

5 5 5 5 5 5 5( , , , , , , )L L L L L L L . Figure 28 shows the values of the SI 

increasing with an increase in the m  and the propagation distance. When 
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L = 3.5 km, the highest value of the SI and for n = 5 and m = 6, 6

5L  is equal to 

0.1889 -2/3m . 

It can be seen from the results from the previous sections (7.4.2.1, 7.4.2.2 and 

7.4.2.3) that the value of the scintillation index increased with an increase in the 

values of the n and m parameters. 

Finally, the values of the scintillation index for the LGVB are near to each other in 

the case of changing the degree of the polynomial ( )n  when the ( )m  is fixed to 1, 3 

or 5. In contrast, these values of the SI are far from each other in the case of the 

degree of the polynomial being fixed to 1 or 5 and with a change of the m . 

Therefore, for a good state of transmission, it is recommended that the degree of the 

polynomial be made equal to n = 1 and the topological charge numbers equal to 0, 1, 

2, 3, 4, 5 and 6, such that 0 1 2 3 4 5 6

1 1 1 1 1 1 1( , , , , , , )L L L L L L L . In the end, we prepared an article 

for submission to a science journal. 

 

Figure 23: Scintillation variation of the LGVB with the degree of the polynomial when the 
topological charge is fixed to m = 1 against the propagation distance. 
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Figure 24: Scintillation variation of the LGVB with the degree of the polynomial when the 

topological charge is fixed to m = 3 against the propagation distance 

 

Figure 25: Scintillation variation of the LGVB with the degree of the polynomial when the 

topological charge is fixed to m = 5 against the propagation distance. 
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Figure 26: Scintillation variation of the LGVB with the topological charge when the degree 

of the polynomial is fixed to n = 1 against the propagation distance 

 

Figure 27: Scintillation variation of the LGVB with the topological charge when the degree 

of the polynomial is fixed to n= 3 against the propagation distance 
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Figure 28: Scintillation variation of the LGVB with the topological charge when the degree 

of the polynomial is fixed to n = 5 against the propagation distance 

7.5. Comparisons between Gaussian, Elliptical, Laguerre and Bessel Vortex 

Beams 

Four types of beam, namely Gaussian, Elliptical, Laguerre and Bessel vortex beams 

were selected and measurements of the SI were taken for different values of the n 

and m parameters for their beams by using Eqs. 6.14, 6.15, 6.16 and 6.17. Then, we 

compared among them to select the most suitable. Finally, it was found that the 

Elliptical beam with m equaling 7 and 3 were best. Figures 29, 30, 31, 32 and 33 

show the changes of the SI taking a variety of values of the n and m parameters for 

multi-types of beam. Tables 2 and 3 show the effect of varying the n and m 

parameters on the values of the SI for the four types of beam. 
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Table 2: Variation of values of SI between Gaussian vortex (GVB) and Elliptical Gaussian 
vortex (EGVB) beams 

Item Propagation Distance 

(L in m) 
GVB 

(n = 6, m  = 3) 
GVB 

(n = 5, m  = 3) 
EGVB (

m = 7) 
EGVB 

( m
= 3) 

1 1.00E−01 0.05946 0.0661 0.0856 0.02625 

2 0.2 0.05479 0.07976 0.08123 0.03512 

3 0.3 0.04365 0.0721 0.05658 0.03913 

4 0.4 0.04085 0.0724 0.04804 0.03915 

5 0.5 0.03872 0.06531 0.04817 0.0436 

6 0.6 0.05416 0.07979 0.05591 0.05362 

7 0.7 0.07204 0.09244 0.05736 0.05715 

8 0.8 0.07648 0.0978 0.07266 0.0738 

9 0.9 0.08401 0.1011 0.08576 0.09309 

10 1 0.09241 0.103 0.114 0.1221 

11 1.1 0.1112 0.1242 0.09577 0.1008 

12 1.2 0.1266 0.1247 0.08237 0.08821 

13 1.3 0.1342 0.1328 0.087 0.09165 

14 1.4 0.1372 0.1445 0.06883 0.07232 

15 1.5 0.1164 0.1251 0.07162 0.07637 

16 1.6 0.1327 0.134 0.06887 0.07552 

17 1.7 0.1224 0.1163 0.06825 0.0703 

18 1.8 0.1162 0.118 0.0647 0.06932 

19 1.9 0.1011 0.1109 0.0567 0.05996 

20 2 0.1073 0.1118 0.04563 0.04896 

21 2.1 0.102 0.1134 0.04401 0.04685 

22 2.2 0.1097 0.1221 0.04986 0.05275 

23 2.3 0.09474 0.1044 0.04175 0.04397 

24 2.4 0.09702 0.1023 0.0445 0.04697 

25 2.5 0.09235 0.1046 0.0453 0.04761 

26 2.6 0.0886 0.09811 0.04542 0.05053 

27 2.7 0.0994 0.107 0.03658 0.03895 

28 2.8 0.08796 0.09735 0.0378 0.03976 

29 2.9 0.07913 0.08766 0.03971 0.04179 

30 3 0.07845 0.0924 0.03883 0.04116 

31 3.1 0.08672 0.1055 0.03158 0.03354 

32 3.2 0.06932 0.08092 0.03834 0.03929 

33 3.3 0.06604 0.08197 0.03081 0.03394 

34 3.4 0.08956 0.09745 0.03385 0.03659 
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Table 3: Variation of values of SI between  Laguerre Gaussian vortex (LGVB) and Bessel 
Gaussian vortex (BGVB) beams 

Item Propagation Distance  

(L in m) 
LGVB 

(n = 6, m= 3) 
LGVB 

(n = 5, m= 3) 
BGVB 

(m = 7) 
 BGVB 

(m= 3) 

1 1.00E−01 0.05668 0.003523 0.07746 0.05359 

2 0.2 0.06001 0.005602 0.08652 0.06002 

3 0.3 0.04849 0.01492 0.07328 0.05576 

4 0.4 0.0622 0.03112 0.07055 0.05731 

5 0.5 0.05899 0.04701 0.06224 0.05408 

6 0.6 0.06095 0.05674 0.07573 0.07005 

7 0.7 0.07485 0.07757 0.0891 0.08556 

8 0.8 0.07601 0.09473 0.09366 0.08997 

9 0.9 0.09803 0.1139 0.09628 0.09581 

10 1 0.09829 0.1223 0.09934 0.0981 

11 1.1 0.09853 0.1286 0.1188 0.1232 

12 1.2 0.0988 0.1121 0.1216 0.1262 

13 1.3 0.09262 0.1195 0.1301 0.1357 

14 1.4 0.08425 0.1082 0.1394 0.1428 

15 1.5 0.08832 0.1024 0.1204 0.1212 

16 1.6 0.08117 0.0959 0.1299 0.1363 

17 1.7 0.08706 0.09938 0.112 0.1201 

18 1.8 0.08397 0.09956 0.1157 0.1171 

19 1.9 0.06802 0.08396 0.1063 0.1071 

20 2 0.08262 0.09383 0.1075 0.11 

21 2.1 0.08218 0.09174 0.1075 0.1096 

22 2.2 0.07437 0.09449 0.1169 0.1191 

23 2.3 0.07117 0.07852 0.09963 0.1015 

24 2.4 0.07138 0.08126 0.09772 0.1015 

25 2.5 0.07566 0.08211 0.09938 0.099 

26 2.6 0.06991 0.07306 0.09332 0.09427 

27 2.7 0.06126 0.06805 0.1027 0.1031 

28 2.8 0.06694 0.06942 0.09185 0.0939 

29 2.9 0.06076 0.06712 0.0828 0.08426 

30 3 0.06242 0.06594 0.08715 0.08831 

31 3.1 0.06076 0.06513 0.09954 0.09798 

32 3.2 0.06077 0.0652 0.0762 0.07644 

33 3.3 0.06603 0.06882 0.07671 0.07546 

34 3.4 0.05866 0.06331 0.09335 0.09302 
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Figure 29: Aperture Averaged Scintillation variation of GVB with the topological charges 

equal to 3 and 6, and the degrees of the polynomial equal to 6 and 5 against the propagation 
distance 

 

Figure 30: Aperture Averaged Scintillation variation of the Elliptic beam with the 

topological charges equal to 7 and 3 against the propagation distance 
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Figure 31: Aperture Averaged Scintillation variation of the LGVB with the topological 

charges equal to (m  3) and the degrees of the polynomial equal to 11and 5 against the 
propagation distance 

 

Figure 32: Aperture Averaged Scintillation variation of the BGVB with topological charges 

equal to 6 and 5 against the propagation distance (L in km). 
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Figure 33: Changes in the Aperture Averaged Scintillation taking a variety of values of the 

n and m parameters for multi-types of beams against the propagation distance. 

7.6 Comparison between Gaussian and Vortex Gaussian Beams 

Two types of beam, namely the Gaussian (GB) and Gaussian vortex beams (GVB), 

were selected and measurements of the SI were taken for different values of the n 

and m parameters of the GVB. Then, it was shown that the GVB with a degree of the 

polynomial and topological charge being fixed to n = 6, m = 3 and n = 5, m = 6 were 

better than the GB. Figures 34 and 35 explain the change in the SI taking a variety of 

values of the n and m parameters for the Gaussian (GB) and Gaussian vortex beams 

(GVB) beams. It is clear that the SI for the Gaussian vortex beams (GVB) is better 

than the SI for the Gaussian vortex beams (GVB) with the same set of simulation 

parameters. 
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Figure 34: Changes of the SI taking a variety of values of the n and m parameters for GB 

beams against the propagation distance 

 

Figure 35: Changes in the SI taking a variety of values of the n and m parameters for GVB 

beams against the propagation distance 
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7.7. The effect of Turbulence on the Average Intensity of the Laguerre Beam 

In this section, we explain the variation of values of the receiver intensity in free-

space and in turbulence for the Laguerre Gaussian vortex beam with topology charge 

( 1m  , 3, 5 and 7) and degree of polynomial ( 1n  ), Figures 36 and 37 illustrate 

the behavior of intensity of LGVB against the receiver plane ( ,x yr r ) in free-space 

and in turbulence. 

 

Figure 36: Average Receiver Intensity against xr  and yr in free space 
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Figure 37: Average Receiver Intensity against xr  and yr in turbulence 

7.8. Effect of Polynomial Parameters of LGVB on Intensities of the Receiver in 

Free Space. 

In this section, we discuss the effect of Laguerre polynomial parameters on free 

space receiver intensities where, 1Irfs , 2Irfs , 3Irfs  and 4Irfs  are the free space 

receiver intensities. To begin, n  is adjusted as a constant value and equal to 1, 3, 5 

and 7 for each status and set m  into different values such as 1, 3, 5 and 7 for each 

individual case. Tables 4, 5, 6 ,7 and 8 show the effect of the Laguerre polynomial 

parameters on receiver intensities in free space to yield acceptable values when        

n = 1 with m  = 1, 3, 5 and 7 as shown in Table 4 , n  = 7 with m  = 1, 3, 5 and 7 as 

seen in Table 5, and when m  = 1 with n  = 1, 3, 5 and 7 in Table 6; and n = 7 with 

m = 1, 3, 5 and 7 in Table 7. Finally, n  = 1, 3, 5 and 7 with m  = 1, 3, 5, 7 represent 

the best case in Table 8. Figures 38, 39, 40, 41 and 42 show the variation of receiver 

intensities of LGVBs in free space by changes in the polynomial parameters of the 
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Laguerre beam. It becomes evident that when the n  and m  parameters are the same, 

the receiver intensities of LGVBs become more separated. 

Table 4: Effect of Laguerre polynomial parameters ( 1n   and 1m  , 3, 5 and 7) on 
receiver intensities in free space. 

Receiver Intensities of LGVBs in Free Space 

Item  1Irfs  2Irfs  3Irfs  4Irfs  

1 1Irfs  1.0000    

3 2Irfs  0.6350 1.0000   

5 3Irfs  0.2211 0.7316 1.0000  

7 4Irfs  0.0542 0.3359 0.7882 1.0000 

Table 5: Effect of Laguerre polynomial parameters (n = 7 and m = 1, 3, 5 and 7) on receiver 
intensities in free space 

Receiver Intensities of LGVBs in Free Space 

Item  1Irfs  2Irfs  3Irfs  4Irfs  

1 1Irfs  1.0000    

3 2Irfs  0.2356 1.0000   

5 3Irfs  0.8987 0.9136 1.0000  

7 4Irfs  0.4417 0.7172 0.9268 1.0000 

Table 6: Effect of Laguerre polynomial parameters (n = 1 and m = 1, 3, 5 and 7) on receiver 
intensities in free space 

Receiver Intensities of LGVBs in Free Space 

Item  1Irfs  2Irfs  3Irfs  4Irfs  

1 1Irfs  1.0000    

3 2Irfs  0.2356 1.0000   

5 3Irfs  0.0131 0.4468 1.0000  

7 4Irfs  0.0004 0.0692 0.5782 1.0000 
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Table 7: Effect of Laguerre polynomial parameters (n = 7 and m = 1, 3, 5 and 7) on receiver 
intensities in free space 

Receiver Intensities of LGVBs in Free Space 

Item  1Irfs  2Irfs  3Irfs  4Irfs  

1 1Irfs  1.0000    

3 2Irfs  0.5209 1.0000   

5 3Irfs  0.1099 0.6315 1.0000  

7 4Irfs  0.0143 0.2093 0.7215 1.0000 

Table 8: Effect of Laguerre polynomial parameters ( m = n = 1, 3, 5 and 7) on receiver 
intensities in Free Space 

Receiver Intensities of LGVBs in Free Space 

Item  1Irfs  2Irfs  3Irfs  4Irfs  

1 1Irfs  1.0000    

3 2Irfs  0.0604 1.0000   

5 3Irfs  0.0004 0.2556 1.0000  

7 4Irfs  0.0000 0.0138 0.4446 1.0000 

 

Figure 38: A two-dimensional view of receiver plane intensities of Laguerre Gaussian 

vortex beam with n = 1 and m = 1, 3, 5 and 7 
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Figure 39: A two-dimensional view of receiver plane intensities of Laguerre Gaussian 
vortex beam with n = 7 and m = 1, 3, 5 and 7 

 

Figure 40: A two-dimensional view of receiver plane intensities of Laguerre Gaussian 

vortex beam with n = 1, 3, 5 and 7 and m = 1 
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Figure 41: A two-dimensional view of receiver plane intensities of Laguerre Gaussian 

vortex beam with n  = 1, 3, 5, and 7 and m  = 7 

 

Figure 42: A two-dimensional view of receiver plane intensities of Laguerre Gaussian 
vortex beam with n  = 1, 3, 5, and 7 and m  = 1, 3, 5, and 7 

7.9. Behavior of the Symbol Error Rate of the Gaussian Vortex Beam for 8-

Mary 

In this section, we discuss the behavior of Symbol Error Rate of Gaussian vortex 

beam for 8-Mary. It is clear from Figure 43 that the SER increases when the value of 
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2

nC  increases. Finally, we can plot the SER in semi-log against 2

nC . Figure 44 

illustrates the behavior of the SER against 2

nC   in semi-log format. 

 

Figure 43: Symbol error rate against the structure constant 
2

nC  for 8-Mary 
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Figure 44: Symbol error rate in semi-log format plotted against the structure constant 
2

nC  

for 8-Mary.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

Firstly, we used the Gaussian vortex, Elliptical Gaussian vortex and the Laguerre-

Gaussian vortex beams in this part of the study as related to the phase distribution 

approach of the transmitter and receiver. Therefore, computer modeling of the phase 

distributions of vortex beams were investigated by means of the numerical 

simulation of propagation through free space. It is expected that these results would 

be beneficial to optical links, and this work has assisted us to know the phase 

distribution receiver by changing the numbers of the topological charge, which helps 

to predict receiver messages in photodetector devices. 

Secondly, the scintillation index formulation for the Gaussian beam on a propagation 

length in a turbulent atmosphere was evaluated. The scintillation index methods were 

compared so as to select the best approach to describe the phenomenon. The 

properties of each method, namely Rytov, Huygens-Fresnel and Random Phase 

Screen, were closely examined. From the graphical outputs, it was observed that the 

Random Phase Screen method produces an acceptable value of scintillation index 
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which is near to practical and thus can be regarded as advantageous in the case of a 

GB, in particular at long propagation lengths. 

Thirdly, we constructed and tested the behavior of the scintillation index mechanism, 

which was devised for an optical system operating with the 7-Mary symbols of the 

LGVB by changing the polynomial parameters of the Laguerre Function. Then, the 

random phase screen technique method was used to model the propagation medium 

of the turbulent atmosphere. Additionally, the Matlab program was used to test any 

scintillation variation of the LGVB with the degree of the polynomial when the 

topological charge was fixed to m = 1, 3 and 7 for each case. It can be seen from the 

results from the previous sections (7.4.1.1, 7.4.1.2 and 7.4.1.3) that the value of the 

scintillation index increased with an increase in the values of the n and m parameters. 

In addition, the Matlab program was run again to test the scintillation variation of the 

LGVB with the topological charge when the degree of the polynomial was fixed to 

n  = 1 and 5 for each case. It can be seen from the results from previous sections 

(7.4.2.1, 7.4.2.2 and 7.4.2.3) that the value of the scintillation index also increased 

with an increase in the values of the n  and m  parameters. Then, the values of the 

scintillation index variation of the Laguerre-Gaussian beam were near together in the 

case of changes in the topological charge ( m ) when the degree of the polynomial      

( n ) was fixed and equal to 1, 3 or 5. In contrast, these values of the SI are far from 

each other in the case of the topological charge being fixed to m = 1, 3 or 5 and 

changing the degree of the polynomial ( n ). In conclusion for this part of the result, 

the topology charge ( m ) had a greater effect than the degree of the polynomial ( n ) 

on the SI values. Therefore, for a good state of transmission, it is recommended to 

make the degree of the polynomial n = 1 and the topological charge number change 
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to 0, 1, 2, 3, 4, 5 and 6 values. Therefore, for a good state of transmission, it is 

recommended that the degree of the polynomial be made equal to n = 1 and the 

topological charge numbers equal to 0, 1, 2, 3, 4, 5 and 6, such that 

0 1 2 3 4 5 6

1 1 1 1 1 1 1( , , , , , , )L L L L L L L . 

Fourthly, four types of beam, namely the Gaussian, Elliptical, Laguerre and Bessel 

vortex beams, were selected and measurements of the SI were taken for different 

values of the n and m parameters for their beams. Then, we compared among them to 

select one that would be suitable. Finally, it was found that the Elliptical beam with 

topological charge equaling 7 and 3 was best. 

Fifthly, two types of beams, namely GB and GVB, were chosen and measurements 

of the SI were taken for the different values of the n and m parameters of the GVB. 

Then, it was shown that the GVB with the degree of the polynomial and the 

topological charge equaling values of n  = 6, m  = 3 and n  = 5, m  = 6 were better 

than the GB. Although the SI values of the GB were increasing with an increasing 

propagation distance, the SI values of the GVB remained between 0.04 and 0.14 with 

increasing propagation distance. 

Sixthly, receiver intensities for LGVB in free space are affected by changes in the 

polynomial parameters of Laguerre beam. It becomes evident that when n and m  

are the same, the receiver intensities of LGVB become more separate. 

Finally, the SER for GVB for 8-Mary against structure constant is computed, and it 

has appeared that the SER is increased by the increasing structure constant 

parameter. 
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8.2 Future Work 

The result of this study presented and established a solid foundation for much future 

work in the area of optical beam propagation in weak and strong turbulence. 

However, achieving the desired beam without an SI is still a difficult problem. Some 

studies may prove fruitful in establishing classes of beam sources that prove more 

robust while propagating through oceanic turbulence. Other studies have been 

proposed to satisfy the high value of SNR. Further continuous studies are included in 

work on the wave structure function in addition to studies on the bit error rate (BER) 

of a communication channel and enhanced backscatter in laser radar systems. 
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