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ABSTRACT

A STUDY OF THE POTENTIAL ADVANTAGES OF LIGHT BEAMS IN WEAK
AND STRONG TURBULENT ATMOSPHERES TO SATISFY ROBUST FREE
SPACE COMMUNICATION CHANNELS WITH LONGER LINK DISTANCES

ALI ABDULRAHMAN DHYEAB AL-SAJEE
PH.D., Department of Electronic and Communication Engineering
Supervisor: Prof. Dr. Halil T. Eyyuboglu

July 2018, 112 pages

Firstly, plane phase distribution sources and receivers with multi-values of
topological charge were evaluated in this study. This evaluation was implemented in
a computer environment. It is expected that our results will be beneficial to optical
links incorporating the use of the Gaussian vortex, Elliptical Gaussian vortex, and
Laguerre-Gaussian vortex beams. Computer modeling of the phase distributions of
vortex beams was investigated by numerical simulation of propagation through free
space. This work will help to know the phase distribution receiver by changing the
numbers of the topological charge and to estimate those receivers’ messages in the
photodetector device. Secondly, a scintillation index (SI) formulation was carried out
for the Gaussian beam on the propagation length in a turbulent atmosphere

depending on the generalized beam formulation of the field. The scintillation
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methods were compared in order to determine the best method that describes the
phenomenon. Three types of scintillation methods were examined: the Rytov,
Huygens-Fresnel and Random Phase Screen. From our graphical outputs, it was
observed that the Random Phase Screen exhibits an acceptable scintillation index
value. Thirdly, the results indicate that the topological charge of the Laguerre-
Gaussian beam has a greater effect than the degree of the polynomial on the SI
values. Moreover, if the polynomial degree is fixed, the SI has lower values in cases
of a topological charge increase. Therefore, for a good state of transmission, it is
recommended that the degree of the polynomial be made equal to 1 and the
topological charge numbers equal to 0, 1, 2, 3, 4, 5 and 6. Fourthly, the Gaussian,
Elliptical, Laguerre and Bessel vortex beams were selected and measurements of the
Sl were computed for different values of the n and m parameters for their beams.
Then, it was found that the Elliptical beam with topological charges equaling 7 and 3
was best. Fifthly, the Gaussian beam and Gaussian vortex beams were chosen and
measurements of the scintillation index were computed for the different values of the
parameters of the Gaussian vortex beams. Then, it was shown that the Gaussian
vortex beams with the degree of the polynomial and the topological charge equaling
values of n =6, m=3 and n =5, m = 6 were better than the Gaussian beam. Despite
the increasing propagation distance, the Sl values of the Gaussian vortex beam
remained between 0.04 and 0.14 with an increase in this propagation distance
compared with the Gaussian beam, the value of whose scintillation index will
increase with an increase in the propagation distance. Sixthly, receiver intensities for
the Laguerre-Gaussian beam in free space are affected by changes in the polynomial

parameters of the Laguerre beam. It becomes evident that when the degree of the



polynomial and the topological charge parameters are the same, the receiver

intensities of the Laguerre-Gaussian beam become more separate.

Finally, we compute the Symbol Error Rate for the Gaussian vortex beam for 8-Mary
against a structure constant, and it appears that the Symbol Error Rate increases with
an increasing structure constant parameter. The prime idea of this study is that
distribution sources and receivers are more beneficial to optical channels, and the
Random Phase Screen method is an acceptable method for computing the
scintillation; then the Gaussian vortex beam is better than the Gaussian beam, and we
can change the values of the topology parameter and polynomial degree of the
Laguerre-Gaussian beam or other beams, such as the Gaussian vortex beam, to
decrease the value of the scintillation index. In the end, the symbol error rate is

increased by increasing the structure constant of turbulence.
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UZUN BAGLANTI MESAFELI SERBEST UZAY iLETiSiM KANALINI
GUCLENDIRMEK iCiN DALGALI ATMOSFERDE ZAYIF VE GUCLU
ISINLARIN POTANSIYEL AVANTAJLARI CALISMAS

ALI ABDULRAHMAN DHYEAB AL-SAJEE

Yiiksek Lisans, Elektronik ve Bilisim Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Halil T. Eyyuboglu
Tammuz 2018, 112 sayfa
Bu ¢alismada, ilk olarak, topolojik yiikiin ¢oklu-degerlerinde diizlemdeki faz dagitim

kaynaklar1 ve alicilar1 degerlendirilmistir. Bu degerlendirme bilgisayar ortaminda
uygulanmistir. Bulgularimizin, Gaussian vortex, Eliptik Gaussian vortex ve
Laguerre-Gaussian vortex 1sinlarinin kullanilmasiyla ilgili optik baglantilarda yararli
olmast beklenmektedir. Vorteks 1sinlarmmin  faz dagilimlarmin  bilgisayar
modellemesi, serbest uzay boyunca yayiliminin sayisal simiilasyonu ile
incelenmistir. Bu islem, topolojik yiikiin sayilarmin faz dagilimi alicisinda
degisiminin bilinmesine ve bu alicilarin mesajlarinin fotodetektor cihazinda tahmin
edilmesine yardimeci oldu, ki bu galismamn ilk kismiydi. Ikinci olarak, alanin
genellestirilmis 151n formiilasyonuna bagli olarak dalgali bir atmosferde yayilma
uzunlugu {izerindeki Gaussian 111 igin bir sintilasyon indeksi formiilasyonu
gerceklestirilmistir.  Sintilasyon indeks yoOntemleri, fenomeni en iyi nasil
tammlayacagimizi se¢mek icin karsilastirildi. U¢ tip sintilasyon indeksi yontemi

incelendi: Rytov, Huygens-Fresnel ve Rastgele Faz Ekrani. Grafiksel
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ciktilarimizdan, Rastgele Faz Ekraninin kabul edilebilir bir sintilasyon indeksi degeri
sergiledigi gozlemlenmistir. Uciincii olarak, sonuglar, SI degerleri iizerinde,
LGVB’nin topolojik yiikinin (m) polinom derecesine (n) gore daha blyuk bir etkiye
sahip oldugu ve topolojik yiikiin (m) degistigi ve polinom derecesinin (n)
sabitlendigi durumlarda, SI’nin daha diisiik degerlere sahip oldugunu gostermektedir.
Bu nedenle, iyi bir iletim durumu icin, polinom derecesinin n =1’¢ esit olmasi ve
topolojik yiik sayisinin gibi, 0, 1, 2, 3, 4, 5 ve 6’ya esit olmast Onerilmektedir.
Dordiinciisii, Gauss, Eliptik, Laguerre ve Bessel Vorteks Isinlart secildi ve SI’nin
Olcumleri, n ve m parametrelerinin farkli degerlerindeki 1sinlart i¢in hesaplandi.
Daha sonra, topolojik yuki (m)’in 7 ve 3’e esit olan Eliptik 1sininin en iyisi oldugu
bulunmustur. Besinci olarak, Gauss Isin1 ve Gaussian Vortex Isinlari se¢ilmis ve
Sintilasyon indeks 6lcimleri GVB’nin (n) ve (m) parametrelerinin farkli degerleri
icin hesaplanmistir. Daha sonra, polinom derecesi ve topolojik yiikii esitleme
degerleri n=6, m=3 and n=5, m =6 olan GVB’nin, GB’den daha iyi oldugu
gosterilmistir. Her ne kadar artan bir yayilma mesafesi olsa da, GVB’nin SI degerleri
0.04 ile 0.14 arasinda kalmistir ve bu yayilma mesafesi GB’deki SI degerlerine
kiyasla artmaktadir. Altinci olarak, serbest uzaydaki LGVB icin alict yogunluklari,
Laguerre 1sminin polinom parametrelerindeki degisikliklerden etkilenmektedir.
(n) ve (m) parametrelerinin ayni oldugu durumlarda, LGVB’lerin alici
yogunluklarinin daha ayrik oldugu ve bunun da diisiik Sembol Hata Orani degerine
neden olacag agiktir. Son olarak, 8-Mary igin tiirbiilans yapi sabiti ‘ye kars1 Laguerr
Gaussian vortex 1ginlari i¢in Sembol Hata Orani hesaplanmaktadir ve tiirbiilans yap1
sabiti parametresinin artirilmasiyla Sembol Hata Orani arttig1 agik¢a goriilmektedir.
Bu calismanin 6nemi, dagitim kaynaklar1 ve alicilart optik kanallar i¢in daha faydali

ve RPS yonteminin, bilgisayarli Sintilasyon indeks hesaplama icin kabul edilebilir
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bir yontem, Gaussian vorteks 1siminin Gaussian 1sinindan daha iyi oldugunun ve
sintilasyon degerlerininin diistiriilmesi i¢in Gaussian 1sinindaki veya diger 1sinlardaki
topoloji parametresi (m) ve polinom derecesi (n) degerlerinde degisiklik
yapabilecegimizin ve son olarak sembol hata orani, tiirbiilans yapi sabiti C2’nin

artis1 ile artabileceginin gosterilmesindedir.

Anhtar Kelimeler: Tiirbiilans; Faz dagilimi; Sintilasyon indeksi (SI); Topolojik
Yiik; Sembol Hata Oran1 (SER).
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Background

The Navy in America depends intensely on radio frequency (RF) correspondence
systems and this dependence creates two major operational constraints: bandwidth,
and absence of possibility, the ability in cases of jamming or identification by
enemies [1, 2]. One conceivable corresponding answer for current RF systems is the
use of free-space optical (FSO) communication systems. Free-space optical
communication links have high bandwidth and are highly directional, which makes
them difficult to identify or jam. Optical free-space communications have the
particular important points when compared with microwave systems and
conventional radio frequency in terms of security and the capacity of transmission of
information [3]. Therefore, interest in optical communication channels has been on
the rise for the last 45 years [4]. Additionally, there has been a considerable measure
of enthusiasm throughout the years in the likelihood of utilizing optical transmitters
for satellite communications. In spite of a large number of the early formative
projects ending because of financing reductions, there was recharged enthusiasm in
the 1990s for the utilization of optical transmitters for correspondence channels

interfacing ground/airborne-to-space or space-to-ground/airborne information links
1



through the atmosphere [5, 6]. The atmosphere alludes to the zone surrounding the
surface of the Earth to a distance of a few hundred kilometers, and it is composed of
numerous elements, principally nitrogen and oxygen, and compounds including
water, carbon dioxide, carbon monoxide, nitrous oxide and ozone. These particles
affect the transmission of an optical wave by scattering and absorbing it and
changing its refractive index. Different layers of the atmosphere show one kind of
temperature, pressure, and density characteristics, which assume an essential part in
the refractive index. The absorbed radiation is one of the major functions of the
atmosphere, and electromagnetic radiation in the atmosphere is weakened at visible
and infrared (IR) ranges due to absorption and scattering. Both absorption and
scattering are deterministic impacts which can be anticipated, in light of an
assortment of atmospheric conditions, for example, latitude, altitude and

meteorological range.

The most injurious impacts of the atmosphere on a propagating laser beam are for
the most part caused by small random temperature fluctuations which are shown as
variations in the index of refraction. The cascade theory of turbulence, attributed to
Kolmogorov, depicts turbulent air movement as a set of eddies, which are turbulence
cells formed by pockets of air with a constant index of refraction ranging in scale

and size from the inward size of turbulence (I,) to the large size of turbulence (L,)

(Dorn 2001). In the layer at the surface up to around 100 meters, the outer scale is
accepted to develop perpendicularly with the height over the ground, while the
inward scale is an insignificant number of millimeters close to the surface (in spite of
the fact that it can be as large as a few centimeters in the upper regions of the

atmosphere). As they are affected by inertial forces, large eddies separate into



smaller eddies, shaping a series of scale sizes between (L,)and (I,) known as the
inertial range. Vortices smaller than (I,) are thought to be in the dispersal extent. In

spite of the fact that the cascade theory alludes to changes in speed, the turbulence
prompted by the speed of the wind causes a non-stop blending which brings
refraction fluctuations. The index of refraction fluctuations is only caused by
temperature variations resulting from this mixing. All fluctuations occur in the
visible and near infrared areas of the spectrum. The execution of a laser radar
(LADAR) or lasercom system can be essentially decreased by turbulence-induced
scintillation coming about because of beam propagation through the atmosphere [6].
In particular, scintillation can lead to power losses at the receiver side and in the long
run to a fading of the received signal [6]. Optical turbulence is caused by the
arbitrarily changing refractive index along the path of propagation, and it causes a

distortion in the optical wave [3]. The refractive index structure parameter, C?* is

adequately steady in the instance of horizontal propagation paths; however, it is a
function of altitude in the case of vertical or inclined paths, and it is thought to be the
most basic parameter along the propagation path in describing the impacts of
atmospheric turbulence [7]. In the case of plane or spherical waves, which are
limiting cases of the Gaussian beam, the Rytov variance, o7 =1.23C °k "°L"/®, which

represents the irradiance fluctuations associated with an unbounded plane wave,

determines what we consider to be weak (o7 <1), moderate, or strong (o7 >1)

fluctuation conditions. C? is the structure constant of the index of refraction,

k =2z/A, is wave number, L the distance of propagation, and (A) is the
wavelength. As indicated by Huygens’ Principle [8], all the subwaves at a specific

distance contribute to the aggregate electric field at a greater propagation distance. In

3



this manner the further the wave propagates, the more distortion it endures.
Additionally, these random phase velocities obtained by the electric field prompt
random changes in beam direction and intensity fluctuations (scintillation). Apart
from very dispersed particles, such as rain drops or snow flakes, scintillation is the
most severe limitation to system performance in optical communications, such as a
binary communication channel. It can represent the propagation in turbulence with a

model such as the Random Phase Screen Model, for this method, two new steps are
introduced: (1) Some random phase screens, say N, must be placed between the

source and receiver planes in order to model the atmospheric turbulence. The
random phase distributions on these screens are to be in proportion to the
atmospheric power spectral density function. (2) A number of realizations (runs), say

N ., must be made to approach the averaged analytic result. The capacity to

compensate for these impacts is of extreme significance to optical systems designers.
Beforehand, plane wave, spherical wave or major Gaussian beams were dealt with in
a large portion of the studies [9]. As of late, optical beams with singularity points or
lines where the phase or amplitude of the field is undefined or changes or changes
suddenly have drawn growing interest. In this thesis, we firstly determine the phase
distribution for transmitters and receivers for different types of vortex beams that
will be implemented. Secondly, we intend to make a comparison among the four
types of computation of scintillation index methods, such as Rytov, Huygens-Fresnel
and Random Phase Screen for the Gaussian beam. Thirdly, we build up the
numerical modelling capacities to explore the higher request properties of vortex

beams propagating through a turbulent atmosphere and we make comparisons with



the Gaussian beam and Gaussian vortex beams for the first time. Finally, we

compute the Symbol Error Rate (SER) for Laguerre-Gaussian vortex beams.

1.2. Motivation and Objectives

The free-space optical laser communication system provides an attractive alternative
to radio frequency (RF) systems because of its larger bandwidth data, higher antenna
gain, higher reception apparatus, smaller component sizes and antenna, and lower
component costs of optic systems [10, 11]. They have been broadly utilized as a part
of numerous applications, such as space communications, impermanent system
establishments, additional security items for important fiber links, flying-machine-

to-air-ship interchanges, last-mile arrangements and military applications [12, 13].

FSO communication systems, in spite of their promising focal points, are extremely
influenced by climatic events, such as rain, haze and so on. Consequently, a large
portion of the investigation concentrates on the accessibility of FSO systems under
poor weather conditions. An FSO interface is seriously influenced by the physical
medium of the channel, such as the growth of trees and the construction of new
buildings. Consequently, future developments through the communication interface
method should be precisely considered. Receiver and transmitter alignment
constraints become dependent on building movements. Scintillation: As varying the
temperature of the atmosphere increments, diverse air atoms from different media
(house tops, ground, etc.) are warmed in an irregular manner causing fluctuations in
the refractive index of the atmosphere in a period subordinate structure, which is
called scintillation. Scintillation shows up as power fluctuations on the receiver side

[14]. This study has an alternative approach to reducing the effect of scintillation by



selecting different types of vortex beams, and examining the scintillation behavior

for each one.

1.3. Problem Statement

Free-Space Optical Communication (FSOC) can potentially provide high data rates
as well as secured and license-free transmission. However, it is very helpless in
atmospheric turbulence. This study researches the impact of atmospheric conditions
on FSO systems to improve its achieve ability in hard conditions, which is the main
objective. The specific objective of this research is to investigate attenuation caused
by scintillation effects in Free Space Optics using statistical models and to study

different light beams in order to choose a suitable one.

1.4. Thesis Outline

This thesis contains eight chapters. All the necessary information about the Free

Space Optic, atmosphere turbulence, scintillation, symbol error rate are introduced.

Chapter 1 is an introduction to the dissertation and its motivation and objectives.

Then, the chapter presents an outline of the thesis.

Chapter 2 presents a literature survey.

Chapter 3 presents an introduction to the matrix optics approach with definitions of
the Ray-Transfer Matrix and ABCD Ray-Matrix using Cartesian coordinates,
including the paraxial approximation for the ABCD matrix and scintillation index

using the Huygens-Fresnel Integral.

Chapter 4 presents the computation of the scintillation index equation using the

Rytov method. The Wave Equation is explored to deduce the Born approximation,

6



which will determine the first order of the perturbation field U,(R) and higher-order

perturbations. The Rytov approximation is determined by depending on the Born
approximation; then the 1st-order and 2nd-order spectral representations are

computed.

Chapter 5 introduces a free-space-optic approach with details related to optical

turbulence, vortex beams and scintillation of laser beams.

Chapter 6 presents the theoretical background of the Gaussian and Gaussian vortex
beams. They are explained, and expressions of them are defined with a formulation
of source and receiver plane intensities. The methods for the SI are computed

following the Huygens-Fresnel, Rytov and Random phase screen methods.

Chapter 7 includes the Results and Discussion of phase distribution behavior with
multi-values of topological charge for the Gaussian vortex, Elliptical Gaussian

vortex, and Laguerre-Gaussian vortex beams and other results.

The following are also presented:

v" Computation of the SI of the GB following the Rytov Method, Huygens-
Fresnel Method, and Random Phase Screen Methods.

v' Scintillation Index (SI) for the LGVB by changing the topological charge and
the polynomial degree parameters.

v' Comparisons among Gaussian, Elliptical, Laguerre and Bessel vortex beams

<

A comparison between the Gaussian and Gaussian vortex beams.

v/ Computation of the Symbol Error Rate for the Gaussian vortex beam

Chapter 8 includes the conclusion and future work.



CHAPTER 2

LITERATURE SURVEY

The free-space optical communication system is defined as an optical
communication innovation which utilizes air as a medium to transmit messages
wirelessly from one place to another through light propagating in free space. “Free
space” implies a space such as a vacuum [15]. It is possible to define the wireless
infrared communication as indoor optical wireless communication while free-space
optical communication as outdoor optical wireless communication [16]. The
description of attenuations of FSO links for the most part come in two types:
geometric and atmospheric attenuation. Geometric attenuation occurs by changing
parameters such as transmitter diameter, divergence angle, link distance, and so on.
However, this depends to a great extent on weather conditions such as fog and
rain [17]. On June 3, 1880 at Bell’s in Washington, Alexander Graham Bell and his
assistant Charles Sumner Tainted produced the world’s first wireless phone and
photo phone. It was an ideal and most essential invention at that time, particularly for
communication lines. Nevertheless, the assistance of that photo phone signal
transmission at short distances, around 213 meters (700 feet), was communicated
between two places [18-19]. To enhance the signal transmission distance as well as

quality and security, the German military created another optical transmitter system

8



called the Heliograph Telegraphy transmitter. At that point, the German military
considered utilizing optical Morse transmitters called ‘Blinkered,” which was far
better than the photo phone innovation of 1880. Additionally, unique Blinkgerats
were additionally effectively utilized for communication with tanks, balloons and

airplanes [20].

In 1962, Massachusetts Institute of Technology (MIT) Lincoln Labs assembled
experimental Optical Wireless Communications (OWC) links which utilized a light
emitting GaAs diode that could transmit TV signals over a length of 30 miles

(50 kilometers).

In 1967, Harger considered the problem of estimating the unknown parameters of a
signal of otherwise known form distorted by both multiplicative errors that was
assumed to be due to propagation through a homogeneous, isotropic turbulent

medium and an additive error that was assumed to be grain noise, etc. [21].

In 2001, the first device that transmitted data at 10 Mbps wirelessly using a beam of
light the range of which was 1.4 km (0.87 miles) was invented by Reasonable
Optical Near Joint Access (RONJA) FSO from the Czech Republic. However, their

signal was not very secure.

In 2003, the research group “OptiKom" performed reliability and availability tests on
Free Space Optics (FSO) systems at the Department of Communications and Wave
Propagation, where they obtained evaluation results for commercial use as well as

for self-developed optical point-to-point and point-to-multipoint FSO-systems [22].

In 2006, Baykal and Eyyuboglu created a formula for a flat-topped Gaussian beam
source in atmospheric turbulence. The variations of the on-axis scintillations at the
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receiver plane were evaluated versus the link length, the size of the flat-topped
Gaussian source, and the wavelength at selected flatness scales. Their results showed
that single Gaussian beam scintillation was smaller than those of flat-topped
Gaussian beam scintillations when the source sizes were much smaller than the

Fresnel zone [23].

In 2007, Fuji TV exhibited a Light Emmitt Diode (LED) backlit, Liquid Crystal
Display (LCD) TV working while a data signal was transmitted to a Personal Digital
Assistant (PDA) by means of light. The most redeeming feature of the device was its

secure transmission of information.

In 2008, the graphical outputs, source and receiver plane expressions, the complex
degree of coherence, beam size variations and power in bucket performance for
higher order partially coherent dark hollow beams propagating in a turbulent
atmosphere were formulated and evaluated. The results showed that higher order
partially coherent dark hollow beams would initially develop an outer ring around a
central lobe, but would eventually evolve towards a Gaussian shape as the
propagation distance increased. It was further observed that stronger turbulence

levels and greater partial coherence had similar effects on the beam profile [24].

In 2008, MRV communication introduced an FSO based telescope TS-10GE system

operating at a 10-Gbit/s data rate at a distance of 350 m (1,100 feet) [25].

In 2009, Eyyuboglu, in his contribution, formulated the area scintillation of
fundamental Gaussian and annular beams and made a comparison between them

showing that under the same source power conditions, annular Gaussian beams

10



produced far fewer scintillations than the fundamental Gaussian beams at small

source sizes [26].

In 2010, by Gurvich, Vorob’ev, and Fedorova, conducted a numerical investigation
of the spectra of stellar scintillations observed through the Earth’s atmosphere from
spacecraft. This investigation was carried out for the atmosphere containing
anisotropic large-scale and isotropic small-scale inhomogeneities of the refractive
index. It was shown that the strong scintillation spectra were not equal to the sum of

the spectra formed by separate, statistically independent components [27].

In 2011, Pan, Zhang, Qiao and Dan introduced the study of the analytical formulas
of the on-axis average irradiance and the on-axis scintillation index for a rectangular
array Gaussian-Schell model (RAGSM) beams in atmospheric turbulence that was
derived according to the paraxial form of the extended Huygens-Fresnel principle,
their results showed that the correlated and uncorrelated superposition RAGSM
beams exhibited a different on-axis intensity distribution and a similar variation of

the on-axis scintillation and the bit error rate [28].

In 2013, Gilberto, Vitor and Cruz investigated the effect of the atmospheric
scintillation phenomenon in a free-space optical communication system. This
evalution was performed by BER computation of the FSO system for various
parameters through simulations of the link combined with the already established
scintillation model as the gamma-gamma model. The results showed how an FSO

connection can be affected by any turbulence regime [29].

In 2014, Yang, Gao and Slim presented a comprehensive performance analysis for

the free space optic communication systems with multiuser diversity (MD) over both

11



weak and strong atmospheric turbulence. It was observed that with multiuser

diversity, strong turbulence could yield a higher capacity [30].

In 2016, Xiumin, Jian, and Lingling focused on the properties of the Hyperbolic-
Cosine-Gaussian beam, which contains a spiral optical vortex and a non-spiral
optical vortex, which was researched numerically. In this study, the focal shift and
focal split also appeared in the focal evolution with tunable parameters of vortex

terms [31].

In 2017, Mansour, Mesleh and Abaza presented a review on new challenges in
wireless communication systems and examined recent approaches to dealing with
and addressing some of the lately raised issues in the wireless field. Theoretical and

test results about light of a number of research projects or studies were given [32].
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CHAPTER 3

MATRIX OPTICS APPROACH

3.1. Definition of Matrix Optics

Matrix optics is a technique for tracing paraxial rays; the rays are assumed to travel
only within a single plane. A ray is described by its position and its angle with
respect to the optical z-axis. In the paraxial approximation, position and angle at the
input and output planes of an optical system are related by two linear algebra
equations. As a result, the optical system is described by a 2 X 2 matrix called the
ray transfer matrix. The convenience of using matrix methods lies in the fact that the
ray-transfer matrix of a cascade of optical components (or system) is a product of

ray-transfer matrices.

3.2. The Ray-Transfer Matrix

The optical system formed by a succession of refracting and reflecting surfaces all
center about the Z-axis. A ray crossing the transverse plane at Z is completely
characterized by the Y-coordinate (Y) of its crossing point and the angle (60),

(see Fig. 1).

13



C)

Y-axs

Optical- axis

> 7

Figure 1: A ray is characterized by its coordinate (Y) and its angle (0) [7].

An optical system is a set of optical components placed between two transverse

planes (Z; and Z,) referred to as the input and output planes (see Fig. 2).

Input

YA —>| Optical - System
(¥.8;)

Y -axi
i

Optical-axiz (Propagation direction)

Figure 2: A ray enters an optical system at location Z, with positionY ; and angle €, and
leaves at positionY , and angle &, at location Z, [7].

where (sin@ = 6 when @ value is very close to zero ) , this will make the relation

between (Y, 0,) and (Y1, 6,) is linear

Y,=AY,+B6, (3.1-A)
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6,=DY,+C6,, (3.1-8)

where A, B, C and D are real numbers. Egs. (3.1-A) and (3.1-B) can be written in

matrix form, thus:

Y, A B Y,
_ , (3.2)
o, C D6
Therefore, M is a matrix whose elements are A, B, C and D, and M knows the ray-

transfer matrix.

3.3. ABCD Ray-Matrix in Cartesian Coordinates

Propagation of optical beams (Gaussian beams) through optical structures (lenses,
apertures as 2 x 2 matrices) is known as ABCD ray matrices. Using such matrices
allows us to describe the propagation of an optical beam through a series of optical
elements using a cascade scheme by multiplying successive matrix representations of

each optical element (lens, free space and 2 x 2 apertures) [33].

If we consider a ray of light propagating between two points denoted by r, and r, in

parallel transverse planesat z =z, and z =z, separated by distance L (Fig. 3),

r,—r, dr
tand=2—-"1=-1, 3.3
- 3.3)
where O is the angle the light ray makes from point r; to point r,.
r, :r1+L%:rl+Lrl' (3.4)
z

15



Figure 3: Line-of-sight section of length L of optical ray [7].

It can be seen that the slope of r; is the sameas T,

r,=r (3.5)

When combining (3.5) and (3.4), we obtain the matrix equation:

I 1 L)Y\h
)l 2l S

1 L
Therefore, the (2x2) matrix on the right-hand side of Eq. (3.6) [O J is the

ABCD ray matrix of free-space propagation over a path of length L. Moreover, the
ABCD matrices for a thin lens finite aperture stop with rotational symmetry are

listed in Table 1.
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Table 1: Ray Matrices for Various Optical Elements [7].

1 L
Line-of-sight section (length L) (O J

Thin lens (focal length F) -1

Finite aperture stop (aperture radius W) 2]

Gaussian lens (thin lens and aperture stop) — 1

: . ' r i :
where r, is a point at the source, r, =(%) the slope of r,, r, a point at the receiver,
z

!

r, :(%) the slope of r,, L the propagation distance, F; the focal length, and W,

the aperture radius.

3.3.1 Paraxial Approximation for the ABCD Matrix

When considering an optical ray propagating through a sequence of rotationally
symmetric optical elements, they are aligned and arranged in cascade fashion as
illustrated in Fig. 4; therefore, the overall ABCD matrix for N such matrices is

obtained:

(A BHAN BN)(AN—l BN—lj ............ (Al Bl]
C D) \Cn DnACna Dna C; D 3.7)



Input plane Output plane

Laser [ ———> —}H‘ —_———— - Reciever

Figure 4: A ray-matrix optical system in cascade [7].

For a ray-matrix optical system in cascade for a general ABCD optical system, we

have
(VZJ_(A B][GJ_ Ar, +Br,/
) \¢ DAr) ler+or ) (3.8)
It will deduce
r, ==(r,—-Ar),
(3.9

' ' D
r, =Cr,+Dr, =Cr, +—(r, —Ar),

B (3.10)

By using an important property of all ray matrices listed in table 1, is that

(AD —BC) =1, we will find
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P |
r, = _(Drz - r1)’
B (3.11)

By beginning with the one-dimensional geometry associated with free space line-of-
sight paraxial approximation as shown in Fig. 3 and redrawn in Fig. 5, it is assumed

that an optical ray begins at point O in the plane z =z, at position r, above the
optical axis (z-axis) and finishes at point T in the plane z =z, at position r, above

the optical axis (z-axis). The paraxial approximation is then

1
R ;L+I(r2—r1)2 =L +AL

(3.12)
where |r,—1,| <L and R ;‘O_T‘,L :‘@‘:‘(E‘
1
A= (3.13)

By using the geometry of Fig. 5, AL =|ST |, and although not exact, [QT |= 2AL .

Figure 5: Geometry of propagation of the optical ray [7]
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So that angle @ in triangle APQT:

sinCD:m; 2AL

L=h hL=h (3.14)

Using small angle approximation, sin ® = tan ®. This leads to

ALz (r,—R)tang == (51, —r)
: > (3.15)

where r{:% is the slope of r, 1, =s, , =Zi is the slope of r,, r, =s,and by
z z

using (3.3) and (3.5).

Recognizing that ® in APOT in Fig. 5 is the same as AQPT, we substitute r, and r,

from (3.9) and (3.10) into (3.15) and find that

1 ! ! 1 1 1 1
AL ;E(rzrz —rlrl)EE(QE(DQ—rl)—flg(rz—“l))gg(rz(Drz_rl)_rl((rZ_Arl»' (3.16)

Now the overall path length or (eikonal function) p(r;,r,)of optical ray passing

through the ABCD system from r, to r,.

where

p(r, 1) =p(s,r) (3.17)

In the plane at z =z, to position r, in the plane at z =z, leads to a general form of

the paraxial a proximal
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plr,n)=L+AL = L+i(Ar12 -2nr, + Drzz)
2B (3.18)

3.3.2 Scintillation Index using the Huygens-Fresnel Integral

Using the ABCD ray-matrix for the propagation media between the input and output
planes with the length of propagation distance (Green’s Function) in the Huygens-

Fresnel Integral Eq. (3.19) assumes in more general form [33]:

U (r.2)=—2ik[ T G(s,r;2),(s,0)d%s
b (3.19)

(5= 4o (] = 00 L+ 5 (A5 25:r+ D)
(3.20)

The factor ﬁ is necessary for power conservation. In terms of a more general
T
Green’s Function, the Generalized Huygens-Fresnel integer can be deduced:
ik . T2 ik ) 2
Uy (r,L) :——exp(lkL)j I d*sU, (s,0)exp E(AS —2s-r+Dr?)

4rB (3.21)

where A=D =1 and B=L. Eg. (3.21) can be reduced to the standard form of the
Huygens-Fresnel Integral Eq. (3.19), and when the optical field of a lowest order
Gaussian-beam wave at the emitting aperture of a transmitter in the plane z =0 can

be characterized by (assuming unit amplitude; A, =1).

U,(s,0) =exp{—la0ksz},
2 (3.22)
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Now the field of the wave at the output plane z =L can be described by Eg. (3.19),

which leads to

U,(r,L) =—%exp(ikL)”id ’s exp{—%aoksz}exp[%(mz 251 +Dr2)},

(3.23)
U,(r,L) = ﬁexp(ikL)exp{—%a(L)krz} (3.24)
where
p(L)=A+igB, (3.25)
aLy-®P-iC 2 1
A+igB kw? F’ (3.26)

where W =/2/Re[k a(L)] and F =1/Im[a(L)] are, respectively [7].

The ABCD is defined in a matrix fashion and the combined transfer function of a
propagating medium including optical elements on the way. In Fig. 6, the optical

path does not contain optical elements [34].
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Figure 6: Propagation path without optical elements [34].

{A B}_[l L}

C D] |01 (3.27)
The general form of the ABCD matrix is the Huygens-Fresnel Integral (also known

as the Collins Integral). The Huygens-Fresnel Integral will be in Cartesian

coordinates with a rectangular aperture placed on the source plane with the

dimensions in Figure 6 [34].

T H tytiZ
U, (r,z =|—)=_Ik Z);Fl)g(lkz) _f _fdzs

tyl txl

U, (s)exp{%[A(sf +s2)—2(s,r, +s,r,)+D(r2+ ryz)]},
(3.28)

where A=D=1, B represents L. C is not used,t .t 6 =t .t —

yl 2 y2

Eqg. (3.28) became identical to Eq. (3.23).
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(I(r,z= L)>:<Ur(r,z = L)U’;(r,z = L)>

(3.29)
where ( ) and * refer to the mean value and conjugate operator, respectively.
2 0 o o ®
(1 (rx,ry,L)>=(27kT—Lj I j I J.dslxdslydszxdszyus (1053 )Us (500052 )
exp{%(sfx —2r,s,, +S;, — 26,5, —S; +2r,S, —S; +2I,S, )}
<exp[‘1’(s1X Sy )+ (54,5, )]> 330

Therefore, (I (r,L)) in Eq. (3.30) is given by Eq. (3.29) and this way, a source beam
of Ug (s) propagates in the turbulent atmosphere will become the average intensity
on the receiver plane , and (s, ,s,, )+¥"(s,,.S,, ) is known as the wave structure

function [35].

However, when the scintillation index (SI) is required, it is computed thus:

2
(12(r,L)) .

b2(r,L)= -1,
(1(r.L)) (3.31)
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CHAPTER 4

SCINTILLATION INDEX EQUATION
BY USING THE RYTOV APPROACH

4.1 Introduction

There are several different theoretical approaches that have been developed to
describe random variations in amplitude and the phases of optical-electrical fields
are based upon solving the wave equation. However, the remaining ABCD method

greatly simplifies the analysis as compared with other techniques [36].

4.2 Wave Equation

The problem of the propagation of optical waves through infinite continuous media
with smooth variations of the refractive index has a controlling differential equation

with random coefficients [37-39].

Therefore, it is assumed that a sinusoidal time variation (a monochromatic wave) in
the electric field has shown that (Maxwell’s equation) for the vector amplitude E(R)

of a propagating electromagnetic wave leads directly to [40, 41]:
V’E +k*n*(R)E +2V[E .Vlogn(R)] =0, (4.1)
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where, R =(x,y,z) indicates a point in space and n(R) is the refraction index

whose time variations have been suppressed.

¢ o 0

Vet —+—,
ox* oy* oz’

(4.2)

where V? isthe Laplace operator.

Because the variations of the refractive index are slow, a quasi-steady-state approach

can be used. Asa result, n(R) becomes a function of position only.

Eq. (4.1) can be reduced to Eq. (4.3) by imposing the following assumptions:

1- Backscattering and the efforts of depolarization are neglected.
2- The refractive index is data correlated in the direction of propagation [42].

Assumptions (1) and (2) follow the same idea. Because A for the optical is much

smaller than the smallest scale of turbulence (i.e., the inner scale 1), the maximum

scattering angle (4/1,) is nearly 107 rad.

The final term on the left-hand side of Eq. (4.1) is negligible and Eq. (4.1) simplifies

to Eq. (4.3) , thus:

VZE +k2n2(R)E =0, (43)

If we let U(R) denote a scalar component that is transverse to the direction of

propagation along the positive z-axis, then Eq. (4.3) can be replaced with the scalar

stochastic Helmholtz Equation:
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VU +k?n?(RU =0,

Under Assumption (3), the refractive index can be expressed as:

n(R) =ny +n,(R)

For the free space:

n, =(n(R))=1s0(n,(R))=0,

R=(r,r,,z)oR =(r,¢,2),

(4.4)

(4.5)

(4.6)

(4.7)

The first approach to solving Eq. (4.4) depended on the Method of Green’s function,
reducing Eq. (4.4) to an equivalent integral equation. However, exact solutions to
Eq. (4.4) using Green’s function or any other method have never been found. Further
attempts to solve Eq. (4.4) depended on the geometric optic method (GOM) and on
two famous perturbation theories, namely the Born approximation and the Rytov

approximation.

4.3 The Born Approximation

The Born approximation was first applied to the integral equation for scattering that
can be derived directly from Schrédinger’s equation. It is intended to solve Eq. (4.4),

which is called the stochastic Helmholtz Equation.

U (R) and U are used synonymously. The Born and Rytov methods are the most
well-known classical approaches to solving Eq. (4.4). The difference between the

two methods is that the Born approximation depends on the addition of the
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perturbation terms to the unperturbed field in contrast to the Rytov approximation
involving the multiplication of perturbation terms. To solve Eq. (4.4) using the Born

approximation, firstly it is written as the square of the index of refraction terms, thus:

n*(R)=[n, +n,(R) =1+2n,(R), (4.8)

If the light beam propagates along the positive z-axis, it can expand U(R), thus:

UR)=U,(R)+U,(R)+U,(R)+..., (4.9)

where U,(R) is the unperturbed (unscattered) portion of the field in free space
(without turbulence), U,(R) is the perturbed field due to first-order scattering (due
to turbulence), U, (R) is the perturbed field due to second-order scattering, U ,(R)

is the perturbed field due to third-order scattering, and so on.

In general, it is assumed that

U,(r, L) <<, (r,L)|<<|U,(r,L)| <<, (r,L)]. (4.10)

By substituting Eq. (4.8) and Eq. (4.9) into Eq. (4.11), this work reduces Eq. (4.11)

to a system of equations:

VU, +kU, =0, (4.11)
VU, +kU, =-2k*n,(R)J,(R), (4.12)
VU, +kU, =-2k*n,(R)U,(R), (4.13)
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The system of equations above means that once U, is known, it is possible to

determine higher order U,(R), U,(R), U,(R).

4.3.1 Computation of First-Order Field Perturbations U;(R)

The solution to Eq. (4.12), by giving the unperturbed field U (R) and (Green’s
Function, can be expressed in the integral form:

U,(R) = []], 6(S. RIE2K"n, (S)Uq(S)]ds = 22 [, 6(S Riny(s)Uy (S)ds (4.14)

where G(S,R)=G(R,S) is the free space; it can define Green’s function by

depending on the GOM.

Eq. (4.14) represents the first Born approximation and has the physical interpretation
that the field U,(R) is a sum of spherical waves generated at various points (S)
through volume ().

G(S,R):4 exp(ik |R —S)

7[R -S| (4.15)

It can be observed that the maximum extent of the atmospheric effects in the
transverse distance is far lower than the longitudinal distance from the transmitter to

the receiver, so it is useful to use cylindrical coordinate representations:

R=(rL), S=(s,2) (4.16)
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where (s ) is used as a dummy to receive the coordinate and should not be confused

with source coordinate S. The variables r and s in R=(r,L) and S =(s,z)

transverse to the axis of propagation. Moreover, it is useful to use the paraxial

approximation to rewrite Green’s Function (4.15) and to simplify the calculation.

By giving two points in space R =(r,L) and S =(s,z). The distance between the

points [R =S| is

R=S|=|(L-2)?+(r—s)7s =|L 2 |{1+ (([ :?) } (417)

In Fig. 7, when the transverse distance |r—s| is far less than the longitudinal

4

—s)? |2
distance |L —z], the distance |R —S| can be {1+ (([ z))z} approximated by the

next factor.

r=z|

Figure 7: Two points of the optical path transverse to the axis of propagation
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Finally,

r—sf

R-S|~|L-z]|+
2|L -z

Ir—s|<<|L-2|

Then we can have Eqg. (4.19) when substituting Eq. (4.18) into Eq. (4.15).

G(S,R);G(s,r;L,z):ﬁexp{ik(L_Z)+i;<(|i:;|) }

By inserting Eq. (4.19) into Eq. (4.14), we have Eq. (4.20):

2L - ik |s —r["
U,(r,L) =l;_,;!dZHOOdszexp{ik(L —Z)+%}U°(S’Z)%’

since (n,(s,z))=0 by definition,

(U,(r,L))=0

4.3.2 Computation of Higher-Order Field Perturbations Um(r,L)

(4.18)

(4.19)

(4.20)

(4.21)

To solve the second-order perturbation in Born approximation, the term on the right-

hand side of Eq. (4.13) is similar to Eq. (4.12). Using Green’s Function, similarly to

the first-order perturbation, we have

k(s —r)?

Uz(r,L)zg—;sz”idszexp{ik(L —2)+r =)
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where U, (s,z) is computed from Eq. (4.20). Here, (U,(r,L))=0 and it is unlike

(U,(r,L))=0

Then, generally the mth-order perturbation term can be expressed in the following

form:

U, (r, L)_k_ZLdz“ d sexpllk(L—z)+%} a(s,z) =

n,(s,z)
L-z (4.23)

The Born approximation is valid only over short propagation distances based on

experimental data obtained from [43].

4.4 The Rytov Approximation

The Rytov approximation is a different approach to solving Eq. (4.4) (the stochastic
Helmholtz equation). However, the most well-known classical approaches to solving
this equation are approximation methods [44]. The main difference between these
two approaches is that the Born method is based on the addition of perturbation

fields to the unperturbed field U (R), whereas the Rytov method contains many

perturbation terms of the field.

UNGINUN(:) U, R), (4.24)

The Rytov approximation was first applied to a problem of the wave equation in
random media by Obukhov [45], after which the Rytov approximation was used in

the well-known works of Tatarskii [46].
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In the Rytov method, the primary distinction is that perturbations due to the
randomness of the propagation medium are represented by an exponential complex

phase, thus:

U(R)=U(r,L)=Uy(r,L)exp[¥(r,L)],

(4.25)
Here, W (the complex phase perturbation) was produced by the turbulence.
Now it can take W(r,L) is the (random part of the complex phase) in the form
W(r,L)=Y,(r,L)+¥,(r,L)+¥,(r,L)+........ ; (4.26)

where W, (r,L) is the first-order of complex phase perturbation, W,(r,L) the

second-order of complex phase perturbation, and so on.
It is possible to apply Eq. (4.25) to Eq. (4.4) to obtain the Rytov solutions.

However, this is not necessary because we can relate these perturbations that are

already developed Born approximation.

It is introduced the normalized Born perturbation:

U,(rL)

®, (r,L) =m’ m=123....... (4.27)

By equating the (first-order) of the Rytov and Born perturbations,

Uo(r,L)exp[P,(r,L)]=U,(r,L)+U(r,L), (4.28)
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When applying Eq. (4.27)to U, (r,L),

U,(r,L)=U,(r,L)d,(r,L)

Substituting (4.29) into (4.28), and dividing by U (r,L), it can obtain:

exp[¥,(r,L)]=1+d,(r,L)
S (r L) =In[l+ D (r,L)]
Y. (r,L)=d,(r,L)when - ® (r,L) <<,

Then W, (r,L) will become

u,(r,L)
U,(r,L)

Y. (r,L)=d,(r,L)=

Recalling Eq. (4.23) to get U, (r,L):

2L w» k _ 2
S e s e

(4.29)

(4.30)

(4.31)

(4.32)

where U, (r,L)is the optical field in the receiver at (z =L) and U,(s,z) is the

optical field in the receiver at an arbitrary plane along the propagation path.

Similarly, it can compute ®,(r,L):
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Q)Z(r’L):M
U,(r,L)
K2k (4.33)

_EO

dz”w d’s exp[ik(L —7)+ ks _r|2}U°(S’Z)cbl(s’z)nl(s’z)

2(L-2) U,(r,L)(L-2)

Most works based on the Rytov theory have made use of W, (first-order

perturbation). The Rytov approximation is called a Single Scattering proximal

because it is directly related to the first of the Born approximations.

The first order perturbation ¥, (r,L) is sufficient for the calculation of a number of

statistical quantites of interest, such as the log-amplitude variance, phase variance,
intensity and phase correlation functions and the wave structure function. Using the

Rytov theory to obtain any of the statistical moments of the optical field, including

the mean value (U (r, L)> it becomes necessary to require ¥, (r,L) in addition to

first-order W, (r,L) [47].

4.4.1 Computation of First-Order Spectral Representation.

For the purpose of computing the static moment of the field, it is very important to

develop a spectral representation of Born and Rytov. To compute it, it iS necessary to

know the refractive index n,(s,z) in 2D [48].

n(s.2)={ | exp(iKs)dv (K,2). (4:38)
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where dv(K, z) is the random amplitude of the fluctuation of the refractive index, K

K =(x, . x,,0) the wave vector practically with x, =0.

x 1Ry

U, (r,L) atdistance L is

1 . akr?
Uo(r,L)=mexp{|kL _Zp(L)}' (4.35)
p(L)=1+ig,L (4.36)
2 .1
) =g Hi—
W R (4.37)

where, W ; is the beam radius and F, is the phase of the radius of curvature.

UO(S,Z)_p(L) . B _OtokS2 _aokr2
DD o) P L)]exp[ 2p<z)}exp{ z,o(L)}’ (438)

By substituting Eq. (4.33) and Eg.(4.38) into Eg.(4.32), and after some

modifications and re-arranging, we have a first-order Spectral Representation

®,(r,L), thus:

K2t de(K’Z)ex i ykr?
D, (r,L) = fdz | | »(L—2) P 2(L —2)

27T
)_SJGX iks?
P 2»(L—2z) |
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xj]id 25 exp[i (K — Lk—rz



where

:p(z):1+iaoz 352&

- (4.40)
p(L) 1+igl y  p(z)
By recalling (4.30) and x = |K| , We get the first-order spectral representation [7].
L o0
Y (r,L)=d,(r,L) =ik jdz ” dv(K,z)exp{l Ker ——(L —z)} (4.41)
0

4.4.2 Computation of Second-Order Spectral Representation.

The second-order spectral representation may be obtained using Eg. (4.33) by

inserting Eqs. (4.34), (4.38) and (4.41) into Eq. (4.33) to get

os0)- fr o D)

i ykr? _i}/’K" o
eXp{Z(L_Z) TG Z)} (4.42)

”d sexp{ls (K+7/K' Lk—z ﬂexp{%},

where

i’

I+iqyz (4.43)
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This leads to the second-order spectral representation for the normalized second-

order Born perturbation given by

@,(r, L) = —szdzjdz'j T j T dv(K, z)dv'(K', 2')

—00 —00

. 2

|7|K+7/K' iy’ ,

L (L-2)-L—(z-z
K ( ) K ( )

xexp|iy(K+yK").r—

@, (r,L)="P,(r,L) +%‘Pf(r, L)

(4.44)

(4.45)

From the expression above, we can obtain the second-order spectral representation.

Despite the result of Eq. (4.45), it actually needs to compute the SI.

Although direct use of the Born approximation in the optical wave propagation

problem is not applicable, it is interesting that the Born approximation can play a

central role in Rytov methods. There are three important integrals that define second-

order statistics for both the Born and Rytov approximations.

1

E, (0,0)=(¥,(r,L)) +E<‘Pf (r,L))= -27z2k2IdzIdmch (x,2)

L )
E, (rr,) = (¥, (1, L)Wy (r,, L)) = 4%k * [dz [d sex, (1,2 )3y (x|pr, =)
0 0

xeXD{—%(%ﬁ)(L—Z)}
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E,(r,r)=(¥,(r,L)¥,(r,L))=-47%k 2J'dz Td kx®, (x,2)d, (yx|r,—1,))
°0 (4.48)

2

o] t200)

where J,(x) is a Bessel function of the first kind and order zero. This will explore
the steps of deriving the scintillation index formula by depending on the previous

integral. As can be seen below, for the scintillation the use of (‘Pl(r,L)>WiII be

sufficient, whereas the calculation of (U (r,L)> will require second-order

perturbation. Now covering the first and second order perturbations ¥, (r,s) &
Y,(r,s), we need the following ensemble of averages for the field, intensity and

intensity square.

1- (U (r,L)) requires the calculation of

<exp[\P(r,L)>=<exp[‘Pl(r,L)+‘P2(r,L)]>, (4.49)
2- (1(r,L)) requires the calculation of

(exp[¥ (1 L)+ (1 L))

(4.50)
= (exp[¥, (1, L)+, (1, L)+ (1, L)+ ¥, (1, L)]),
3- <| 2(r, L)>requires the calculation of
oxp Y, (r,L)+¥,(r, L)+, (*rz, L)+‘Pz(*r2,L) 451)
+W¥, (s, L)+, (r, L)+, (1, L)+ ¥, (r,,L)

By using the following order approximation Eq. (4.52) from (14) of Andrews (2005)
on p.184 and(n,(R))=0, thus(¥,(r,L))=0, we can find for the ensemble
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averages of the exp expressions in Eqgs. (4.49), (4.50), (4.51), in another forms, Eqgs.

(4.53), (4.54), (4.55), ref. [35].

(4.52)
(U (r.,L))=exp[E,(0,0)], (4.53)
(1(r,L))=exp[ 2E,(0,0)+E,(r,r,)], (4.54)

4E,(0,0)+E,(r,r,)+E,(r.1,)

<I (r,L)> ~ N +E, (1, 0)+E, (1, 1r)+E;(r,1)+E;(r,,1,) (4.59)

Now, it possible to get quantities <| ?(r, L)>average intensity square and <| (r, L)>2
squared average intensity by defining mutual coherence function I" [35].
r(r,r,,L)=U (r,L)U(r,L

(11 L)=U (5, L)0" (1 L) s
=U, (1, L)U,(r, L)exp| 2E,(0,0)+E, (r.1,)],
(1 (r,L)>2 =I*(r,=r,r,=r,L)

. , (4.57)

=UZ(r,L)[U,(r,L) | exp[4E,(0,0) + 2E ,(r,r)]

4- (17(r, L)) requires the calculation of

<| z(r,L)>:F(rl:r,r2 =r,r=rr=r.L)
=U,(r=r,L)Ug(r,=r,L)Uy(r,=r,L)Ug(r,=r,L)

* eXp[4E1(O’O)+Ez(rl’r2)+E2(rl'r4)+E2(r2'r3)+EZ(rsir4)+E3(r1'r3)+E:(r2,l’4)] (4.58 )
U LU LT
xexp[4E1(O,0)+E2(r,r)+Ez(r,r)+E2(r,r)+E2(r,r)+E3(r,r)+E:(r,r)]
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According to the Rytov method, without optical elements between the transmitter
(input) and receiver (output), the propagation channel is characterized as line-of-

sight propagation, the receiver can “see” from the transmitter.

By using the classical Rytov method, the propagation of beam under weak

fluctuation can be analyzed [9, 40, 41,46 ], which is explained by Eq. (4.59).

U (r,L)=U, (r,L)exp[(¥(r,L)]=U, (r,L)exp[ ¥ (r,L)+¥,(r,L)+.], (4.59)

where U (r, L) isthe wave of the Gaussian beam at the receiver, ¥ (r, L) is the total
complex phase perturbation of the field due to random inhomogeneity along the

propagation path. ¥, (r,L) is the 1st-order perturbation and ¥, (r,L) is the 2nd-

order perturbation.

Finally, the scintillation index can be deduced as a measure of normalized variance

of amplitude fluctuations in the beam that propagates in a turbulent medium.
Therefore, the scintillation index can be represented as SI =b?(r,L). Recalling

Eqg. (3.31) to compute the Sl in another way:

where
V(L) — (1(r,L))’ exp{2E2(r,r)jZRe[ES(r,r)]} .
(1(r,L))
:exp{ZEz(r,r)+2Re[E3(r,r)]}—1; 2E,(r,r)+2Re[E,(r,r)] (4.60)

= 2<‘Pl(r1, L)W' (r,, L)> +2Re[ (W, (1, L)¥,(r,,L))],

41



CHAPTER 5

VORTEX BEAMS IN FREE-SPACE-OPTICS
WITH TURBULENCE ATMOSPHERE

5.1 Introduction

The first working laser, an acronym for light amplification by stimulated emission of
radiation, was introduced in 1960. Since then, the scientific community has focused
a great deal of attention on the possible applications of the LASER, mainly
suggesting that lasers can be used to extend radio-frequency atmospheric
communication and radar techniques to the optical-frequency band. There are other
places where laser technology is applied, such as weaponry, ranging, remote sensing,
target designation, adaptive optics, and medical uses, among others. Though,
regardless of the system using optical (visible) or infrared (IR) waves, what is to be
considered is the general propagation effects associated with the medium as well as

the impacts related with the wave itself.

Most of the time, the propagation medium is the turbulent atmosphere for which
small index-of-refraction fluctuations along the propagation path bring about a series
of deleterious effects on the wave. Moreover, random fluctuations in the refractive
index of the atmosphere are closely linked with minute changes in temperature as a

result of the wind and convection turbulent movements. Despite such refractive-
42



index fluctuations being only a few parts in 106, a propagating optical wave passes
through a large number of refractive-index in homogeneities. As a consequence, the
cumulative effect on the optical wave is rather significant; to illustrate, refractive-
index fluctuations are behind the twinkling of stars and limit the “seeing” ability of
astronomers to resolve small objects to within a few seconds of arc. Such an
atmospheric effect inspires the use of adaptive optics techniques and the placement

of large telescopes in space, such as the famous Hubble Telescope.

Earlier studies on the propagation of electromagnetic radiation and other waves
through random media included starlight and sound waves propagation through the
atmosphere and ocean, of microwaves through planetary atmospheres, and of radio
waves through the ionosphere and interplanetary space. Thus, some of the theoretical
work concerning this concept was already completed before the laser came to the
fore. The propagation of laser light, being merely another form of electromagnetic
radiation, is yet another topic of much of this early research. Both Chernov and
Tatarskii published monographs before 1960 on the propagation of optical plane
waves and spherical waves through turbulence; later, these monographs were
translated into English in 1960 and 1961, respectively [40, 48]. Other preliminary
studies on optical wave propagation in random media, along with many early
references, include Lawrence and Strohbehn [50], Prokhorov et al. [51], Fante [52,
53], Uscinski [54], Strohbehn [38], Ishimaru [41], Zuev [55], Rytov et al.[42],

Tatarskii et al. [56], Sasiela [57], Andrews et al. [58], and Wheelon [59, 60].

There are many important applications for laser beam propagation through turbulent
atmospheres in numerous fields including free space optical communications, Light

Detection and Ranging (LIDAR), Laser Radar (LADAR), remote detecting and
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imaging. The turbulence severely influences laser beam properties, thereby limiting
FSOC efficiency. For this reason, one has to gain a better understanding of these
properties for the sake of system optimization. In this respect, most previous studies
have already addressed plane wave, spherical wave or fundamental Gaussian
beams [9], while others have lately dealt with modified Gaussian beams or higher
order Gaussian [61-68], all leading to the finding that initial beam properties (shape,
phase, coherence, etc) strongly affect propagation results. More recently, there has
been growing interest in applying optical vortex beams for free space optical

communications as well as remote sensing [69-72].

5.2 Free space optics

Today, optical wireless communications (OWC), better known as Free Space Optics,
have many important applications due to the increasing demand for larger
bandwidths and high-data-rate transfer of information required at optical
wavelengths although earlier attention was paid rather to ever-increasing data rates
afforded by optical systems over radio frequency (RF) systems. In general, we agree
that laser communication has the following benefits: (i) It uses lower power, mass
and volume as compared with Radio Frequency systems. (ii) It has an intrinsic
narrow beam. (iii) It exploits the high-gain nature of laser beams. (iv) There are no

limitations on frequency and bandwidth.

Free space optics communication is a line-of-sight technology using a laser
technique to supply optical bandwidth connections between locations. These days,
FSOP can transmit up to 2.5 Gbps of voice, data and multimedia through free space
by allowing optical connectivity without the use of fibre-optic technology. In the

USA, only 5% of companies are connected to fibre-optic infrastructure, yet 75% are
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placed within one mile of cables, known as the “Last Mile Problem”. With
increasing the demand on bandwidth and with more businesses shifting to high-
speed local area network (LANS), it is becoming increasingly spiritless to be
connected to the outside world through lower-speed connections (wire- and copper-
based technologies) such as cable modems, digital subscriber line (DSL), or T1s
(transmission system 1). Therefore, in order to solve these problems, small FSOC

networks were set up in Dallas, Denver, Seattle and Los Angeles [7].

In Europe, regional fibre-optic carriers are supplying companies that wish to acquire
high-speed connections. Commercial FSO companies have offered equipment with
transfer rates at a far higher level than coaxial cables or digital subscriber lines from
10 Mbps to 1.25 Gbps, rates that are far above the level required by most high-end
broadband services and applications. In addition, state-of-the-art laser diodes already
on the market can be switched on and off at speeds that could transmit information at
even higher rates—as much as 9.6 Gbps. Although this technology is still not
adjusted for use by FSOs, it would be able to generate optical pulses lasting a mere

100 picoseconds (100 trillionths of a second) each [7].

Ordinarily, laser wavelengths designed for FSO systems are 850 and 1550 nm. Low-
power infrared lasers functioning in an unlicensed electromagnetic frequency band
are designed, or can be potentially arranged, to be active in an eye-safe fashion.
Nevertheless, the restricted capacity of lasers’ in turn can limit the scope of its
applicability. Given weather conditions, FSO links along horizontal near-ground
paths may cover anywhere between a few hundred meters to one or more kilometers
— a distance which is large enough to receive broadband traffic from a backbone to

many end-users and all the way back. As unfavorable weather conditions, thick fog
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in particular is capable of interfering with the reach of these line-of-sight equipment,
each optical transceiver node or link head may be arranged so as to communicate

with numerous other nodes closely in a network environment.

This so-called “mesh topology” is in place to guarantee large amounts of data
relayed without limitations from sensor sites to central control centers and users
alike. The fog impact slows commercial deployment of near-ground FSO systems.
Together with rain and snow to a lesser extent, fog can considerably limit the
maximum range of an FSO link. As this phenomenon creates a major loss of optical
power, a practical FSO link must then be designed with some specified “link
margin,” i.e., extra optical power to overcome foggy conditions when required. On
the other hand, in ideal weather conditions, the absolute reliability of a laser
communication link through the atmosphere can yet be subject to absorption by

atmospheric constituents and the ever-present turbulence [7].

In case of any given link margin, one has to address another important factor, link
availability, which is the fraction of the total operating time that the link fails due to
fog or any other physical hindering element. Link-availability objectives depend on
the application; once used for private enterprise networking (for instance, to connect
two offices located in separate buildings); FSO technology with 99.9-percent uptime
can be regarded as satisfactory. Values like these are in line with a downtime of
about nine hours per annum. On the contrary, public carrier-class service is provided
to a carrier’s prime business customers, requiring link availability at 99.999 percent,
(commonly referred to as “five-nine benchmark” in the telecommunications

industry). This means only five minutes of allotted downtime each year. It should not
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be forgotten that fiber optic systems regularly operate at the five-nines-service

level [7].

The FSO technology was initiated in the 1960s; yet in the early 1970s, deleterious
atmospheric effects on optical waves alongside the introduction of optical fibers
brought about a major drop in the use of FSO. Nevertheless, these systems are
capable of offering high-speed connections between buildings, between a building
and the optical fiber network, aircraft to aircraft, or ground and satellite.
Furthermore, given the circumstances, an FSO system is often installable within a
few days or even hours; this is while weeks or months may be required to set up an
optical fiber connection. Today, due to the need for high-data-rate connections
across the globe as well as the inevitable hindrances associated with optical fiber

networks in specific settings, FSO use is once again popular and on the rise [7].

5.3 Optical turbulence

Atmospheric turbulence, generated by a temperature differential between the Earth’s
surface and the atmosphere, can impact optical waves and, hence, has been subject to
much effort and study by specialists for a very long time now. Throughout the day,
the ground is warmer than the air, making the air nearest to the surface become
hotter than the above layers. This negative temperature gradient generates rays of
light parallel to the Earth to bend upward. If the negative temperature gradient is
high enough, it can bring about an inverted image known as a “mirage” (another
meteorological phenomenon). On the other hand, temperature gradients are positive
at night, causing light rays to bend downward through refraction and allowing us to
see objects, such as stars, somehow below the horizon. This is commonly referred to

as “looming” [7].
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In essence, immediately prior to the sun sinking in the horizon at sunset; its position
is in fact about a diameter already below the horizon. In line with this phenomenon,
wave front distortions in the optical wave caused by atmospheric turbulence spread
the beam beyond due to pure diffraction. A random variation of the beam centroid
position is called “beam wander” and a random redistribution of the beam energy
within a cross section of the beam leads to irradiance fluctuations. Perhaps, one of
the most well-known effects of atmospheric turbulence is the twinkling of stars, a
random fluctuation in the degree of image brightness. Moreover, the turbulence
restricting astronomical seeing can slowly deteriorate the spatial coherence of a laser
beam as it travels through the atmosphere, thus limiting beam collimation and
concentration and resulting in major power reductions in optical communication and
radar systems. Additionally, heterodyne detection optical receivers are quite
susceptible to the loss of spatial coherence as it limits the effective aperture size of

such detection systems [7].

Wave front distortions in the optical wave caused by atmospheric turbulence can
result in beam scattering as a result of pure diffraction, irregularities in beam
centroid position called beam wander, and a random redistribution of the beam
energy within a cross section of the beam leading to irradiance fluctuations. Perhaps
the most well-known effect of atmospheric turbulence is the twinkling of stars,
which is an irregular change in brightness of the image. In addition, the atmospheric
turbulence that limits astronomical seeing gradually destroys the spatial coherence of
a laser beam as it propagates through the atmosphere. This loss of spatial coherence
limits the extent to which laser beams may be collimated or focused, resulting in

significant power level reductions in optical communication and radar systems.
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Heterodyne detection optical receivers are very sensitive to the loss of spatial
coherence because this limits the effective aperture size of such a detection system.
Wind blowing over an aerodynamically uneven area of the Earth’s surface when
there is a temperature gradient causes changes in the atmosphere’s refractive index,

otherwise known as “optical turbulence”.

One can define statistically the behavior of a sub portion of optical turbulence to set
up the basis for most propagation theories. By the same token, the propagation of an
optical/IR wave through optical turbulence can be defined in statistical terms.
Generally speaking, theoretical approaches visible in analyses concerning optical IR
wave propagation through optical turbulence are grouped as either in weak

fluctuation terms or strong fluctuation terms [7].

5.4 Vortex Beams

Today, vortex beams are quite popular following a great deal of research on the
impact of turbulence on beam propagation [69, 73-81].The generation and
propagation of vortex beams are two other important issues under the spotlight in the
literature [82-87]. For a vortex beam, each photon carries a quantized intrinsic orbital
angular momentum expected to use a beam’s topological charge | as the alphabet for
the optical message. The propagation property of such a beam in a turbulent
atmosphere plays an important role; yet to the best of our knowledge, the
experimental study of the vortex beam propagating in a turbulent atmosphere has not

been reported.
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5.4.1 Phase Distribution of Vortex Beams

Lately, much focus has been on the propagation of light beams carrying optical
vortices [88-91]. These beams may be created using either static optical elements
(such as spiral phase plates or computer-synthesized diffraction grating with “forks”
and dynamic spatial light modulators [69-88]. Light beams with optical vortices
possess orbital angular momentum (OAM) [88-90]. The main focus of this part of
the thesis is Light beams with optical vortices possess OAM [2-5, 89, 91], this is the

first part of our research.

5.4.2 Scintillation of Laser Beams

In recent years, optical wave propagation processing through random media has been
studied. The turbulent medium is meaning the refraction index of it exhibits random
spatial variations that are large with respect to the optical wavelength. No solution to
the irradiance fluctuations problem by depending on principles of electromagnetic
wave propagation applies to all conditions of optical turbulence. Early investigations
concerning the propagation of unbounded plane waves and spherical waves through
random media led to the classical monographs published in the early 1960s by
Chernov [40] and Tatarskii [48], but their scintillation results were limited to weak
fluctuations. Experimentally work was done by Gracheva and Gurvich [92]. This
work attracted much attention and stimulated a number of theoretical and
experimental studies devoted to irradiance fluctuations under conditions of strong

turbulence.
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CHAPTER 6

THEORETICAL BACKGROUND OF GAUSSIAN BEAM
AND GAUSSIAN VORTEX BEAMS

6.1. Introduction

In this section, we explain the Gaussian vortex beams alongside and different types
of vortex source beams in radial and Cartesian coordinates. Later, then these beams
will be applied to estimate scintillation index in the strong beam, phase distribution

for source and receiver planes and the symbol error rate.

6.2. Expression of Gaussian Beam (GB)

For the receiver coordinate representation, we choose r , at z >0. Therefore, s is

the coordinate for the source plane. The source beams are defined either in radial, i.e.
(s,¢) or Cartesian, i.e. (s,,s,) coordinates. Hence, in what follows U, (s,¢) is the

field on source plane [34].

In cylindrical coordinates,

U.(s,4,)=A.exp(k « s?), (6.1)

where A, refers to amplitude coefficient.
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where o and F, refer to radial Gaussian source size and the focusing parameter,

respectively [34].

6.3. Formulation of Source and Receiver Plane Intensities for Gaussian Beam

The propagation geometry is depicted in Figure 6, where transversal planes,
(ies, =s,,z=0), s=(s,,s,) are the coordinates of the transverse source plane,
r=(r,,r,) represents the Cartesian coordinates of the transverse receiver plane, and
the transverse source and receiver planes confront the axis of propagations z, at
positions z =0 and z =L, independently. Hence, L link length estimation.

Eq. (6.1) reveals the distribution field of the Gaussian beam around the point of

origin(ies, =s,,z =0).

Numerous theoretical approaches have been created in order to describe random
variation in the amplitude and phase of the electrical field of the optical wave
propagating in the form of random medium-like atmospheric and phase fluctuations
and through solving the related wave equation. In the following, we will introduce

the methods used to compute the SI.

6.4. The Methods for Computing Scintillation Index.

At this stage, the ultimate goal is to achieve the best excitation level to decrease the
degrading effects of turbulence in atmospheric optical links [93]. Scintillations as a
result of turbulence in the atmosphere can bring about fluctuations in the intensity of

the received beam. This, at the same time, is one of the major limiting factors in
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atmospheric communication and imaging systems operating at optical frequencies;
for this reason, the field has been under research for quite some time, both
theoretically and experimentally, by many experts [94-100]. A comprehensive
review of all contributions can be found in the works carried out by Tatarskii [47],
Ishimaru [101], Andrews and Phillips [7], and Andrews et al [57]. First, one has to
determine the received intensity profile that might influence the receiver design.
Another issue under investigation in this work is the scintillation index, for which
source plane excitation is described by a Gaussian laser beam. The average intensity
profile of this beam is obtained at the receiver plane after passing through a turbulent
atmosphere. The limiting cases of our formulation are compared with both the
known Gaussian beam wave solution in the turbulent atmosphere and the Gaussian
beam solution in free space (i.e., in the absence of turbulence). This yields exact
conformity to these limiting cases. Numerical evaluations are made at various link
lengths and turbulence levels. In the results, a Random Phase Screen (RPS) exhibits
lower scintillations and, accordingly, has a likelihood of being better than a pure
Gaussian beam, especially at long propagation lengths. Finally, we introduce a
scintillation index analysis on the Gaussian beam and examine it using three
methods. Here, our motivation is to determine different ways of computing the Sl for
the Gaussian beam in optical links as there exist different types of SI computation for

beams to evaluate the performance of laser communication systems.

The scintillation index can be deduced as a measure of normalized variance of
amplitude fluctuations in the beam, which propagates in the turbulent medium.
Consequently, the Sl is represented as SI =b?(r,L); recall Eq. (3.31) to compute

the SI.
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Finally, the next sections will introduce the methods, those used to compute the Sl in

turbulence atmospheres.

6.4.1 Huygens-Fresnel Method

By depending on Section 4.3.2, integrations are made in a semi-analytic manner by
the associated Matlab function, thereby preventing lengthy, time-consuming and
error-prone hand derivations. The results are obtained for the Gaussian beam. By
plotting the Sl against the propagation distance, we illustrate the on-axis scintillation

behaviors of this beam.

6.4.2 Rytov Method

In the Rytov method, the underlying difference is that perturbations due to the
randomness of the propagation medium are introduced in the form of an exponential
complex phase, as shown in Chapter 4. Then, we can apply Eq. (4.27) to arrive at the
Rytov solutions; though this will very much resemble the already developed Born

approximation. Finally, the Sl is obtained with the Rytov method for Eg. (3.31).

6.4.3 Random Phase Screen Method

Herman and Strugala first investigated the subharmonics. While using an exceptional
form of the subharmonic method, they proposed that the method produces phase
screens that create a structure work agreeable to the actual theory. Moreover, they
examined the normal Strehl proportion from their subharmonic screens, obtaining a
close match with the hypothesis [102]. Later, Laneetal. formed the specific
subharmonic technique, also in use in our research, showing that their screens also

matched the theoretical structure function to a very great extent. Shortly after that,
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Johansson and Gavel [103] examined the methodologies of Herman and Strugala and
Lane et al., later to introduce their own subharmonic procedure with screens that
form a structure work matching the hypothesis even more [103]. Later, while
researching on the precision of no square subharmonic phase screens, Sedmak
demonstrated a high level of concurrence with the stage structure capacity and the

aperture-averaged phase [104].

In the case of the present thesis number of grid points (N ), tests revealed that
N, =512 is an ideal option as it is also in concurrence with the qualities cited in the

literature [105-107]. Here, the numerical computations of propagation of the beam in
turbulence are represented by a Random Phase Screen (RPS), developed by Halil T.

Eyyuboglu [108].

The numeric is acquired by settling (a,=1cm) and considering the source.
Furthermore, the propagation conditions are implemented using a suitable random
phase screen numbers (Ns) model and a wide range of intermediate planes is

represented between the source and the receiver is taken to be 21. To ensure
reliability, precautions are taken so that the RPS setup can withstand extreme
turbulence conditions. This is achieved by opting for a wide range of grid points on

supply and receiver planes, mainly N =1024 grids, where L, is source aperture

length and L, is the side length of square aperature opening of the receiver plane, so

the source (L,xL,) and the receiver (L, xL, ) plane dimensions are set at
10 cm x 10 cm and 40 cm x 40cm, respectively. The receiver aperture has a square
opening of 14 cm x 14 cm. The grid spacing of the source plane is d;, as in the

following:
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g =5 (6.3)

The grid spacing of the receiver plane is d,, thus:

d, =1.227x10° x L—1.953x10° (6.4)

The number of realization N, must be made to approach the averaged analytic

result, and it was adjusted to 500. All numerical computations with all of the
numerical computations are carried out within a range of wavelengths (1350 pum to

1550 pm).

The vortex beams are explained in the next section and they are established in order

to evaluate Sl performance in strong turbulence. To define these beams, radial and

Cartesian coordinates are used, i.e., (S ) ¢S) and (S, 'Sy ).

For cylindrical coordinates:

s=(s,4), (6.5)

For Cartesian coordinates:

S =.s.+S7, (6.6)

The mathematical model is explained in Eq. (6.7):

U, (.1, L) =F H{F[U,(s,.8,) JF [0(r.r) [ =F (U, F ) JF[HE, )] 67
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where U, (r,, 1, ,L) is the receiver field, U,(S,,S,) is the source field, h(r,.r,) is

the spatial response of the propagation medium, (I’X,ry) are the transverse

coordinates in the receiver plane., F indicates the Fourier Transform, F *denotes

the inverse Fourier Transform and the arguments (f,,f ) are the spatial frequencies.

It is important to note that US(SX ,Sy) and H (fX ,fy) has the inclusion that the source

and receiver coordinates are of the same scale or of the same increments.
.27 ]
H(f,.f,)=F[h(.r,)] :exp(J 7|_jexp[—1 mL(F 2 +1 7], -

By setting and the number of realizations (runs) is denoted by N . and equal to 500,
and the total numbers of random phase screensto N, = 21, which goes from (n — 1)

to the nth one [108].

U.(r.r, ,nAL)=F’1(F {Ur [rx 1, (n —1)AL]exp[j¢(rx,r )]}H (fX £, )) 69)

where ¢(r, ,r,) signifies spatial phase distribution derived from the power spectral

density function and AL is the distance between the two screens. Fig. 8 illustrates a

picturesque view of modeling propagation in turbulence via random phase screens.

(1(r,L))=(U (r,LU(r, L)), (6.10)

(6.11)
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This can classify the scintillation index into the point like scintillation and aperture

average scintillation, otherwise known as power scintillations [108].

r refers to a certain coordinate location, whereas the results are over a certain
aperture opening with radius R,, ( > denotes the mean value and 1(r,L) is the
receiver intensity. Eq. (3.31) is the scintillation index (SI) at a specific location on
the receiver plane, and this equation is valid so long as Ra<m; otherwise,

the aperture averaged scintillation or power scintillation will occur, defined as:

057R, 057R,
P(L)= j j I (r,,r,,L)drdr,, (6.12)

-05J7R, —05,[7R,

b?(L) = <P (L)2> -1, (6.13)
(P(L))

where P(L) denotes the power of the beam at L, and this power can be collected by a
circular aperture of radius R,. In case the aperture is square-shaped, the 0.5\/7R, is

equivalent to the side length L, [108].
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Figure 8: Random Phase Screen Model of the propagation of the beam in turbulence [108]

6.5 Expression of Gaussian Vortex Source Beams

A list of selected vortex source beams is provided whose phase distribution of the

source and receiver are (@, &®, ) to be assessed (U,,U,,U,,U,U,).

As stated previously, these source beams are defined either in radial, i.e., (s,0), or

Cartesian coordinates, i.e., (S,,S,).

Firstly, a simple form of the Gaussian vortex beam (GVB) has been utilized in many
studies; for instance, in[109-111], with the source field expression as in the

following:

U,(s.9) =£aij exp(—%}exp(jm@, (6.14)
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where m is known as the topological charge, while ¢ refers to the source size.

Secondly, the field of the elliptical Gaussian vortex beam can be written as

follows [112].

s, +ies, ) s7+6,] _ &S,
U,(s,.s,)= — exp R — exp(jm tan » ), (6.15)

S S X

where g, stands for the degree of elasticity.

Thirdly, the Laguerre-Gaussian beam is most commonly known in vortex

beam [113-115].

aS S

U3(5,¢)=(i] eXp(-%) Ly exp(imé), (6.16)

Fourthly, the Bessel-Gaussian type vortex beam can be written as follows:

U,(s.4)= exp(—S—ZJJm exr{

S

i]exp(jmqﬁ) (6.17)
aS

Recently, flat-topped Gaussian vortex beams have been introduced with the related
source field expression being [116].

5% 45?2

(—1)“‘1(Nn)exp[—n X > y] (6.18)

1(s, +js, ) N
U.(s,,s.)=—|= Y
5(x y) N( a ] —

) =1
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

Vortex beams have become popular nowadays. In this section, it is possible to
encounter extensive investigations of radiation, the OAM and the phase distribution
of source and receiver fields. Moreover, a scintillation index formulation is carried
out for the Gaussian beam on the propagation length in turbulent atmospheres, and
depending on the generalized beam formulation of the field, the computation of
scintillation index methods is compared in order to select the best way to describe

the phenomenon.

Three types of scintillation index methods are examined: the Rytov, Huygens-
Fresnel and Random Phase Screen methods. In addition, the variation of polynomial
parameters (the m-radial number or topological charge number, n-orbital angular
momentum quantum number or degree of the polynomial) of the Laguerre function
is applied to the Laguerre-Gaussian vortex beam (LGVB) which is propagated into
random media of an atmosphere modeled by the phase screen technique. This
investigation is implemented by using the 7-Mary symbols of Laguerre Beams with

different values of polynomial parameters that are transmitted in strong turbulence.
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The Gaussian, Elliptical, Laguerre and Bessel vortex beams were selected and
measurements of the SI were taken for different values of the n and m parameters for
their respective beams. The Gaussian (GB) and Gaussian vortex beams (GVB) were
selected and measurements of the SI were taken for different values of the n and m

parameters of the GVB.

7.2. Phase Distribution Behavior with Multi-values of Topological Charge of
Vortex Beams

In this section, we present the numeric results obtained for plane phase distribution

source and receiver (®_,®,) with multi-values of topological charge for Gaussian

vortex, Elliptical Gaussian vortex and Laguerre-Gaussian vortex beams,

respectively. Their sources plane fields are given by Egs. (6.14), (6.15) and (6.16)

7.2.1. Gaussian Vortex Beam

The source field expression of it is explained in Eq. (6.14) with the topological
charges are —3, 3, =5, 5, =7 and 7 and &, =1 cm. The phase distribution source and

receiver with multi-values of topological charge are explored in Figure 9.
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Figure 9: Source and receiver planes phase distribution of Gaussian vortex beam with the
topological charge of m =m;=-3, m =m;=3, M =m=-5, M =m; =5,
m=m,=—7and m =m,=7

7.2.2. Elliptical Gaussian Vortex Beam

The source field expression of the Elliptical Gaussian vortex beam is explained in
Eq. (6.15) with topological charges of -3, 3, =5, 5, =7 and 7, while &, =1 cm and
the &, degree of elasticity is equal to 0.8. We explore the phase distribution source

and receiver with multi-values of the topological charges in Figure 10.
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Figure 10: Source and receiver planes phase distribution of Elliptical Gaussian vortex beam
with the topological charge of m=m,;=-3, m=m;=3, M =m;=-5, m =my =5,
m=m,=—7and m =m,=7

7.2.3 Laguerre-Gaussian Vortex Beam

The source field expression of the Laguerre-Gaussian vortex beam is explained in
Eq. (6.16) with the topological charges being -3, 3, =5, 5, -7 and 7, &, =1 cm, and
n is the degree of the polynomial. We explore the phase distribution of the source

and receiver with multi-values of topological charge in Figure 11.

Finally, it is expected that the results in Section 7.2 will be beneficial to optical links,
and this work is assisted to know the phase distribution receiver. Therefore, we
collected the results into an article that had been acceepted for publication in a

science journal [117].
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Figure 11: Source and receiver planes phase distribution of Laguerre-Gaussian vortex with
the topological charge of m=m ,;=-3, m=m;=3, m=m=-5, M =my =5,
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7.3 Computing the Scintillation Index of a Gaussian Beam Using Different
Methods

In this section, we present the numeric results obtained for scintillation
characteristics in strong atmospheric turbulence for Gaussian beams at various
propagation distances using Rytov, Huygens—Fresnel and Random Phase Screen
methods. Their source plane field and the equations of the Sl are given by: Equations

(6.1) and (3.31).

7.3.1. SI Results with the Rytov Method

The source field expression was explained in Eq. (6.1), which is able to generate a
Gaussian beam. We concentrate on the Rytov method to compute the Sl of the

Gaussian beam. For this, in Figures 12 and 13, we explore the scintillation index of
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the Gaussian beam with a wavelength operation of A =1.35um,
A=155um,C>=10""m?®, and a source size ¢, =1cm. In this section, graphic

illustrations were provided based on the numerical evaluation of Eq. (9) of Ref.
[118]. Although the scintillation index expression of Eq. (9) is able to generate
results for any type of beam composed of the summation of different fundamental
Gaussian beams, in the current study, we concentrate only on the Gaussian beam. A
comparison was made between the data available in Figure 13 and those of the
mentioned Figure 1 in Ref. [118], a good agreement was found between the two
cases. Figure 14 shows the SI of the GB with wavelengths of operation of
A=1.35um and A= 1.55 um together. It is clear that an SI with 4 =1.55 um is

better than an SI with 4 =1.35 um.

TO0E-02
&.00E-03
5 QOE-02
E 4 OOE-032
= Rytov Method
E 3 O0E-02
2] Gaussian Beam
w E -
2. 500-0 A= 1.3%-6
ODE-D2
0.008+00
o SO0 1000 1500 il ol 2500 fleew 3500 &G0

Propagation distance L (in m)

Figure 12: Scintillation behavior of the Gaussian beam against the propagation distance
using the Rytov method for 4 =1.35 pm
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Figure 13: Scintillation behavior of the Gaussian beam against the propagation distance
using the Rytov method for 4 =1.55 pm
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Figure 14: Scintillation behavior of the Gaussian beam against the propagation distance
using the Rytov method for 4 =1.35 ymand A = 1.55 um

7.3.2. Sl Results with the Huygens-Fresnel Method

The source field expression was explained in Eq. (6.1), which can be used to

generate a Gaussian beam. In the current study, we concentrate on the Huygens-
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Fresnel method to compute the SI for the beam, it was presented these scintillation
calculations in weak atmospheric turbulence for he Gaussian beam based on the
extended Huygens—Fresnel integral and a mathematical function designed by [119].
As demonstrated in Figures 15 and 16, we explore the scintillation index of the

Gaussian beam with wavelengths of operation of 2=1.35um and A=1.55um,
CZ=10""m™® and source size o, =1cm. Adjusting of parameters in our study

with those of Ref. [119], and based on the numerical computations of Egs. (3), (6)
and (9) of Ref. [119]. A comparison was made between the data available in Fig. 16
and those of the mentioned Fig. 1 in Ref. [119], good agreement was found between
the two cases. Finally, Fig. 17 shows the SI of the GB with wavelengths of operation

of 41=135um and A=155um together, and it is clear that the SI with

A=1.55um is better than the SI with 4 =1.35um.

oa
Huygen-Fresanel

Method

c o8
E Gaussian Baam
m A= 1.35a-6
£ o4
[*]
A

0uo2

] 00 1000 1500 2000 2500 2000 3500 000

Propagation distance L (in m)

Figure 15: Scintillation behavior of the Gaussian beam against the propagation distance
using the Huygens-Fresnel method for 4 =1.35 um
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Figure 16: Scintillation behavior of the Gaussian beam against the propagation distance
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Figure 17: Scintillation behavior of the Gaussian beam against the propagation distance
using the Huygens-Fresnel method for 4 =1.35 umand 4 = 1.55 pm

7.3.3. Sl Results using the Random Phase Screen Method

The source field expression was explained in Eqg. (6.1), which is able to generate a

Gaussian beam. In the present work, we concentrate on the random phase screen to
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compute the aperture averaged scintillation for the Gaussian beam as per Figures 18

and 19. We explore the aperture averaged scintillation of the Gaussian beam with a

wavelength of operation at 2=1.35um and A=155um,C?=10"m?, and a
source size of o, =1 cm. Applications of random phase screen to specific beam

types have also appeared in the literature. Selecting the appropriate grid spacings and
number of grid points, in turn, depends on source beam profile, diffractive beam
properties and turbulence induced spreading of the propagation medium. In this
process, the number of intermediate phase screen plates that are to be placed between
the transmitter and the receiver is also determined. The detailed guidelines for such
computations and constraints are stated in Ref.[120]. A comparison was made
between the data available in Fig. 19 and those of the mentioned Fig. 6 in Ref. [120],
a good agreement was found between the two cases. Figure 20 shows the aperture

averaged scintillation of the GB with wavelengths of operation of 4 =1.35xm and
A =1.55um together, and it is clear that the that with 4 =1.55um is better than the

Sl with A =1.35um.

In the previous sections, we presented the numerical results obtained for scintillation
characteristics in atmospheric turbulence for the Gaussian beam at various
propagation distances using the Rytov, Huygens Fresnel, and Random Phase Screen
methods. From the graphical outputs in Figures 21 and 22, it can be observed that the
Random Phase Screen method exhibits less scintillation and it is nearer to the
experimental method. From the above three tests, we deduce that the designed
random phase screen setup can safely and reliably be used to estimate the

scintillations of the Gaussian beam.
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Finally, we collected the results in an article that had been accepted for publication

in a science journal [121].

SOo0L02 ¢
400802 ¢
Random Phase Screen RPS 4
é 300¢02 ¢ +
K
v 200802 ¢
<+
100802 ¢
Gaussian Beam
A= 1.3%e-6
O 00L«00
o 00 1000 1500 2000 2500 3000 3500 4000
Propagation distance (L in m)

Figure 18: Scintillation behavior of the Gaussian beam against the propagation distance
using the Random Phase Screen method for 4 =1.35 um
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Figure 20: Scintillation behavior of the Gaussian beam against the propagation distance
using the Random Phase Screen method for 4 =1.35 pmand A =1.55 um
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Figure 22: Scintillation behavior of the Gaussian beam against the propagation distance
using the Rytov, Huygens-Fresnel and Random Phase Screen methods for 4 = 1.55 um

7.4. Results of the Scintillation Index for LGVB
7.4.1. Topological Charge for LGVB Being Constant

In this section, we discuss the values of the SI when an m for the LGVB is constant.

To begin with, m is adjusted as a constant value and made equal to 1, 3 or 7 for each
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case and we set the degree of the polynomial (n) to different values such as 0, 1, 3, 4,

5 and 6.

7.4.1.1. Topological Charge (m = 1)

In this case, we set (L;,L;, L5, L;, L, Lg, L) . Figure 23 explains the values of the SI

as being increased with an increase in the polynomial degree and the propagation

distance, and when L = 3.5 km, the highest value of the Sl and for m =1 and n =6,

L. isequal to 0.1746 M™*.

7.4.1.2. Topological Charge (m = 3)

In this case, we set (LJ,LJ,L5,L3,L3,L3,L3). Figure 24 shows the values of the SI

increasing with an increase in the polynomial degree and the propagation distance.

However, in this case, the values of the Sl are greater than those in Section 7.4.1.1,

and when L = 3.5 km, the highest value of the Sl and for m=3 and n=6, L} is

equal to 0.1864 m™?2.

7.4.1.3. Topological Charge (m = 5)

In this case, we set (L},L;,L>,L3,L5,L3,L2). Figure 25 shows the values of the SI

increasing with an increase in the polynomial degree and the propagation distance.
However, in this case, the values of the Sl are greatest in Sections7.4.1.1 and
7.4.1.2, and when L = 3.5 km, the highest value of the SI and for m=5 and n =6,

L> is equal to 0.2433 m™*,
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It can be seen from the results from the previous sections (7.4.1.1, 7.4.1.2 and
7.4.1.3) that the values of the scintillation index increased with an increase in the

values of the n and m parameters.

7.4.2. Polynomial Degree for the LGVB Being Constant

In this section, we discuss the values of the SI when the degree of the polynomial for
the LGVB is constant. To begin, n is adjusted as a constant value and made equal to
1 or 5 for each status. We set the topology charge (m) to different values, such as 0,

1,3,4,5and 6.

7.4.2.1. Polynomial Degree for LGVB (n =1)

In this case, we set (L?,L;,L2,LJ,L;,L7,L?). Figure 26 shows the values of the SI

increasing with an increase in the topological charge (m) and the propagation

distance. When L = 3.5 km, the highest value of the SI and for n=1 and m =6,

L? is equal to 0.08238 m™*,

7.4.2.2. Polynomial Degree for LGVB (n = 3)

In this case, we set (L3,L3, L3, L3, L3, L3,L3). Figure 27 explains the values of the SI
increasing with an increase in the m and the propagation distance. When

L = 3.5 km, the highest value of the SI and for n=3 and m=6, LJ is equal to

0.1249 m?3,

7.4.2.3. Polynomial Degree for LGVB (n =5)

In this case, we set (L2,L;,LZ L3, L3 L2,LY). Figure 28 shows the values of the SI

increasing with an increase in the m and the propagation distance. When
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L = 3.5 km, the highest value of the SI and for n=5 and m=6, L{ is equal to

0.1889 m?.

It can be seen from the results from the previous sections (7.4.2.1, 7.4.2.2 and
7.4.2.3) that the value of the scintillation index increased with an increase in the

values of the n and m parameters.

Finally, the values of the scintillation index for the LGVB are near to each other in
the case of changing the degree of the polynomial (n) when the (m) is fixed to 1, 3
or 5. In contrast, these values of the Sl are far from each other in the case of the
degree of the polynomial being fixed to 1 or 5 and with a change of the m.
Therefore, for a good state of transmission, it is recommended that the degree of the
polynomial be made equal to n = 1 and the topological charge numbers equal to 0, 1,
2,3,4,5and 6, such that (L?,L},L2, L2 L;,L3,L?). Inthe end, we prepared an article

for submission to a science journal.
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Figure 23: Scintillation variation of the LGVB with the degree of the polynomial when the
topological charge is fixed to m = 1 against the propagation distance.
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Figure 25: Scintillation variation of the LGVB with the degree of the polynomial when the
topological charge is fixed to m = 5 against the propagation distance.
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Figure 27: Scintillation variation of the LGVB with the topological charge when the degree
of the polynomial is fixed to n= 3 against the propagation distance
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Figure 28: Scintillation variation of the LGVB with the topological charge when the degree
of the polynomial is fixed to n = 5 against the propagation distance

7.5. Comparisons between Gaussian, Elliptical, Laguerre and Bessel Vortex
Beams

Four types of beam, namely Gaussian, Elliptical, Laguerre and Bessel vortex beams
were selected and measurements of the SI were taken for different values of the n
and m parameters for their beams by using Egs. 6.14, 6.15, 6.16 and 6.17. Then, we
compared among them to select the most suitable. Finally, it was found that the
Elliptical beam with m equaling 7 and 3 were best. Figures 29, 30, 31, 32 and 33
show the changes of the Sl taking a variety of values of the n and m parameters for
multi-types of beam. Tables2 and 3 show the effect of varying the n and m

parameters on the values of the Sl for the four types of beam.
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Table 2: Variation of values of SI between Gaussian vortex (GVB) and Elliptical Gaussian
vortex (EGVB) beams

Item | Propagation Distance GVB GVB EGVB ( | EGVB
(Linm) (n=6,m =3)| (n=5m =3) m=7) (m
=3

1 1.00E-01 0.05946 0.0661 0.0856 0.0262)5
2 0.2 0.05479 0.07976 0.08123 | 0.03512
3 0.3 0.04365 0.0721 0.05658 | 0.03913
4 0.4 0.04085 0.0724 0.04804 | 0.03915
5 0.5 0.03872 0.06531 0.04817 | 0.0436
6 0.6 0.05416 0.07979 0.05591 | 0.05362
7 0.7 0.07204 0.09244 0.05736 | 0.05715
8 0.8 0.07648 0.0978 0.07266 | 0.0738
9 0.9 0.08401 0.1011 0.08576 | 0.09309
10 1 0.09241 0.103 0.114 0.1221
11 11 0.1112 0.1242 0.09577 0.1008
12 1.2 0.1266 0.1247 0.08237 | 0.08821
13 1.3 0.1342 0.1328 0.087 0.09165
14 14 0.1372 0.1445 0.06883 | 0.07232
15 15 0.1164 0.1251 0.07162 | 0.07637
16 1.6 0.1327 0.134 0.06887 | 0.07552
17 1.7 0.1224 0.1163 0.06825 0.0703
18 1.8 0.1162 0.118 0.0647 | 0.06932
19 1.9 0.1011 0.1109 0.0567 | 0.05996
20 2 0.1073 0.1118 0.04563 | 0.04896
21 2.1 0.102 0.1134 0.04401 | 0.04685
22 2.2 0.1097 0.1221 0.04986 | 0.05275
23 2.3 0.09474 0.1044 0.04175 | 0.04397
24 2.4 0.09702 0.1023 0.0445 | 0.04697
25 25 0.09235 0.1046 0.0453 | 0.04761
26 2.6 0.0886 0.09811 0.04542 | 0.05053
27 2.7 0.0994 0.107 0.03658 | 0.03895
28 2.8 0.08796 0.09735 0.0378 | 0.03976
29 2.9 0.07913 0.08766 0.03971 | 0.04179
30 3 0.07845 0.0924 0.03883 | 0.04116
31 3.1 0.08672 0.1055 0.03158 | 0.03354
32 3.2 0.06932 0.08092 0.03834 | 0.03929
33 3.3 0.06604 0.08197 0.03081 | 0.03394
34 3.4 0.08956 0.09745 0.03385 | 0.03659
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Table 3: Variation of values of SI between Laguerre Gaussian vortex (LGVB) and Bessel
Gaussian vortex (BGVB) beams

Item | Propagation Distance LGVB LGVB BGVB | BGVB

(L in m) (n=6,m=3) | (h=5,m=3) | (m=7) | (m=3)
1 1.00E-01 0.05668 0.003523 | 0.07746 | 0.05359
2 0.2 0.06001 0.005602 | 0.08652 | 0.06002
3 0.3 0.04849 001492 | 0.07328 | 0.05576
4 0.4 0.0622 003112 | 0.07055 | 0.05731
5 05 0.05899 004701 | 0.06224 | 0.05408
6 0.6 0.06095 0.05674 | 0.07573 | 0.07005
7 0.7 0.07485 0.07757 0.0891 | 0.08556
8 0.8 0.07601 0.09473 | 0.09366 | 0.08997
9 0.9 0.09803 0.1139 0.09628 | 0.09581
10 1 0.09829 0.1223 0.09934 | 0.0981
11 1.1 0.09853 0.1286 0.1188 | 0.1232
12 1.2 0.0988 0.1121 0.1216 | 0.1262
13 13 0.09262 0.1195 0.1301 | 0.1357
14 14 0.08425 0.1082 0.1394 | 0.1428
15 15 0.08832 0.1024 0.1204 | 0.1212
16 16 0.08117 0.0959 0.1299 | 0.1363
17 1.7 0.08706 0.09938 0.112 | 0.1201
18 18 0.08397 0.09956 0.1157 | 0.1171
19 1.9 0.06802 0.08396 0.1063 | 0.1071
20 2 0.08262 0.09383 0.075 | 0.11
21 2.1 0.08218 0.09174 0.1075 | 0.1096
22 2.2 0.07437 0.09449 0.1169 | 0.1191
23 23 0.07117 0.07852 0.09963 | 0.1015
24 2.4 0.07138 0.08126 0.09772 | 0.1015
25 25 0.07566 0.08211 | 0.09938 | 0.099
26 2.6 0.06991 0.07306 | 0.09332 | 0.09427
27 27 0.06126 0.06805 0.1027 | 0.1031
28 2.8 0.06694 0.06942 0.09185 | 0.0939
29 2.9 0.06076 0.06712 0.0828 | 0.08426
30 3 0.06242 0.06594 | 0.08715 | 0.08831
31 3.1 0.06076 0.06513 | 0.09954 | 0.09798
32 3.2 0.06077 0.0652 0.0762 | 0.07644
33 3.3 0.06603 0.06882 | 0.07671 | 0.07546
34 3.4 0.05866 0.06331 | 0.09335 | 0.09302
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Figure 29: Aperture Averaged Scintillation variation of GVB with the topological charges
equal to 3 and 6, and the degrees of the polynomial equal to 6 and 5 against the propagation
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Figure 30: Aperture Averaged Scintillation variation of the Elliptic beam with the
topological charges equal to 7 and 3 against the propagation distance
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Aperture Averaged Scintillation (b ) behaviour against Propagation Distance for
Laguerre Vortex Gaussian Beam
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Figure 31: Aperture Averaged Scintillation variation of the LGVB with the topological
charges equal to (m 3) and the degrees of the polynomial equal to 11and 5 against the
propagation distance
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Figure 32: Aperture Averaged Scintillation variation of the BGVB with topological charges
equal to 6 and 5 against the propagation distance (L in km).
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Figure 33: Changes in the Aperture Averaged Scintillation taking a variety of values of the
n and m parameters for multi-types of beams against the propagation distance.

7.6 Comparison between Gaussian and Vortex Gaussian Beams

Two types of beam, namely the Gaussian (GB) and Gaussian vortex beams (GVB),
were selected and measurements of the SI were taken for different values of the n
and m parameters of the GVB. Then, it was shown that the GVVB with a degree of the
polynomial and topological charge being fixedton=6, m=3 and n=5, m =6 were
better than the GB. Figures 34 and 35 explain the change in the Sl taking a variety of
values of the n and m parameters for the Gaussian (GB) and Gaussian vortex beams
(GVB) beams. It is clear that the SI for the Gaussian vortex beams (GVB) is better

than the SI for the Gaussian vortex beams (GVB) with the same set of simulation

parameters.
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7.7. The effect of Turbulence on the Average Intensity of the Laguerre Beam

In this section, we explain the variation of values of the receiver intensity in free-
space and in turbulence for the Laguerre Gaussian vortex beam with topology charge
(m =1, 3, 5 and 7) and degree of polynomial (n =1), Figures 36 and 37 illustrate

the behavior of intensity of LGVB against the receiver plane (r,,r, ) in free-space

and in turbulence.

Reciever Intensity against rx&ry in Free Space
12

Average Intensity in Free Space

rx and ry(incm)

Figure 36: Average Receiver Intensity against I, and r, in free space
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Reciever Intensity against rx&ry in Turbelence
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Figure 37: Average Receiver Intensity against I, and r, in turbulence

7.8. Effect of Polynomial Parameters of LGVB on Intensities of the Receiver in
Free Space.

In this section, we discuss the effect of Laguerre polynomial parameters on free
space receiver intensities where, Irfsl, Irfs2, Irfs3 and Irfs4 are the free space
receiver intensities. To begin, n is adjusted as a constant value and equal to 1, 3, 5
and 7 for each status and set m into different values such as 1, 3, 5 and 7 for each
individual case. Tables 4, 5, 6 ,7 and 8 show the effect of the Laguerre polynomial
parameters on receiver intensities in free space to yield acceptable values when
n=1with m =1,3,5and 7 asshown in Table4, n =7 with m =1,3,5and 7 as
seen in Table 5, and when m =1 with n =1, 3, 5and 7 in Table 6; and n =7 with
m=1,3,5and 7 in Table 7. Finally, n =1,3,5and 7 with m =1, 3,5, 7 represent
the best case in Table 8. Figures 38, 39, 40, 41 and 42 show the variation of receiver

intensities of LGVBSs in free space by changes in the polynomial parameters of the
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Laguerre beam. It becomes evident that when the n and m parameters are the same,

the receiver intensities of LGVBSs become more separated.

Table 4: Effect of Laguerre polynomial parameters (n =1 and m =1, 3,5and 7) on
receiver intensities in free space.

Receiver Intensities of LGVBs in Free Space
Item Irfsl Irfs2 Irfs3 Irfs4
1 Irfs1 | 1.0000
3 Irfs2 | 0.6350 1.0000
5 Ifs3 | 0.2211 0.7316 | 1.0000
7 Irfs4 | 0.0542 0.3359 | 0.7882 | 1.0000

Table 5: Effect of Laguerre polynomial parameters (n =7 and m =1, 3, 5 and 7) on receiver
intensities in free space

Receiver Intensities of LGVBs in Free Space
Item Irfs1 Irfs2 Irfs3 Irfs4
1 Irfs1 | 1.0000
3 Irfs2 | 0.2356 1.0000
5 Irfs3 | 0.8987 0.9136 | 1.0000
7 Irfs4 | 0.4417 0.7172 | 0.9268 | 1.0000

Table 6: Effect of Laguerre polynomial parameters (n =1 and m=1, 3, 5and 7) on receiver
intensities in free space

Receiver Intensities of LGVBs in Free Space
Item Irfsl Irfs2 Irfs3 Irfs4
1 Irfsl 1.0000
3 Irfs2 0.2356 1.0000
5) Irfs3 0.0131 0.4468 1.0000
7 Irfs4 0.0004 0.0692 0.5782 | 1.0000
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Table 7: Effect of Laguerre polynomial parameters (n =7 and m =1, 3, 5and 7) on receiver
intensities in free space

Receiver Intensities of LGVBs in Free Space
Item Irfs1 Irfs2 Irfs3 Irfs4
1 Irfsl 1.0000
3 Irfs2 0.5209 1.0000
5 Irfs3 0.1099 0.6315 1.0000
7 Irfs4 0.0143 0.2093 0.7215 | 1.0000

Table 8: Effect of Laguerre polynomial parameters (m = n =1, 3,5 and 7) on receiver
intensities in Free Space

Receiver Intensities of LGVBs in Free Space
Item Irfsl Irfs2 Irfs3 Irfs4
1 Irfs1 | 1.0000
3 Irfs2 0.0604 1.0000
5 Irfs3 0.0004 0.2556 1.0000
7 Irfs4 0.0000 0.0138 0.4446 | 1.0000

The Effect of Laguerre Polynomial Parameter on the Free Space Intensity

T

Average of Intensity in FreeSpace

Figure 38: A two-dimensional view of receiver plane intensities of Laguerre Gaussian

X

rx & ry (in cm)

vortex beamwithn=1and m=1,3,5and 7
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The Effect of Laguerre Polynomial Parameter on the Free Space Intensity
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Figure 39: A two-dimensional view of receiver plane intensities of Laguerre Gaussian

vortex beamwith n=7and m=1,3,5and 7
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Figure 40: A two-dimensional view of receiver plane intensities of Laguerre Gaussian

vortex beamwith n=1,3,5and7and m=1
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The Effect of Laguerre Polynomial Parameter on the Free Space Intensity
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Figure 41: A two-dimensional view of receiver plane intensities of Laguerre Gaussian
vortex beamwith n =1,3,5,and7and m =7
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Figure 42: A two-dimensional view of receiver plane intensities of Laguerre Gaussian
vortex beamwith n =1,3,5,and7and m =1,3,5,and 7

7.9. Behavior of the Symbol Error Rate of the Gaussian Vortex Beam for 8-
Mary

In this section, we discuss the behavior of Symbol Error Rate of Gaussian vortex

beam for 8-Mary. It is clear from Figure 43 that the SER increases when the value of
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C? increases. Finally, we can plot the SER in semi-log against C?Z. Figure 44

illustrates the behavior of the SER against C > in semi-log format.

Computing of Symbol Error Rate of Gaussian Vortex Beam against Structure Constant
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Figure 43: Symbol error rate against the structure constant C:' for 8-Mary
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Computing of Symbol Error Rate in Semi-log against Structure Constant
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Figure 44: Symbol error rate in semi-log format plotted against the structure constant an
for 8-Mary.

93



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Firstly, we used the Gaussian vortex, Elliptical Gaussian vortex and the Laguerre-
Gaussian vortex beams in this part of the study as related to the phase distribution
approach of the transmitter and receiver. Therefore, computer modeling of the phase
distributions of vortex beams were investigated by means of the numerical
simulation of propagation through free space. It is expected that these results would
be beneficial to optical links, and this work has assisted us to know the phase
distribution receiver by changing the numbers of the topological charge, which helps

to predict receiver messages in photodetector devices.

Secondly, the scintillation index formulation for the Gaussian beam on a propagation
length in a turbulent atmosphere was evaluated. The scintillation index methods were
compared so as to select the best approach to describe the phenomenon. The
properties of each method, namely Rytov, Huygens-Fresnel and Random Phase
Screen, were closely examined. From the graphical outputs, it was observed that the

Random Phase Screen method produces an acceptable value of scintillation index
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which is near to practical and thus can be regarded as advantageous in the case of a

GB, in particular at long propagation lengths.

Thirdly, we constructed and tested the behavior of the scintillation index mechanism,
which was devised for an optical system operating with the 7-Mary symbols of the
LGVB by changing the polynomial parameters of the Laguerre Function. Then, the
random phase screen technique method was used to model the propagation medium
of the turbulent atmosphere. Additionally, the Matlab program was used to test any
scintillation variation of the LGVB with the degree of the polynomial when the
topological charge was fixed to m =1, 3 and 7 for each case. It can be seen from the
results from the previous sections (7.4.1.1, 7.4.1.2 and 7.4.1.3) that the value of the
scintillation index increased with an increase in the values of the n and m parameters.
In addition, the Matlab program was run again to test the scintillation variation of the
LGVB with the topological charge when the degree of the polynomial was fixed to
n =1 and 5 for each case. It can be seen from the results from previous sections
(7.4.2.1, 7.4.2.2 and 7.4.2.3) that the value of the scintillation index also increased
with an increase in the values of the n and m parameters. Then, the values of the
scintillation index variation of the Laguerre-Gaussian beam were near together in the
case of changes in the topological charge (m ) when the degree of the polynomial
(n) was fixed and equal to 1, 3 or 5. In contrast, these values of the Sl are far from
each other in the case of the topological charge being fixed to m=1, 3 or 5 and
changing the degree of the polynomial (n). In conclusion for this part of the result,
the topology charge (m ) had a greater effect than the degree of the polynomial (n)
on the Sl values. Therefore, for a good state of transmission, it is recommended to

make the degree of the polynomial n =1 and the topological charge number change
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to 0, 1, 2, 3, 4, 5 and 6 values. Therefore, for a good state of transmission, it is
recommended that the degree of the polynomial be made equal to n=1 and the

topological charge numbers equal to 0, 1, 2, 3, 4, 5 and 6, such that

(L, L, L7301, L2, LY.

Fourthly, four types of beam, namely the Gaussian, Elliptical, Laguerre and Bessel
vortex beams, were selected and measurements of the SI were taken for different
values of the n and m parameters for their beams. Then, we compared among them to
select one that would be suitable. Finally, it was found that the Elliptical beam with

topological charge equaling 7 and 3 was best.

Fifthly, two types of beams, namely GB and GVB, were chosen and measurements
of the SI were taken for the different values of the n and m parameters of the GVB.
Then, it was shown that the GVB with the degree of the polynomial and the
topological charge equaling values of n =6, m =3 and n =5,m =6 were better
than the GB. Although the SI values of the GB were increasing with an increasing
propagation distance, the Sl values of the GVB remained between 0.04 and 0.14 with

increasing propagation distance.

Sixthly, receiver intensities for LGVB in free space are affected by changes in the
polynomial parameters of Laguerre beam. It becomes evident that when nand m

are the same, the receiver intensities of LGVB become more separate.

Finally, the SER for GVB for 8-Mary against structure constant is computed, and it
has appeared that the SER is increased by the increasing structure constant

parameter.
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8.2 Future Work

The result of this study presented and established a solid foundation for much future
work in the area of optical beam propagation in weak and strong turbulence.
However, achieving the desired beam without an Sl is still a difficult problem. Some
studies may prove fruitful in establishing classes of beam sources that prove more
robust while propagating through oceanic turbulence. Other studies have been
proposed to satisfy the high value of SNR. Further continuous studies are included in
work on the wave structure function in addition to studies on the bit error rate (BER)

of a communication channel and enhanced backscatter in laser radar systems.
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