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ABSTRACT 
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USED IN SPEECH PROCESSING 

 

FARAJ, HIBA ALI FARAJ 

Ph.D., Department of Electronic and Communication Engineering 

Supervisor: Assist. Prof. Dr. Selma ÖZAYDIN 

 

December 2019, 105 pages 

 

Vector quantization techniques play a vital role in compression of speech signals. 

There are a variety of vector quantization techniques. Each technique has its own 

advantages and disadvantages and there is no vector quantization technique presenting 

perfect results in all aspects till now. This thesis deals with enhancing the performance 

of the existing vector quantization techniques by using new methods. In this thesis 

hybrid vector quantization techniques which are produced from the existing methods 

are proposed. The performance of the designed vector quantizers are evaluated in 

terms of the spectral distortion measured, computational complexity and memory 

requirements. 

In the scope of this thesis, Multistage vector quantization (MSVQ), Split Vector 

Quantization (SVQ), Residual Vector Quantization (RVQ), Residual Multistage 

Vector Quantization (R-MSVQ), Residual Split Vector Quantization (R_SVQ) and 

voiced/unvoiced Residual Multistage Vector Quantization methods (VUV_RMSVQ) 

are analyzed. Because the VUV_RMSVQ method gave the better test results, further 

research is directed to find an optimum performance for codebook design with this 

method. Then, the overall performance of the proposed vector quantization techniques 

is compared with the existing vector quantization techniques. Whole work is carried 

out using the standard TIMIT database and both clean and noisy data are tested to 
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evaluate the performance of the designed codebooks against noise. A linear predictive 

coding (LPC) based codebook generation algorithm is designed for each vector 

quantization method. Vector quantization is the process done in between LPC analysis 

and synthesis. The speech parameters required for vector quantization are the line 

spectral frequencies (LSF) and are obtained from the LPC coefficients. 

At the beginning of the thesis study, we designed codebooks with MSVQ and SVQ 

methods and we compared them in terms of spectral distortion. We found that the 

codebooks with MSVQ method gave better performance. Then, we used the RMSVQ 

and RSVQ methods to design codebooks. It is seen that the best result was given by 

RMSVQ. As a result, we continued with RMSVQ and we combined the voiced and 

unvoiced decision method and RSMVQ technique to achieve better result for spectral 

distortion.  According to the results, it is seen that the best performance is achieved 

with VUV_RMSVQ method. 
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ÖZ 

 

KONUŞMA İŞLEMEDE KULLANILAN VEKTÖR NİCEMLEME 

METOTLARININ KARŞILAŞTIRMALI ANALİZİ 

 

FARAJ, HIBA ALI FARAJ 

Ph.D., Çankaya Üniversitesi Elektronik ve Haberleşme Mühendisliği Bölümü 

Danışman: Dr. Öğr. Üyesi Selma ÖZAYDIN 

 

Aralık 2019, 105 sayfa 

 

Vektör nicemleme teknikleri konuşma sinyalini sıkıştırmada hayati bir öneme sahiptir. 

Çok çeşitli vektör nicemleme metotları mevcuttur. Herbir teknik kendine has avantaj 

ve dezavantajlar içermektedir ve tüm yönleriyle mükemmel sonuçlar veren bir vektör 

nicemleme metodu henüz yoktur. Bu tez çalışması, mevcut vektör nicemleme 

tekniklerinin performansını yeni metotlar uygulayarak iyileştirmeyi amaçlamaktadır. 

Bu tezde mevcut metotlardan hareketle melez vektör nicemleme teknikleri 

uygulanmıştır. Tasarlanan vektör nicemleyicilerin performansı, spectral distorsiyon, 

hesapsal karmaşa ve hafıza gereksinimleri bakımından değerlendirilmiştir.  

Bu tez çalışması kapsamında Çok aşamalı vektör nicemleme (MSVQ) metodu, Split 

vektör nicemleme (SVQ) metodu, Artık sinyal vektör nicemleme (RVQ) metodu, ve 

sesli/sessiz artık sinyal vektör nicemleme metodu (VUV_RMSVQ) analiz edilmiştir. 

VUV_RMSVQ metodu en iyi test sonuçlarını verdiğinden, bu metotla optimum kod 

tablosu tasarlamada yeni metotlar bulabilmek için araştırma derinleştirilmiştir. Daha 

sonra, tüm tasarlanan vektör nicemleme metotlarının performansları var olan 

metotlarla karşılaştırılmıştır. Tüm çalışma standart TIMIT veritabanı kullanılarak ve 

bu veritabanında temiz ve gürültülü ses verileri kullanılarak yürütülmüştür. Herbir 

vektör nicemleme metodu için bir Doğrusal öngörülü kodlama (LPC) tabanlı kod 

tablosu üretim algoritması tasarlanmıştır. Vektör nicemleme LPC analiz ve sentez 
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arasında gerçekleştirilen bir işlemdir. Vektör nicemleme için gerekli konuşma 

parametreleri çizgi spectrum frekanslarıdır (LSF) ve bunlar LPC katsayılarından elde 

edilirler.  

Tez çalışmasının başlangıcında, MSVQ ve SVQ metotları ile kod tabloları tasarladık 

ve bunları spectral distorsiyon bakımından karşılaştırdık. MSVQ metodu ile tasarlanan 

kod tablolarının daha iyi sonuçlar verdiğini gördük.  Daha sonra, kod tablosu 

tasarlamak için RMSVQ ve RSVQ metotlarını kullandık. Sonuçlardan görüldü ki en 

iyi sonuç RMSVQ metodu tarafından verildi. Sonuç olarak, RSMVQ metodu ile 

devam ettik ve spectral distorsiyon için en iyi performansı başarabilmek için 

sesli/sessiz karar metodunu RSMVQ metodu ile birleştirdik. Test sonuçlarına göre, en 

iyi performansın VUV_RMSVQ metodu ile başarıldığı görüldü.  
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CHAPTER 1 

 

1.1 Introduction 

 

Speech signals are unique for various causes, of which the most important one is that 

they are in motion, thus making them challenging for simulation and analysis. Next, 

accuracy, consistency and similar other attributes are key in such analyses. A third 

factor is the discrete values necessary for defining a second of such signals being 

equivalent of a minimum of 8000 bits. Given that the frequency impacts processing 

costs, these indicators become compacted prior to their transmission. In this respect, 

speech coding obtains a rather condensed representation of these signals in order to 

effectively send them across frequency-specific wired or wireless media as well as 

proper recording.  

These days, coders have turned into the inseparable part of telecom and media 

industries given that the type of frequencies applied decide the costs associated. The 

aim is to simulate signals using the least amount of bits and without loss of perceptual 

attributes. Coding allows telecom firms to include more calls within one fiber link or 

cable; apart from this, it is crucial for mobiles and cell phones considering the  data 

limits for each user  - the less this value for each call, the more the other utilities [1-2]. 

Other benefits include voice-over IP, videoconferences, and multimedia by decreasing 

the bandwidth needs on the Web [3]. Furthermore, many of such applications call for 

minimum delay as; otherwise, the flow of conversation can experience late 

transmission and delay [4]. Coders transform digitized signals to coded figures and 

sends them as frames. The receiver then decodes these frames for further synthesis so 

as to recreate the signals. These coders vary based on in bit-rate, complexity, delay 

and comprehensibility of the outcome [5]. In particular, two major categories are at 
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work: narrowband speech coding and wideband speech coding.  The former codes the 

signals in between 300 to 3400 Hz with 8 kHz as the sampling rate, whereas the latter 

does so under 50 to 7000 Hz with 14–16 Khz as the sampling rate. Narrowband coding 

has wider use compared to wideband due to the very quality of phone lines at about 

300 to 3400 Hz [6]. Nowadays, wideband coding has been gaining more popularity for 

other purposes as video conferences.  

The present study is in accordance to a conventional TIMIT database, following the 

stages below:   

 Speech analysis: to include framing, windowing, frame overlapping, 

determining linear predictive coefficient, frame pitch assessment, and 

linear predictive coefficients (LPC) transformation to line spectral 

frequencies factors (LSF).  

 Vector quantization: to include codebook design with the help of Linde, 

Buzo, and Gray algorithm, different vector quantizers design, and using  

vector quantization (VQ) on line spectral frequencies (LSF).  

 Speech Synthesis: to include modifying LSFs to LPCs and, later, 

synthesis with the help of pitch, gain, and quantized LPC parameters.  

 Calculating spectral distortion, outliers, and unsteady frames.  

The motivation behind this work is to develop an efficient vector quantizer having low 

bit-rate, complexity and memory requirements when compared to the existing 

techniques and to best suit it for applications involving speech coding.  

1.2 Speech production and modeling  

Speech signals possess a series of sounds, which, along with the transitions, serve as 

information-carrying signs. Their sequence is based on linguistic patterns hence the 

scientific term for studying the discipline. Another field dealing with sound forms and 

their development is the phonetics.  

 1.2.1 The Mechanism of Speech Production  

Speech waves are generated based on certain bodily organs and their motions to make 

up human speech, whose formation mechanism is illustrated in Figure 1 [16]. No 

matter what language one speaks, every individual applies more or less the same 
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organs to generate speech. These productions follow the principles of physics and, in 

brief, can be explained as air forced from the lungs, passing the vocal tract and out via 

the oral cavity to form a sound or speech. Here, the lungs can be regarded as where the 

sound begins, with the vocal tract as the filter to form different sounds to constitute 

speech as a whole.   

 

 

Figure 1 .Human speech production model 

 

To clearly comprehend the role of the vocal tract in changing air into sound, certain 

concepts come into view. To begin with, phonemes are a defined series of sounds, 

mainly grouped into two voiced, unvoiced, and detected by coders once signal analysis 

and synthesis is carried out.  

Voiced sounds are of higher energy values, distinguishable form, and profound 

frequency generated once air periodically vibrates the vocal cords to create a series of 

signals otherwise known as glottal pulses. The vibration rate as regards the vocal cords 

determines the pitch. These signals eventually travel along the vocal tract, where 

certain frequencies echo and resonate. While being generated by women and children, 

these signals possess higher pitch values compared to men owing to a speedy vibration 

of the vocal cords. Henceforth, to have satisfactory results for accuracy in original 
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input representation, all information related to the pitch period has to appear in the 

analysis and synthesis. Voiceless sounds occur more frequently due to more resonant 

frequencies and reduced energy compared to voiced ones; they are also formed once 

unstable flows of air travel along the vocal tract, rendering the vocal cords free of 

vibration and to maintain an open status until the sound is generated. Pitch is a key 

feature in unvoiced signals due to the absence of vocal cord vibration and signals [17].  

Classifying sounds as voiced or unvoiced is another key issue once analysis and 

synthesis is conducted; indeed, vocal cords vibration or limited vibration constitutes a 

major aspect of generating various sounds. A separate factor affecting speech the 

anatomy of the vocal tract since various sounds or resonant frequencies can be 

generated as a result. The tract comprises, in detail, the throat, tongue, nose, mouth 

and lips described as the route by which speech is formed and various frequencies can 

be generated. During speaking, this tract is on a slow but steady transformation of 

shape to create various sounds, which eventually come together and form words.  

Lastly, the flow of air moving from the lungs can influence speech production given 

its role as the source of all signals. As stated before, the vocal tract is a filter to generate 

speech by taking air from the lungs; the more air, simply the louder the sound [18].  

1.3 A general structure of analysis speech coding /decoding synthesis  

During the coding process, the primary input signals, being analog, are digitized with 

the help of a medium filter, sampler and analog-to-digital (A/D) transforming circuits. 

This is an anti-aliasing filter, basically with low-pass, in use prior to a sampler so as to 

eliminate those frequencies beyond the Nyquist standard. Filtering prevents aliasing 

and should the sampling frequency fall lower than two times the size of the subject 

signal bandwidth, then aliasing is inevitable. To solve the problem, the sampling 

frequency can be dialed up to values more than 2.5 times the analog sample bandwidth 

and in accordance to the assertion by Nyquist theory. About 8 Khz can be set as the 

conventional sampling frequency for telephone signals as they vary from 300 to 3400 

Hz [5]. Next, the sampler changes the analog signals to discrete patterns of input to an 

A/D modifier to produce digitized patterns. The available coding mechanisms are 

crafted for telecom support services as they restrict the frequency contents between 

300 and 3400 Hz. To change analog signals to digital ones, keep high quality and 
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create signals identical to the original input, they have to be tested with over 8 bits per 

sample. Figure 2 represents a block diagram for speech coding.  

 

 

Figure 2. Speech analysis steps 

In the present study, the factors related to digital signals comprise the sampling 

frequency of 8 kHz and 8 bits per sample. Accordingly, the input signal has a bite rate 

of 64 Kbps. Encoders serve to decrease the input bit-rate under 64 Kbps, beyond which 

all bit-rates are taken as compression, and the encoder output has a bit-rate under 64 

Kbps. Related algorithms for our purpose of decreasing this bit-rate are of LPC nature, 

based upon which bit-rate is downsized to 1 Kbps that is to say, a 64-fold reduction 

compared to the input. Essentially, the source encoder output becomes the input to the 

channel encoder to prevent errors in the bit flow sent across the channel, where noise 

and other impediments may hamper the transferred data accuracy.  

On the receiver’s side, the channel decoder obtains the encoded data from the error-

protected data to supply to the source decoder to gain the actual signal, which is then 

supplied in turn to a D/A transformer so as to change signals from digital to analog. 

Lastly, this analog content is supplied to an aliasing-proofer filter to prevent such 

incidents when constant signals are being recreated, thus calling for a solid stop-band 

prevention mechanism to achieve maximum aliasing-free content [5,7-9]. 

1.4 Speech coding methods 

 Coding essentially condenses the signals through the reduction of bits for each sample, 

thereby making the decoded speech differentiable in auditory terms. In detail, coding 

is carried out to fulfil these goals [11]:  
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 Reduction in bit-rate or equivalently the bandwidth.   

 Decreasing the memory requirements, which decreases in a proportionate 

manner with respect to the bit-rate.   

 Decreasing the transmission power required, since compressed speech signal 

has less number of bits per second to transmit.   

 Immunity to noise, some of the saved bits per sample can be used as protective 

error control bits to the speech parameters.  

The approaches to coding are largely grouped as lossless and lossy; in the former, the 

recreated signal by the decoder is identical in shape to the input signal. However, in 

the latter case, the recreated signal is perceptually the same as the source signal. Also, 

in the lossy approach, despite the recreated waveform’s difference from the original 

one, most coding methods circle around the lossy approach and eliminate non-essential 

information in terms of perceptual quality. Today’s coding techniques comprise 

waveform coding as well as parametric coding.  

1.5 Thesis Contribution 

The original contribution of this study is to search of new techniques for design of the 

vector quantization codebooks to satisfy a reasonable performance in different 

conditions such as clean and noisy speech input. In this scope, firstly we applied the 

MSVQ & SVQ techniques to design codebooks. With these techniques, we designed 

and tested different sizes of codebooks. Then, we evaluated their performances on 

large-scale input data for both clean and noisy inputs. Secondly, we applied the 

residual technique to the MSVQ & SVQ codebooks. We tested the effect of residual 

technique on these methods by using the same input data and by designing the similar 

sizes of codebooks with the previous method. We compared the results of MSVQ & 

R_MSVQ as well as SVQ & R_SVQ in terms of spectral distortion (SD) and memory 

requirements. From the results, it has been found that R_MSVQ has given better 

performance in all conditions and for different sizes of codebooks. From these results, 

we decided to go forward with R_MSVQ and investigate a robust method increasing 

the performance of the R_MSVQ codebooks. After a literature review, we have 
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decided to separate the input speech signal into voiced and unvoiced parts to increase 

the performance of codebooks. We have designed three methods as followings;  

 first method was separating the speech by using two technics which are zero 

crossing rate and short time energy after separating the speech we have used 

one codebooks for both voiced and unvoiced speech then in test part calculating 

the SD was done for each one, for voiced we have used fixed value for alpha 

which is equal to 0.359 and for the unvoiced part we have used matrix A, and 

calculating the SD for both voiced and unvoiced,  

Second technique was using two separated codebooks in the training and testing stage 

but we hold the both codebook sizes (for voiced and unvoiced) same. The result gave 

us better SD results when we compared the first method. 

In the third technique, we used changing codebook sizes for voiced and unvoiced 

conditions, as a result decreasing the number of bits in the codebook.  It gave a high 

performance for SD. All programs were tested using clean and noisy TIMIT files and 

SD and computation complexity and memory requirement was calculated for all 

programs. 

  

1.6 Thesis Organized  

This thesis is outlined as follows. In Chapter 2 Literature Review is introduced.  

In Chapter3 we explained how the speech signal is analyzed stage by stage and 

dividing the speech into samples and calculating the linear predictive coding (LPC) 

and the transforming them to linear spectral frequency (LSF) for more stability and 

finally calculating the spectral distortion for LSF coefficients. In chapter 4 we 

explained the design of the codebooks in vector quantization (VQ) and explanation 

why we used VQ and not scalar quantization (SQ) codebook design has been explained 

that many algorithm has been proposed as seen in the literature review and in our 

design we have used LBG algorithm in our design. Chapter 5 is a brief description of 

the important methods that has been used in this thesis and in VQ. Chapter 6 explains 

who codebooks were designed for both MSVQ and SVQ using large data and using 

different test data for different type of data which are noisy and clean speech data. 

Chapter 7 residual vector quantization was applied for both methods split and 

multistage vector quantization. Chapter 8 in this chapter we applied voiced/unvoiced 
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method on residual multistage vector quantization and calculated SD and outliers. 

Chapter9 presented conclusion and future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Literature Review   

This chapter deals with the study of literature in doing this work. The literature studied 

is explained in detail by highlighting the points concluded in each paper. The 

references included in this thesis report are all explained in detail. In this section, the 

background literature is reviewed for the thesis by means of pointing to details related 

to conclusions derived by other experts and corresponding references.  

 Speech coding entails the formation of condensed signals through decreasing the bits 

applied for samples and maintaining perceptual quality, as per reported by A.S. 

Spanias in 1994 [1], K.Sayood in Introduction to Data Compression 1996 [2], Saeed 

V. Vaseghi in Multimedia Signal Processing: Theory and Applications in Speech, 

Music and Communications in 1996[3], John C. Bellamy in Digital Telephony in 1999 

[4] and Wai C.Chu in Speech coding algorithms [5]. The background of different 

coding approaches and the features related to signal and  performance criteria in coding 

are thoroughly dealt with by W.B.Kleijn and K.K.Paliwal in 1995 [6].                 

Makhoul in 1975 [15] elaborated on linear predictive coding as a method for encoding 

analog signals with values for available samples to establish a mixture of previous  

samples, equal to simulating signal spectrums as all pn an all-zero fashion in the 

bandwidth. Gunnar Fant in Acoustic Theory of Speech Production 1970 [16], Rabiner 

and Schafer in Digital Processing of Speech Signals 1978 [17], Paget in Human Speech 

1999 [18] and Al-Akaidi in Fractal Speech Processing 2004 [19] all describe human 

speech formation, use of LPC, its filter and its connection to the vocal tract, and pitch 

details.   
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Speech analysis entails signal detailing of factors including pitch, gain, and voiced & 

unvoiced decisions within frames – an effective method according to Pei Hongwen 

and Shen Fengji [20], R. McAbulay and T. Quatieri [21], Chin-Hui Lee [22], F.F. 

Tzeng [23], S. Zahorian and P. Gordy [24] and B.Yegnanarayana and P. Satyanarayana 

Murthy [25].  Obtaining LPCs, their application in analysis and synthesis in the form 

of filter coefficients, and transforming those LSFs have been addressed with 

satisfactory information in [26-28].  Voiced and Unvoiced frame decisions, factors and 

parameters concerning those decisions, mode of determination and arriving at 

decisions appear with graphic representations as well as lock diagrams in [29-32].  

In [33-40], pitch determination in case of both voiced and unvoiced signals appears by 

means of various techniques, elaborating on the pitch significance in synthesizing 

signals. Such a process, accordingly, calls for recreating a signal from the parameters 

collected, among them gain, LPCs, voiced & unvoiced decisions for frames, and pitch. 

These are key factors for synthesis, which procedure is properly introduced in [41-44].  

 LP coders’ outstanding feature is the quantizer for advanced bit-rate vectors to be 

turned into lower ones. C.E. Shannon 1959 [45] asserts that quantizing a series of 

vectors proves to be more beneficial compared to doing so on single values since, once 

a vector is extensive, the rate distortion function approaches the Shannon limit. The 

work in 1998 by Gray and Neuhoff [46] offers a review of quantization since the 

beginnings along with details of different techniques in this field. In a separate work, 

quantizers able to generate intricate outcomes – also in case of smaller sizes of vectors 

– come to the fore and discussed by Makhoul, Roucos and Gish in 1985 [47], 

T.F.Quatieri in Discrete-Time speech signal processing 2004 [48], So.Stephen and 

K.K.Paliwal in 2007 [49].  

J. Tribolet, P. Noll, B. McDermott and R. Crochiere in 1978 [7] and B.S.Atal in 

1982[8] revisited adaptive predictive coding focused on obtaining advanced quality 

with reduced bit-rates, and elaborated further on the impacts related to lower bit-rates 

on the regenerated signal. N.Kitawaki, H.Nagabuchi and K.Itoh in 1998 [9] introduce 

the criteria decisive for reduced bit-rate coding and different distance qualities. 

 Toward the beginning of 1975, quantization attributes were defined by R. 

Viswanathan and J. Makhoul [59]. Also, the benefits of LSFs related to vector 
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quantization across LPCs are dealt with alongside their degree of durability in the work 

by J. Zhou, Y.  

Shoham and A. Akansu [60], A.D. Subramaniam and B.D. Rao [61], F.K. Soong and 

B.H. Juang [62] and W.R. Gardner and B.D. Rao [63] address the VQs and other 

numerous benefits as opposed to scalar quantizers concerning gap-fills, form and 

memory attributes. Such benefits reemerge in the work by So.Stephen and K.K.Paliwal 

in 2007 [49]. Accordingly, many VQ mechanisms are at hand – among them, 

Unconstrained Vector Quantization applied to full-scale vectors. Not quite popular, 

the approach ranks high on computational and memory constraints.  [64-66].  

These restrictions in practice are addressed largely by means of product code VQ 

methods for codebook search and storage by means of separately conducting single 

VQ tasks, J.Sabin and R.M.Gray in 1984 [67] address the premises concerning the 

issue of computation and memory by illustrating standards of quality for coders, 

emphasizing the benefit of product code VQ mechanisms. In this way, the initial 

mechanism is the Split Vector Quantizer (SVQ), where vectors with larger sizes are 

simply shrunk via vector division to tinier scales. SVQ initially appeared in the work 

by K.K.Paliwal & B.S.Atal in 1993 [68] as a means of tackling complexity. 

C.S.Xydeas and C.Papanastasiou in 1995 [69], later suggested furthering SVQ 

intricately and upon gaining an LSF matrix to reach single sub-matrices. In 2004 

F.Norden and T.Eriksson [70] discuss the disadvantages of reduced sizes gained by 

such splitting, further recommending limited quantization to compensate for them.  In 

detail, these disadvantages are alleviated using a Multistage Vector Quantization 

(MVQ) method to tackle complexity and memory issues.  

In 1982 B.H.Juang and A.H.Gray Jr [71] came up with the MVQ approach to further 

add to unlimited VQ formats, while elaborating on increased bit-rate operation without 

any addition to noise and the mechanism to decrease computational constraints and 

memory conditions.  W.Y.Chan, S.Gupta and A.Gersho in 1992 [72] came up with an 

approach related to codebook preparation in every step so as to improve the general 

performance; the results, though were not quite satisfactory and the encoding and 

storage matters somehow stayed unimproved. W.P.LeBlanc, B.Bhattacharya, 

S.A.Mahmoud and V.Cuperman in 1993 [73] came up with a tree-searched MVQ 

design and an updated and combined codebook plan, which offer spectral distortions 
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lower than 1 dB and increased the rate of convergence. The work also addressed certain 

performance criteria for VQ application. J.Pan in 1996 [74] suggested a double-step 

pyramidal lattice VQ method via applying the tree structure in the initial step to handle 

the complexity. In 2004 V.Krishnan, D.V.Anderson and K.K.Truong [75] illustrate a 

channel-optimized Multistage Vector Quantization (COMSVQ) codec, where all 

codebooks can be arranged in combination. In this way, the regenerated signal quality 

is developed while decreasing the mean of the spectral distortion. Such noise, 

computational issues, and memory needs in MVQ are all downsized by means of 

another method - Split-Multistage Vector Quantizer or S-MSVQ – as combination of 

SVQ and MVQ techniques, as per the work by So.Stephen and K.K.Paliwal in 2007 

[103].  The K-mean algorithm was proposed by MacQueen 1967.it is well known 

iterative procedure for solving the clustering problems. It is an algorithm to group data 

into K number of groups by minimizing the sum of the square of distance between data 

and the corresponding cluster centroid each cluster is represented by the mean of the 

cluster. [115] Applied techniques to speech-like waveform and used a codebook 

consisting of vectors in the form of reflection coefficients. They tested the codebook 

on several speakers and a good result was reported. [117] presented an effective vector 

quantizer for very low bit rate speech coding based on vector quantization for LSF 

parameters. As a compromise solution to reduce the storage and searching complexity 

of the codebook, various structured VQ algorithm such SVQ, DSVQ and mean-

removed DSVQ are proposed. The precision was considered for cookbook storage. 

Spectral distortion (SD) is the most preferred objective measure to evaluate the 

performance of quantizer. Average spectral distortion (ASD) is proposed to measure 

the overall quality of spectral distortion. 

Liefu Ai , Junqing Ya, Zebin Wu,Yunfeng He and Tao Guan an optimized residual 

vector quantization is presented for improving the quality of vector quantization and 

approximate nearest neighbor search.(2015). In (2016) Mobin Jamali, Vahid 

Ghafarinia and Mohamed Ali Montazeri have proposed a new fast search algorithm to 

enhance the computational cost and the execution time of the conventional VQ 

methods. 
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[117] Hanwer wa,Qiwen Wang and Markus Flierl tree structure vector quantizer was 

proposed that hierarchically cluster the data into Ksphere-shape quantization 

cells(2017) 

Yi Guo,jia Ye, Lianshan Yan, Wei Pan, Xihva Zou and Hui Yang two-dimensional 

vector quantization scheme utilizing vector linear prediction for digitalized radio over-

fiber(2018). 

2.2 Turkish thesis literature search about vector quantization 

These are some thesis that has been done in vector quantization in Master and PhD in 

Turkish 

In speech processing 

 

 

In image processing 

Name Year Subject of thesis University Type of 
degree 

Şebnem 
KOLTAN.Y 

2014 Control charts pattern recognition based 
on linear vector quantization neural 

networks 

Inönü unversity Ph.D. Thesis 

ICLAL GOR 2013 A design and implementation of 
geometrical learning algorithm for vector 

quantization 

Adnan Menderes 
University  

Master’s Thesis 

ERKAN 
KOCAKAYA 

2005 Video compression with vector 
quantization 

Kocaeli University Master’s Thesis 

ÖZGÜR 
ORACAY 

2003 3-D object mesh geometry compression 
with vector quantization 

Boğaziçi Master’s Thesis 

ILKER KILIÇ 2003 A video compression algorithm using 
zerotree wavelet and hierarchical finite 

state vector quantization 

Dokuz Eylül 
University  

Ph.D. Thesis 

MEHMET 
YAKUT 

2002 Image compression using vector 
quantization for nonsquare blocks 

Kocaeli University Ph.D. Thesis 

Name Year Subject of thesis University Type of degree 
METIN 

UZUNCARSILI 
2005 Investigation of vector 

quantization based speaker 
identification algorithm 

Ankara University Master’s Thesis 

OSMAN 
DEMIRHAN 

1998 Vector quantization using 
artificial neural networks 

Kocaeli University Master’s Thesis 

ONUR ENGIN.T 1998 Sub-band decomposition vector 
quantization architectures for 

coding speech and audio signals 

Boğaziçi Master’s Thesis 

IBRAHIM AVCI 1993 Speech compression based on 
vector quantization 

Boğaziçi Master’s Thesis 

MEHMET 
SEDAT.U 

1991 A study on the application of 
vector quantization to sub-band 

coding of speech signals 

Orta doğu teknik 
university  

Master’s Thesis 
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CHAPTER 3 

 

LINEAR PREDICTIVE IN A SPEECH CODING SYSTEM 

 

Speech signal analysis is used to characterize the spectral information of an input 

speech signal. Speech signal analysis [12] techniques are employed in a variety one of 

systems, including voice recognition and digital speech compression. Popular method 

of analyzing speech signals uses linear predictive coding (LPC). In linear predictive 

coding, each sample of a digital input speech signal is represented as a combination of 

an innovation sample and a weighted series of past speech samples. The series 

coefficients, or weights, are referred to as LPC coefficients. Real-time LPC analysis 

of speech signals is a computationally burdensome process. 

Many voice recognition system currently use LPC speech analysis techniques to 

generate useful spectral information about an input speech signal. In voice recognition, 

LPC techniques are employed to create observation vectors, which are used by voice 

recognizers. These observation vectors are compared or matched to stored model 

vectors in order to recognize the input speech. Voice recognition systems have been 

utilized in various industries, including telephony and consumer electronics. For 

example, mobile telephones may employ voice recognition to allow "hands free" 

dialing, or voice dialing. In the analysis of the speech signal, first the windowing 

technique is implemented. 

3.1 Windowing 

The window, w (n), determines the portion of the speech signal that is to be processed 

by zeroing out the signal outside the region of interest. The ideal window frequency 

response has a very narrow main lobe which increases their solution and no side lobes 

(or frequency leakage). Since such a window is not possible in practice, a compromise 
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is usually selected for each specific application. There are many possible windows (e.g. 

Rectangular, Bartlett, Hamming, Hanning, Blackman, Kaiser, etc.), some of which are 

defined as follows: 

In order to smooth the estimated power spectrum and to avoid abrupt transitions in 

frequency response between adjacent frames, one may choose to use some kind of 

windowing function in the linear analysis. Spectral smoothing techniques are used to 

avoid distinct peaks in the spectrum, which will result in poles near the unit circle. The 

effect of multiplying the input with a finite-length window is equal to convolving the 

power spectrum with the frequency response of the window. This causes the side-lobes 

in the frequency response of the window to have an averaging effect on the signal 

power spectrum. The use of 160-sample frames in the linear analysis would be equal 

to windowing the input with a 160-point rectangular window. In the analysis, we use 

a 160-point Hamming window, which has better frequency properties than the 

rectangular window. The effect of this is to produce a weighted average of the input, 

where the 160 samples in the center of the Hanning window correspond to the frame 

being processed, i.e. the last sub-frame of the preceding frame and the first one of the 

next frame are also included in the analysis. This alleviates the effect of abrupt 

transitions in the frequency properties of adjacent frames 

There are many possible windows (e.g. Rectangular, Hamming, Hanning, Blackman, 

etc.), some of which are defined as below: 

 

Rectangular: 

w(n) = {
1: 0 ≤ 𝑛 ≤ 𝑁 − 1
0:        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                            (3.1) 

 

Blackman: 

w(n) = {
0.42 − 0.5 cos (2𝜋 

n

𝑁−1
) + 0.8𝑐𝑜𝑠 (2𝜋 

2n

𝑁−1
) ∶ 0 ≤ 𝑛 ≤ 𝑁 − 1 

0                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (3.2)   
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Hanning: 

w(n) = {
0.5 − 0.5 cos (2𝜋 

n

𝑁−1
) ∶ 0 ≤ 𝑛 ≤ 𝑁 − 1 

0                                          ∶            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   

   

(3.3)                       

Hamming: 

w(n) = {
0.54 − 0.46 cos (2𝜋 

n

𝑁−1
) ∶ 0 ≤ 𝑛 ≤ 𝑁 − 1 

0                                                 ∶            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (3.4)                       

 

 

Figure 3. Time plots of various window functions 

The time and frequency domain shapes of these window functions are illustrated in 

Figure 3, as can be seen in Figure 4, the rectangular window has the highest frequency 

resolution, as it has the narrowest main lobe, but the largest frequency leakage. 



  

17  
 
 

 On the other hand, the Blackman window has the lowest resolution and the smallest 

frequency leakage. The effect of these windows on the time-dependent Fourier 

representation of speech can be illustrated by discussing the properties of two 

representative windows, e.g. the rectangular window and the Hamming window.  

 

 

Figure 4. frequency response of various window functions: (a) Rectangular, (b) 

Hamming, (c) Blackman, (d) Hannin 

3.1.1 Window length 

Optimum window length depends on what you want to look at i.e. 

a) If we want to resolve Fo (may be for pitch detection), the main lobe width 

 (2 cW ) Should not exceed Fo. For example, for hamming window, 

(c) 

(b) 
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8 2 Fo
L Fs
 

    (3.5) 

 

b) If we want to resolve the formants, main lobe should be wide enough to 

“smooth together” the pitch harmonics, but not so wide that it blurs the formant 

peaks. 

c) If we want to look at rapidly changing events (e.g. stop release), L should be 

as short as possible (5-10ms max). 

After windowing technique then LPC analysis is implemented. The LPC order and 

gain are the two main factors important for analysis. 

3.2 Linear predictive coding (LPC) 

 LPC is used to encode analog signals where the value of a sample can be determined 

based on previous ones within a speech signal. The method is the work of the 

Department of defense in federal standard 1015, USA, published in 1984. Within 

ordinary settings, we sample speech at 8,000 samples per second using 8 bits for each, 

thus reaching 64,000 bits per second. Through LPC application, this rate can drop to 

2,400 bits per second.  

The present thesis further reduces the value to 1000 bits per second, at which point 

there might be an insignificant degree of loss as regards signal quality, rendering the 

method as a lossy compression approach [12-15].   

In addition, the source filter model applied in LPC is called a linear predictive coding 

approach [17], comprising two separate segments: analysis or encoding, and synthesis 

or decoding. In the former stage, the signal is detected and separated to form segments 

known as frames, each of which is searched to further determine:  

 If it is voiced or unvoiced.  

 The pitch of each frame.  

 Parameters required to form a filter to simulate the vocal tract.  

The parameters stated above are sent to the receiver to decode and form a source filter 

model. This model, once supplied with the right input, can correctly regenerate the 

initial signal. 
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 LPC encoding of every frame is a decision task to find out about the voiced or 
unvoiced nature of the frame: if voiced, an impulse train introduces it using non-zero 
taps that take place at pitch term intervals.  

 

 

Figure 5. Block diagram of LSF coefficient calculation and quantization in 

speech analysis part 

In the present thesis study, we apply the same approach to determine the pitch period, 

namely the autocorrelation technique. Should the frame be unvoiced, then it is 

introduced with white distortion with a 0 pitch period since the vocal cords in this 

situation do not tend to vibrate. As a result, the excitation to the LPC filter is either an 

impulse train or white distortion. Let us keep in mind that pitch, gain and filter 

coefficients all change according to time and each individual frame [22]. 

3.2.1 The LPC order definition 

When we talk about LPC [77], we must be dealing with speech codecs and speech 

codec is nothing but just modeling of filter. For an excellent filter 

1. Pass band ripple should be tending to zero.  

2. Stop band attenuation should tend to infinite. 

3. Transition band of Roll off.  

Linear Prediction 

(LPC) 

coefficient 

Line Spectral 
frequency 

(LSF) coefficient  

Pre-emphasis Windowing Framing blocking 

Digital Speech 

signal 

Vector 

Quantization 
Index 



  

20  
 
 

First two things can take care of by proper windowing, that’s why generally we use 

Hamming or Hanning window which gives good roll off also. This Roll off is the 

parameter which decide the no. LPC coefficient and we have a relation that 

No. of LPC coefficient (m) = 4/transition bandwidth (kHz)                (3.6) 

and transition bandwidth = sampling frequency * some fraction                 (3.7) 

This fraction must lie between 0- 0.5. So, for good roll of fraction is 0.05 no. LPC 

coefficient (m) will come to 4/(8Khz) *.05 =10. we can choose fraction less also, but 

it will increase the LPC coefficient which will increase the Computation time so it’s a 

trade of between Quality and computation time. We can decrease the no. of coefficient 

also if we can design window, which gives roll off better than hamming window that 

with less no. of coefficient, we can design same quality filter.  

3.2.2 Calculation of the LPC gain 

                         The LPC excitation is defined by the formula  

p

p
k=1

 s(n) =  a (k).s(n-k)+Gu(n)          
  (3.8) 

The LPC error is defined by the formula  

p

p
k=1

  e(n) = s(n) -  a (k).s(n-k) = Gu(n)  
  (3.9) 

If we define 

N-1
2

k=1
u (n) = 1      

  (3.10) 

Then  

2
2

2

e (n)
G

u (n)




     
  (3.11) 
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 3.2.3 Calculation of LPC coefficients 

In the classical least squares method, the LPC coefficients [78] are determined by 

minimizing the mean energy of the residual signal, given by: 

p
2 2

p p
- k=1

e (n)= [S(n)+ a (k).s(n-k)]
 

 

         
  (3.12) 

the summation range is limited by windowing either the speech or the residual signal, 

leading to the autocorrelation or covariance method, respectively, the auto 

correlation method is computationally more efficient that the covariance method and 

the resulting synthesis filter is always stable. 

               3.2.4 Conversation of LPC to LSF coefficient and quantization 

                 In low bit rate speech coding, the LPC coefficients are widely used to encode spectral 

envelope. In forward based LPC coders, the LPC coefficients are calculated from the 

original speech input, quantized and transmitted frame-wise. The transmission of these 

coefficients has a major contribution to the overall bit rate, thus it is important to 

quantize the LPC coefficients as few bits as possible without introducing excessive 

spectral distortion and with reasonable complexity, a very important requirement is 

that the all-pole synthesis filter PH (Z)  remains stable after quantization [78]. 

                         3.2.4.1 Interpolation of the LPC coefficients 

                         Speech analysis mechanisms employ LPC on each single frame using updated series 

of parameters which are calculated, quantized and then sent within the intervals of 20 

to 30ms, thus leading to major parametric transformations in the next frame and, hence, 

generating unanticipated transients or clicks within the regenerated signal [79]. 

Against this backdrop, interpolation is conducted at the receiver’s point to obtain 

minor changes in their values. Oftentimes, this can be carried out in a linear, evenly-

separated time instants known as sub frames, of which there are usually four used at a 

time. The process is not directly carried out on the LPC coefficients because the 

interpolated all-pole decoding filter may, otherwise, turn rather unsteady; indeed, such 

steadiness resembles the conditions faced when quantization interpolation occurs on 

the reflection coefficients, log area ratios, inverse sine coefficients and LSF parameters 

with steady filters formed in all instances.  
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For this reason, it is common to employ LPC representation similar to quantization, 
as the common belief is that LSF representations offer the highest qualities in 
interpolation.  

    3.2.4.2 All pole-zero modeling of speech 

Given LPC methods and their assumption of speech systems as an all-pole filter, the  

accuracy in calculations might suffer  if, apart from to poles, there are zeros in the 

transfer function such is the scenario with the nasal and fricative sounds. Furthermore, 

noisy speech adds further zeros to the range, thus significantly impacting the 

functionality of the all-pole LPC method. In tackling this problem, a logical solution 

can be to expand the model into a pole-zero form, which may be a challenge 

considering parameters calling for the solution of nonlinear equations first; yet, certain 

effective, though sub-optimal, ways are at hand to calculate these parameters hence, 

making them also applicable to pole-zero model the nasal and fricative sounds. Again, 

as regards noisy speech necessitating the assessment of just the all-pole section of the 

model, certain approaches are available making use of low- as well as high-order Yule-

Walker formulas to determine the LPC coefficients. Reports consent to developments 

gained with these techniques, though not yet proven in case of extensive databases, 

which are complicated and may not ensure stability in the H (z) values. A separate 

approach for gaining proper estimations of parameters for noisy signals involves multi-

taper analysis, using a plurality of (orthogonal) windows, each of which offers a 

separate assessment of the autocorrelation coefficients or LPC parameters. Such 

autonomous values may later become rounded to offer accurate estimates, figure 6 

shows poles and zeros. 
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Figure 6. Poles and Zeroes 

3.2.4.3 Correlation of linear predictive coding 

The correlations within a signal can be classified as: 1) along lags of less than 2 ms, 

otherwise known as short-term correlations; and 2) as a product of signal periodicity 

detected a long time lags of 2 ms or higher and referred to as long-term correlations 

[77]. The former decides the envelope of the power spectrum, whereas the latter 

defines the detailed configuration of the power spectrum. Both correlations may be 

described as redundancies while it is good to determine and analyze them initially for 

later signal encoding. The LPC method observes short-term correlations and defines 

them as LPC parameters. These are, within each targeted segment, a function of the 

shape of the vocal tract, whose rate of transformation is finite and, based on 

observations, an update rate around 50 Hz can make up for coding requirements. In 

this respect, linear estimation stands crucial to eliminate signal redundancy as it 

assesses the available ample in accordance to a linear mixture of previous ones [79]. 
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Let s (n) represent the sequence of samples and ak the kth predictor coefficient in a 

predictor of order p. Then, the sequence ŝ(n)  may be determined using  

 ŝ(n)  =  1 2 pa s(n-1) + a s(n-2) + .........+ a s(n-p)   

                                          =  
p

K
k=1

a s(n-k)                                                                  

  

 (3.13) 

The prediction error e (n) is found from 

ˆe(n)=s(n)-s(n)    (3.14) 

Properly applying linear prediction calls for a time-varying filter, available sometimes 

by means a rearrangement of the filter once in each frame so that one can follow the 

time-alternating features related to speech data related to time-alternating vocal tract 

shape special to repeated and unique sounds. By applying such a so-called “quasi-

stationary” theorem, routine speech coders can incorporate a frame size of about 20 

ms for 160 samples at an 8 kHz sampling rate. 

3.2.8 LPC analysis filter 

Linear predictive coding is widely used in different speech processing applications for 

representing the envelope of the short-term power spectrum of speech. In LPC analysis 

[80] of order p, the current speech sample s (n) is predicted by a linear combination of 

p past samples k, ŝ(n)  

p

p
k=1

ŝ(n) = a (k).s(n-k)    
  (3.15) 

Where ŝ(n)  is the predictor signal and p p{a (1),.......,a (p)}are the LPC coefficients the 

value ŝ(n)  is subtracted from s (n), giving the residual signal e (n), with reduced 

variance 

p

p
k=1

a (k).s(n-k)ˆe(n)=s(n)-s(n)=s(n)-     
  (3.16) 
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Taking the Z-transform of equation (3.21) gives 

pE (z)=A (z). S(z)        (3.17) 

Where s (z) and E (z) are the transforms of the speech signal and the residual signal 

respectively, and pA (z) is the LPC analysis filter of order p  

P
-k

p
K=1

p a (K).zA (z)=1-    
  (3.18) 

The filter eliminates the short-term correlation of the input signal, thus providing the 

output E (z)  having relatively a flat spectrum. Once the filter has been used, it is time 

for quantization of the signal, which is later decoded into a speech signal.  

3.3 Line spectral frequency (LSF)  
 

A majority of present-day speech coders employ LPC simulation for their processing, 

and even though some even use a backward-adaptive LPC filter [85], in most cases 

they obtain related parameters from the input speech at period intervals, change them 

to the LSF domain, and then do the quantizing for later dispatch to the decoder.  

 Low distortion LSF quantization plays an important role to guarantee general high 

standards in the synthesized signal, while the bit count designated for LSFs often takes 

up a majority of the total bit rate close to 50% and more in case of coders with 

extremely reduced bit-rate. For this reason, the general degree of efficiency in coding 

is predominantly related to LSF quantizer quality. 

 A 10th-order LPC encoding gives us an all-pole filter of 10 poles with a transfer 

function marked by H(z) = 1/A(z), where   

 

                                   A(z) = 1+a1z -1+ …………+a10z -10    (3.19) 

while [a1, a2…….. a10] stand for LPC coefficients equally nominated by the LSF 

parameters as regards the zeros of a function of the polynomial A(z) [76]. These 

parameters are determined using  

                                        l = [l1, l2, …….. l10]T                                                             (3.20) 
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Essentially, they a scaled form of the angular frequencies otherwise called Line 

Spectral Pairs (LSPs) appearing between 0 and ¼. The arrangement features pertaining 

to the LSF parameters reveal that they are arranged and restricted within a specific 

scope; that is,   

0 < l1 < l2 <…………. < l10 < 0.5   (3.21) 

On the condition that this attribute stands for quantized LSFs as well, one can state 

that the recreated LPC filter can remain steady. In addition, the ordering characteristic 

of LSF parameters [80] contains a significant part of their intra-frame dependencies. 

Evidently, once this characteristic is put to use properly within the quantizer, we can 

increase its performance manifold.  

The following are the properties of LSF parameters: 

1) All zeros of LSF polynomials are on the unit circle. 

2) Zeros of P (z) and Q(z) are interlaced with each other. 

3) The lowest phase property of A(z) may be maintained without difficulty provided 

that the first two properties remain unchanged once quantization is complete. 

3.4 Distortion Measures of quantized LSF coefficient 

In order to achieve good performance quantization of LSF parameters, it is necessary 

to have a way of linking the quantization error to the distortion in perceptual quality. 

Due to the complex relationship that exists between a set of LSF coefficients and the 

frequency response of the corresponding LPC filter, applying a Mean-Square Error 

(MSE) does not necessarily lead to better performance in the system; instead, a more 

common approach to estimate the distortion between the original set of LSFs and the 

quantized version has been the Log Spectral Distortion (LSD) – though  a Weighted 

Mean-Square Error (WMSE) might as well lead to acceptable outcomes on the 

condition of the right weighting function applied.  

3.4.1 Spectral Distortion 

The quality of quantization related to the LPC parameters is measureable using 

the average spectral distortion for all frames described as the root mean squared 

error between the power spectral density estimate of the original and the 
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recreated LPC parameter vector and, in more detail, based on the equation that 

follows:          

s

s

F
2 21

i 10 i 10 iF
0

p̂D = [10log (p (f))-10log ( (f))] df  
  (3.22) 

in which Fs represents the sampling frequency in Hz, and Pi(f) and ^ Pi(f) stand for 

the LPC power spectra of the i-th frame determined using  

 

  (3.23) 

and                

 

  (3.24) 

Where Pi(z) and P^i(z) are the original (un quantized) and quantized LPC polynomials, 

respectively, for the i-th frame. The spectral distortion can be gained for all frames 

within the experiment to determine the average which shows the distortion related to 

any specific quantizer. Once again, the average spectral distortion is commonly 

applied to estimate the performance of quantizers.  

Transparent coding means that the coded speech is indistinguishable from the original 

speech through listening tests. The conditions for transparent coding of speech from 

LPC parameter quantization are: 

1) The average spectral distortion (SD) is approximately 1dB. 

2) There is no outlier frame having more than 4dB of spectral distortion. 

3) Less than 2% of outlier frames are within the range of 2-4 dB. 

 

 

 

 

  

p f A j f Fi i s( ) / (exp( ) / ))1 2 2

p f A j f Fi i s^ ( ) / ^ (exp( ) / ))1 2 2
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CHAPTER 4 

 

DESIGN OF CODEBOOKS IN VECTOR QUANTIZATION  

 

4.1 Quantization Theory 

Quantization divides a value into a discrete number of portions generally regarded as 

integral multiples of the same value. A good example is rounding off, initially dealt 

with by Sheppard to estimate densities in accordance to histograms. Any real number 

‘x‘may be rounded off to the closest integer – for instance, Q (x) – having a 

quantization error of 𝑒 = 𝑄 (𝑥) − 𝑥. 

Broadly speaking, a quantizer comprises a series of intervals or cells s=Si, i L, 

where the index set L commonly represents a group of succeeding integers that start 

with 0 or 1, along with a series of reproduction values, points, or levels C=yi,, i L, 

in a way that the quantizer as a whole may be elaborated using Q(x)=  yi for x  si, 

written precisely as follows:   

                                               𝑞(𝑥)  = Y l (x)i i

i

s                            (4.1) 
   

In which the indicator function il (x)s stands for 1 if x si ; otherwise, it is 0. The two 

forms of quantizers are: 

 Non-uniform quantizer is the one in which the difference between the quantization 

levels is not uniform as shown in figure 7. 

 

Figure 7. A non-uniform quantizer 

a0 = , a5 =. 
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 Uniform quantizer:  It is the one in which the difference between the quantization 

levels is uniform as shown in figure 8. 

 

Figure 8. uniform quantizer 

There are mainly two types of quantization. 

                         1) Scalar Quantization 

                         2) Vector Quantization 

4.1.1 Scalar Quantization  

Quantization being an important function for coding, quantizes each separate sample 

in accordance to its probability density function. An N-level scalar quantizer is 

regarded as a 1D form of mapping for the input range R onto an index in a codebook 

C, giving  

Q : R C     C R     (4.2) 

The receiver applies the index to regenerate an approximation to the input level. 

Optimal scalar quantizers are, then, coordinated with the samples’ distribution, be they 

determined or not in prior; if undetermined and unknown, one can make an empirical 

selection such as a Gaussian or Laplacian distribution) to arrange the scalar quantizer 

[81]. 

4.1.2 Scalar Quantization of LPC parameters 

 There are numerous scalar quantization [81] methods as per the literature on the LPC 

parameters, which are to be dealt with independently by applying (non)uniform 

systems. A non-uniform quantizer provides more reduced distortion compared to a 

uniform version, and it is developed based on the training dataset of the (TIMIT) 

database with the Lloyd algorithm – one similar to the Linde-Buzo-Gray (LBG) 

version for single parameters. Next, the designed quantizers become assessed as per 

the dataset based on spectral distortion as the criteria. Speech-coding systems need to 

quantize these parameters with the lowest distortion; what’s more, the all-pole filter is 
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stable once quantization is complete. Directly quantizing the coefficients, in general, 

is rare because the least significant error may result in the most outstanding spectral 

errors, not to mention unsteady status in the all-pole filter H (z). Therefore, there is no 

need for too many bits to carry out transparent quantization of the LPC coefficients 

an per se; a 6 bits/coefficient/frame or 60 bits per frame is sufficient in the (TIMIT) 

database. Due to these issues, transforming is necessary for the LPC coefficients to 

alternative representations, thus guaranteeing a steady status for the all-pole filter once 

the process is complete. On top of this, such representations require one-to-one 

mapping – that is to say, changing representations while preserving all data related to 

the all-pole filter. According to previous studies, many similar representations are 

available among them, reflection coefficient (RC), arcsine reflection coefficient 

(ASRC), log-area ratio (LAR), and line spectral frequency (LSF). Here, the scalar 

quantization of LPC parameters is examined concerning such representations. 

4.1.3 Scalar quantization using the LSF representation                                                                                                                                                                                              

LSF representation initially came to be by Itakura [82], and it possesses numerous 

attributes, among them bounded range, sequential ordering for parameters and an easy 

test of filter durability – all rendering the system very effective for quantization 

purposes. Furthermore, the LSF representation is of frequency-domain nature, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

makes it applicable for using specific features related to human perception. For the 

purpose of definition, the inverse filter polynomial is applied to generate two 

polynomials,  
( M+1 ) -1P A A(z )(z) (z) z =  +      (4.3) 

and 

( M+1 ) -1A(z )Q A(z) (z) z =  -       (4.4) 

The roots of the polynomials P(z) and Q(z) are called the LSFs. The polynomials 

P(z) and Q(z) have the following two properties: 
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i) All zeros of P(z) and Q(z) lie on the unit circle,  

ii) Zeros of P(z) and Q(z) are interlaced with each other; 

i.e., the LSFs are in ascending order.  

A(z) can be illustrated as the lowest stage on the condition that its LSFs meet the 

above-stated terms. Henceforth, the steady status of LPC synthesis filter a major 

requisite for speech coding – may be guaranteed without any difficulty via LPC 

parameters’ quantization in the LSF domain. 

A cluster of 2 or 3 LSFs represents a formant frequency, whose bandwidth relies upon 

the proximity of the respective LSFs. The spectral sensitivities of LSFs are localized 

– in other words, any modification within any LSF may generate a modification in the 

LPC power spectrum only within its neighborhood. Interpreting LSFs as formants, 

then, renders them appropriate to make use of specific features of the human auditory 

system for LPC quantization. The localized spectral-sensitivity of LSFs also causes 

them to become a good choice for scalar quantization since each LSF may then be 

quantized separately and free of any major distortion penetrated or leaked from one 

region to another.  

4.2 Vectoral Quantization 

Vector quantization [83] is a process whereby the elements of a vector of k signal 

samples are jointly quantized. Vector quantization is more efficient than scalar 

quantization (in terms of error at a given bit rate) by accounting for the linear as well 

as non-linear interdependencies of the signal samples. The key feature in here is a 

codebook C of size N x k to map the k-dimensional space Rk onto the reproduction 

vectors – otherwise known as code vectors or code words: 

, ,1 i2 N
K T KQ : R C ,    C=(Y Y ......Y )  ,   Y R     (4.5) 

This codebook resembles a limited set of vectors, yi: i = 1,2…N, chosen in advance by 

clustering or training so as to create the training data. While coding the vector 

quantization, the input samples are dealt with as blocks of k samples to generate a 

vector x. The VQ encoder, then, monitors the codebook and looks for an entry yi as 

the closest fit or approximation for the available input vector Xt at time t. Conventional 

VQ reduces the distortion D to generate the optimal estimated vector Xt   
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i

t
Y C

X min ( , )itD X Y


    (4.6) 

The value is called the nearest neighbor encoding. As such, the specific index i generated here 

is the VQ representation of x. The index is designated to the chosen code vector and sent to 

the receiver to be reconstructed. It is important to remember that similar versions of the 

codebook C are to be positioned the transmitter as well as the receiver, which simply carries 

out a table lookup to make a quantized version of the input vector. The code rate or the rate of 

a vector (as it is often refereed to) quantizer in bits per component can, then, be determined as 

in 4.7. 

2log
r

N
K  

  (4.7) 

Which calculates the bits per vector component applied to introduce the input vector 

and highlight the degree of obtainable precision with the vector quantizer on the 

condition that the codebook is well arranged. Given N = 2rk, not only the encoding 

search complexity but also codebook storage can expand significantly based on 

dimension k and rate r. VQ training calls for a thorough mixture of source material to 

generate codebooks stable enough for quantization of data that has not been introduced 

in the training set. Samples of specific settings that can further supplement this set are 

the use of different microphones, acoustic background distortion, languages and 

gender. As a whole, extensive and various training sets tend to make for a relatively 

stable and solid codebook; yet, there is obviously no certain assurance that some 

unanticipated applications may still be required. A clear restriction is that algorithms 

used for codebooks – the Generalized Lloyd Algorithm (GLA), for example it offer 

merely local optimization; more updated versions like deterministic annealing and 

genetic optimization have, though, been introduced to tackle such disadvantages, but 

require more computation capacity.  VQs are simply an approximate, and the 

hypothesis is identical to the so-called ``rounding off'' activity for example, toward the 

closest integer, For a 1D VQ illustration, see Figure 9.  
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:  

         Figure 9. 1-dimensional Vector Quantizer 

Where all values lower than -2 are approximated by -3; all those between -2 and 0 are 

approximated by -1; all those between 0 and 2 are approximated by +1; and all figures 

larger than 2 are approximated by +3. Let us remember that the approximate values 

are uniquely represented by 2 bits as a 1D VQ with a rate of 2 bits per dimension.  

 

                 Figure 10. 2-dimensional Vector Quantizer 

An example of a 2-dimensional VQ is shown in Figure 10. Here, every pair of numbers 

falling in a particular region is approximated by a red star associated with that region. 

Note that there are 16 regions and 16 red stars each of which can be uniquely 

represented by 4 bits. Thus, this is a 2-dimensional, 4-bit VQ. 
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 Its rate is also 2 bits/dimension. In the above two examples, the stars are called code 

vectors and the regions defined by the blue borders are called encoding regions. The 

set of all code vectors is called the codebook [84] and the set of all encoding regions 

is called the partition of the space. 

4.2.1 Design of codebooks 

   The VQ design problem [84] can be stated as follows. Given a vector source with its 

statistical properties known, given a distortion measure, and given the number of code 

vectors, find a codebook (the set of all red stars) and a partition (the set of blue lines) 

which result in the smallest average distortion. We assume that there is a training sequence 

consisting of M source vectors:  

1 2 MT={X ,X ,.......,X }   (4.8) 

This training sequence can be obtained from some large database. For example, if the 

source is a speech signal, then the training sequence can be obtained by recording 

several long telephone conversations. M is assumed to be sufficiently large so that all 

the statistical properties of the source are captured by the training sequence. We 

assume that the source vectors are K-dimensional, e.g., 

m (m,1) (m,2) (m,k)X =(X ,X ,.......,X )             m=1,2,3,...,M               (4.9) 

Let N be the number of code vectors and let 

1 2 NC={c ,c ,.....,c }   (4.10) 

Represents the codebook. Each code vector is K-dimensional, e.g., 

n (n,1) (n,2) (n,k)C ={c ,c ,.....,c }             n=1,2,....,N                           (4.11) 

Let nS be the encoding region associated with code vector nC and let 

1 2 Np={s ,s ,....,s }       (4.12) 
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denote the partition of the space. If the source vector mX is in the encoding region nS , 

then its approximation (denoted by mQ(X ) ) is nC : 

m nQ(X ) C            m nif X S                                                    (4.13) 

Assuming a squared-error distortion measure, the average distortion is given by: 

M

ave m m
m 1

1D X Q(X )
MK 

   
  (4.14) 

Where 2 2 2 2
1 2 ke e e ........ e     the design problem can be succinctly stated as 

follows: Given T and .N, find C and P such that aveD is minimized.  

                 4.2.2 Optimality Criteria  

If C and P are a solution to the above minimization problem, then it must satisfy the 

following two criteria.  

4.2.3 Nearest Neighbor Condition 

22 ' '
n n nS {X : X-C X-C n 1,2,.........., N}       (4.15) 

The condition says that the encoding region nS should consist of all vectors that are 

closer to nC than any of the other code vectors. For those vectors lying on the boundary 

any tie breaking procedure will do.     

       

 

  



  

36  
 
 

4.2.4 Centroid condition 

m n

m n

m
x s

n

x s

X
C

1








 

   

(4.16) 

This condition says that the code vector nC should be average of all those training 

vectors that are in encoding region nS  . In implementation, one should ensure that at 

least one training vector belongs to each encoding region (so that the denominator in 

the above equation is never 0).  

4.3 Codebook Generation Algorithms 

The quality of vector-based quantization may surpass that of scalar-based ones with 

reduced bit-rates; still, this benefit comes with major computation and storage 

spending. To make up for this loss, numerous kinds of codebooks are proposed – some 

pre-computed and remaining unchanged as they are employed. In other cases, they 

may be brought up to date while quantizing is taking place. at this point of the study, 

we elaborate on the most popular codebooks.  

4.3.1 Full Search Codebook 

A full search codebook is one where during the quantization process each input vector 

is compared against all of the candidate vectors in the codebook. This process is called 

full search or exhaustive search. The computation and storage necessary for usual full 

search codebooks works in the following way: should every vector be represented by 

B = RN bits for transmission, the vector count can be estimated using  

L= 2𝐵= 2𝑅𝑁 (4.17) 

in which, N represents vector size. A number of these applications make the 

assessment of absolute values for error an unnecessary task since the prime target is 

the choice of the most ideal vector. Accordingly, an approximate performance and not 

an evident or absolute error – will be sought instead; hence, the chance to measure the 

resemblance instead of the difference between the input vector and those in the 

codebook. In other words, computing the cross-correlation of the input vector with 

each of the options in the codebook dates, those with the best cross-correlation figures 
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are chosen as the quantized value of the input vector. As for the computation cost on 

the condition that all the vectors are normalized, the differences in the energy levels 

may provide conflicting cross-correlation values and, hence, the cost may be 

determined by, 

𝑐𝑜𝑚𝑓𝑠 = N2𝑅𝑁 multiply – add per input vector         (4.18) 

 Based on which, one may as well determine the storage values for the codebook 

vectors as, 

𝑀𝑓𝑠 = N𝐿 = N2𝐵 = N2𝑅𝑁  locations                       (4.19) 

As visible from the expression, these two requirements are predominantly based on 

the bit count in the code words. 

 

4.3.2 Binary Search Codebook 

Binary search, otherwise referred to in pattern recognition as hierarchical clustering, 

simply partitions the distance so as to proportionate the search for lowest distortion 

code-vector with log2 L instead of L. Within the related discipline, binary search 

codebooks may as well be named tree codebooks or tree search codebooks [14],[17]. 

In a binary search codebook, N dimensional space is initially separated to form two 

areas with the help of the K-means algorithm and two primary vectors; next, each area 

is additionally subdivided to form two sub-areas the process continuing as such. Up to 

the point where the space is divided into L areas, regions, or cells to put it differently. 

At this point, L becomes restricted to represent a power,  
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Figure 11. Binary splitting into eight cells 

where B represents an integer number of bits. Each area or region can be related to one 

centroid. Figure 11 represents such space division to make up L = 8 cells. Within the 

initial binary split, v1   and v2 can be determined as the centroids of the two halves of 

the entire space under operation. The next binary split calculates four centroids. The 

centroids of the regions after the third binary division are the actual codebook vectors 

yi an input vector x is quantized by examining the tree along a direction with the least 

distortion at each node. Once more, given N multiply–adds to compute each distortion, 

the related cost is determined as follows: 

Combs = 2N log2 L = 2NB                (4.20) 

Within each step, the input vector is matched as opposed to just two alternatives or 

candidates, thereby turning the computation cost into a linear function of the bit 

count within the code words. The overall storage cost, nevertheless, spikes 

considerably in this way as 

     Mbs = 2N(L-1)                                (4.21) 

A tree search codebook does not necessarily call for a binary search codebook and, 

oftentimes, division steps can be less than the bit count, B, in the code word.  
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Under such circumstances, every vector from the former step can indicate more than 
two vectors in a current step.   

4.3.3 LBG Algorithm 

The LBG VQ design algorithm [85] is an iterative algorithm which alternatively solves 

the above two optimality criteria. The algorithm requires an initial codebook (0)C .   

This initial codebook is obtained by the splitting method. In this method, an initial 

code vector is set as the average of the entire training sequence. This code vector is 

then split into two. The iterative algorithm is run with these two vectors as the initial 

codebook. The final two code vectors are split into four and the process is repeated 

until the desired number of code vectors is obtained. The algorithm is summarized 

below. 

4.3.3.1 LBG Algorithm design 

1) Given T Fixed >0 to be a small number 

2) Let N=1 and  
M

*
1 m

m=1

1C X
M

   
  (4.17) 

Calculate 

M 2* *
ave m 1

m=1

1D X C
MK

   
  (4.18) 

         3)   Splitting      For 𝐼 = 1,2 … 𝑁, set 

(0) *
i iC (1 )C     (4.19) 

 

(0) *
N+i iC (1 )C     (4.20) 

Set 𝑁 = 2𝑁 

        4) Iteration Let  0 *
ave aveD =D . Set the iteration index i=0  

  



  

40  
 
 

a)     For 𝑚 = 1, 2, … , 𝑀, find the minimum value of  

      
2i

m nX C , over all n=1, 2,…, N Let n* be the index which achieves the 

minimum. Set 

*
i

m n
Q(X ) C      (4.21) 

b)   For 𝑛 = 1,2, … . , 𝑁 , update the code vector  

i
m n

m
Q(X ) C(i+1)

n i
m n

X
C

Q(X ) C






   

  

 (4.22) 

         c)  Set    i=i+1  

d)   Calculate 

M
2(i)

ave m m
m=1

1D X Q(X )
MK

     
  

 (4.23) 

e)  If    (i-1) (i) (i-1)
ave ave ave(D D ) / D   , go back to step (a) 

f)  Set    * (i)
ave aveD D . For 𝑛 = 1, 2, . … , 𝑁    set    * i

n nC C  as the final code vectors  

g) Repeat steps (c) and (d) until the desired no of code vectors are obtained. 

Here the LBG design algorithm is run with =0.001 
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4.3.3.2 Flow Chart for LBG Algorithm  

 

Figure 12. Flow diagram of the LBG algorithm (Adapted from Rabiner and                        

Juang, 1993) 

Intuitively, the LBG algorithm designs an M-vector codebook in stages. It starts first 

by designing a 1-vector codebook, then uses a splitting technique on the code words 

to initialize the search for a 2-vector codebook and continues the splitting process until 

the desired M-vector codebook is obtained. Figure 10 shows, in a flow diagram, the 

detailed steps of the LBG algorithm. "Cluster vectors" is the nearest-neighbor search 

procedure, which assigns each training vector to a cluster associated with the closest 

codeword. "Find centroids" is the centroid update procedure. 
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 "Compute D (distortion)" sums the distances of all training vectors in the nearest-

neighbor search so as to determine whether the    Procedure has been converged 

4.4 Training, Testing and Codebook Robustness 

Key to codebook design is the training for populating the codebook. Basically, the 

procedure enhances a codebook for the assigned training data through measuring the 

centroids of each cell. Considering that the K-means algorithm may not always yield 

desired outcomes in a globally optimized codebook, sometimes it is better to re-run 

the algorithm using a series of alternative codebook vectors [19]. 

Once a codebook has been prepared to correspond to an assumed group of training 

data, testing is needed for its performance using data not previously included in 

training. Thesis because mere testing with the training data results in improved 

performance compared to what a codebook might present in real settings. The degree 

of strength within a codebook may be assessed by testing the performance on data with 

a varying distribution compared to the training set. In actual settings, it is impossible 

to forecast all possible scenarios for quantizer application, and the distribution of the 

actual data can vary from that of the training set. Here, two alternatives emerge to 

impact the design and operational performance of a codebook: input signal variations 

and digital transmission channel errors. 

 

 

 

 

 

 

 

 

 

  



  

43  
 
 

 

 

 

 

CHAPTER 5 

 

VECTOR QUANTIZATION METHODS 

 

5.1 Introduction  

Quantization maps an unlimited series of scalar or vector values using a limited set of 

such quantities, and it is employed to process signals, speech and images. To code 

speech, this method decreases the bit count for sample representation; once this is 

accomplished, complexity and memory needs are also reduced. Quantization also 

causes reduced within the signal an effect that is not favorable and which calls for a 

solution; such a remedy can be found in balancing the bit-rate reduction and signal 

quality. As stated before, the two forms of quantization are scalar (SQ) and vector-

based (VQ); the former is done on a sample-by-sample routine, whereas the latter is 

conducted using groups of vectors.  

 Vector quantization adds to the quality of a quantizer in the expense of a spike in 

computational and memory-related restrictions and expenditure.  According to 

Shannon theory, to quantize a vector can be done with higher outcomes compared to 

quantizing each scalar value for spectral distortion, which implies that the selected 

vector dimensions highly impact the quantization quality as a whole; those of higher 

dimensions tend to result in more advanced quality as opposed to lower-dimension 

vectors as in the latter the degree of transparency often drops in certain bit-rates [8]. 

The reason for this lies in the correlation being lost between the samples and also the 

scalar quantization distorting the correlation between consecutive samples, thus 

leading to loss of quality in the quantized signal. For this reason, quantizing correlated 

data has to apply certain methods to maintain this correlation – a task carried out using 

vector quantization as an interpretation for scalar quantization. In this method, larger 

vectors generate transparency based on a certain designated bit-rate. VQ quantizes the 

data as adjoining blocks known as vectors instead of each sample; however, as coding 
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becomes more advanced, one can now obtain satisfactory transparency for all vectors, 

including smaller ones.  

5.2 Multistage Vector Quantization (MSVQ) 

There are various ways to estimate codebooks in the MSVQ approach [12], the easiest 

of which is training them on a successive basis. In this way, the codebook is initially 

computed conventionally and with, say, GLA to quantize the data using a one-step 

quantizer. The final error vectors are, then, applied for data training in the upcoming 

phase – the process continuing in the same way for the remaining phases with 

individual and new codebooks created based on the error between the original and the 

recreated vectors.  

The multi-stage vector quantizer is of product-code nature and decreases the 

complexity factor, yet compromising the performance. In 2-stage VQ  [13], the LPC 

parameter vector, appearing in a more appropriate form – for example, as LSF - is 

quantized by the first-stage vector quantizer and the error vector e as the difference 

between the input and output vectors of the initial stage is also quantized by the second-

stage vector quantizer. The ultimate LPC vector is, then, created by adding up the 

outputs of these two steps. In order to reduce the complexity within the 2-stage vector 

quantizer, the LPC bits are shared evenly between the two stages. Key to the process 

is choosing the right distortion measure; as the spectral distortion is employed to assess 

LPC quantization, it is best to do so in devising the vector quantizer, but this is a rather 

challenging task; instead, more basic criteria are used – including the Euclidean and 

the weighted Euclidean distance values - between the main and quantized LPC 

parameter vectors (better presented as LSF). To determine the ideal LPC parametric 

representation for the Euclidean distance measure, one has to investigate a 2-stage 

vector quantizer with the distance measure in three domains of – namely - LSF, arcsine 

reflection coefficient, and log-area ratio. The quantizer operates more efficiently using 

LSF representations compared to the other two. The Euclidean distance measure 

employed for VQ processing in the previous stage results in even  weights for each 

LSF vector that are, of course, disproportionate as to their degree of spectral 

sensitivity. A suggestion by Paliwal and Atal is weighted Euclidean distance measures 

in the LSF domain to designate individual weights based on such sensitivity criteria. 

The weighted Euclidean distance measure between the test LSF vector f and the 

reference LSF vector is given by: 
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Where fi and f^ are the i-th LSFs in the test and reference vector, respectively, and Ci 

and wi are the weights assigned to the i-th LSF. These are given by 
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 and 

i
r

i= P fW [ ]( )                for  1  i   10     (5.3) 

 

where P(f) stands for the LPC power spectrum related to the test vector as a function 

of frequency f, and r represents an empirical constant governing the relative weights 

assigned to various LSFs and determined on an experimental basis. A value of r equal 

to 0.15 has been seen to give the highest performance. The 3-stage vector quantizer 

with the weighted LSF distance measure calls for an average 24 bits/frame to 

materialize transparent quantization of LPC parameters (with roughly 1dB as spectral 

distortion, lower than 2% outliers in the range 2-4 dB, and no outlier with spectral 

distortion exceeding 4 dB).The 3-step MSVQ block diagram appears in Figure 13, 

where x is the input vector, e1 is the error vector and also the input for the 3nd stage. In 

the same way, e2 represents the error vector for 3nd stage and also the input for the 3rd 

stage; hence completing the MSVQ process.  

ˆ1 x1e =x-    (5.4) 

and 

e1[ ]ê1 Q=    (5.5) 

 

i
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i
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ˆˆ ˆx=x + e  
  (5.6) 
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Figure 13. Codebook generation for different stages of MSVQ. 

 

Here, m represents the number of stages and, given that each represents an independent 

vector quantiser, the required bits are to be assigned individually. Also, considering 

every quantiser performing with reduced bit rates, this in turn economizes on memory 

as well as computational requirements. Matching the entire number of floating-point 

values of the codebooks of an m stage, n dimensional MSVQ operating at b bits/vector, 

to that of an equal unrestricted quantiser with an identical bit rate and dimensionality, 

one obtains: 

 

i
m

b b

i 1
n n2 2



  
  (5.7) 

 

  



  

47  
 
 

Where bi is the number of bits given to the ith stage vector quantiser and nevertheless, 

the sequential training algorithm cannot successfully use the inter-stage dependencies 

in the codebook optimization. 

b = i

m

i=1
b  

  (5.8) 

 To enhance the performance of the sequential training, we may apply an iterative 

algorithm otherwise considered as a mutual design of the stage codebooks [8].  Here, 

the error vectors are determined as the error between the original vector and the 

multistage reproduction vector to accommodate the entire stages excluding the present 

one applied for re-optimization of the codebook. Still, the concurrent and shared design 

algorithm put forth in [9] provides an additional stage to enhance performance and 

speed up the rate of convergence. The computational complexity associated with the 

MSVQ technique relies upon the specific search algorithm employed for analysis, and 

an effective search calls for distortion measures to be assessed for all probable vector 

configurations; in this way, there will be no difference in terms of the degree of 

complexity from the full-search VQ approach. Contrary to this, the easiest and yet not 

quite effective and optimal algorithm for MSVQ is considered to be the sequential 

search, whereby next stages are neglected within each current stage; in detail, past the 

initial stage, the residual from the former stages can be quantized separately and 

individually, though there can still exist more effective trade-offs between 

performance and complexity if better search algorithms are employed. In [6], it is 

asserted that the M-L search, where the M best vector configurations are sought within 

every one of the L stages, performance can be obtained as efficient as the optimal 

search with rather insignificant degrees of complexity.  

5.3 Split Vector Quantization (SVQ)  

The main disadvantage of Unconstrained Vector Quantizer is high complexity, 

memory requirements and the generation of codebook is a difficult task as vectors of 

full length are used for quantization without any structural constraint. As a result, a 

greater number of training vectors and bits cannot be used for codebook generation. 

Given this limitation, the quantizer is unable to generate any more optimal outputs, 

thus calling for another famous method known as Split Vector Quantization (SVQ). 
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The main idea behind it is to divide the vectors of larger dimensions into those with 

smaller sizes, and also to distribute the assigned bits among the so-called splits or 

sections. Upon splitting, the vector dimension is reduced, hence requiring additional 

training vectors and bits to form the codebook and, in turn, boosting quantization 

performance and reducing complexity and memory requirements as a whole. Despite 

this benefit, the drawback remains that, upon splitting, the linear and nonlinear 

dependencies between the samples of a vector disappear, compromising the shape of 

the quantizer cells and, eventually, minimally adding to spectral distortion. To make 

up for this increase, one may add to the training vectors and bits to create the codebook. 

The split count in such quantizers should be carefully restricted, or the vector quantizer 

will operate in a similar way to a scalar one, instead. SVQ divides the training sequence 

into vectors of lower size where each division or split of the training sequence can, 

then, be employed to form independent sub-codebooks, thereby forming independent 

vector quantizers with bits to be allotted to each one. The outcome is that fewer bits 

may be at hand at each quantizer, in turn decreasing complexity and memory 

requirements because they rely on the assigned bit count to the quantizer as well as on 

the dimension of the vector to be quantized.  
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Figure 14. Block diagram of three-part split vector quantizer 

Figure 14 shows the block diagram of a three-part Split vector quantizer.  Accordingly, 

a vector 𝑆1 of dimension ‘n’ is quantized by being divided into sub-vectors 𝑆11, 𝑆12, 

𝑆13 of lower dimensions. Every one of the sub-vectors is, then, quantized based on the 

corresponding codebook. In the present research, the order of the filter taken is 10 and, 

as such, the LSF vector carries 10 samples divided into three parts of (3,3,4), (4,4,2) 

and (4,3,3) samples [49, 68-70]. 

In an “n‟ dimensional Split Vector Quantizer of “sp‟ splits and “b‟ bits per vector, the 

vector space 𝑅𝑛 is divided into “sp‟ subspaces, splits, or divisions of smaller size; 

next, the dimension of a subspace is 𝑛𝑖 where n = ∑ 𝑛𝑖
𝑠𝑝
𝑖=1  . The independent quantizer 

count equals that of the splits, with the bits utilized for quantization distributed among 

the splits.   With bi as the bits assigned to each split of the vector quantizer, the entire 

number of bits assigned can be determined with b= ∑ 𝑏𝑖
𝑠𝑝
𝑖=1  [54].     
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5.4 Residual vector quantization (RVQ) 

RVQ is a type of multistage vector quantization RVQ is implemented with a direct-

sum codebook structure, it decomposes an input vector stage-wise. This successive 

decomposition starts from the first stage, where an input vector is mapped to one of 

the codevector in the codebook of the first stage. The mapping of the input is done 

according to some distance criterion. The mapped codevector of the first stage is then 

subtracted from its input to yield a residual vector for the first stage. The residual is 

fed to the next stage as the input. The process continues for every subsequent pth stage, 

and the respective residual vector is created by subtracting the mapped codevector yp 

of the pth stage from the input of that stage. This process stops if either the last stage P 

is reached, or when the MSE between the original input and the reconstructed input at 

a stage meets a prespecified threshold. The reconstructed vector of the original input 

vector is obtained by summing up the corresponding yp codevectors of all the used 

staged. For all the P stages of RVQ, the reconstructed speech. The entire operation of 

RVQ can be summarized in the following: 

a) A mapping to direct-sum codevector: this function is mapping from Rk to Rth, 

where k is the dimensionality of the codevectors and also the input space. 

b) A mapping to P-tuple representation of the direct-sum codevectors: P-tuple is 

a set { i1,i2,i3…,ip….,ip} where ip ϵ {1,2,………M} is the index og one of the 

Mcodevectors at the pth stage of the RVQ. This mapping is a transformation 

from Rk to Rp is the total number of stages of the RVQ and, generally, P<< K. 

c) Mapping back from Rp to the input space Rk : the P-tuples are transformed back 

in to the input space to give the reconstructed speech of the input speech. 
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Figure 15. Residual vector quantizer 
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CHAPTER 6 

 

CODEBOOK DESIGN WITH MSVQ AND SVQ METHODS 

6.1 Introduction 

Speech coding is a process of representation of an audio signal for efficient 

transformation. It is based on the form of lossy algorithms. This form of the algorithm 

is considered acceptable as regards to the encoding of speech since the loss in quality 

tends to remain undetectable by the human ear. For the speech that is uncompressed, 

the transmission occurs at the 64kb/s (8bits/sample) and 8 kHz for the sampling. A bit 

rate that appears lower than this figure is considered to be compressed. The process by 

which a speech signal is being transformed to a compressed format is tagged as the 

speech coding. This transmission is usually in the form of few binary numbers. 

Linear predictive coding is a major part of the speech compression algorithm. In the 

practical application of the LPC coding parameters, there is no place for the direct 

quantization. As a result, there is a need to ensure conversion to the line spectral 

frequency (LSF). This process of conversion is found to ensure there is important 

stability in the poles. Another form of quantization is the ‘split vector quantization’. 

This has been proposed to another choice or alternative especially in a situation where 

there is vector input that is divided into multiple sub-vectors. This quantization of the 

vector is done with a different codebook. Results found to be associated with the split 

vector quantization, it was noted that such a process help in the reduction of the 

computational complexity and the storage space required for the vector quantization. 

The shortcoming of such relates to it SD which is noted to be high especially when 

been compared to others. Based on the available information, as regards to the 

multistage VQ, (MSVQ) was proposed to help in the `quantize the LSF parameters 

especially in several follow-up stages. When a comparison was done as regards to the 

MSVQ and SVQ, the MSVQ shows a better performance especially in terms of 
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applying a transformed and compounding as the preprocessing and post-processing 

blocks of SQ [87-92]. 

Designing an optimal vector quantizer is the goal to obtain a quantizer consisting of N 

reproduction vectors, such that it minimizes the expected distortion. The codebook is 

then designed and trained by the training vectors associated with the popular design 

method noted to be related to the LBG algorithm. This process is a form of an iterative 

algorithm which tends to require the initial codebook formed from the splitting 

method. Based on this method that is been described, there is an initial code vector 

which is thus set as an average for the entire training sequences. Afterward, the code 

vector is then split into two while these two coded vectors is then split into four. The 

splitting process continues until the required amount of code vectors is attained. In 

encoding the real process, there is input vector which then searches for the best 

matching codebook vector from the obtained codebook and index which is transmitted. 

The function of the decoder is to work like a table look-up which receives the 

transmitted index and look at the codebook for the vector which corresponds to and 

then matched vector from the codebook is then used to represent the input vector.  

In our work, the experiment is carried out using standard TIMIT speech database 

containing American and British English speeches, which had been sampled at 8 kHz. 

In order to design SVQ or MSVQ codebooks, the LSF vectors were generated from 

this TIMIT database. The sentences were spoken by both female and male speakers. 

The frame length is about 30 ms with hamming window and overlap 10ms. 10th order 

LPC analysis based on an autocorrelation method was performed for every 20 ms 

frame. The resulting coefficients of the 10th order LP polynomial A(z) were converted 

into the LSF domain. The LSF input data was used for designing of codebooks. The 

input data used in the experiments consisted of two separate databases as training and 

test databases. The training database were consisted of 60 minutes speech, this speech 

is divided into clean and noisy speech for test database were consisted of clean speech 

about 45 minutes and 15 minutes for noisy speech. After design of codebooks, the 

spectral distortion (SD) values were calculated over the frequency band of 100-

3800Hz for 8 kHz sampled speech. 
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6.2 Split Vector Quantization (SVQ) Codebook design 

 Direct quantization of a set of LSF parameters with a typical vector quantizer of 25 

bits, would require a codebook with 1025 entries, which is not practical from both the 

search complexity and memory point of view. An alternative method is to use SVQ, 

where the10-element LSF vector is split into a number of smaller subvectors, each 

quantized independently using a small number of bits. Since the complexity and 

storage requirements of a full-search vector quantizer are exponential functions of the 

number of bits used to represent the input vector, SVQ requires only a fraction of the 

complexity required by a full search VQ. 

Splitting the 10-element LSF vector can be performed in various ways. The split 

usually takes into account some of the perceptual properties of the LSF vector, such as 

the fact that lower frequency LSFs are usually more sensitive to distortion than higher 

frequency ones. Therefore, a {4,6} split would be preferred to a {5,5} split for instance. 

The configurations shown here have been chosen so that they all have the same bit-

rate of 24 bits. Complexity (in multiply–adds) and memory storage (in words) for the 

typical SVQ configurations are presented in Figure 20, 21. It can be seen that although 

the direct VQ approach is extremely complex, the SVQ configurations are all practical. 

Even the most complex one requires only 40960 multiply–adds per input vector, 

however, there are several drawbacks which relate to the efficiency of SVQ 

quantization: 

The number of bits allocated to each subvector is fixed. The effect of the weighting 

function will therefore be limited to within one subvector. If a subvector contains only 

LSFs of relatively small importance, they will still use all the bits allocated to this 

subvector, whereas a classic VQ would effectively shift some of that band width 

towards the more important LSFs, through the weighting function. This effectively 

reduces the use of the weighting function to the LSF within a given subvector and 

lowers the overall quantization efficiency of an SVQ quantizer. 3-split codebooks were 

presented which are (3,3,4), (4,4,2) and (4,3,3) .  The most common splitting scheme 

is (3,3,4) in which the first split contains the first three components of the 10-

dimensional LSF vector, LSF1−LSF3, the second split consist of LSF4−LSF6 while 

LSF7−LSF10 constitute the third split. Then, we have used (6,4), (4,6), (5,5) splitting 

in 2-split codebooks We have calculated the spectral distortion and memory 



  

55  
 
 

requirements for each designed codebooks. The spectral distortion results of 2-split & 

3-split SVQ codebooks for clean speech input data can be seen in Table 1 and Table 

2, respectively. The spectral distortion results of 3-split SVQ codebooks for noisy 

speech input data can be seen in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Flow chart for SVQ 

 

Input Train Speech 
Datasets 

Divide each speech sample as 20ms 
frames (For all train datasets we can 

get about 270,000 frames) 

Compute 10 LSF coefficients for all 
frames 

Split each frames using split scheme 

If we use split scheme 
(3,3,4), at first we divide 
10 LSF coefficients as 
three parts 

Compute sub-codebooks using split 
LSF coefficients and bit allocated 

parameters for all frames 

If split scheme is (3,3,4) and bit 
allocated parameters is 

(6,6,5):total  bit allocated is 17. 
Then we have to generate three 
sub code books have 2^6, 2^6, 

2^5 length using split LSF 
coefficients 

Compute spectral distortion for all 
frames  
(Using generated sub-codebook, we 
can compute H^(z).  First, using three 
sub-codebooks,  
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6.2.1 Performance analysis for SVQ 

In this study, different codebooks were designed using K-mean algorithm. The 

multistage vector quantization and split vector quantization methods are used to 

generate the codebooks of bit rates from 14 to 24 bits/frames. The SD is calculated 

using clean and noisy speech, the computation complexity and storage requirement 

have been calculated according to the equation given in (6.4),(6.6). In split vector 

quantization we used two and three splitting’s. The results in Table 2 indicate that the 

best performance was obtained in (4,4,2) split codebooks when we compared to (3,3,4) 

and (4,3,3). According to these results, we can say that when we use large codebooks 

for the first and second split, quantization accuracy increases according to other equal 

size codebooks. Evaluation of the 3-split quantizers, relatively large codebooks can be 

used for the first and the second split. These codebooks should preferably be of equal 

sizes or alternatively one extra bit may be allocated for the second split. However, 

when the bit rate increases the largest allowed codebook size becomes as limiting 

factor and a few bits are wasted as they are forced to be allocated for the least 

significant third split. In our simulations, this limit was reached at the bit rate of 24, as 

the codebooks of the first two splits could not be enlarged and thus more than three 

bits had to be allocated for the last split. At higher bit rates, the best performance was 

obtained with the (4,4,2) splitting, where the largest codebook is required for the 

middle split and the codebooks for the first as well as for the third split can be of equal 

sizes or one extra bit can be allocated for the first split.  

 

Table 1. Two split (SVQ) using clean speech 

 

 

 

 

 
 

 

 

Bits/frame SD (dB) 

for (6,4) 

SD (dB) 

for (5,5) 

SD (dB) 

for (4,6) 

14 2.81 2.75 2.90 

16 2.49 2.51 2.53 

18 2.22 2.20 2.24 

20 2.11 2.04 2.03 
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Table 2.  Three split (SVQ) using clean speech 
 

 

 

 

 

 

 

 

 
 

 

Figure 16. SVQ for clean speech 
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Table 3. Three split (SVQ) using noisy speech 

 

 

 

 
 
 
 
 
 
 
 
 
 

6.3 Multistage vector quantization (MSVQ) Codebook design 

In Multi-Stage Vector Quantizer (MSVQ), the input vector is quantized as a sum of 

vectors from a number of codebooks. Each of these codebooks can therefore be of 

relatively small size, making the storage requirements reasonable. 

For design and testing of MSVQ codebooks, we have used 3-stage and 4-stage MSVQ 

codebooks for clean and noisy input speeches and compared SD result of each 

codebooks. The MSVQ codebooks in this study are designed using the M-L search, in 

which the M-best vector combinations are searched at each of the L stages, achieves 

performance close to that of the optimal search with a relatively low complexity. We 

used M=8 search depth for training and testing. In our algorithms, a large number of 

three or four stage codebooks with different numbers of bits and different bit 

allocations were trained and evaluated, [94-96]. The largest size of an individual 

codebook was selected as 8 bits (256 code vectors. The following observations were 

made based on our simulation results. When we compared 3-stage and 4-stage 

codebook SD results, it is seen that spectral distortion increases when stage numbers 

are increased for each bit/frame numbers. From these results, it can be said that, the 

number of stages should be kept as low as possible to minimize the spectral distortion 

value. As one can expected, the spectral distortion increased when we used the noisy 

input speech data for testing the codebooks as can be seen from Table 3.  

Bits/frame SD (dB)for (3,3,4) SD (dB)for (4,3,3) SD (dB)for (4,4,2) 

14 4.22 4.64 3.92 

16 3.94 4.55 3.81 

18 3.76 3.91 3.53 

20 3.38 3.22 3.30 

22 3.06 2.98 2.88 

24 2.91 2.73 2.68 
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Figure 17. Flow chart for MSVQ 

 

 

 



  

60  
 
 

6.3.1 Performance Analysis for MSVQ 

In multistage vector quantization the basic concept of vector quantization as applied 

to speech compression is schematically depicted in. A training speech sequence is 1st 

used to generate the codebook. Speech signal is segmented (windowed) into successive 

short frames and each frame of speech is represented by a vector. Tables 4,5 shows the 

spectral distortion (dB), at various bit rates for a 3-stage multistage vector quantizer 

and 4-stage multistage vector quantizer, as we can see from the tables that with 3-stage 

gives better performance than in 4-stages in terms of SD. 

As we can see, from the table of MSVQ when we increase the number of stages, SD 

gets higher. Therefore, the best stage to have good SD is 3-stage, when we compare 3-

stage for MSVQ and 3-split SVQ as we can see from figures and tables MSVQ gave 

better performance than SVQ using the same data for clean and noisy speech. 

 

Table 4.  Three and Four stages (MSVQ) using clean speech 

 

 

 

 

 

 

 

 

 

Bits/frame SD for 

3-stage 

Bits/frame SD for 

4-stage 

14 1.94 14 2.09 

16 1.80 16 1.95 

18 1.61 18 1.82 

20 1.43 20 1.62 

22 1.31 22 1.44 

24 1.19 24 1.26 
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Figure 18. SD for MSVQ 

 

Table 5. 3 and 4 stages (MSVQ) using noisy speech 

 

 

 

 

 

 

 

6.4 Distortion, Complexity and memory measurement for the codebooks 

To evaluate the performance of the MSVQ and SVQ codebooks, the spectral distortion 

(SD) was measured. Spectral distortion is one of the most frequently used objective 

measure technique for evaluating the performance of LSF quantizers. It is defined in 

dB as : 
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Number of bits SD for 

3-stage 

Number of bits SD for 

4-stage 

14 3.25 14 3.87 

16 2.92 16 3.70 

18 2.83 18 3.45 

20 2.40 20 3.28 

22 2.17 22 2.91 

24 2.01 24 2.83 
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Where A(z) and 𝐴̂(𝑧)denote the original and quantized pth order linear predictors while 

n1 and n0 correspond to lower (100Hz) and upper (3800Hz) frequencies respectively. 

A(z) is the optimal pth order linear predictor and 𝐴^(z) is the predictor with quantized 

coefficients.  N = 256-point FFT is used. The SD value is calculated over the 

bandwidth of 0-4kHz due to the 8kHz sampled input speech data.  

6.4.1 Complexity  

The Split VQ Complexity  

VQ(SVQ) = ∑ 4𝑛2𝑏𝑠𝑝
𝑖=1 − 1   (6.4) 

The Multistage VQ Complexity   

𝑉𝑄(𝑀𝑆𝑉𝑄) = ∑ 4𝑛2𝑏𝑚
𝑖=1 − 1      (6.5) 

Where b is the number of bits, n is the dimension of the vectors  

6.4.2 Memory requirements  

Split VQ is given    

Memory =  n2b   (6.6) 

Multistage VQ is given   

Memory =  2bj   (6.7) 
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6.5 Performance comparison of MSVQ and SVQ codebook results 

The performance of two popular quantization methods, SVQ and MSVQ, was 

evaluated in LSF quantization. To achieve the best performance with MSVQ, 

it was found that the number of stages should generally be kept at a minimum 

provided that maximum size codebooks are used for each (but the last) stage. 

The evaluation of SVQ with 22 different splitting schemes indicated that none 

of the splitting schemes outperformed the others at all bit rates. The bit 

allocation was more complicated with SVQ than with MSVQ because the 

optimal allocation depends on both the sub-vector lengths and the frequency 

bands that the splits cover. The comparison between the quantization methods 

indicated that MSVQ clearly outperforms SVQ it can be seen from Figure 19. 

By using MSVQ instead of SVQ, at least 2−3 bits can be saved without any 

quality degradations. From Figure 20 comparison between MSVQ and SVQ in 

terms of complexity, we can see that SVQ give less complexity than MSVQ 

and Figure 21 shows the memory requirement is less in SVQ. 

 

Figure 19.  3-stage MSVQ and 3-split SVQ for clean speech 
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Figure 20. Complexity in MSVQ and SVQ 

 

Figure 21. Memory requirement in MSVQ and SVQ  
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CHAPTER 7 

RESIDUAL LSF QUANTIZATION METHODS 

 

7.1 Introduction 

VQ is a data reduction method, which means that in speech coding, quantization is 

required to reduce the number of bits used to represent a sample of speech signal. 

When less number of bits is used to represent a sample the bit-rate, complexity and 

memory requirement gets reduced. The challenge in VQ is to map an N-dimensional 

real-valued vector x = [𝑥1,𝑥2.....𝑥𝑁] to another real-valued vector 𝑦𝑖= [𝑦𝑖1,𝑦𝑖2 ,.....𝑦𝑖𝑁]. 

Typically, all possible values of 𝑦𝑖 are composed into a reconstruction codebook Y = 

{𝑦1,𝑦2…..𝑦𝐿}. Hence, if L is the size of the codebook, it is called an L-level codebook 

or L-level quantizer. 

Vector quantization (VQ) is an important application of distance measures as it can 

reduce the dimension of an input data upon encoding each input vector as a single 

number. In a VQ algorithm, a set of training data is taken, and centroids are found by 

using a clustering algorithm. Among these clustering methods is the k-means 

clustering algorithm, which begins by choosing k vectors as the starting central points; 

then, it assigns each training input vector to the closest of these centers to gradually 

work out new central points by taking the means of each cluster. These three steps are 

repeated until the central point’s cease to change any further or significantly. In speech 

coding, quantization is required to reduce the number of bits used to represent a sample 

of speech signal. When fewer bits are used to represent a sample, the bit-rate, 

complexity and memory requirement are reduced as well. Thus, a compromise must 

be made between the reduction in bit-rate and the quality of the speech signal.  The 

parameters used in the analysis and synthesis of these signals are the LPC coefficients. 

In speech coding, quantization is not performed directly on the LPC coefficients, but 

carried out by transforming the LPC coefficients to other forms to ensure filter stability 
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after quantization. The alternative to LPC coefficients is the use of line spectral 

frequency (LSF) parameters for filter stability after quantization. [103-107] 

Speech coding refers to the process of reducing the bit rate of digital speech 

representations for transmission or storage while maintaining a speech quality that is 

acceptable for the application. Most of the speech coders reported in the literature are 

based on linear prediction (LP) analysis [1]. For LP-based vocoders, the bit rate 

reduction is strongly tied to efficient quantization of the LPC filter coefficients {aj}. 

The Line Spectral Frequencies (LSF), an equivalent representation of {aj} and more 

suitable for quantization and interpolation, can alternatively be used for the same 

purpose. In this sense, the Multi-Stage Vector Quantization (MSVQ) of LSF 

parameters presented in [104] has an efficient quantization performance at 22-24 bits 

per 20ms frames. Furthermore, such a multi-stage structure has more flexibility than a 

single stage VQ in terms of search complexity, codebook storage and channel error 

protection. Very low-rate speech communication systems require efficient fixed-rate 

and low delay coding methods which operate at lower bit rates.   

The residual multistage vector quantization (RMSVQ) is a combination of two product 

code vector quantization techniques, namely the Residual vector quantization 

technique and the multistage vector quantization technique. In our study, the RMSVQ 

is implemented using an LSF coefficient vector split into stages, each of which 

employs an M-L search for quantization according to a multistage structure. The 

residual LSF parameters of a current frame are predicted from the quantized LSF 

parameters of the previous frames and, then, the residual LSF vectors are coded with 

an MSVQ codebook. RMSVQ offers satisfactory performance and reaches the 

transparency required for speech, hence its employment in the present study to 

improve the spectral distortion. For low bit-rate linear predictive speech coding, it is 

best to quantize the LPC parameters using as few bits as possible with transparent 

quantization quality. To reduce the costs associated with applying vector quantization 

(VQ), many structured schemes have been proposed among them the split VQ (SVQ) 

and the multistage VQ (MSVQ) schemes that offer substantial saving in both memory 

and computational cost. In our work we present to analyze these two methods, both of 

which employ an M-L search algorithm to significantly reduce the computational 

complexity and produce identical even improved quality with sequential search in 
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terms of spectral distortion and outliers. A comparison is made of four different VQ 

methods, namely (SVQ, MSVQ, RSVQ, and RMSVQ) all evaluated in terms of SD 

complexity and memory requirement. Simulation results show that a 3-stage split 

residual vector quantization can achieve a transparent quantization quality at 24 

bit/frame. And MSVQ gives better performance in SD than SVQ in terms of SD, and 

RMSVQ gave the best SD of all methods specially when compared to RSVQ. 

7.2 Design of Residual MSVQ and Residual SVQ codebooks 

Speech signal VQs require codebook generation which, in this study, are designed 

using an iterative algorithm called the Linde, Buzo, and Gray (LBG) algorithm [54] as 

seen in chapter 4. The input to the LBG algorithm is a training vectors clustered into a 

set of codebook vectors. The speech signals used to obtain training vectors must be 

free of background noise, and they are ideally recorded in soundproof booths, 

computer rooms, and open environments. In this work, the speech signals are taken 

from the TIMIT database. The codebook generation using the LBG algorithm requires 

the formation of an initial codebook, which is the centroid or means obtained from the 

training sequence. This centroid is, then, split into two centroids or codewords using 

the splitting method. In turn, the iterative LBG algorithm splits these two codewords 

into four, four into eight, and the process continues till the required number of 

codewords in the codebook are obtained [108-110]. 

7.3 Residual Multistage vector quantization 

Multistage Vector Quantization (MSVQ) is an evolution of the basic VQ technique, 

otherwise regarded as multistep, residual or cascaded vector quantization. It is a 

cascaded VQ encoder where the output of the VQ of a stage is the input of the next. It 

preserves the features of the VQ technique while reducing computational complexity 

and memory requirements while improving the quality. In MSVQ, each stage has its 

own codebook. The codebook of the first stage is created using the training sequence 

as the input, and the codebook of each remaining stage is created using the quantization 

error of its previous stage. As for VQ, we used the LBG algorithm to create the 

codebooks. Let y be the signal to be quantized and assume the number of stages as 3 

(st = 3) which illustrates the MSVQ encoding and decoding level. Note that, here, the 

input of the VQ of the first stage is y, the input of the VQ of the second stage is the 
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quantization error of the previous stage e1 = y − ˆ y1, and the input of the VQ of the 

third stage is the quantization error of stage two e2 = e1− ˆ e1. The MSVQ encoder 

provides three indexes as the observation vector (y), the quantization error of the first 

stage (e1), and the quantization error of the second stage (e2). The MSVQ decoder 

uses the codebook of each stage to find the corresponding codewords of the indexes 

and, then, provide the quantized vectors of the three stages as ˆ y1, ˆ e1, and ˆ e2. 

Accordingly, the quantized observation vector is ˆ y = ˆ y1 + ˆ e1 + ˆ e2. In this study, 

we designed the residual MSVQ (RMSVQ) algorithm, with the related flowchart 

appearing in Figure 22. 

 

Figure 22. Flow chart for RMSVQ 
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As to the RMSVQ, the following details describe the approach: 

 RMSVQ is a hybrid of two product code vector quantization 

techniques; namely, the residual vector quantization technique (RVQ) 

and the multistage vector quantization (MSVQ) technique.  

 The RMSVQ implemented employs LSF coefficients. Here, the LSF 

coefficient vector is split into stages, where M-L search is used 

according to a multistage structure. 

 The residual LSF parameters of the current frame are predicted from 

the quantized LSF parameters of the previous ones and, later, residual 

LSF vectors are coded with an MSVQ codebook.  

In the RMSVQ method, the residual LSF parameters of the current frame are predicted 

from the quantized LSF parameters of the previous frames using interframe correlation 

feature of spectrum parameters [107-110] and then residual LSF vectors are coded 

with a MSVQ codebook. Firstly, the LSF parameter vector is obtained by transforming 

a 10th order LPC parameter vector. Next, the long-term average LSF vector (obtained 

by averaging the LSF vectors in the training set) 𝐼𝐷𝐶 is subtracted from the LSF vector 

belonging to the ith frame 𝑰𝒊 to obtain a differential LSF vector 𝒅𝒊 given by : 

di =  𝐼𝑖 −  𝐼𝐷𝐶                                                 (7.1) 

 Where i=1,2,…and r(0) = 0. The quantized residual vector ( 𝑒^(𝑖) is found by 

quantizing 𝑒(𝑖) with a VQ codebook. Depending on how (𝑖) is computed, various 

prediction schemes can be proposed. Scalar quantity α with a low value of 0.375 is 

used as the correlation coefficient for backward prediction of the LSF residual vector.   

ei =  𝑑𝑖 −  𝑟𝑖                                                  (7.2) 

ri =  𝛼𝑒^𝑖                                                  (7.3) 

I^i =  𝑑^𝑖 −  𝐼𝐷𝐶                                                 (7.4) 

                 = e^i +  𝑟𝑖 +  𝐼𝐷𝐶                                                 (7.5) 
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                  Table 6. SD for RMSVQ for 3 & 4splits 
 

Number of bits SD for 3-stages SD for 4-stages 

14 1.84 2.06 

16 1.71 1.87 

18 1.53 1.68 

20 1.33 1.44 

22 1.21 1.34 

24 1.08 1.22 

 

 

Figure 23. 3-stage and 4-stage RMSVQ   
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7.4. RESIDUAL SPLIT VECTOR QUANTIZATION  

This technique is developed to improve the performance of split vector quantization. 

As stated earlier, Residual split vector quantization (RSVQ) is also a hybrid of two 

product code vector quantization techniques, namely the residual vector quantization 

technique and the split vector quantization technique. In RSVQ, the vector dimensions 

to be quantized are reduced by means of splitting, and the bits allocated to the quantizer 

are divided among the stages and splits of each stage. All sub-vectors in the quantizer 

are connected in cascade to form a multi-stage structure. Obviously, splitting the input 

vector into sub-vectors will lead to performance degradation because of the decline in 

the statistical dependence between the sub-vectors. However, if an analysis procedure 

is devised in such a way to allow for coupling the forward and backward prediction 

errors across successive stages, then the statistical dependence can be preserved during 

the quantization performance of the SVQ to approach to that of a single stage VQ.  

 In Residual Split Vector Quantization, the training sequence used for codebook 

generation is split into vectors of smaller dimensions.  

 Each split of the training sequence is used to generate separate sub codebooks. 

 Computing LSF coefficient and removing the mean from the LSF coefficient. 

 Each VQ stage operates on the residual vector of the previous stage similar to 

the residual VQ scheme. 

 The use of a split vector quantizer makes the less availability of bits at each 

split of the vector quantizer 

As a result, the complexity and memory requirements are greatly reduced, but 

the dependencies that exist across the dimensions (splits) of a vector is lost. 

Consequently, the spectral distortion is slightly increased.  
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                    Table 7. SD for RSVQ for 3-splits 
 

Number of bits SD for (3,3,4) SD for (4,4,2) SD for (4,3,3) 

14 2.31 2.17 2.20 

16 2.24 2.08 2.10 

18 2.02 1.86 1.96 

20 1.80 1.61 1.71 

22 1.59 1.44 1.52 

24 1.43 1.28 1.34 

 

  

          Figure 24. 3-split RSVQ  
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                     Table8. SD for RSVQ for 4-splits 

 
Number of bits SD for (4,2,2,2) SD for (3,3,3,1) SD for (3,3,2,2) 

14 2.643 2.457 2.363 

16 2.475 2.339 2.182 

18 2.092 2.190 2.026 

20 1.937 1.930 1.801 

22 1.734 1.735 1.587 

24 1.663 1.648 1.515 

 

                       Table 9. The SD for RMSVQ noisy speech 

Number of bits SD for 3-stage SD for 4-stage 

14 2.83 3.08 

16 2.54 2.93 

18 2.39 2.74 

20 2.18 2.53 

22 2.05 2.34 

24 1.95 2.19 

 

 

7.4 PERFORMANCE EVALUATION 

  The quality of the speech signal is an important parameter in speech coders, 

measured in terms of spectral distortion for an objective performance 

evaluation. The spectral distortion is measured between the LPC power 

spectrum of the quantized and unquantized speech signals. In this work, the 

experiment is carried out using the standard TIMIT speech database containing 

American and British English speeches sampled at 8 kHz. In order to design 

SVQ or MSVQ codebooks, the LSF vectors are generated from the TIMIT 

database. The sentences are uttered by both female and male speakers. The 
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frame length is about 30 ms with hamming window and overlap 10ms. A 10th-

order LPC analysis based on an autocorrelation method is carried out for every 

20 ms frame. The resulting coefficients of the 10th-order LP polynomial A(z) 

are, then, converted into the LSF domain. The LSF input data is used to design 

the required codebooks. The input data used in the experiments consists of two 

separate databases, namely for training and testing. The former consisted of 

270,000 LSF vectors for clean speeches, and the latter consisted of 108,300 

LSF vectors for clean speech and 54.700 LSF vectors for noisy speech. After 

designing the codebooks, the spectral distortion (SD) values are calculated over 

the frequency band of 100-3800Hz for 8 kHz sampled speech [103]. 

 

 

Figure 25. SD for 3-stage RMSVQ and RSVQ 
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Figure 26. SD for 3- stages RSVQ and SVQ 

 

 

 Figure 27. SD for 3- stages RMSVQ and MSVQ 
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Figure 28. Memory requirement comparison for all stages in (MSVQ and SVQ) 

 

 

 

 

 

 

 

 

Figure 29. Complexity comparison for all stages in (MSVQ and SVQ) 

7.5 Performance Analysis 

As we can see from table 6,7 and 8 calculating the SD in all number of bits from 14 to 

24 RMSVQ give very good performance in terms of SD when compared with RSVQ. 

And as we can see from previous chapter that MSVQ is better than SVQ in terms of 

SD and comparing previous results for (SVQ, MSVQ) with new methods (RSVQ, 

RMSVQ) from the table results and figures RMSVQ gives the best result when 

compared with all algorithms.   
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CHAPTER 8 

 

DESIGN OF RMSVQ CODEBOOK WITH VOICED/UNVOICED 

EVALUATION 

 
8.1 Introduction  
 

When analyzing speech, the voiced-unvoiced determination is often required to elicit data 

related to speech signals. The present thesis, with this in mind, employs two different 

attributes to distinguish voiced segments from unvoiced ones; these are the zero crossing 

rate (ZCR) and the energy. Then, the outcomes are assessed by breaking the sample down 

into parts and completing ZCR and energy analyses for our purpose. Accordingly, ZCR 

values are low in case of the voiced segments and high for the unvoiced ones; the energy, 

on the other hand, is precisely the other way around, hence proving the efficiency of the 

approach adopted. as speech comprises numerous voiced and unvoiced segments, its 

analysis according to these regions offers us insight into the basic acoustic structure of 

processing applications among them, speech synthesis, enhancement, or recognition 

operations.  

Lately, experts have made strides toward tackling speech classification in the format 

mentioned earlier [85]. Pattern recognition techniques along with statistical/non-

statistical methods are now used to determine the voiced-unvoiced nature of speech parts 

under review. In this regard, Qi and Hunt carried out similar studies by applying non-

parametric techniques based upon multi-layer feed forward networks. In that work, 

acoustical attributes and pattern recognition models helped to distinguish the parts as 

voiced/unvoiced. In the present study, a more basic and easier technique is adopted for 

the same purpose by benefitting from the ZCR and energy measurement.   

8.2 Voiced/Unvoiced evaluation of speech signal 

 As stated earlier, ZCR plays a key role as classification device for voiced/unvoiced 

patterns – mostly applied as part of front-end operations in automatic speech recognition 
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processes. ZCR values in this way reflect the frequency at which the energy is focused 

within the signal band. Voiced speech is a product of vocal tract movements due to the 

periodic flow of air at the glottis, often characterized by reduced ZCR values [9]. On the 

other hand, unvoiced segments are a product of tightening vocal tracts to the point that 

the airflow becomes unsteady and generates noise with added ZCR. Separately, energy 

in the voiced segments is of increased values owing to the periodicity factor and, 

naturally, of reduced values when it comes to unvoiced segments.    

8.2.1. Zero-Crossings Rate 

 Discrete-time signals comprise ZCR events on the condition of continuous samples 

occurring with various algebraic signs. This rate is a basic function of the frequency 

within the signal; that is, a measure of the number of times within a period when the 

entire signal scale travel through a value of zero, as depicted in Figure 31. Speech 

signals are of broadband range and, in this way, it is not quite easy to accurately 

estimate average ZCR values. Nonetheless, a general measurement related to the band 

features is possible by means of representations related to short-interval approximates 

[91].   

 

Figure 30. Definition of zero-crossings rate 

 

𝑍𝑛 = ∑ |∞
𝑚=−∞  sgn[x(m)] – sgn[x(m-n)] |w(n-m)                                 (8.1) 

 

sgn[x(n)] = { 1, x(n) ≥ 0       

-1                                                                 -1,x(n) < 0 

  (8.2) 

and 
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                                               W(n) = { 1/2N for , 0 ≤  n ≤ N-1                                            

                                                                               0 for, otherwise 

 

  (8.3) 

According to the speech production model, the voiced segment energy appears lower than 

3 kHz due to the band range drop by the glottal wave, though unvoiced segments’ energy 

appears in frequencies of upper levels. Given that these frequencies also have added 

ZCRs,  and low frequencies less ZCR, a clear and evident correlation is established 

between ZCR and energy distribution with frequency. One can only deduct, therefore, 

that a high ZCR means an unvoiced signal, and a reduced ZCR implies a voiced one [92]. 

8.2.2. Short-Time Energy 

 Speech signal scales change with time, often being lower in case of unvoiced segments 

compared to voiced ones as we can see from figure 31. The signal energy contains a 

representation that shows such scale changes. In detail, short-time energy can be 

described in the following way: 

𝐸𝑛 = ∑ [∞
−∞  x(m) w(n-m)]2                                                    (8.4) 

 
 

Figure 31. Definition of short time energy 
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8.3 Mode Classification  

Here, different modes are assigned to each frame and described in general as spectrally 

stationary voiced mode (mode A) and unvoiced mode (mode B). This scheme is made 

for consistency within the different levels of clear and noisy speech. Larger speech 

datasets known as TIMIT files are applied for training the VUV_RMSVQ codebooks, 

and they contain utterances at different levels and noise values. The test speech data 

(exceeding 270,000 frames) is sent along the front-end mode classification scheme, 

and then the quantized LSF vectors are redesigned with the VUV_ RMSVQ 

codebooks. The quantized and original LSF vectors are then compared based on 

averages and outlier percentages. 

 

8.3.1 Algorithm design for the proposed method 

The LSF parameter vector can be gained by transforming a 10th order LPC 

parameter vector. Then, the long-term average LSF vector as determined by 

averaging the LSF vectors in the training set,  𝐼𝐷𝐶, is removed from the LSF 

vector of the ith frame 𝑰𝒊  so as to get a differential LSF vector 𝒅𝒊  as seen in 

(1): 

 given by (8.5): 

di =  𝐼𝑖 −  𝐼𝐷𝐶                                                 (8.5) 

After separating the speech signal into voiced and unvoiced, we calculate the spectral 

distortion for voiced using diagonal matrix A as shown in (8.6).  

    𝑨^[j][j] =
∑ 𝒅𝒊[𝒋].  𝒅𝒊−𝟏

𝑻 [𝒋]𝑵
𝒊=𝟏

∑ 𝒅𝒊−𝟏
𝟐𝑵

𝒊=𝟏 [𝒋]
                             (8.6) 

Where N is the number of frames in the training set. The LSF residual vector for the 

ith frame e; in the case of spectrally stationary mode A frames, is obtained as  

                𝒆𝒊 = 𝑑𝑖 −  𝐴^ .  𝑑𝑖−1                                                   (8.7) 

For unvoiced (mode B) frames, adjacent frame LSF vectors are not well correlated. 

Scalar quantity α with a low value of 0.375 is used as the correlation coefficient for 

backward prediction of the LSF residual vector. In this case, the LSF residual vector 

is given by  

                         𝒆𝒊 = 𝑑𝑖 −  𝛼 .  𝑑𝑖−1                                                               (8.8) 
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 Speech can be divided into numerous voiced and unvoiced regions. The classification 

of speech signal into voiced, unvoiced provides a preliminary acoustic segmentation 

for speech processing applications, such as speech synthesis, speech enhancement, and 

speech recognition.   

In this research, residual LSF vectors are obtained by speech mode-based backward 

prediction along with a multi-stage VQ design. Next, the speech is grouped as voiced 

and unvoiced by training with two codebooks and also by testing with codebooks to 

estimate the SD for clear and noisy speech and outliers. As stated earlier, the two 

approaches to distinguish voiced segments from unvoiced ones are ZCR and energy 

analysis. The two related codebooks are formed at the training stage and another two 

in the testing period [29, 31]. Three algorithm are, then introduced with the aim to 

enhance the vector quantization performance based on the voiced/unvoiced 

classification.  

8.3.2 Voiced/Unvoiced residual Multistage Vector Quantization Codebook 

Design 

The VUV_RMSVQ codebooks are trained with the help of large speech datasets 

comprising different speakers. The parametric representation here is based on the 

residual LSF vector created in accordance to the speech mode following 1st order 

backward forecasting. The mode classification scheme, mode-based elicitation of the 

LSF residual vector, codebook format and search methods appear in the upcoming 

sub-sections.  

The iterative sequential design method applied here trains the multi-stage VQ's in the 

same way as explained in chapter 6, comprising two stages: 

 Initially, we develop a group of multi-stage codebooks sequentially, which 

means that the developed codebook employs a training set comprising those 

quantization error vectors of the preceding stage. Apparently, the 1st stage 

codebook will make use of the training set related to the LSF residual vectors. 

For all these trainings, the famous Lloyd algorithm will be employed.   

 Next comes the iterative re-optimization of each stage to reduce the noise factor 

all across the stages. given an already existing set of multi-stage codebooks, 

each stage is improved based on the other stages; that is, the training set for 

each stage requires the quantization error between the input LSF residual 
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vector and a reconstruction vector comprising the lowest distortion codebook 

vectors belonging to all stages, excluding the one being re- optimized. The 

procedure is followed iteratively up to the point where a pre-determined 

convergence criterion can be achieved. 

During training, all codebooks are designed based on voiced and unvoiced features, 

and later checked by means of a fixed stage different bit-rate. In case of the voiced 

speech mode A frames, a two-stage 12 bit VQ (64 vectors per stage) and a two-stage 

14 bit VQ (128 vectors per stage) are formed with the help of a subset of the training 

data categorized as mode A (about 340,000 vectors). As to the remaining modes, a 

four-stage 22 bit VQ (64 vectors per stage for the first two stages, and 32 vectors per 

stage for the last two stages) and a four-stage 24 bit VQ (64 vectors per stage) are 

developed suing all the dataset  (about 1 hour). 

8.3.3 Codebook Search and Quantization  

 

During training and encoding, the multistage codebooks are investigated by applying 

an M-L tree search process defined in [117]. In this process, given the 1st stage 

codebook, M (M = 8 has been seen through tests to be satisfactory) codebook vectors 

obtaining the least distortion are chosen initially. Later, the M quantization error (from 

the 1st stage) vectors are calculated and the 2nd codebook is investigated with the help 

of the M error vectors, and M paths with the overall lowest distortion are chosen. The 

process is repeated for all stages of the codebook. After we find the M paths for all the 

stages, the best one is selected by reducing the distortion measure between the input 

LSF residual vector and the overall quantized vector which, for every path, is the total 

of the code vectors for all stages of the codebook. Lastly, the related indices for 

selected code vectors from each stage are sent to the speech decoder. 

 

8.4 Residual multistage VQ for (Voiced/Unvoiced) speech using fixed size of 

codebooks 

 In this method we have used different size of codebooks and bit rate to see the effect 

on the SD after separating the speech to voiced and unvoiced, the flowchart below shows 

the steps of our method for VUV_RMSVQ. 
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                      Figure 32. Flow chart for VUV_RMSVQ 

 

 

 

 

Calculate RMSVQ 

Parameters 

Input tree search 

parameters M-L 
Search 

Input training 
data 

Voiced/unvoiced evaluation of 

frame according to zero 

crossing and STE 

Calculate SD using α =0.359 Calculate SD using A matrix 

Compute RMSVQ 

codebook for voiced 

Compute RMSVQ 

codebook for unvoiced 

 

Voiced 

/Unvoiced 

Compute SD 

δ = 0.001 

Compute final SD= mean(SD(i)) and percentage 

of SD>2dB , 4dB ,memory and complexity 

YES 

NO 

Voiced Unvoiced 



  

84  
 
 

                     Table 10. SD for VUV_RMSVQ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 33. (3, 4 stages) for VUV_RMSVQ 
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14 1.80 1.94 43.682 1.00 

 16 1.63 1.78 33.45 0.69 

18 1.47 1.62 22.20 0.65 

20 1.30 1.41 16.29 0.27 

22 1.18 1.28 11.74 0.17 

24 1.08 1.14 8.12 0.00 
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8.5 Residual multistage vector quantization using different size of codebooks  

 

The spectrally stationary Mode A (Voiced) frames will be used to train a 2-stage MSVQ 

and the Mode B (Unvoiced) frames will be used to train a 4-stage MSVQ. Two RMSVQ 

codebook were designed at the training stage for both voiced /unvoiced, and at the test 

stage. When separating the speech to voiced /unvoiced about 80% is for voiced and 

20%for unvoiced. Figure 34 shows the design of our method.  

 

 

 

 

 

  

  

 

 

 

 

 

 

Figure 34. Block diagram for VUV_RMSVQ 
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Figure 35. Flow chart for VUV_RMSVQ (2-4 stage) 
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Table11. SD for VUV_RMSVQ (2,4 stags) 
 

                                                                                       
 

 

 

 

 

 

 

 

 

 

 

 

 

Table12. Results for VUV_RMSVQ (2,3 stage) 

 

Number of bits  Average bit rate SD SD > 0.2 SD > 0.4 

9/12 9 2.3 25.3 1.00 

11/14  11 2.1 18.06 0.64 

12/16 12 1.92 13.5 0.44 

14/18 14 1.73 10.0 0.30 

15/20 16 1.56 7.2 0.2 

17/22 18 1.42 6.1 0.17 

18/24 19 1.28 5.2 0.0 

20/26 21 1.16 3.4 0.0 

21/28 22 1.04 2.8 0.0 

Number of bites Average bit rate SD SD > 0.2 SD > 0.4 

9/12 9 2.1 25.3 1.00 

11/14 11 1.97 18.06 0.64 

12/16 12 1.83 13.5 0.44 

14/18 14 1.68 10.0 0.30 

15/20 16 1.49 7.2 0.2 

17/22 18 1.38 6.1 0.17 

18/24 19 1.17 5.2 0.0 

20/26 21 1.09 3.4 0.0 

21/28 22 0.95 2.8 0.0 
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 Figure 36. SD for VUV_RMSVQ (2 and 4) stages 

 

Figure 37. SD for VUV_RMSVQ 
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Table 13. The SD for noisy speech (5dB) 
Number of bites SD 

14 2.56 

16 2.33 

18 2.16 

19 2.09 

21 1.93 

22 1.87 

 

 

 

Figure 38. Comparative between MSVQ, RMSVQ and VUV_RMSVQ 
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Figure 39. Complexity for VUV_RMSVQ  

 

 
 

Figure 40. Memory for VUV_RMSVQ  
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Table14. Results for VUV_RMSVQ (increasing and decreasing number of bits for 

voiced and unvoiced) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 41. Comparative between increasing bit number for voiced and unvoiced 

for VUV_RMSVQ 
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reconstructed using the VUV_RMSVQ codebooks. The quantized and original LSF 

vectors are compared using averages and outlier percentages. As we can see from 

tables and figures and comparing our new method with all previous work, as shown in 

figure 39 VUV_RMSVQ gave very much improvement when compared with MSVQ 

and RMSVQ with percentage about 10% improvement by separating the speech into 

voiced and unvoiced and applying this method on RMSVQ we have increased the SD 

performance as seen from the figures. We have applied another method, to increase 

the performance of SD, as seen from Table 14 we have decreased and increased the 

number of bits for voiced and unvoiced and reversed, from the result we can see the 

performance will increase and the SD will decrease when the number of bits for 

unvoiced are higher than the number of bits for the voiced. 

 

 

 
 
 

Figure 42. Comparative between MSVQ, RMSVQ and VUV_RMSVQ using clean 

speech 
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CHAPTER 9 

 

 

 CONCLUSION AND FUTURE WORK 

 

 

9.1 Conclusion 

 

The core work of this thesis involves in improving the performance of the vector 

quantization techniques using hybrid methods. This work is carried out by 

proposing some hybrid vector quantization techniques and by comparing their 

performance with the existing vector quantization techniques. The performance of 

the vector quantization techniques is examined by using linear predictive codefor 

reducing the bit-rate of a speech signal. The performance of various vector 

quantization techniques is measured and compared at different bit-rates. After the 

analysis of the speech signal is made by framing, overlapping, and windowing, 

calculating the linear predictive coefficients (LPC) and obtaining the residue of the 

speech signal. Immediately after speech analysis, speech synthesis will be carried 

to check the quality of the reconstructed speech signal. Vector Quantization is the 

process that is carried out between speech analysis and synthesis. In speech 

synthesis the filter parameters are the linear predictive coefficients obtained after 

vector quantization. The performance of vector quantization is measured using 

spectral distortion, complexity and memory requirements. 

 The first method proposed in this thesis: the aim was to find the best vector 

quantization method with less SD .The performance of two popular 

quantization methods, SVQ and MSVQ, was evaluated in LSF quantization. 

To achieve the best performance with MSVQ, it was found that the number of 

stages should generally be kept at minimum provided that maximum size 

codebooks are used for each stage. The evaluation of SVQ with 22 different 

splitting schemes indicated that none of the splitting schemes outperformed the 

others at all bit rates. The bit allocation was more complicated with SVQ than 

with MSVQ because the optimal allocation depends on both the sub-vector 

lengths and the frequency bands that the splits cover. The comparison between 

the quantization methods indicated that MSVQ clearly outperforms SVQ. By 

using MSVQ instead of SVQ, at least 2−3 bits can be saved without any quality 
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degradations. The comparison between the quantization methods indicated that 

MSVQ clearly outperforms SVQ. By using MSVQ instead of SVQ, at least 

2−3 bits can be saved without any quality degradations.  

 The second method proposed in this thesis: after comparing the results from 

previous method, we decided to use residual vector quantization and apply it 

on both (SVQ and MSVQ). A residual split vector quantization (RSVQ) and 

residual multistage vector quantization (RMSVQ) scheme for sequential 

quantization of LPC coefficients was presented. When we compare both 

(RSVQ) and (RMSVQ) as we can see from tables in chapter 7 RMSVQ give 

best performance than RSVQ. Then we compared RSVQ with SVQ according 

to the bit allocation from14 to 24 that RSVQ give better performance than SVQ 

about 27% improvement, and RMSVQ give lower SD when compared to 

MSVQ, as we can see from the figures and tables that was given previously 

RMSVQ give best performance than RSVQ, from this point we have decided 

to go further using RMSVQ and try to find algorithm that gives better SD.  

 The final method proposed in this thesis: in this method we decided to 

separate the speech to voiced and unvoiced using residual multistage vector 

quantization. The proposed technique VUV_RMSVQ involves speech mode 

based on MSVQ design using residual LSF vectors obtained from the first-

order backward prediction of LSF vectors. It is shown that efficient 

quantization performance can be obtained by designing a 18-24 bit two-stage 

codebook for both mode A (Voiced) and mode B (Unvoiced). The performance 

is compared to RMSVQ and MSVQ, as shown from the graphs VUV_RMSVQ 

gives very good performance in SD and achieved the three condition of the 

quantizer which are: 

The average or mean of the spectral distortion (SD) must be less than or equal 

to 1dB.  

There must be no outlier frames having a spectral distortion greater than 4dB.  

  The number of outlier frames between 2 to 4dB must be less than 2%. 
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