
  
 

  

COMPARISON OF CONSENSUS 

ALGORITHMS IN WIRELESS SENSOR 

NETWORKS 

  

ABDULMAJEED A.R.M SHOWKAT SULAIMAN  

 

 

 

 

 

JANUARY, 2019 



  
COMPARISON OF CONSENSUS ALGORITHMS IN WIRELESS SENSOR 

NETWORKS 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES OF 

ÇANKAYA UNIVERSITY 

 

 

BY 

Abdulmajeed A.R.M Showkat SULAIMAN  

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF 

MASTER OF SCIENCE 

IN 

ELECTRONIC AND COMMUNICATION   ENGINEERING 

DEPARTMENT 

 

 

JANUARY, 2019 

 



 

 

 

 



III 
 

 

 

 



IV 
 

ABSTRACT: 

COMPARISON OF CONSENSUS ALGORITHMS IN WIRELESS SENSOR 

NETWORK 

SULAIMAN, Abdulmajeed A.R.M Showkat  

M.S.C, Electronic and Communication Engineering Department 

Supervisor: Assist. Prof. Özgür ERGÜL 

January 2019, 42 pages 

 

Wireless sensor networks are utilized to monitor data from a wide range of application 

types. One of the most important problems of these networks, which will have even 

wider application areas with the wide acceptance of the Internet of Things 

phenomenon in the near future, is having the sensors agree on the monitored data. To 

this end, various consensus algorithms have been developed. These algorithms aim to 

meet various criteria such as low computational complexity, rapid convergence and 

low energy consumption. Furthermore, consensus algorithms have also been used in 

areas such as having mobile autonomous devices meet at a rendezvous point. 

In this thesis, our aim is to compare, by means of simulations, different consensus 

algorithms developed to meet different criteria and provide advantages and 

disadvantages of each depending on the usage area. 
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ÖZ 

 

KABLOSUZ SENSÖR AĞLARINDA KULLANILAN UZLAŞI 

ALGORITMALARININ KARŞILAŞTIRILMASI 

SULAIMAN, Abdulmajeed A.R.M Showkat  

Electronic ve Haberleşme Mühedisliği Yüksek Lisans  

Supervisor: Dr. Öğr. Üyesi Özgür ERGÜL 

Ocak 2019, 42 sayfa 

 

Kablosuz sensör ağları geniş bir uygulama yelpazesinde, çok farklı türden veriyi takip 

etmek için kullanılmaktadır. Yakın gelecekte, Nesnelerin Interneti kavramının geniş 

kabulü ile kullanım alanı daha da artacak olan bu ağlarda önemli problemlerden biri 

de ağdaki sensörlerin takip edilen değerler konusunda hemfikir olmalarını 

sağlamaktır. Bu amaca yönelik olarak farklı uzlaşı algoritmaları geliştirilmiştir. Bu 

algoritmalar, düşük hesaplama karmaşıklığı, hızlı yakınsama, düşük enerji sarfiyatı 

gibi farklı kriterleri sağlamayı amaçlamaktadırlar. Bunun yanı sıra, hareketli otonom 

cihazların belli bir noktada buluşmaları gibi başka alanlarda da uzlaşı algoritmaları 

kullanılmaktadır.  

Bu tezde amacımız, farklı kriterlere göre tasarlanmış uzlaşı algoritmalarının 

benzetimler ışığında karşılaştırmalarını sunmak, ve kullanım alanlarına göre her 

birinin diğerlerine göre avantajlarını ve dezavantajlarını ortaya çıkarmaktır. 

Anhtar kelimeleri: Kablosuz Sensor Ağlar, Dağıtık.  
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CHAPTER 1 

1.INTRODUCTION 

Internet of Things IoT is one of the most interesting technologies discussed in current 

studies. IoT refers to networks of objects that are connected together through the 

Internet so that they can perform specific functions. IoT plays an important role in 

detecting, monitoring and sensing different states of any phenomenon.  

1.1 Wireless Sensor Network (WSN): 

One of the key concepts that enables IoT is Wireless Sensor Network WSN. Like many 

technologies, the WSN has been initially developed for military and heavy industrial 

applications [1]. The first application of WSN appeared in the 1950s during the Cold 

War, when the United States developed the Sound Surveillance System (SOSUS) and 

implanted it in the Pacific Ocean to detect Soviet submarines. Developing this 

technology had led to the invention of the Internet, which was also for military use. 

A WSN is a self-planning network that consists of very small, low-power, low-cost, 

multifunctional sensor nodes which are densely distributed in a specific physical 

area [2]. These sensors generally have four components: a sensing unit, a power 

supply, a small microcontroller and a radio transmitter, all of which work together to 

convert a physical phenomenon into electrical signals [3]. Nodes process these signals 

and then transmit them through radio channels to a destination. 

The small size of sensor nodes gives WSN an important role. A WSN can be located 

anywhere, even in very small areas, sensing and processing data closer to a 
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phenomenon. As a result, WSN nodes can obtain more accurate results and then 

transmit the data to the sink (fusion center node). A sink node is a special kind of 

sensor node that has more power and more processing ability. In contrast, other nodes 

have lower capabilities. Each node passes its data to its neighbor until the data reaches 

its destination. Forwarding data for other sensors may deplete the limited battery of 

certain nodes, thereby leading to loss of data [1]. 

A WSN is usually a self-organized network, that is, in most cases, it can arrange itself 

to cover a large area. Moreover, nodes cooperate among themselves, and in cases of 

node failure (power exhaustion or other problems) or in cases of broken connection, 

one or more nodes can compensate for the function of an absent node. 

1.2 Consensus: 

Using distributed consensus algorithms, is an important estimation method which was 

presented and improved for important applications in the last decades. Examples of its 

use can be found in tele-medicine, military surveillance and environmental 

phenomenon applications. 

Estimation methods can be centralized or decentralized. Centralized methods depend 

on a fusion center which collects data from the entire network and processes the data 

to estimate the sensed value. Sometimes in practical use, a centralized network is not 

suitable, especially in a large network due to great distances and limited resources 

[5-7]. decentralized algorithms are used. These are distributed methods that depend on 

every node so that the algorithm can converge to the target value [8] and [9]. There 

are two major branches of data estimation methods that achieve the same target but in 

different ways and with different properties. The first method estimates readings 

globally such that the data flows node to node until the entire network or part of this 

operation. This branch depends on likelihood and Bayesian theories to estimate 

data [10-12]. 

In the second method, every node iterates to reach a unified value. The node 

communicates continuously with its neighbors as it broadcasts its state and receives 

neighbors’ states so they can decide on one agreement value (consensus value) [13]. 

In the second branch, algorithms are more robust for node failures, whereas in the first, 
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the algorithm requires fewer connections since it depends more on mathematical 

expression [14]. 

Consensus is a widely used estimation concept that plays an important role in 

automatic systems. WSN consensus makes nodes agree on a single value so that the 

system can recover from node failures, connection breaks, environment noise and 

other problems that produce false values [15]. In the consensus method, a node 

communicates with neighboring nodes. Through these communications, the nodes can 

produce unique decisions. In addition to a node’s own decision, consensus must be 

obtained as quickly as possible, in order to preserve the resources of the nodes, since 

any consumed power is proportional to the time necessary to reach a 

consensus [3] and [16]. 

We can conclude that consensus algorithms are low complexity iterative methods that 

test a value each time until every node has reached the “consensus” value. A consensus 

algorithm, according to its behavior, may be linear, nonlinear, local, distributed or a 

time varying method [3]. 

1.3 Related Work 

For a WSN, the network must have one decision so we can observe the state of the 

phenomenon. This can be the sensed value or it can even be a location. There are a 

variety of ways to do this according to the network architecture. For centralized 

networks, we can obtain results directly and easily by collecting data from the nodes. 

On the other hand, with decentralized networks, there are many algorithms to obtain 

a consensus. Due to the absence of centralization, a network can obtain consensus 

locally, so many methods appeared. One attempt was made in [17] where the method 

depends on probability and utilizes many rules to achieve consensus. this method 

depends on an “opinion pool” which contains many results and it is able to select one 

of them as a final result depending on the probabilities of the network. 

 Mathematical methods play an important role in data estimation over physical 

solutions due to power limits in a WSN. One of the most important methods was 

introduced in [18] and [19] which depends on the probability distribution (Gaussian 

distribution) of the received data to obtain real values. The Kalman filter takes 

opinions from different agents and works with them according to their importance by 
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giving every agent a weight according to the confidence of the agent. Different types 

of Kalman filter have appeared, but it still has a high complexity and it has a high 

delay. 

One of the node estimation algorithms was first discussed in [20] and [21], where 

PAXOS depends on electing a leader and making other nodes follow the leader node’s 

value. This method leads us to other consensus methods, such as the Raft [22] and 

Chandra-Toueg consensus algorithm [23]. For more accurate estimations, other 

algorithms appear that depend on every node to estimate the real value (distributed 

consensus algorithm). This method is known as the flooding algorithm. In that branch 

of consensus, a node sends its data to every other node it can reach, never stopping 

until it reaches the limit of its hops or returns to its destination. Thus, the data can 

collide or be duplicated in the node. Excessive and unnecessary data transmission 

leads to high power consumption and waste of resources. To reduce excessive power 

consumption the gossip algorithm was developed. The gossip has a smaller number of 

connections. These connections can be defined according different attributes [2], such 

as in pairwise, geographic or broadcast. In a pair-wise gossip, the node randomly 

selects one node and communicates with it [11]. Geographic gossip is discussed 

in [24] wherein the authors expand upon the gossip concept by adding simple 

geographic routing to the operations. This reduces the time to achieve its final results 

and saves power. The broadcast method is very good for reducing time; however, it 

does not produce accurate results [25]. The main advantage of these methods is that 

there is no need for much routing; it simply has every pair of nodes exchange data 

according to its rules [26]. The disadvantage of these algorithms includes the fact that 

they require a long time to achieve consensus. 

Based on the flooding method, other communication methods were proposed. These 

methods use permissions to send data. They can be described as a type of hand 

shaking. In these methods, the node sends an ADV (advertisement) message to every 

node to notify them about its state. Other nodes receive an ADV and if they are 

interested, they send an REQ (request) message to request the all the data. In this 

manner, connections are established and the node starts to send its DATA. These 

methods are called Sensor Protocol for Information via Negotiation (SPIN) [27]. In 

these algorithms, the system still suffers from connections and time delays.  
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A time limiting algorithm is introduced in [28]. This algorithm a is type of binary 

consensus such that every value must be agreed upon by the majority of nodes. Even 

if consensus is not reached, and the time reaches the limit, the iterations will stop. In 

this case, we can say that this is a low efficiency method. Because of the time delay of 

the previous methods, the importance of average consensus methods becomes 

apparent. Some examples are introduced in [29-31]. In these methods, each node 

depends on its last value and the values of its neighbors to obtain one decision state 

(value) depending on the weight of each node. Different types of weight matrices have 

been proposed in [33]. The weight matrix form depends on the distance between nodes 

such that it gives higher priority (a higher weight) to closer nodes. Some authors use 

the degree (number of connections) of each node to decide its weight [4]. In [32], the 

authors use the maximum degree between the connected nodes so they can separate 

fast converging nodes from the slow convergence of some nodes. The eigenvalue of 

the Laplacian matrix also takes a great position between weighting methods. 

Depending on its properties, it can ensure fast convergence in comparison with other 

methods. Another consensus algorithm is introduced in [10], in which, the authors 

developed a new Kalman filter that is presented as the dynamic version of the average 

consensus. The “consensus filter,” as it called, is a distributed filter that removes 

unwanted signals from data packets. 

A mix between two estimation branches is introduced in [14], in which likelihood 

concepts are used in each node “locally” to reach “global” agreement for the entire 

network. Each node applies a “particle filter” or a “Gaussian filter” to remove any 

unwanted signals from the data stream. 
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CHAPTER 2 

2. PREREQUISITES 

In communication systems, there are communication links between most of the nodes. 

The type of link, their directions and number of these links define the characteristics 

of the network. 

To understand a network and its properties, graph theory can be utilized by 

representing the network with a graph that contains network links. Below, we explain 

the basics of graph theory. 

2.1 Graph Theory 

Graph theory is a mathematical characterization of a network which uses the binary 

system to describe network states [33]. We can know the number of connected nodes 

for a specified node and understand clustering groups of networks. 

The resultant graph contains points that represent sensor nodes (also called vertices). 

Lines represent connections between nodes and are called edges A graph can be 

described simply by: 

𝒢 = (𝒱, ℰ) .  (2.1) 

The graph 𝒢 contains sensors set 𝒱 and edges  ℰ between sensors wherever a 

connection exists. Sets of nodes can be represented as 𝒱 = {1,2, … . . , 𝑖}, where i is the 

number of nodes in that network. 
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For consensus purposes, we use an important branch of graph representation, this 

branch being a Laplacian graph which utilized a special matrix called the Laplacian 

matrix. Laplacian matrix is determined by its spectral properties and the stability of 

the network, wherein the locations of the eigenvalues specify the stability of the 

network. 

2.1.1 Definitions 

Directed graph: 

This refers to a graph that contains connected vertices in which every path has a 

specific direction. A path has a tail – a “starting point” – and a head – an “end point,” 

thus: 

𝑒𝑖𝑗 ≠ 𝑒𝑗𝑖    (2.2) 

 

 

Fig. 2-1: Directed graph 

Undirected Graph: 

By assuming that every node can transmit at the same energy, we can say that we have 

an undirected graph. The edges in the undirected graph have neither head nor tail; 

there are only lines without any arrows. In other words, if I can send data to J, J can 

also send data to I: 

𝑒𝑖𝑗 = 𝑒𝑗𝑖     (2.3) 

2 4 

1 

3 5 

6 
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For example, we can have graph with 

𝒱 = {1,2,3,4,5,6} ,    (2.4) 

and 

ℰ = {(1,2), (1,3), (2,4), (3,5), (4,6), (5,6)},                     (2.5) 

 

Fig. 2-2: Undirected graph 

There are many types of connection in addition to the normal connection: 

double undirected edges between the same pair of nodes called “parallel edge” 

 

Fig. 2-3: Parallel edge connection 

Two directed edges between the same pair of nodes in the same direction called a 

“multiple edge” 

 

2 4 

1 

3 5 

6 



9 
 

 

Fig. 2-4: Multiple edge connection 

 

The connection starting from a node and reaching the same node called a “self-edge” 

 

 

Fig. 2-5: Self-edge connection 

Connectivity: 

We can say that two nodes are connected when there is at least one path between them. 

A network is said to be connected when all its nodes are connected and the graph that 

has a path between each pair of nodes is said to be strongly connected. 

 

Fig. 2-6: Connected graph  

 

Fig. 2-7: Not connected graph 

The graph is said to be weighted when the edges are associated with weight [33]. 

 

𝑊 ∶  ℰ → 𝑅,      (2.6) 

2 4 

1 

3 5 

6 

2 4 

1 

3 5 

6 
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In other words, if 𝑒𝑖𝑗  Є  𝓔, then W𝑒𝑖𝑗 ≠ 0; otherwise, W𝑒𝑖𝑗 = 0. 

Neighbor Nodes: 

For the undirected graph, nodes i and j are said to be neighbors if they are terminal of 

the same edge (“adjacent to each other”). 

𝒩 ≜ { 𝐽 Є  𝓥 ∶  𝑒𝑖𝑗 Є  ℰ }                      (2.7) 

where 𝒩 is an 𝑁 ×  𝑁 matrix. 

 

2.2.2 Adjacency Matrix: 

An adjacency matrix is an N × N matrix where N is the number of nodes in the network 

and the matrix entries are the connectivity states between two nodes. By inputting “1” 

for connected nodes and ”0” for unconnected nodes, the created matrix can represent 

a description of the network and be used in the consensus method to save time and 

power. 

𝐴 = {
1 𝑖𝑓 𝑗 ∈  𝜀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2.8) 

For undirected graphs, the adjacency matrix A is always symmetric. An adjacency 

matrix for our example is: 

A=

[
 
 
 
 
 
0 1 1   0 0 0
1 0 0   1 0 0
1 0 0   0 1 0
0 1 0   0 0 1
0 0 1   0 0 1
0 0 0   1 1 0]

 
 
 
 
 

 

2.2.3 Degree Matrix: 

A degree matrix is an N × N diagonal matrix where N is also the number of nodes in 

the network. A degree matrix is the sum of the in-connections and out-connections of 

a directed graph, and it is also the number of connections for each node in an 

undirected graph. A degree matrix can be easily obtained by knowing the number of 

1s in each row of an adjacency matrix (every row represents node communications), 

putting the total number of 1s in the i = j entry of that row. 
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D = DIAG (A,1),    (2.9) 

where 1 is an N × N matrix with every element being 1. 

[𝐷𝑖𝑗] = {
𝑁(𝑖)                 𝑖𝑓 𝑗 = 𝑖
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (2.10) 

Where 𝑁(𝑖)  represents number of connected neighbors for node I, by applying the 

above definition, we can get: 

[𝐷𝑖𝑗]=

[
 
 
 
 
 
2 0 0    0 0 0
0 2 0    0 0 0
0 0 2    0 0 0
0 0 0    2 0 0
0 0 0    0 2 0
0 0 0    0 0 2]

 
 
 
 
 

 

2.2.4 Laplacian Matrix: 

The Laplacian is one of the most useful matrices obtained from a graph. It is also called 

a “connectivity matrix” [33]. One of its most important properties is eigenvalues, 

which are an important part of a spectral graph which can describe network states more 

precisely [34-36]. We can derive the Laplacian matrix from: 

[𝐿] = {
𝑑(𝑖) 𝑖𝑓 𝑖 = 𝑗
−1 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Є ℰ                                           (2.11) 

It also can be represented as: 

𝐿 = 𝐷 − 𝐴      (2.12) 

As D is a diagonal and A is a symmetric matrix, the resultant L matrix will also be 

symmetric. 

[𝐿]=

[
 
 
 
 
 
2 −1 −1   0 0 0
−1 2 0    −1 0 0
−1 0 2   0 −1 0
0 −1 0   2 0 −1
0 0 −1   0 2 −1
0 0 0   −1 −1 2]

 
 
 
 
 

 

As we can see, it is symmetric “for an undirected graph” and the sum of each row is 

zero. 
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Eigenvalues of the Laplacian: 

Eigenvalues are a set of scalars associated with linear systems. They can represent any 

linear transformation of a matrix. An eigenvalue can have other names such as 

characteristic roots, characteristic values, proper values, or latent roots [37]. 

Eigenvalues can describe the stability of a network, the rotation of a physical body and 

small oscillations of vibrating systems. 

𝐴 𝑥 = 𝜆 𝑥 ,     (2.13) 

where λ is the eigenvalue set that corresponds to eigenvector A. We can get 

eigenvalues by solving: 

(𝐴 − 𝜆 𝐼) 𝑥 =  0 ,    (2.14) 

where I is an N × N identity matrix, the set of possible solutions is the eigenvalue set. 

According to the Gershgorin Theorem [38], the eigenvalues of eigenvectors have a 

real part that is exist inside a circle of eigenvectors with radius of  2𝑑𝑚𝑎𝑥
𝑜𝑢𝑡  where 

𝑑𝑚𝑎𝑥
𝑜𝑢𝑡 = 𝑚𝑎𝑥 (𝑑𝑖

𝑜𝑢𝑡) ,    (2.15) 

𝑑𝑚𝑎𝑥
𝑜𝑢𝑡  is the highest out degree in the graph (node with the highest number of outgoing 

connections) for undirected graph, we can use 𝑑𝑚𝑎𝑥. 

 

Fig. 2-8: Gershgorin circles 

0 

imaginary 

2dmax

^    
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In Fig 2.8, we can see different Gershgorin circles for different eigenvectors. For a 

connected graph, each Laplacian’s row sums to 0, which makes the Gershgorin circle 

of the connected graph tangent to the y-axis [39]. The center of the Gershgorin circle 

is located at Lii and the radii are equal to the sum of  𝐿 =  ∑ | 𝐿𝑖𝑗|
𝑁
𝑗=1
𝑖≠𝑗

  [33] and [40]. 

From the information mentioned above, we can see that the eigenvalues lie between 0 

and   2𝑑𝑚𝑎𝑥: 

0 =  𝜆1 ≤  𝜆2 ≤  𝜆3 ≤  𝜆4……… ≤ 𝜆𝑛 = 2𝑑𝑚𝑎𝑥 . 

λ1 is called the trivial eigenvalue of L, and λ2 is called the algebraic connectivity of 

the network representing the measure of consensus of the algorithm’s speed [40]. 

Below, we investigate some well-known network topology. 

2.2 Graph Topology: 

• Ring: Nodes are distributed around a circle. These nodes are connected in a 

manner such that every node is connected to only two nodes. This topology is also 

called a “2-regular graph.” 

 

Fig.  2-9: Ring distribution 
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• Lattice: Nodes are distributed on a 2-dimensional grid. In this type of graph, 

every node has 4 connections. 

 

Fig. 2-10: Lattice distribution 

• Random Geometric: Nodes are distributed randomly over a specific area. 

Connections for a node are available when the distance between a node and its 

neighbor is in the range of Euclidean distance. The radius of connections must be 

larger than √
𝑙𝑜𝑔𝑁

𝑁
 [41]. 

 

Fig. 2-11: Random geometric distribution 
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• Small World: Nodes are also distributed around a circle, but the nodes are 

reachable from any other node by a small number of hops [42]. 

 

Fig. 2-12: Small world distribution 

• Scale Free: Nodes follow the power rule to make connections with other 

nodes, it connects to its neighbor whenever it doesn’t cost the node too much 

power [43]. 

 

Fig. 2-13: Scale free distribution
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CHAPTER 3 

3. CONSENSUS: 

Sensor nodes in a Wireless Sensor Network are low cost, small in size and limited in 

memory and processing capabilities. Therefore, to increase accuracy in calculations, 

nodes must cooperate autonomously. Every node seeks a phenomenon according to 

its perspective. That may make results have a small difference between each reading. 

The node fuses its readings with the data stream and passes the data stream to its 

neighbors. The neighbors also fuse their respective readings and pass on data until the 

data reach the cluster head. The combined data at the cluster head represent the 

readings of every node which has small differences between them. They also contain 

environmental effect errors, node failure problems and malfunctional errors. 

Therefore, to obtain the actual value from a data stream, the system must follow a 

distributed method, which in our case is represented by average consensus. 

3.1 Consensus Algorithms: 

There are many consensus methods that depend on different principles. There are 

differences in the aims of a consensus, some of which have to converge to the average 

of the initial values, some having to converge to the max value of the initial values, 

while others have to converge to a specific value of the master node (leader), such as 

in the PAXOS and RAFT methods [20] and [22]. In this thesis, we investigate the 

performance of average consensus methods. 
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3.1.1 Average Consensus: 

The following is an important branch of distributed estimation that has a uniform 

equation that is correct for all cases: 

Consensus value =
∑  𝑋𝑖(0)

𝑁
 ,           (3.1) 

where Xi (0) is the initially sensed value for node I, and N is number of nodes. There 

are many strategies for convergences in average consensus methods: 

• Flooding Consensus: 

This method depends on the values of neighbor nodes without any weight or adjacency 

matrix effectiveness [29], [3] and [16]: 

𝑋𝑖 (𝐾 + 1) = 𝑋𝑖 + 𝐸∑𝑋𝑗 (𝐾) − 𝑋𝑖 (𝐾)  .                        (3.2) 

At each iterations the new value of the node is calculated based on its previous value 

and the values of its neighbor obtained on the previous iteration, this operation has 

step size that defines converging to the consensus value, the step size E is: 

𝐸  Є  (0.1/𝛥)  ,      (3.3) 

where Δ is the maximum degree of the network. 

 

• Adjacency Matrix: 

The adjacency matrix is a matrix that defines the connectivity between nodes, thus: 

𝐴 = {
1                 𝑖𝑓 𝑒𝑖𝑗  Є  ℰ

  0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
        (3.3) 

The formulated matrix is a non-negative matrix [44]. By using the adjacency matrix, 

the system can avoid unnecessary calculation by omitting unconnected nodes, thereby 

saving power and memory for the network. 

 

• Weighted Method: 

This is the most flexible part of strategies wherein by changing the weight, we can 

have different ways to converge. A weight matrix describes the relations between a 

node and its neighbor, noting that the sum of each row is equal to unity [29]. For this 

type of matrix, we can use: 



18 
 

𝑋𝑖 (𝐾 + 1) = 𝑊𝑖𝑖 𝑋𝑖 (𝐾) + ∑𝑊𝑖𝑗 𝑋𝑗 (𝐾),                           (3.4) 

Where 𝑋𝑖 (𝐾 + 1) is the next state of he node which is calculated by adding weighted 

effect of previous state of the same node ( 𝑊𝑖𝑖 𝑋𝑖 (𝐾)), and weighted effect of the state 

of connected nodes (𝑊𝑖𝑗 𝑋𝑗 (𝐾)). 

3.2 Weight Matrix and Consensus 

A weight matrix is usually designed according to a convergence rate, natural 

robustness, initial configuration, knowledge about network, etc. [29]. 

A weight matrix is a square matrix (N × N) that describes the situation of each node 

according to the other nodes. A weight matrix may change in every sample taken from 

a network. For example, if we have node i and its neighbor j, and if 𝑊𝑖𝑗  is zero, then 

it means that there is no effect from node j on node i. 𝑊𝑖𝑗  must has have a value 

between 0 and 1: 

𝑊𝑖𝑗 Є  [0,1] .   (3.5) 

Since the weight matrix is stochastic (the sum of the rows is always is equal to 1 (if 

the sum of columns is also equal to 1, we call this double stochastic), and if 𝑊𝑖𝑖  =1, 

the node never converges because there is no effect from neighboring nodes [44]. 

Weight matrices make node states change gradually to the consensus value according 

to its old state from the last iteration and the neighbor states as mentioned in the 

equation [44] and [45]. 

Weight matrices are depending on the Gaussian distribution such that every network 

has data variance and a standard deviation [31]. 

3.2.1 Weight Matrix Designs: 

3.2.1.1 Constant Weight Matrix (CW): 

𝑊𝐶𝑊 =

{
 
 

 
 

𝛼               𝑒𝑖𝑗  Є  ℰ

1 − 𝑑𝑖(𝑡)𝛼        𝑖𝑓 𝑖 = 𝑗            

                 0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

                      (3.6) 
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α decides the behavior of the algorithm as to whether it will converge or diverge [46] 

where α is the step size, and given α: 

0 ≤ 𝛼 ≤ 1 𝑑𝑚𝑎𝑥(𝑡)      
⁄ ,                          (3.7) 

where dmax is the degree of the best-connected node in the network. For a low error 

rate, this value ensures the best convergence. However, when the error rate is high, it 

cannot give precise results because it does not have high fault tolerance [47]. 

Therefore, most of the references select: 

𝛼 = 1 2 ∗ 𝑑𝑚𝑎𝑥(𝑡)      
⁄ .  (3.8) 

From the construction of the matrix, we can see that the sum of each row (at least) is 

equal to 1 [48]. 

(𝛼  + 1 − 𝛼) .   (3.9) 

3.2.1.2 Maximum Degree Weight Matrix (MD): 

This is a special type of constant weight matrix that always selects [49]: 

𝛼 = 1 𝑑𝑚𝑎𝑥(𝑡)      
⁄ .   (3.10) 

3.2.1.3 Metropolis-Hasting Weight Matrix (MH): 

The Metropolis-Hasting Weight Matrix is one of the most significant methods to use 

in real-life applications. It always needs to update its acknowledgement about the local 

information of the nodes in order to design a weight matrix which is not uniform in all 

cases [32] and [30]. 

𝑊𝑀𝐻 =

{
 
 

 
 

    

     1
(1 + 𝑚𝑎𝑥{𝑑𝑖, 𝑑𝑗}  )                      
⁄    𝑖𝑓  𝑒𝑖𝑗  Є  ℰ

   1 − ∑ [𝑊𝑀𝐻]  
𝑁
𝑘=1𝑘≠𝑖                         𝑖𝑓 𝑖 = 𝑗

                     0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (3.11) 

This design, doesn’t suffer from slow convergence of some nodes. This is due to the 

system forming the matrix by selecting the max degree node between two connected 

nodes and ignoring the other nodes. Note that the sum of each row is equal to 1 [44]. 
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3.2.1.4 Local Degree Weight Matrix (LD): 

This matrix is very similar to the Metropolis-Hasting but it has a difference when 

i ≠ j [29]. 

𝑊𝐿𝐷 =

{
 
 

 
 
        1

(𝑚𝑎𝑥{𝑑𝑖, 𝑑𝑗}  )                
⁄ 𝑖𝑓  𝑒𝑖𝑗  Є  ℰ

1 − ∑ [𝑊𝐿𝐷]  
𝑁
𝑘=1𝑘≠𝑖                𝑖𝑓 𝑖 = 𝑗  

                    0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (3.12) 

 

3.2.1.5 Best Constant Weight Matrix (BC): 

This matrix is like a constant weight matrix constructed by using eigenvalues for the 

Laplacian matrix of the network [45]. 

𝑊𝐶𝑊 = {

2
 (𝜆2(𝐿) + 𝜆𝑁(𝐿))                   
⁄    𝑖𝑓 𝑒𝑖𝑗  Є  ℰ

1 − 2𝑑𝑖(𝑡)/(𝜆2(𝐿) + 𝜆𝑁(𝐿))     𝑖𝑓 𝑖 = 𝑗   
    0                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (3.13) 

where λ2(L) is second smallest eigenvalue, and λN(L) is the largest eigenvalue [29]. 

3.2.1.6 Rendezvous Weight Matrix (RV): 

𝑊𝐿𝐷 = 𝐼 − 𝛼 ∗ (𝐼 − 𝐴)    (3.14) 

In this method when the node has more connections it will have more confidence about 

its previous state than depending on the neighbors’ states. That’s make better 

consensus values especially for high degree nodes, while low degree nodes (low 

number of connections) has to iterate more to reach consensus value that’s make the 

nodes to have time delay and power losses [44]. 
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CHAPTER 4 

4 SIMULATION RESULTS: 

In this chapter, we present our simulation results. Then these results are discussed for 

a comparative study between different types of weight matrix. 

4.1 STATIONARY NETWORK: 

4.1.1 Simulation Settings: 

We assume that an area of 10 m × 10 m is to be monitored.10 nodes are randomly 

deployed in the area, initial readings of the nodes are assigned according to the 

Gaussian distribution with a mean of 100 and a standard deviation, σ, of 15 to check 

the difference between the different weight methods. Then, we take an average of 50 

random networks and compare between the properties of each weight method. 

In our comparison we use several attributes, such as converging states of each method, 

the number of iterations and the randomized root mean square error. 

Note that every method can be the best depending on the properties of the network and 

the values received from the sensors and the connections between the nodes. What is 

important, is the average obtained from multiple random topologies, which will give 

us an idea about the expected performance of the investigated consensus methods. 
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In our simulations, nodes end their consensus phase when the difference of the value 

obtained in the last step is within 0.001% of the previous step. 

 

Fig. 4-1: Simulated network 

4.1.2 Convergence State 

Every weight method can present different results. In this thesis, four different weight 

matrices are tested: 
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4.1.2.1 Constant Weight Matrix:  

In the Fig.4.2, we present the convergence of the node values for the network given in 

Fig.4.1. we see that the nodes reach consensus after 45 iterations, where the average 

number of iterations to reach consensus among the 10 nodes is 36 iterations.   

 

Fig. 4-2: Convergence in the constant weight method 

Note that in all figures, the x-axis is number of iterations for the network, where y-axis 

represents the values of nodes, values of nodes are converging together to reach the 

consensus value. 

4.1.2.2 Rendezvous Weight Matrix: 

With this method we can obtain consensus faster than constant weight method, as we 

can see in the results, we can see that the last node converges after 55 iterations 

(node no.5) as shown in table 2 which is look too much, but the average of iterations 
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for 10 nodes is equal to 29 iteration. High number of iterations for node no.5 is because 

node no.5 has only one connection so it suffers till it reach consensus state.   

 

Fig. 4-3: Convergence in the Rendezvous weight method 

4.1.2.3 Metropolis-Hasting Weight Matrix: 

In Metropolis-Hastings we can get more accurate result, with lower number of 

iteration although we have 50 iterations for node no.5, but we have better iteration 

average for 10 nodes which is 27 iteration, with better consensus value (92.46) where 

the actual mean is (94.959). 
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Fig. 4-4: Convergence in the Metropolis-Hastings weight method 

4.1.2.4 Eigenvalue Weight Matrix: 

Eigenvalue method result’s is very close to Metropolis-Hastings method, as we can 

see from table 4, the nodes have iterated about 28 iteration in average for 10 nodes, 

which represent a good number with consensus value of (92.46), where the real mean 

of (94.959).   

 

Fig. 4-5: Convergence in the eigenvalue weight method 
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To get more insight, we present the results of every method from the MATLAB 

implementations, In tables 1-4: 

Table 1: Convergence in the constant weight matrix 

Constant 
1st 

node 

2nd 

node 

3rd 

node 

4th 

node 

5th 

node 

6th 

node 

7th 

node 

8th 

node 

9th 

node 

10th 

node 

Mean 

of 10 

nodes 

Time 
8.63 

e−5 

3.63 

e−5 

3.21 

e−5 

2.5 

e−5 

2.42 

e−5 

2.89 

e−5 

2.93 

e−5 

2.84 

e−5 

2.47 

e−5 

2.47 

e−5 
3.4e-4 

Value 

reached 
89.83 89.76 89.76 89.76 89.76 89.73 89.76 89.75 89.77 89.76 

89.76/ 

94.959 

Number 

of 

iterations 

45 37 40 32 22 44 22 44 36 36 36 

Table 2: Convergences in rendezvous 

Table 3: Convergences in the metropolis weight matrix 

 

Rendezvous 
1st 

node 

2nd 

node 

3rd 

node 

4th 

node 

5th 

node 

6th 

node 

7th 

node 

8th 

node 

9th 

node 

10th 

node 

Mean 

of 10 

nodes 

Time 
6.01 

e−5 

3.68 

e−5 

4.33  

e−5 

2.51 

e−5 

2.42 

e−5 

2.42 

e−5 

2.61 

e−5 

2.51 

e−5 

2.47 

e−5 

2.47 

e−5 

3.14 

e-5 

Value reached 92.02 91.99 92.06 91.98 91.74 91.95 92.22 92.04 92.10 92.06 
92.02/ 

94.959 

Number 

of iterations 
20 26 24 27 55 24 50 20 24 24 29 

Metropolis 
1st 

node 

2nd 

node 

3rd 

node 

4th 

node 

5th 

node 

6th 

node 

7th 

node 

8th 

node 

9th 

node 

10th 

node 

Mean 

of 10 

nodes 

Time 
5.03 

e−5 

3.77 

e−5 

3.31 

e−5 

2.47 

e−5 

2.42 

e−5 

2.47 

e−5 

2.33 

e−5 

2.47 

e−5 

2.47 

e−5 

2.51 

e−5 
2.9e-5 

Value 

reached 
92.78 92.75 92.83 92.75 92.59 92.73 92.94 92.80 92.86 92.82 

92.79/ 

94.959 

Number of 

iterations 
20 24 23 25 50 22 41 20 22 23 27 
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Table 4: Convergences in the eigenvalue weight matrix 

Eigenvalue 
1st 

node 

2nd 

node 

3rd 

node 

4th 

node 

5th 

node 

6th 

node 

7th 

node 

8th 

node 

9th 

node 

10th 

node 

Mean 

of 10 

nodes 

Time 
5.59 

e−5 

3.59 

e−5 

3.26 

e−5 

2.51 

e−5 

2.51 

e−5 

2.51 

e−5 

2.42 

e−5 

2.56 

e−5 

2.56 

e−5 

2.51 

e−5 
3.0e-5 

Value 

reached 
92.45 92.44 92.48 92.44 92.36 92.43 92.56 92.47 92.50 92.47 

92.46/ 

94.959 

Number of 

iterations 
33 21 21 23 45 25 41 31 21 21 28 

 

The mean value of the gathered data is 94.959. As we can see, the normal weight 

method has to iterate more to obtain a consensus. Although the greatest number of 

iterations is for the rendezvous weight method for the 5th node, when we consider the 

average of all nodes, constant weight has the highest average of 37 iterations. On 

average Rendezvous matrix has to iterate about 29 times before reaching consensus. 

The Eigenvalue Weight Matrix has to iterate an average of 28 times per node and the 

Metropolis-Hasting Weight Matrix has the best iteration average of 27 iterations. In 

the 5th and 7th, we can see that the Rendezvous, Metropolis-Hastings and Eigenvalue 

methods are suffering to make these two nodes reach a consensus. This is due to the 

5th and 7th nodes having only one connection each, while the constant weight method 

is satisfied with only 22 iterations for each node with a poor consensus value that is 

far from the actual mean. 

In the constant weight method, we can see a high number of iterations in the 8th node, 

which has many connections, while for the other methods, the 8th node represents the 

fastest converging node in most cases. 

4.1.3 Root Mean Square Error (RMSE) 

RMSE refers to the error occurring in the estimations for each reading. It is important 

to use the lowest RMSE so that the consensus can obtain the most accurate value 

within the shortest time. A normalized RMSE can be easily obtained as: 

𝑁𝑅𝑀𝑆𝐸 =
√(𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒)2−(𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒)2

𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑎𝑙𝑢𝑒
                       (4.1) 

Since there is no unified form of a NRMSE, we select this form which can be a good 

definition of system accuracy. 
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In our implementation, we assume that the mean value of the received data is the real 

value and we expect the nodes to reach a consensus around this value. 

 

Fig. 4-6: Normalized Root Mean Square Error 

In Fig. 4.6, we show the NRMS vs the number of iterations for the four methods. We 

can see that the constant weight method has the worst results. 

The NRMS started with a high rate of error and then as with the nodes previously 

moving towards consensus, the error rate decreases. When the nodes are about to reach 

consensus, the error rate decreases to become very slow after which it stops 

decreasing. 

4.1.4 Number of Iterations 

The number of iterations is not a necessary measure of time required to reach 

consensus. Some methods have lower numbers of iterations, but they take longer to 

achieve consensus. This is because of the different levels of complexity of each 

algorithm. 
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Fig. 4-7: Convergence of 10 nodes according to each method 

In Fig. 4-7, we show the average number of iterations for convergence for four 

different consensus methods. Each bar represents a node. In general, we can see that 

the constant method has the highest number of iterations. Furthermore, it produces the 

worst consensus values and NRMS, while the number of iterations is very close for 

other methods, as can be seen in Fig. 4-8. 
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Fig. 4-8: Means of iterations for each method 

4.2 Convergence of Locations: 

In the first part of this chapter, we saw the results of one network. The nodes in the 

first part of this chapter were stationary and converged only in the sensed value. 

In the second part, we investigate the location consensus. The sensors are mobile and 

the aim is to have them meet at a central rendezvous point. For this, we utilize 

consensus algorithms on the x and y coordinates of the sensors. Meanwhile, the sensors 

also attempt to reach a consensus on the sensed value. Since the nodes are moving to 

a central meeting location, the adjacency matrix is continuously changing. This causes 

the weights to be dynamic and this affects the operation of the consensus algorithms. 

We aim to evaluate the consensus methods under these conditions. In this section, we 

initially generate 100 random networks and attempt to converge to a central location 

in each case while reaching a consensus on the sensed value. We present the average 

of these 100 random cases in the results. 

4.2.1 Node Mobility: 

Figures 4-9A to 4-9D show a typical case of node rendezvous with mobile nodes. as 

seen here, as the nodes converge, the number of edges in the graph representing the 
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network increases. In the following we present the comparison of the consensus 

methods when the adjacency matrix is dynamically changing, note that our network is 

in the first quadratic: 

 

Fig. 4-9: A -initial nodes locations 

 

Fig. 4-9: B- first new locations 
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Fig. 4-9: C -nodes convergence in locations 

 

Fig. 4-9: D-nodes convergence in locations 
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4.2.2 Converging in Sensed Values: 

As the nodes are moving, the properties of the network changes continuously, these 

effects the performance of each method as discussed below. 

4.2.2.1 Constant Weight Method 

As mentioned previously, the degree matrix of the network changes during mobility 

of the nodes. More connections mean a higher degree, which makes the constant 

weight method behave better and reach a consensus faster at a high speed of mobility.  

 

Fig. 4-10: Converging in the value for 100 mobile networks with a constant weight matrix 
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Fig. 4-11: Converging in the value for 100 stationary networks with a constant weight 

matrix 

 

As seen in Fig. 4-10, which represents the average values of the nodes for 100 

networks comparing with the actual mean values for 100 networks (red line), the 

constant weight method here presents a very good solution in the mobile network. It 

works faster (average of 24 iterations for 99% of accuracy) relative to bad results in a 

stationary network as seen in Fig. 4-13. 
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4.2.2.2 Rendezvous Weight Method 

As the nodes move towards a center point, the degree of each node increases. 

Rendezvous makes the node depend more on its value (i.e., become more confident 

about its value). This may cause some problems in the consensus value, especially 

when the value of the node is far from the actual mean, as seen in Fig.4-12  

 

Fig. 4-12: Convergence in the value for 100 mobile networks with the Rendezvous weight 

matrix 
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Fig. 4-13: Converging in the value for 100 stationary networks with the Rendezvous 

weight matrix 

99% of the nodes reach consensus in 10 iterations, however, the reached consensus 

value is not close to the actual value, in comparison to rendezvous in the stationary 

case which can obtain better results in less iteration number, as seen in fig.4-13. We 

conclude that rendezvous method is more suitable for stationary networks. 
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4.2.2.3 Metropolis-Hastings Weight Method 

As previously mentioned, in the Metropolis-Hastings method, the weight of every 

connection depends on the maximum degree between pairwise connections. since the 

mobile network has a variant degree matrix each time, Metropolis-Hastings method 

preforms poorly as shown in Fig.4-14. 

  

Fig. 4-14: Convergence in the value for100 mobile networks with the Metropolis-Hastings 

weight matrix 
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Fig. 4-15: Convergence in the value for 100 stationary networks with the Metropolis-

Hastings weight matrix 

 

In Fig.4.14, we can see fast consensus (7 iterations) to reach 99% of the consensus 

value, consensus value is bad (106.1), comparing with Metropolis-Hastings’ 

performance in stationary network given Fig.4-15, we can conclude that in a mobile 

network, the Metropolis-Hastings is acting as one of the worst methods in mobile 

network. 
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4.2.2.4 Eigenvalue Weight Method 

For mobile networks and for every node’s location state, there is a new Laplacian 

matrix with new eigenvalues. Since the eigenvalue method depends on the stability of 

the eigenvalues, it will not work properly, as shown in the figure below (Fig. 4.17). 

To make a comparison, converging of eigenvalue for a stationary network is shown in 

Fig. 4-18. 

 

Fig. 4-16: Convergence in the value for 100 mobile networks with the eigenvalue weight 

matrix  
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Fig. 4-17: Convergence in the value for 100 stationary networks with the eigenvalue 

weight matrix  

 

We can see that the there is no stability in the achieved consensus value while the 

nodes are moving toward each other. This method can be the worst method to obtain 

a consensus value in a mobile network. 
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CHAPTER 5 

Conclusions and Future Work 

This thesis presents a study of the behavior of distributed sensor systems. Wireless 

Sensor Networks (WSNs) are very sensitive to the environment and are subject to 

many difficulties. This thesis focused on a comparison of distributed weighted 

consensus algorithms used in WSN. It is clear that consensus algorithms are a 

sufficient method to acquire real data from a data stream suffering from all the 

previously mentioned errors. An average consensus has a broad range of uses in 

different forms. Every form of consensus algorithm is suitable for a specific type of 

topology. Four types of average consensus methods have been studied in this thesis 

and implemented in MATLAB. For these simulations, randomly distributed networks 

with specific means and standard deviations were constructed as sensed values. In 

these algorithms, every node cooperates in a distributed manner to reach a point of 

agreement (consensus). 

Different comparisons have been discussed in this thesis. The most important 

requirement for consensus algorithms in WSNs is to obtain the closest value to the real 

value at the lowest rate of transmission and the lowest number of calculations. This is 

due to the power constraints of the WSN. 

We can see in this thesis that the Metropolis-Hastings and Eigenvalue methods, due 

to their simplicity and through their stability and relatively good results in most 

network topologies, can represent a good base to develop an average consensus for 

stationary networks. This development can occur by decreasing the time to reach 

consensus or even reaching better consensus values. The development of these 
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methods can also be used to improve weakly connected nodes (with a low number of 

connections), which suffers from low convergence rates and takes longer time to 

obtain consensus. On the other hand, constant weight methods can represent a good 

base to develop consensus for mobile network through solving the sudden 

disconnection that happens for some nodes while others are converging and getting 

closer to each other.
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